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Abstract — Passive Radars, based on the emerging 802.11ax
Wi-Fi standard, are considered for indoor human movement
detection. Since the Wi-Fi access points transmit multiple frames
in bursts, the FFT-based Doppler estimation techniques fail due
to the limited duration of the bursts. Therefore, super resolution
techniques are examined for low Doppler frequency estimation
based on a small number of frames. An algorithm is proposed
which uses ESPRIT in an iterative fashion. The performance of
the algorithm is numerically analysed, compared to theoretical
bounds, and validated experimentally.
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I. INTRODUCTION

Passive radars (PR) are devices that make use of the
existing communication signals to detect and track targets
in the environment. In the classical radar processing, the
signal bandwidth and duration determine the range and speed
resolution, respectively. Wi-Fi 6 (802.11ax) [1] is a relevant
signal of opportunity (SO) for PRs, due to the availability
of wide bandwidths up-to 160 MHz. Since the Wi-Fi sig-
nals are modulated with the Orthogonal Frequency Division
Multiplexing (OFDM), the classical radar processing for range
estimation can be replaced by channel impulse response (CIR)
estimation to improve the range accuracy [2]. To do so, the
transmitted symbols need to be known. The range processing is
followed by windowing to reduce the leakage in the frequency
domain, fast Fourier transform (FFT) to obtain the Doppler
spectrum and the constant false alarm ratio (CFAR) to separate
the target peaks from the noise.

However, Wi-Fi access points (AP) work by transmitting
bursts of OFDM frames. Therefore, the duration of the SO may
not be long enough to achieve the desired speed resolution. The
latter problem is discussed within the recently formed Task
Group for Wi-Fi Sensing [3], that aims at indoor monitoring
of human movements based on the Wi-Fi signals. To estimate
the human main-body speed with an average velocity of 1.4
m/s, approximately 0.5 m/s speed resolution is required. Thus,
the measured duration of the SO has to be at least 50 ms at
5.6 GHz for the FFT-based processing, which is an unrealistic
assumption for Wi-Fi systems.

In this work, we address the limitations of the classical
processing method on the accuracy of the speed estimation.
Since the frequency resolution of the FFT-based method is

limited by the measured duration of the SO, parametric es-
timators with super-resolution may constitute an interesting
alternative to achieve better accuracy for the speed estimation.
In [4], by exploiting the unique OFDM frame structure of
the Radar-Radio (RadCom) systems, the range and Doppler
are estimated with ESPRIT and Least Square (LS) algorithms,
respectively. However, the considered target velocities are 80
and 100 m/s, which yield high Doppler frequencies. In [5],
joint estimation of angle and Doppler frequency are performed
using the ESPRIT algorithm for a bistatic multi-antenna radar.
When the number of targets is increased and/or the number
of antennas is decreased, the algorithm performs poorly. In
[6], 802.11p signals are used for radar processing, where the
delay and Doppler are estimated with ESPRIT, achieving sub
0.05m/s accuracy. However, the observation time is considered
to be around 50ms, which already provides high accuracy
with the FFT-based method. Moreover, it is also mentioned
that, for targets with weak reflectivity (such as humans), it
is difficult for ESPRIT to estimate the speeds between -2
and 2 m/s. The goal of our work is to develop a new iter-
ative algorithm inspired by ESPRIT, which provides accurate
Doppler frequency estimation to enable the indoor monitoring
of human movements, where the source of the SO is considered
to be an 802.11ax AP. We both numerically and experimentally
demonstrate the efficiency of the algorithm.

This paper is structured as follows. In section II, the OFDM
frame structure and radar processing are briefly explained.
In section III, the ESPRIT algorithm is introduced and the
proposed algorithm is explained in details. In section IV, the
performance of the algorithms is compared numerically, and
the results are validated experimentally. Finally, in section V,
the conclusion is drawn.

The following notations are used in the paper: superscripts
H and T , I, diag(A), A∗,i and • are defined as the Hermitian
and matrix transpose operators, the identity matrix, the vector
containing the diagonal elements of an arbitrary matrix A, i-th
column of A and the Hadamard product, respectively.

II. OFDM SIGNALS AND RADAR PROCESSING

The considered OFDM frame is composed of two fields:
the preamble and the data, composed of 8 and 32 OFDM
symbols, respectively. The preamble is used for the synchro-
nization and the channel estimation to obtain the transmitted



data symbols. In each frame, as shown in Figure 1, all 40
OFDM symbols can be used for PR processing, assuming that
the data is reconstructed by the PR working as a conventional
Wi-Fi receiver for that purpose. Moreover, one OFDM frame
duration (504µs) corresponds to approximately 2kHz Fourier
resolution, yielding 53 m/s speed resolution at 5.6 GHz.
To achieve 0.5 m/s resolution with the FFT-based method,
approximately 105 frames are required.

Fig. 1. The OFDM frame structure, which is identical for the following
frames.

The transmit signal corresponding to M consecutively
transmitted OFDM symbols composed of Q subcarriers can
be written as

s(t) =

M−1∑
m=0

Q−1∑
q=0

X[q,m] ej2π
q

Tu
(t−mTo) u(t−mTo) (1)

where X[q,m] is the complex PSK/QAM symbol mapped on
the q-th subcarrier of the m-th OFDM symbol. Tu = Q/B,
where B is the system bandwidth, is the duration of one OFDM
symbol. To = Tu+Tcp is the OFDM symbol duration including
the cyclic prefix (CP) of duration Tcp. The rectangular pulse-
shaping function, u(t) is defined as

u(t) =

{
1, 0 ≤ t < To

0, elsewhere

In a quasi monostatic configuration where the transmitter
and the PR are co-located, the time-varying CIR can be
modelled as

h(τ, t) =

J∑
j=1

βcjδ(τ − τ cj ) +
L∑
l=1

βl δ(τ − τl) e−j2πflt (2)

where J and L are the number of static and moving paths in
the channel; βcj and βl are the complex amplitudes (including
the random phase shifts). Since we consider a quasi monostatic
scenario, τ cj , τl and fl correspond to the two-way propagation
delay of static and moving objects, and the Doppler shift,
respectively. The received signal can be written as

r(t) =

J∑
j=1

βcj s(t− τ cj )+
L∑
l=1

βl s(t− τl) e−j2πflt+ z(t) (3)

where z(t) is the additive white Gaussian noise (AWGN) of
zero-mean and variance σ2. The goal of a radar receiver is
to estimate the propagation delays τl, and the corresponding
Doppler shifts fl. After the received signal is low pass filtered,
sampled at a fixed rate, and the synchronization is performed,
the PR can perform CIR estimation on each OFDM symbol.
Then, each estimated CIR, with index m, is stacked on a

matrix, also known as range/slow-time map. For a fixed range
d i.e., tap index, the slow-time response can be written as [7]

hd[m] =

Jd∑
j=1

αcj +

Ld∑
p=1

αp e
−j2πfpmTo + zd[m] (4)

where m = 0, ...,M−1; αcj and αp are the complex amplitudes
obtained after the processing, while Jd and Ld are the total
number of static and moving paths at a given distance, hence
Jd < J and Ld < L,∀d and zd[m] are the corresponding noise
samples. The static objects can be cancelled by removing the
mean of (4), as shown in [8]. Moreover, the moving objects are
identified by their distances while the Doppler frequencies for a
given distance are modelled as a sum of complex exponentials.
The frequency resolution is determined by the Fourier bin
width 1/MTo for conventional radar processing. Since the
OFDM symbol duration, To, is fixed by the standard, the only
parameter that can vary to improve the resolution is M , which
is also limited by the nature of the Wi-Fi systems. Therefore,
we propose to make use of the parametric methods to estimate
the frequencies for relatively lower values of M .

III. SUBSPACE METHODS FOR FREQUENCY ESTIMATION

Let us write (4) in matrix form, such as

hd = Aα+ zd, ∈ CM×1 (5)

α = [α1 . . . αLd
]T , ∈ CLd×1 (6)

A = [a(f1) . . .a(fLd
)], ∈ CM×Ld (7)

where hd=
[
hd[0] . . . hd[M−1]

]T
, zd=

[
zd[0] . . . zd[M−1]

]T
,

a(f):=[1 e−j2πfTo ... e−j2π(M−1)fTo ]T , ∈ CM×1 and
α contains the complex amplitudes per Doppler frequency.
A is the Vandermonde matrix whose columns contain the
complex sinusoids in (4). The covariance matrix of (5) can
be written as R=E{hdhHd }=AKAH+σ2I, also known as
the Carathéodory parametrization where α=diag(K). After
performing the eigenvalue decomposition on R, we obtain
Us which is the orthonormal eigenvectors associated with the
Ld largest eigenvalues, {λs}, of R. Remaining orthonormal
eigenvectors, Un, are associated with the M−Ld smallest
eigenvalues, {λn}, of R, equal to σ2. Matrices Us and Un are
commonly referred to the basis vectors spanning the signal and
noise subspaces, respectively. For further information about the
subspace methods the reader is referred to [9].

A. ESPRIT

The algorithm works by dividing the matrix Us, into two
submatrices

Us1 = [IM−1×M−1 01×M ]Us, Us2 = [01×M IM−1×M−1]Us

(8)
Furthermore, the following equality between the two submatri-
ces can be derived: Us2 = Us1Φ, where the eigenvalues of the
matrix Φ contain complete information about the frequencies
in (4) [9]. In practice, the matrix Φ is estimated with the total
least square (TLS) method from an estimation of R. Once



the frequencies are estimated, the complex amplitudes can be
estimated with LS, using α̃ = (AHA)−1AHhd.

B. Two-step ESPRIT

ESPRIT requires the separation between the signal and the
noise subspaces. Thus, the number of signals i.e., Ld, needs
to be known a priori. Our approach is as follows. First, a
sufficiently high number of columns of U are selected to create
Ue
s containing all the signal basis vectors and at least one of

the noise basis vectors. Then the submatrix separation, given
in (8), is performed for two different step sizes such as

U1
s1 = [IM−1×M−1 01×M ]Ue

s, U1
s2 = [01×M IM−1×M−1]U

e
s

U2
s1 = [IM−2×M−2 02×M ]Ue

s, U2
s2 = [02×M IM−2×M−2]U

e
s

U1
s2 = Φ̃

1
U1
s1 , U2

s2 = Φ̃
2
U2
s1 (9)

where the matrices Φ̃
1

and Φ̃
2

are separately estimated with
the TLS method yielding to two sets of estimated frequencies.
The estimated frequencies are rounded up to the second
decimal, and only the common ones are selected. This method
allows the joint estimation of the set of frequencies {f̃}L̃d

p=1

and the number of signals L̃d.

C. Iterative Doppler Frequency Estimator (iDoFEst)

The proposed algorithm replaces the windowing, Doppler
FFT and CFAR by iteratively estimating the Doppler frequen-
cies. The only required input to the algorithm is the vector
given in (5). The block diagram of the algorithm is given in
Figure 2.

First, the covariance matrix of (5) and the eigenvalue
decomposition are computed. The set of frequencies and
the number of signals are estimated by the 2-step ESPRIT.
Corresponding Vandermonde matrix, Ã, is constructed from
the estimated frequencies, as in (7), and the amplitudes,
α̃, are estimated with the LS method through (5). Then, a
confidence analysis is performed to determine the accuracy of
each estimated frequency. To do so, instead of comparing the
amplitudes against a threshold [9], the estimated signals are
projected to the noise subspace Un since the noise projection
enlarges the estimation errors to be spotted more easily. To
perform the confidence analysis, the constructed signals in Ã
are scaled by α̃, and the result is projected onto the noise
subspace, yielding

C = (Ã • α̃)HUnUH
n , ∈ CL̃d×M

and the rows of the matrix C are averaged to obtain the
vector c∈CL̃d×1 whose elements, ci, contain the confidence
per estimated frequency. Then, each ci is compared with
a numerically obtained threshold. If any given ci is higher
than the threshold, the corresponding estimated frequency fi,
amplitude αi and the constructed sinusoid Ã∗,i, i.e. a(fi),
are discarded. Otherwise, the estimations are kept as accurate.
After the confidence analysis, if the number of columns of
Ã has not changed, all the estimations have high accuracy,
therefore the algorithm converges. Otherwise, the remains of

the matrix Ã and the vector α̃ are multiplied, yielding to the
vector h̃

′
, which corresponds to the sum of all the accurately

estimated signals. Finally, this vector is subtracted from the
input vector yielding the residual h̃r. The algorithm is repeated
with the residual until convergence. In order to guarantee the
convergence, the number of iterations can be fixed.

Fig. 2. Iterative Doppler Frequency Estimator

IV. NUMERICAL AND EXPERIMENTAL RESULTS

In this section, we numerically investigate the performance
of the proposed algorithm for different scenarios. Then, the
performance of the algorithm is validated by an experimental
setup. The parameters, used in both numerical analyses and
experimental setup, are selected based on the 802.11ax stan-
dard. The system bandwidth is set to 100 MHz. The number of
subcarriers (Q) and CP length are 1024 and 64, respectively.
Carrier Frequency (Fc) is 5.6 GHz while each Wi-Fi frame
consists of 40 OFDM symbols. The transmit power is 20 dBm
while the LNA and amplifier gain at the receiver are 23 dB
and 20 dB, respectively. Finally, the antenna gains are 2 dBi.

Fig. 3. Performance comparison of the algorithms for different relative
differences in speed and frame sizes #F.

In Figure 3, we consider a scenario composed of 2 targets
in the environment, both modelled as single moving points.
First target is moving at 0.6 m/s, while the speed of the second
target varies between 0.8 and 1.6 m/s. The error on the speed
estimation of the second target is plotted as a function of
difference in speed for two different frame sizes. The Cramer-
Rao Lower Bound (CRLB) of the model given in (4) is also
plotted [10]. Regardless of the frame size, ESPRIT has low
accuracy at low differences in speed. Once the relative speed



reaches to a sufficiently high value, both algorithms converge
to an error floor.

Fig. 4. Comparison of the algorithms for varying frame sizes. For each frame
size, 25 different target speeds are randomly selected between 0.25 and 1.5
m/s, and 500 realizations are performed for every set of target speeds.

In Figure 4, the performance of the algorithms is compared
for varying number of frames. For each realization, the target
speeds are randomly selected between 0.25 and 1.5 m/s,
then the average estimation error is plotted. The proposed
algorithm requires lower number of frames to achieve similar
performances as ESPRIT. Since the considered frequencies are
low (between 10 and 55 Hz), a small change in the frequency
does not significantly alter the signals. Therefore, the 2-
step ESPRIT inaccurately estimates the number of Doppler
frequencies, yielding to target misses and/or estimation errors.
Meanwhile, once a set of Doppler frequencies are estimated
and removed from the initial vector by the proposed algorithm,
the remaining Doppler frequencies are revealed. Therefore, the
algorithm shows similar performances with lower number of
frames.

Fig. 5. Red crosses correspond to the approximate speed of the individuals,
while the black areas correspond to the target detections by the corresponding
algorithm. Blackman window is applied on the Doppler spectrum for the FFT-
based method.

In Figure 5, the two algorithms are compared experimen-
tally. The experiment is composed of two Software Defined
Radios (SDR); one acting as the AP, the other acting as the PR.
The measurements are obtained while two humans are moving

towards the PR in a 4m-by-7m room. The CFAR output of the
FFT-based method reveals the two targets at 3 meters distance
when M is sufficiently high. The additional detections along
the horizontal and vertical axes correspond to the artefacts
due to the windowing and the multipath components of the
targets, respectively. At low M , it is clear that FFT-based
method fails to identify the targets. With the high resolution
algorithms, the number of targets are correctly estimated,
thanks to the 2-step ESPRIT. When there is only one target,
the two algorithms show similar performances. On the other
hand, the proposed algorithm out performs the 2-step ESPRIT
when the number of targets in a given distance is more than
one. Even though numerical analysis plotted in Figure 3, shows
that 16 frames is enough to have accurate estimations when the
relative difference in speed is 0.6 m/s, the proposed algorithm
requires at least 20 frames to work. The main reason is the
extra Doppler frequencies caused by the motion of the limbs,
additional to Doppler frequency caused by the main body
movement.

V. CONCLUSION

In this work, high resolution algorithms are examined to
estimate the Doppler frequency of the human main-body mo-
tion with a PR based on Wi-Fi signals for indoor monitoring.
To achieve the required estimation accuracy, a new algorithm
is proposed which is based on the high resolution ESPRIT
algorithm. We numerically showed that the proposed algorithm
can be used for low Doppler frequency estimation when the
available number of OFDM frames is low. The performance
of the algorithm is validated with the experimental setup when
there are two individuals in the environment, and it is proven
to be useful for indoor monitoring of the human motion.
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