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ABSTRACT

Light fields have been populated as a new geometry representation of 3D scenes,
which is composed of multiple views, offering large potentials to improve the depth
perception in the scenes. The light fields can be captured by different camera sensors,
in which different acquisitions give rise to different representations, mainly containing
a line of camera views - 3D light field representation, a grid of camera views - 4D light
field representation. When the captured position is uniformly distributed, the outputs
are the structured light fields.

This thesis focuses on depth estimation from the structured light fields. The light
field representations (or setups) differ not only in terms of 3D and 4D, but also the den-
sity or baseline of camera views. Rather than the objective of reconstructing high quality
depths from dense (narrow-baseline) light fields, we put efforts into a general objec-
tive, i.e. reconstructing depths from a wide range of light field setups. Hence a series
of depth estimation methods from light fields, including traditional and deep learning-
based methods, are presented in this thesis. Extra efforts are made for achieving the
high performance on aspects of depth accuracy and computation efficiency.

Specifically, 1) a robust traditional framework is put forward for estimating the depth
in sparse (wide-baseline) light fields, where a combination of the cost calculation, the
window-based filtering and the optimization are conducted; 2) the above-mentioned
framework is extended with the extra new or alternative components to the 4D light
fields. This new framework shows the ability of being independent of the number of
views and/or baseline of 4D light fields when predicting the depth; 3) two new deep
learning-based methods are proposed for the light fields with the narrow-baseline,
where the features are learned from the Epipolar-Plane-Image and light field images.
One of the methods is designed as a lightweight model for more practical goals; 4) due
to the dataset deficiency, a large-scale and diverse synthetic wide-baseline dataset
with labeled data are created. A new lightweight deep model is proposed for the 4D
light fields with the wide-baseline. Besides, this model also works on the 4D light fields
with the narrow baseline if trained on the narrow-baseline datasets.

Evaluations are made on the public light field datasets. Experimental results show
the proposed depth estimation methods from a wide range of light field setups are
capable of achieving the high quality depths, and some even outperform state-of-the-
art methods.
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CHAPTER 1

INTRODUCTION

1.1 Depth Estimation

1.1.1 Background

Humans are aware of how far away the real-world objects in 3D scene, i.e. the approx-
imate depth, from themselves because of the parallax from the separated left and right
eyes. Researchers, in the 3D vision community, have been attempting to perceive/esti-
mate the accurate depth by measuring the physical distance of real-world points from
the sensors. The perceived depth from the sensor (aka range camera) is usually stored
as an 8-bit channel image or more (e.g., 16 bits), which has been applied into a variety
of research fields, such as segmentation, view synthesis, 3D modeling, autonomous
driving, etc.

Over the last few decades, depth estimation has been progressed with fruitful ap-
proaches. According to whether the light source (illumination) is emitted or not, the
depth perception approaches can be categorized into the active and passive depth
sensing [1–4]. With respect to active methods, there are a variety of sensors, includ-
ing Structured Light sensor (measuring depth from deformed light pattern projected by
an infrared laser, e.g, Microsoft Kinect v1 1), Time of Flight sensor (measuring depths
by calculating the round trip of light beams in the entire scene, e.g., Microsoft Kinect
v2 1), and LiDAR sensor (measuring depths from reflected light beams by a rotating
laser, e.g., Faro scanner 2). Passive methods are mostly related to the triangulation, in
which the depth is generated by finding the correspondence from the (RGB) images.
The passive depth sensors mainly consist of stereo camera (e.g., ZED camera 3) and
multi-camera, light field-camera. Researchers have been attracted for more effectively
modeling the depth estimation and enhancing the depth estimation performance.

1.1.2 Passive Depth Sensing

In this section, we will briefly describe the passive methods for depth estimation since
it is mostly related to the thesis. We gradually introduce the basic knowledge of depth

1. https://www.xbox.com/en-us/kinect/ 2. https://www.faro.com/ 3. https://www.stereolabs.com/
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Chapter 1 – Introduction

estimation from two-view stereo, multi-view stereo to light field images, which differ in
terms of the input representation. In fact, the light field inputs could be thought of as
the extension of the two-view stereo and multi-view stereo inputs. Among them, there
exist the common knowledge that the depth estimation is formulated into the disparity
estimation, where the disparity is searched from the corresponding points relying on
the epipolar geometry [5], cf. Fig. 1.1. With respect to the disparity property, when the
object is near to the cameras, the disparity will be large, and vice versa. Note that, for
the two-view stereo and light fields, the disparity is exchangeable to the depth from
now on since the depth can be calculated/triangulated by Eq. 1.1,

Z = B × F/D (1.1)

where F is the focal length, B is the camera baseline, D is the disparity and Z is the
depth.

(a) two-view stereo (b) multi-view stereo (c) light fields

Figure 1.1: Epipolar geometry in different scenarios. I, P and p represent the image
plane, the 3D world point and the 2D point projected in the image plane respectively.
e indicates an epipolar line, black points p are corresponding points and green points
denote the points in the search space.

From two-view stereo: in an earlier stage, researchers imitated the human depth-
perception mechanism by placing two cameras in 3D scene, and deduced the disparity
from the corresponding points in a rectified/structured image pair (aka. stereo match-
ing), as is shown in Fig. 1.1 (a). The rectified image pair is obtained from two cameras,
where the epipolar line is rectified to be parallel and horizontal. The corresponding
points search is limited to 1D space, i.e. the horizontal epipolar line. In Fig. 1.1 (a),
the left view I0 is referred to as the reference image IR and the right view I1 as the
target image IT . The principle of predicting the disparity for the reference view is to find
correspondences from the target view. The traditional pipeline of searching correspon-
dences typically consists of the cost calculation, cost aggregation, regularization or op-
timization, post-processing (we refer the interested readers to [6] for a detailed review).

2



1.1. Depth Estimation

For the deep learning-based methods, the feature extraction, cost volume generation,
cost aggregation, followed by upsampling via bilinear interpolation are employed in the
pipeline, which borrow the knowledge from the traditional methods.

From multi-view stereo: two-view stereo was extended to multi-view stereo on the
unstructured camera setups to address the challenging concerns (e.g., the occlusion).
In fact, multi-view stereo (MVS) has been a commonly used term in 3D reconstruc-
tion [7], in which the multiple cameras are placed at the arbitrary locations. The related
works for this camera setup are not only used to recover the depth, but also are used for
reconstructing the mesh and the point cloud, going beyond the scope of the thesis. As
with depth estimation from the multi-view stereo, at least two unstructured views, i.e.,
all image views are not rectified, are employed. The parallax lies in the non-horizontal
epipolar line instead, and the correspondence search is carried on along this line. In
Fig. 1.1 (b), the being estimated view I0 is referred to as the reference image IR and
several neighboring views (I1 and I2) as the target images IT . MVS methods typically
take as input all images and their corresponding camera parameters, and then recon-
struct the 3D representation of the scene from all input views. In the traditional depth
estimation pipeline, the plane-sweep technique is often firstly used to project the neigh-
boring images onto a number of virtual depth planes, and then calculate the matching
cost among multiple views, followed by aggregating or refining the costs. We refer the
interested readers to [7] for the detailed developments of the previous traditional meth-
ods. For the deep learning-based MVS methods, the pipeline is quite similar to that of
the stereo matching [8]. Unlike stereo matching, the input images involved with arbi-
trary camera locations might pose a tricky issue in using the deep learning technique
[9].

From Light fields: the textureless, occlusion regions in two-view stereo and multi-
view stereo are often the troublesome issues of being estimated to be the real disparity,
causing degradations in depth accuracy. 4D light fields, i.e. the compact representa-
tion from the plenoptic function [10], record a large amount of information of the scene.
The (4D) light fields are typically captured as multiple images/videos from the multi-
view setup, which was initially aimed at improving image-based-rendering without the
explicit geometry. Light fields came to the computer vision community very early, and
were used for reconstructing the depth, which went from a niche research topic to an
active topic. Depth estimation from light fields is closely related to that from multi-view
stereo (MVS) in the computer vision community, but actually there exists a difference,
i.e. the light fields might be densely and regularly sampled [10], which is not the case
in multi-view stereo. Since light fields consist of the more (structured) views, this en-
hances the more potentials of addressing the textureless and occlusion issues than that
in the two-view stereo and multi-view stereo. The light fields, in the literature, are mainly
structured, being comprised of rectified images. In Fig. 1.1 (c), the parallel cameras are

3



Chapter 1 – Introduction

placed in the scene. The leftmost view I0 is referred to the reference image IR and the
other views are the target views IT . One strategy of searching correspondences for the
reference view is to integrate the intermediate findings from all reference and target im-
age pairs using the two-view stereo or multi-view stereo methods. Moreover, given that
the structured light fields exhibit a several of properties: Epipolar-Plane-Image (EPI,
as is shown in Fig. (1.2)), refocusing and symmetry, these are usually are taken into
consideration to improve the correspondence search. For instance, the property of EPI
is that the slope of its EPI-line is inversely proportional to the disparity, as given in Eq.
(1.2).

Figure 1.2: Epipolar plane image (EPI). The EPI is constructed by stacking a sequence
of epipolar lines in the same image scanline. The line in orange is the EPI-line where
the pixel p of the central view (yellow) lies. The slope of this EPI-line is inversely pro-
portional to the real disparity.

∆s
∆u = 1

d
(1.2)

Here d represents the disparity of the pixel, ∆s represents camera intervals and ∆u is
the horizontal disparity.

1.2 Light Fields

A light ray in the real-world space can be parameterized by the 3D spatial position for
every 2D direction, corresponding to the (5D) plenoptic function in [11]. Due to the stor-
age and computational burden, the plenoptic function is reduced to 4D function under
the free space assumptions (free of occluders), referred to as 4D light fields [10] or
Lumigraph [12]. 4D light fields are parameterized by two planes, i.e., the camera/an-
gular and image/spatial planes. With respect to the recording of 4D light fields, light
rays coming from different directions are split to different pixels on the sensors, which
is more distinguished than the integration of rays from different directions as done in
the conventional camera. When only a line (e.g. a horizontal or vertical line) is kept

4



1.2. Light Fields

on the camera plane, the 3D light fields can be constructed. In practice, the 3D or 4D
light fields are captured by a different number of sampled camera views with different
baselines.

1.2.1 4D Light Field Representation

The 4D light field is represented by two-plane parametrization (2PP) in which a camera
plane is parametrized by the coordinate system (s, t) and the image plane (u, v). Then
it could be simply seen as a collection of a plane of views (cf. Fig. 1.3) with radiance val-
ues r in the RGB color space, described as R = L(u, v, s, t), in which (s, t) represents
a camera coordinate and (u, v) indicates a coordinate of a pixel on the image plane.
The light field view, which is being estimated, is denoted by Rs∗,t∗. Then, according to
this view, a radiance set Ru,v,s,t(d) is easily built by assigning a hypothetical disparity d
to a light ray, as given in Eq. 1.3:

Ru,v,s,t(d) = {L(u+ d ∗ (s∗ − s), v + d ∗ (t∗ − t), s, t)

|s = 1, 2, ...,M ; t = 1, 2, ..., N}
(1.3)

where d is the disparity in some range and (M, N) denotes the angular resolution of
the light field. The subscript (u, v) that corresponds to the pixel or light ray in a view is
replaced with p in the following texts for simplicity.

Figure 1.3: Light field images are captured from a equally spaced 2D camera array.

1.2.2 3D Light Field Representation

The 3D light fields are typically a collection of a horizontal line of views with radiance
values r in the RGB color space, described as R = L(u, v, s), in which s represents

5



Chapter 1 – Introduction

a camera coordinate and (u,v) indicates a coordinate of a pixel on the image plane.
The radiance value set Ru,v,s(d) for the reference view can be built by Eq. 1.4, which is
similar to that in 4D light fields.

Ru,v,s(d) = {L(u+ d ∗ (s∗ − s) , v, s)|s = 1, 2, ...,M} (1.4)

Note that the subscript (u, v) is also removed in the following texts for simplicity.

1.2.3 Baseline

There exists various light field acquisition setups to acquire the light fields, which
mainly differs in terms of the baseline (or density ) [13]. The baseline indicates the
inter-camera distance, which is closely related to the disparity range of the scene: the
wider baseline corresponds to a higher disparity range and vice versa. Specifically,
the narrow-baseline light fields have the low disparity range, e.g., less than 1.5 pix-
els, whereas the disparity range in the wide-baseline light fields is always much larger
than 1.5 pixels. Note that, in the light field community, the term baseline is usually ex-
changed for the density, where the sparse sampled light fields indicate or accompany
the wide-baseline, while the dense sampled light fields denote or are coupled with the
narrow-baseline.

1.3 Motivation

To date, the research community has achieved appealing performances in depth ac-
curacy but are limited to good settings (e.g., densely sampled light fields). Indeed, the
densely sampled (narrow-baseline) light fields are capable of enhancing the potentials
of high quality, however, the over-sampling or redundancy might occur. Therefore, the
trade-off between the redundancy and the quality is necessary. As a fact, the dense
sampling or narrow-baseline for the scene capture, was paid more attention to in the
past, but now the same scene viewed as the sparse (wide-baseline) light fields with
less redundancy seems much more attractive. Therefore, it seems worthy taking this
setup into consideration for the new algorithms.

From the perspective of the algorithm, the existed algorithms can be classified into
the traditional algorithms and the CNN-based algorithms. Both algorithms have their
own pros and cons. In terms of the image features, traditional methods manually en-
gineer the features (aka hand-crafted features), such as the edges and histograms,
while CNN-based methods automatically learn features from the data. In terms of the
complexity, traditional methods are only related to an algorithmic complexity, while for
CNN-based algorithms, the complexity is not only related to the algorithmic complexity,

6



1.3. Motivation

but also the creation/collection of the training datasets with the high quality, the long-
time training, and storing parameters in space. In terms of the computation efficiency,
the CNN-based methods is capable of being accelerated by GPUs, while this is not
always the case in the traditional methods. In general, for the CNN-based methods,
the price to pay is higher, nevertheless, it still be acceptable if the quality-complexity-
efficiency trade-off is getting better.

In this thesis, we intend to conduct the more meaningful explorations under a range
of settings, and attempt to present new algorithms (including the traditional and CNN-
based algorithms) taking care of the potential issues occurred in previous methods
on aspects of the depth accuracy, computation efficiency and dataset sufficiency, as
shown in Fig. 1.4.

Figure 1.4: Illustration of the potential issues in light field depth estimation.

Depth accuracy: some state-of-the-art methods observe the gradual degradations
in extracting depths when the light fields are sparser and/or the baseline is wider. So
we might ask at which camera density and/or baseline the quality of depth maps is
still acceptable? Or is it possible for a framework to obtain high quality depths that is
independent of the density or baseline of the light fields? Note that the sparse light
fields reduce not only the budget of light field setup but also the elapsed computation
time, therefore it is worth of making explorations toward sparse light fields.

Computational Efficiency: since the number of angular images in light fields is
usually an order of magnitude more than two views, most of state-of-the-arts meth-
ods relying on the full-shape or star-shape light fields spend a large amount of time
in estimating depths for one camera view. If the spatial resolution of light fields goes
larger, the computational time might be a nightmare for users, impeding the future po-
tential applications. Therefore it is essential to give attention to the high computational

7



Chapter 1 – Introduction

efficiency algorithms.

Dataset Sufficiency: as is well known, the deep learning has witnessed a fruitful
progress in a variety of vision tasks, including depth estimation from two views. The
deep learning requires a great deal of perfect labelled data in general, however, the light
field research community has the limited public datasets with labels for the supervised
depth estimation learning tasks. Though there exist a large number of real-world light
fields configured with the wide-baseline, there are no available large-scale datasets
with labels for measurement or supervised training. Thus it is of significance to involve
such dataset with labelled data.

1.4 Contribution

The thesis has made several contributions for depth estimation from structured light
fields. These contributions come from different perspectives, being classified into the
traditional perspective and the CNN-based perspective. Actually, we firstly focus on the
traditional algorithms that are distributed to Part I, and then move on to the CNN-based
algorithms distributed to Part II. In general, the proposed CNN-based algorithms out-
perform the proposed traditional algorithms in the depth accuracy and computational
efficiency (using GPU accelerations is a precondition of getting higher efficiency in
CNN-based algorithms, otherwise it is not true). Whereas, in contrast with the pro-
posed traditional algorithms, the proposed CNN-based algorithms have to store the
extra models with a large number of parameters in space. The detailed contributions
are summarized below, and some related visulizations are shown in Fig. 1.5, Fig. 1.6,
Fig. 1.7, and Fig. 1.8.

Traditional algorithms 1) A robust depth estimation framework for 3D sparsely-
sampled (wide-baseline) light fields (1x10) (R3DE) is presented, achieving high quality
depth in real-world datasets. 2) A scalable framework based on the 4D light fields (S-
R4DE) is presented, which allows to accurately predict depths from the dense (9x9) or
sparse (3x3) light fields with different baselines.

CNN-based algorithms 3) A couple of the CNNs (HFNet and MANet) are pro-
posed, which improve the depth accuracy on the 4D light fields with the narrow-baseline.
While the LLF-Net is proposed to perform well on both the narrow- and wide-baseline
4D light fields. 4) The three proposed CNNs for light field depth estimation require a
much lower computational overhead than the traditional methods, especially the run-
time of the MANet and LLF-Net is both less than 1 second. 5) Two lightweight CNNs
(MANet and LLF-Net) with less than 2 million parameters are presented. The MANet
has around 1.6M parameters that achieves the state-of-the-art accuracy on the narrow-
baseline light field datasets, while the LLF-Net with a bit more parameters, i.e. 1.8M,
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achieving state-of-the-art accuracy on both the narrow- and wide-baseline datasets.
6) Considering that the light field community lacks of the synthetic dataset with wide
baseline, the new W ide-baseline Light F ield dataset WLF is introduced for the first
time (to the best of our knowledge) to fill in this gap.

Figure 1.5: Example of the depth map from 3D light fields by the R3DE in Chapter 3.

Figure 1.6: Example of the depth maps by the S-R4DE in Chapter 4: the scene from
the left to right is from the narrow- and wide-baseline 4D light fields respectively.

Figure 1.7: Example of the depth maps from the narrow-baseline 4D light fields by
HFNet and MANet in Chapter 5

1.5 Outline

The thesis introduces several methods to recover the depth from the structured light
fields, and includes seven chapters in total, and is organized as in Fig. 1.9 (excluding
the first chapter).
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Chapter 1 – Introduction

Figure 1.8: Example of the depth maps by the LLF-Net in Chapter 6: the scene from
the left to right is from the narrow-baseline 4D light fields and WLF respectively.

Figure 1.9: The outline of the following text in the thesis. The proposed depth estimation
methods and/or datasets are in red dashed rectangles.
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Chapter 2 describes the acquisitions of the light fields by hardware and software.
Considering that the target of the thesis is focused on the depth estimation task, the
detailed information of the available light field datasets for depth estimation is given,
in which the classification, exemplar scenes statistics, and challenge attributes are in-
cluded. Next, a large-scale synthetic wide-baseline dataset (WLF ) with labeled data
is introduced in order to train and validate the CNN models, and the testing dataset
for evaluations are given. Afterwards, the metrics used for evaluating or comparing
the competing depth estimation methods for light fields are given. Finally, the previous
depth estimation works from 3D and 4D light fields are reviewed in detail.

Chapter 3 presents a robust 3D light field depth estimation framework (R3DE) to
derive the depth from the sparse sampled (wide-baseline) 3D light field images (10
images in total).

Chapter 4 presents an extension of the framework in Chapter 3 to the 4D light fields
(S-R4DE), which is scalable to the light fields with the different densities or baselines.

Chapter 5 alternatively puts forward two end-to-end convolution neural networks
(CNN) (HFNet and MANet) sequentially for estimating depths from the 4D light fields
with the narrow-baseline, in which the deep features, instead of hand-crafted features
in Chapter 3 and 4, are extracted. Besides, the MANet is designed as a lightweight
network.

Chapter 6 explores the feasibility and capability of the CNN in estimating depth from
the 4D light fields with the wide-baseline. A novel end-to-end lightweight CNN, called
LLF-Net, is built.

Chapter 7 displays the depth estimation results of the proposed traditional algo-
rithms and the CNN-based algorithms from the 3D light fields and the 4D light fields
respectively.

Chapter 8 concludes with the summary and potential future works.
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CHAPTER 2

LIGHT FIELD DATASETS, METRICS AND

PREVIOUS WORKS

2.1 Datasets

In recent years, the more number of light field datasets have been emerging, and also
accessible to the public. These datasets have played a key role in the rapid develop-
ment of new solutions using light field techniques to the problems in various vision or
image processing tasks [14]. Most of the datasets, in general, are served to assess the
performance of competitive solutions/algorithms, pushing the research field toward the
more troublesome and challenging issues. To date, there has been a number of pub-
lic datasets generated for the light field depth estimation. In the following we will give
detailed descriptions of these datasets from various aspects, encompassing the acqui-
sition, classification, scene illustration, statistics, and challenge attributes. In addition,
the proposed dataset is introduced in the following text.

2.1.1 Acquisition

Acquiring the light fields could trace back to more than a hundred of years ago. To
now, there are a variety of ways for capturing the 3D or 4D light fields. One way is to
photographically capture the light fields by using the camera sensors, mainly containing
the plenoptic camera, the camera gantry and the camera array. Another way of the
capture is using 3D computer graphics software to render the 3D models with the
environmental maps. The captured light fields from this software look not as physical
as that from the camera sensors, but this way could help to reduce the research cost
and serve as a complement for providing the ground truth that is hard to obtain in
practice.

Plenoptic Camera

Plenoptic camera (aka light field camera) typically consists of a conventional cam-
era with a matrix of lenslet array, and captures the 4D light fields by placing a lenslet
array in front of the conventional image sensor [15]. One popular plenoptic camera
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Chapter 2 – Light Field Datasets, Metrics and Previous Works

prototype is Lytro Illum camera [16], belonging to the plenotic camera 1.0 (defined by
[17]) or standard plenoptic camera (defined by [18]). Fig. 2.1 shows the appearance
of this prototype camera and the corresponding schematic. As seen in the schematic,
a lenslet/micro-lens array (referred to as uv plane) is placed at the focal plane of the
main lens (referred to as st plane) and one micro-lens focal length away from the image
sensor. This layout results in its maximal angular resolution and minimal spatial resolu-
tion, where the angular resolution is relative large (i.e. with a dense set of views) at the
sacrifice of the spatial resolution of the conventional photograph. Meanwhile, the base-
line is limited by the aperture size of the main lens, thus it is always very narrow. In the
figure, the light rays (in blue), for instance, are emitted from a point on the object, which
will converge at a micro-lens. Then the micro-lens separates the directional/angular
light rays to be imaged as a sub-image to the sensor behind the micro-lens. Actually,
this sub-image is equivalent to a collection of pixels at the same (u, v) but at the dif-
ferent (s, t). The light rays (in red) pass through different image pixels at (u, v) that
come from the same sub-aperture (s, t) on the main-lens, and the resulted image is
called sub-aperture image. Therefore, providing the raw data from this plenoptic cam-
era, we typically extract the same position pixel under each micro-lens to obtain the
sub-aperture images as the input of the task.

Figure 2.1: Left: Lytro Illum camera, Right: the corresponding schematic.

Camera Gantry

A linear or planar camera gantry is often used to capture the static 3D or 4D light
fields since it is an effective device for acquiring the light fields under flexible config-
urations. The acquisition setup is comprised of a conventional camera, gantry, motor
and computer etc. A user places a camera on the gantry, and the camera uniformly
moves from one end to another end during which the movement is controlled by a mo-
tor and computer. According to whether the camera moves along a line or plane, the
captured light fields are divided into the 3D light fields and 4D light fields respectively,
as demonstrated in Fig. 2.2. Note that for this setup, the camera baseline, spatial and
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angular resolution of captured light fields are flexible or selectable, and configured by
the users. The minimal baseline is usually similar in size to that in plenoptic cameras,
while the spatial and angular resolution of light fields are usually much larger than that
of plenoptic cameras. The existing datasets involves the 3D light fields with 101 or 151
views [19] and the 4D light fields with 17x17 views 1, 21x21 views [20], 141x141 views
[21]. In short, due to the flexibility, this setup is often used to explore capabilities of the
light fields for different purposes in the research community.

Figure 2.2: Camera gantries for capturing the 3D Light fields (left) and 4D light fields
(right).

Camera Array

Camera array setup is used to capture the static and non-static 3D or 4D light fields
(see Fig. 2.3). This setup differs from the camera gantries in that it is able to capture
the movements in the scene. Moreover, the baseline is often much wider than that
in the plenoptic cameras and the minimal baseline of the camera gantries, and the
density/number of angular views is usually equal to or less than that of the plenoptic
cameras. A disadvantage is that the whole capture is more expensive, tedious and
challenging since all cameras need to be synchronized, and the focal length, aperture
of all cameras need to be kept same and fixed. For the actual acquisition, it is mostly
staged in a controlled laboratory environment, and is also controlled by the computer.
In the past, there occurred a number of arrangements using conventional cameras:
1x100 camera array 2, 4x4 camera array [22], 2x3 camera array [23], 8x8 cameras
[24], 8x12 cameras [25]. With respect to recent camera array setups, the number of
views make almost no changes: 5x5 camera [26], 4x4 camera array [27], 3x5 camera
array [21], but the spatial resolution might be increased.

1. http://lightfield.stanford.edu/lfs.html 2. http://www.fujii.nuee.nagoya-u.ac.jp/multiview-data/
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Figure 2.3: Camera array for capturing the 3D Light fields (left) and 4D light fields
(right).

Computer Graphics Software

Acquiring (perfect) light fields by the camera sensors is usually difficult and expensive.
Another effective and popular way is to create the light fields by using advanced 3D
computer graphics softwares, e.g., open source software Blender 3, Unreal 4, Grand
Theft Auto V game engine 5, etc. The creation mainly involves the collections of 3D
computer-aided design (CAD) models and environmental maps on the Internet, artisti-
cally arranging the scenes and rendering photorealistic or non-photorealistic light field
images, as is shown in Fig. 2.4. In addition to the elaborate arrangement of scenes (i.e.,
mimicking our real-world scenes), we might alternate to put randomly flying objects in
a fixed 3D cube or others, which is also found effective [28]. They always take into ac-
count lighting, shading variations in order to reduce the gaps between the synthetic and
real light fields. The graphics softwares not only are easy to configure the acquisitions
(with different density and different baseline), but also are able to provide ground truth
disparity, flow and object segmentations that are difficult to obtain for real-world light
fields. In general, the software seems enough in creating the convincing light fields for
the research purpose, and meanwhile tackles the time and cost issues that occur in
acquisitions from the aforementioned light field setups.

In order to validate the generative performance of the proposed algorithms, the
light field datasets generated from both the camera sensor (i.e. the Plenoptic Camera,
Linear and Planar Camera Gantry and Camera Array) and the graphics software are
taken into use for the assessments and comparisons.

2.1.2 Classification

There are a large number of light field datasets for the support of different tasks, in-
cluding depth estimation. We will mainly classify the datasets that are used in light field

3. https://www.blender.org/ 4. https://www.unrealengine.com/en-US/?lang=en-US
5. https://www.rockstargames.com/V/
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2.1. Datasets

Figure 2.4: An example of 3D graphics software for rendering light fields.

depth estimation literature here. Based on the type of light field setups, the existing
light field datasets can also be grouped into the plenoptic (micro-lens array) camera,
camera gantry and camera array dataset. Based on whether the light fields are photo-
graphically captured in the scene, these datasets can be classified into the real-world
dataset and synthetic dataset. The detailed classification is summarized in Table 2.1.
From Table 2.1, we find that there are no available synthetic datasets for camera array
setups.

Table 2.1: Classification of current frequently-used light field datasets in previous
works.

Type Dataset
Synthetic Micro-lens array HCI [29], CVIA-HCI [30], Inria-DLFD, Inria-SLFD [31]
Synthetic Camera array -

Real-world Micro-lens array EPFL-Lytro [32], Inria-Lytro [33]
Real-world Camera gantry Disney [19], Fraunhofer [20], ULB_Unicorn [21]
Real-world Camera array Google [26], ETRI [34], Technicolor [27], ULB [35]

2.1.3 Scene Illustration

Various categories of objects, including animals, vegetables, building and food, are
uniformly distributed in the current light field datasets. To illustrate scenes, some ex-
amples from the aforementioned datasets are shown in Fig. 2.5. We can notice from
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this figure that the synthetic datasets are mainly designed as the indoor scenes, while
the real-world datasets are comprised of both the indoor and outdoor scenes.

Figure 2.5: Scene illustration.
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2.1.4 Statistics

Dataset statistics are given in Table 2.2. We can observe that the (synthetic and real-
world) micro-lens array datasets have much lower spatial resolution than that of the
camera gantry datasets and the camera array datasets. The angular resolution of the
camera gantry dataset is larger than that of the other two setups. The baseline of
datasets from the micro-lens array camera and the camera gantry is narrow (an inter-
val of more or less than 1 millimeter), and the related disparity range is quite limited.
In contrast, the baseline of the camera array dataset is wide (an interval of several
centimeters) and and the related disparity range is also large. The synthetic datasets
for the micro-lens array camera are the only datasets to provide the ground truth depth
maps, and some of them are utilized as the training set for learning-based algorithms.
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Table 2.2: Datasets statistics of current frequently-used light field datasets for the depth
estimation task. GT: ground truth, AR: angular resolution, SR: spatial resolution.

Dataset #train #test AR SR scene baseline #GT
HCI 7 9x9 768x768 image narrow 7

CVIA-HCI 16 12 9x9 512x512 image narrow 28
Inria_SLFD 44 - 9x9 512x512 image - 53
Inria_DLFD - - 9x9 512x512 image narrow 39
EPFL_Lytro 118 15x15 434x625 image narrow 7

Disney 5 101 or 151 2622×1718 image narrow 7

Fraunhofer 9 21x21 3976x2656 image narrow 7

ULB_Unicorn 1 141x141 1920x1080 image narrow 7

Google 6 5x5 [1024, 1764] image wide 7

ETRI_Chef 300 5x5 1920x1080 video wide 7

Technicolor_Painter 372 4x4 2048x1088 video wide 7

ULB_BabyUnicorn 300 3x5 3712x2064 video wide 7

Note: For the HCI dataset, only the scene with the full ground truth is counted. For the Disney dataset,
the smallest spatial resolution is shown here since it varied in different scenes. For the Google dataset,
the spatial resolutions consists of the 1024x1024 and 1764x1764. The Technicolor dataset is specified
to the Technicolor_Painter.

As a fact, these are designed for the narrow-baseline scenario, however, there are no
available synthetic datasets with the ground truth for the wide-baseline scenario. Mean-
while, the ground truth depth maps are not provided the existed real-world datasets.

2.1.5 Challenge Attribute

For the more in-depth analysis, it would be essential to summarize the challenge at-
tributes occurred in light field depth estimation, as are given in Table 2.3 and demon-
strated in Fig. 2.6. In Table 2.3, a list of the challenge attributes and the brief descrip-
tions are shown. The fine structure, textureless and occlusion are the most frequency
issues considered in the literature, which might be put down to the majority of such
image regions in the existed light field datasets. Likewise, in this thesis, these three
issues are also paid more attention to. Some other issues, e.g., the noise or non-
lambertian (the captured radiance changes with the camera viewpoint), were explicitly
taken care of by previous works but less (implicitly) considered or not considered in the
proposed algorithms. As with the creation of training dataset, it is worthy of including
these attributes completely in order to prevent the model from over-fitting the specific
issues.
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Table 2.3: Challenge attributes.

Attribute Description

Misalignment Calibration and/or rectification error

Fine structure Thin segment or object, e.g., fence, fur

Repetitive pattern Repetitive texture, e.g., checkerboard

Occlusion Foreground objects occlude background, e.g., flower, tree

Noise The mechanical error

Textureless Object or background with low/no texture, e.g., sky, wall

Shading Non-lambertian: light

Specular reflection Non-lambertian: metal, water, mirror

Transparency Non-lambertian: glass, plastics

Figure 2.6: Visualizations of challenge attributes.
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2.1.6 Proposed WLF Dataset

As shown in Table 2.2, most of available datasets belong to the narrow-baseline, which
are composed of a grid of 9x9 light field image views and with the small disparity range
[-4, 4] (HCI [29], CVIA-HCI [30], and DLFD [36]). The CVIA-HCI includes 16 frames
with available ground truth depths that are provided for training. Models trained on
the CVIA-HCI and/or even other similar datasets are not able to infer depth well for
wide-baseline datasets due to source and target disparity range issues. The available
wide-baseline light field datasets are rare. Moreover, training CNNs requires a large
amount of labelled data, but there were no large-scale public wide-baseline light field
datasets for this purpose.

For a new dataset creation, a straightforward way is to collect real data and label
them through physical depth sensing devices (e.g., structure light sensor or LiDAR).
However, it is difficult, tedious and expensive: structure light sensor is cheap but usu-
ally produces inaccurate depth which may cause performance degradation in CNNs
models, while LiDAR offers incomplete accurate depth but is unaffordable. Similar to
narrow-baseline scenario, we put efforts into building a synthetic wide-baseline dataset
with accurate (ground truth) depths, aiming at training and evaluating CNN models,
inferring depth for real-world datasets, and serving to research community for future
promising researches. We use 3D computer graphics software to create a large-scale,
synthetic W ide-baseline Light F ield dataset with diversities, called WLF .

Specifically, we construct a large-scale, wide-baseline synthetic multicamera light
field capture dataset WLF. The total number of the light fields is 381, which is around
14 times larger than that of the popularly-used dataset CVIA-HCI. Each light field pro-
vides 9x9 angular (RGB) images and ground truth disparities as similar to the CVIA-
HCI dataset. The light fields involve high resolution (1920x1080) and low resolution
(512x512) images.

To enrich the dataset diversity, the WLF dataset is constructed in two scenarios:
Hand-designed and Flying-objects. The scenes in Hand-designed and Flying-objects
scenarios are rendered by the Cycle engine in open source software Blender 6. The
statics of the WLF dataset is given in Table 2.4, and Fig. 2.7 shows the rendered
samples from these two scenarios.

Hand-designed Scenario: We carefully collect free 3D models from different web-
sites 7 with free licenses and elaborately assemble them to create physically plausible
and meaningful scenes. Each scene contains more than two challenges in depth es-
timation: fine structure, repetitive pattern, occlusion, shading, glossy appearance. The
hand-designed scenario counts the aesthetic impression, but the manual design of 3D
scenes is tedious and expensive, which causes difficulties to generate a large size

6. https://www.blender.org/ 7. https://chocofur.com, https://sketchfab.com, https://free3d.com
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Table 2.4: Datasets statics of WLF
Dataset #train #test spatial resolution disparity range

Flying-objects 345 512x512 [0, 50]

Hand-designed 24 12 1920x1080 [0, 50]

dataset. This subset includes 36 scenes, and is split into 24 training scenes and 12
test scenes.

Flying-objects Scenario The richness of the dataset content is significant, there-
fore we attempt to render new scenes with flying objects in a faster way, which is in-
spired by recent advances of synthetic scenes with flying objects [28, 37, 38] in deep
learning methods. Specifically, we carefully collect a large number of 3D models from
the websites7 and [39], and collect the texture images and environmental maps from
Google Image. We then make a 3D cube in 3D space of Blender software, and the
surfaces of cube are randomly textured. Next, a number of objects, which vary from 2
to 20, are randomly and automatically put in the cube, including 1-15 static objects and
1-5 random moving objects. The objects are randomly scaled, rotated and translated.
Moreover, the light intensity is random, and the virtual light field cameras are slightly
translated. This subset includes 345 scenes, and is provided for training models.

2.1.7 Testing Datasets

3D Light Fields

The Disney dataset [19] is chosen from the datasets listed in Table 2.2, since this was
specially built for the 3D light fields. This dataset includes the densely sampled light
fields with the narrow-baseline, and contains challenging content, such as textureless
regions and occlusion regions. We choose 10 angular views from the dense light fields
for test, where 10 or 15 views are skipped to obtain the wide-baseline.

4D Light Fields

The narrow-baseline dataset and the wide-baseline dataset are both employed as the
test set. Note that the test set is held out from the whole dataset for the sake of an
unbiased evaluation of a model trained on the training set.

Narrow-baseline Datasets: we choose the frequently-used synthetic datasets in
previous works for qualitative and quantitative comparisons, and the real-world (narrow-
baseline) dataset for quantitative comparisons only. We use the 7 test scenes from the
HCI synthetic dataset [29] and the 8 test scenes from the CVIA-HCI synthetic dataset.
The photorealistic and non-photorealistic scenes are encompassed in the synthetic
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Hand-designed

Flying-objects

Figure 2.7: Examples of WLF dataset: the central view and colored ground truth dis-
parity map are shown.
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datasets, where four scenes in the CVIA-HCI are non-photorealistic. As with the real-
world dataset, we use the EPFL-lytro [32] dataset for purpose. This dataset only con-
tains the raw data from the Lytro Illum camera, we extract the sub-aperture images
from these data through a light field toolbox [14].

Wide-baseline Datasets: we choose the proposed synthetic datasets WLF for
qualitative and quantitative comparisons. Specifically, we use all test scenes (12 in
total) of WLF, comprised of the challenging photorealistic scenes. As with the real-
world dataset, we use the Google and ULB_Unicorn dataset, which contains most of
the challenging attributes in Table 2.3. For ULB_Unicorn dataset, a number of views
are selected by skipping 15 views to reach the wide-baseline.

2.2 Metrics

For depth estimation evaluation, various metrics are exploited by measuring the simi-
larity between the generated disparity map D and the ground truth G, which are cate-
gorized into the quantitative metric and the qualitative (visual) metric in the literature.
As with the quantitative metric, the Mean Square Error and Bad pixel are adopted in
the thesis, since these were the widely-used metrics in depth estimation literature and
benchmarking websites [30, 40, 41].

• Mean Square Error (MSE): is computed as the average square difference be-
tween all pixels in D and G.

MSE = 1
h1 × w1

h1×w1∑
i=1

(D(i)−G(i))2 (2.1)

where h1 and w1 represent the height and the width of the predicted depth map
respectively. A smaller MSE value means a higher similarity and a better perfor-
mance. The MSE is displayed by its numerical value multiplied by 100 in compar-
isons hereafter.

• Bad Pixel: is computed as the percentage of the absolute difference between D
and G that is greater than a threshold.

Bad− t = |{|D(i)−G(i)| > t, i ∈ h1 × w1}|
h1 × w1

(2.2)

Based on the benchmark [30] and existing methods, various thresholds t are
used in assessment. A smaller BadPix value means a better performance.

With respect to the Bad Pixel metric, the thresholds differ on the baseline. 1) Narrow-
baseline: the two thresholds 0.1 and 0.07 are used as the metrics, which are defined
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in [29, 30, 42]. 2) Wide-baseline: to measure the accuracy of reconstructed depth from
wide-baseline light fields, the larger threshold of the bad pixels are set to 0.15, 0.3, 0.6
and 1.

2.3 State-of-the-art

To date, a large number of works have been put into efforts for improving depth pre-
diction from light fields. The works could be categorized into depth estimation from 3D
light fields and depth estimation from 4D light fields on aspect of the light field input
representation. With respect to the 4D light fields scenario, the works could be further
classified into the traditional methods and deep learning-based methods. In this sec-
tion, we will review most of the related works in detail in order to make it self-contained
and readers better understand the development of depth estimation from light fields
and our proposals in the following chapters.

Before going into the reviews, we firstly starts with a description of the terminologies
that frequently appear in the related works. These terminologies or techniques could
be classified into four categories: representation, cost function, aggregation and opti-
mization, as are given in Table 2.5. Here we mainly explain the representation with the
more details. What is different from the two-view stereo and multi-view stereo is that
there are more representations available for extracting depth from light fields, including
Defocus, Epipolar plane image (EPI), Focal stack, Multi-view stereo and SCAM. One
or two representations are usually exploited in most of the related works. Specifically,
Defocus, i.e. a integration of multiple images of light fields focused at different depths,
is not sensitive to the repetitive patterns or noises dues to its blurriness artifact. EPI
is constructed by a stack of image scan-lines from a line of views, and when the light
fields are densely-sampled, the EPI-line is a continuous line, in which the slope of EPI-
line is proportional to the disparity value. Since the depth estimation is reformulated
into the slope calculation, the non-lambertian issue is somewhat alleviated, thus the
EPI-based representation is widely used in previous works for (narrow-baseline) light
fields. Focal stack, i.e. a sequence of images captured with different focus, exhibits lo-
cal color symmetry for texture boundary pixels regardless of the noise or the changes
of spatial resolution or angular sampling rate. Meanwhile, this will partially disappear
for pixels on the occluder and disappear for pixels at the true depth on the occluded
surface [43]. MVS, one technique adopted in the classical 3D reconstruction, is used to
seek corresponding pixels from all sub-aperture images or views of the light fields. This
technique allows the estimate of large disparities and a considerable or good estimate
with few sampled views. SCAM (or angular patch) is constructed by the 2D points at
different angular positions, projected from the 3D point. Since the edge in SCAM has
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the same orientation as the occlusion edge in the spatial domain, it is a good candidate
to handle occlusions, but is conditioned that the resolution of SCAM should be large
enough.

Secondly, the photo-consistency will be explained since it is an important assump-
tion considered in depth estimation from light fields. This assumption is that the same
3D point is seen from the different directional rays as the same color. Actually, this
assumption does not hold when the point on a non-lambertian surface or occluded
surface. Thus this issue is carefully taken care of in the state-of-the-arts.

Table 2.5: A summary of the terminologies or techniques used in light field depth esti-
mation methods.

Terminology Description

R
ep

re
se

nt
at

io
n Defocus Multiple image exposures focused at different depths

EPI The slope of EPI-line is inversely proportional to the disparity
Focal stack A sequence of refocused images
MVS Multiple stereo, the displacement of same points in each pair is the disparity
SCAM An angular sampling image or angular patch

C
os

tf
un

ct
io

n

Angular Entropy The light radiance randomness of the angular patch
KDE Kernel density estimation used for computing the depth probability
SAD The sum of absolute differences
SPO Spinning parallelogram operator for locating EPI-lines and calculating orientations
SSD The sum of squared difference
Structure tensor The second-moment matrix used for estimating the slope of EPI-line
Variance The expectation of the squared deviation of pixels differences in SCAM
ZSSD The zero-mean SSD

A
gg

re
ga

tio
n BF Bilateral filtering (an edge-preserving filter) used for filtering cost slices

GF Guided filer (an edge-preserving filter) used for filtering cost slices
MWBM Multiple window block matching using elongated windows with different orientations
Sum A sum of costs of pixels in a window

O
pt

im
iz

at
io

n Least square CO*, Minimizing the energy function by a close-form solution
SGM DO*, Semi-global matching computed by different directions with different passes
MRF DO*, Markov Random Field solved by graph cuts [44] or belief propagation [45]
Variational CO*, Total generalized variation solved by functional lifting [46]

CO*: continuous optimization. DO*: discrete optimization.

2.3.1 Depth From 3D Light Fields

The previous works for 3D light fields are modeled in a traditional way, and a compre-
hensive overview of some related works are give in Table 2.6.

Kim et al. [19] made an early attempt to compute depths from the 3D light fields,
where a multi-scale framework taking as input of the light fields with high spatial reso-
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Table 2.6: Overview of the state-of-the-art 3D light field depth estimation methods or-
dered by date.

Method Year #Views Baseline Representation Cost calculation Optimization

Kim et al. [19] 2013≥ 100* Narrow MEPI* KDE -

Yu et al. [47] 2013 ≥ 2 Narrow, Wide MVS SSD MRF

Lv et al. [48] 2015 ≥ 100 Narrow EPI SAD, BF Least square

Huang et al. [49] 2016 ≥ 100 Narrow EPI KDE SGM

Jorissen et al. [50] 2016 10 Wide EPI KDE, Sum, SURF -

100*: this work mainly uses more than 100 views, but only using 10 views is still able to recon-
structing good depth maps. MEPI*: this represents the multi-scale EPIs.

lution was proposed. To cope with the multi-scale EPIs, a fine-to-coarse (FTC) strategy
was put forward to progressively estimate depths. Specifically, the estimation starts at
the fattening (horizontal) edges of the highest scale level first, and then proceeds to
the fattening (horizontal) edges and/or non-fattening (horizontal) edges at the lower
scales. Note that at each scale level, the pixel-based matching cost is calculated using
kernel density estimation (KDE). Since a large number of views (more than 100) with
a narrow-baseline are employed, the high quality depth is reconstructed, even without
global optimization that was commonly used in a late step of depth estimation pipeline.
Besides, when reducing the number of views to 10 views without changing the base-
line, the quality of depth map is still found acceptable.

Yu et al. [47] presented a single-scale framework based on the multi-view stereo
(MVS) method for the 3D light fields. Hundreds of line segments are detected by the
line segment detector, and then encoded as the hard constraints into the global op-
timization, i.e. the line assisted graph cuts (LAGC) to improve depth estimation. With
respect to the line segment, it is a double-edged sword: when it works well, this con-
tributes to the disparity-preserving at occlusion regions; while large errors are inevitably
occurred if the depth of the line segment is incorrectly estimated.

Huang et al. [49] followed the work [19] and presented a modified framework, in
which both the horizontal and vertical edge in EPI were proposed to calculate matching
costs. Another main modification from this work is that the fine-to-coarse estimation is
replaced with the semi-global matching (SGM), which globally optimizes the depths.

The work by Lv et al. [48], i.e. one of the mostly related work to the proposed R3DE
in the Chapter 3, proposed a 1D window-based cost aggregation approach to select
the optimal orientation (being equivalent to the disparity) for each pixel in EPI, where
the truncated sum of absolute differences (SAD) of both the radiance and gradient are
calculated, followed by a weighted sum of costs of all pixels in the horizontal edge of
EPI using bilateral filtering. Besides, the sub-pixel estimation based on quadratic poly-
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Table 2.7: Overview of the state-of-the-art 4D light field traditional depth estimation
methods ordered by date.

Method Year Shape of views Baseline Representation Cost calculation Optimization
Wanner et al. [51] 2012 Cross-hair Narrow EPI Structure tensor Variational

Tao et al. [52] 2013 Full* Narrow Defocus, MVS Laplacian, Variance MRF
Chen et al. [53] 2014 Full* Narrow, Wide MVS KDE, GF Least square
Jeon et al. [54] 2015 Full* Narrow MVS Phase shift, SAD MRF
Wang et al. [55] 2015 Full* Narrow SCAM Variance, SSD MRF

Lin et al. [43] 2015 Full* Narrow Focal stack KDE MRF
Zhang et al. [56] 2016 Cross-hair Narrow EPI SPO, GF MRF*

Zhu et al. [57] 2016 Star Narrow EPI Structure tensor -
Williem et al. [58] 2017 Full* Narrow Defocus, MVS Entropy, SAD MRF
Navarro et al. [59] 2017 Cross-hair Narrow, Wide MVS ZSSD, MWBM Variational

Zhu et al. [60] 2017 Full* Narrow, Wide SCAM Structure tensor MRF
Huang et al. [61] 2019 Full* Narrow, Wide MVS GSM MRF
Mishiba et al. [62] 2020 Full* Narrow, Wide MVS SAD, Sum WMF

Full*: the full grid light field views, MRF*: this is turned on for real-world light fields.

nomial interpolation is utilized for addressing the quantization issue caused in previous
steps. Finally, the re-projection is used to handle occlusion and then the reliable depth
is propagated to fill the depth holes using least square based optimization.

Jorissen et al. [50] also followed the work [19] and made attempts to modify the
framework in order to adapt the framework to the challenging scenario: few light field
views with the wide-baseline (including 10 views in total, and each view is sampled
from every 10 or 15 views). The pixel-based matching cost is replaced with the window-
based matching cost, while the fine-to-coarse estimation is replaced with the SURF-
based cost aggregation. This change indeed makes this framework better reconstruct
the depth from the sparse sampled light fields.

To conclude, most of the previous works somewhat rely on a large number of light
field views with the narrow-baseline to well recover depths, but the quality of recovered
depth maps becomes much worse when the number of views are drastically decreased
and/or the baseline is much wider. Thus a new solution to achieve high depth accuracy
in the sparse (wide-baseline) 3D light fields is desired.

2.3.2 Depth From 4D Light Fields

Until now, there exists a great number of works that are dedicated to depth estima-
tion from 4D light fields, which includes traditional and deep-learning methods. The
representative related works will be reviewed in detail below.
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Traditional Methods

Depth estimation from light fields begins with the the traditional way, on which the occlu-
sion is paid much attention in previous works. Actually, these works somewhat shares
some techniques in common while the specific techniques are used and customized
for their purpose. The comprehensive overview of the related works are give in Table
2.7.

Wanner et al. [51] introduced an EPI-based framework for 4D (narrow-baseline)
light field depth estimation, where the local estimate and the global optimization were
sequentially carried on the horizontal and vertical EPIs of light fields. Specifically, the
structure tensor technique was proposed to estimate the slope of EPI-line and the
confidence of local estimate, which was solved by [63]. Note that the structure tensor
was computed on 3x3 kernels, on condition that the displacement between neighboring
views should be less than two pixels. Besides, at occlusion regions, it was difficult for
this tensor to locate the EPI-line and obtain the slope of this line, which easily leads
to over-smoothing results in such regions. Then the estimates from the two directional
EPIs were separated by a variational-based energy function, which showed a higher
accuracy than one integrated estimate from two local estimates. Since the disparity
estimate is formulated into computing the slope of EPI-line, the non-lambertian points
or textureless points are more or less well coped with.

Tao et al. [52] presented a multiple cues-based framework by the defocus and cor-
respondence cues. For the defocus cue, the sheared EPIs are integrated across one
dimension, followed by the Laplacian operator being applied onto a window of pixels
around each current pixel in EPI. Since the defocus blurs the image regions, this cue
makes the depth estimation less sensitive to the repetitive patterns and noises. For cor-
respondence cue, the window-based matching cost is computed, where the variance
metric is used to measure the cost for each pixel. Finally, the global optimization based
on MRF is employed to remove the ambiguities resulted from the local estimate.

Chen et al. [53] proposed a bilateral consistency metric to select the visible pix-
els for explicitly handling the occlusion issue. This metric relies on the matching cost
calculated beforehand, which is implemented by the Gaussian kernel metric. Then the
bilateral filter is used to estimate the probability of each pixel in different viewpoints and
apply a threshold to the probabilities to determine if the pixel is visible in more than half
of the views. Then the Gaussian kernel metric is reused onto the visible pixels to ob-
tain the matching costs. After that, the guided filer and the local confidence measure is
used to correct the wrong estimated pixels in textureless regions, and then the reliable
depth of pixels is propagated to fill the close-by unreliable pixels using least square
based optimization. This work tends to handle the heavy occlusion well, however, as
reported by the author, this causes the limitation, i.e. this method will not work well if a
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small set of light field views (e.g., less than 10) are used as inputs.

Jeon et al. [54] presented a sub-pixel interpolation based framework (dubbed as
LF), in which the phase-shift interpolation was used for sub-pixel shifts. The phase-
shift was implemented by the discrete 2D Fourier transform and inverse transform,
and led to the sharper depth than linear interpolation. The similar window-based cost
aggregation with [48] were employed, and then the weighted median filtering were used
to remove the noise in the local estimate. Finally, the local estimate were optimized by
minimizing the global energy function, followed by being refined from the discrete depth
after the multi-label optimization to a continuous disparity depth while keeping depth
discontinuities.

Wang et al. [55] proposed a SCAM-based occluder model (dubbed as LF_OCC) for
explicit occlusion handling, based on the observation that the edge in SCAM has the
same orientation as the occlusion edge in the spatial domain. This model is built as a
single occluder model, assuming that the pixel on an occlusion edge is only occluded
by a single occluder. Under this assumption, only one of two regions spit by the oc-
clusion edge shows photo-consistency, and the occluded pixels are easily focused to
correct depths, which improves estimation at occlusion areas. For the edge, the Canny
operator is used for detecting edges and getting orientation, and then the detected
edge is dilated in order to include the pixels that are un-occluded in the current view
but occluded in other views. The similar cost measure with [52] is used for calculating
matching cost. The depth, refocus and correspondence cues are used for extracting
occlusion boundary. In the last step, the matching cost and the occlusion boundary are
integrated into a global energy function for the final depth map.

Lin et al. [43] proposed a focus stack based framework, in which the images from
in-focus to out-of-focus by the max focal shift were generated. From the focal stack, the
observation is made that the non-occluding pixel along the focus dimension exhibits
the symmetry centered at the in-focus slice. The in-focus cost and the multi-view cost
calculated by the Gaussian kernel onto the radiance and gradients are integrated into
MRF optimization, which is also solved by graph cuts.

Zhang et al. [56] proposed a spinning parallelogram operator (SPO) onto both hor-
izontal and vertical EPI-lines to estimate the depth. The operator was used to locate
the EPI-line and obtain the EPI-line orientation by calculating the cost of histograms
in two regions of spinning parallelogram, which were spit by the EPI-line. The guided
filter was also used to aggregate the costs in order to remove the noise or ambiguities
caused in the SPO operation. Until this step, the depths from synthetic light fields could
be enough recovered, but this is not the case in the real-world light fields. Therefore,
the author further applied the global optimization proposed by [54] to refine the depth
map.

Zhu et al. [57] proposed a multiple directional EPIs based framework that took as
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input the EPIs sliced from the horizontal, vertical, left diagonal and right diagonal views
respectively. For one pixel at occlusion regions, the EPI-line might be difficultly located
in one of EPIs as occurred in [51], but might be possible to be detected in other EPIs.
Considering that the foreground that occludes the background always has a small
depth, the largest depth estimated from four EPIs will be assigned to the occluded
(background) pixel for tackling the occlusion issue.

Based on the works by [52], [54] and [55], Park et al. [58] proposed new cost match-
ing measures, in which the occlusion-aware angular entropy and adaptive defocus
costs were calculated in order to be robust to occlusions and noises. For the angu-
lar entropy measure, it was found capable to generate a unary minimum cost for the
occluded pixel. This measure was computed for each channel, and then a weighted
sum of the costs from max pooling and averaging over three channels was made. For
the defocus measure, instead of the direct computation of defocus on a whole patch,
the patch (with the size 15 × 15) was divided into 9 (5x5) sub-patches, and the defo-
cus was computed for each sub-patch that was less affected by the blurring. Besides,
the color similarity constraint used for distinguishing the ambiguity between the oc-
cluder and occluder regions was enforced and combined with the defocus from the
sub-patches for being less sensitive to the noise and occlusion.

Navarro et al. [59] proposed a multiple window-based framework (dubbed as MWBM)
to search correspondences across multiple scales in order to better recover the depth
at depth discontinuity regions. Specifically, they downsize every sub-aperture image
via bicubic interpolation to generate the image pyramid with three scales, and then
progressively estimate depth from the coarse to fine scale where the estimation at a
coarser scale is used as initialization in the next finer scale. This coarse-to-fine strategy
helps to reduce the search space in finding the correct correspondence, and predict
the disparity in low-texture regions well without losing depth discontinuity.

Following the work [55], Zhu et al. [60] proposed a multiple-occluder model since
when a multiple-occluder appears, the work [55] cannot work well because the single-
occluder assumption in [55] does not hold. An un-occluded view selection and re-
selection scheme were adopted. Since its accuracy relies on the occlusion boundary,
the depth edge map was combined with an edge map to improve occlusion boundary
detections. Finally, the occlusion boundary was integrated into a MRF-based energy
function, which was solved by graph cuts.

Huang et al. [61] presented an empirical Bayesian framework (named RPRF) for ro-
bust depth estimation, in which the scene-dependent (MRF) parameters are estimated
before the following global optimization as adopted by most of previous works (e.g.,
[54], [55], etc). Specifically, the soft expectation-maximization (EM) was proposed to
estimate the MRF (data and smoothness term) parameters for a good distribution fit-
ting of pseudo-likelihood that was separated from global likelihood. Then the hard EM
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is used in constructing the data and smoothness energy. The global energy is solved
by belief propagation [45] for the final depth map.

Mishiba et al. [62] presented a fast depth estimation framework, in which the cost
calculation and optimization were reasonably simplified for fast computations. The sum
of the pixel difference in horizontal and vertical directions were calculated to obtain
the matching cost using only one-bit feature for each pixel, and then the (fast) box
filtering was utilized to aggregate a window of costs to generate the cost volume. The
interpolation was done for the matching cost that had the minimum cost among all cost
slices of the volume so that the total number of candidate cost slices can be reduced.
Afterwards, a fast weighted median filter (WMF) is used in a coarse-to-fine manner
to speed up the convergence in minimizing the global energy function. Note that, the
authors also proposed the meaningful (avoid the occlusion and redundancy) viewpoints
off-line selection from all viewpoints to accelerate the whole processing time.

To conclude, most of the previous works for 4D light fields also require a large
number of light field views with the narrow-baseline to well recover depths. When the
number of views is decreased and/or the baseline is wider, the (heavy) occlusion is
still difficult to be handled. Besides, the detection of the occlusion boundary is still not
accurate enough, which will result in the over-smoothness after global optimization.
Thus, a new solution to achieve high depth accuracy in the both the dense (narrow-
baseline) and sparse (wide-baseline) 4D light fields are desired.

Deep learning-based methods

In recent years, deep learning-based methods have gained much attention in estimat-
ing depth from light fields. With the creation of light field training datasets that contain
ground truth depths or disparities, the deep learning techniques are applied to solve
the depth prediction problem from the statistical perspective, having shown appealing
performance in both depth accuracy and speed. When the number of training exam-
ples is sufficient, the input-output relation is more possible to be well learned. Most of
the related works for 4D light fields are reviewed in this section, and an overview of
these works is given in Table 2.8.

As is shown in Table 2.8, most of previous works are focused onto the 4D narrow-
baseline light fields. Parts of works are based on the EPI-line property, and the related
CNNs are proposed to learn the relationship between the EPI-line and the labeled data.
For instance, Heber et al. [64], Luo et al. [66] and Feng et al. [67] feed the input of (hor-
izontal and vertical) EPI patches to the CNN where the network learns the proportional
relation between the slope of the EPI-line and depth (cf. Fig. 1.2 in Chapter 1). Heber
et al. [65] and Shin et al. [68] feed one or more 3D EPI-volumes to the network, and
attempt to let the network learn the EPI-line property or the epipolar geometry property.
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Table 2.8: Overview of the state-of-the-art 3D light field depth estimation methods or-
dered by date.

Method Year Shape of views Baseline Representation Formulation Optimization
Heber et al. [64] 2016 Cross-hair Narrow EPI Classification Variational
Heber et al. [65] 2017 Cross-hair Narrow EPI-volume* Regression -
Luo et al. [66] 2017 Cross-hair Narrow EPI Classification MRF

Feng et al. [67] 2018 Cross-hair Narrow EPI Classification Variational
Shin et al. [68] 2018 Star Narrow EPI-volume Regression -
Zhou et al. [69] 2019 Full* Narrow Focal stack Classification -

Leistner et al. [70] 2019 Cross-hair Narrow, Wide Shifted EPI C+R* -
Shi et al. [31] 2019 Diagonal Narrow, Wide MVS Regression RefineNet

FULL*: the full grid light field views, EPI-volume*: the horizontal EPI slices of all scan-lines,
C+R*: Classification+Regression

Next, the details with respect to these works will be described below.

Heber et al. [64] made an early attempt to utilize deep learning techniques to do
depth estimation from 4D (narrow-baseline) light fields. The shallow (five-layer) network
was proposed to learn the input-output relation (i.e. the proportional relation between
the slope of the EPI-line and depth), where four convolutional layers and one fully-
connected layer were included. The network takes as inputs the concatenated two
EPI patchs (with a small size 31 × 11), and then predicts the depth by classifying the
EPI patches. Since the depth map produced by the network is noisy or unreliable at
textureless regions, a global optimization Total Generalized Variation (TGV) introduced
by Bredies et al. [71] is employed, in which the primal-dual algorithm proposed by
Chambolle et al. [72] is adopted to find a global minim solution.

Heber et al. [65] presented a novel U-shaped deep network based on a modified
version of a Fully Convolutional Network (FCN) [73]. The changes from his previous
work [64] are that the last fully-connected layer is replaced with the convolutional layer,
and the (discrete) classification is thus reformulated into the (continuous) regression for
inferring the depth. Another change is to use 3D convolutions to process the whole 3D
EPI-volumes of the 4D light fields instead of (2D) EPIs. In addition, the time-consuming
global optimization is removed in this network since the quality of depth map inferred
by the network is good enough.

Luo et al. [66] presented a similar shallow network with Heber et al. [64]. One of
the main difference is that two EPI patches ( the horizontal and vertical EPIs) are
independently fed to the network. With respect to the network architecture, several
more Convolutional layers than that in [64] are employed. Though the more layers are
used, the depth map output from the network is still not acceptable, a different global
optimization (i.e. graph cuts) is utilized to refine the depth map for the high quality.
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Feng et al. [67] put forward a similar approach to the work by Luo et al. [66]. One
of the differences is that a shallower network is considered and the output pixels after
the fully-connected layer are more than one pixel. Another difference is to use the
variational technique for optimization to remove the noise resulted from the network,
in which the modified Alternating Direction Method of Multipliers (ADMM) proposed by
Liu et al. [74] is used to obtain the optimal solution.

Shin et al. [68] presented a four-stream network, called EPINET, which takes as
inputs the horizontal, vertical, left diagonal and right diagonal image views, instead of
EPI patches. The EPINET [68] was proposed as a DispNet-like network, i.e. convolu-
tions are only calculated at the full-scale of light field images. Each of four streams of
EPI-volumes are fed to the three convolutional blocks respectively, and then a concate-
nation of the feature maps from the four streams are given to the last eight blocks to
regress the final depth map. With the use of various data augmentations, the EPINET
achieves top-performing performance on the public 4D light field benchmark (for the
narrow-baseline scenario).

Zhou et al. [69] proposed a two-pathway CNN to learn the semantic features and
the low-level structure information from the representation focal stack (being composed
of a sequence of refocused images) and the central view respectively. One pathway,
called depth-semantics pathway, is comprised of a dozen of 3D convolution layers,
which takes as input the focal stack patches. Specifically, the layers include six layer-
wise convolutional layers and six point-wise convolutional layers. Another pathway,
called structure-information pathway, is comprised of several identical Inception blocks
(includes 2D convolutional layers). Then, the depth map will be classified by the last
two fully-connected (FC) layers. Finally, the parabolic interpolation and a median filter
are applied to remove unreliable pixels.

These above-mentioned convolutional neural works mainly focus on depth estima-
tion from 4D narrow-baseline light fields, however, it might fail in 4D wide-baseline light
fields without changing the network architecture, which might be ascribed to the EPI-
line being discontinuous, etc. To deal with this limitation, Leistner et al. [70] proposed
to shift the EPI from wide-baseline image views into the narrow-baseline, while Shi et
al. proposed a stereo-based deep network without taking into account EPIs.

To be specific, Leistner et al. [70] presented an EPI-Shift network, where light field
stacks were shifted from the wide-baseline to the narrow-baseline, and then used to
predict depths by trained models from the narrow-baseline data. The EPI-Shift is de-
signed as an end-to-end trainable network, and uses the plane-sweep method to shift
light field inputs, and then input the shifted images to a U-Net architecture to obtain
a classification output and a continuous regression output. The classification output
corresponds to a (large) integral disparity, and the regression out is responsible for the
fractional disparity within 0.5 pixel. This solution allows the network to work on both the
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narrow-baseline and wide-baseline light fields.

Figure 2.8: The architecture of LBDE-E, figure courtesy of [31].

Shi et al. [31] proposed a MVS-based deep network (dubbed as LBDE-E) for light
field depth estimation, consisting of the three steps (subnetworks), as is shown in Fig.
2.8. This work starts at fine-tuning the FlowNet 2.0 [37] model onto narrow-baseline
and wide-baseline image pairs and then infer four image-pairs using the fine-tuned
model to obtain initial depth maps. The next step is to fuse the candidate depth maps
into a single depth map by minimizing backward warping errors and handling occlu-
sions. Finally, the fused map is refined by a modified multi-scale residual learning net-
work (RefineNet) [75] to get the final depth map.

Though these two methods can work onto both the narrow-baseline and wide-
baseline light fields, the two models are heavyweight and not suitable for practical ap-
plications. Besides, the LBDE-E [31] is not trained end-to-end so that the sub-optimal
results might be obtained. Thus it is necessary to develop a new network for better
performance.
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Table 2.9: Reference of the terms of Part I.

Term Definition

Photo-consistency The same 3D point is seen as the same color by any cameras

Bivariate Kernel Density Estimation Estimate probability density function with two variables

Epanechnikov Kernel A parabolic kernel for estimating density functions of variables

Bilateral Filter A filter for blurring images but persevering edges

Guided Filter A more efficient and effective extension from Bilateral Filter

Weighted Guided Filter An extension from Guided Filter

Speeded Up Robust Features (SURF) A descriptor for a robust description of image features

Superpixel A cluster of similar pixels

Cost Volume A 3D volume that stores costs of all hypothetical depths

Matting Laplacian Matrix An affinity matrix for associating similar colors with similar depths

Markov Random Field (MRF) A graphical model of a joint probability distribution

Graph Cuts Global optimization by estimating maximum a posteriori of MRF
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CHAPTER 3

DEPTH ESTIMATION FROM

WIDE-BASELINE 3D LIGHT FIELDS

There exists a few traditional methods regarding depth estimation from the (structured)
3D light fields. Due to the record of more data in the 3D light fields, the previous studies
have achieved the improvements in depth accuracy, in which a large number of views
with a narrow-baseline are employed. Some previous works also attempt to make eval-
uations on a small number of views with the same baseline, but the results witness no
small degradations on aspect of accuracy. Moreover, the depth performance is still not
high when the baseline is changed to be wider.

In this chapter, the sparse sampled (wide-baseline) 3D light fields are taken into
consideration. Toward the goal of high depth accuracy in this scenario, a robust depth
estimation method for sparse 3D light fields is proposed, dubbed R3DE. Bivariate Ker-
nel Density Estimation functions are built to tackle the noise and radiance changes.
The image is decomposed into edge regions and non-edge regions to deal with the oc-
clusion issue. Additionally, a Weighted Guided Filter that is insensitive to the noise and
textureless regions is applied to filter the cost volume of each image region. Finally, a
confidence measure detects unreliable pixels with false disparities, to which a disparity
refinement is applied.

3.1 Introduction

The (structured) 3D light fields has been actively used for depth estimation. When
compared with the two-view stereo methods, the more viewpoints are available in light
fields for potentially enhancing the depth accuracy. When compared with the multi-
view stereo methods, the characteristic of the epipolar lines being parallel in light field
views relaxes the correspondence search in the horizontal or vertical image scan-line
with unknown camera poses. In general, the existed depth estimation methods from
the 3D light fields have improved the depth accuracy so far, where the 3D light fields
are comprised of a large number of sampled views with the narrow-baseline. Stacking
the sampled views on top of each other generates a 3D imaging volume, and then
the so-called Epipolar Plane Images (EPI) [76] can be constructed by vertically slicing
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this 3D volume. The related methods take advantages of one property of the 3D light
fields, i.e., the slope of the (continuous) EPI-line is proportional to the disparity, to help
generate the high accuracy depth maps.

However, an EPI will be constructed as the discontinuous strips rather than the con-
tinuous EPI-lines when the 3D light fields are captured with the wide-baseline camera
setup. Moreover, with the decrease of the sampled views, the robustness might be im-
paired. kim et al. [19] demonstrates its attractive performance on a large amount of
views, but it fails to perform well on the fewer multi-views with the wide-baseline since it
is not robust against noise and occluded regions. Lv et al. [48] is in the same boat with
[19], which cannot work well either due to the obvious degradations seen in their pro-
duced depth maps. Jorissen et al. [50] enhances the robustness in this camera setup,
but still fails to preserve the discontinuity well in occlusion regions with low contrast and
is sensitive to severe occlusions.

To handle this issue, a robust depth estimation method for sparse light fields with
the wide-baseline is proposed, which will be detailed described in Section 3.2.

3.2 Methodology

Fig. 3.1 shows an overview of the proposed method (in 3DTV-CON). The 3D light fields
are taken as the input, and firstly preprocessed by an image filter. The edge map and
non-edge map are separated from the image by gradient operators (Sec 3.2.2), and
then the cost volumes are initially generated by the calculation of the bivariate ker-
nel density function (Sec 3.2.1), followed by the window-based filtering (Sec 3.2.3).
The winner-take-all strategy is applied to the filtered cost volumes to obtain the edge
disparity map and the non-edge disparity map. Next, the fused disparity map and un-
reliable disparity map are input to an energy function in order to assign the correct
disparity to these unreliable pixels by the global optimization (Sec 3.2.4-Sec 3.2.6).

For preprocessing, the bilateral filter [77] is employed to remove the noise in the
light field images prior to the depth computation for pixels.

3.2.1 Bivariate Kernel Density Estimation

To obtain an accurate initial depth, the cost function BKDE using the radiance and the
relative gradient is proposed. Though it is not computationally complex, it is neverthe-
less effective - compared to radiance-only approaches - w.r.t. more disturbing issues in
detailed regions of the scene, as exemplified in Fig. 3.2.

The Relative Gradient (RG) deals with the radiance change problem and is typically
used as a cost function [78] in stereo matching. The relative gradient for each pixel is
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Figure 3.1: The proposed framework of depth estimation on the 3D light fields.

calculated as follows:
RG = Grad

Gradmax + δ
(3.1)

where RG is the relative gradient, Grad is the gradient of the image that is computed
by the gradient operator (such as the sobel operator, difference operator etc.), and the
Gradmax is the maximum gradient of a pixel in its centered 3 × 3 window. To avoid the
denominator being zero, a very small value δ is added.

Here the RG is not used to compute the cost function directly, but is combined
with the radiance to build the BKDE function. The reason to build the BKDE is that
we observe the RG is more vulnerable to the noise than the radiance, while it is more
robust to the radiance changes. The specific BKDE function is represented as follows:

Cp(d̂) = 1
|Ω|

∑
s∈Ω

Kh1

(
Rp,s∗ −Rp,s(d̂)

)
∗Kh2

(
RGp,s∗ −RGp,s(d̂)

)
(3.2)

where Cp(d̂) is the cost of the pixel p at the candidate disparity d̂ where the maximum
value corresponds to the true disparity in the cost volume, and Ω represents the number
of valid views for cost computations. For the cost volume, it indicates a 3D array (u, v, d̂)
that stores the costs/probabilities of candidate disparities d̂ for all pixels of the reference
view. Rp,s and RGp,s denote the radiance and RG value of the pixel p in the target views
respectively, while Rp,s∗ and RGp,s∗ denote the radiance and RG value of the pixel p
in the reference view respectively. Kh corresponds to the Epanechnikov kernel that is
given below in Eq. 3.3. h1 and h2 are band width parameters for the radiance (h1=0.05,
h2=0.1) and RG values respectively, which control the accuracy of density estimation.

Kh(x) =

1−
∥∥∥x
h

∥∥∥2 ∥∥∥x
h

∥∥∥ ≤ 1
0 otherwise

(3.3)
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Figure 3.2: An example of comparison between Radiance-only (Left) and BKDE (Right)
using the Statue scene from the 3D light field dataset.

3.2.2 Edge Map and Non-edge Map

We first extract a thick edge map composed of both edges (containing contours and
their similar regions) and others, using a 2D cross window with horizontal and vertical
arms, yielding fattening edges. These are computed through the L1-norm, following
Eq. 3.4,

Fe =
n=N∑
n=−N

|Rs∗ −Rn| ≥ αe (3.4)

where Fe represents the fat edge, composed of the horizontal edge and vertical edge.
N denotes the length of both the horizontal and vertical arm (N=4). Rn represents the
neighboring pixels of the current pixel Rs∗. αe is a threshold value (αe=0.12).

Since the fat edge involves the non-edge regions (the regions excluding the edges),
the extraction of the contour map (containing only the thin edges relative to the thick
edges) is performed to help obtaining the target edge map. We observe that the RG

operator extracts the edges well when regarded as the gradient operator. Hence it
is chosen here as it has been computed beforehand. Likewise, the pixel with a high
relative gradient, i.e., Me = RG ≥ βe (βe is set to 0.7), is assigned a mask, and then
combined with {|Rs∗ − Rn| ≥ γe|n = 1, 2, ...N} to remove the non-edge pixels using a
2D cross window (N=10, γe=0.3).

After the extraction of edge maps in the image, the remaining regions are automat-
ically non-edge maps.

3.2.3 Cost Volume Filtering

The costs from the BKDE usually fail to have the unique maximum, especially in the low
texture regions. Moreover, the computed costs sometimes give the wrong maximum in
the noisy or occluded regions. To deal with this problem, we therefore impose the con-
straint of nearby pixels to have similar disparities. To achieve this goal, the weighted
guided image filter [79], an O(N) edge-aware preserving filter with smoothing proper-
ties, is chosen as a local filter. It is an extension of an edge-preserving filter, i.e. the
guided image filter [80], which showed higher performance for stereo cameras [81].
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The filtering is computed as follows:

C̃p(d̂) =
∑
q

WpqCq(d̂) (3.5)

where C̃p(d̂) is the filtered cost of Cp(d̂) and Cq(d̂) is the cost of the neighboring pixel q
in a window. With respect to the weight of the filter, it is given as below,

Wpq = 1
|ω|2

∑
k:(p,q)∈ωk

1 + (Ip − µk) (Iq − µk)
σk2 + ε

χ(p)

 (3.6)

χ (p) = 1
N

N∑
k=1

σp
2 + η

σk2 + η
(3.7)

where Wp,q with its control parameter ε (ε=0.01) gives a higher weight to the pixel on
the same side of the edge and a lower weight to the pixel on two sides of the edge. As
the edge and non-edge regions are processed individually, the |ω| of their window ω is
set to 252 and 512 respectively in our experiments. I is the guided image, µ and σ are
the mean and variance of the window in I respectively. χ(i) with its control parameter
η is used for mitigating the ambiguities (η= 0.05), penalizing the cost of the pixel that
lies around the edge, especially in occluded regions, as shown in Fig. 3.3.

Figure 3.3: An example of the distribution of the cost values for a pixel in occluded
regions using the Statue scene from the 3D light field dataset. Note that the cost is
obtained after cost volume filtering.

3.2.4 Confidence Computation and Depth Fusion

Though previous steps provide most often correct depth, few outliers with wrong depth
remain, especially in occluded regions, as a consequence of the foreground/back-
ground ambiguity. We compute the confidence of the pixels having the true depth
through the neighboring Gaussian kernel function, where the pixels with the low confi-
dence will be regarded as the outliers. With respect to the neighboring Gaussian kernel
function, it is formulated by checking the similarity of corresponding pixels at the esti-
mated depth, which is given as follows:
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Mu = 1
|ωs∗ |

∑
s∗∈ωs∗

 1
|Ω|

∑
s∈Ω

exp

{
−∆
ϕ2

} ≤ τ (3.8)

where Mu denotes the mask of the low confidence pixel (Mu = 0 if low confidence,
otherwise 1), |ωs∗ | is the length of a 3x3 window ωs∗ of the view, |Ω| is the length of
valid pixels in a radiance set Ω, ∆ = |Rs∗ −Rs| (∆ does not exceed 0.15), ϕ and τ is a
parameter and a threshold value respectively (ϕ = 1.0/255 and τ=0.04).

When the outlier/unreliable map is obtained, the edge depth map is merged with
the non-edge depth map, and then remove outliers to get the initial depth map.

3.2.5 Propagation

The depths of the high confidence pixels can be propagated to the corresponding pix-
els in the other views. Considering that a few pixels are not visible in all views, the
propagation is constrained by a simple metric, namely |Rs∗ − Rs| ≤ τ that belongs to
the part of Eq. 3.8. Note that we only propagate the depths of the pixels to the unpro-
cessed views, as the views closer to the center view tend to have more high confidence
pixels. The pixels with low confidence will be accurately coped within the optimization
step, explained below.

3.2.6 Optimization

Now, the fused depth map for the reference view still contains the (unreliable) pixels
without being assigned the correct depth. Assuming that the pixels with similar radiance
will have similar depth in a small neighborhood (referred to as local constraints), we
utilize the neighboring pixels having the high confidence depth to deduce the depth for
the remaining unreliable depth pixels. A least square energy function that consists of a
smoothness and a data term term is thus built,

E(d̂) = d̂TLd̂+ λ(d̂− d̂init)TM(d̂− d̂init) (3.9)

where d̂init is the initial depth map, d̂ is the desired depth map, and λ is a large number
(λ=100). The first term is denoted as the smoothness term, where L is formed as the
matting Laplacian matrix proposed by [82], satisfying the local smooth constraints. The
second term, i.e., the data term, encodes the relation between the initial depth map and
the desired depth map via the unreliable depth map M . The minimization of the energy
function is solved by making the first derivative of Eq. 3.9 zero, which gives a closed-
form solution. Computing this solution directly is a time- and memory-consuming task,
therefore we resort to an alternative way, i.e. adopting the O(N) large kernel-based
approach [83], to solve this large and sparse linear system. The specific form of L can
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be found in [82–84].

3.3 Exemplar Results

Figure 3.4 depicts the exemplar result of our method, which is tested on the sparse 3D
light fields with the wide-baseline. Though this outdoor scene contains challenging con-
tents, e.g. occlusions, our method is still able to reconstruct a high quality depth map.
For the more (comparative) results, we refer the reader to the Chapter 7 for details.

Central view R3DE

Figure 3.4: An visual example of the proposed depth estimation result.
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CHAPTER 4

DEPTH ESTIMATION FROM 4D LIGHT

FIELDS

The 3D light fields, used in Chapter 3, are typically captured along the horizontal or
vertical path, which can be regarded as being linearly sampled from the 4D light fields.
In contrast with the 4D light fields, the 3D light fields (e.g. composed of a horizontal
line of views) seem a bit weaker since the 3D real-world point is occluded in their views
but might be un-occluded in other angular views of the 4D light fields. In this chapter,
we seek an extension of the proposed method in Chapter 3 to use the more angular
views in the 4D light fields against the occlusion issue when estimating the depth. With
respect to the state-of-the-art methods for the 4D light fields, they have improved the
depth accuracy with the dense sampled light field views (e.g. 9x9 light fields), but this
is usually not the case with the sparse sampled light fields views. Thus, a scalable 4D
light field depth estimation framework, called S-R4DE, is proposed to work well on both
the dense and sparse 4D light field images. The proposed framework is mainly realized
by leveraging multiple edge cues to occlusion detection and then integrate it with local
costs into an energy function.

4.1 Introduction

Depth estimation from the 4D light fields has been studied for a long time, and has
achieved a significantly high accuracy when the baseline (or disparity range) between
the adjacent images is narrow or the light field is densely sampled (e.g. 9x9 light field
images within a range of 4 disparity pixels). However, we observe that the accuracy
still remains an issue in the state-of-the-art traditional methods, when the baseline is
wider or the light field is sparser (e.g. 3x3 light field image views within a range of 16
disparity pixels). Actually, depth estimation with the aid of the angular information but
with as few angular views as possible is more attractive in the practical applications.

To cope with this issue, a scalable framework for light field depth estimation is pro-
posed in this chapter. More specifically, the kernel density estimation and the size-
adaptive window filter are introduced to locally estimate disparities in which an adaptive
size is considered. Since there are more ambiguities at occlusion areas, an occlusion
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handling method, i.e., occlusion detection and cost-volume recomputation, are pro-
posed, followed by using an occlusion-aware optimization to improve depth-continuity
and enforce global consistency.

4.2 Methodology

Fig. 4.1 shows an overview of our method (in WSCG). Taking a central view of the 4D
light fields for instance, the local disparity map (LDM) is initially produced from a winner-
take-all strategy onto cost volume computations (Sec 4.2.1). Then a disparity edge map
(DEM), canny edge map (CEM), superpixel edge map (SEM), occluded pixels map
(OPM) are put into the occlusion handling site to extract an occlusion boundary map
(OBM) (Sec 4.2.2). With the aid of these occlusion detection results, the final disparity
map (FDM) is better generated under optimizations when compared with the LDM (Sec
4.2.3).

Figure 4.1: The proposed framework of depth estimation on the 4D light fields.

4.2.1 Cost Volume Computation

The proposed cost volume computation is composed of two steps: 1) initially computing
the cost volume, 2) filtering the cost volume.
A kernel density estimation function is employed to the initial cost volume calculations,
which is formulated as follows:

Cp(d̂) = 1
|Ω|

∑
s,t∈Ω

Kh

(
Rp,s∗,t∗ −Rp,s,t(d̂)

)
(4.1)

where Cp(d̂) is the cost of the pixel p at the candidate disparity d̂, and Ω represents a
number of valid views for cost computations. Kh(·) corresponds to the Epanechnikov
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MSE 0.175 MSE 0.084 MSE 0.013

Figure 4.2: Compared with the increase of h, the edge-preserving filter demonstrates
its higher ability (a lower MSE) to remove the noises without losing fine details on the
Medieval scene from the 4D light field dataset.

kernel that is given in Eq. 3.3 and h is its bandwidth parameter (= 0.02), which con-
trols the accuracy of the density estimation. Actually, a higher value of h increases the
accuracy and robustness to noise. However, it will lose fine details.

As a complement, the guided filter [80], rather than the weighted guided filter, is
introduced to filter out some noises by Eq. 3.5, which is simpler but can work well here.
With respect to the weight of this filter, it is given as below,

Wpq = 1
|ω|2

∑
k:(p,q)∈ωk

{
1 + (Ip − µk) (Iq − µk)

σk2 + ε

}
(4.2)

where Wp,q gives a higher weight to the pixel on the same side of the edge and a lower
weight to the pixel on opposite sides of the edge in a window ωk centered at the pixel
k. The radius of this window ωk is adaptive with the spatial resolution (w, h) of the light
field, i.e., max(bmax(w, h)2/(256 ∗min(w, h))c , 3). I is a guided image, namely the light
field view Rs∗,t∗ that is being estimated; µk and σk are the mean and variance of the
window ωk in I respectively; ε is set to 0.01. The more effectiveness of this technique
than the only increase of the h is shown in Fig. 4.2, clearly reducing the speckle noise.

4.2.2 Occlusion Handling

Assuming that the scene in light fields is lambertian, the scene point that is seen from
different viewpoints shares the same color, exhibiting the photo-consistency. However,
this is not true for the point that is occluded. Some pixels from such a point in the cost-
volume computation step might be correctly estimated due to the edge-aware cost
volume computation. Nevertheless, the disparities of pixels at heavy occlusion regions
still remain difficult to be well-estimated due to ambiguities. As a result, a pixel with a
wrong disparity may be assigned a highest cost. To handle this issue, the occluded pixel
detection (OPD), occlusion boundary detection (OBD) and cost-volume recomputation
(CVR) are proposed.
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Occluded Pixel Detection

Some pixels disappear in parts of the views due to occlusions, breaking off the photo-
consistency. Assuming that the scene is lambertian, a simple thresholding technique
could be applied to detect these occluded pixels, as given in Eq. 6.

Cp(d̂) = 1
|Ω|

∑
Ω

(1− exp(−|Rp,s∗,t∗ −Rp,s,t(d̂)|)) (4.3)

where Cp(d̂) indicates the occlusion confidence of a pixel p at the estimated disparity d̂.
If the confidence of a pixel is larger than a specified threshold τ (= 0.05), it is masked
as an occluded pixel (OP = 1); otherwise it is un-occluded (OP = 0).

Occlusion Boundary Detection

Occlusion boundary detection is a significant step for the occlusion handling as its ac-
curacy makes differences for the following disparity re-estimation and occlusion-aware
optimization. To guarantee its precision, multiple edge cues are leveraged to detect
occlusion boundaries.

Firstly, a fact to be known is that there always exist edges between an occluder
and an occluded region, which is ascribed to lighting changes in-between. Thus the
following lemma is given.

Lemma I. An occlusion boundary set OBs is a proper subset of an edge set EGs.

The edge set is approximately constructed in our work for efficiency, i.e., a union of
edge points and edge lines,

EGs ' EGpoint ∪ EGregion (4.4)

where EGpoint denotes the edge points that are acquired by an edge detector, and
EGregion indicates the edges from a region/superpixel detector [85]. Note that the re-
gion size is set to a smaller value so as to be not much larger than the objects in the
scene. Additionally, a small region used in a superpixel detector could boost the edge
accuracy.

The occlusion boundaries that belong to the occlusion boundary set OBs are taken
from the approximated edge set. Firstly, a disparity edge map DEM is computed from
a relatively reliable local disparity map LDM using a canny edge detector [86], and
an edge map EM is intersected by the canny edge map CEM and the superpixel
edge map SEM . Then we calculate an intersection of DEM and EM to get an initial
occlusion boundary map Occib. Furthermore, the disparity variance in a window and the
difference operator are computed as masks to update the difference between Occib and
themselves in order to remove edge point outliers,
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EMu = Mdisp ∗ (EM −Occib)

DEMu = M∇ ∗ (DEM −Occib)
(4.5)

where Mdisp and M∇ denote the disparity mask and the difference mask respec-
tively. If the pixel has a disparity variance beyond a threshold ϕ that is adaptive to the
disparity range, Mdisp is assigned 1, otherwise 0. Similarly, if the pixel has a difference
beyond a specified threshold ∇(= 0.05), M∇ is assigned as 1, otherwise 0.

Finally, a union of multiple maps are used to produce the occlusion boundary map
OBM = Occib ∪DEMu ∪ EMu.

Cost Volume Recomputation

The cost volume recomputation consists of two steps: 1) computing the disparity bound,
2) cost-volume computation, targeting the improvement of the occluded pixel disparity
estimation.

Disparity Bound The new upper bound ub and the lower bound lb in disparity are
determined by the disparities of pixels in their neighborhood beforehand. The upper
and lower bound are assigned to the maximum and minimum disparity of neighboring
pixels respectively.

Cost-Volume Computation The procedure in the previous cost-volume computa-
tion is reused here, but there exists two differences. The first difference is that a dispar-
ity bound, i.e, a half-closed interval [lb, ub), is utilized for computing the occluded pixel
cost OccSp(d̂) for the pixel p at a candidate disparity d̂. The second difference is that
the visible views Ωvis for photo-consistency are selected. More specifically, the relative
location of the occluded pixel to the occlusion boundary from OBM (with rare negative
occlusion boundaries) is used to simply select the visible views.
At the end of the occlusion handling flow, the occlusion boundary map with a high ac-
curacy can be extracted and the cost of the occluded pixel will be lessen, which are
beneficial to the following optimization step.

4.2.3 Optimization

Our disparity estimation is optimized by minimizing a Markov Random Field-based
energy function, as given in Eq. 4.6.

E = λ ∗
∑
p

Edata(p, d(p)) +
∑
q∈Np

Esmooth(p, q, d(p)) (4.6)
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where Np is a 4-neighborhood of the pixel p, q represents one of the neighboring pixels
and d(p) denotes a disparity that is mapping to an integer. Herein λ (= 10) is introduced
to balance the ratio of the data term and the smoothness term.
The data term in the energy function is built by weighting the cost S̃ and the occlusion
cost OccS,

Edata(p, d(p)) = κ− α ∗ C̃p(d̂)− (1− α) ∗OccSp(d̂) (4.7)

where Edata measures the photo-consistency for the pixel p, α is a weighting coefficient
(= 0.6) and κ is a large constant (= 10).
The smoothness term is computed by a weighted neighboring function,

Esmooth(p, q, d(p)) = wp,q ∗min(|d(p)− d(q)|,Γ) (4.8)

wp,q = exp(−||Rs∗,t∗,p −Rs∗,t∗,q||2

ψ2 − |OBp −OBq|
φ2

− |OPp −OPq|
φ2 )

(4.9)

where Γ represents a truncated threshold that is set to 10; ψ and φ is set to 1/9 and 1 re-
spectively; OB is an occlusion boundary mask from the occlusion boundary map OBM
and OP is an occluded pixel mask from the occluded pixel map OPM that are enforced
as constraints. If an occlusion boundary exists in-between two pixels or one of two
neighbouring pixels is an occluded pixel, the strength of smoothness will be reduced.
Besides, the color in Rs∗,t∗, is encoded as a constraint in which two pixels with differ-
ent colors will decrease smoothness. To solve the proposed occlusion-aware energy
function, the graph cuts algorithm [44] is used, which performs the max-flow/minimum
cut onto the edges in a graph (comprised of the source and sink terminals, the image
pixels) to find the minimum edge costs among all cuts (cf. 8.2 for more details), and
is implemented in gco-v3.0 1 here. As a consequence, the proposed occlusion metrics
especially help a lot to avoid over-smoothing, hence preserving sharp edges, see Fig.
4.3.

4.3 Exemplar Results

In this section, the exemplar results of the proposed S-R4DE are presented, which
are evaluated on the 4D light field dataset with the narrow-baseline and wide-baseline
respectively. Our method is capable of recovering correct depths at a huge amount of
image regions, as is shown in Figure 4.4. Besides, the reconstructed depths look very

1. https://vision.cs.uwaterloo.ca/code/
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w/o occ with occ Ground truth

Figure 4.3: Comparisons between without (w/o) and with occlusion detection results
(occ) in the energy function. It demonstrates that the proposed occlusion-aware energy
function contributes to a higher accuracy (a lower MSE 0.010) without over-smoothing
the sharp edges on the Medieval scene from the 4D light field dataset.

close to the ground truth, and indeed are well recovered at occlusion regions. We will
make further evaluations and comparative experiments, and arrange the corresponding
text in the later chapter (also the Chapter 7) for unification.
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Central view GT S-R4DE

Figure 4.4: An example of visual depth estimation results from the proposed method
on different-baselines light fields. The scenes in the top two rows belong to the narrow-
baseline, and the scenes in the bottom two rows belong to the wide-baseline.



PART II

CNN-based Algorithms
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Table 4.1: Reference of the terms of Part II.

Term Definition

Batch Normalization A technique that improves the convergence of neural networks

ReLU Rectified Linear Unit, i.e. a type of activation function

Residual Learning Using skip connections to learn the residual in case of gradient exploding

Encoder-decoder network Encoder maps inputs to latent spaces that are mapped to outputs by decoder

Stacked Hourglass Network A network comprised of the repeat of pooling and upsampling layers

Adam Optimizer An optimization algorithm that updates the weights to minimize the loss

Data Augmentation A technique to increase the quantity and diversity of training data

Ablation Study A way of removing one component of the model to see the influence
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CHAPTER 5

DEPTH ESTIMATION FROM

NARROW-BASELINE 4D LIGHT FIELDS

In the previous two chapters, the traditional depth estimation methods for the 3D or
4D light fields are described, in which a variety of hand-crafted features (e.g. focus/de-
focus, epipolar plane image, and surface camera) are typically extracted, and then
feature matching is conducted, followed by a time-consuming global optimization.

In this chapter, the hand-crafted features are replaced with the more discriminative
features learned by the convolutional neural networks (CNN). Specifically, two end-to-
end convolution neural networks, i.e., HFNet and MANet, are sequentially presented
for estimating depths from the 4D light fields. The HFNet is proposed as a hybrid fea-
ture network that combines the Epipolar Plane Image and epipolar properties, learning
more generic feature representations. The MANet is a parameter-effective and efficient
multi-scale aggregated network. The two networks are performed for estimating depth
from the plenoptic cameras, and experimental results show that the proposed MANet
outperforms state-of-the-art the traditional and CNN-based methods on HCI, CVIA-HCI
and EPFL Lytro light field datasets, and run much faster than the traditional methods.
The code and models are available at https://github.com/YanWQ/MANet.

5.1 Introduction

The proposed traditional method in the previous chapter has been shown that it is
able to recover the depth well from 4D light fields, however, the powerfulness of (en-
gineered) feature representation is still limited. In fact, the low-level features (e.g. the
edge, corner, etc) used by the traditional methods and the high-level features (e.g. the
semantics), which are superior to either of the two features in deducing disparities,
are in demand. The more important issue is that the proposed method suffers from
the computational burden since the global optimization solved by graph cuts is used,
impeding the real-time possibilities. To tackle the limitations, we move on to the CNN-
based methods that learn low-to-high features, support parallel computing and having
achieved the success in similar vision tasks: stereo matching, optical flow, etc.

In recent years, hand-engineered features have been replaced with deep features in
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some of current state-of-the-art algorithms [64, 66–68]. The learnt multi-level features
in CNN exhibit the invariance to intensity changes in images, which are beneficial to the
feature matching in light field depth estimation. The current state-of-the-art learning-
based methods opt to learn such features based on the traditional EPI or epipolar
representation. When compared with the traditional algorithms using similar charac-
teristics [19, 51, 56], the CNN-based methods achieve higher accuracy depth maps,
which are derived from the more discriminative features that the CNN learn. Specifi-
cally, some of CNN-based works [64, 66, 67] propose to learn representative features
by inferring the epipolar line orientations on EPI while the other [68] propose to stack
epipolar images in channel to make CNN learn features through epipolar property (cf.
Fig. 1.2). The former takes advantage of the EPI property, i.e., the disparity is a function
of the line orientation on EPI, for depth inference, but it seems sensitive to the texture-
less regions so that the inferred disparities look noisy. Thus the computational-burden
optimization is often used as a post-processing step to remove the noises. The latter
takes advantage of the context or structure information in the scene [87] and draws
on the effectiveness of the epipolar property for depth predictions [28], but seems vul-
nerable at depth-discontinuity image regions. In general, the current state-of-the-art
CNN-based works have surpassed the traditional algorithms in depth accuracy and
computation efficiency, but still have some issues, which might be resulted from the
less discriminative features.

Recently, EPINET [68], a network trained end-to-end without post-processing, achieves
state-of-the-art accuracy onto the HCI and CVIA-HCI datasets [6, 30]. However, these
CNN-based approaches are modeled by heavyweight networks (e.g., [36] has around
199M parameters).

5.2 Related Work

To better understand the potential contributions, the recent developments of relevant
techniques based on deep learning for depth estimation (since they surpass the tradi-
tional methods in accuracy and speed) are discussed in this section.

Stereo matching Neural networks are more exploited in stereo matching, com-
pared to light field depth estimation. DispNet [28] adopts a deep encoder-decoder ar-
chitecture (U-net [88] alike architecture) in which the left and right images are simply
concatenated to extract deep features, followed by a number of 2D convolution layers
to aggregate the context (2D aggregation) and regress the disparity maps. DispNetC
[28] makes use of a 3D cost volume (a standard component in traditional stereo match-
ing [6] with the size H ×W × C by correlating left and right image features, in which
H, W and C represent the image height, image width and the number of channels,
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respectively.
For the sake of large context aggregation, GC-Net [89] introduces a new dimension,
i.e, disparity, to build a 4D cost volume L × H ×W × C, followed by a number of 3D
convolutions and deconvolutions (3D aggregation). Recent works follow the idea of
GC-Net [89] but make efforts to improve the accuracy by replacing some of its compo-
nents. For example, PSMNet [90] replaces the simple 3D encoder-decoder network in
GC-Net with a 3D stacked hourglass network; PDSNet [91] computes an expectation
around the disparity with minimum matching cost in the sub-pixel MAP approximation
of GC-Net; GwcNet [92] changes the concatenation-based cost volume into a group-
wise cost volume to make full use of both correlation and concatenation. Note that the
output resolution of these ConvNets is a half (GC-Net) or quarter (the others) of the in-
put resolution (due to the GPU memory limitation), and the output are finally bilinearly
upscaled back to the original resolution.

5.3 Review of EPINET

In this section, we will review the EPINET [68] that achieved top-performing perfor-
mance for the narrow-baseline scenario, in order to tell why the new or proposed CNNs
are still needed. Firstly, we will describe the model architecture of EPINET, as is shown
in Fig. 5.1. The EPINET is designed as a four-stream network, taking as inputs the hor-
izontal, vertical, left diagonal and right diagonal image views that are similar to inputs in
the traditional work [57]. The light field image features are always calculated by convo-
lutional blocks on a single-scale and the depth map is also predicted on a single-scale.
Actually, one advantage of the CNN is the ability of learning the richer feature represen-
tation. From this point of view, the multi-scale feature representations are semantically
strong at all scale levels, enhancing the potentials in fitting the relation between the in-
puts and outputs well. Besides, it might be possible to combine the EPI-volumes used
by EPINET with the EPI patches to learn the more discriminative features. Another
motivation is that we found from the experiments that the high performance is relevant
to the padding being not used in the convolutional layers. However, the 22 side-length
pixels are sacrificed in the final depth map, which might be not acceptable in some
applications.

5.4 Methodology - I

In this section, the details of the proposed HFNet for light field disparity estimation
will be presented.The proposed HFNet mainly consists of multiple subnetworks: EPI
patch subnetwork (EPSNet), context-aware subnetwork (CASNet) and fusion subnet-
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Figure 5.1: The architecture of EPINET, figure courtesy of [68].

work (FSNet). The first two subnetworks are responsible for collecting the EPI and con-
text information of the light field respectively, and the last aims to collect the generic
information that are more representative than [66–68]. The proposed network is trained
end-to-end on a public light field dataset without the need of any pre-training. The whole
architecture of the proposed HFNet is illustrated in Fig. 5.2.

5.4.1 EPI Patch Subnetwork

The EPSNet is designed as a pixel regression network to learn the relationship be-
tween the slope of the epipolar line at EPI patch and the ground truth (GT) disparity.
A straightforward choice for the purpose is to build a standard CNN architecture, for-
mulating this problem as a task of classification, as is done in [66, 67]. Another choice
is to replace the fully-connected layer with the convolutional layers to get a fully con-
volutional network and make regressions. We have attempted the two choices in our
case but do not observe much difference. Considering the number of parameters, the
latter is exploited here. Since the existing light field datasets are sparsely sampled, the
angular resolution of the light field (i.e., the number of sub-aperture views) is not large
enough such that one dimensional size of EPI patch is limited. To address this issue, a
shallow fully convolutional network with 8 layers (Conv-Bn-Relu, Conv-Relu, and Conv
blocks) and without any pooling is used, and in each layer the spatial kernel of the
convolutional filter is set to 2x2 for guaranteeing the sub-pixel precision. In Fig. 5.2, the
detailed structure of the EPSNet is shown. The EPSNet takes as input the cross EPI
patches (HEPP and VEPP) to learn richer representations. Each HEPP and VEPP at
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Figure 5.2: The proposed fully convolutional neural network for light field disparity esti-
mation: HFN. The Horizontal EPI Patches (HEPPs) and Vertical EPI Patches (VEPPs)
that are sliced from stacked images are fed into the EPSNet-streams, and the Hori-
zontal Stacked Image Patches (HSIP) and Vertical Stacked Image Patches (VSIP) go
to the CASNet-streams. After the high-level feature fusion, the disparity maps are ob-
tained.

EPI pixel p with the size EPPhxEPPw are pixel-wisely sampled from the horizontal and
vertical EPIs respectively, in which the subscript h and w denote the height and width
of EPI patch repsectively. The features for the EPI pixel p can be learned from two
streams (EPSNet-H for HEPP and EPSNet-V for VEPP). Then the learned features at
a higher level from each stream are concatenated, followed by 1x1 convolutional layer
for the disparity regression.

5.4.2 Context Subnetwork

The CASNet is designed as an encoder-decoder regression network for dense dis-
parity estimation through learning epipolar property, i.e., searching correspondences
constrained by epipolar geometry. This subnetwork takes as input the cross stacked
image patches (HSIP and VSIP). For the horizontal stream (CASNet-H), it attempts to
regress the horizontal disparities from the HSIP, while the vertical stream (CASNet-V)
tries to regress the vertical disparities from the VSIP. The feature representations that
are separately learned from each stream are kept in order to fuse and get the more
discriminative features at a later stage. In this subnetwork, the HSIP and VSIP have
the same dimension IPhxIPwxN in which the IPh, IPw and N indicate the height, width
of image patch and the number of image patches respectively. On the encoder side, it
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Figure 5.3: The encoder part of the CASNet.

mainly consists of Conv-Bn-Relu and Conv-Relu blocks without any pooling operations.
To further boost dense prediction accuracy, we attempt to increase the depth of the net-
work. However, the network becomes difficult to be optimized. To handle this problem,
we draw upon the success of residual learning [93] in other computer vision appli-
cations, and add several residual blocks in-between Conv-Bn-ReLU and Conv-ReLU
blocks, which passes information from a layer to one next layer via skip connections.
The overall architecture of the encoder part is shown in Fig. 5.3. On the decoder side,
several transposed convolution layers are applied to increase the dimensional informa-
tion that are lost in the encoder part. Note that we still employ the 2x2 convolutional
filters on both sides for accuracy. At the end of the CASNet, the high-level features from
two streams are concatenated, followed by 1x1 convolutional layer for the disparity re-
gression. In contrast with EPSNet, this network tends to learn the more structure of the
scene, and provides more context information thanks to a larger receptive field that a
deeper network leads to.

5.4.3 Fusion Subnetwork

Though the EPSNet and CASNet are able to infer the disparities, a more discriminative
network is worth being generated in order to enhance the prediction accuracy. A simple
way for the purpose is to score the probability of each subnetwork or similar operations,
gathering high confidences from all subnetworks [94, 95]. Instead, in our work, the FS-
Net for joint training is proposed, which is superior to that simple fusion approach. Note
that the EPSNet performs pixel-wise predictions while the CASNet patch-wisely infers
the disparities. Therefore, to fuse the two subnetworks, we firstly combine IPhxIPw fea-
ture maps with the size 1x1 from the EPSNet into a feature map with the size IPhxIPw
in order to match the same size of feature map from the CASNet. Note that the spatial
locations between two feature maps should be aligned. Then 1x1 convolution and filter
operations guided by the original view (GF) [96] are subsequently employed. Though
there are a few parameters, the accuracy is significantly boosted.
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5.4.4 Training Loss

To guarantee each subnetwork learns the corresponding relationship, the EPSNet,
CASNet and HFNet are all supervised by the ground truth disparities. The total loss is
a weighted sum of the three losses, and each loss is calculated by the mean absolute
error that is robust to outliers. The loss weights are set to 0.5, 0.5 and 1.0 respectively.

5.4.5 Implementation Details

Data augmentation: It is an effective technique to enlarge the limited training datasets,
which prevents the CNN from overfitting the given data. Considering the light field
dataset for training is not large enough, a variety of augmentations have been ap-
plied. Firstly, the flipping and rotation are sequentially applied onto the EPI patches
to increase the different tilt angle of the EPI-lines, and also applied onto the image
patch counterpart. Note that the vertical flipping on image patches will not be influ-
enced since the corresponding points are locally searched in a line here. Specifically,
the EPI patch and image patch are horizontally and vertically flipped, rotated by 90,
180 and 270 degrees respectively. Note that the flipping and rotation for EPI patches
and image patches of light fields differ from the standard flipping and rotation on im-
ages due to the angular property. The sign of the disparity value are reversed during
the flipping. When the EPI patches or image patches of light fields are rotated, the
horizontal EPI patches or image patches will be turned into the vertical ones since the
disparity direction changes.

Training: The proposed HFNet is trained on the synthetic CVIA-HCI training dataset,
which provides dense ground truth disparity and depth maps. The dimension of stacked
image patches in grayscale is chosen to 32x32x9, which corresponds to the height of
image patch, the width of the image patch and the number of angular image patches.
With respect to the EPI patches in RGB, the dimensions of both the horizontal and
vertical EPI patches (HEPPs and VEPPs) are chosen to 32x32x9x9x3. The first two
dimensions represent the height and width of the image patch respectively, and the
last three dimensions indicate the size of the EPI patch. All the training patches are
randomly sampled from the whole training dataset, but the reflection and textureless
patches are excluded due to ambiguous disparity estimation. We use the adam opti-
mizer with the default parameter values β1 = 0.9 and β2 = 0.999 for the training phase,
starting the learning rate 1e-4 and then gradually divided by a half in-between epochs.
The model is trained for 12 epochs with 60k iterations, and in each iteration the mini-
batch size is 2.

Inference: The angular resolution 9x9 of each light field dataset is used. The size
of patch in the inference phase is alternatively chosen to 128x128, considering both
the speed and accuracy of disparity predictions. During the inference, the discontinuity
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effects came out at the border of patches. To eliminate these effects, the regions with
the size 112x112 are selected from that patch.

5.4.6 Ablation Study

We have taken full use of both the EPI-line property and epipolar geometry so that
the high quality of depth maps can be generated. For ablation experiments, the same
training dataset is used here, but for inference, eight scenes of the test dataset with
available ground truth are utilized.

We perform ablation experiments for two subnetworks (EPSNet and CASNet, being
responsible for learning the EPI-line orientation and epipolar geometry respectively)
and the HFNet. For depth predictions, the EPSNet performs well at discontinuity re-
gions but is sensitive to smooth regions, whereas the CASNet is on the opposite. So,
in order to integrate the pros of each subnetwork, two ways are explored for fusing
the models from each net: one trains the main network and fusion network separately;
another trains the main network and fusion network jointly (online fusion). Table 5.4.6
gives the average numerical values from the MSE metric. From the table we learn that
any fusion of the two networks gets large gains, explaining the necessities of learning
from the two representations. Besides, the online-fusion of the two networks is able
to achieve the 16.0% gain, and what is more, supervising the EPSNet and CASNet
separately is found better than that only a single supervision of the HFNet.

Table 5.1: Performance comparison of ablation components.

Method MSE
EPSNet 3.01
CASNet 2.95
HFNet 1.99
HFNet Online fusion (single loss) 2.268
HFNet Offline fusion (single loss) 2.69

5.5 Methodology - II

Based on the analysis from previous works, we design an end-to-end neural network
(MANet) for depth estimation from 4D narrow-baseline light fields.
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5.5.1 Network Architecture

Fig. 5.4 demonstrates the network architecture of the proposed MANet (in ICASSP) for
predicting the disparities of the central view.

Figure 5.4: The architecture of the proposed MANet.

Table 6.1 describes the proposed network MANet details. ‘ConvBnR’ means a con-
volution layer followed by a batch normalization (Bn) layer and a Relu layer. The pre-
fixes ’3D’ and ’3De’ represent 3D convolution and 3D transposed convolution respec-
tively, and the suffixes ’K’ and ’S’ denote the spatial kernel size and stride respectively.
’x8’ means ‘ConvBnR’ is repeated by 8 times. ‘Conv’ denotes a convolution layer. ‘Up-
sampling’ is a nearest sampling layer. H and W are the image height and width respec-
tively, and H ′ and W ′ at Branch1 are the reflectively padded image height and width
respectively.

The MANet consists of three branches with different scales. The basic idea behind
it is that the deep lower scale features can bring in large context information, but the in-
formation gets lost due to the down-sampling and up-sampling operations, causing the
details difficult to be densely recovered. Besides, considering that the disparity space
in light fields is continuous, it is significant to maintain full-scale feature representations.
The cost volume with few parameters is introduced and combined with 3D aggregation
at low scale levels. To compensate for the expensive memory cost in the cost volume
module, 2D aggregation with low memory (but more parameters) is utilized.

Specifically, instead of using all views for the prediction, our MANet employs four
streams of views, i.e., horizontal (S0°), vertical (S90°), left and right diagonal views (S45°)
and (S135°). To the extent, the number of angular views are capable of accurately es-
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Table 5.2: The details of the proposed network architecture.
Layers Output size Input layer name Output layer name

Branch1
ConvBnR_K2S1 H′ ×W ′ × 40 S90° Cbr1
ConvBnR_K2S1 H′ ×W ′ × 40 S0° Cbr2
ConvBnR_K2S1 H′ ×W ′ × 40 S45° Cbr3
ConvBnR_K2S1 H′ ×W ′ × 40 S135° Cbr4
Concatenation H′ ×W ′ × 160 Cbr1,Cbr2,Cbr3,Cbr4 Concat1

ConvBnR_K2S1 × 8 H ×W × 160 Concat1 Cbr5
Conv_K2S1 H ×W ×D Cbr5 C1

SoftArg H ×W × 1 C1 d_1
Feature Extraction - Half resolution

Conv_K2S2 H/2×W/2× 8 {v_1, ..., v_N}S_0° C2{v_1, ..., v_N}_S_0°
ConvBnR_K2S1 H/2×W/2× 8 C2{v_1, ..., v_N}_S_0° Cbr6{v_1, ..., v_N}_S_0°

Conv_K2S2 H/2×W/2× 8 {v_1, ..., v_N}_S_90° C3{v_1, ..., v_N}_S_90°
ConvBnR_K2S1 H/2×W/2× 8 C3{v_1, ..., v_N}_S_90° Cbr7{v_1, ..., v_N}_S_90°

Branch2
Cost volume L/2×H/2×W/2× 56 Cbr6{v_1, ..., v_N}_S_0° CV1
Cost volume L/2×H/2×W/2× 56 Cbr7{v_1, ..., v_N}_S_90° CV2

Concatenation L/2×H/2×W/2× 112 CV1,CV2 Concat2
3DConvBnR_K3S1 L/2×H/2×W/2× 16 Concat2 3Cbr1
3DConvBnR_K3S1 L/2×H/2×W/2× 16 3Cbr1 3Cbr2
3DConvBnR_K3S2 L/4×H/4×W/4× 32 3Cbr2 3Cbr3

3DeConvBnR_K3S2 L/2×H/2×W/2× 16 3Cbr3 3DCbr1
3DeConvBnR_K3S1 L/2×H/2×W/2× 1 3DCbr1 3DCbr2

SoftArg H/2×W/2× 1 3DCbr2 d_2’̂
Feature Extraction - Quarter resolution

Conv_K2S2 H/4×W/4× 16 Cbr6{v_1, ..., v_N}_S_0° C4{v_1, ..., v_N}_S_0°
ConvBnR_K2S1 H/4×W/4× 16 C4{v_1, ..., v_N}_S_0° Cbr8{v_1, ..., v_N}_S_0°

Conv_K2S2 H/4×W/4× 16 Cbr7{v_1, ..., v_N}_S_90° C5{v_1, ..., v_N}_S_90°
ConvBnR_K2S1 H/4×W/4× 16 C5{v_1, ..., v_N}_S_90° Cbr9{v_1, ..., v_N}_S_90°

Branch3
Cost volume L/4×H/4×W/4× 112 Cbr8{v_1, ..., v_N}_S_0° CV3
Cost volume L/4×H/4×W/4× 112 Cbr9{v_1, ..., v_N}_S_90° CV4

Concatenation L/4×H/4×W/4× 224 CV3,CV4 Concat3
3DConvBnR_K3S1 L/4×H/4×W/4× 32 Concat3 3Cbr4
3DConvBnR_K3S1 L/4×H/4×W/4× 32 3Cbr4 3Cbr5
3DConvBnR_K3S2 L/8×H/×W/8× 64 3Cbr5 3Cbr6

3DeConvBnR_K3S2 L/4×H/4×W4× 32 3Cbr6 3DCbr3
3DeConvBnR_K3S1 L/4×H/4×W/4× 1 3DCbr3 3DCbr4

SoftArg H/4×W/4× 1 3DCbr4 d_3’̂
Upsampling H/2×W/2× 1 d_3’̂ d_3’̂’

Average H/2×W/2× 1 d_2’̂,d_3’̂’ d_2’̂’
Upsampling H ×W × 1 d_2’̂’ d_2

Average H ×W d_1,d_2 d_0

timate depth, and the computational overhead, the memory footprint could be consid-
erably reduced accordingly. Each stream of views contains a line of views with the
dimension HxWxN , where H, W and N denote the height, width and number of views
respectively (N is 7, same with EPINET). Branch 1 adopts 2D aggregation and dis-
parity regression modules in full-resolution, taking as input four streams of stacking
views. Branch 2 and Branch 3 both employ the cost volume, 3D aggregation and dis-
parity regression modules, fed by half-resolution and quarter-resolution feature maps
respectively. Finally, the outputs from three branches are averaged in a coarse-to-fine
manner.
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5.5.2 Modules

2D aggregation Each stack, concatenated from each stream of views, is fed into a
Conv-BN-ReLU block (i.e., convolutional layer followed by batch normalization [97]
and ReLU layers) without sharing parameters. Then the outputs from four stacks are
concatenated, followed by embedding the grouped outputs into eight Conv-BN-ReLU
blocks and one Conv layer. The spatial kernel size and stride for all convolutional filters
are chosen to be 2× 2 and 1, respectively. The output Ma of this module is represented
as:

Ma = T1,...,9(Concat{T (S90°), T (S0°), T (S45°), T (S135°)}) (5.1)

where T indicates the transformation, i.e., the Conv-BN-ReLU block or Conv layer. In
order to maintain the full resolution, reflective padding is used on the input images.

Cost volume The feature maps f l with the size (H l ×W l ×C l) for each scale level
l (half-resolution and quarter-resolution maps) are generated beforehand and fed to
build the cost volumes. Specifically, a series of shared weights layers are employed on
each view for the horizontal and vertical streams. The first layer starts by a convolu-
tional layer with stride of 2 for down-sampling. Then a Conv-BN-ReLU block is used to
enrich unary view features. Thus the half-resolution feature maps are generated. Two
more layers/blocks (one convolutional layer with stride of 2 and one Conv-BN-ReLU
block) are used to get the quarter-resolution feature maps.

The feature maps of sub-aperture views are firstly shifted based on the central view
for each disparity level d̂, in which the bilinear sampling are used for interpolations.
Then the shifted unary feature maps from stream α of views at a scale level l are
concatenated to form a 4D cost volume (Dl×H l×W l× (N ×C l)), as given in Eq. (6.2)
and Eq. (6.1):

C l(d̂, v, u, c) = Concat{f l(v + d̂(t∗ − tα), u+ d̂(s∗ − sα), ci), (i = 1, ..., N)} (5.2)

d̂ = dmin + n× (dmax − dmin)/L, (n ∈ {0, 1, ..., L− 1}) (5.3)

where the dmin, dmax and L represent the minimum and maximum disparity in the range
and the number of labels respectively. Here L is empirically set to 80 (resulting from
our preliminary study which shows it achieves the best trade-off between the perfor-
mance and the training time). Note that building the cost volume does not introduce
any parameters to train.

3D aggregation For the 4D cost volume, five 3D convolution layers and two 3D
transposed convolution layers are employed to aggregate the feature information along
the disparity axis. The third 3D convolution layer is used as a down-sampling layer in
order to facilitate the gains of receptive fields. The first 3D transposed convolution is
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used to up-sample the features back to a higher resolution. The spatial kernel size of
all layers are set to 3x3. The strides are set to 1, 1, 2, 1, 1, 2, 1 from the 1st convolution
layer to the last transposed convolution layer, respectively.

Disparity Regression A differentiable soft argmin operator proposed by [89] is
used in the aggregated cost volumes from all branches. Note that for Branch 1, the
output cost volume is reshaped into D×H ×W × 1. The soft argmin operator converts
the aggregated cost volume into the probability volume along the disparity dimension,
and then calculates the predicted disparity D̃ using the expectation of disparity distri-
butions, as given in Eq. (5.4) [89]:

D̃ =
dmax∑
d̂=dmin

d̂ ∗ P (d̂) (5.4)

where P (d̂) denotes the probability volume of pixels at disparity d̂. .

5.5.3 Training Loss

The Mean Absolute Error (MAE) is used as the regression loss function, since it is less
sensitive to outliers. The total loss is a weighted sum of the three losses from the three
outputs, of which the weights are empirically set to 0.5, 0.5 and 1.0 for d2, d1 and d0 (cf.
Fig. 5.4), respectively.

5.5.4 Implementation Details

Training: The MANet is trained onto CVIA-HCI only for a fair comparison with the
proposed HFN in Sec 5.4 and other state-of-the-art models. The dmin and dmax in Eq.
(5.3) are set to the default -4 and 4 according to CVIA-HCI. We use patches of size
64x64 randomly cropped from the whole training dataset for the training and augment
these patches as done in EPINET [68]. Besides, we exclude low-texture patches and
extra reflection patches because of the ambiguous disparity estimation they may cause.
We use the rmsprop optimizer [98] with the default parameter value ρ = 0.9, and a
constant learning rate 1e-4. The model is trained on the CVIA-HCI for 150k iterations
(almost two days and a half), and in each iteration the mini-batch size is set to 16.

Inference: The full-size image is directly used for predicting disparities, which is
based on our observation that the inference time is sped up, without sacrificing accu-
racy.
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5.5.5 Ablation Study

We perform the ablation study to demonstrate the effectiveness of the components
designed in the proposed MANet. Table 5.3 shows the MSE performance of different
variants. We learn that the aggregated network takes advantages from both the 2D
aggregation module and the cost volume and 3D aggregation module, and brings in
better performance than only using either of them.

Table 5.3: Ablation study: the module is ticked if it is used in training. The number of
parameters is in million (M).

Network architecture Parameters CVIA-HCI
2D aggregation Cost volume 3D aggregation - MSE√

- - 0.88M 2.96
-

√ √
0.94M 3.11√ √ √
1.58M 2.12

5.6 Exemplar Results

Fig. 5.5 shows the exemplar results of the proposed method, which is tested on the
4D light field dataset with the narrow-baseline. We clearly see from this figure that
the proposed network MANet produces high quality depth maps, explaining that this
network learned the input-output relationship. Besides, these depth maps look almost
same with the ground truth. We will conduct the more (comparative) experiments for
verifying its effectiveness, and the detailed results are also shown in the Chapter 7.
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Central view GT MANet

Figure 5.5: An example of depth estimation results of the Dino and Cotton scenes.



CHAPTER 6

DEPTH ESTIMATION FROM

WIDE-BASELINE 4D LIGHT FIELDS

Existing traditional and CNN-based methods for light field depth estimation mainly work
on the narrow-baseline scenario. This chapter explores the feasibility and capability of
CNN to estimate depth in another promising scenario: wide-baseline light fields. Con-
sidering the practical goal for real-world applications, we design an end-to-end trained
lightweight convolutional network to infer depths from light fields, called LLF-Net. The
proposed LLF-Net is built by incorporating a cost volume which allows variable angular
light field inputs and an attention module that enables to recover details at occlusion
areas. Evaluations are made on the synthetic and real-world wide-baseline light fields,
and experimental results show that the proposed network achieves the best perfor-
mance when comparing to recent state-of-the-art methods. The proposed LLF-Net is
also evaluated on the narrow-baseline datasets, and it consequently improves the per-
formance of previous methods and is on par with the proposed methods in previous
chapters. The dataset, code and models are available at https://github.com/YanWQ/
LLF-Net. Besides, the training dataset is divided into two parts, and the two parts
could be quickly found and downloaded from https://zenodo.org/record/3931237#
.XwTSSxT7SaE and https://zenodo.org/record/3934712#.XwTTWRT7SaE respectively.

6.1 Introduction

The proposed CNNs in the previous chapter indeed have addressed the concerns
existed in the proposed traditional method. However, the performance of the proposed
CNNs in the wide-baseline light fields is limited since we found that learning the relation
between the the EPI-line and the label or using 2D convolutions for inferring depth was
not effective. Moreover, the angular resolution of the two proposed CNNs is fixed after
the training, and when the test set has a different angular resolution, the CNN has to
be retrained, which is inconvenient and time-consuming. In this chapter, we propose
a new network architecture that is modified from the proposed MANet to tackle the
limitations.

As mentioned before, the narrow-baseline light fields are typically captured by a
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plenoptic camera, and the baseline between sub-aperture images is very narrow. To
date, traditional [19, 54, 55, 58–61, 99–103] and CNN-based [64–68, 104, 105] meth-
ods have been well studied for high performance in narrow-baseline light fields, and
achieved low percentage of errors, e.g. the proposed HFN and the proposed MANet in
Chapter 5. For wide-baseline light fields, they are usually captured by a camera array or
gantry (i.e., a conventional camera is placed onto a gantry, and then uniformly moved
by a motor in a plane). The baseline between the recorded wide-baseline light-field im-
ages is large and the spatial resolution of images is usually high. To date, considerable
efforts has been also made by traditional methods [27, 55, 60, 61, 101, 106, 107] to
solve the problem of depth estimation in wide-baseline scenario. However, CNN-based
approaches are rarely studied in this scenario due to the deficiency of training data.
Our objective is to explore and apply CNNs into depth estimation for wide-baseline
light fields.

With respect to the CNN model for wide-baseline scenario, Shi et al. [31] present
a divide-and-train model with around 199 million parameters and Leistner et al. [70]
present an end-to-end trained model with 36 million parameters. Both models are
heavyweight that cannot satisfy our needs since we consider the more practical goals,
e.g. applications in mobile devices. We made an attempt to resort to top-performing
EPINET [68] in narrow-baseline scenario with only 5.1 million parameters to test and
re-train (denoted as EPINET_T) the proposed WLF dataset, but the performances are
too poor, which also fails to fulfill our goal. Thus, we propose a novel end-to-end trained
lightweight network LLF-Net by taking knowledge from stereo-based CNN models. In
our network, features are extracted for each view of cross-hair light fields, and then
the cost volume is generated by shift-interpolation, cost calculation and fusion oper-
ations. With respect to the fusion, a divide-concatenate-sum operation is proposed,
allowing flexible light field inputs and maintaining depth accuracy. An attention mech-
anism is introduced in the cost aggregation module, which enhances depth accuracy
at occlusion regions. We make evaluations of the proposed network on WLF test sets
and real-world datasets, and experimental results show that our network outperforms
state-of-the-art methods in both quantitative and qualitative evaluations. Further, we
validate and compare our model with state-of-the-art methods for narrow-baseline sce-
nario, and our model achieves the best performance.

6.2 Methodology

An overview of the proposed network architecture is illustrated in Fig. 6.1 and detailed
in Table 6.1. Given the full-shape light fields, a cross-hair of light field images are cho-
sen and fed into the proposed network. To make image correspondence features distin-
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Figure 6.1: Overview of the proposed network architecture.

Table 6.1: The details of the proposed network architecture.
Layers Output size Input layer Output layer

Feature extraction (for each X ∈ S0 ∪ S90)

Conv_K2S2 H/2×W/2× C X C1_1
ConvBnR_K2S1 H/2×W/2× C C1_1 C1_2

Conv_K2S2 H/4×W/4× C C1_2 C2_1
ConvBnR_K2S1 H/4×W/4× C C2_1 C2_2

Cost volume (C2_2S0 = {C2_2}N
1 , C2_2S90 = {C2_2}N

1 )

Shift_Cos L/4×H/4×W/4× NC C2_2S0 SIC1
Shift_Cos L/4×H/4×W/4× NC C2_2S90 SIC12

Div_Concat L/4×H/4×W/4× 6C SIC1, SIC2 {DC}3(N−1)/2
1

Sum L/4×H/4×W/4× 6C {DC}3(N−1)/2
1 CV

View and Stream attention

View Attention L/4 × H/4 ×W/4 × 6C CV0 CV_v1
View Attention L/4 × H/4 ×W/4 × 6C CV90 CV_v2

Stream Attention L/4 × H/4 ×W/4 × 6C CV_v1, CV_v2 CV_s

Cost regularization

3DConvBnR_K3S1 L/4 × H/4 ×W/4 × 2C CV_s 3Cbr1
3DConvBnR_K3S1 L/4 ×H/4 ×W/4 × 2C 3Cbr1 3Cbr2
3DConvBnR_K3S2 L/8 × H/8 ×W/8 × 4C 3Cbr2 3Cbr3

3DeConvBnR_K3S2 L/4 × H/4 ×W/4 × 2C 3Cbr3 3DCbr1
3DeConvBnR_K3S1 L/4 × H/4 ×W/4 × 1 3DCbr1 3DCbr2

Upsampling L × H ×W × 1 3DCbr2 Up1

SoftArg H ×W × 1 Up1 D̃

guished, deep feature descriptors are extracted for each view from cross-hair views in
the Feature Extraction (Section 6.2.1). Next, the discriminative cost volume [54, 55] is
constructed by operating all extracted features in the Cost Volume Generation (Section
6.2.2). Afterwards, an attention mechanism is introduced to remove disparity errors
caused by occlusion, and 3D encoder-decoder network is applied to regularize the
disparity space in the Cost Aggregation (Section 6.2.3). Finally, the disparity map is
produced in Disparity Regression (Section 6.2.4), and a robust loss (Section 6.2.5) is
used for training our network.
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6.2.1 Feature Extraction

Our network takes as input horizontal and vertical streams of image views with the
dimension H ×W × N from light fields, where H and W represent height and width
of image (spatial resolution). We apply a 2D plane convolution network to extract dis-
tinguished features. It is firstly constructed by two Conv-Bn-Relu blocks (convolution
layer followed by a batch normalization layer, and a ReLU unit), in which the stride of
the former convolution layer is set to 2 for down-sampling inputs and the latter is set
to 1. Then the blocks with the same structure are repeated to produce sub-scale fea-
tures. Finally, the output of feature maps are downsized to quarter spatial resolution.
The kernel of convolution filters is 2x2 for sub-disparity space. We adopt the shared
2D network on both streams of views since we found sharing parameters is better than
non-sharing case in terms of disparity accuracy and efficiency.

6.2.2 Cost Volume Generation

Given two streams of feature maps, a sequence of operations, i.e., shift-interpolation,
cost calculation and fusion are used to generate the cost volume. Note that building
the cost volume does not introduce any parameters to train.

Shift-Interpolation

The feature maps of central view Fr are regarded as the reference, and the others
along the stream are the target feature maps Ft. The feature maps of target views
Ft are shifted toward the reference view by each hypothesis disparity d̂ within disparity
range (see Eq. 6.1). Then the bilinear interpolation is employed to calculate appropriate
values for each pixel at sub-pixel position.

d̂ = dmin + n(dmax − dmin)/L, (n ∈ {0, 1, ..., L− 1}) (6.1)

where the dmin, dmax and L represent the minimum and maximum disparity in the range
and the number of labels respectively. The dimension of (warped) feature maps for
each target view and the feature maps for reference view is herein (L×H l ×W l ×C l),
where l denotes the scale level and C indicates the channels.

Cost Calculation

After obtaining the warped feature maps from streams of target views at the scale level
l, we then calculate the matching cost by using the concatenation [89] between the
reference and target feature maps to form a 4D cost volume , as shown in Eq. (6.2)
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Figure 6.2: Variants for cost fusion (best viewed in color).

and Eq. (6.1):

C l(d̂, v, u, c) = C{F l(v + d̂(t∗ − t), u+ d̂(s∗ − s), ci)

, (i = 1, ..., N)}
(6.2)

Fusion

At this step, we make a fusion of calculated costs across views and streams such
that neighboring views or streams enhance capabilities of solving ambiguity problems
in correspondence matching. Actually, there exists different strategies to perform cost
fusions. From the perspective of input sizes, strategies vary from fixed, to non-fixed or
near-fixed inputs. Hereafter we discuss fusion variants in details, as are demonstrated
in Fig. 6.2.

Concatenation is employed to stack all reference-target pairs of costs or horizontal
and vertical groups of costs along the channel dimension, where the stacked size of the
former is L×H l×W l×4NC, and the latter is L×H l×W l×2NC. Since the number of
stacked feature channels is equal to that of convolution input filters, the networks then
require the fixed inputs.

Sum computes the sum of all reference-target costs in which each cost is calculated
by the absolute difference between the reference and target view. The sum fusion
produces the fixed-length output L×H l ×W l × C regardless of the input size.

Divide, Concat, Sum (DCS) is designed to fuse costs across multiple-baseline
cost volumes. The cross-hair views are partitioned into (N − 1)/2 divisions of a 3x3
cross shape. For each division, all feature maps are concatenated across the channel
dimension. Finally, we take the sum over all divisions and the fused output has the
dimension L ×H l ×W l × 6C. DCS is flexible in the number of input angular views N .
Note that when N is set to 3, DCS will be same with concatenation fusion.

75



Chapter 6 – Depth Estimation from Wide-baseline 4D Light Fields

Figure 6.3: Epipolar view and stream residual attention. Global max-pooling is used
in pooling to downsize inputs, and each first 1x1x1 convolution is followed by a ReLU
activation.

6.2.3 Cost Aggregation

The cost aggregation is leveraged to refine the fused cost volume since we did not
take into account the potential occlusion issues before. With respect to the occlusion,
we know that the same 3D real-world point that is visible in the reference view might
be occluded by foreground objects in the target view, which leads to difficulties in find-
ing correspondences. This issue might be alleviated in our input cross-hair light fields
since points might be visible in some angular views. Moreover, we are aware that points
are heavily occluded in horizontal stream of views but might be less or not occluded
in vertical streams of views, and vice versa (cf. Fig. 6.6). This is also true for views
in any a stream. It causes troubles to find the correct disparity. To address this issue,
we propose to apply the 3D attention network similar to the 2D attention network used
in semantic segmentation [109] and super-resolution [110] tasks, where the view and
stream residual attention network as shown in Fig. 6.3 will assign automatic weights to
the views in a stream and these two streams. Specifically, at the view attention network,
the pooling is firstly used to extract global features, and then two 1x1x1 3D convolutions
are used for down-sampling and up-sampling the features for the non-linear character-
istic. Afterwards, the softmax operation is used for normalizing the features into the
weights, which is required to assign higher weights to the un-occluded views than oc-
cluded views during the training phase. Likewise, we adapt the multi-view attention to
be the binary-stream network, where the softmax is replaced by the sigmoid operation.

Followed by the attention network, a 3D encoder-decoder network is used to regu-
larize the output of the attention network across the disparity dimension. This naturally
involves large context information, which enforces the smoothness at low texture re-
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gions. This network is built by three 3D convolutions and two transposed convolutions.
Last, the bilinear interpolation is used to resize back to the same spatial resolution of
inputs, and the output has the dimension L×H ×W × 1.

6.2.4 Disparity Regression

The differential soft argmin operator proposed by [89] is employed to obtain the final
disparity map. The soft argmin operator regresses continuous disparities D̃ by calcu-
lating the expectation of weighted disparities, as given in Eq. 6.3,

D̃ =
dmax∑
d̂=dmin

d̂ ∗ P (d̂) (6.3)

where P (d̂) is the weight probability of the pixel at disparity d̂.

6.2.5 Training Loss

We use the smooth L1 loss for the training process, which is less sensitive to outliers
and more possibly gets close to the minima due to the small gradient. The loss is
computed between the predicted disparity d̂ and the ground truth g in patch p as in Eq.
6.4 and Eq. 6.5,

L =
∑
i∈p

SmoothL1(d̂i − gi) (6.4)

SmoothL1(x) =

 0.5x2 |x| ≤ 1
|x| − 0.5 otherwise

(6.5)

6.2.6 Implementation Details

We use randomly cropped patches of size 128x128 for wide-baseline training set WLF
and a smaller size 64x64 for narrow-baseline training set CVIA-HCI (due to its smaller
quantity). Color scaling, 90, 180 and 270 degree rotation, etc are used for increasing
the number of the data samples to the order of millions. We use the rmsprop optimizer
[98] , and start at the learning rate 1e-4, and then divide it by two after 80k iterations
for WLF and after 150k iterations for CVIA-HCI. For each iteration the mini-batch size
is 8 for WLF and 16 for CVIA-HCI respectively. The dmin and dmax in Eq. (6.1) are set
to 0 and 50 for WLF, -4 and 4 for CVIA-HCI respectively. The number of labels L is set
to 128.
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Table 6.2: Comparisons of the bad-0.3, bad-0.6 and parameters for three fusions in
Cost volume generation. The best performance is in bold.

Fusion Parameters Adaptive
Hand-designed

bad-0.3 bad-0.6
Concat 2.5M 7 7.00 3.37
Sum 1.5M X 12.72 5.33
DCS 1.8M X 7.01 3.04

6.2.7 Ablation Study

To validate the effectiveness of two proposed components in the LLF-Net, i.e. the fusion
in Cost volume generation and the attention in Cost aggregation, the ablation studies
are conducted on the Hand-designed validation set that consists of 8 scenes split from
the training set.

Fusion in Cost volume generation

Firstly, we make quantitative comparisons of different variants of fusions in Cost vol-
ume generation on aspects of depth accuracy and model size. Table 6.2 shows the
evaluation results, and compares their adaptive ability of testing various angular reso-
lutions without retraining the new angular resolution inputs. The proposed DCS fusion
gets the best performance by bad-0.6 metric with considerable parameters.

Fig. 6.4 compares the performance results between two fusion ways (Sum and
DCS) from testing variable angular resolution. The DCS fusion always produces more
accurate depths than the Sum fusion. When limiting the angular resolution, the DCS
achieves much better performance, which means that it is more adaptive to limited
input views. Fig. 6.5 illustrates visual comparison results from these two fusions. The
DCS fusion witnesses the degradation in performance, but this is much less than that
from the Sum fusion where artifacts occur in the disparity map.

Attention networks in Cost aggregation

To test the necessity of the proposed attention networks, Table 6.3 compares the quan-
titative evaluation results with and without using them. We can find that using the at-
tention networks considerably improves the quality of estimated disparity maps.

Fig. 6.6 shows a visual comparison of disparity estimation without and with using
attention networks. For a pixel in the selected patch P (see Fig. 6.6 (b)), it is occluded
in all horizontal views, but it is visible in all vertical views. With the attention networks
for selecting more meaningful views, the disparities of pixels around occlusion regions
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Figure 6.4: Comparisons of DCS fusion and Sum fusion on flexible angular inputs. The
number in the vertical axis depicts the percentage of the bad pixels.

Central view Sum, 9x9
Bad-0.6: 5.66

Sum, 7x7
Bad-0.6: 5.30

Sum, 5x5
Bad-0.6: 19.15

GT DCS, 9x9
Bad-0.6: 2.85

DCS, 7x7
Bad-0.6: 4.01

DCS, 5x5
Bad-0.6: 5.30

Figure 6.5: Visual comparisons of DCS fusion and Sum fusion on flexible angular in-
puts.
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Table 6.3: Comparisons of the depth accuracy and parameters with and without atten-
tion block in Cost aggregation.

Module Parameters
Hand-designed

bad-0.3 bad-0.6
W/o Attention 1.79 M 7.01 3.04
With Attention 1.82 M 6.25 2.72

Table 6.4: Training dataset scheduling.

Dataset
Hand-designed

bad-0.3 bad-0.6
Hand-designed 10.18 5.53

Hand-designed+Flying-objects 6.25 2.72

are better estimated and the sharp boundaries at depth discontinuities are better pre-
served, as shown in Fig. 6.6 (c-e).

Dataset Scheduling

To check the necessity of the Flying-Object subset in the proposed WLF dataset, we
performed ablation experiments under two different training set scheduling schemes.
As is shown in Table 6.4, the qualitative performance with Flying-objects (with large-
scale training frames) in training is improved by a large margin.

6.3 Exemplar Results

Fig. 6.7 demonstrates the exemplar results of the proposed method, which is tested on
the 4D light field dataset with the wide-baseline and narrow-baseline respectively. We
clearly see from this figure that the proposed network LLF-Net shows high capabilities
in capturing the fine details at occlusion regions, and meanwhile have few noticeable
artifacts in the foreground and even textureless regions. The more (comparative) ex-
periments will be also carried on, and the detailed results will be also shown in the
Chapter 7.
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(a) Central view

(b) Horizontal and vertical views

(c) GT

(d) W/o att

(e) With att

Figure 6.6: Visual comparisons of depth estimation results without and with attention
block. (a) central view with a selected patch P in pink bounding box, (b) the patch P
(the intersection) and the corresponding patches in the horizontal and vertical views,
where the red point indicates the pixel in the central view is occluded in the current view,
and the green point means visible in the current view, (c) the ground truth disparity of
patch P , (d) the estimated disparity map without attention block and (e) the estimated
disparity map with attention block (best viewed in color).
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Central view GT LLF-Net

Figure 6.7: An example of depth estimation results on the Desk, KitchenTable and Dino
scenes respectively.



CHAPTER 7

EXPERIMENTS

In this chapter, the evaluations are made on the 3D light field datasets and the 4D light
field datasets respectively. For the latter, a common data set mentioned in Chapter 2 is
used as our test set, and comparative experiments among the various proposed meth-
ods in the Part I and II, are made in a coherent way. For the assessment, two metrics
are adopted: a quantitative metric (MSE and Bad pixel) for the synthetic datasets, and
a qualitative metric for the real-world datasets.

7.1 Experimental Environment

The whole experiments are carried on a Windows PC equipped with an Intel i7 3.6Ghz
CPU with 32GB memory. The proposed traditional methods R3DE and S-R4DE, which
are described in Chapters 3 and 4 respectively, are both implemented in C++, and run
on the CPU. The proposed CNN-based networks HFNet, MANet and LLF-Net, which
are described in Chapters 5, 5 and 6) respectively, are all implemented in Tensorflow
[111]. The training and the inference of the proposed neural networks are both run on
a Nvidia GTX 1080Ti GPU with 11GB memory and the same CPU.

7.2 3D Light Fields

The evaluation is performed on the Disney dataset to verify the effectiveness of the
proposed method R3DE targeting the 3D light fields. The proposed method is made
comparisons with the state-of-the-art depth estimation methods FTC [19] and LAGC
[47], which are also targeting the 3D light fields. Fig. 7.1 demonstrates the visual com-
parison results of the central view in the light fields. The R3DE shows less sensitive to
homogeneous regions when compared with the FTC, while retaining the more sharp
boundaries accuracy at occlusion regions in contrast with the LAGC. In general, the
proposed R3DE is capable of to estimating high quality depth for the sparse light fields
with the wide-baseline.
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The center view FTC LAGC R3DE

Figure 7.1: Visual comparisons of depth maps with state-of-the-art methods. The scene
from the top to the bottom: Statue, Mansion, and Couch.

7.3 4D Light Fields

To verify the effectiveness of the proposed depth estimation methods for the 4D light
fields, the evaluation is performed on the popular 4D light field datasets in the literature,
being composed of the narrow-baseline datasets and wide-baseline datasets.

7.3.1 Performance on Narrow-baseline Datasets

The proposed methods for evaluations consist of one traditional method S-R4DE, and
three CNN-based methods HFNet, MANet, and LLF-Net. We compare all the proposed
methods with recent state-of-the-art depth estimation methods, comprising of tradi-
tional light field depth estimation methods (LF_OCC [55], LF [54] and RPRF [61]), and
CNN-based methods (EPINET [68] and LBDE-E [31]).

Next we will show the performance comparisons, being comprised of the accuracy
and runtime, the model performance, and qualitative (visual) comparisons.

Accuracy Comparison

Since the EPINET [68] sacrifices the 11-pixels length at each border of the image
in the output resolution, we exclude these pixels in ground truth when evaluating its
performance for an available/fair comparison.
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Comparison of traditional methods: Table 7.1 and Table 7.2 illustrate that the
proposed traditional method S-R4DE achieves the highest accuracy of depth maps on
the 4D narrow-baseline testing dataset when compared with the traditional methods
LF_OCC, LF and RPRF. The S-R4DE surpass 7.7% and 20.7% on the average of
bad-0.1 and bad-0.07 error respectively, compared with the second RPRF.

Comparison of CNN-based methods: From Table. 7.1 and Table 7.2, we see that
the proposed MANet and the proposed LLF-Net outperforms all of the other state-
of-the-art methods in terms of average MSE and bad pixel percentages. The MANet
achieves 34.7% MSE gain, and surpasses by 14.5% on the bad-0.1 error, compared
with the EPINET. We also see that the proposed LLF-Net improves the mse and makes
a decrease by a large percentage in bad-0.1, when compared with the EPINET. The
LLF-Net is worse than the MANet in MSE but better in bad-0.1. Besides, the LLF-Net
achieves similar accuracy with the EPINET in bad-0.07 metric.

Traditional methods vs CNN-based methods: From Table. 7.1 and Table 7.2, it
is clear to notice that most of the CNN-based methods accordantly produce the lower
depth errors than the traditional methods on this testing set. The proposed MANet and
the proposed LLF-Net demonstrate a large margin of improvement in comparison with
the proposed S-R4DE thanks to a large number of training patch samples.

Runtime Comparison

We further compare the computational efficiency of the proposed traditional method
and the proposed CNN-based methods with the aforementioned methods in Accuracy
Comparison. We give the results tested on the CVIA-HCI dataset in Table 7.3 and
Table 7.4 for such comparisons. The reason why the runtime comparison is divided
into two comparisons is that the traditional methods only report the elapsed time by
CPU and the CNN-based methods usually report the GPU runtime, since the GPU is
able to be used for accelerations in CNN-based methods but this is not always the case
in traditional methods. Here, for methods [54, 55, 61, 68], we directly use the runtime
values from the CVIA-HCI benchmark website and the others from the reported papers.
Note that the traditional methods are all run on the CPU. As is given in Table 7.3, the
proposed S-R4DE does not run slowly though none of speed optimizations is used in
the implementation. Table 7.4 shows that the proposed LLF-Net runs the fastest (less
than 0.5s per frame) among the CNN-based methods, about 3 times faster than the
EPINET (also using a single Nvidia GTX 1080Ti GPU), which seems more practical in
real applications. Further, the proposed MANet runs the second fastest among these
methods.
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Table 7.1: Comparison results of MSE on the CVIA-HCI and HCI test scenes. The
lowest MSE (highest accuracy) is highlighted in bold for each line.

Scenes
Traditional methods CNN-based methods

LF_OCC LF MWBM S-R4DE RPRF FDE EPINET LBDE-E HFNet MANet LLF-Net

C
V

IA
-H

C
I

Backgammon 22.78 13.01 - 6.50 5.58 10.35 3.63 14.48 3.40 4.24 8.06
Boxes 9.59 18.84 - 9.43 8.55 12.10 6.24 10.30 4.32 5.21 8.02
Cotton 1.07 9.19 - 5.00 0.81 0.65 0.19 0.72 0.31 0.32 0.55
Dino 0.94 1.16 - 0.88 0.49 0.62 0.17 0.55 0.60 0.20 0.40
Dots 3.19 5.68 - 25.44 21.21 4.05 1.64 23.07 4.37 4.44 6.16

Pyramids 0.08 0.27 - 0.02 0.06 0.02 0.01 0.02 0.03 0.02 0.03
Sideboard 2.07 5.09 - 1.63 1.34 1.85 0.80 1.05 1.22 0.70 1.17

Stripes 7.94 17.45 - 4.19 7.90 1.37 0.95 3.41 1.58 1.56 2.39

H
C

I

Buddha 0.91 1.13 0.53 0.33 0.28 - 0.36 0.41 0.95 0.27 0.37
Buddha2 1.18 0.45 0.55 0.50 0.75 - 6.64 0.26 1.36 1.37 0.41
Horses 1.36 1.70 1.06 0.52 0.50 - 7.35 0.79 7.01 4.76 1.38

Medieval 1.15 1.40 0.79 0.98 0.79 - 2.28 0.74 1.00 0.77 0.64
MonasRoom 0.73 0.66 0.65 0.52 0.47 - 1.33 0.39 0.52 0.40 0.34

Papillon 1.00 5.98 1.98 0.77 0.66 - 6.12 0.58 1.46 0.91 0.54
StillLife 4.29 2.10 2.21 1.06 1.96 - 2.43 1.07 3.62 1.06 1.50

Average 3.89 5.61 - 3.42 3.37 - 2.68 3.86 2.12 1.75 2.13
Median 1.18 2.10 - 0.98 0.79 - 1.64 0.74 1.36 0.91 0.64

Note: The results of all the methods on CVIA-HCI are got from the CVIA-HCI benchmark website, except
those of the LBDE-E which are provided by the authors. The results on HCI are reported in [61], except
those of the EPINET which are obtained by running their public code. Those of the LBDE-E are provided
by authors.

Table 7.2: Comparison results of average bad pixel percentage on the CVIA-HCI and
HCI test scenes. The lowest bad pixel percentage value (highest accuracy) is high-
lighted in bold for each line.

Method
Traditional methods CNN-based methods

LF_OCC LF S-R4DE RPRF EPINET LBDE-E HFNet MANet LLF-Net

bad-0.1 17.89 10.74 9.53 10.32 9.06 9.86 17.89 7.75 6.60
bad-0.07 30.16 16.20 12.63 15.93 10.54 13.61 23.58 10.34 10.66
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Table 7.3: Comparison results of running time by traditional methods on CVIA-HCI test
scenes.

Method
Traditional methods

LF_OCC LF S_R4DE RPRF

Device CPU CPU CPU CPU

Time(s) 1.05e4 1.01e4 78 34.53

Table 7.4: Comparison results of running time by CNN-based methods on CVIA-HCI
test scenes.

Method
CNN-based methods

EPINET LBDE-E HFNet MANet LLF-Net

Device GPU GPU GPU GPU GPU

Time(s) 1.98 1.92 5.28 0.73 0.46

Model Comparison

At the same time, we compare the performance of CNN-based models, including the
number of parameters, training time and training fashion. As shown in Table 7.5, all
CNNs are end-to-end trained except LBDE-E, which might fall into the sub-optimal
mimina during the training. We notice from the table that the proposed MANet has the
fewest parameters, about 3 times fewer parameters than the EPINET, and 125 times
fewer than LBDE-E. The proposed LLF-Net has the similar few parameters to that of
MANet, but just require less than two days for training the same training set with the
EPINET and the proposed MANet, which are trained more than five days and two days
respectively.

Table 7.5: Performance comparison results on aspect of model parameters and training
days.

Method End-to-end trained Parameters (M) Training days

EPINET [68] 3 5.1 5-6
LBDE-E [31] 7 198.8 ≈ 2

HFNet 3 19.5 ≈ 2
MANet 3 1.6 ≈ 2.5
LLF-Net 3 1.8 ≈ 1.6
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Visual Comparison

Synthetic datasets Fig. 7.2 shows the proposed visual comparisons against the ground
truth and the state-of-the-arts on the CVIA-HCI and HCI datasets. From this compar-
ison, we clearly observe that the proposed methods produces closer depth maps to
the ground truth. The proposed S-R4DE, MANet and LLF-Net perform much better at
occlusion regions, preserving depth discontinuity (cf. the region between the buddha
and the dice in "Buddha", the region between the ball and the raspberry in "StillLife",
the grid in "Boxes" and the left-bottom corner in "Cotton".). We also notice that the
proposed MANet is a bit better for recovering fine details around occlusion regions.
Moreover, the depth maps estimated by MANet have few artifacts than the S-R4DE
and LLF-Net.

Real-world datasets Fig. 7.3 shows the proposed visual comparisons against the
state-of-the-arts on the EPFL-Lytro dataset. The depth maps from the proposed MANet
and LLF-Net still achieve the higher quality of depth maps than those from the state-
of-the-art methods, especially better in recovering the details around occlusion regions
(e.g., the chain link fences or empty circles). In general, the proposed LLF-Net is ca-
pable of retaining the more sharp boundaries than the others, and recovering depth
of the smooth surface with less noise. Whereas, the proposed MANet does not suffer
from the few black holes that occur in the LLF-Net.

7.3.2 Performance on Wide-baseline Datasets

To verify the effectiveness of the proposed method on wide-baseline light field datasets,
we conduct experiments on the synthetic WLF dataset and real-world Google [26] and
ULB_Unicorn [21] datasets. We compare the proposed S-R4DE and LLF-Net with
recent state-of-the-art depth estimation methods, comprising of traditional light field
depth estimation methods LF_OCC [55] and RPRF [61], CNN-based methods EPINET
[68], EPI-Shift [70] and LBDE-E [31]. Note that EPINET [68] is originally trained on
narrow-baseline datasets and fails to infer depths on wide-baseline datasets, therefore
we re-trained it using their public source code 1, and denote it as EPINET_T.

Next we will show the performance comparisons, being comprised of the accuracy,
adaptive input ability and qualitative (visual) comparisons.

Accuracy Comparison

Table 7.6 shows the quantitative comparisons on the four exemplar scenes from Hand-
designed test set of WLF dataset. When compared with state-of-the-art methods, the
proposed LLF-Net achieves the lowest bad-0.3 and bad-0.6 errors in all four scenes.

1. https://github.com/chshin10/epinet
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Figure 7.2: Visual comparisons of synthetic datasets. For each scene, the image from
the left-top to the right-bottom corresponds to the Central view, LF_OCC, LF, S-R4DE,
RPRF, GT, EPINET, LBDE-E, MANet, LLF-Net respectively.
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Figure 7.3: Visual comparisons of real-world datasets. For each scene, the image from
the left-top to the right-bottom corresponds to the Central view, RPRF, EPINET, LFBE-
E, HFNet, MANet, LLF-Net.
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Besideds, the average of the MSE and Bad Pixel over the whole test set of WLF are
calculated and reported in Table 7.7. It also turns out that the proposed end-to-end
trained model (with the fewest parameters) far surpasses the state-of-the-arts, produc-
ing the lowest average errors in all metrics.

Table 7.6: Bad pixel error percentages of the four exemplar scenes of the WLF dataset
against the ground truth.

Scene
Buddha2 Furniture2 Perikles Sideboards

bad-0.3 bad-0.6 bad-0.3 bad-0.6 bad-0.3 bad-0.6 bad-0.3 bad-0.6

LF_OCC [55] 98.41 88.64 97.96 49.75 98.49 92.93 97.01 73.67

RPRF [61] 11.10 0.86 17.11 1.16 14.82 1.26 31.15 25.46

EPINET [68] 100 100 100 100 100 100 100 100

EPINET_T [68] 97.65 92.05 96.40 88.27 97.39 94.79 95.79 91.63

EPI-Shift [70] 22.22 4.51 22.09 6.57 48.81 9.36 50.67 38.16

LBDE-E [31] 14.01 7.72 16.92 8.18 46.20 32.78 45.89 39.23

LLF-Net 1.44 0.74 1.93 1.01 3.30 0.58 21.17 14.82

Table 7.7: Performance comparison results on the WLF test set. This test set com-
prises of the subset Hand-designed, containing 12 frames/scenes in total. The aver-
age errors of all frames are listed and the best performance is in bold. The quantity of
parameters of CNN-based methods is in Million (M).

Method Parameters End-to-end trained
Hand-designed

mse bad-0.15 bad-0.3 bad-0.6 bad-1

LF_OCC [55] - - 13.56 98.86 97.54 78.63 40.86

RPRF [61] - - 1.70 40.43 16.01 5.43 4.70

EPINET [68] 5.1 3 458.13 100 100 100 100

EPINET_T [68] 5.1 3 86.89 98.56 97.10 94.11 89.92

EPI-Shift [70] 31.6 3 20.76 61.55 35.95 14.65 12.59

LBDE-E [31] 198.8 7 11.12 36.86 29.02 20.86 16.09

LLF-Net 1.8 3 0.93 15.04 7.05 3.95 2.80
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Figure 7.4: Performance comparisons results from testing the various angular light field
inputs. The number in the vertical axis depicts the percentage of the bad pixels.

Adaptive Inputs Comparison

For the CNN-based light field depth estimation methods in the literature, the angular
shape of inputs during inference are typically required to be same with that of the
inputs used in the training stage. As with the proposed LLF-Net, it supports the various
angular inputs thanks to the proposed cost volume using DCS fusion. We thus compare
the proposed performance to the CNN-based method LBDE-E that also allows adaptive
angular light field inputs (9x9, 7x7 and 5x5 light fields) during inference. Fig. 7.4 shows
that when the angular resolution of light fields is lower, the performance of our model
that is trained from 9x9 light field inputs gradually degrades but is still much better than
LBDE-E [31].

Visual Comparison

Synthetic Dataset In Fig. 7.5, visual comparisons of the four above-mentioned scenes
are given, in which each column for each scene displays the central view, the ground
truth and the estimated depth maps. It is clear that our estimated depth maps are all
closer to the ground truth, where the depth pixels at textureless regions and occlusion
regions are recovered with the high fidelity. In contrast with the proposed LLF-Net, the
estimated depth maps from LF_OCC are noisy, those from RPRF look over-smoothed
and have quantification errors, both EPINET and EPINET_T fail to predict depths, EPI-
Shift [70] and LBDE-E [31] both seem not able to handle the foreground well. Whereas,
the proposed LLF-Net is not perfect and revealed its weak point in predicting the depth
at the heavy occlusion regions (cf. the "Sideboards"), but this is similarly found in the
occlusion-aware method LF_OCC, and more seriously found in all other methods.
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Figure 7.5: Visual comparison results of the scenes from the WLF dataset: the central
view and ground truth disparity map are shown in the first and second row, and the
other rows show the predicted depth maps from state-of-the-art respectively.
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Real-world Dataset Fig. 7.6 demonstrates visual comparisons on the Google (5x5
light fields) and ULB_Unicorn (9x9 light fields) test scenes respectively. We exclude
[70] for this comparison since the models that it provided only allowed 9x9 light field
inputs. Though the proposed CNN LLF-Net is a lightweight CNN, it is capable of pro-
ducing the more accurate depth maps in real-world scenes when comparing to the
other CNN-based methods. Specifically, for both scenes, EPINET [68] is still not able
to predict depths, similar to their results from synthetic datasets. Ours have few no-
ticeable artifacts in the foreground than that in LBDE-E [31]. When we compare the
proposed traditional method S-R4DE with the other traditional methods, the S-R4DE
has fewer artifacts than LF_OCC [55] and have fewer over-smoothness issues at occlu-
sion regions in RPRF [61]. When making comparisons between the proposed S-R4DE
and LLF-Net, the performance seems similar, but the LLF-Net seems better in keeping
sharp boundaries around occlusion regions. Besides we clearly see from the back-
ground of "Path" scene, the LLF-Net is able to capture more correct depths than the
other methods, e.g., more depth are correctly recovered on persons.
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Figure 7.6: Visual comparison results of wide-baseline real-world datasets: the central
view and colored disparity map are shown (best viewed in color).
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7.3.3 Baseline

In this section, we evaluate the proposed S-R4DE since it was proposed being inde-
pendent of the baseline. A part of scenes in the narrow-baseline dataset are utilized
for experiments. The density and baseline are changed by skipping a multiply of 2
views from the 9x9 views in both angular directions (i.e., the 5x5 and 3x3 light field
herein). The MSE is calculated for the 5x5 and 3x3 light fields and the proposed results
are also compared with the state-of-the-art references (LF_OCC and LF), which are
shown in Fig. 7.7. It describes that the proposed method mostly achieves the lowest
errors and exhibits the robustness to the density or baseline of light fields. Fig. 7.8 il-
lustrate the visual comparision results on the ’StillLife’ scene respectively. We observe
that the quality of the depth map from LF_OCC [55] degrades gradually with a smaller
number of light field views. Whereas the LF [54] decreases a bit but more than that of
the proposed method. Moreover, the proposed S-R4DE is not over-smoothed as LF
[54]. Therefore the proposed S-R4DE is scalable to the density and baseline of the
light fields.
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Proposed S-R4DE

5x5

3x3

Figure 7.7: The MSEs of the proposed framework S-R4DE are compared with the
state-of-the-art references on the 5x5 and 3x3 light field respectively. The lowest value
means the highest accuracy.
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Figure 7.8: Depth estimation results on ’StillLife’. In contrast, our depth map is robust
around the surface of the ball.





CHAPTER 8

CONCLUSION

We have presented new methods for depth estimation from the 3D light fields to 4D
light fields, having achieved the state-of-the-art performance in a range of settings.
The proposed methods have been made quantitative comparisons with previous works,
and 1) experimental results on the 4D narrow-baseline datasets show that the MANet
produces the lowest errors among all methods, achieving the 34.7% MSE gain, and
surpasses by 14.5% on the bad-0.1 error, compared with the EPINET; 2) experimental
results on the 4D wide-baseline datasets show that the S-R4DE and LLF-Net are capa-
ble of producing high quality depth maps. From the quantitative comparisons we learn
that the LLF-Net far surpasses previous works on the average of the MSE and bad pixel
over the whole test set of WLF, achieving the 45.3% MSE gain and the 56.0% bad-0.3
gain when comparing to the RPRF. Furthermore, the MANet and LLF-Net are the two
most lightweight models and produce the depth map with the two lowest computational
time (0.73s and 0.46s respectively on a consumer GPU) among the compared meth-
ods. Consequently, we suggest the potential readers to use the MANet and LLF-Net
for the scenario that cares about the runtime, and use the S-R4DE and the LLF-Net
for the scenario that the baseline of light field is uncertain or the high depth accuracy
is in demand. Last but not least, we have presented a new large-scale synthetic 4D
light field datasets with the wide-baseline, which can serve to the community for further
training or comparing the deep learning-based models.

Next, we will make a summary of the thesis in Sec 8.1, and describe what the
promising future works will be in Sec 8.2.

8.1 Summary

The thesis is focused on the depth estimation from light field images, which mainly
predict the disparities (or depths) of the central view by searching the offset of cor-
responding points in other views. We have successively presented a new dataset, a
traditional method for 3D light field depth estimation, a traditional method and three
CNN-based methods for 4D light field depth estimation as follows:

In Chapter 2, a new large-scale synthetic 4D light field datasets with the wide-
baseline is presented, aiming at training or comparing the potential depth estimation
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methods for the light fields.

In Chapter 3, the traditional method is proposed for estimating depths from sparse
sampled 3D light fields with the wide-baseline. The initial disparity map is firstly gener-
ated by the local cost calculation, and then the propagation with confidence metric and
the optimization is applied to refine the initial prediction. For the initial disparity compu-
tation, a proper combination of the image decomposition into the edge and non-edge
region, the relative gradient and bivariate kernel density function are utilized.

Considering the 4D light fields have the richer angular information against the tex-
tureless and occlusion issues, in Chapter 4, we extend the traditional method in Chap-
ter 3 by taking full advantage of the more angular views in the 4D light fields. This
extended method is built as an occlusion-aware scalable framework, where multiple
edge cues are leveraged to improve the robustness of occlusion detection.

In Chapter 5, we put emphasis on CNN-based methods for the 4D light fields
with the narrow-baseline. Two proposed CNN models are presented. The first pro-
posed HFNet predicts the disparity by learning the hybrid feature representations from
the Epipolar-Plane-Image and light field sub-aperture images. The second proposed
MANet explores the multi-scale features from light field sub-aperture images, based on
the idea that the high-scale features can keep more details and the low-scale features
can bring in more context information.

In Chapter 6, the proposed network LLF-Net is motivated by the observation that ex-
isting deep-learning based networks perform well on the 4D narrow-baseline data, but
not on the 4D wide-baseline data. The state-of-the-art methods are also heavyweight
(with huge parameters), which are not practical. The proposed network LLF-Net is built
by an incorporated cost volume and an attention module with very few parameters.

In Chapter 7, evaluations are firstly made on the 3D light field datasets, and the vi-
sual comparison shows that the superior depth estimation results of the proposed tra-
ditional method R3DE over state-of-the-art methods. Secondly, evaluations are made
on the 4D narrow-baseline datasets, and the experimental results show that the pro-
posed traditional method S-R4DE and CNN-based methods HFNet, MANet and LLF-
Net achieve the state-of-the-art accuracy, in which the MANet and LLF-Net are the
two most lightweight models and produce the depth map with the lowest computational
overhead among the compared methods. Thirdly, the S-R4DE and LLF-Net are as-
sessed on the 4D wide-baseline datasets, and experimental results demonstrate that
the two proposed methods outperform previous works in depth accuracy. At last, the
S-R4DE is proved to be scalable to the densities and baselines of light fields, which
could attract more interests, especially the industrial applications that require small
computational budgets for reconstructing accurate depths.
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8.2 Future Work

Though our works have made progress toward a wider range of depth reconstruction
applications from light fields, we believe that there are some promising future direc-
tions for further improvements, addressing the more challenging concerns and that are
opened up from our explorations. Next, we list the promising future works in a prefer-
ence order that we suggest.

Semantic cue: until now, a number of cues, including the defocus, focal stack,
EPI, SCAM, boundary (or edge) cues, etc. are investigated to improve the quality of
depth estimation from light fields. The so-large number of cues are indeed effective in
recovering the depths at most of the everyday imaging objects or background regions.
However, these cues might be invalid in the large textureless regions, e.g. the sky and
the wall. The semantic cue/prior (separating the object and background) is suggested
to be explored in traditional light field depth estimation (e.g., integrating this cue into
the global optimization [112]) or embedding this into the deep CNNs (e.g. the proposed
MANet or LLF-Net) [113, 114].

Occlusion: the light fields are advanced by the high potentials against the occlu-
sion. The occlusion is explicitly studied in Chapters 3 and 4, and has also been studied
for a long time in the traditional depth estimation methods. However, this issue is not
considered in the deep learning-based methods except that the LLF-Net made an at-
tempt by using the attention mechanism to handle the occlusion. The edge or bound-
ary cues, or the specific features learned from the occlusion dataset [115] are possibly
used in the future works.

Transfer learning: the CNNs proposed by the previous methods and the proposed
methods are trained from scratch on the public (or proposed) light field datasets, which
typically takes a long time for training (though we have reduced the training time in the
proposed LLF-Net to the shortest time (1.6 days) among state-of-the-arts). Moreover,
the scale of light field datasets is not large enough, which might pose a negative impact
on the depth accuracy and the generality of the trained models. Actually, it is arduous
and expensive to increase the light field data since the calibration and rectification for
the real data or the 3D models for the synthetic data are extra required. Therefore,
there might be a good attempt to use an advanced technique, i.e. transfer learning, as
a complement for the shortcomings. This technique is capable of speeding up training
on data with the similar domain, which has played an important role in many vision
tasks. For the light fields, we firstly replace the low-level and/or the middle level image
features with the features learned/pre-trained from a large amount of data samples,
e.g. pre-trained from a basic task image recognition, and then train the model on the
task of depth estimation from light fields.

Training CNNs from real-world datasets: existing CNN models train the network
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mainly from synthetic light field datasets with the ground truth disparities, and infer the
real-world datasets with the trained models. However, there might exist the gaps be-
tween the synthetic and real-world scenes even though the existing synthetic datasets
are designed to imitate various challenging cases in real-world scenes. As a result, the
gaps possibly influence the generalization accuracy. Training the deep network from
real-world datasets directly is a very promising way, however, it is hard to obtain the
ground truths for the real-world light field datasets. Thus, training on the real world
datasets in an unsupervised manner or by a generative model is a potential future
work.

Temporal information and consistency: most of light field depth estimation meth-
ods perform well on the light field image datasets, which only consider the spatial infor-
mation. However, the light field video datasets are of importance and contain motions,
but the temporal information is rarely investigated and the consistency among the depth
maps of the adjacent frames is less paid attention to. Further research for adopting the
temporal information and maintaining the consistency among the adjacent frames is a
potential interesting field.

Metrics: in the manuscript and previous works, the objective metrics, including the
mean square error (MSE) and bad pixel metrics, are often utilized for assessing the
quality of depth maps. Actually, when the depth map has a very low MSE or bad pixel
percentage, the quality is indeed very high with few/negligible artifacts, and the artifacts
will be gone if either of them is much lower. However, there exists some scenes that
are not so well estimated in all existing works that the MSE or bad pixels are not low.
Though the value is high, what the artifacts are and what cause the artifacts can not
be unknown from the reported value. For better assessment or recommendation of the
algorithms, the metric taking into account the Human Visual System characteristics or
the requirement of the potential application needs to be addressed in the future.

Real-time depth estimation from light fields: although the proposed CNNs for
light field depth estimation achieve high efficiency in the literature, the existed methods
still suffer from computational burdens, e.g., around two frames per second (by the
proposed LLF-Net), which is far from reaching the real time processing. The reduction
of the computational complexity is a promising research direction which could meet the
needs of more realistic real-world applications.
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APPENDICES

Graph cuts

Figure 8.1: Example of a cut on a graph G

The Markov random field-based energy function in Eq. 4.6 is solved using graph
cuts. With respect to the graph cuts, this technique is proposed by [116] for the first
time to solve binary label optimization problem, in which the energy minimization is
solved by computing the minimum cut or the maximum flow in a directed graph.

Let G =< V,E > be a directed graph, which consists of two terminals (the source
s and the sink t), a set of vertices V (pixels in the manuscript), and edges E between
the two vertices. For edges, there exists two types of links: n-links and t-links, where
the n-links (see black lines in Fig. 8.1) indicate the edges between the neighboring
pixels and the t-links (see red and blue lines in Fig. 8.1) indicate the edges between
the pixels and terminals (labels). The cost of a n-link represents the penalty between
the neighboring pixels, corresponding to the smoothness term in the energy function
(in our case, this is formulated as the weighted label difference, cf. Eq. 4.8 and Eq.
4.9). The cost of a t-link represents the penalty of one candidate label assigned to the
pixel, corresponding to the data term (this is formulated as the aggregated local cost,
cf. Eq. 4.1 and Eq. 4.2) in the energy function.

To minimize the energy is done by finding the cut with the smallest cost for the
minimum cut on the graph. For a (s-t cut), the vertices will be cut into two disjoint sets
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(S and T ), as is shown in Fig. 8.1. The cost of the cut is computed as the sum of the
weights of the edges that go from the source to the sink. Note that the minimum cut
can be alternatively computed by the efficient maximum flow algorithm since it could
be equivalent to the maximum flow according to the theorem Ford and Fulkerson [117].

Here, the alpha-expansion [118], one of the effective expansion move algorithms,
is iteratively used for minimizing the multi-label (or disparity) energy Eq. 4.6. Though it
is an approximate solution, a strong local minimum could be found. Specifically, for a
candidate label (disparity) α in a fixed order, a single α-expansion moves from this label
to another candidate label, and if the decrease of the energy occurs, then this label is
assigned to the new candidate label; otherwise not. This similar step is repeated for all
candidate labels, and if there is no α move that decreases the energy, the computation
will be terminated.
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ACRONYMS

BF Bilateral Filtering.
BKDE Bivariate kernel density estimation.
BN Bilateral normalization.

CNN Convolutional neural network.

EPI Epipolar plane image.

GF Guided Filtering.
GT Ground Truth.

KDE Kernel density estimation.

MAE Mean Absolute Error.
MRF Markov Random Field.
MSE Mean Square Error.
MVS Multi-view Stereo.

OBD Occlusion Boundary Detection.
OPD Occluded Pixel Detection.

.

SCAM Surface camera.
SURF Speeded up robust features.
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