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Abstract

This paper presents a Markov-Chain-Monte-Carlo (MCMC) procedure to sample

uniformly from the collection of datasets that satisfy some revealed preference test.

The MCMC combines a Gibbs-sampler with a simple hit and run step. It is shown

that the MCMC has the uniform distribution as its unique invariant distribution and

that it converges to this distribution at an exponential rate.
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1 Motivation

Revealed preference theory is a versatile nonparametric method that allows to test for

rational decision behaviour given some finite set of choices. It’s main attractiveness comes

from the fact that it is entirely nonparametric, i.e. it does not rely on auxiliary parametric

assumption imposed on the utility function. This feature makes that revealed preference

methods are frequently used for testing the hypothesis of utility maximizing behaviour. In

his seminal contribution, Afriat (1967) showed that a finite data set on observed prices and

consumed bundles is consistent with utility maximizing behaviour if and only if it satisfies
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the Generalized Axiom of Revealed Preference (GARP).1 Nowadays there exists a wide

variety of revealed preference tests for various models of decision making.2

This paper adds to the revealed preference toolbox by providing a Markov Chain Monte

Carlo (MCMC) procedure to sample uniformly from the collection of datasets that satisfy

some revealed preference test. In the main text, we will focus on obtaining random data sets

that satisfy GARP, but we also discuss other revealed preference tests, like the Weak Axiom

of Revealed Preference (WARP) (Samuelson, 1938), the Homothetic Axiom of Revealed

Preference (HARP) (Varian, 1983) and the Quasi-Linear Axiom of Revealed Preference

(QLRP) (Brown and Calsamiglia, 2007). In addition, we show that the method can easily

be modified to generate datasets that are nearly consistent with a particular revealed

preference test.

The possibility to sample from the set of all datasets consistent with a revealed prefer-

ence test can be useful for a variety of reasons. First of all, it may help to conduct a so

called Bronars power analysis (Bronars, 1987). The Bronars power gives the probability

that a randomly generated data set violates the revealed preference test. It is usually cal-

culated using a Monte Carlo procedure by generating a large number of random datasets

and computing the fraction of these datasets that violate the revealed preference test. As

usual with Monte Carlo integration, the (relative) accuracy of this procedure depends on

the number of randomly generated datasets and on the size of the target. If the revealed

preference test is very strict, then only a very small number of the randomly generated

datasets will satisfy the revealed preference test. In such cases, the obtained estimate of

this target will be quite unreliable (in relative terms), unless one generates a very large

number of random data sets. Doing this becomes computationally very demanding. In

section 5 we will show how our MCMC method can help in such instances.

Second, the MCMC procedure may be useful to compare the strictness of different

revealed preference tests, especially if they are nested, i.e. if consistency with one test

automatically implies consistency with the other test. Instead of computing the power

separately between the two tests, we may think of first generating random data sets that

satisfy the weaker test and only check consistency with the more stringent test on these

datasets (see Heufer (2013) for a similar argument). Section 5 also illustrates this feature.

Finally, the MCMC procedure might be useful in the development of (non-parametric)

1See also Varian (1982) who actually coined the term GARP. Afriat (1967) extended earlier work of
Samuelson (1938) and Houthakker (1950).

2See Chambers and Echenique (2016), Crawford and De Rock (2014) and Demuynck and Hjertstrand
(2020) for recent overviews of the literature.
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statistical tests of rational or irrational consumer behaviour (e.g. to test for negativity

or symmetry of the Slutsky matrix). Consider a setting where one has an (asymptotic)

test to verify or reject the rationality of consumer behaviour. In order to evaluate the

correctness of this test, or in order to analyse its performance in finite samples, it may

be useful to see how the test performs using a Monte Carlo exercise. To do this, it might

be necessary to simulate choice behaviour from a rational consumer. Our MCMC method

allows to efficiently generate data that fit such description and could therefore be used to

in the development of such statistical tests.

Our MCMC algorithm is based on a hit-and-run (H&R) procedure, which is a well

known method for generating samples from the uniform distribution on a bounded region

in Euclidean space (Bélisle, Romeijn, and Smith, 1993). Given a starting vector x in

the region of interest, H&R first picks a random direction, δ, uniformly from the unit

hypersphere. Next it determines the possible values of λ such that x + λδ is still in the

target region. Finally, it picks a value λ∗ uniformly from this range and set the next value

of the chain equal to x+ λ∗δ.

The H&R algorithm is easy to implement if the target region is a convex set, as then the

range of possible λ-values is an interval whose bounds can be computed fast using a binary

search procedure. If the target region is not convex, then determining this set is much

harder. Unfortunately, the collection of GARP consistent datasets is not always a convex

set, so implementing the default H&R algorithm is not straightforward. However, as we

will show in the paper, if we keep all observations but one fixed, then the set of all GARP

consistent datasets does become convex. This leads to the following ‘Gibbs’-adjustment

of the standard H&R method: (i) draw an observation at random and (ii) perform H&R

on this observation only, keeping the quantities for all other observations fixed. As shown

in this paper, this modified H&R algorithm gives a Markov Chain that has the uniform

distribution as its unique invariant distribution. Also, this chain is uniformly geometric

ergodic, which means that it approximates the uniform distribution at an exponential rate.

The paper closest to the current one is by Heufer (2013). In his paper, Heufer (2013)

develops a Monte Carlo procedure that generates random GARP consistent datasets. His

procedure constructs the random data set observation by observation. For each additional

observation, his algorithm guarantees that adding the new observation does not lead to

a GARP violation. In particular, a new observation is chosen by applying a H&R step

to the region of possible values for the new observation that are GARP consistent with

the previously retained observations. Although Heufer (2013)’s algorithm guarantees to
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generate a random GARP-consistent dataset, the underlying distribution of the constructed

datasets is not easily analysed. The algorithm in this paper has the advantage of belonging

to the widely studied MCMC class of algorithms. This feature allows the usage of known

methods to demonstrate desirable convergence properties.3 Further, we show that the

MCMC algorithm is easily extendible to other revealed preference tests.

Section 2 gives the necessary notation and definitions. Section 3 describes the main

MCMC algorithm. In Section 4, we show how this algorithm can easily be modified to

generate datasets consistent with other revealed preference tests. Section 4 contains an

illustration. All proofs and technical details are in the Appendix.

2 Setting

We consider a setting with k + 1 goods {0, 1, . . . , k}. Throughout this paper, we consider

a fixed set of price vectors p = (pt)t≤T where each pt is a vector of k + 1 strictly positive

prices pt = (pt,0, pt,1, . . . , pt,k) ∈ R(k+1)
++ corresponding to the k + 1 goods. For convenience,

we normalize prices such that the total budget equals one and we assume that all price

vectors are distinct.4 A dataset q = (qt)t≤T consists of T bundles q = (qt)t≤T where each

bundle consists of k+ 1 quantities qt = (qt,0, qt,1, . . . , qt,k) ∈ Rk+1
+ for the various goods. As

prices are normalized, we have the restriction that total expenditures add up to one:

1 = pt · qt =
k∑
i=0

pt,iqt,i.

We call T the size of the data set. The underlying idea is that qt is the consumed bundle

at observation t.

The observation t is defined to be directly revealed preferred to the observation v if qv

could have been bought at observation t:

pt · qt = 1 ≥ pt · qv.

We also write this as t R v and call R the revealed preference relation. The observation t is

3See for example the key references of Nummelin (1984) and Meyn and Tweedie (1993).
4If the total budget at observation t, say mt, would differ from one, we can normalize the prices by

dividing every price pt,i by the income mt.
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strictly directly revealed preferred to the observation v if:

1 > pt · qv.

If so, we write t P v. We call P the strict revealed preference relation.

A dataset q = (qt)t≤T is said to satisfy the Generalized Axiom of Revealed Preference

or GARP if the revealed preference relations R,P do not contain a cycle. In particular:

for all sequences of distinct observations t1, . . . , tM :

t1R t2 . . . R tM implies not tM P t1.

Afriat (1967) showed that a dataset q = (qt)t≤T with prices p = (pt)t≤T is rationalisable

by a locally-nonsatiated utility function u : Rk+1
+ → R if and only if GARP is satisfied.

Here rationalisability means that for all t ≤ T and all q ∈ Rk+1
+ :

if 1 ≥ pt · q then u(qt) ≥ u(q).

In words, if the bundle q was avalable (but not chosen) at observation t, then the utility

at the chosen bundle, qt, must be at least as high as the utility at q.

For the remainder of the paper, it will also be convenient to express datasets in terms of

shares instead of quantities. For each consumption bundle qt = (qt,0, qt,1, . . . , qt,k) that sat-

isfies the budget condition, pt ·qt = 1, we correspond a share vector st = (st,0, , st,1, . . . , st,k)

such that:

st,i = pt,i qt,i.

The number st,i give the fraction of the total budget spent on good i (remember that we

normalized budgets to one). Shares vectors st = (st,0, . . . st,k) belong to the k dimensional

unit simplex ∆k.

∆k =

{
s ∈ R(k+1)

+ :
k∑
i=0

si = 1

}
.

Depending on the setting, we will interchange frequently between the share and bundle

representation. As such, a dataset will be denoted by s = (st)t≤T or q = (qt)t≤T inter-

changeably. In this sense, we will say that the dataset s = (st)t≤T satisfies GARP if the

corresponding collection of consumption bundles q = (qt)t≤T satisfies GARP.

A dataset s = (st)t≤T consists of T vectors in ∆k, so it is an element of (∆k)T . This

means that (∆k)T coincides with the collection of all possible datasets. The collection of
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all datasets s that satisfy GARP will be denoted by ΩGARP.

ΩGARP =
{
s ∈ (∆k)T : s satsifies GARP

}
.

Our aim is to sample datasets uniformly from the set ΩGARP. Towards this end, define

by µ the uniform measure on (∆k)T , i.e. for a measurable set A, µ(A) gives the size of

A relative to (∆k)T .5 Next, define the uniform probability measure ν on ΩGARP: for all

measurable sets A ⊆ (∆k)T :6

ν(A) =
µ(A ∩ ΩGARP)

µ(ΩGARP)

The next section will present a Markov Chain Monte Carlo method to generate samples

from ν.

3 The MCMC algorithm

The MCMC procedure combines a Gibbs sampler with a H&R step. At every iteration,

one observation t ∈ {1, . . . , T} is picked at random and the share vector st for observation

t is updated. The update is performed using a H&R step over the set of all share vectors

that preserve GARP-consistency.

Consider a dataset s = (sv)v≤T and a share vector s̃t ∈ ∆k. We use the following

notation to present the new dataset that is obtained by replacing st by s̃t:

(s̃t, s−t) = (s1, . . . , st−1, s̃t, st+1, . . . , sT ),

For s = (sv)v≤T ∈ ΩGARP, we define:

P(s−t) =
{
s̃t ∈ ∆k : (s̃t, s−t) ∈ ΩGARP

}
.

The set P(s−t) contains all share vectors s̃t such that the data set (s̃t, s−t) satisfies GARP.

The following Lemma shows that this set is convex.

Lemma 1. Let s = (sv)v≤T ∈ ΩGARP, then for all t ≤ T , P(s−t) is a non-empty convex

set.

5See Appendix A on how µ is constructed in a sound measure-theoretic sense.
6Lemma 6 in Appendix C demonstrates that µ(ΩGARP) > 0, so this is well defined. Also, as ΩGARP is

defined by a finite number of weak and strict inequalities, it is µ-measurable.
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Let us now give a description of the H&R step. Fist, we need to get a random direction.

Let ∂D be the set of all directions on ∆k:

∂D =

{
δ ∈ Rk+1 : ‖δ‖ = 1 and

k∑
i=0

δi = 0

}
.

The set ∂D contains all vectors whose elements sum to zero and are on the surface of the

(k + 1) dimensional unit sphere. Observe that if s ∈ ∆k and δ ∈ ∂D, then for all λ ∈ R:∑k
i=0(si + λδi) = 1. Algorithm 1 shows how to draw an element δ uniformly from ∂D.7

Algorithm 1 Sample δ uniformly from ∂D

Require: k
1: Draw k + 1 i.i.d. standard normally distributed variables x = (x0, . . . , xk).
2: Compute y = (y0, . . . yk) where yi ← xi −

∑K
j=1

xj
K

3: Compute δ = (δ0, . . . , δk) where δi ← yi
‖y‖ .

4: return δ

For a given share vector s ∈ ∆k and direction δ ∈ ∂D, let Λ(s, δ) contain all numbers

λ such that s+ λδ is in ∆k.

Λ(s, δ) = {λ ∈ R : s+ λδ ∈ ∆k}.

This set can easily be found. In particular, for all goods i = 0, . . . , k, we have the bounds:

0 ≤ si + λδi ≤ 1

If δi > 0, this gives the bounds:

−si
δi
≤ λ ≤ 1− si

δi

If δ < 0, we obtain the bounds:

1− si
δi
≤ λ ≤ −si

δ
.

This gives:

Λ(s, δ) = [λ, λ],

7See also Muller (1959).
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where:

λ = max

{
max
i

{
−si
δi

: δi > 0

}
,max

i

{
1− si
δi

: δi < 0

}}
and

λ = min

{
min
i

{
1− si
δi

: δi > 0

}
,min

i

{
−si
δi

: δi < 0

}}
Next, for a dataset s = (st)t≤T ∈ ΩGARP, define:

`(s, t, δ) = int ({λ ∈ Λ(st, δ) : (st + λδ, s−t) ∈ ΩGARP}) ,

where int denotes the interior. The set `(s, t, δ) equals the interior of the set of values

λ such that (i) the share vector st + λδ is still in ∆k and (ii) the data set (st + λδ, s−t)

satisfies GARP. Given the convexity of P(s−t), the set `(s, t, δ) is an open interval. Its

endpoints can be found by binary search as shown in Algorithm 2. The algorithm finds

(exponentially) better and better bounds on the upper and lower bound of this interval.

Algorithm 2 Compute `(s, t, δ) = (a, b) up to an error ε

Require: s = (sv)v≤T ∈ ΩGARP, t ≤ T, δ ∈ ∂D, ε > 0
1: Compute Λ(st, δ) = [λ, λ].
2: b← λ.
3: b← 0
4: while (b− b) ≥ ε/2 do

5: b← (b+b)
2

6: if (st + bδ, s−t) ∈ ΩGARP then
7: b← b
8: else
9: b← b.

10: end if
11: end while
12: a← 0
13: a← λ
14: while (a− a) ≥ ε/2 do

15: a← (a+a)
2

16: if (st + aδ, s−t) ∈ ΩGARP then
17: a← a
18: else
19: a← a
20: end if
21: end while
22: return (a, b)
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Algorithm 3 provides the entire MCMC algorithm. The algorithm starts from a dataset

s0 = (s0
t )t≤T ∈ ΩGARP. For this, we could, for example, use the dataset that gives equal

shares to all goods over all observations. This data set is consistent with the optimization

of a Cobb-Douglass utility function u(q0, . . . , qk) =
∏k

i=0 qi, so it satisfies GARP.

Then, for each iteration of the Markov chain we use the current dataset sn = (snt )t≤T

to produce a new dataset sn+1. This new dataset is generated by drawing an observation

t ∈ {1, . . . , T} at random (step 3) and using a H&R step to update snt to a new share

vector sn+1
t ∈ P(sn−t). The H&R step is done by drawing a random direction δ uniformly

from ∂D (step 4); compute the set `(sn, t, δ) (step 5) and draw a value λ uniformly from

`(sn, t, δ) (step 6). The new value sn+1
t is given by snt + λδ.

The fact that λ ∈ `(sn, t, δ) guarantees that every newly generated data set remains

in ΩGARP. As usual with a Gibbs sampler we can easily replace step 3 by choosing a

random permutation σ : T → T and then use the H&R to sequentially update all shares

snσ(1), s
n
σ(2), . . . , s

n
σ(T ).

Algorithm 3 Generate a Markov chain of data sets sn ∈ ΩGARP

Require: s0 = (s0
t )t≤T ∈ ΩGARP,M ∈ N

1: Initialize n← 0
2: while n ≤M do
3: Randomly pick an observation t ∈ {1, . . . , T}.
4: Draw a direction δ uniformly from ∂D using Algorithm 1.
5: Compute (a, b) = `(sn, t, δ) using Algorithm 2.
6: Draw λ uniformly from (a, b).
7: sn+1

t ← snt + λ δ
8: for v 6= t do
9: sn+1

v ← snv
10: end for
11: n← n+ 1
12: end while

Illustration As an illustration, consider the following 2 goods, 2 observation example:

p1 = (1, 1.5), p2 = (1.5, 1).

It can be verified that the shares (st)t≤2 satisfy GARP if either s1,0 ≥ 0.4 or s2,0 ≤ 0.6. In

other words, we have a GARP violation if both s1,0 < 0.4 and s2,0 > 0.6. Figure 1 shows

randomly generated GARP consistent shares from this example using the algorithm given
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Figure 1: Simulation results for a two goods two observations example
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above. In particular, we use the random permutation version of the MCMC and we use

a burn-in chain of 100 iterations of the Markov Chain. After this, we keep every 100th

iteration. The top left picture shows the first 10 generated samples, the top right the first

100. The bottom left the first 250 and the bottom right the first 500. In this two goods,

two observations example, our MCMC algorithm coincides with a standard Gibbs sampler

over the GARP consistent region.

Theoretical properties of the MCMC In order to state the theoretical properties of

our MCMC. We need to introduce some additional notation. We denote by P (s, A) the

transition kernel of the Markov Chain in Algorithm 3. In words P (s, A) gives the one

step probability of going from a dataset s ∈ ΩGARP to a dataset in the measurable set

A ⊆ ΩGARP in the next step. We define P 2(s, A) by:∫
ΩGARP

P (s, ds′)P (s′, A),
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as being the probability of going from s to A in two iterations of the algorithm. Inductively,

we define,

P n(s, A) =

∫
ΩGARP

P (s, ds′)P n−1(s′, A),

as the probability of going from s to A in n iterations.

In order to show that the algorithm works, one needs to show two things. First, it is

necessary to show that the uniform distribution ν on ΩGARP is an invariant distribution

for the Markov Chain. This means that:

νP = ν,

or equivalently, ∫
ΩGARP

ν(ds)P (s, A) = ν(A).

for all measurable subsets A of ΩGARP. Next, one needs to show that at every starting

point s ∈ ΩGARP, the law of the MCMC sequence converges to this invariant distribution.8

‖P n(s, .)− ν(.)‖ →n 0 ∀s ∈ ΩGARP.

The first invariance part is demonstrated by showing that the MCMC is reversible with

respect to the uniform distribution ν on ΩGARP.9

Theorem 1. The MCMC of Algorithm 3 is reversible, i.e. for all measurable subsets A

and B of ΩGARP: ∫
A

ν(ds)P (s, B) =

∫
B

ν(ds)P (s, A).

The proof of Theorem 1 is given in Appendix B. For the second part, we show an even

stronger condition, namely uniform geometric ergodicity. This means that the convergence

of the law of the MCMC converges to the invariant distribution at an exponential rate,

uniformly over all starting positions s ∈ ΩGARP.

Theorem 2. The MCMC of Algorithm 3 is uniformly geometric ergodic, i.e. there exists

8Here, the norm is the total variation norm.
9In order to see that reversibility implies invariance, notice that if P is reversible with respect to ν, then

for all measurable subsets B of ΩGARP:
∫

ΩGARP
ν(ds)P (s, B) =

∫
B
ν(ds)P (s,ΩGARP) =

∫
B
ν(ds) = ν(B).
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a number M and a number r ∈ [0, 1[ such that for all s ∈ ΩGARP:

‖P n(s, .)− ν(.)‖ ≤Mrn.

The proof of Theorem 2 can be found in Appendix C.

4 Other revealed preference tests

In this section, we show how the MCMC procedure can be extended to other revealed

preference tests.

WARP A dataset s = (st)t≤T is said to be consistent with the Weak Axiom of Revealed

Preference or WARP if for all observations t, v:

t R v and v R t implies qt = qv.

WARP requires that the revealed preference relation is asymmetric (Samuelson, 1938). Let

ΩWARP be the set of all WARP consistent datasets. Similarly to the analysis for GARP,

we can consider the set:

PWARP(s−t) = {s̃t ∈ ∆k : (s̃t, s−t) ∈ ΩWARP}.

Similarly to Lemma 1, one can show that this set is convex. The MCMC algorithm that we

propose to sample uniformly from ΩWARP is almost identical to the algorithm for GARP

with the sole exception that the set `(s, t, δ) is now replaced by:

`WARP(s, t, δ) = int ({λ ∈ Λ(st, δ) : (st + λδ, s−t) ∈ ΩWARP}) .

The theoretical properties of this MCMC are identical to the one for GARP (the proof

follows almost identical lines).

HARP A dataset s = (st)t≤T is consistent with the Homothetic Axiom of Revealed

Preference (HARP) if for all sequences t1, . . . , tM of distinct observations:

(pt1 · qt2)(pt2 · qt3) . . . (ptM · qt1) ≥ 1.
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Varian (1983) showed that a dataset satisfies HARP if and only if it can be rationalised

by a homothetic utility function. Let ΩHARP be the collection of datasets s = (st)t≤T

that satisfy HARP. Interestingly, one can demonstrate that the set ΩHARP is a convex set.

Appendix E contains the proof.

Lemma 2. The set ΩHARP is convex.

Given Lemma 2, we can use a standard H&R algorithm to sample from this dataset.

For a set of directions (δt)t≤T (i.e. for all t, δt ∈ ∂D), and a dataset s ∈ ΩHARP, let:

`HARP(s, (δt)t≤T ) = int ({λ ∈ ∩t≤TΛ(st, δt) : (st + λδt)t≤T ∈ ΩHARP})

The MCMC procedure to generate random datasets uniformly from ΩHARP is given by

Algorithm 4

Algorithm 4 Generate a Markov chain of data sets D ∈ ΩHARP

Require: s0 = (s0
t )t≤T ∈ ΩHARP ,M ∈ N

1: Initialize n← 0
2: while n ≤M do
3: Draw a set of directions (δt)t≤T each one uniformly from ∂D using Algorithm 1.
4: Compute (a, b) = `HARP(sn, (δt)t≤N) using binary search
5: Draw λ uniformly from (a, b).
6: for all t ≤ T : sn+1

t ← snt + λ δt
7: n← n+ 1
8: end while

The left panel in Figure 2 shows a run of the MCMC algorithm for the same example

as for Figure 1, but now for HARP.

Quasi-linear A dataset s = (st)t≤T is consistent with the revealed preference conditions

for quasi-linear utility maximization (QLRP) if for all sequences t1, . . . , tM of distinct

observations:

pt1 · (qt2 − qt1) + pt2 · (qt3 − qt2) + . . .+ ptM · (qt1 − qtM ) ≥ 0.

Brown and Calsamiglia (2007) showed that QLRP is a necessary and sufficient condition

for rationalisability by a quasi-linear utility function.

Let ΩQLRP contain all data sets that are consistent with QLRP. Similarly as for HARP,

it can be shown that this set is convex. As such, we can sample from this space using a
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Figure 2: Simulation results for a two goods two observations case. Left for HARP and
right for QLRP.
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similar H&R as for the HARP test. Except that now we define:

`QLRP (s, (δt)t≤T ) = int ({λ ∈ ∩t≤TΛ(st, δt) : (st + λδt)t≤T ∈ ΩQLRP})

The right panel of Figure 2 shows the output of the 2 goods, 2 observations example for

this case.

Efficiency levels In many occasions, one might be interested in weakening the revealed

preference tests by introducing a so called efficiency level. Given a data set q = (qt)t≤T ,

let Re be defined as:

qtR
eqv ↔ e ≥ ptqv,

qtP
eqv ↔ e > ptqv.

Then e-GARP is defined as imposing the GARP restriction on the relations Re and P e

instead of using R and P (Varian, 1990). Any dataset is consistent with e-GARP for e = 0.

On the other hand if e = 1 then e-GARP is equivalent to GARP. As such, the closer e to

one, the closer the dataset is to satisfying GARP.

Similarly, we can define a e-WARP test. For the HARP, we can say that a data set

satisfies e-HARP if
(pt1 · qt2)

e

(pt2 · qt3)
e

. . .
(ptM · qt1)

e
≥ 1.
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and for QLRP, we can define e-QLRP as:

pt1 · (qt2 − e qt1) + pt2 · (qt3 − e qt2) + . . .+ ptM · (qt1 − e qtM ) ≥ 0.

Sampling from the sets Ωe-GARP,Ωe-WARP,Ωe-HARP and Ωe-QLRP can be done easily by suit-

ably redefining the sets `GARP(s, t, δ), `WARP(s, t, δ), `HARP(s, (δt)t≤T ) and `QLRP(s, (δt)t≤T )

defined above.

5 Illustration

When applying a revealed preference test, it is customary to compute its so called Bronars

power as a measure of the stringency of the revealed preference test. The Bronars power

equals one minus the probability that a randomly generated data set passes the revealed

preference test. In practice, this is performed using a Monte Carlo procedure. In a first

step one draws a large number of data sets uniformly from (∆k)T . Next, one computes

the share of all these randomly generated data sets that violate the revealed preference

test. This corresponds to a standard Monte Carlo method to compute the size of the

complement of the region ΩGARP, e.g. the value of 1− µ(ΩGARP).

As usual with Monte Carlo integration, the (relative) accuracy of this computation will

depend both the number of randomly generated datasets and on the size of the target. If

the revealed preference test is very strict, i.e. µ(ΩGARP) is very small, then only a very

small number of randomly generated datasets will satisfy the revealed preference test.

In this case, the (relative) accuracy of this estimate will be very unreliable unless one

generates a very large number of random data sets. Doing this becomes computationally

very demanding.

To make the discussion somewhat more concrete, assume that we draw a large number

of random datasets si and then computing the fraction of these draws for which s ∈ ΩGARP.

The law of large numbers guarantees that this converges to µ(ΩGARP).

µ̂(ΩGARP) =
1

N

N∑
i=1

1[si ∈ ΩGARP] ≈ µ(ΩGARP).

If µ(ΩGARP) is close to zero, however, the relative error:

µ̂(ΩGARP)− µ(ΩGARP)

µ(ΩGARP)
,
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will be large unless one uses a huge number of random samples.

It is possible to alleviate this problem by sequentially sampling from smaller and smaller

subsets.10 Assume, for example, that we have a sequence of nested models ΩGARP = Ω0 ⊆
Ω1 ⊆ Ω2 . . . ⊆ Ωn = (∆k)T . Then by Bayes rule, we have:

µ(ΩGARP) = µ(Ω0|Ω1)µ(Ω1|Ω2) . . . µ(Ωn−2|Ωn−1)µ(Ωn−1|Ωn) =
n−1∏
k=0

µ(Ωk)

µ(Ωk+1)
,

If we can sample from Ω1,Ω2, . . . ,Ωn, then we can approximate each term on the right

hand side by:

1

N

N∑
i=1

1[s(k+1),i ∈ Ωk] ≈ µ(Ωk|Ωk+1) =
µ(Ωk)

µ(Ωk+1)
,

where the datasets s(k+1),i are random draws from Ωk+1. If the value of µ(Ωk) is not too

small compared to µ(Ωk+1), then these estimates are much more reliable and the resulting

final estimate of µ(ΩGARP) will also be more reliable. The same reasoning can also be

applied to compute the relative size of two (non-nested test) say Ω1 and Ω2. If both µ(Ω1)

and µ(Ω2) are very small, then the ratio:∑
i 1[si ∈ Ω1]∑
i 1[si ∈ Ω2]

,

will give a very poor estimate of µ(Ω1)/µ(Ω2), as both numerator and denominator will

be very small. However, assume that there is a third revealed preference test Ω0 that is

weaker than both Ω1 and Ω2, i.e. Ω1 ∪ Ω2 ⊆ Ω0. In this case, we can use the following

approximation:
µ(Ω1)

µ(Ω2)
=
µ(Ω1|Ω0)

µ(Ω2|Ω0)
≈
∑N

i=1 1[s0,i ∈ Ω1]∑N
i=1 1[s0,i ∈ Ω2]

,

where the s0,i’s are now uniform draws from Ω0. The ratio on the right hand side is now

a ratio of two numbers which are bigger, so this Monte Carlo approximation will give a

much better approximation for a given sample size N . Again, in order to perform this

computation, it is necessary that we can draw random data sets from Ω0, which can be

done using the MCMC procedure outlined above.

As an illustration, let’s simulate a dataset on normalized prices (pt)t≤T with 20 ob-

10In the literature on Monte Carlo this procedure is called splitting.
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servations and 10 goods. Normalized prices are uniformly drawn from the interval [4, 5].

A simple Monte Carlo estimate, based on a sample of 100,000 random data sets gives

µ(ΩGARP) ≈ 0. In order to obtain a more accurate estimate, consider the folliwng decom-

position:

µ(ΩGARP) = µ(ΩGARP|Ωe0-GARP)×
n−1∏
i=0

µ(Ωei-GARP|Ωei+1-GARP)× µ(Ωen-GARP)

where ei uses values from {0.998, 0.996, 0.993, 0.991, 0.988, 0.985, 0.80, 0.97, 0.95, 0}.11 For

each conditional probability, we use the MCMC procedure to generate 1000 random datasets

consistent with ei+1-GARP and compute the fraction of these that pass ei-GARP to get

an estimate of µ(Ωei-GARP|Ωei+1-GARP). Doing this gives a final estimate of µ(ΩGARP) ≈
8.58× 10−7. The successive values of the conditional probabilities are given in Table 1.

Table 1: Estimation of conditional probabilities to compute µ(ΩGARP)

i ei µ(Ωei−1GARP|ΩeiGARP)
9 0.0 0.931
8 0.95 0.330
7 0.97 0.193
6 0.98 0.238
5 0.985 0.281
4 0.988 0.199
3 0.991 0.312
2 0.993 0.126
1 0.996 0.216
0 0.998 0.128

As a second illustration, let’s try to compare the area of HARP and QLRP. Consider

a setting with 10 observations and 5 goods where prices are drawn from the interval [4, 5].

Computing the area of HARP and QLRP consistent datasets gives a Monte Carlo esitmate

of zero for both (based on 100,000 random samples), so it is impossible to get a value for

µ(ΩHARP)/µ(ΩQLRP). To get a better estimate, consider the following decomposition:

11These values were chosen such that the estimates of µ(ΩeiGARP|Ωei+1GARP) were not too small.
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µ(ΩHARP)

µ(ΩQLRP)
=
µ(ΩHARP|Ωe0-HARP)× µ(Ωe0-HARP|Ωe1-HARP)× µ(Ωe1-HARP|Ωe1-GARP)

µ(ΩQLRP|Ωe0-QLRP)× µ(Ωe0-QLRP|Ωe1-QLRP)× µ(Ωe1-QLRP|Ωe1-GARP)

where e0 = 0.995 and e1 = 0.99. This gives the estimate:

µ(ΩHARP)

µ(ΩQLRP)
≈ (1814/10000)

(2427/10000)

(5879/10000)

(8081/10000)

(464/10000)

(641/10000)
= 0.3936

which shows that, for this example, the area for HARP is about 39% of the area for QLRP.
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A Construction of the uniform measure on ΩGARP

In this appendix, we show how to construct the uniform measure ν over the sets ΩGARP.

Towards this end, notice that every share vector st lies in the k dimensional unit simplex

∆k.12 Let Hk be the space of all (not necessarily non-negative) k + 1 dimensional vectors

12The vectors st have k + 1 components but one dimension is lost due to the adding-up constraint∑k
i=0 si = 1.
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whose coordinates add up to one.

Hk =

{
x ∈ Rk+1 :

k∑
i=0

xi = 1

}
,

Next, let Lk be the space of all k + 1 dimensional vectors whose coordinates add up to

zero.

Lk =

{
x ∈ Rk+1 :

k∑
i=0

xi = 0

}
.

There is a natural bijection f1 : Hk → Lk given by f1(x) = y, where yi = xi − 1/k for all

i = 0, . . . k. The set Lk is an (k − 1) dimensional hyperplane through the origin. As such,

it is possible to find k orthogonal base vectors e1, . . . ek in Lk.

Let ẽ1, . . . , ẽk be the standard unit vectors on Rk.13 Define f2 : Lk → Rk such that for

all i = 1, . . . k: f(ei) = ẽi and for all x ∈ Lk:

f2(x) =
k∑
i=1

βkẽk, where, x =
k∑
i=1

βkek.

Finally, define ι = f1 ◦ f2 : Hk → Rk. The function ι is an bijective isometry from Hk to

Rk.14

Let us denote by (Rk,Bk, λk) the measure space on Rk, where Bk equals the Borel

σ-algebra on Rk and λk is the corresponding Lebesgue measure. Using the isometry ι,

construct a corresponding measure space (Hk,A, φ), where:

A = {A ⊆ Hk : ι(A) ∈ Bk},

φ(A) = λk(ι(A))

13The vector ẽi has values ẽij = 0 if i 6= j and ẽij = 1 if i = j.
14An isometry is a function that preserves Euclidean distances in the sense that ‖x− y‖ = ‖ι(x)− ι(y)‖

for all x, y ∈ Hk.
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Let us also define (H,D, µ) to be the T -fold product of (Hk,A, φ):

H = Hk ×Hk . . .×Hk︸ ︷︷ ︸
T times

,

D = A⊗ . . .⊗A︸ ︷︷ ︸
T times

,

µ = φ× φ . . .× φ︸ ︷︷ ︸
T times

.

From now on, when we say that a set (or function) is measurable, we mean that it is

D-measurable. We define ν to be the uniform measure on ΩGARP: for all measurable sets

A ∈ D:

ν(A) =
µ(A ∩ ΩGARP)

µ(ΩGARP)
.

Strict positivity of µ(ΩGARP) follows from Lemma 6 below.

B Reversibility

Before proving reversibility of the Markov Chain, we need several Lemmata.

Lemma 3. For all non-negative, bounded measurable functions g : H → R+ that satisfy

g(s) = 0 if s /∈ ΩGARP, we have:

1

µ(ΩGARP)

∫
H

gdµ =

∫
ΩGARP

gdν.

Proof. Assume first that g is a simple function, i.e.
∑

i βi1[s ∈ Ai] for a finite collection of

non-negative numbers βi and measurable sets Ai. Notice that we can restrict Ai ⊆ ΩGARP
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for all i. Then:

1

µ(ΩGARP)

∫
H

gdµ =
1

µ(ΩGARP)

∫
H

∑
i

βi1[s ∈ Ai]µ(ds),

=
∑
i

βi
1

µ(ΩGARP)

∫
H

1[s ∈ Ai]µ(ds),

=
∑
i

βi
µ(Ai)

µ(ΩGARP)
,

=
∑
i

βiν(Ai),

=
∑
i

βi

∫
H

1[s ∈ Ai]ν(ds),

=

∫
ΩGARP

∑
i

βi1[s ∈ Ai]ν(ds),

=

∫
ΩGARP

gdν.

Next, assume that g is the pointwise limit of an increasing sequence of simple functions

gn ↑ g. Notice that, as g(s) = 0 for s /∈ ΩGARP, we can restrict for all n, gn(s) = 0 for

s /∈ ΩGARP. By the Monotone convergence theorem:

1

µ(ΩGARP)

∫
H

gdµ =
1

µ(ΩGARP)

∫
H

lim
n→∞

gndµ,

= lim
n→∞

1

µ(ΩGARP)

∫
H

gndµ,

= lim
n→∞

∫
ΩGARP

gndν,

=

∫
ΩGARP

lim
n→∞

gndν,

=

∫
ΩGARP

gdν.

Lemma 4. Let (δt)t≤T be a set of k + 1 dimensional vectors such that for all t ≤ T :∑k
i=0 δt,i = 0 and let g : H → R+ be non-negative, measurable function. Then:∫

H

g(s)µ(ds) =

∫
H

g(s + δ)µ(ds).
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Proof. Define the function f : H → H such that f(s) = (st + δt)t≤T . By a change of

variables, we have that for any integrable function g : H→ R+:∫
H

gd(f∗µ) =

∫
H

(g ◦ f)dµ,

Where the push forward f∗µ is defined as:

(f∗µ)(A) = µ(f−1(A)) ∀A ∈ D.

In our case:

(f∗µ)(A) = µ(A− δ) = µ(A),

where A− δ = {(st − δt)t≤T : (st)t≤T ∈ A}. The last inequality follows from the fact that

A− δ is a simple translation of A, which preserves the Lebesgue measure. As such:∫
H

g(s)µ(ds) =

∫
H

g(s)(f∗µ)(ds) =

∫
H

g(f(s))µ(ds) =

∫
H

g(s + δ)µ(ds).

Lemma 5. Let (δt)t≤T be a set of (k + 1) dimensional vectors such that for all t ≤ T∑k
i=0 δt,i = 0. Let g : H → H be a non-negative, measurable function such that g(s) = 0

and g(s + δ) = 0 for all s /∈ ΩGARP. Then:∫
H

g(s)ν(ds) =

∫
H

g(s + δ)ν(ds).

Proof. We have: ∫
H

g(s)ν(ds) =
1

µ(ΩGARP)

∫
H

g(s)µ(ds),

=
1

µ(ΩGARP)

∫
H

g(s + δ)µ(ds),

=

∫
H

g(s + δ)ν(ds).

The first and last lines follow from Lemma 3. The second line follows from Lemma 4.

Let P (s, A) be the transition kernel for the MCMC Algorithm 3, i.e. P (s, A) gives the

probability that the next state is in A given that the current sate equals s. Invariance of
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the uniform distribution can be established by showing that the Markov chain is reversible:

i.e. for all measurable subsets A,B of ΩGARP:∫
A

ν(ds)P (s, B) =

∫
B

ν(ds)P (s, A).

In order to see that this is true, notice that for all measurable sets B and all datasets

s ∈ ΩGARP:

P (s, B) =
1

T

∑
t≤T

∫
∂D

(∫ ∞
−∞

1[(st + λδ, s−t) ∈ B]

|`(s, t, δ)|
dλ

)
G(dδ).

The first summation encompasses the random draw over the set of observations {1, . . . , T}.
Then the first integration formalizes the draw of the direction δ over ∂D. Here, G is the

uniform measure over this set. Finally, there is a random draw λ from the set `(s, t, δ).

This draw has density 1/|`(s, t, δ)| with respect to the Lebesgue measure on R when (st +

λδ, s−t) ∈ ΩGARP and has density zero outside of ΩGARP. However, in this latter case

(st + λδ, s−t) /∈ B so the numerator then equals zero.

Using this we have that for all measurable sets A,B ⊆ ΩGARP:

∫
A

ν(ds)P (s, B) =

∫
A

(
1

T

∑
t≤T

∫
∂D

(∫ ∞
−∞

1[(st + λδ, s−t) ∈ B]

|`(s, t, δ)|
dλ

)
G(dδ)

)
ν(ds).

Using the independence of the random draw from {1, . . . , T}, δ ∈ ∂D, λ and ν(ds) we can

use Fubini’s theorem to bring the integration on ν(ds) inside:∫
A

ν(ds)P (s, B) =
1

T

∑
t≤T

∫
∂D

∫ ∞
−∞

(∫
A

1[(st + λδ, s−t) ∈ B]

|`(s, t, δ)|
ν(ds)

)
dλG(dδ),

=
1

T

∑
t≤T

∫
∂D

∫ ∞
−∞

∫
H

1[s ∈ A]1[(st + λδ, s−t) ∈ B]

|`(s, t, δ)|
ν(ds)︸ ︷︷ ︸

α

dλG(dδ), (1)

Define the function g : H→ R+, where:

g(s) =
1[s ∈ A]1[(st + λδ, s−t) ∈ B]

|`(s, t, δ)|

Notice that g(s) = 0 and g((st − λδt, s−t)) = 0 when s /∈ ΩGARP. The latter one occurs as
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in this case,

g((st − λδ, s−t)) =
1[(st − λδ, s−t) ∈ A]1[s ∈ B]

|`((st − λδ, st), t, δ)|
= 0,

as B ⊆ ΩGARP. As such, by Lemma 5:∫
H

g(s)ν(ds) =

∫
H

g((st − λδ, s−t))ν(ds).

This gives:

α =

∫
H

g(s)ν(ds),

=

∫
H

g((st − λδ, s−t))ν(ds),

=

∫
H

1[(st − λδ, s−t) ∈ A]1[st ∈ B]

|`((st − λδ, s−t), t, δ)|
ν(ds),

=

∫
B

1[(st − λδ, s−t) ∈ A]

|`(s, t, δ)|
ν(ds),

Where we use the fact that |`((st − λδ, s−t), t, δ)| = |`(s, t, δ)|. If we plug this back in into

(1), we obtain:

∫
A

ν(ds)P (s, B) =
1

T

∑
t≤T

∫
∂D

∫ ∞
−∞

(∫
B

1[(st + λ̃δ, s−t) ∈ A]

|`(s, t, δ)|
ν(ds)

)
dλ̃G(dδ),

=

∫
B

1

T

(∑
t≤T

∫
∂D

∫ ∞
−∞

1[(st + λ̃δ, s−t) ∈ A]

|`(s, t, δ)|
dλ̃G(dδ)

)
ν(ds),

=

∫
B

ν(ds)P (s, A).

where we made the change of variables λ̃ = −λ. This shows that the Markov chain is time

reversible, so ν is a stationary distribution.

C Uniform geometric ergodicity

In this section, we show that the Markov chain is uniformly geometrically ergodic, which

implies that the invariant distribution ν, which coincides with the uniform distribution on
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ΩGARP, is the unique invariant distribution and that the Markov chain converges to this

distribution exponentially fast.

As shown by Nummelin (1984, Theorem 5.16), it suffices to show the following two

properties:

1. The set ΩGARP is small.

2. The transition kernel P is aperiodic,

We show aperiodicity of P in Theorem 4 below and we show smallness of ΩGARP in Theo-

rem 3. For the this, we need to show the following minorization condition:

• We can find a constant β > 0, a number n ∈ N and a probability measure ϕ on

ΩGARP such that for all s ∈ ΩGARP and all measurable subsets A of ΩGARP:

P n(s, A) ≥ βϕ(A).

In this case, we say that ΩGARP is (n, β, ϕ)-small.

Before we give the proofs of the two theorems, we first establish a useful lemma. To-

wards this end, let R be the revealed preference derived from a dataset s. We say that the

relation R∗ extends the revealed preference relation on the dataset s if for all observations

t, v ≤ T ,

t R v implies t R∗ v.

A binary relation R∗ (on {1, . . . , T} is a linear order if it is transitive: t R∗ v R∗w implies

t R∗w, antisymmetric: if t R v and v R t then t = v and connected: either t R∗ v or v R∗ t.

Lemma 6. There exists a data set s = (st)t≤T in the interior of ΩGARP and a linear order

R∗ on {1, . . . , T} such that R∗ extends the revealed preference relation on s.

Further, there exists a number ε > 0 such that for all datasets s̃ = (s̃t)t≤T with,

s̃t ∈ Bε(st) =
{
s̃t ∈ Hk : ‖s̃t − st‖ < ε

}
,

we have that s̃ ∈ ΩGARP and R∗ also extends the revealed preference relation on s̃.

Proof. Let s = (st)t≤T be the data sets generated by the maximization of the Cobb-

Douglass utility function

u(q) =
k∏
i=0

qi.

26



This gives a share vector that is equal for all goods: for all observations t ≤ T and all

goods 0 ≤ i ≤ k

st,i =
1

k + 1
.

As s is derived from the maximisation of a utility function, it satisfies GARP, so s ∈ ΩGARP.

Define the corresponding bundles q = (qt)t≤T where qt,i = st,i/pt,i. Let us first show that

the revealed preference relation R on s is acyclic. Towards a contradiction, assume that

there is a sequence t1, . . . , tM such that:

t1R t2 . . . R tM R t1.

As q = (qt)t≤T satisfies GARP it must be that:

1 = pt1 · qt2 , . . . , 1 = ptM · qt1 .

Transforming this into shares and noticing that stj ,i = 1
k+1

for all good i and observation

tj in the sequence gives:

k + 1 =
k∑
i=0

pt1,i
pt2,i

,

k + 1 =
k∑
i=0

pt2,i
pt3,i

,

. . . ,

k + 1 =
k∑
i=0

ptM ,i

pt1,i
.

Adding up these equalities and dividing by M(k + 1) gives:

1 =
1

M(k + 1)

(
k∑
i=0

pt1,i
pt2,i

+ . . .+
k∑
i=0

ptM ,i

pt1,i

)
>

(
k∏
i=0

pt1,i
pt2,i

k∏
i=0

pt2,i
pt3,i

. . .
k∏
i=0

ptM ,i

pt1,i

)1/(M(k+1))

= 1,

a contradiction. Here, we used the fact that the average of non-negative numbers is always

greater than the geometric mean if not all terms are equal (notice that we assumed price

vectors to be distinct). This shows that R is acyclic. Therefore, we can extend it to a

linear order R∗ by Szpilrajn’s lemma (Szpilrajn, 1930). Notice that for all observations
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t, v ≤ T :

t R∗ v → 1 < pv · qt =
∑
i

pv,iqt,i =
∑
i

pv,i
st,i
pt,i

.

As all these inequalities are strict, we can find a ε > 0 be such that for every t ≤ T , every

s̃t ∈ Bε(st) = {s̃t ∈ Hk : ‖s̃t − st‖ < ε}, and all observations t, v ≤ T :

t R∗ v → 1 <
∑
i

pv,i
s̃t,i
pt,i

=
∑
i

pv,iq̃t,i = pv · q̃t, (2)

where we defined the bundles q̃t,i =
s̃t,i
pt,i

. Also, given that all share vectors st are in the

interior of ∆k, ε > 0 can be chosen small enough such that all share vectors s̃t are in

∆k. Let us show that any such dataset s̃ = (s̃t)t≤T satisfies GARP and that R∗ extends

the revealed preference relation on s̃. The second follows easily from the contrapositive of

(2) and the fact that R∗ is connected. For the first, let R̃, P̃ be the revealed preference

relations on s̃ and assume towards a contradiction that:

t1 R̃ t2 . . . R̃ tM P̃ t1.

for some sequence t1, . . . , tM of observations. This, in turn gives following inequalities:

1 ≥ pt1 · q̃t2 , 1 ≥ pt2 · q̃t3 , . . . , 1 ≥ ptM−1
· q̃tM , 1 > ptM · q̃t1 .

But then, using again the contrapositive of (2) together with the fact that R∗ is a linear

order gives:

t1R
∗ t2R

∗ . . . tM R∗ t1

which contradicts the fact that R∗ is a linear order.

Now, we are ready to state and proof the smallness of ΩGARP. Let s = (st)t≤T and

Bε(st) be as in Lemma 6. Consider the cylinder set Bε = Bε(s1)×Bε(s2)× . . . Bε(sT ) and

define for all measurable sets A ∈ ΩGARP:

ϕ(A) =
µ(A ∩Bε)

µ(Bε)
.

The measure ϕ coincides with the uniform measure on Bε. The following shows that the

set ΩGARP is small.

Theorem 3. There exists a constant β > 0 such that for all s ∈ ΩGARP and for all
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measurable subsets A of ΩGARP:

P T (s, A) ≥ βϕ(A).

Proof. Notice that we can safely restrict A to be a subset of Bε. Indeed, assume that the

minorization constraint (i.e. the condition of the theorem) holds for all measurable sets

A ⊆ Bε. Then for s ∈ ΩGARP and any measurable set C:

P T (s, C) = P T (s, C \Bε) + P T (s, C ∩Bε),

≥ P T (s, C ∩Bε),

≥ βϕ(C ∩Bε) = βϕ(C).

so the minorization condition also holds for C. Let us first take the case where A takes

the form of a cylinder set A = A1 × A2 × . . . × AT . As we can restrict A ⊆ Bε, we have

that for all t ≤ T , At ⊆ Bε(st).

Let R∗ be the linear extension of the preference relation as in Lemma 6. Consider the

following permutation σ : T → T :

• σ(1) = t if t is top ranked according to R∗.

• σ(2) = v if v is second highest ranked according to R∗,

• . . .

• σ(k) = ` if ` is k-th ranked according to R∗,

• . . .

• σ(T ) = w if w is bottom ranked according to R∗.

In other words:

σ(1)R∗ σ(2) . . . σ(T − 1)R∗ σ(T ).

Now, take any arbitrary dataset s = (st)t≤T ∈ ΩGARP. Consider T iterations of Algo-

rithm 3 where for the subsequent iterations, in steps 3, we obtain the following sequence

of choices:

σ(1), σ(2), . . . , σ(T )
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from {1, . . . , T} (the probability that this occurs is given by
(

1
T

)T
). Also assume that over

these T iterations, the shares:

sσ(1), . . . , sσ(t), . . . , sσ(T ),

are sequentially updated to shares:

s̃σ(1), . . . , s̃σ(t), . . . , s̃σ(T ),

that belong (respectively) to the sets:

Aσ(1), . . . , Aσ(t), . . . Aσ(T ).

Let us first show that this run of the algorithm is valid. In particular, let us show that

at each iteration, replacing sσ(t) by s̃σ(t) does not create a GARP-violation. Towards a

contradiction, assume that at iteration t, we introduce the share vector s̃σ(t) ∈ Aσ(t) and

(s̃σ(1), . . . s̃σ(t−1), s̃σ(t), sσ(t+1), . . . , sσ(T )),

forms a GARP violation. Let

(q̃σ(1), . . . , q̃σ(t−1), q̃σ(t), qσ(t+1), . . . , qσ(T )),

be the associated bundles for this GARP violation.

Notice that, from Lemma 6, both sub-datasets (q̃σ(1), . . . , q̃σ(t)) and (qσ(t+1), . . . , qσ(T ))

satisfy GARP. As such, in order for there to be a GARP violation, there must be at least

one observation σ(v) with v > t that is revealed preferred to the an observation σ(w) with

w ≤ t, i.e. :

1 ≥ pσ(v) · q̃σ(w).

Now, given the definition of σ(.), we have that σ(w)R∗ σ(v). As R∗ extends the revealed

preference relation on q̃, we also have:

1 < pσ(v) · q̃σ(w),

a contradiction.

Next, let us place a lower bound on the probability of such run. Using a result of Chen
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and Schmeiser (1993, Lemma 3), we have that there is some constant K > 0 (independent

from A and s) such that the probability of replacing sσ(t) by some s̃σ(t) ∈ Aσ(t) in the

H&R part of the t-th iteration is bounded from below by:

K λk(ι(Aσ(t))) = K φ(Aσ(t)).

(see Appendix A for the definitions of λk, ι(.) and φ). This means that after T iterations of

the MCMC in Algorithm 3, the probability of ending up with a dataset in A = A1× . . . AT
is bounded from below by:(

K

T

)T ∏
t≤T

φ(At) =

(
K

T

)T
µ(A) =

(
K

T

)T
µ(Bε)ϕ(A).

If we choose β =
(
K
T

)T
µ(Bε) > 0, we see that:

P T (s, A) ≥ βϕ(A),

so the minorization condition is satisfied for all cylinder sets A. It is easy to see that the

minorization constraint is closed under taking finite disjoint unions of sets, as both P T (s, .)

and ϕ(.) are measures. Moreover the minorization constraint is also closed under taking

increasing and decreasing sequences of measurable sets. As such, we can use the monotone

class theorem in order to extend the minorization constraint to all measurable sets.

Finally, we show that P is aperiodic.

Theorem 4. The Markov transition kernel P is aperiodic.

Proof. The previous Theorem 3 shows that ΩGARP is a (T, β, ϕ) small set. This, in turn

implies that P is ψ-irreducible. If P is not aperiodic, then by Meyn and Tweedie (1993,

Theorem 5.4.4), there must be disjoint sets D0, . . . , Dd−1 with d > 1 such that:

• if s ∈ Di then P (s, Di+1) = 1, for all i = 0, . . . d− 1 (mod d),

Let us show that this gives a contradiction. Let s ∈ Di, for some i ∈ {0, . . . , d− 1}. From

Theorem 3, we know that:

P T (s, Bε) > 0.

Also, for s ∈ Di:

P T (s, Dk) = 1, where k = T + i (mod d)
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Let ϕ be defined as in Theorem 3. Let us first show that ϕ(Dk) = 1. If not, then

1 = ϕ(Bε) ≤ ϕ(Bε \Dk) + ϕ(Dk) < ϕ(Bε \Dk) + 1.

As such:

ϕ(Bε \Dk) > 0.

But then, by the fact that ΩGARP is (T, β, ϕ) small:

P T (s, Bε \Dk) > βϕ(Bε \Dk) > 0,

Which implies that P T (s, Dk) < 1, a contradiction. By varying i we see that for all

k = 0, . . . d− 1, ϕ(Dk) = 1. As the sets D0, . . . , Dd−1 are disjoint, we have:

1 ≥ ϕ(∪d−1
i=0Di) =

d−1∑
i=0

ϕ(Di) = d,

which shows that d = 1, a contradiction.

D Proof of Lemma 1

Let s = (st)t≤T ∈ ΩGARP and let q = (qt)t≤T be the associated consumption bundles.

Obviously, st ∈ P(s−t), so the set is non-empty. For convexity, observe that it is sufficient

to show convexity of the set:

P(q−t) = {qt ∈ Rk
+ : ptqt = 1 and (qt, q−t) satisfies GARP},

as convexity of this set carries directly over to convexity of the set P(s−t). Towards this

end, let q0
t , q

1
t ∈ P(q−t). Then both (q0

t , q−t) and (q1
t , q−t) satisfy GARP. Let θ ∈ [0, 1] and

define qθt = θq0
t + (1− θ)q1

t . Towards a contradiction, assume that (qθt , q−t) violates GARP.

Then, by definition there should be a direct revealed preference cycle containing at least

one strict revealed preference comparison. Also, notice that this revealed preference cycle

must contain the observation t as both datasets (q0
t , q−t) and (q1

t , q−t) satisfy GARP.

As GARP is violated, there are distinct observations t1, . . . , tM 6= t such that

1 ≥ pt · qt1 , 1 ≥ pt1 · qt2 , . . . , 1 ≥ ptM · qθt .
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where one of the inequalities is strict. The only place where the bundle qθt occurs is in the

last inequality. Expanding this inequality gives:

1 ≥ (>)ptM · qθt = θptM · q0
t + (1− θ)ptM · q1

t .

From this, it follows that either 1 ≥ ptM q
0
t (or 1 > ptM q

0
t if the inequality is strict) or

1 ≥ ptM q
1
t (or 1 > ptM q

1
t if the inequality is strict). If the first occurs, we have a GARP

violation:

1 ≥ pt · qt1 , 1 ≥ pt1 · qt2 , . . . , 1 ≥ ptM · q0
t .

where one of the inequalities is strict. If the second occurs, we have the GARP violation:

1 ≥ pt · qt1 , 1 ≥ pt1 · qt2 , . . . , 1 ≥ ptM · q1
t .

where again at least one of the revealed preference comparisons is strict. So either q0
t /∈

P(q−t) or q1
t /∈ P(q−t) which gives the desired contradiction.

E Proof of Lemma 2

Let q0 = (q0
t )t≤T ,q

1 = (q1
t )t≤T satisfy HARP and let θ ∈ [0, 1]. Define qθ = (qθt )t≤T where

for all t ≤ T , qθt = θq0
t + (1 − θ)q1

t . Towards a contradiction, assume that qθ does not

satisfy HARP. Then there are observations t1, . . . , tM such that:

(pt1 · qθt2)(pt2 · q
θ
t3

) . . . (ptM · qθt1) < 1.

Taking logs on both sides gives:

ln(pt1 · qθt2) + . . .+ ln(ptM · qθt1) < 0,

↔ ln(θpt1 · q0
t2

+ (1− θ)pt2 · q1
t2

) + . . .+ ln(θptM · q0
t1

+ (1− θ)ptM · q1
t1

) < 0.

Then using concavity of the ln function, we obtain:

θ
(
ln(pt1 · q0

t2
) + . . .+ ln(ptM · q0

t1
)
)

+ (1− θ)
(
ln(pt1 · q1

t2
) + . . .+ ln(ptM · q1

t1
)
)
< 0
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However, this means that either:

ln(pt1 · q0
t2

) + . . .+ ln(ptM · q0
t1

) < 0,

or:

ln(pt1 · q1
t2

) + . . .+ ln(ptM · q1
t1

) < 0.

As such, either q0 or q1 violates HARP, a contradiction.
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