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Abstract. In this paper, we address uncertainty quantification of physics-based computational models when5
the quantity of interest concerns geometrical characteristics of their spatial response. Within the6
probabilistic context of the random set theory, we develop the concept of confidence sets that either7
contain or are contained within an excursion set of the spatial response with a specified probability8
level. We seek such confidence sets in a parametric family of nested candidate sets defined as a9
parametric family of sublevel or superlevel sets of a membership function. We show that the problem10
of identifying a confidence set with a given probability level in such a parametric family is equivalent11
to a problem of estimating a quantile of a random variable obtained as a global extremum of the12
membership function over the complement of the excursion set. To construct such confidence sets,13
we propose a computationally efficient bifidelity method that exploits a spectral representation of14
this random variable to reduce the required number of evaluations of the computational model. We15
show the interest of this concept of confidence sets and the efficiency gain of the proposed bifidelity16
method in an illustration relevant to the retreat of the grounded portion of the Antarctic ice sheet.17

Key words. excursion sets, confidence sets, quantile estimation, stochastic computational models, ice-sheet18
projections19

AMS subject classifications. 68Q25, 68R10, 68U0520

1. Introduction. There are many applications in which interest is directed towards deter-21

mining within a spatial domain a subregion where the spatial response of a (physics-based)22

computational model exceeds a specified threshold. This task may serve to determine, for23

instance, a critical level of safety or help distinguish between different characteristics of the24

spatial response. Examples include applications in chemical contamination, geophysics (vol-25

canic hazards [6]) and climatology (heat-wave detection [12]). In practice, computational26

models of such complex systems may have many physical parameters that may be uncertain27

due to data limitations and modeling hypotheses. Hence, understanding and quantifying the28

impact of the input uncertainties on geometrical characteristics of the spatial response of a29

computational model is an interesting problem in uncertainty quantification.30

Here, we seek to quantify uncertainty in excursion sets of spatial responses of compu-31

tational models using the concept of confidence sets that either contain an excursion set of32

the spatial response or are contained within an excursion set of the spatial response with a33

specified confidence level. Such confidence sets were first introduced in [7, 13, 14, 15] in a34

context of Bayesian inference under a stationary Gaussian spatial process prior and further35

extended to non-stationary and non-Gaussian spatial processes in [27]. From a theoretical36
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2 K. BULTHUIS, F. PATTYN, AND M. ARNST

point of view, excursion sets of random fields can be studied by using the random set the-37

ory [4, 5, 21] or the geometry theory of random fields [1, 2]. In [4, 7, 13, 14], confidence38

sets are computed by seeking the optimal confidence set in a parametric family of nested39

candidate sets by solving either an optimization problem or an equivalent problem of quantile40

estimation. These references have addressed the numerical solution of these optimization and41

quantile estimation problems in specific contexts in which the random field is obtained by42

Bayesian inference under a Gaussian spatial process prior, including kriging methods. In such43

contexts, the random field can be evaluated everywhere in the spatial domain by using the44

Gaussian-process or kriging interpolants, and numerous samples of the random field can be45

simulated at low computational cost.46

In this paper, we address the computation of confidence sets of excursion sets of random47

fields obtained as solution quantities of stochastic computational models with a high compu-48

tational cost. In this context, the definition and computation of excursion sets and confidence49

sets must be based on the spatial discretization of the computational model obtained, for in-50

stance, with a finite-difference or a finite-element discretization scheme. Based on the random51

set theory, we propose a spatial discretization of excursion sets and confidence sets that relies52

on a partitioning of the domain into subsets and testing the exceedance constraints in rep-53

resentative points in these subsets. Such a spatial discretization is shown to have an impact54

on the stochastic dimension of the problem and the accuracy one may achieve in computing55

confidence sets.56

The computation of confidence sets for computational models with a high computational57

cost requires computationally efficient methods for the discretization of the stochastic dimen-58

sion. Monte Carlo methods may lead to a slow decrease of the estimation error as a function59

of the number of samples, which may be intractable for computational models with a high60

computational cost or high confidence levels. The use of surrogate models, such as stochastic61

expansions, may reduce the computational cost but may lead to an additional approximation62

error. Here, we propose a bifidelity method [17, 19, 29] in which a surrogate model is used63

further away from the quantile to be estimated and the computational model is used closer64

to the quantile to be estimated.65

As an illustration, we consider a problem of assessing the retreat of the grounded por-66

tion of the Antarctic ice sheet (AIS) in response to climate forcing. In this illustration, the67

grounded portion of the AIS is obtained as an excursion set of a solution quantity of a compu-68

tational ice-sheet model. We illustrate how the proposed bifidelity method may help reduce69

the computational cost of computing confidence sets and we show how confidence sets may70

help to assess with quantified uncertainty the vulnerability of the AIS to climate change.71

The paper is organized as follows. In sect. 3, we review the concepts of excursion sets,72

contour sets, and confidence sets of a random field based on the random set theory [21], and73

we discuss the identification of an optimal confidence set in a parametric family of nested74

candidate sets. Then, sect. 4 addresses the spatial discretization, sect. 5 is concerned with the75

discretization of the stochastic dimension, and sect. 6 provides the illustration.76

2. Notations. We denote a deterministic set by a Latin or a Greek upper case letter such77

as D or Ω, a random set by a calligraphic upper case letter such as E , and a family of subsets78

of a topological space or a σ-algebra by a Fraktur upper case letter such as F. Throughout79

This manuscript is for review purposes only.



A MULTIFIDELITY QUANTILE-BASED APPROACH FOR CONFIDENCE SETS 3

this paper, we denote by D a compact subset of the d-dimensional Euclidean space Rd. We80

use the symbol ⊂ to denote the strict and non-strict inclusion relations. For a subset E ⊂ D,81

we denote by Ec, cl(E), int(E), and |E| the complement in D, the closure, the interior, and82

the Lebesgue measure of E, respectively. Finally, we denote by F the family of all closed83

subsets of D and by L the family of all open subsets of D.84

3. Confidence sets for excursion and contour sets. Let {Y (x),x ∈ D} be a random field85

defined on a complete probability space (Θ,B,P), indexed by D, with values in R, and with86

continuous sample paths almost surely.87

3.1. Excursion sets, contour sets, and confidence sets. The positive and negative ex-88

cursion sets of {Y (x),x ∈ D} for the threshold u are defined by89

E+
u = {x ∈ D : Y (x) ≥ u} ,(3.1)90

E−u = {x ∈ D : Y (x) ≤ u} .(3.2)9192

Similarly, the contour set of {Y (x),x ∈ D} for the threshold u is defined by93

(3.3) E0
u = {x ∈ D : Y (x) = u} .94

Because {Y (x),x ∈ D} has continuous sample paths almost surely, E+
u , E−u , and E0

u are closed95

subsets of D almost surely.96

The random set theory, see, for instance, [21], provides a rigorous framework for the97

definition and description of such excursion and contour sets as set-valued random variables,98

which requires to be more specific about measurability. Within the random set theory, E+
u ,99

E−u , and E0
u are defined as measurable mappings from (Θ,B,P) into (F,S(F)), with S(F) the100

σ-algebra generated by the sets {K ∈ F : K ∩ F 6= ∅} for F running through the family F of101

closed subsets of D. The random set theory provides several descriptors for random closed102

sets, such as the containment and inclusion functionals, the coverage function, and Vorob’ev103

quantiles, which are described next. The containment functional of E+
u is defined by104

(3.4) CE+u : F→ [0, 1];F 7→ CE+u (F ) = P(E+
u ⊂ F ),105

and the inclusion functional of E+
u is defined by106

(3.5) IE+u : F→ [0, 1];F 7→ IE+u (F ) = P(F ⊂ E+
u ).107

Containment and inclusion functionals can be defined similarly for E−u . Although, the con-108

tainment functional may be defined similarly for E0
u, the definition of the inclusion functional109

is less meaningful for E0
u because E0

u is generally of lower dimension than D and its inclu-110

sion functional vanishes for all F in F of the same dimension as D. Please note that neither111

the containment functional nor the inclusion functional is a probability measure, except for112

the case of random singletons. The containment functional (and the inclusion functional for113

random closed sets that coincide with the closure of their interior almost surely) uniquely114

determines the probability distribution of a random closed set. The random set theory also115
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defines further functionals that provide insight into the probability distribution of the random116

closed set. By limiting F = {x} to be a singleton, the inclusion functional117

(3.6) IE+u (F ) = P(x ∈ E+
u ) = P(Y (x) ≥ u) ≡ pE+u (x)118

reduces to the so-called (one-point) coverage function of E+
u , which provides the pointwise119

(marginal) probability of exceeding the threshold u. As a generalization of quantiles of scalar-120

valued random variables, the random set theory defines the so-called Vorob’ev ρ-quantile121

(3.7) QV
ρ =

{
x ∈ D : pE+u (x) ≥ ρ

}
122

as the superlevel set of the coverage function for the level ρ. Thus, the Vorob’ev ρ-quantile is123

the set of locations where the pointwise (marginal) probability of exceeding the threshold u124

is at least ρ. The Vorob’ev quantiles are used in the random set theory to define a notion of125

expectation for random closed sets [4, 5, 21]; the so-called Vorob’ev expectation is the Vorob’ev126

quantile whose Lebesgue measure is equal or closest to the expected Lebesgue measure of the127

random closed set. The Vorob’ev quantiles are also minimizers of the expected distance in128

Lebesgue measure among sets with the same Lebesgue measure [4]. The coverage function129

and the Vorob’ev quantiles can be defined similarly for E−u .130

In a context of Bayesian inference under a Gaussian spatial process prior, references [4,131

7, 13, 14, 15] defined alternative descriptors of excursion and contour sets, namely, confidence132

sets, which we focus on in this paper. In references [7, 13, 14, 15], these confidence sets133

were defined without reference to the aforementionned descriptors of the random set theory.134

Azzimonti [4] first revisited confidence sets based on the random set theory. Here, we follow135

this approach and introduce these confidence sets equivalently with the help of the containment136

and inclusion functionals of the random set theory. A closed subset Cout
u+,α of D is an outer137

confidence set for E+
u with a probability of at least α if138

(3.8) CE+u (Cout
u+,α) ≥ α,139

and an open set C in
u+,α of D is an inner confidence set for E+

u with a probability of at least α if140

(3.9) IE+u (cl(C in
u+,α)) ≥ α.141

Thus, an outer confidence set Cout
u+,α is such that with a (joint) probability of at least α, it142

contains all locations where the value taken by the random field exceeds u simultaneously.143

And, an inner confidence set C in
u+,α is such that with a (joint) probability of at least α, the144

value taken by the random field exceeds u for all locations in C in
u+,α simultaneously. See Fig. 1145

for a conceptual diagram of these confidence sets. An outer confidence set Cout
u−,α and an inner146

confidence set C in
u−,α can be defined similarly for E−u . A closed subset Cu0,α of D is a confidence147

set for E0
u with a probability of at least α if148

(3.10) CE0u(Cu0,α) ≥ α.149

Thus, a confidence set Cu0,α for E0
u is such that with a (joint) probability of at least α, it150

contains all locations where the value taken by the random field attains u simultaneously. It151
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can be shown [14] that if Cout
u+,α and Cout

u−,α are outer confidence sets for E+
u and E−u , respectively,152

with a probability of at least α, then their complements in int(D) are inner confidence sets for153

E−u and E+
u , respectively, with a probability of at least α. When E0

u ⊂ ∂E+
u , confidence sets for154

contour sets can be determined from confidence sets of related excursion sets. For instance,155

the set156

(3.11) Cout
u+,β ∩ (C in

u+,β)
c
, β ≥ 1

2
(α+ 1),157

and the set158

(3.12) (N in
u+,α ∪N in

u−,α)
c
,159

with N in
u+,α and N in

u−,α in L that satisfy P(cl(N in
u+,α) ⊂ E+

u , cl(N in
u−,α) ⊂ E−u ) ≥ α, are both160

confidence sets for E0
u with a probability of at least α.161

For the sake of brevity and without loss of generality, we will focus the discussion to follow162

(mostly) on the construction of an inner confidence set for the positive excursion set.163

E+
u ⊂ Cout

u+,α, C in
u+,α ⊂ E+

u E+
u 6⊂ Cout

u+,α, C in
u+,α ⊂ E+

u E+
u ⊂ Cout

u+,α, C in
u+,α 6⊂ E+

u

Figure 1. Conceptual diagram of an outer confidence set Cout
u+,α and an inner confidence set C in

u+,α for the

positive excursion set E+u .

3.2. Optimization within a parametric family. The confidence sets defined above are in164

general not unique. To determine such confidence sets uniquely, additional restrictions must165

be imposed. In [4, 7, 14], uniqueness is obtained by first defining a parametric family of166

candidate sets and then seeking in this family the largest or the smallest set satisfying the167

joint probability of exceedance constraint. In [4, 7, 14], the family of candidate sets is taken168

as a parametric family of sets Tρ indexed by a real number ρ in (0, 1) such that169

(3.13) Tρ = {x ∈ int(D) : T (x) > ρ} ,170

where T is a function from D into [0, 1], also referred to as the membership function by171

analogy with fuzzy theory. Please note that the membership function T , the candidate sets,172

and other symbols defined in the following depend on the threshold u, but for the sake of173
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6 K. BULTHUIS, F. PATTYN, AND M. ARNST

readability and conciseness, we do not write this dependence explicitly for these new symbols.174

The membership function is assumed to be continuous in int(D) so as to ensure that the sets175

Tρ belong to L. Clearly, such a parametric family is nested, that is, Tρ ⊂ Tσ for σ ≤ ρ.176

Seeking in this parametric family the largest set satisfying the required joint probability of177

exceedance constraint amounts to the optimization problem178

(3.14) ρ∗ = inf
ρ∈(0,1)

ρ subject to IE+u (cl(Tρ)) ≥ α,179

with the optimal threshold ρ∗ leading to the identification of Tρ∗ as the largest inner confidence180

set with a probability of a least α in the parametric family. For outer confidence sets, one181

may seek similarly the smallest set in a parametric family.182

3.2.1. Choice of the membership function. The definition in (3.13) uses a generic mem-183

bership function T . For the purpose of constructing confidence sets for the positive excursion184

set, references [4, 7, 14] suggested and used the following membership functions:185

T1(x) = P(Y (x) ≥ u),(3.15)186

T2(x) =
1

2

(
1 + erf

(
E[Y (x)]− u√

2V[Y (x)]

))
,(3.16)187

T3(x) =
1

2

(
1 +

E[Y (x)]− u√
E[(Y (x)− u)2]

)
,(3.17)188

189

where E denotes the mathematical expectation, V the variance, and erf the error function.190

Reference [14] argued that the functions in (3.15)–(3.17) are suitable choices for the mem-191

bership function because they quantify the difference between the value taken by the random192

field at a location and the threshold u and they account for an associated measure of un-193

certainty for this difference. The membership function T1 is the coverage function defined194

in (3.6) so that the corresponding sets in the parametric family are open Vorob’ev quantiles.195

The membership functions T2 and T3, whose use requires the random field to be of the second196

order, are transformations of the pointwise difference between the expectation of the random197

field and the threshold u normalized respectively by the variance of the random field and198

the expected squared deviation of the random field about the threshold u. If the pointwise199

(marginal) probability distribution of the random field is Gaussian, then T1 and T2 are equal.200

In addition, when u is zero, as will be the case in the illustration in sect. 6, T2 and T3 may be201

expressed only as a function of the pointwise coefficient of variation δY (x) of the random field:202

T2(x) =
1

2

(
1 + erf

(
1√

2δY (x)

))
,(3.18)203

T3(x) =
1

2

(
1 +

sgn(δY (x))√
δ2
Y (x) + 1

)
,(3.19)204

205

where sgn is the sign function, equal to 1 if δY (x) ≥ 0 and −1 otherwise.206

This manuscript is for review purposes only.



A MULTIFIDELITY QUANTILE-BASED APPROACH FOR CONFIDENCE SETS 7

3.2.2. Interpretation. The membership functions (3.15)–(3.17) are based on pointwise207

statistical descriptors of the random field. As such, they quantify in some way the pointwise208

probability of exceeding u in all locations in D individually but do not quantify the joint209

probability of exceeding u simultaneously at all locations in Tρ. For instance, the probability210

of exceeding u simultaneously at all locations in the Vorob’ev ρ-quantile is at most ρ, with211

a probability of ρ that is achieved when the description of the random field reduces to the212

description of a single random variable. To achieve the desired confidence level, the threshold213

ρ∗ is determined following the optimization problem (3.14).214

The membership function may also be interpreted in the context of the fuzzy set theory [16,215

22]. In the fuzzy set theory, any continuous membership function T can be written as T (x) =216

µ(x ∈ E+
u ), where µ is a fuzzy measure defined on (Θ,B). The fuzzy measure µ may be217

interpreted as a subjective degree of belief about the inclusion of a point x in D in the218

confidence set. The higher the value of T at a point, the higher the probability of being219

a member of the confidence set irrespective of the confidence level. Taking the probability220

measure P as a fuzzy measure gives the coverage function of the random set E+
u .221

3.2.3. Equivalent problem of quantile estimation. Following the approach in [13, 14],222

the solution of the optimization problem (3.14) may be recast equivalently as a problem of223

quantile estimation. Indeed:224

IE+u (cl(Tρ)) = P(cl(Tρ) ⊂ E+
u )225

= P(Tρ ⊂ E+
u )226

= P
((
E+
u

)c ⊂ T c
ρ

)
(3.20)227

= P
(
T (x) ≤ ρ,x ∈

(
E+
u

)c)
228

= P
(

sup
x∈(E+u )

c
T (x) ≤ ρ

)
.229

230

In these equations, the fourth equality does not in general follow from the third equality231

because there is in general no guarantee that T (x) ≤ ρ for all x on ∂D. Thus, the behavior232

of T on ∂D must be excluded in (3.20). This can be achieved, for instance, by assuming233

either that T achieves its supremum in int
((
E+
u

)c)
or that T vanishes on ∂D. With these234

considerations, the optimization problem in (3.14) is equivalent to235

(3.21) ρ∗ = inf
ρ∈(0,1)

ρ subject to P
(

sup
x∈(E+u )

c
T (x) ≤ ρ

)
≥ α,236

that is, the problem of quantile estimation237

(3.22) ρ∗ = inf {ρ ∈ (0, 1) : Fχ(ρ) ≥ α} ≡ qχ(α),238

where Fχ and qχ are respectively the distribution function and the generalized quantile func-239

tion of the random variable240

(3.23) χ = sup
x∈(E+u )

c
T (x).241
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Please note that the randomness of χ stems from the random closed set E+
u , hence the set over242

which the supremum of T is evaluated. Here, qχ is a generalized quantile function because,243

in general, Fχ is not necessarily strictly monotone, for instance, when χ is a discrete random244

variable (see also sect. 4). If χ is a continuous random variable, then Fχ is strictly monotone245

and the quantile function is the inverse function of Fχ, that is, qχ(α) = F−1
χ (α).246

4. Spatial discretization. To be able to compute confidence sets in practice, a discretiza-247

tion is required. In this section, we describe a discretization of the spatial dimension and248

discuss its impact on the stochastic dimension. Specifically, we describe a spatial discretiza-249

tion that relies on partitioning the spatial domain into subsets and testing the exceedance250

constraints in representative points in these subsets. The discrete closed sets thus obtained251

are random closed sets that the theory of random sets [21] refers to as simple random closed252

sets by the virtue of them taking only a finite number of values. Please note that alterna-253

tive spatial discretizations could also be considered, such as spatial discretizations based on254

computational geometry or computational shape optimization, but we do not consider such255

alternative spatial discretizations here. We will continue to focus the discussion (mostly) on256

the positive excursion set and related confidence sets, but please note that the extensions to257

other confidence sets for negative excursion and contour sets can be obtained analogously.258

Let Dh =
{
Dh
i

}
1≤i≤Nh

be a partition of D into Nh pairwise disjoint nonempty closed259

subsets of D, with h a positive number that describes the characteristic size of the subsets. If260

the random field is a solution quantity of a stochastic computational model that is discretized261

in space by means of a finite-difference scheme, this partition may be taken as a tessellation262

based on the grid points; if the stochastic computational model is discretized in space by263

means of a finite-element scheme, this partition may be taken as the mesh.264

Let each subset Dh
i be associated with a representative point xhi in Dh

i where we test265

the exceedance constraint and evaluate the membership function. If the random field is a266

solution quantity of a stochastic computational model that is discretized in space by means of267

a finite-difference scheme, these representative points may be taken as the grid points; if the268

stochastic computational model is discretized in space by means of a finite-element scheme,269

these representative points may be taken as characteristic points of the elements of the mesh,270

for instance, the centroids of the elements.271

With reference to the partitioning, we approximate E+
u with E+h

u (see Fig. 2 for an illus-272

tration) described by the binary random vector Eh = (Eh1 , . . . , E
h
Nh

) with values in {0, 1}Nh273

such that274

(4.1) E+h
u =

⋃

Ehi =1

Dh
i =

⋃

i∈I+hu

Dh
i ,275

where I+h
u =

{
i : Ehi = 1

}
is the random active index set, with276

(4.2) Ehi = 1(Y (xhi ) ≥ u), i = 1, . . . , Nh;277

here, 1(Y (xhi ) ≥ u) is equal to 1 if Y (xhi ) ≥ u and 0 otherwise.278

With reference to the partitioning, we seek inner confidence sets of the form of sets de-279
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E+
u E+h

u

Dh
i

xh
i

Figure 2. Illustration of the approximation of the random set E+u as a simple random set E+hu based on a
structured partitioning of D. The representative points are chosen as the centroids of the elements.

scribed by a binary vector ch = (ch1 , . . . , c
h
Nh

) in {0, 1}Nh such that280

(4.3) C in,h
u+,α

= int
( ⋃

chi =1

Dh
i

)
= int

( ⋃

i∈Iin,h
u+,α

Dh
i

)
,281

where I in,h
u+,α

=
{
i : chi = 1

}
is the active index set. As in the continuous case, we seek282

such an inner confidence set in a parametric family described by a binary vector Th
ρ =283

(T hρ,1, . . . , T
h
ρ,Nh

)= (1(T h1 > ρ), . . . ,1(T hNh > ρ)) in {0, 1}Nh such that284

(4.4) T hρ = int
( ⋃

Thρ,i=1

Dh
i

)
= int

( ⋃

i∈Ihρ

Dh
i

)
,285

where Ihρ =
{
i : T hi > ρ

}
is the parametric index set and Th = (T h1 , . . . , T

h
Nh

) is the member-286

ship vector, with T hi = T (xhi ), i = 1, . . . , Nh.287

Seeking the largest set in this parametric family satisfying the joint probability of ex-288

ceedance constraint associated with the representative points leads to289

(4.5) ρ∗h = inf
ρ∈(0,1)

ρ subject to P
(

max
i∈(I+hu )

c
T hi ≤ ρ

)
≥ α,290

thus leading to the equivalent problem of quantile estimation291

(4.6) ρ∗h = inf
{
ρ ∈ (0, 1) : Fχh(ρ) ≥ α

}
≡ qχh(α),292

where Fχh and qχh are respectively the distribution function and the generalized quantile293

function of the random variable294

(4.7) χh = max
i∈(I+hu )

c
T hi .295
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Due to the approximation of the random closed set as a simple random set, χh is a discrete296

random variable with distinct discrete values χh1 < χh2 < . . . < χhLh (Lh ≤ Nh). In general,297

Lh is smaller than Nh because there may be locations xhi in D where T does not attain its298

maximum for any realization of
(
E+h
u

)c
.299

The distribution function Fχh may be written in terms of the probability masses pl =300

P(χh = χhl ), 1 ≤ l ≤ Lh, as301

(4.8) Fχh(ρ) = P(χh ≤ ρ) =
∑

χhl ≤ρ

P(χh = χhl ) =
∑

χhl ≤ρ

pl.302

Then, the problem of quantile estimation reads as303

(4.9) ρ∗h = min
χhl ∈{χ

h
1 ,...,χ

h
Lh
}
χhl subject to

l∑

k=1

pk ≥ α.304

Thus, the impact of the discretization of the spatial dimension on the stochastic dimension305

is that both Fχh and qχh are piecewise-constant functions with discontinuities whose number306

and magnitude depend on the spatial resolution of the computational model. Consequently,307

the accuracy one may achieve in estimating confidence sets for a spatial discretization of308

the domain is influenced by the spatial resolution of the computational model. Specifically,309

the solution ρ∗ of (3.22) is always larger than or equal to the solution ρ∗h of (4.6), with the310

difference between both solutions depending on the magnitude of the discontinuities around ρ∗.311

Please note that a similar spatial discretization had already been used in reference [14],312

albeit in a different context, which provided a consistency result:313

Proposition 4.1. Suppose that314

(a) ∃ε > 0 such that315

(4.10) P
[

inf
{
‖x− x′‖ : x ∈ ∂Tρ∗ ,x′ ∈ ∂E+

u

}
≥ ε
∣∣∣ cl(Tρ∗) ⊂ E+

u

]
= 1,316

where ‖ · ‖ is the Euclidean norm;317

(b) the partitions satisfy the following conditions:318

1) ∀Nh, Nh′ ∈ N0 with Nh′ > Nh, Dh′ is a refinement of Dh in the particular319

sense that each subset of Dh′ is a subset of some subset of Dh;320

2) ∀η > 0, ∃Mη ∈ N0 : Dh
i ⊂ Bη(x

h
i ) for i = 1, . . . ,Mη, where Bη(x) is a ball of321

radius η centered at x.322

Then, ∀Nh ≥Mε/2, IE+u

(
cl(T h

ρ∗h)
)
≥ α.323

Condition (a) states that there is at least a small “buffer” between the boundary of E+
u324

and Tρ∗ . Condition (b.1) means that finer partitions are obtained by partitioning subsets of325

coarser partitions. Condition (b.2) means that all subsets in the partition become arbitrarily326

small for large enough Nh. Proposition 4.1 ensures that for Nh sufficiently large, an inner327

confidence set T h
ρ∗h for the simple random set E+h

u in (4.1) for a confidence level α is an inner328

confidence set for the random closed set E+
u for the same confidence level.329
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5. Discretization of the stochastic dimension. The identification of a confidence set in330

a parametric family of candidate sets leads to a two-step problem. The first step involves the331

determination of the membership function, and the second step involves the determination of332

the appropriate threshold by solving an optimization problem that may be recast equivalently333

as a quantile estimation problem. The first step requires the approximation of pointwise334

(marginal) statistical descriptors of the random field, and the second step requires the ap-335

proximation of joint probabilities of exceedance at all considered locations simultaneously.336

Because the second step requires the approximation of joint probabilities, it can be expected337

to be more computationally challenging, and especially so when evaluating whether inclusion338

relationships hold with high probability levels, which raises the issue of rare events. Hence,339

while we will provide some details regarding the estimation of pointwise statistical descriptors,340

we will focus (most of) the discussion to follow on the quantile estimation problem.341

In the following, we assume {Y (x),x ∈ D} to be a solution quantity of a stochastic com-342

putational model that depends on a finite number of uncertain parameters ξ1, . . . , ξn, modelled343

as an Rn-valued random vector ξ = (ξ1, . . . , ξn) defined on (Θ,B,P). In this section, we will344

not distinguish between χ and χh and use the symbol χ as a generic notation for both the345

continuous random variable χ and its spatial discretization χh following sect. 4, and we discuss346

the impact of the spatial discretization where appropriate.347

5.1. Membership function. The membership functions defined in (3.15)–(3.17) involve348

pointwise (marginal) statistical descriptors of {Y (x),x ∈ D}. For each x in D, an approxima-349

tion of T (x) may be obtained by using standard nonintrusive methods for uncertainty quan-350

tification. In sect. 6.6, we compute the required approximations to the pointwise (marginal)351

statistical descriptors of the random field by applying a kernel density estimation method to352

an ensemble of independent and identically distributed (i.i.d.) samples of the random field,353

from which we deduce a Monte Carlo approximation of T by using a Monte Carlo sampling of354

the kernel density estimates. Please note that although the choice of a different membership355

function or errors entailed by its numerical approximation may change the parametric family356

of candidate sets, a set satisfying the joint probability of exceedance constraint may still be357

sought within this parametric family.358

5.2. Quantile estimation: Monte Carlo method.359

5.2.1. Use of distribution function. An implementation of the Monte Carlo method be-360

gins by generating an ensemble of i.i.d. samples
{
ξ(θ(k)), 1 ≤ k ≤ ν

}
of the uncertain param-361

eters. Then, an ensemble of solutions to the computational model is generated in the form of362

the ensemble of the corresponding i.i.d. samples of the random field, from which are deduced363

the ensemble of the corresponding i.i.d. samples
{
E+
u (θ(k)), 1 ≤ k ≤ ν

}
of the excursion set364

and the ensemble of the corresponding i.i.d. samples
{
χ(θ(k)), 1 ≤ k ≤ ν

}
of χ. Then, the365

sample (empirical) distribution function evaluated at ρ in (0, 1) writes as366

(5.1) F νχ (ρ) =
1

ν

ν∑

k=1

1
(
χ(θ(k)) ≤ ρ

)
,367
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12 K. BULTHUIS, F. PATTYN, AND M. ARNST

where the superscript ν is used to indicate that the quantity is estimated from a finite number368

of samples. The corresponding sample quantile qνχ(α) is then given by369

(5.2) qνχ(α) = inf
{
ρ ∈ (0, 1) : F νχ (ρ) ≥ α

}
.370

Equivalently, this Monte Carlo estimate may be obtained by ordering the i.i.d. samples as371

χ1:ν ≤ χ2:ν ≤ . . . ≤ χν:ν , where χk:ν denotes the k-th order statistic of the samples [3], that372

is, χ1:ν denotes the smallest sample, χ2:ν the second smallest sample, . . . , and χν:ν the largest373

sample. Then qνχ(α) is given by χk:ν , where (k − 1)/ν < α ≤ k/ν.374

If χ is a continuous random variable with a probability density function, qνχ(α) is associated375

with a consistent estimator of qχ(α) that satisfies a central limit theorem [3]. However, if χ376

is a discrete random variable, then the Monte Carlo estimator is not guaranteed to satisfy377

a central limit theorem or to be a consistent estimator. The lack of consistency mainly378

results from the discontinuities of the distribution function, if any, which may cause the379

problem of quantile estimation to be ill-conditioned because small perturbations in α or F νχ380

may cause large perturbations in qνχ(α). Feldman and Tucker [11] showed that, for an arbitrary381

distribution function, a sequence of Monte Carlo estimates
{
qνχ(α)

}
may oscillate between382

inf {ρ ∈ (0, 1) : Fχ(ρ) ≥ α} and sup {ρ ∈ (0, 1) : Fχ(ρ) ≤ α}.383

5.2.2. Use of mid-distribution function. If χ is a discrete random variable, an alternative384

method is to rely on a regularization of the problem of quantile estimation based on the mid-385

distribution function [20, 23]. Let χ1 < . . . < χL denote the discrete values that χ may386

take; then the mid-distribution function Fmid
χ is the following continuous, piecewise linear387

modification of the distribution function388

(5.3) Fmid
χ (ρ) =





0 if ρ < χ1

Fmid
χ (χl+1)− Fmid

χ (χl)

χl+1 − χl
(ρ− χl) + Fmid

χ (χl) if χl ≤ ρ ≤ χl+1

1 if ρ > χL

,389

where Fmid
χ (χl) = Fχ(χl) − 1

2pχ(χl) for 1 ≤ l ≤ L, with pχ(ρ) = P(χ = ρ) the probability390

mass function. The corresponding mid-quantile function is then a continuous, piecewise linear391

modification of the quantile function given by392

(5.4) qmid
χ (α) = inf

{
ρ ∈ (0, 1) : Fmid

χ (ρ) ≥ α
}
.393

The Monte Carlo estimate qmid,ν
χ (α) of qmid

χ (α) is given by394

(5.5) qmid,ν
χ (α) = inf

{
ρ ∈ (0, 1) : Fmid,ν

χ (ρ) ≥ α
}
,395

where the sample mid-distribution function is given by396

(5.6) Fmid,ν
χ (ρ) =





0 if ρ < χ1

Fmid,ν
χ (χl+1)− Fmid,ν

χ (χl)

χl+1 − χl
(ρ− χl) + Fmid,ν

χ (χl) if χl ≤ ρ ≤ χl+1

1 if ρ > χL

,397
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with398

(5.7) Fmid,ν
χ (χl) =

1

ν

ν∑

k=1

1
(
χ(θ(k)) ≤ χl

)
− 1

2ν

ν∑

k=1

1
(
χ(θ(k)) = χl

)
, 1 ≤ l ≤ L.399

Ma et al. [20] have shown that qmid,ν
χ (α) is associated with a consistent estimator of qmid

χ (α)400

that satisfies a generalized central limit theorem. However, qmid,ν
χ (α) is not guaranteed to be401

associated with a consistent estimator of qχ(α) because qmid
χ (α) may be different from qχ(α).402

Yet, the difference between qχ(α) and qmid
χ (α) may be expected to tend to zero as the set of403

discrete values taken by χ becomes denser and denser as L tends to infinity.404

5.2.3. Computational cost. The Monte Carlo estimator based on the distribution func-405

tion for continuous χ entails an approximation error that decreases with the square root of406

the number of samples ν and increases with the ratio of the square root of α(1 − α) and407

the value taken by the probability density function of χ at the quantile to be estimated; for408

the Monte Carlo estimator based on the mid-distribution function for discrete χ, there exists409

an analogous result that involves a generalised notion of probability density function [20].410

Thus, attaining sufficient accuracy may become intractable for computational models with a411

high computational cost and for quantiles associated with low and high levels of probability412

(rare events).413

5.3. Quantile estimation: spectral method. We propose two methods that seek to alle-414

viate the computational cost via the construction of a surrogate model.415

5.3.1. Spectral representation of the random field. The first method involves building a416

polynomial chaos expansion of {Y (x),x ∈ D} and then using this polynomial chaos expansion417

as a substitute for evaluations of the computational model when solving the quantile estimation418

problem. A truncated polynomial chaos expansion of order p of the random field, assumed to419

be of the second order, writes as420

(5.8) Y p(x) =

p∑

|α|=0

ypα(x)ψα(ξ).421

Here, α = (α1, . . . , αn) is a multi-index with |α| = α1 + . . . + αn and {ψα,α ∈ Nn} is a422

suitable basis of orthogonal polynomials from Rn into R. The functions ypα from D into R423

are the polynomial chaos coordinates. In practice, these polynomial chaos coordinates may424

be determined by using nonintrusive methods from solutions of the computational model for425

an experimental design of the uncertain parameters denoted by
{
ξ(θ

(k)
λ ), 1 ≤ k ≤ λ

}
.426

The random set E+
u is then approximated with the corresponding excursion set determined427

with the polynomial chaos expansion, that is,428

(5.9) E+,p
u = {x ∈ D : Y p(x) ≥ 0} ,429

and χ is approximated with430

(5.10) sup
x∈(E+,pu )

c
T (x).431
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14 K. BULTHUIS, F. PATTYN, AND M. ARNST

This first method amounts to approximating a confidence set for the excursion set of432

{Y (x),x ∈ D} with the corresponding confidence set for the excursion set of {Y p(x),x ∈ D}.433

The confidence set can then be evaluated by using either formalism (3.14), with E+
u approxi-434

mated with E+,p
u , or formalism (3.22), with Fχ approximated with a Monte Carlo estimate as435

(5.11)
1

ν

ν∑

k=1

1
(

sup
x∈(E+,pu (θ(k)))

c
T (x) ≤ ρ

)
.436

5.3.2. Spectral representation of the random variable χ. The second method, enabled437

by the reformulation of the optimization problem in (3.14) as the quantile estimation problem438

in (3.22), involves building a polynomial chaos expansion directly of χ. A truncated polynomial439

chaos expansion of order p of χ, assumed to be of the second order, writes as440

(5.12) χp =

p∑

|α|=0

χpα ψα(ξ),441

where the scalars χpα are the polynomial chaos coordinates. In practice, these polynomial442

chaos coordinates may be determined by using nonintrusive methods from solutions of the443

computational model for an experimental design of the uncertain parameters denoted by444 {
ξ(θ

(k)
λ ), 1 ≤ k ≤ λ

}
. The confidence set can then be evaluated using formalism (3.22),445

with Fχ approximated with a Monte Carlo estimate as446

(5.13)
1

ν

ν∑

k=1

1
(
χp(θ(k)) ≤ ρ

)
.447

Whereas the accuracy of the spectral representation depended in the previous section on how448

well {Y (x),x ∈ D} lends itself to being approximated with a truncated polynomial chaos449

expansion, the accuracy of the spectral representation depends here on how well χ lends450

itself to being approximated with a truncated polynomial chaos expansion. The choice of the451

membership function plays a role in this issue, which we will study numerically later in the452

illustration in sect. 6.453

5.3.3. Surrogate-based quantile estimation. The use of a truncated polynomial chaos454

expansion as in (5.8) or (5.12) as an approximation to {Y (x),x ∈ D} or χ in the quantile455

estimation may lead to an approximation error, which obeys the following result from [10, 18]:456

Theorem 5.1. Let χ and χ̃ be random variables with values in R and α a scalar in (0, 1).457

Let δ > 0 be such that458

(5.14) |χ̃− χ| ≤ δ

2
+

1

2
|qχ(α)− χ|,459

almost surely. Then, the error in approximating qχ(α) with qχ̃(α) satisfies460

(5.15) |qχ̃(α)− qχ(α)| ≤ δ.461
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Here, we use the notation χ̃ to denote a generic surrogate model that could be obtained based462

on (5.8) or (5.12), and we will continue to use this notation throughout the remainder of463

this section. Please note that a similar result may be obtained for quantile estimation using464

the mid-distribution function. Theorem 5.1 provides for the error between qχ̃(α) and qχ(α)465

an error bound δ that depends on the local approximation error |χ̃ − χ| between χ and its466

surrogate and on the distance |qχ(α)−χ| between the quantile to be estimated and χ. Hence,467

one may seek to reduce the value of δ by lowering the local approximation error where χ is468

close to qχ(α), while the surrogate model does not need to be a good approximation to χ469

further away from the quantile to be estimated.470

5.3.4. Computational cost. The computational cost of constructing a truncated poly-471

nomial chaos expansion as in (5.8) or (5.12) depends on the order p; the higher the order p472

must be to attain sufficient accuracy, the higher the number of training points must be in473

the experimental design. This computational cost also scales with the number of uncertain474

parameters (the stochastic dimension n); the higher the stochastic dimension n, the higher475

the number of required training points may be expected to be in the experimental design.476

5.4. Quantile estimation: bifidelity method. By writing the distribution function Fχ in477

(3.22) of the random variable χ in (3.23) as478

(5.16) Fχ(ρ) = P(χ ≤ ρ) =

∫

Θρ

dP(θ) =

∫

Θ
1(θ ∈ Θρ)dP(θ),479

it can be seen that the solution of the quantile estimation problem is related to the fundamental480

problem of reliability engineering of evaluating the probability of an event Θρ = {θ ∈ Θ :481

χ(θ)− ρ ≤ 0} defined by a limit state function, also called performance function, here, χ− ρ.482

In reliability engineering, methods have been developed for the efficient approximation of such483

probabilities, such as methods using surrogate models, subset simulation, and other methods.484

Hence, we will build on a hybrid method introduced in [19] in reliability engineering to develop485

a new bifidelity method that can reduce the number of samples of the stochastic computational486

model that must be solved.487

5.4.1. Method. Conceptually, this method relies on a bifidelity model that combines a488

surrogate model, such as one of those discussed in sect. 5.3, with the computational model. The489

surrogate model is used further away from the quantile to be estimated, and the computational490

model is used closer to the quantile to be estimated:491

(5.17) χ̃γ = χ̃ 1 (|χ̃− qχ(α)| > γ) + χ 1 (|χ̃− qχ(α)| ≤ γ) ,492

where χ̃ is the surrogate model of χ and γ > 0 is a threshold parameter that controls the493

size of the region in the parameter space where χ is used. From (5.17), we see that the local494

approximation error |χ̃γ − χ| vanishes where |χ̃ − qχ(α)| ≤ γ. Therefore, the error bound δ495

in (5.14) may be expected to decrease with an increase in γ.496

By adapting Theorem 4.1 stated in [19] for the computation of failure probabilities, the497

following result is obtained as an error estimate for the quantile estimation problem:498
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Theorem 5.2. Let χ and χ̃ be random variables with values in R, and let χ̃γ be defined as499

in (5.17) with γ that satisfies500

(5.18) P (|χ̃− χ| > γ) ≤ ε501

for some ε ≥ 0. Then, the quantile function qχ̃γ satisfies502

(5.19) qχ̃γ (α− ε) ≤ qχ(α) ≤ qχ̃γ (α+ ε).503

Proof. We consider the following inequality504

(5.20) P
(
χ̃γ ≤ qχ(α)

)
≥ P

(
χ ≤ qχ(α)

)
− P

(
χ̃γ > qχ(α), χ ≤ qχ(α)

)
.505

The last event is possible only if |χ̃− qχ(α)| > γ. Then, we have506

P
(
χ̃γ > qχ(α), χ ≤ qχ(α)

)
= P

(
χ̃− qχ(α) > γ, χ ≤ qχ(α)

)

≤ P
(
χ̃− χ > γ

)

≤ ε.

(5.21)507

Therefore, inequality (5.20) becomes508

(5.22) Fχ̃γ (qχ(α)) ≥ Fχ(qχ(α))− ε = α− ε,509

that is, the infimum of χ̃γ for which Fχ̃γ is equal to or exceeds α− ε is at most qχ(α). Hence,510

(5.23) qχ̃γ (α− ε) = inf
{
ρ ∈ (0, 1) : Fχ̃γ (ρ) ≥ α− ε

}
≤ qχ(α).511

Similarly, we can show that512

Fχ̃γ (qχ(α)) ≤ Fχ(qχ(α)) + ε = α+ ε,(5.24)513514

that is, the infimum of χ̃γ for which Fχ̃γ is equal to or exceeds α+ ε is at least qχ(α). Hence,515

(5.25) qχ̃γ (α+ ε) = inf
{
ρ ∈ (0, 1) : Fχ̃γ (ρ) ≥ α+ ε

}
≥ qχ(α).516

The value of the threshold γ required to achieve a level of accuracy ε depends on the517

approximation error between χ and its surrogate model χ̃. Proposition 5.3 by [19] gives a518

lower bound on the threshold parameter γ when the Lq-error between χ and χ̃ is bounded:519

Proposition 5.3. Let χ and χ̃ be random variables with values in R and q a scalar with520

q ≥ 1 such that521

(5.26) ‖χ− χ̃‖Lq =
(
E(|χ− χ̃|q)

)1/q
<∞.522

Then for all ε > 0, there exists γ∗ > 0 such that for all γ ≥ γ∗:523

(5.27) P (|χ̃− χ| > γ) ≤ ε;524

more precisely,525

(5.28) γ∗ =
1

ε1/q
‖χ− χ̃‖Lq .526

This manuscript is for review purposes only.



A MULTIFIDELITY QUANTILE-BASED APPROACH FOR CONFIDENCE SETS 17

5.4.2. Implementation. The construction of the bifidelity model (5.17) requires knowing527

the quantile qχ(α) and the threshold parameter γ, which depends on the Lq-error between χ528

and χ̃. The quantile qχ(α) and the approximation error are in general not known a priori.529

Following [19], one can use a constructive iterative algorithm that does not require the a530

priori choice of γ (Algorithm 5.1). To initialize this algorithm, a number ν of i.i.d. samples531

of the uncertain parameters is simulated, a surrogate model χ̃ is built, and a small positive532

parameter η is chosen for setting a stopping criterion. At each iteration j, the sample set S533

is divided into a set S̃(j) of samples for which χ̃ is evaluated and a set S \ S̃(j) for which534

χ is evaluated. In the initialization step, S̃(0) = S and an initial estimate of the quantile is535

determined by using only χ̃. At each iteration j, the set S \ S̃(j) is determined by enriching the536

set S \ S̃(j−1) with the ∆ν samples in S̃(j−1) that are closest to the current quantile estimate537

and a new quantile estimate is evaluated by using the updated bifidelity model538

(5.29) χ̃γ(θ(k)) = χ̃(θ(k)) 1
(
ξ(θ(k)) ∈ S̃(j)

)
+ χ(θ(k)) 1

(
ξ(θ(k)) ∈ (S \ S̃(j))

)
, 1 ≤ k ≤ ν.539

Algorithm 5.1 Iterative algorithm for the bifidelity method

Initialization:
1. Build a surrogate model χ̃ of χ.
2. Draw ν i.i.d. samples to obtain S =

{
ξ(θ(k)), 1 ≤ k ≤ ν

}
.

3. Set k = 0, S̃(0) = S, ∆ν � ν (step size), and η ≥ 0 (small number).
4. Evaluate

{
χ̃(θ(k)), 1 ≤ k ≤ ν

}
.

5. Set q(0)(α) as the α-quantile of
{
χ̃(θ(k)), 1 ≤ k ≤ ν

}
.

Iteration: at the j-th iteration (j ≥ 1), do:

1. Sort
{
|χ̃(θ(k))− q(j−1)(α)|, θ(k) ∈ S̃(j−1)

}
in ascending order.

Let ∆S̃(j) collect the ∆ν smallest elements and S̃(j) = S̃(j−1) \∆S̃(j).
2. Evaluate χ(θ(k)) and replace χ̃(θ(k)) with χ(θ(k)), ∀θ(k) ∈ ∆S̃(j).
3. Set q(j)(α) as the α-quantile of

{
χ̃(θ(k)), 1 ≤ k ≤ ν

}
.

4. If |q(j)(α)− q(j−1)(α)| ≤ η or S̃(j) = ∅, exit; otherwise increment j by 1.
Return q(j)(α) as an estimate of qχ(α).

5.4.3. Computational cost. In addition to the computational cost of constructing a trun-540

cated polynomial chaos expansion as in (5.8) or (5.12), the accuracy and efficiency of Algo-541

rithm 5.1 depend on the stopping criterion and the step size ∆ν. In principle, the algorithm542

will converge to the Monte Carlo estimate once all the samples are evaluated with the com-543

putational model. In practice, it is desirable to stop the algorithm before this point to reduce544

the number of evaluations of the computational model. Nevertheless, while a stopping cri-545

terion implies the numerical convergence of the quantile estimate, it may not guarantee the546

convergence towards the quantile to be estimated. Thus, the accuracy of the surrogate model547

may be expected to have a direct impact on the efficiency of the algorithm. A small step size548

may be expected to be more optimal in terms of the total number of evaluations of the com-549

putational model but to converge in more iterations, while a higher step size may be expected550

to be less optimal in terms of the total number of evaluations of the computational model but551
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to converge in less iterations. At each iteration, the ∆ν new evaluations of the computational552

model may be performed in parallel depending on the available computational resources.553

6. Application: Uncertainty quantification of Antarctic ice-sheet retreat.554

6.1. Context. A key challenge in assessing future sea-level rise stems from assessing the555

contribution of the AIS, whose response is expected to be dominated by the evolution of its556

marine sectors. Marine sectors are portions of the ice sheet where the ice is grounded, that is,557

rests on bedrock, below sea level and extends into floating ice shelves at the grounding line,558

the transition line where the ice becomes afloat. Such marine sectors, such as those in the559

West Antarctic ice sheet (WAIS), might retreat significantly in the next decades and centuries560

as a consequence of an instability mechanism, the so-called marine ice-sheet instability [26].561

Therefore, a significant interest in glaciology is directed towards quantifying the retreat of562

marine sectors and determining the position of the grounding line, as a way of assessing the563

vulnerability of the AIS to climate change; see, for instance, [8, 25, 28].564

6.2. Computational ice-sheet model. We use the fast Elementary Thermomechanical Ice565

Sheet (f.ETISh) model, a computational ice-sheet model that reduces the three-dimensional566

nature of ice-sheet flow to a two-dimensional problem while keeping the essential charac-567

teristics of ice-sheet thermodynamics and ice-stream flow [24]. Prescribed fields and data568

include present-day ice-sheet geometry and topography, the basal sliding coefficient inferred569

with a data assimilation method, present-day atmospheric temperature and precipitation, and570

present-day ocean temperature. Processes controlling grounding-line motion are taken into571

account in such a way that they can be represented at coarser resolutions. The discretization572

of space is a finite-difference discretization on staggered grids and the discretization of time573

is implicit.574

6.3. Initial boundary value problem. The f.ETISh model solves a nonlinear initial bound-575

ary value problem that is defined on a spatial domain taken as a closed subset D of R2. This576

spatial domain D is assumed to be covered with ice at all times. At any time 0 < t < τ , Dg(t)577

represents the closed subset of D where the ice is grounded and Df(t) represents the closed578

subset of D where the ice is floating (Fig. 3). At any time, ∂D belongs to the boundary ∂Df579

of Df . The grounding line is given by Γ = Dg ∩Df .580

The f.ETISh model solves a coupled thermo-mechanical system of equations for the ice581

velocity v, the ice thickness h, the ice temperature T , and the bedrock elevation b measured582

with respect to sea level. For a comprehensive overview of the governing equations, we refer583

to [24]. As described in [24], the ice velocity and the ice thickness are obtained by solving584

a hybrid combination of governing equations according to the shallow-ice approximation and585

governing equations according to the shallow-shelf approximation. Here, in order to provide586

essential insight and allow us to present later in the paper the sources of the uncertainty,587

we limit ourselves to presenting only the governing equations according to the shallow-shelf588
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Figure 3. Current configuration of the AIS with key geographic sectors in bold type. The ice is grounded on
the bedrock in Dg and floating in Df . The separation line Γ between Dg and Df is the grounding line. WAIS
is the West Antarctic ice sheet and EAIS is the East Antarctic ice sheet.

approximation. For 0 < t < τ , the ice-sheet dynamics is described by the following system:589





∂h

∂t
+ divx(hv) = as(Ta)− ab

divx (2ηeh [D(v) + tr (D(v)) I])− cb |v|m−1 v − ρigh∇x(b+ h) = 0

h > −ρw

ρi
b

in int(Dg),(6.1)590





∂h

∂t
+ divx(hv) = as(Ta)− aw(To)

divx (2ηeh [D(v) + tr (D(v)) I])− 1

2

(
1− ρi

ρw

)
ρig∇xh2 = 0

h < −ρw

ρi
b

in int(Df),(6.2)591

Transmission conditions across Γ.(6.3)592593

Here, D(v) is the horizontal strain-rate tensor, I the identity tensor, ηe the effective vis-594

cosity, as the surface mass balance, ab the mass balance at the ice-bedrock interface, aw the595

mass balance at the ice-ocean interface, Ta the atmospheric temperature, To the ocean tem-596

perature, cb the sliding coefficient, ρi the ice density, ρw the water density, g the gravitational597

acceleration, and m the sliding parameter. The effective viscosity ηe is given by Glen’s power598

law as 1
2A
−1/n |D(v)|

1
n
−1
∗ , with |D(v)|∗ =

√
1
2 (tr ((D(v))2) + tr2 (D(v))) the effective hori-599

zontal strain rate, A the temperature-dependent rheological coefficient, and n the rheological600

parameter.601

In (6.1) and (6.2), the first equation is a depth-integrated conservation of mass equation,602

with the right-hand side expressing the net mass balance. In (6.1) and (6.2), the second603

equation is a depth-integrated horizontal mechanical equilibrium equation, expressed as a604

balance between longitudinal internal stresses, basal friction (in Dg), and the gravitational605
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driving force. These equations, known as the shallow-shelf approximation, follow from an606

asymptotic thin-film approximation of a nonlinear Stokes problem. In (6.1) and (6.2), the607

inequality serves as a basis for distinguishing the grounded portion from the floating portion608

of the domain. These inequalities are deduced from a consideration of vertical equilibrium609

under a hydrostatic approximation and essentially express Archimedes’s law: in the grounded610

portion, the ice thickness is greater than the thickness at which flotation would occur, whereas611

in the floating portion, the ice is buoyant in sea water. Hence, the quantity h + ρw
ρi
b, called612

the height above flotation, is positive for grounded ice and negative for floating ice. The613

height above flotation will serve as the solution quantity of the computational model in our614

illustration, where interest lies in the retreat of the grounded portion of the AIS.615

6.4. Test problem. In order to illustrate the methodology that we propose for construct-616

ing confidence sets for excursion sets, we set up a test problem using the f.ETISh model. In617

this test problem, we simulate the response of the AIS over the next 700 years, starting from618

its present-day configuration, under a simplified forcing scenario in which the atmospheric619

and ocean temperatures increase linearly in the first 300 years and then remain constant in620

the next 400 years. The use of such a simplified forcing scenario is justified by the fact that621

we do not seek to provide new probabilistic projections and insight into the evolution of the622

AIS but seek only to demonstrate our proposed methodology. In our test problem, as we set623

it up using the f.ETISh model, an increase in atmospheric temperature has an impact on the624

surface mass balance through an increase in precipitation and surface melting, as represented625

by the dependence of as on Ta in (6.1) and (6.2). And, an increase in ocean temperature has626

an impact on the mass balance underneath the ice shelves through an increase in the strength627

of the overturning ocean circulation in ice shelf cavities, as represented by the dependence628

of aw on To in (6.2). We let the forcing scenario be defined as a function of two input pa-629

rameters. The first input parameter is the change in atmospheric temperature ∆Ta after 300630

years, for which we will consider values in the range between 1 and 10 K. To allow the reader631

to appreciate this range of values, the lower and upper bound are respectively in the range632

of values for the projected atmospheric temperature increase after 300 years for the strongly633

mitigated RCP2.6 and the warm RCP8.5 scenario [9]. The second input parameter is the634

ratio between the change in ocean temperature and the change in atmospheric temperature,635

for which we will consider values in the range between 0.1 and 0.9; the lower and upper bound636

account respectively for a slowdown or an amplification of the overturning ocean circulation637

in ice shelf cavities. Please note that our choice of a wide range of values for the atmospheric638

and oceanic forcings was also motivated by a desire to trigger significant variability in the639

retreat of the grounded portion of the AIS and thus obtain a challenging test problem for640

the proposed methodology. Except for the forcing scenario, the setup of our test problem is641

similar to the setup of the nominal simulation in [8].642

We use a square grid with a length of 5600 km in each direction with a spatial resolution of643

16 km and we use a time step of 0.05 year. The computing time of a single simulation on two644

threads of a SkyLake 2.3 GHz CPU of the Lemaitre 3 cluster (CÉCI clusters, F.R.S-FNRS &645

Walloon Region, Belgium) is approximately 8 hours.646

To illustrate the proposed methodology, we will focus on the grounded portion Dg of the647

domain at time τ = 700 yr. This portion is determined as the superlevel set of the height648
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above flotation for the threshold 0, that is,649

(6.4) Dg =
{
x ∈ D : y(x) = h(x) +

ρw

ρi
b(x) ≥ 0

}
for t = τ.650

Figure 4 illustrates the evolution of the grounded portion and the grounding line as a651

function of time for ∆Ta = 8.5 K and ∆To/∆Ta = 0.84. We observe a limited retreat of the652

grounding line in the first 200 years, followed by a retreat of the grounding line in the WAIS,653

especially in the Amundsen sector and in Siple Coast, in the next 200 years. After 700 years,654

the WAIS has almost completely collapsed as a consequence of a MISI, while vulnerable marine655

sectors, such as the Wilkes sector, in East Antarctica are undergoing a significant retreat.656
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Figure 4. Illustration of a simulation with ∆Ta = 8.5 K and ∆To/∆Ta = 0.84. Height above flotation at
time (a) t = 200 yr, (b) t = 400 yr, and (c) t = 700 yr. The grounded domain is the set of locations where the
height above flotation is larger than 0. The black line is the grounding line.

6.5. Sources of uncertainty. In our test problem, we consider the two aforementioned657

input parameters to be uncertain. We represent the change in atmospheric temperature after658

300 years with a uniform random variable ξ1 with values in [1, 10] K. And we represent the ratio659

between the ocean and atmospheric temperature changes with a uniform random variable ξ2660

with values in [0.1, 0.9]. We let ξ1 and ξ2 be statistically independent. Similarly to our use of661

a simplified forcing scenario, our use of such a simplified representation of input uncertainty662

is justified by the fact that we do not seek to provide new probabilistic projections and insight663

into the evolution of the AIS but seek only to demonstrate our proposed methodology.664

Figure 5 shows the grounded portion for the minimum, mean, and maximum values of665

the uncertain input parameters. We observe a very limited retreat of the grounding line for666

the minimum values, an ongoing retreat of the grounding line in the Amundsen and Ronne667

sectors and in Siple Coast for the mean values, and an almost complete collapse of the WAIS668

and a retreat of the Wilkes sector for the maximum values.669

Upon representing the two uncertain input parameters of the computational model with670

the aforementioned random variables, the predicted height above flotation becomes the ran-671

dom field {Y (x),x ∈ D}. We are interested in its positive excursion set672

(6.5) E+
0 = {x ∈ D : Y (x) ≥ 0} .673
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Figure 5. Height above flotation for the (a) minimum, (b) mean, and (c) maximum values of the uncertain
input parameters at time τ = 700 yr. The grounded domain is the set of locations where the height above
flotation is larger than 0. The black line is the grounding line.

For several confidence levels α, we will seek an inner confidence set C in
0+,α for E+

0 . This inner674

confidence set C in
0+,α may be interpreted as the set in which, with a probability of at least675

α, all locations remain covered with grounded ice. It may also be interpreted as the set to676

within which, with a probability of at least α, the grounded portion does not retreat with a677

probability of at least α.678

Following the approach of sect. 4, we consider a partitioning of the computational domain679

and define the excursion sets and confidence sets with reference to this partitioning. Here,680

the partitioning is taken as a square tessellation of the finite-difference grid points and the681

representative points are the grid points. The spatial discretization used in the simulations682

leads to a partitioning into 123201 subsets.683

6.6. Membership function. We first generated an ensemble of 500 i.i.d. samples of the684

uncertain input parameters, from which we deduced the corresponding ensemble of samples685

of the height above flotation using the computational model. Then, we approximated the686

pointwise probability density functions of the random field using the kernel density estimation687

method. Subsequently, we determined the statistical descriptors of the random field from the688

kernel density estimates. Finally, we evaluated the membership functions defined in (3.15)–689

(3.17) using the statistical descriptors thus obtained. Figure 6 illustrates these membership690

functions. We present results for all three membership functions to allow us to comment on691

the impact of the choice of the membership function on the methodology, for instance, the692

impact of the membership function on χ. In Fig. 6, both membership functions T2 and T3693

exhibit a similar behavior, which may be explained by a similar dependence of (3.18) and694

(3.19) on the coefficient of variation of the random field. The larger difference between T1 and695

the two other membership functions may be explained by the non-Gaussianity and bimodality696

of the random field in regions vulnerable to instabilities as will be shown in sect. 6.7.3.697

6.7. Quantile estimation.698

6.7.1. Monte Carlo method. As discussed in sect. 5, we may expect the quantile estima-699

tion problem to be more computationally challenging than the estimation of the membership700
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Figure 6. Membership function: (a) T1, (b) T2, and (c) T3.

function and we require a higher accuracy of the estimate. Hence, we determined the value701

of the optimal threshold ρ∗ with a larger ensemble of 5000 i.i.d. samples. Owing to the par-702

titioning, χ is a discrete random variable, denoted here explicitly by χh, with values in a set703

with a cardinality of 2815 for T1, of 2407 for T2, and of 2440 for T3. The number of values704

that χh takes is two orders of magnitude smaller than the number of representative points705

because most representative points are either inside the excursion set or outside the excursion706

set almost surely and a significant retreat of the grounding line only happens in vulnerable707

marine sectors. As a consequence of the number of values that χh takes being sufficiently large708

and these values being sufficiently dense, the difference between the distribution function and709

the mid-distribution function is small, with the magnitude of the discontinuities of the distri-710

bution function of the order of 10−4 to 10−3. However, both the spatial and the stochastic711

discretization limit the accuracy in determining confidence sets.712

Figure 7(a) shows the sample mid-distribution function for the three membership func-713

tions, from which we estimated the corresponding mid-quantiles for the confidence levels 0.5,714

0.9, and 0.99. In Figure 7(b), we conducted a numerical convergence analysis to examine the715

convergence of the Monte Carlo estimates of the mid-quantiles with respect to the number716

of samples. Figure 7(b) suggests that using 5000 samples is sufficient to ensure a reasonable717

convergence of the Monte Carlo estimates (see also Table 1). Figure 7(b) also suggests that718

reasonable convergence of the Monte Carlo estimates is reached for a number of samples larger719

than 2500.720

Table 1 provides the bootstrap mean and two-sigma confidence interval for the Monte721

Carlo estimates of the optimal threshold ρ∗ for the confidence levels 0.5, 0.9, and 0.99. We722

also determined the area of the resulting confidence sets. Table 1 suggests that using T1723

leads to larger (more optimal) confidence sets than the two other membership functions. For724

each confidence level α, the inner confidence set for T1 is well smaller than the corresponding725

Vorob’ev α-quantile. The use of T2 and T3 yields confidence sets of similar size, which is726

consistent with the similarity that we observed between these membership functions.727

6.7.2. Bifidelity method. We will now use the bifidelity method of sect. 5.4, and we will728

investigate the extent to which it can reduce the computational cost of evaluating the mid-729
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Figure 7. Monte Carlo estimates of mid-quantiles.

Table 1
Boostrap mean and two-sigma confidence interval for the Monte Carlo estimates of the mid-quantiles

computed with 10000 bootstrap replications. The area (millions of km2) of the resulting confidence sets is
reported between parentheses.

T1 T2 T3

α qmid,ν
χh (α) qmid,ν

χh (α) qmid,ν
χh (α)

0.5 0.5949± 0.0130 (11.027± 0.029) 0.6175± 0.0158 (10.922± 0.033) 0.6432± 0.0184 (10.923± 0.034)

0.90 0.9240± 0.0055 (10.276± 0.010) 0.9738± 0.0045 (10.199± 0.015) 0.9444± 0.0035 (10.119± 0.014)

0.99 0.9919± 0.0025 (10.085± 0.014) 1.0000± 0.0000 (9.829± 0.022) 0.9896± 0.0009 (9.829± 0.022)

quantiles for the membership function T1 as compared with the Monte Carlo method used in730

sect. 6.7.1. We will investigate the use of the two methods for obtaining the surrogate model731

required for the bifidelity method, namely, the method based on the spectral representation732

of the random field (sect. 5.3.1) and the method based on the spectral representation of χh733

(sect. 5.3.2). We built polynomial chaos expansions for several choices of the order p using734

scaled Legendre polynomials whereby we determined the polynomial chaos coordinates from735

an experimental design made up of the nodes of a fully tensorized scaled Gauss–Legendre736

quadrature integration rule with (p + 1)2 nodes. We implemented the bifidelity method by737

reusing the ensemble of 5000 i.i.d samples that we had used in the Monte Carlo method in738

sect. 6.7.1 so as to allow the solution given by the bifidelity method to be compared with the739

Monte Carlo solution. We used a step size of ∆ν = 50 and we set η = 0.740

Figure 8 shows a numerical convergence analysis of the mid-quantile estimate as a function741

of the number of iterations in Algorithm 5.1 using a stochastic expansion of order p = 5 either742

of the random field or of χh. In our illustration, we found that Algorithm 5.1 stops when the743

mid-quantile estimate based on the bifidelity method is equal to the Monte Carlo estimate744

in Table 1. When j = 0, the estimate corresponds to the mid-quantile estimate based on745

only the surrogate model (see sect. 5.3). We observe that the mid-quantile estimate based746

on only the surrogate model already provides an accurate estimate of the Monte Carlo mid-747

quantile. When we apply the bifidelity method, the mid-quantile converges quickly towards748
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the Monte Carlo mid-quantile, thus suggesting that only a small percentage of evaluations of749

the computational model is required. We can observe that the bifidelity method converges in750

fewer iterations for a surrogate model based on a stochastic expansion of χh (Fig. 8(b)) than751

when using one of the random field (Fig. 8(a)).752
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(a) Total CPU time: 6688h for α = 0.5, 5888h for
α = 0.9, and 1888h for α = 0.99.
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α = 0.9, and 1488h for α = 0.99.

Figure 8. Convergence analysis of the mid-quantile estimate based on the bifidelity method based on a
polynomial chaos expansion either (a) of the random field or (b) of χh as a function of the number of iterations
in Algorithm 5.1. The absence of data indicates that the mid-quantile estimate based on the bifidelity method
is equal to the Monte Carlo estimate. Results are for T1, order p = 5, ∆ν = 50, and ν = 5000. The equivalent
total CPU time, determined from the number of samples of the computational model required to construct the
polynomial chaos expansion and to achieve convergence of Algorithm 5.1, is provided as a means of comparison
with the Monte Carlo solution (total CPU time of 40000h).

Figure 9 gives the efficiency of the bifidelity method for a surrogate model based on a753

polynomial chaos expansion either of the random field (Fig. 9(a)) or of χh (Fig. 9(b)) as a754

function of the order p. We measure the efficiency of the bifidelity method as the number755

of iterations before exiting Algorithm 5.1, with the maximum number of iterations equal756

to 100. The number of iterations is high for low orders but drops significantly for higher757

orders and the 0.99-quantile. Hence, the mid-quantile can be estimated with only a reduced758

number of samples compared to the Monte Carlo sampling method. In addition, the bifidelity759

method based on a polynomial chaos expansion of χ achieves a higher efficiency than the760

bifidelity method based on a polynomial chaos expansion of the random field. Please note761

that an analysis of the efficiency of the bifidelity method should also take into account the762

computational cost of constructing the polynomial chaos expansions.763

6.7.3. Efficiency of the bifidelity method. We obtained similar convergence and effi-764

ciency rates for the other two membership functions. In general, the bifidelity method based765

on a polynomial chaos expansion of χh achieved a higher efficiency than the bifidelity method766

based on a polynomial chaos expansion of the random field. Also, the bifidelity method based767

on a polynomial chaos expansion of χh showed a higher efficiency for T1 than T2 and T3.768

To understand the observations mentioned in the previous paragraphs, we looked at how769

well the random field and the random variable χh lend themselves to being approximated with770

polynomial chaos expansions. Figure 10(a) shows, as a function of the values taken by the771
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(a) Bifidelity method with polynomial chaos expan-
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Figure 9. Efficiency of the hybrid sampling method: number of iterations before exiting Algorithm 5.1 as a
function of the polynomial order p. Results are for T1.

uncertain input parameters, the corresponding value taken by the height above flotation at the772

location x∗ in Siple Coast (see Fig. 3). The random variable Y (x∗) has a bimodal distribution773

with well-separated modes, which suggests the occurence of a MISI in Siple Coast. The higher774

mode corresponds to small values (low forcing) of the uncertain input parameters and a limited775

retreat of the grounding line, while the lower mode corresponds to large values (high forcing)776

of the uncertain input parameters and an important retreat of the grounding line. This777

suggests that the random field lends itself less well to being approximated with low-order778

polynomial chaos expansions, especially at locations where a MISI takes place. By contrast,779

Fig. 10(b)–(c) show, as a function of the values taken by the uncertain input parameters,780

the corresponding value taken by χh for T1 and T2, respectively. For small values of the781

uncertain input parameters, the retreat of the grounding line is limited and the supremum of782

T in
(
E+h

0

)c
is small, while, for large values of the uncertain input parameters, the retreat of783

the grounding line is important and the supremum of T in
(
E+h

0

)c
is large. We can observe784

that the mapping from the values taken by the uncertain input parameters to the value taken785

by the random variable χh based on either T1 or T2 is sufficiently smooth to lend χh to786

better being approximated well with low-order polynomial chaos expansions. In addition, a787

surrogate model based on a polynomial chaos expansion converges more rapidly towards χh788

for χh based on T1 than on T2, as may be expected from the mapping from the values taken789

by the uncertain input parameters to the value taken by random variable χh for small values790

of the uncertain input parameters.791

6.8. Confidence sets. In Fig. 11, we represented the confidence sets for the confidence792

levels 0.5, 0.9, and 0.99. We superimposed these confidence sets to represent risk-assessment793

maps. We interpret the confidence sets with confidence levels 0.5, 0.9, and 0.99 as the sets794

for which we have medium, high, and very high confidence the ice sheet will not retreat.795

Thus, Fig. 11 suggests that, within the context of the test problem as we set it up, there is796

a medium risk that about half of the WAIS may disappear over the next 700 years and a797

low risk that the whole WAIS may collapse over the next 700 years. All three membership798

functions lead to similar interpretations, although the confidence set with confidence level 0.5799
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Figure 10. a) Height above flotation at the location x∗ in Siple Coast as a function of the values taken by
the uncertain input parameters. Value taken by the random variable χh as a function of the values taken by
the uncertain input parameters for (b) T1 and (c) T2.

for T2 and T3 suggests that the WAIS (especially in the Amundsen and Filchner sectors) is800

more vulnerable than the corresponding confidence set for T1. Also, the confidence sets for801

T3 display the highest vulnerability for the WAIS but the least vulnerability in the Wilkes802

sector. More generally, such risk-assessment maps may benefit both observational missions803

and ice-sheet modeling initiatives by indicating critical regions in Antarctica whose evolution804

has to be tracked and understood in more details.805

Confidence level

(a) (b) (c)

≥ 50% ≥ 90% ≥ 99%

Figure 11. Risk-assessment maps of the AIS retreat. The blue set, the union of the blue and orange sets,
and the union of the blue, orange, and red sets are respectively the confidence set for the confidence levels 0.99,
0.9, and 0.5. Membership function: (a) T1, (b) T2, and (c) T3. The black line is the present-day grounding line.
White regions inside the present-day grounding line represent regions where the ice sheet will retreat with high
probability (confidence levels less than 0.5).

6.9. Spatial discretization error. We investigated the impact of the spatial resolution on806

the results by considering additional spatial resolutions of 32 km, 64 km, and 128 km. Here,807
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we did not rerun the f.ETISh model for these lower resolutions, but we took the representative808

points for lower spatial resolutions as subsets of the representative points for higher spatial809

resolutions. For this reason, the optimal threshold ρ∗h for a given confidence level decreases810

with a decrease of the spatial resolution. Table 2 provides the bootstrap mean and two-sigma811

confidence interval for the Monte Carlo estimates of the optimal threshold ρ∗h (and the corre-812

sponding area of the confidence sets) for the confidence levels 0.5, 0.9, and 0.99 for the different813

spatial resolutions. We observe that the error in the quantile estimation due to the spatial814

discretization is of the same order of magnitude as the Monte Carlo estimation error for the815

high resolutions (16 and 32 km). By contrast, the error in the quantile estimation due to the816

spatial discretization is more significant than the Monte Carlo estimation error for the lowest817

resolution (16 vs 128 km). Table 2 also suggests that the results for a spatial discretization of818

16 km can be considered to have converged with respect to the spatial resolution. Figure 12819

shows the corresponding risk-assessment maps for the different spatial resolutions.820

Table 2
Boostrap mean and two-sigma confidence interval for the Monte Carlo estimates of the mid-quantiles

computed with 10000 bootstrap replications as a function of spatial resolution (for membership function T1).
The area (millions of km2) of the resulting confidence sets is reported between parentheses.

α 0.5 0.9 0.99

qmid,ν
χh (α) qmid,ν

χh (α) qmid,ν
χh (α)

16 km 0.5949± 0.0130 (11.027± 0.029) 0.9240± 0.0055 (10.276± 0.010) 0.9919± 0.0025 (10.085± 0.014)

32 km 0.5937± 0.0135 (11.024± 0.029) 0.9169± 0.0067 (10.275± 0.012) 0.9906± 0.0030 (10.088± 0.012)

64 km 0.5859± 0.0165 (11.009± 0.04) 0.9148± 0.0073 (10.249± 0.016) 0.9903± 0.0027 (10.055± 0.007)

128 km 0.5721± 0.0154 (11.037± 0.027) 0.9097± 0.0047 (10.253± 0.020) 0.9793± 0.0057 (10.026± 0.018)

7. Conclusion. We investigated confidence sets of random excursion sets in the context821

of stochastic computational models with a high computational cost. We proposed to recast822

the problem of estimating an optimal confidence set in a parametric family of candidate sets823

as an equivalent quantile estimation problem of a random variable. We proposed to solve824

the quantile estimation problem using a surrogate model either of the random field or of825

the random variable χ, and we introduced a bifidelity method that aims at reducing the826

approximation error by using the computational model close to the quantile to be estimated.827

We illustrated this method on a stochastic problem relevant to glaciology and we showed that828

only a small number of evaluations of the computational model was necessary to achieve an829

accurate estimate of the quantile. We discussed the impact of the membership function on830

the efficiency of the bifidelity method, and we concluded that the bifidelity method based on831

a polynomial chaos expansion of the random variable can be more efficient than the bifidelity832

method based on a surrogate model of the random field.833

The bifidelity method relies on the construction of a surrogate model based on a polyno-834

mial chaos expansion, which is especially well suited for low or moderate stochastic dimension.835

With a methodology-oriented point of view, future work could investigate the stochastic dis-836

cretization of the quantile estimation problem for computational models with a high stochastic837

dimension by using, for instance, other methods from reliability engineering such as subset838
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Confidence level
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(a) (b)

≥ 50% ≥ 90% ≥ 99%

Figure 12. Impact of the spatial discretization on risk-assessment maps of the AIS retreat (with membership
function T1). Spatial resolutions: (a) 16 km, (b) 32 km, (c) 64 km, and (d) 128 km. The black line is the
present-day grounding line for these spatial resolutions.

simulation or adaptive methods. With an application-oriented point of view, future work839

could apply the proposed method to provide new probabilistic projections and insight into840

the evolution of the AIS based on realistic forcings and suitable probabilistic characterizations841

of uncertain input parameters; see [8] for an example of such an application.842
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