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Abstract

One-nucleon halo nuclei are exotic nuclei which can be seen as a core around which
orbits a loosely-bound valence nucleon. They are usually studied through reactions such
as elastic scattering and breakup. The ratio method has been developed as a tool to study
one-neutron halo nuclei at high energies. It consists of the ratio of angular cross sections,
breakup and elastic scattering, which removes most of the sensitivity to the reaction
mechanism and to the reaction model. In the simple recoil excitation and breakup (REB)
model, the ratio simplifies to a form factor dependent solely on the wave function of the
projectile. By measuring this observable and comparing it to the REB form factor, i.e. in
the ratio method, more detailed information on the structure of the halo could be obtained.
For neutron-halo nuclei at high energy, the ratio observable obtained from accurate CDCC
and DEA theoretical calculations follows its REB prediction. I study the extension of this
method to lower energies of the reaction which could make the measurement appropriate
to facilities such as SPIRAL2 (GANIL, Caen, France) and ReA12 at FRIB (Michigan
State University) and to proton halos. This is done by comparing the REB form factor to
dynamical calculations of the ratio. The reactions investigated are the reaction of 11Be, the
archetypical one-neutron halo nucleus, on 12C, 40Ca and 208Pb targets at 20 MeV/nucleon
and of 8B, the archetypical one-proton halo nucleus, on 12C, 58Ni and 208Pb targets at
44 MeV/nucleon.

For these reactions, the adiabatic assumption is no longer valid due to the effect of
the Coulomb interaction. This effect is mainly visible at forward angle for 11Be and is
aggravated for 8B by the fact that the halo is charged. The ratio works less well than
for neutron-halos at intermediate and high energies. Nevertheless, the ratio is shown to
be very sensitive to the orbital angular momentum l0 in which the halo is bound and
its binding energy E0, i.e. the single-particle structure of the projectile. Variations of l0
and E0 induce visible changes in shape and in magnitude (up to several orders) of the
ratio. Also, the agreement of the ratio with its REB prediction is best when the projectile
is loosely-bound and for low l0, i.e. for s and p waves. The validity of the method is
not affected by the use of energy ranges—or bins— in the projectile continuum. These
tend to increase the cross section without changing the agreement of the ratio with its
REB prediction. The applicability of the method is finally explored at high energy for
proton-rich nuclei 17F, 25Al and 27P. I show that the ratio method works the latter since
this nucleus is bound by a mere 0.870 MeV in the s-wave. For the other nuclei, although
the agreement of the ratio with its REB prediction is less good than for neutron-halo
nuclei at high energy, it still provides estimates of nuclear-structure features, such as l0
and E0 and could be applied in what can be called an approximate application of the
ratio method.

Heavy nuclei exhibit a neutron skin, i.e. a thin layer around the nucleus where only
neutrons are found. The thickness of the skin is highly correlated with the slope of
the symmetry energy. The process of coherent neutral-pion photoproduction is used to
extract the nuclear density and hence the neutron-skin thickness of heavy nuclei. In order
to analyse recent data on the photoproduction on 12C, 40,48Ca, 116, 120, 124Sn and 208Pb, I
build a reaction code. My model uses the formalism of Kerman, McManus and Thaler
(KMT) which allows to build the photoproduction matrix on a nucleus from the ones
describing the elementary process on a single nucleon. Within the impulse approximation,



the photoproduction is seen as the coherent sum of the photoproduction on each of the
nucleons. In the plane wave impulse approximation (PWIA), no rescattering of the pion
is considered after its production and the cross section is directly proportional to the
Fourier transform of the density. Such process is taken into account at the distorted wave
impulse approximation (DWIA) by considering a potential simulating the pion-nucleus
interaction and built from the KMT formalism.

The agreement of my model with the data is good, especially for 208Pb. The distortion
has a significant impact on the photoproduction process. The sensitivity of the process to
the density of the target is analysed by performing the calculations with several different
densities calculated in different structure models. The distortion has the effect of deterio-
rating this sensitivity. In the particular case of a 208Pb target, the impact of variations of
the neutron-skin thickness ∆rnp of around 0.1 fm on the photoproduction cross section is
ten times smaller than the size of the error bars on the experimental data. These results,
although less dramatic, hold for the tin targets, for which preliminary data exists. In the
light of these results, the coherent neutral-pion photoproduction process does not seem
to be suited in the study of the neutron-skin thickness. This conclusion goes in contrast
to the results of recent measurements on 208Pb, for which the method was shown to be
sensitive to fine details of the density.

Keywords: Halo nuclei, ratio method, proton-rich nuclei, elastic scattering, breakup,
CDCC, DEA, REB, neutron nkin, symmetry energy, coherent pion photoproduction, pion-
nucleus potential, Kerman-McManus-Thaler formalism, impulse approximation, PWIA,
DWIA.
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Introduction
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Nuclear physics is the branch of physics that studies the nucleus, this object around
which revolve the electrons to form the atom. About five orders of magnitude smaller

than the atom, the nucleus is much denser. Thanks to Marsden and Geiger and their
famous gold-foil experiment at the beginning of the 20th century, we know the nucleus
consists in a compact cluster of nucleons: the charged protons and the neutral neutrons. It
is characterized by its mass number A, the number of nucleons of which it is made up, and
its atomic number Z, the number of its protons. These Z protons and N = A−Z neutrons
are bound together through the nuclear strong interaction, an attractive force at short
distances (∼1 fm) but strongly repulsive at smaller scales. This short-range character and
repulsive core causes the nuclear density to saturate around a density ρ0 ' 0.15 fm−3, the
nuclear saturation density. As each nucleon then occupies an almost equal volume inside
a nucleus, we can also define an average nucleon radius r0 ∼ 1.2− 1.4 fm, which describes
how much space it takes inside the nucleus. The nuclear radius R then goes as

R ' r0A
1/3 (1)

Because the strong interaction acts only at short distances, nucleons interact strongly
only with their nearest neighbours. These properties are well described by liquid-droplet
model of Bethe and Weiszäcker, which describes the nucleus as a quantum water droplet.
As the forces on the nucleons of the surface are different from the forces in the interior
where nucleons are completely surrounded by other attracting nucleons, a surface tension
forms, just like it does for molecules in a drop of water. In this analogy, the binding
energy of this drop can be defined as a volume contribution to which the surface tension
is subtracted. As the volume goes as R3, the volume term is hence proportional to the
mass number A. The surface term is then proportional to R2 and hence to A2/3. In
this liquid-drop model [1, 2] the Bethe-Weiszäcker semi-empirical formula describing the
binding energy of a nucleus reads

B(Z,N) = aVA− aSA2/3 − aC
Z(Z − 1)
A1/3 − aA

(N − Z)2

A
+ . . . (2)

where the first two terms are the volume and surface energies. Moreover, to account for
the Coulomb repulsion between the protons, a Coulomb repulsive energy (proportional
to the number of proton pairs Z(Z − 1)) is added. Similarly, in order to model the Pauli
exclusion and the strong interactions which both favour symmetric systems (N = Z), a
symmetry energy (function of the asymmetry α = (N − Z)/A) is added. Each of these
four terms has a coefficient that is adjusted to reproduce the observed experimental value
on the whole range of stable nuclei: aV for the volume term, aS for the surface term, aC for
the Coulomb repulsive term and aA for the symmetry energy term. The binding energy
per nucleon, which is the sum of the contributions of these different terms divided by the
number of nucleons is shown in Fig. 1 as a function of the mass number. As should be
noted, apart from some light nuclei, the Bethe-Weiszäcker semi-empirical formula works
quite well.

As we have just seen, the proton and neutron distributions inside the nucleus are
pretty much constant in the interior and then decay quickly at the surface, at a radius
R. This type of behaviour can be modelled by a two-parameter Fermi-Dirac shape (2pF),
which reads

ρn,p(r) ∝
1

1 + exp (r−Rn,p)
dn,p

(3)
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Figure 1: Experimental binding energy per nucleon and comparison to the
different terms of the Bethe-Weiszäcker semi-empirical formula (2).

where Rn,(p) is the neutron (proton) half-height radius and dn,(p) is the neutron (proton)
diffuseness. Because of the charge independence of the strong interaction, stable nuclear
symmetric systems exhibit very similar proton and neutron densities (their radii Rn ' Rp

and diffusenesses dn ' dp are very similar). This situation is depicted on the left panel of
Fig. 2.
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Figure 2: Typical shapes (in logarithmic scale) of proton (red) and neutron
(blue) densities in the case of symmetric (N = Z) nuclear matter (left), asym-
metric (N � Z) nuclear matter (middle) and halo-nuclei (right).

For heavy nuclei, for which N � Z, the excess neutrons are pushed towards the
surface and the half-height radius of the neutron distribution is then larger than for
protons Rn > Rp. However, their diffusenesses usually remain very similar dn ' dp.
This is depicted on the middle panel of Fig. 2. As we can see from this cartoon, the
nucleus seems to be surrounded by a thin layer, composed of only neutrons. This neutron
skin can be characterized by its thickness ∆rAnp which is defined as the difference in the
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root-mean-square (rms) radii of the neutron and proton distributions

∆rAnp = 〈r2
n〉1/2 − 〈r2

p〉1/2. (4)

While charge-density measurements have confirmed this Fermi-Dirac shape to hold for
stable isotopes with increasing precision throughout the years, this vision was challenged
with the advent of Radioactive Ion Beams (RIB) facilities, which opened up the study
of nuclear structure away from stability. This led to the discovery of neutron halo nuclei
by Tannihata in 1985 [3], who showed that in the sector of light nuclei (A < 20) some
radioactive nuclides have a matter radius much larger than their isobars, e.g. 11Be, 11Li or
6He. This result was explained by their low one- or two-neutron separation energy. These
loosely bound valence nucleons can tunnel way beyond the range of the strong interaction.
Halo nuclei can thus be seen as a core, surrounded by a diffuse halo, as it was coined later
in Ref. [4], formed by the loosely bound neutrons. Although less probable than neutron-
halo nuclei, proton-halo nuclei also exist, such as 8B, the archetypical one-proton halo
nucleus.

To give an idea of the significance of this phenomenon, let us consider 11Be, considered
as the archetypical one-neutron halo nucleus. The size of its halo is comparable to the
size of a gold nucleus, nearly 200 nucleons heavier [5]. The neutron density distributions
of such nuclei, visible on the right panel of Fig. 2, is characterized by a long tail (Rn � Rp

and dn > dp) and challenges the naïve belief that the matter radius scales with A1/3 [see
Eq. (1)]. It thus questions the traditional vision of nuclei close to stability and the validity
of nuclear structure models. By studying such exotic systems, nuclear physicists hope to
better understand how the nuclear interaction works and hence improve their description
of nuclear matter.

As we have just seen, the Bethe-Weizsäcker incompressible quantum liquid-drop model
fails to reproduce exotic structures far from stability such as halos. While providing a
fair description of the binding energy of stable nuclei with a handful parameters, the
incompressible liquid-drop model obviously also fails to capture the response of the nucleus
to variations of the density. Moreover, as the density of most of nuclei is usually found
around but mostly below the saturation density ρ0 and as only slightly asymmetric (N &
Z) nuclei can be found or created on earth, the properties of nuclear matter far from these
conditions remains a mystery. All such knowledge is crucial for the study of one of the
densest and asymmetric macroscopic system of our universe: the neutron stars.

Neutron stars are probably the most compact stars in the Universe. As their name
states, they were first thought to be composed mainly of neutrons. However, it is not yet
clear what their composition is. Their interior densities are larger than twice the nuclear
saturation density ρ0 [6]. Nuclear physicists often see them as the biggest neutron-rich
nuclei in the Universe, with a number of nucleons around A ∼ 1056−57 [7]. Their masses
range from 1 to 2 solar masses M� and their radii range from 10 to 14 km [7]. Our
knowledge of the properties of such systems relies on theoretical models. One if not the
main ingredient needed to calculate the structure of neutron stars is the equation of state
of nuclear matter (EOSNM).

This equation that links the density to the energy of nuclear matter governs the
properties of systems in an extremely wide range of sizes, from microscopic nuclei (R ∼
10−15 m) to macroscopic objects such as neutron stars (R ∼ 104 m). For this reason, it
plays an essential role in our understanding of the links that exist between phenomena
observed in laboratory experiments which probe the properties of exotic nuclei, nuclear
structure, heavy ion collisions, etc. and phenomena of astrophysical interest such as
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neutron stars cooling and their structure, supernovae, binary mergers, etc. [8, 9, 10].
Because the scope of this very elegant equation affects the nuclear structure, nuclear
reactions as well as nuclear astrophysics, it is easy to understand why the knowledge of
its details is so crucial to nuclear physics in general.

In order to better interpret the different terms of the EOSNM, it is insightful to start
from the Bethe-Weizsäcker equation (2). When considering this equation for infinite
nuclear matter in its thermodynamic limit (hence for A and the volume going to infinity
while keeping the density of the system constant), the energy per nucleon reads (when
neglecting the Coulomb force that would make the system unstable)

−B(Z,N)
A

= ε0 + Jα2 + . . . (5)

with the standrad notation ε0 = −aV and J = aA and where we remind that α =
(N − Z)/A is the neutron-proton asymmetry. When allowing for density fluctuations,
this expression is usually written in the following compact form

E(ρ, α) = E(ρ, α = 0) + S(ρ)α2 +O(α4) (6)

where we have defined the sum of the neutron and proton densities ρ = ρN + ρZ as the
nuclear density and we have redefined the neutron-proton asymmetry as α = (ρN−ρZ)/ρ.
Here, E(ρ, α = 0) is the energy of symmetric nuclear matter (ε0 at saturation ρ = ρ0) and
S(ρ) is what we usually define as the symmetry energy (J at saturation). It represents
approximately the energy necessary to convert symmetric nuclear matter (α = 0) into
pure neutron matter (α = 1). Decades of studies starting from the incompressible nuclear
droplet model have rather well constrained the energy of symmetric matter. However, the
knowledge of the symmetry energy and more particularly its density dependence, which
makes the link between all the different nuclear physics fields, is still elusive. In the recent
years, much effort has been devoted to the study of this fundamental quantity [8, 9, 10]
and more particularly on its slope at saturation density which as the first order expansion
of S(ρ), captures most of its density dependence around ρ0. This slope (usually denoted
by L) has important implications on the size of (asymmetric) heavy nuclei and more
particularly on the thickness of their neutron skin (see Eq. (4)).

This can be qualitatively understood. In a nucleus, L quantifies the difference between
the symmetry energy at the core (which is at saturation density) and at its surface (where
the density is lower). While surface tension tends to push the excess neutrons inside the
core to have a compact system, the symmetry energy term favours an equal number of
protons and neutrons at saturation density and thus pushes these excess neutrons from
the high-density core towards peripheral regions of the nucleus, where the density is lower.
If L is large, the balance goes heavily in favour of the symmetry energy and the excess
neutrons are strongly forced outwards, hence forming a thick neutron skin. The EOSNM
is said to be stiff. If on the contrary L is small, this effect is smaller, and hence the
neutron skin thinner. The EOSNM is then said to be soft. For this reason, the neutron
skin should be highly correlated to L. This simple interpretation has been confirmed by
mean-field calculations in Ref. [11] (see Fig. 3), where the predictions for the values of
the neutron skin thickness and L of up to 50 relativistic and non-relativistic mean field
models have shown to be nearly perfectly correlated.

As the heaviest nuclei in the universe, neutron stars are also influenced by the sym-
metry energy. Indeed, this term of the EOSNM impacts the pressure that reigns inside
the star, and hence dictates the maximum mass they can reach [8]. This also has a direct
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FIG. 3: Neutron skin of 208Pb against slope of the symmetry
energy. The linear fit is ∆rnp = 0.101 + 0.00147L. A sample
test constraint from a 3% accuracy in Apv is drawn.

tron radius and skin of 208Pb from the experiment re-
quires a precise connection between the parity-violating
asymmetry Apv and these properties. We investigated

parity-violating electron scattering in nuclear models
constrained by available laboratory data to support this
extraction without specific assumptions on the shape of
the nucleon densities. We demonstrated a linear correla-
tion, universal in the mean field framework, between Apv
and ∆rnp that has very small scatter. Because of its high
quality, it will not spoil the experimental accuracy even
in improved measurements of Apv. With a 1% measure-
ment of Apv it can allow to constrain the slope L of the
symmetry energy to near a novel 10 MeV level. A mostly
model-independent determination of ∆rnp of 208Pb and
L should have enduring impact on a variety of fields,
including atomic parity nonconservation and low-energy
tests of the Standard Model [8, 9, 32].
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Figure 3: 208Pb neutron skin thickness as a function of L for several mean field
calculations. Figure taken from Ref. [11].

impact on the radius of such stars: if the symmetry energy is stiff, high densities are
disfavoured as the energy increases rapidly with the density. The nuclear matter is then
pushed outwards and the radius is large. If on the contrary the symmetry energy is soft,
the energy grows much slower with density and high densities are not as much disfavoured.
The radius is hence smaller. An example of soft and stiff symmetry energy dependencies
are shown on left panel of Fig. 4. As we can see, the impact of L on the symmetry energy
at densities above 2ρ0 is significant. The density dependence of the symmetry energy also
influences how these stars cool [12].

The knowledge of the symmetry energy and its density dependence (especially L) is
hence crucial in the study of nuclear systems in a whole range of scales and energies. Since
the neutron-skin thickness Eq. (4) is strongly correlated to L [see Fig. 3], the measurement
of ∆rnp should be a nice way to constrain the symmetry energy.

as possible. The Ksym term that contributes weakly to the symmetry energy nearby ρ0 is

estimated with the relation Ksym = 39 + 5L − 15J [48] obtained from the DDM3Y-shape

expression without loss of accuracy. In terms of J−S(ρA) = 10.0±1.0 MeV and ρA = 0.55ρ0,

the slope L at the saturation density ρ0 is predicted to be 53 ± 10 MeV according to Eq.

(1), which is in excellent agreement with that from Fig. 2(a). At the density of ρ = 0.11

fm−3, the slope L0.11 = 49 ± 4 MeV, being also particularly consistent with the value of

48 ± 6 MeV from Fig. 2(b). The consistency of the two approaches not only indicates

the reliability of the present methods but also further verifies the accuracy of the reference

density ρA = 0.55ρ0. As an important conclusion, the asym = S(ρ = 0.55ρ0) ≃ 22.4 MeV

will be a very useful reference to calibrate the effective interactions in nuclear energy density

functionals.

With the obtained L0.11 and L values, the curvature parameter is evaluated to be

Ksym = −152 ± 70 MeV. Currently, the symmetry energy at suprasaturation densities is

extremely controversial. It was indicated that the three bulk parameters J , L and Ksym

well characterize the symmetry energy at densities up to ∼ 2ρ0 while higher order terms

contribute negligibly small [49]. If true, the symmetry energy S(ρ) at high densities up to

∼ 2ρ0 turns out to be not stiff, as shown in Fig. 3. The symmetry energy at 2ρ0 is estimated

to be S(2ρ0) = 42±10 MeV. In short, to characterize the symmetry energy at high densities,

the accurate knowledge about its density dependence at the saturation density is crucial.
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FIG. 3: (Color Online) Density dependent symmetry energy at high densities.

7

Figure 4: Density dependences of the symmetry energy. A “soft” symmetry
energy is displayed in green while a “stiff” one is displayed in red. Figure taken
from Ref. [13].
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As we have seen, halos and skins have become two important talking point in today’s
nuclear physics. My thesis comes within the scope of these two hot topics and more
particularly on the tools that are used in these two separate fields. On the one hand,
my work on halos aims at the investigation of the reliability and the sensitivity of a
new technique for the analysis of one-nucleon halo nuclei: the ratio method, which is
the subject of Chapter I. On the other hand, my work on neutron-skins aims at the
analysis the process of coherent neutral-pion photoproduction and its sensitivity to the
neutron-skin thickness in heavy nuclei. This will be the subject of Chapter II.
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Chapter I
The ratio method
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1 Halo nuclei

Halo nuclei are very neutron-rich systems that can be found near or at the driplines.
Since the discovery of 11Li, 11Be and 6He as the first halo nuclei by Tanihata [3],

several other nuclear systems with neutron halos have been reported such as 15C and 19C,
which, like 11Be, exhibit a one-neutron halo (see left panel of Fig. 1.1), and 14Be, which,
like 11Li and 6He, exhibits a two-neutron halo (see middle panel of Fig. 1.1). In addition
to their unusual halo, two-neutron halos exhibit a very peculiar property: while the three-
body system is bound, none of the two-body sub-systems are. They are also known as
Borromean systems, in reference to the rings that symbolize the Borromeo family and
which are depicted on the right panel of Fig. 1.1.

Figure 1.1: Schematic view of 11Be, a one-neutron halo nuclei (left) and 11Li, a
two-neutron halo nuclei (middle) in addition to Borromean rings (right) that are
present on the coat of arms of the Borromeo family and which are entangled in
such a way that by breaking one ring, we release the others.

Note that, although less probable than for neutron halos, the formation of proton
halos is also possible and nuclei such as 8B and the first excited state of 17F exhibit a one-
proton-halo-candidate structure. A look at the light sector of the nuclei chart in Fig. 1.2
illustrates where halo nuclei can be found.

In this section, I briefly review the main characteristics of halos nuclei. We will also
see how and why halos form and how we can probe their structure experimentally.

1.1 The halo structure
As we have already seen, halo nuclei have large matter radii. But is it sufficient to be
spatially large to be considered as a halo? What differentiates a halo from a skin? What
is meant by large anyway? In fact, there is no clear definition of what a halo nucleus
is and whether a nucleus exhibits a halo or not is to some degree a matter of taste. In
this work, we will define the halo as in Ref. [14]: Quantum halos are defined as systems
with dominating few-body structure and radii large compared to the sizes of the classically
allowed regions.

In other words, the total many-body wave function of a halo nucleus must thus first
exhibit a clear cluster structure, in which the halo nucleon(s) is (are) decoupled from a
core. The core therefore exhibits more or less the same properties as if it were considered
without its halo. Second, the halo nucleon(s) must spend a significant part of their time in
the non-classical region. Accordingly, their wave function must exhibit a large probability
fh of tunneling into the non-classical region outside of the field of the core. Some authors
require fh > 0.5 in order to consider the nucleus to exhibit a halo [14, 15]. This is rather
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Figure 1.2: Nuclear chart for light nuclei.

restrictive and in fact, no actual halo nuclei exhibits this property. Here, we will not make
such restrictive requirement. In order to get a significant tunneling, halo nucleon(s) must
be (very) loosely bound to the core.

We see that from this definition, halos and skins are different in essence and arise
from very distinct mechanisms. Whereas both the neutron skin (in heavy nuclei) and
neutron halos (in light nuclei) originate from a very large neutron to proton asymmetry,
the neutrons of the skin are part of the bulk of the neutron matter, which extends beyond
the proton matter but exhibits a very similar surface diffuseness [15]. These skin neutrons
do not decouple from the core like halo neutrons. This mainly originates from the fact
that the halo phenomenon is a threshold effect that exists only close to (or even at) the
driplines.

~r
~x

~y

Figure 1.3: Jacobi coordinates of a two-body system (left) and three-body sys-
tem (right).

To illustrate why halo form, let us describe a one neutron halo as a two-body system
composed of a neutron of mass mn bound by an energy Sn to an inert structureless core of
mass mc (see left panel of Fig. 1.3). The strong interaction between the valence neutron
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and the core is modelled by a short-range potential V (whose range is typically 2 to 3 fm
for light nuclei). For simplicity of the discussion, the spherical symmetry of the system
is assumed and no spins are considered. The wave function ψlm(~r) that describes the
halo-core relative motion in a given state of quantum numbers {lm} can be separated
into its radial and angular parts as

ψlm(~r) = Rl(r)Ylm(Ω) (1.1)

where Ylm(Ω) are the spherical harmonics. The radial wave-function ul(r) = rRl(r) then
obeys the Schrödinger equation[

− d2

dr2 + l(l + 1)
r2 + 2µ

~2 V (r)
]
ul(r) = −κ2ul(r) (1.2)

where l is the orbital angular momentum quantum number of the halo, κ =
√

2µSn/~
and µ = mcmn/(mc + mn) is the reduced mass of the neutron-core system. For l 6= 0,
a centrifugal barrier appears and adds a repulsive component to the potential. This has
the effect of pushing the neutron inside the well and hence leads to a smaller probability
of presence of the neutron far from the core.

It is interesting to illustrate this on a specific example: the one neutron halo nucleus
11Be. Let us pick a very simple real potential with a Woods-Saxon shape. On the left
panel of Fig. 1.4, the effective potential that produces a bound state with 504 keV binding
energy (note how much smaller this binding energy is than the∼8 MeV per nucleon usually
encountered in stable nuclei, see Fig. 1) is displayed in different orbitals. The classical
turning point (the radius at which the effective potential equals the binding energy of the
halo) is represented as a black dot. On the right panel, the radial wave function of these
different bound states is represented with their rms radius (marked with a small circle
on both panels). As we can see, because of the small binding energy, the exponential
decay of the wave function is slow. But while it has the same (logarithmic) slope for all
l (it only depends on the binding energy, see later Eq. (1.3)), we can see how the wave
function at large distances is increasingly suppressed as l grows larger. For this reason,
the rms radius of the halo decreases as l increases and as the centrifugal barrier becomes
more significant. It should be noted how the rms radius of the halo extends well beyond
the classical forbidden region in the l = 0 and 1 cases.

This can be explained very qualitatively. For a nucleus to exhibit a halo, its valence
neutron must be have a high probability of presence outside of the potential well. Many
of its properties will thus depend only on the asymptotic part of the halo-neutron wave
function and the details of the internal part of the potential do not really matter in
this discussion [4]. Outside the range of the potential, the tail of the valence radial
wavefunction then reads

ul(r) r→∞−−−→ e−κr (1.3)
This exponential behaviour is visible on the right panel of Fig. 1.4. As the binding energy
decreases, the exponential decrease of the tail is slower. To have a rough idea of the
dependence of the size of such halo on the binding energy, we could also calculate an
approximate rms radius, which in the case of an s-wave reads

r̃rms =
√
〈r2〉 ∝ 1

(µSn)3/4 (1.4)

As we can see, as the binding energy goes to 0, the rms radius diverges and we could
hence imagine halos of arbitrary size in the s wave. For l = 1, 2, . . . waves, the effective

11



r [fm]
0 2 4 6 8 10

V
eff
(r
)
[M

eV
]

-20

-15

-10

-5

0

5

l = 0
l = 1
l = 2

r [fm]
0 5 10 15 20 25 30 35

u
l
(r
)
[f
m
]

10−3

10−2

10−1

100

l = 0
l = 1
l = 2

Figure 1.4: Left: effective potential of a one-neutron halo bound by 504 keV
(the binding energy of the valence neutron in 11Be). We use a very simple real
potential shaped as a Woods-Saxon well. The classical turning point of each
potential (black dot) and the rms radius of the bound state (circle) are also
represented for each wave. Right: wave function in each partial wave. The rms
radius is also represented (circle).

potential is modified by the centrifugal barrier which tends to push the neutron inside the
well (see Fig. 1.4). The problem can be solved in the limit of low binding energy in order
to generalise the result above for any l. It can be shown that [16]

〈rm〉 ∝


(µSn)(2l−1−m)/2 if m > 2l − 1
ln(µSn) if m = 2l − 1
cst if m < 2l − 1

(1.5)

The rms radius (m = 2) can thus diverge only for l = 0 and 1. For l ≥ 2, the radius
remains bounded as the energy decreases. This very simple picture can be used to produce
universal scaling plots that relate the scaled binding energies and radii of several nuclei.
The scale of the system R is usually chosen as the range of the core-neutron interaction
or as the classical turning point, the distance where binding energy and potential energy
are equal. These scaling plots can be useful to evaluate halo candidates [14, 15]. They
will not be discussed here.

A similar study can be extended to two-neutron halos. As there are now three bodies,
the internal movement of the halo can be described by two vectors ~x and ~y. These are
shown on the right panel of Fig. 1.3 and are the Jacobi coordinates of the system. It
should be noted that these are not simply spatial coordinates. Their definition contains
mass ratios and is not unique and will not be explicitly displayed here. If we define
ρr =

√
x2 + y2 as the hyper-radius, the wave function that describes the halo-core relative

motion in a certain state ψLM can be separated into its (hyper-)radial and (hyper-)angular
parts as [17]

ψLM(~x, ~y) =
∑
γK

RγK(ρr)YLMγK (Ω5) (1.6)

where γ stands for the quantum numbers {lx, ly, L} where lx and ly are the orbital angu-
lar momentum quantum numbers associated to the two coordinates, L is the total orbital
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angular momentum of the state and M its projection, YLMγK (Ω5) are the hyper-spherical
harmonics of the hyper-angle Ω5 [18]. K ≥ lx + ly is the hyper-moment quantum num-
ber and can be seen as an extension of the concept of angular momentum to three-body
systems. It should be noted however that unlike the orbital quantum number l encoun-
tered in the one-neutron halo, K is not a good quantum number. Indeed, in a given state
{L,M}, an infinite number of values of K are possible and they hence need to be summed
over.

The main interest of hyper-spherical coordinates is that we can reduce the three-
body Schrödinger equation to a ‘radial’ equation in these hyper-spherical coordinates
[18]. This leads to a Schrödinger equation on the only variable ρr which is very similar to
Eq. (1.2). Outside of the range of the potential, the centrifugal barrier has the similar form
(K + 3/2)(K + 5/2)/ρ2

r [19]. It can be shown that similarly to Eq. (1.3), the asymptotic
part of the radial two-neutron halo reads [18]

RγK(ρr)
ρr→∞−−−−→ e−κρr

ρ
5/2
r

(1.7)

where here κ =
√

2mnS2n/~. The main difference between one and two-neutron halos in
this approach is the fact that a centrifugal barrier exists in three-body systems even for
K = 0, which corresponds to relative s-waves between the two neutrons and between their
centre of mass and the core. This causes two-body halos to be much less divergent than
their one-neutron counterparts (K = 0 has an “effective l” of 3/2, which corresponds to
logarithmic divergence, see Eq. (1.5)). However, the higher number of degrees of freedom
in the halo and the correlations between the halo neutrons can increase the size of the
system [15].

Proton halo nuclei are also possible. However, the long-range Coulomb repulsive
potential acts just as the centrifugal barrier and pushes the proton inside of the well and
reduces their probability of tunnelling into the non-classical region. For these reasons,
proton halos are less probable. Notable one-proton halo nuclei are 8B and the first excited
state of 17F. Finally, the 17Ne is a strong candidate to be a two-proton halo [20].

Table I.1 summarizes the main configuration and binding energy of some established
halo nuclei [21]. As it should be noted, their binding energy is often of the order of
hundreds of keV. This illustrates the fact that the halo phenomenon is a threshold effect.
Because of the strong decoupling between the halo and the core, the nucleon of the halo
will usually exhibit a strong single-particle behaviour and will thus be found mainly in a
single orbital, usually an s or p wave, as should be expected from our discussion above.
However, two-body halos exhibit much larger contributions from several orbitals (even d
waves in the case of 14Be!).

1.2 Experimental probes of the halo structure
Because they are be found far from the valley of stability, halo nuclei are short-lived
(usually less than a second) and cannot be studied easily through usual spectroscopic
techniques. They are rather studied in inverse kinematics, that is, through reactions in
which the halo nucleus is the projectile rather than the target. Such exotic beams can
be produced either through in-flight separation of projectile fragments or through ISOL
(isotope separation on line) techniques [22]. In the in-flight separation, heavy ions impinge
on a thin and light target at high energy and are fragmented into lighter products that
retain most of the momentum of the beam. These are then selected electromagnetically.
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Halo nucleus Main orbital(s) Sn/2n [MeV] Half-life [s]
11Be ≡ 10Be + 1n 1s 0.504 13.7

15C ≡ 14C + 1n 1s 1.218 2.45
19C ≡ 18C + 1n 1s 0.580 46 10−3

6He ≡ 4He + 2n 0p 0.972 0.806
11Li ≡ 9Li + 2n 0p-1s 0.300 8.74 10−3

14Be ≡ 12Be + 2n 0p-1s-0d 1.260 4.65 10−3

8B ≡ 7Be + 1p 0p 0.138 0.770
17F∗ ≡ 16O + 1p 1s 0.105 64.4

Table I.1: Principal configuration, binding energy and half-lives of some estab-
lished halo nuclei. Most values are from [Lect. Notes. Phys700, 1]. The half-lives
come from http://www.tunl.duke.edu/nucldata/HalfLife.shtml and from
the references therein. The halo state of 17F∗ only exists in an excited state,
which decays though electromagnetic decay into 17F ground state, which has the
half-life given here.

In ISOL facilities, a beam of very light ions or neutrons bombard a thick and heavy
target on which spallation and fusion occur. The reaction products diffuse then effuse
from the target and are picked through chemical selection and electromagnetic separation
and finally post accelerated. For more information on these techniques, we refer the reader
to Refs. [23, 24, 25] and references therein.

Once these nuclei are produced, different experimental techniques can provide us with
valuable information on the characteristics of the halo. Some of these techniques are
briefly reviewed here.

Nuclear reactions have been studied in a wide range of energies, from low energies
around and below the Coulomb barrier (.10 MeV/u) to high energies (>100 MeV/u)
where the short reaction time allows for a simpler treatment of the interaction mechanism.
The main types of nuclear reactions used to probe the structure of halo nuclei are elastic
scattering (in which the halo nucleus is simply deflected by the target and remains in
its groundstate), inelastic scattering (in which the projectile or the target are excited),
transfer reactions (in which one or several nucleon(s) are transferred between the projectile
and the target), knockout/breakup (in which the halo structure of the projectile breaks).

The first experiments on exotic beams measured the interaction cross section σI [3].
This observable is defined as the total cross section for the change of proton and/or neutron
number in the incident nucleus. This measurement is quite simple as only charged nuclei
need to be measured before and after the reaction. At high energies, the collision is so
fast that the nucleons of the projectile and target nucleus appear frozen. The nucleons
then can be assumed to interact individually. Both the projectile and the target can then
be seen as spheres and in a simple geometrical model [3, 26], the interaction cross section
reads

σI = π(RI,P +RI,T )2 (1.8)
where RI,P (RI,T ) is the projectile (target) interaction radius (this radius can be seen as
the matter radius defined in Eq. (1)). This simple expression was the one used in [3] in the
analysis of the interaction cross section of several isotopes of He and Li. They observed
for the first time a clear enhancement of the interaction radius in 11Li and 6He which was
later attributed to the halo phenomenon [4]. The interaction radii of He, Be and Li nuclei
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extracted from the analysis of Refs. [27, 28] are represented on Fig. 1.5. All halo nuclei
have a significantly larger interaction radius compared to neighbouring isotopes and to
Eq.(1). Note that 6He, although seemingly following Eq.(1), is much larger than the very
compact 4He.
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Figure 1.5: Interaction radii of Li, Be and He isotopes as a function of their
mass number A and comparison to Eq.(1) for r0 = 1.2 fm. Values taken from
Refs. [27, 28].

Another observable that was analysed in the early days of exotic beams is the parallel
and transverse momentum distributions of the fragments following the knockout of the
nucleus. If we consider the reaction to be adiabatic, the core is seen as frozen during
the reaction. As its nucleons have no time to rearrange, the core then keeps the same
momentum distribution as before the reaction. If we then neglect the importance of the
contribution of nucleons of the core to this cross section, the large spatial extent of the halo
leads to narrow momentum distributions. This inevitably recalls the famous Heisenberg
inequalities and the impossibility for canonically conjugate variables such as position and
momentum to be known with arbitrary precision simultaneously. The less precisely the
position of the halo is determined (i.e. the more extended the halo is), the more precisely
its momentum can be known, and vice versa. This can be easily illustrated if we assume
the wave function of an extreme halo nucleus as a simple Yukawa wave function of the type
of (1.3). The Fourier transform of such wave function has a Lorentzian shape and hence in
a simple geometrical model, the longitudinal momentum distribution cross section reads
[19]

dσ

dp||
∝ 1
p2
|| + κ2 (1.9)

As we can see, the smaller the binding energy, the larger the extent of the halo and hence
the narrower the momentum distribution. By measuring the momentum distribution of
the core or of the halo neutron(s), we then gain valuable information on the structure
of the halo. This measurement is a bit more complex than the interaction cross section
measurement above since we need to measure only one type of reaction product. Statistics
are hence lower and a higher beam intensity is needed.
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Parallel and transverse momentum distributions were first measured in Ref. [29], in
which an extremely narrow transverse momentum distribution of 9Li fragments was com-
pared to the one of 12C and confirmed for parallel momentum in Ref. [30]. A nice illustra-
tion of this phenomenon is shown in Fig. 1.6 where the comparison of such distribution
is made on several light nuclei. The first feature that is apparent is the marked reduction
of the core momentum distribution as the N = 8 shell (dashed red line) and N = 14 sub-
shells (dashed blue line) are crossed. Secondly, we can see how the parallel momentum
distribution for 15C is significantly narrower than the neighbouring C isotopes, which is
characteristic of halo nuclei.
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Figure 1.6: Core fragment parallel momentum distributions for one-neutron
removal on a carbon target. The red and blue lines correspond to N = 8 shell
and N = 14 sub-shell closures. It should be noted how the distribution for 15C
is significantly narrower than other isotopes of C. Figure taken from Ref. [31].

This method can also be used to gain information about the orbital in which the halo
is bound. This is illustrated on Fig. 1.7 for the 11Be halo nucleus. In this measurement,
the parallel momentum distribution for the 10Be fragment are compared to calculations
where three different orbital configurations for the halo neutron are considered: an s, p
and d waves. As can be seen, l = 0 calculations reproduce best the data, which means
that the halo state of 11Be can be seen as a 1s1/2 neutron bound to a 10Be core in its O+

ground state (see also Tab. I.1).
Another way to probe halos is through electromagnetic processes. Because of the

rλ term contained in the Eλ transitions operators, the strength of these processes are
enhanced by the large extent of halos. Experimentally, the E1 strength can be probed
through the measurement of the breakup of the halo after heavy-ion induced electro-
magnetic excitation (Coulomb breakup). The electromagnetic dissociation cross section
of 11Li on 208Pb, indeed proved to be unusually large compared to the one with a 12C
beam in Ref. [33]. This was related to a soft E1 excitation at low excitation energy, as
predicted in Ref. [4]. If the contribution to the E1 strength originating from the halo can
be extracted then information on its spatial extent can be inferred. Note that because of
the small binding energies of halo nuclei, the cross sections for these processes are large.

These “first generation experiments” were rather simplistic and did not have a full
understanding of every detail of the reaction mechanism. As such, they only captured
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The nature of the 10Be states is well understood. It is
seen from Table I that only 78% of the inclusive fragment
spectrum corresponds to neutron removal to the ground
state. About one-third of the intensity of the strongest
g ray (3.37 MeV) corresponds to direct feeding of the
21 level. It is this part that carries information about
the 0d5�2 ≠ 21 admixture in the 11Be ground state. The
two excited states with negative parity have the dominant
structure 1s1�2 ≠ 9Be� 3

2
2�, and are excited by the removal

of a neutron from a p3�2 core state, while the halo s-wave
neutron acts as a spectator. We now compare these four
cross sections with the theoretical expectations.

The theoretical cross section for a given 10Be core fi-
nal state, and removed nucleon j value, is assumed to
be a product of a spectroscopic factor S and a single-
particle cross section [6,25]. The latter is the sum of terms
corresponding to knockout (often referred to as stripping)
and diffraction dissociation. These were calculated within
a spectator-core eikonal three-body model [25] similar to
that used in [26] with the same parameters.

The results of the calculations are given in Table I.
These show an expected reduction in the single-particle
cross sections for higher l values and higher binding ener-
gies, since the reactions take place at the nuclear surface
and depend sensitively on the tail of the neutron wave func-
tion. This surface dominance justifies our use of the op-
tical limit in the 50–100 MeV�nucleon region. Although
the potential is highly attractive and absorptive in the nu-
clear interior, comparison with calculations using Sn de-
rived from the microscopic nucleon optical potential of
Jeukenne et al. [27] confirms that the optical limit Sn per-
forms well in the critical surface region. The same conclu-
sions pertain for analogous experiments and analyses with
phosphorus and carbon isotopes [6,28]. Details of these
theoretical model comparisons, and also those using phe-
nomenological potentials, will be presented elsewhere.

Table I shows that the agreement is good in the present
case. The most important conclusion is that the cross sec-
tions to the two lowest levels support the Warburton-Brown
[11] spectroscopic factors, thus corroborating a dominant
s-wave single-particle configuration for the ground state.

Table I includes an estimate of the effect of excitation
of an assumed deformed 10Be core by the target. Within
the eikonal framework [29], using the same interaction
and density parameters and an assumed 10Be quadrupole
deformation b2 � 0.67 [9], the calculated cross section
for excitation to the 21 core state is 11 mb, which has to
be multiplied with the 01 state spectroscopic factor. In
addition, a small contribution of 7 mb was estimated for
the Coulomb breakup, which was added to the ground state
cross section (see Table I).

We now turn to the momentum distributions of the
10Be fragments, from which the angular-momentum
assignments are deduced. Since the normalization of the
distribution is contained in the absolute cross section, we
present the distributions scaled in an arbitrary way to the
data. From the coincidences with g rays it is possible to

obtain the distribution corresponding to the ground state
by subtracting the components to excited states from the
singles spectrum. The result is shown in Fig. 2. The full
width at half maximum is 47.5�6� MeV�c [45.7(6) after
subtracting quadratically the resolution]. The ability to
cleanly see the contribution of nucleon removal from the
1s state allows us to make a precise comparison of the mea-
sured 10Be fragment distribution with calculations. Past
experiments [3,30] had significant contributions from parts
of the wave function that do not reflect the halo, including
the 22 and 12 core neutron removal hole states. We com-
pare our result with theoretical momentum distributions
calculated in an eikonal model for the knockout process.
The distribution for diffractive dissociation is expected to
have a similar shape [26]. We follow [5] and calculate
the distribution for a given impact parameter as the one-
dimensional Wigner transform of the wave function after
the reaction. For this we use a black-disk approximation.
The cutoff radii were adjusted to reproduce the core-target
and neutron-target reaction cross sections for free particles
and are 5.28 and 3.12 fm, respectively. The calculated
result for a neutron separation energy of 0.5 MeV and
for three values of the angular momentum is shown in
Fig. 2. The comparison points to an unambiguous l � 0
assignment.

The second calculation, by Bonaccorso and Brink [31],
used time-dependent perturbation theory with the interac-
tion represented by optical potentials. The two reaction
channels were treated separately, but turned out to give es-
sentially identical shapes and absolute cross sections. The
close agreement between the two theoretical differential
cross sections suggests that both approaches reflect the
same basic physics input: the momentum content of the
external part of the single-particle neutron wave function.
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FIG. 2. pjj distribution of the 10Be fragments in the rest frame
of the projectile. Only the contribution leading to the ground
state of 10Be is shown. The curves are calculations assuming a
knockout reaction from s, p, and d states.
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Figure 1.7: Parallel momentum distribution of the 10Be fragments in the rest
frame of the projectile and calculations assuming a knockout reaction from dif-
ferent orbitals. Figure taken from Ref. [32].

basic information on the structure of halos. Recent technical and theoretical advances
allow for a much detailed characterization of halos.

Mass is now available through invariant mass measurements as recent progress in
the particle detection allows for coincident detection of most of the outgoing fragments.
Kinematically complete measurements (final-state exclusive measurement) are now feasi-
ble. By measuring accurately the four-momenta of all the fragments following a breakup
reaction involving a halo nucleus, we can reconstruct its invariant mass. Such measure-
ments usually involve the detection of one or several neutrons in coincidence and are
extremely difficult. They are useful in electromagnetic studies, as the E1 strength distri-
bution can now be mapped as a function of the relative energy between the fragments.
As an example, an exclusive measurement of the Coulomb dissociation of 11Li has been
performed in Ref. [34] to study the low-energy (soft) E1 excitation. In this measurement,
the three fragments 9Li + n + n have been detected in coincidence.

As we have seen, halo nuclei are usually studied using indirect methods. In these
reactions, the halo nucleus is the projectile. Significant efforts have been made to improve
the description of nuclear reactions. Some of these models are shortly described in the
introduction. To account for the clustering of the projectile, they describe it as a two- or
three-body object: a structureless core to which one or two nucleons are loosely bound.
The internal structure of the target is usually neglected and its interaction with the
projectile constituents is simulated by optical potentials chosen in the literature. Processes
like elastic scattering [35], knockout [31] and breakup [36] are many examples of reactions
that have been succesfully applied to the study of halo structure and that benefited from
the technical and theoretical advances of these last 30 years.

Within these reaction models, the interactions between the different fragments of
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the halo nucleus and the target are often simulated through phenomenological optical
potentials. At the driplines however, information to build these potentials is lacking.
Therefore, while the reaction models nowadays reproduce most of the features of the
reaction observables such as elastic scattering or breakup cross sections, their dependence
on these optical potentials hinders the clean extraction of halo properties. A solution to
this problem might come from a new observable: the ratio.

The ratio consists in the ratio of breakup and summed cross sections

Rsum(E,Q) = dσBU/dEdΩ
dσsum/dΩ (1.10)

where Q is the transferred momentum and the summed cross section is defined as the
sum of elastic, inelastic and integrated breakup cross sections.

dσsum

dΩ = dσel

dΩ + dσinel

dΩ +
∫ dσBU

dΩdEdE (1.11)

In the recoil excitation and breakup (REB) model of reactions induced by one-neutron
halo nuclei [37] on which this observable is based (see also Sec. 2.4), it simplifies to a
simple form factor of the wave function of the halo.

Rsum(E,Q) REB= |FE,0(Q)|2 (1.12)

which reads

|FE,0(Q)|2 = 1
2j0 + 1

∑
m0

∑
ljm

∣∣∣∣∫ φ0(r)φljm(E, r)eiQ·r dr
∣∣∣∣2 , (1.13)

Within the assumptions of the REB, the ratio is hence independent of the reaction mech-
anism, and, in particular, is insensitive to the optical potentials, whose influence on the
different cross sections cancel out when taking their ratio. This new observable depends
only on the projectile wave functions and should be much more sensitive to the halo in-
ternal structure than the individual reaction cross sections. These properties have been
confirmed at intermediate/high energies of the projectile at which the REB works best
[38]. The ratio has also been shown to be very sensitive to the projectile structure, in
shape but also in magnitude. The ratio is hence a promising observable for the study of
halo nuclei. It will be discussed in more details in the next section.

Aside from nuclear reactions, several other experimental techniques have proven valu-
able in the study of halos. I will discuss some of them very briefly.

The presence of a halo also has an influence on the electron binding energies [39].
Indeed, the halo affects the charge distribution of the nucleus which in turn affects the
electron binding energies, particularly for s-wave electrons that have a non-zero prob-
ability of being inside the nucleus [40]. Electronic transitions are thus shifted between
isotopes and are a signature of changes in the charge distribution. Isotopic shift measure-
ments are performed and then compared to theoretical calculations that relate the shift
to the difference in the rms radii of both isotopes. For example, in Ref. [41], the charge
radius of 6He is probed by laser spectroscopy on individual 6He confined and cooled in
a magneto-optical trap. Similar measurements have been performed on 11Li [40] and on
11Be [5].

It should be noted that these isotopic shifts occur also because of mass changes. They
are actually much larger than volume shifts in light elements. However they can be
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calculated through relativistic and high order QED/QCD corrected quantum mechanical
calculations [39]. These computations rely heavily on the mass of the isotopes at study.
Unfortunately, mass measurements are hard because of the very short lifetime and the
marginal quantities at which halo nuclei can be created. Recent developments have showed
that the use of Penning traps for mass measurements is possible. Despite the lifetime of
11Li being of the order of a millisecond, a Penning trap has been connected to the ISOL
facility ISAC and has been used successfully to pinpoint the mass of this two-neutron
halo nucleus [42].

Finally, the halo structure can also be probed through β-decay [43]. The influence of
the halo is twofold. First, because of the large spatial extension of the halo, the superposi-
tion of its wave function with the wave function of the daughter decay is reduced and thus
the decay is suppressed. Second, because of the strong decoupling of the halo respective
to the core, the decay can occur more or less independently and into different channels.
An example of such process is the β-delayed deuteron emission in 11Li, which is dominated
by the β-decay of a neutron of the halo and was first reported in Ref. [42]. These mea-
surements are complementary to those based on nuclear reactions but necessitate precise
knowledge of the daughter structure [43].

1.3 Summary
In this section we have seen how the development of RIB facilities have challenged our
vision of how matter is distributed inside of the nucleus. While it was thought that their
density resembled the one of a water droplet, i.e. nearly constant in the interior and with
a thin surface, the RIBs revealed the very peculiar behaviour of nuclei near the driplines.
Indeed, as we depart from the valley of stability, some nuclei exhibit anomalously large
matter radii. This feature is interpreted as the nucleus having one or several of its neutrons
(protons) decoupled and at large distance from an inert core containing the rest of the
nucleons. These very loosely-bound valence nucleons can be found outside of the range
of the nuclear interaction with a high probability, leading to the appearance of a halo.

To be characterised as a halo, these nuclei must exhibit a dominating few-body struc-
ture in addition to large matter radii compared to the size of the classically allowed
regions. Currently, three different types of halos have been established that satisfy these
properties: one-neutron halos (such as 11Be and 15C), two-neutrons halos (such as 6He
and 11Li) and one-proton halos (such as 8B or one of the excited states of 17F).

Because they are far from stability, these nuclei are very short-lived and are usually
studied through indirect methods such as reactions measured in inverse kinematics, where
they are the projectile. In the early days of the RIBs, halos were studied in simple reac-
tions. The interpretation of observables such as the interaction cross section or the parallel
momentum would then be made in very unsophisticated geometrical models. These first
generation experiments were simple enough to highlight the main characteristics of halos
but only captured basic information on the structure of halos. Recent progresses in reac-
tion models and in experimental techniques such as coincidence measurements allow for
the study of finer details of the halo structure. We have seen for example how they could
be studied through spectroscopic techniques, i.e. isotopic shifts and Penning traps mass
measurements, electromagnetic transitions or β-decay.

Most of the experiments probing the halo structure rely however on nuclear reactions
such as elastic scattering, transfer, knock-out, breakup, etc. For the description of these
reactions precise theoretical models that take the internal dynamics of the projectile are
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needed [19]. State-of-the art reaction models are able to correctly take the clustering of
the projectile into account and reproduce fairly well observables such as elastic-scattering
or breakup cross sections. However, the information on the structure of the halo that can
be extracted from these collisions is reaction and model dependent [44]. Indeed, these
models still rely on optical potentials to simulate the interactions between the constituents
of the reaction. Because halo nuclei are found far from stability, uncertainties on these
potentials are large [45], which hinders the clean extraction of structure information. In
this work, I will analyse how this could be circumvented by a new observable: the ratio.

In next sections, I will first start by describing some of the state-of-the art reaction
models that are used in the study of halo nuclei as of today in Sec. 2. These are the
Continuum Discretised Coupled Channel method [46] [see Sec. 2.2], the Dynamical Eikonal
Approximation method [47, 48] [see Sec. 2.3], and the Recoil and Excitation Breakup model
[37] already mentionned in last section and which I will describe into more details [see
Sec. 2.4]. After the detailed descriptions of these models I will discuss the ratio observable
in Sec. 3.1. The ratio observable will be defined in Sec. 3 and we will see how it can
be approximated within the assumptions of the REB. Finally, the applicability of this
observable to neutron-halos and to proton-halos will be studied in Secs. 3.2 and 3.3.
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2 Model the reactions of one-nucleon halo nuclei

The reaction of halo nuclei is a complex many-body problem. These problems are
challenging from the structural point of view. In this work, only one-neutron and one-

proton halo nuclei are investigated. Because the one-nucleon halo is decoupled from the
core, a rather good description of the reaction can already be achieved with a three-body
model. In such a model, the projectile is seen as composed of an inert and structureless
core around which orbits one valence nucleon. The target on which the projectile impinges
is also assumed structureless.

In this section I will present and discuss several models that describe the reaction of
a halo nucleus projectile on a target. Because the clustered character of halo nuclei, it
tends to very likely dissociate from the core nucleus through the Coulomb and nuclear
interactions with the target. When both the free nucleon and the core are detected in
coincidence, the process is called breakup. While the elastic scattering (where the projectile
nucleus remains in its ground state) is dominant at the energies considered in this work,
it is still significantly influenced by the breakup process. Its proper treatment is thus
necessary.

2.1 Elastic scattering and breakup of two-body projectiles
In the following, the two-body projectile will be referred to as P . It has a charge ZP and
mass mP . It is composed of two fragments: the core c, of charge Zc and mass mc and the
valence nucleon v, of charge Zv and mass mv. Note that the projectile mass and charge
satisfy mP = mc + mv and ZP = Zc + Zv. The projectile impinges on a a target T , of
mass mT and charge ZT . The three bodies of the reaction are considered structureless.
The spin of the valence nucleon is s = 1/2, while the spins of the core and the target are
considered nil.

The core and the target are assumed to have no excited states. I hence consider only
the elastic breakup, where the target nucleus stays in its initial state, i.e. its ground state.
The projectile, initially in its ground state of (negative) energy E0, impinges on the target
in the Ẑ direction with a momentum ~K0, in the P -T centre of mass frame. This initial
P -T relative motion wave vector satisfies

~K0 =
√

2µPT (Etot − E0) (2.1)

where µPT = mPmT
mP+mT is the P -T reduced mass. The schematics of the collision are depicted

on Fig. 2.1.

T

v

c

P
K0Ẑ

Ẑ

Figure 2.1: Schematics of the collision.
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The Hamiltonian of the three-body system reads

H3b = T̂ + Vcv + VvT + VcT . (2.2)

where T̂ is the kinetic energy operator of the whole system and Vcv, VvT and VcT are the
potentials describing the interactions between v and c, v and T and between c and T ,
respectively. In the P -T centre of mass reference frame, the Schrödinger equation of this
three-body system reads

[H3b − Etot] Ψ = 0. (2.3)
where Etot is the three-body system total energy and Ψ is the three-body wave function.
Since the projectile is initially in its ground state, that I will define as φ0, and impinges
in the Ẑ direction, this equation has to be solved with the initial condition that

Ψ −−−−→
Z→−∞

φ0 e
iK0Z (2.4)

This three-body problem can be described within Jacobi set of coordinates, of which
three different sets exist. These are illustrated on Fig. 2.2. The description of the
three-body-system wave function Ψ within one single Jacobi set of coordinates is difficult.
Indeed, one single Jacobi set of coordinates is not appropriate to describe all bound states
between every partition in the system. To visualise this, let us consider the projectile in
its ground state. The first set of Jacobi coordinates (see Fig. 2.2(a)) is obviously the
most suitable set to describe this state. In this particular set of coordinates, the ground
state wave function φ0 is a function of the c-v relative coordinate r only. The initial
wave function of the system Ψ is then described by the product of φ0 with the plane
wave exp(iK ·R), that describes the asymptotic movement of the projectile towards the
target. This form is no longer suitable if bound states of the v-T and c-T partitions exist.
A factorisation of Ψ into a product of those bound states within the first set of Jacobi
coordinates therefore rises convergence issues [49], while in contrast these partitions are
easily described with the use of the set of coordinates (r′,R′) and (r′′,R′′), respectively
(see Figs. 2.2(b) and 2.2(c)). Because of these possible bound states, the full system
wave function can more easily be expressed as a sum of components expressed in the
three different Jacobi sets of coordinates and reads

Ψ→ Ψ(r,R) + Ψ′(r′,R′) + Ψ′′(r′′,R′′) (2.5)

T
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c R
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Figure 2.2: Illustration of the three different set of Jacobi coordinates. From
left to right, (a) will be called the first set, (b) the second set and (c) the third
set.

Because of this form, solving the Schrödinger equation (2.3) raises a problem. Indeed,
each term of Ψ expressed in the ith Jacobi set of coordinates still contains all bound states
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and continuum states from the other partitions i′ and i′′. Asymptotically however, these
are not decoupled and there is no way to completely describe these states by any unique
partial-wave sum in the set of coordinates (ri,Ri).

In order to have a well-defined asymptotic behaviour, the Schrödinger equation should
be rewritten in the form of a set of three coupled equations. This formulation is due to
Faddeev (who introduced this formulation in [50]) and reads

(E − T̂ − Vcv )Ψ = Vcv (Ψ′ + Ψ′′)
(E − T̂ ′ − VvT )Ψ′ = VvT (Ψ + Ψ′′)
(E − T̂ ′′ − VcT )Ψ′′ = VcT (Ψ + Ψ′ ),

(2.6)

where T̂ , T̂ ′ and T̂ ′′ are simply the kinetic operator expressed in any choice of Jacobi set of
coordinates. The interest of these equations is their behaviour at R → ∞. Indeed, in this
region, the right-hand side of these equations vanishes. This decouples the equations and
the boundary conditions are then much better defined. This formalism allows an exact
solution to the three-body problem. (For a less simplistic view of the Faddeev equations
see [49, 50].)

In the case where bound states exist only for one pair of particles (or are negligible for
other pairs), the multiple components are no longer useful. The Faddeev system can then
be reduced to one single equation for only one component and written in one single Jacobi
set of coordinates. This is the case when transfer channels are not significant. Since in
this work I focus on elastic scattering and breakup at quite a high energy, transfers are
negligible [49]. Note also that later when actually solving the equation, the interacting
potentials VvT and VcT will be chosen as phenomenological optical potentials. These can
simulate some of the channels described by the other sets of Jacobi coordinates

The breakup process connects a bound state of the projectile with its continuum
states (or scattering states). Only low energy breakup will be considered in this work,
the valence nucleon and the core hence stay relatively ‘close’ to each other after they
dissociate (r � R). Moreover, as here, bound states only for the core and the valence
nucleon are considered, I will obviously describe this problem within the first set.

The kinetic energy operator of Eq. (2.2) can be separated into the contribution from
the c-v relative motion and the P -T one. The three-body Schrödinger equation then reads[

P 2

2µPT
+H0 + VcT

(
R− mv

mP

r
)

+ VvT

(
R + mc

mP

r
)
− Etot

]
Ψ(r,R) = 0 (2.7)

where P is the relative momentum between the centre of mass of the projectile and the
target and where H0 is the internal Hamiltonian, that describes the c-v projectile. The
asymptotic boundary condition Eq. (2.4), with its coordinates made explicit, reads

Ψ(r,R) −−−−→
Z→−∞

φ0(r) eiK0Z (2.8)

In this set of coordinates, the internal Hamiltonian reads

H0 = − ~2

2µcv
∆r + Vcv(r), (2.9)

where µcv = mcmv
mc+mv is the reduced mass of the projectile. The ground state and all other

states of the projectile are eigenstates of its Hamiltonian and are defined as

H0 φljm(E, r) = E φljm(E, r) (2.10)
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For bound states E (the c-v relative motion energy) is negative and these states are
discrete. Note that because halo nuclei are loosely bound, they usually have very few
bound states. In this work, I will consider that they have only one, i.e. the ground state
φ0 of energy E0 < 01. For continuum states on the contrary E > 0. These correspond to
states where the projectile is unbound.

For central potentials, the wave functions φljm can be expanded to separate radial
from angular components in the form

φljm(E, r) = ulj(E, r)
r

[Yl(r̂)⊗ χs]jm (2.11)

where Yl are spherical harmonics (r̂ is a unit vector in the direction of r). l is the orbital
angular momentum of v relative to c and j is the total spin, resulting from the coupling
between l and s, with mb its projection. For bound states, an additional quantum number
could be added: n, the number of nodes of the radial wave function ulj. Note however
that since I consider only the ground state here, this quantum number is not needed.

Like already done previously, the ground state of quantum numbers {l0j0m0} is referred
to as φ0 ≡ φl0j0m0 . Similarly, its radial part is referred to as u0 ≡ ul0j0 and is normalised
to 1. It behaves asymptotically as

u0(r) −−−→
r→∞

Cl0j0W−η0,l0+1/2(2κ0r) (2.12)

where ~κ0 =
√

2µcv|E0|,W is the Whittaker function [51], η0 is the Sommerfeld parameter
of a c-v collision

η0 = ZcZve
2

~

(
µcv

2|E0|

)1/2

(2.13)

The strength of the exponential tail Cl0j0 is called the asymptotic normalisation constant
or ANC. Note that in this development, the valence nucleon and the core are structureless
and all excited states of the core are neglected. The ANC is then equivalent to the single-
particle ANC (SPANC). In reality, in a less crude model, other configurations of the
projectile may exist, in which case the SPANC and ANC differ [52].

For the continuum states, the radial parts are normalised according to

ulj(E, r) −−−→
r→∞

cos δlj(E)Fl(kr) + sin δlj(E)Gl(kr) (2.14)

where k is the c-v wave number and describes the asymptotic c-v relative motion

~k =
√

2µcvE (2.15)

Fl and Gl are the Coulomb functions [51] and δlj are the phase-shifts.
The solutions of Eq. (2.7) cannot be calculated exactly, unfortunately and some ap-

proximations need to be made. Two different methods will be presented in this work.
The first one is the Continuum Discretised Coupled Channel (CDCC) method [46], which
truncates and discretises the continuum. This method can be considered exact (even if
obviously, the truncation and discretisation of the continuum makes it an approximate so-
lution). The second one is the Dynamical Eikonal Approximation (DEA) method [47, 48],

1It should be noted that strictly speaking, there are much more states than that. Indeed, the potentials
used to simulate the c-v interaction are usually deep (see Sec. 2.5). This causes deeply bound states to
exist. These states are however “unphysical” for the valence nucleon. Indeed, they correspond to the
states of the other nucleons of the core. They are hence forbidden for v due to the Pauli principle.
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which is a variant of the eikonal approximation and which is not exact. Moreover, I
will present the Recoil and Excitation Breakup model (REB) [37], a simplified model of
breakup for one-neutron halo nuclei upon which the ratio observable is inspired and in
which the system can be solved exactly.

2.2 Continuum Discretised Coupled Channel method (CDCC)
In the previous section, we have seen how the three-body problem could be reduced to
Eq. (2.7). Let us expand the full wave function in the set of eigenstates of the internal
Hamiltonian of the projectile H0 (Eq. (2.9)). This set is composed by the sole bound
state, i.e. the ground state, and the continuum states of Eq. (2.10). Hence, we have

Ψ(r,R) = φ0(r)ψ0
K0(R) +

∑
ljm

∫
φljm(E, r)ψljmK (E,R) dE, (2.16)

where ~K is the momentum between the projectile and the target and (similarly to
Eq. (2.1) for K0) satisfies the relation

~K =
√

2µPT (Etot − E) (2.17)

The wave functions ψljmK (E) correspond to the relative P -T motion when the projectile
is in the φljm(E) state.

Unfortunately, as visible in Eq. (2.16), the expansion of the wave function is made
over a continuous variable E and a discretisation is thus needed to solve the three-body
problem numerically. This was first proposed by Rawitscher in Ref. [53]. Three different
types of discretisation exist in the CDCC method. In all three cases, the discretisation
goal is to construct a finite set of functions ũliji(r) to describe the continuum. If we
replace the true scattering states in Eq. (2.11) by these, we have

φ̃lijimi(r) = ũliji(r)
r

[Yli(r̂)⊗ χs]jimi , (2.18)

which is a discrete set of the projectile wave functions. The descriptions of these different
discretisations come from [49].

The mid-point method
In this method, first proposed by Rawitscher, the finite set of functions is simply
composed of the bound states and the scattering states calculated on a given finite
discrete set i = i0, ..., in of energies Ei. These discrete functions in the continuum are
thus the true scattering states ũliji(r) ≡ uliji(Ei, r). The energies in the continuum
are chosen within an energy range from Emin (usually 0) to Emax. Each set has a
width ∆Ei = (Ei+1 − Ei−1)/2. An extension of this method is the average method,
or continuum binning method

The average method or continuum binning method
In the case of the average method, we construct the radial functions ũliji by averaging
the true scattering eigenstates uliji(E) over a small energy range (or bin) centred
on Ei and of width ∆Ei. This is done with a weight function wi(E) which choice
of the weight function is beyond the scope of this work (see Ref. [49]). The radial
functions read

ũliji(r) ∝
∫ Ei+∆Ei/2

Ei−∆Ei/2
wi(E)uliji(E, r) dE, (2.19)
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where the normalisation will depend on the weight function. It should be noted that
for non-overlapping intervals [Ei−∆Ei/2, Ei+∆Ei/2] in the continuum, these radial
functions form an orthonormal set. The functions ũliji are then square integrable
and are called continuum bin states. Averaged energies Ẽi can be defined such that
they satisfy

Ẽi =
〈
φ̃lijimi

∣∣∣H0

∣∣∣φ̃lijimi〉 . (2.20)

They correspond to the averaged excitation of the ith bin.

The use of pseudostates
This method consists in taking the eigenstates of the internal Hamiltonian on a given
square-integrable basis (such as harmonic-oscillator wavefunctions) and express the
scattering states of the continuum in that basis [54]. There is little control over the
energies of the grid as these are fixed by the chosen basis. The correspondences
between these eigenstates and the scattering solutions ulj(E) are not simple but the
set has to be sufficiently complete in the reaction region.

Let us denote by N the number of bins included in the calculation and define p as the
number of the considered bin or state as well as its quantum numbers and its energy (p
thus now ranges from p = 0, i.e. the ground state, to p = N). The discretised expansion
Eq. (2.16) reads now

ΨCDCC(R, r) =
N∑
p=0

φ̃p(r)ψp(R). (2.21)

In this expression, ψp correspond to the coefficients of the development of the CDCC
wave function. To obtain these, let us inject this expansion in Eq. (2.7) and project this
equation on the projectile wave functions φ̃q. We finally have, in the Dirac notation

∑
p

〈
φ̃q
∣∣∣ P 2

2µPT
+H0 + VcT + VvT − Etot

∣∣∣φ̃p〉ψp(R) = 0. (2.22)

If we inject the averaged energies Eq. (2.20) in this expression, we have[
P 2

2µPT
+ Vqq(R)− Ẽq

]
ψq(R) +

∑
p6=q

Vqp(R)ψp(R) = 0, (2.23)

where the definition of the coupling potentials Vqp reads

Vqp(R) =
〈
φ̃q
∣∣∣VvT + VcT

∣∣∣φ̃p〉 . (2.24)

As visible from Eq. (2.23), the coupling with states of the continuum have a retroactive
effect on the elastic channel. We can expand ψp in multipoles, that is,

ψp(R) =
∑
L

iLY 0
L (R̂)χpL(R)

R
, (2.25)

where capital L is the orbital angular momentum and describes the relative motion be-
tween the projectile and the target, the final CDCC equation reads [49][

− ~2

2µPT

(
d2

dR2 −
L(L+ 1)

R2

)
+ V Jtot

αα (R) + Ẽp − Etot

]
χJtot
α (R)

+
∑
α′ 6=α

iL
′−LV Jtot

αα′ (R)χJtot
α′ (R) = 0,

(2.26)
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where Jtot = L⊗j is the total angular momentum of the three-body wave function. In the
expression above, α represents all quantum numbers {p, L} describing the partial-wave
channel for a given Jtot.

These equations couple the different projectile-target relative-motion states. The cou-
pling potentials V Jtot

αα′ full expression reads

V Jtot
αα′ (R) =

〈[
φ̃pYL

]
Jtot

∣∣∣∣VcT + VvT

∣∣∣∣[φ̃p′YL′]Jtot

〉
. (2.27)

The main advantage of the average method compared to the mid-point method can easily
be understood from this form of the coupling potentials. As it should be noted, the
interactions between the target and the core and between the target and the valence
nucleon depend on the coordinates of the core and the valence nucleon, relative to the
target. The use of true scattering states in the continuum would make the calculation of
the coupling potentials Eq. (2.27) very tedious as the Coulomb range is infinite. On the
contrary, averaged scattering functions do not raise this problem thanks to their square-
integrability [49]. While the pseudostates also exhibit this property, the chosen basis
has no simple relation to the c-v scattering solutions and there is little control over the
energies of the grid.

Numerically, the procedure consists in calculating the bound and scattering states of
the projectile with which the different continuum bin wave functions are built. The cou-
pling potentials V Jtot

αα′ can then be calculated. The wave functions χJtot
α are then obtained

by solving Eq. (2.26). Asymptotically, they behave as

χJtot
α (R) R→∞−−−→ i

2
[
H−L0(ηα0 , Kα0R)δαα0 −H+

L (ηα, KαR)SJtot
αα0

]
, (2.28)

where the 0 index denotes the incident channel, H± are the Coulomb Hankel functions
[49], ηα is the Sommerfeld parameter of the PT system in the channel α, defined as

ηα = ZPZT e
2

~

(
µPT

2(Etot − Ẽα)

)1/2

(2.29)

and SJtot
ααi

are the partial-wave S-matrices for the excitation to a state α with a centre-
of-mass wave number Kα (which obeys a similar relation as Eq. (2.17) with E replaced
by the energy of the channel Ẽα). These matrices are then used to construct the desired
cross sections [49]. The scattering amplitudes for a projectile that stays in its ground
state and is deviated from momentum ~K0 to ~K = (~K0,ΩK), the elastic scattering
amplitude reads

fel,mm0(K,K0) = fC(θ, φ) + 4π
K0

∑
LL′J

〈L0, j0m0| Jm0〉 〈L′(m0 −m), jm| Jm0〉

× ei[σL(ηα0 )+σL′ (ηα)]

2i
[
SJ
α0α0 − δmm0

]
Y 0
L (K̂0) Y m0−m

L′ (K̂),
(2.30)

where σL(′) = arg Γ(1 + L(′) + iη) are the initial (final) Coulomb phase shifts [49] and fC
is the pure Coulomb scattering amplitude [49]

fC(θ, φ) = − ηα0

2K0 sin2(θ/2) exp
[
−iηα0 ln(sin2(θ/2)) + 2iσ0(ηα0)

]
(2.31)
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where θ and φ are the scattering and azimuthal angles of the direction ΩK , all defined in
the P -T centre of mass.

The elastic scattering cross section hence reads

dσel

dΩ = 1
2j0 + 1

∑
mm0

|fel,mm0(K,K0)|2 . (2.32)

Note that because of the dominance of the Coulomb interaction at low scattering
angles, and the divergence of the elastic cross section around θ = 0, it is customary to
present the elastic scattering as a ratio to the Rutherford cross section, which corresponds
to the elastic cross section of two pointlike particles of charge ZP and ZT that interact
through the Coulomb interaction only and which reads

σR

dΩ = |fC(θ, φ)|2 = η2

4K2
0 sin4(θ/2) . (2.33)

Similarly for breakup, the scattering amplitudes fmm0(Kp,K0) for populating each
bin state p of quantum numbers jm and final projectile momentum ~Kp = (~Kp,ΩKP )
from the initial state j0m0 of momentum ~K0. They contain a sum over all partial waves
and read [49]

fmm0(Kp,K0) = 4π
K0

√
Kp

K0

∑
LL′J

〈L0, j0m0| Jm0〉 〈L′(m0 −m), jm| Jm0〉

× ei[σL(ηα0 )+σL′ (ηα)]

2i SJ
αα0 Y

0
L (K̂0) Y m0−m

L′ (K̂p).
(2.34)

The differential cross sections of breakup to a bin state p of the projectile averaged over
all spins is then given by [49]

dσBU

dΩ = 1
2j0 + 1

∑
mm0

|fmm0(Kp,K0)|2 . (2.35)

Note that in the case of breakup, the scattering angle θ is defined as the angle between
the initial and final directions of the centre of mass of the projectile, just like for elastic
scattering. In App. B, I present the code Fresco, which is an implementation of the CDCC
method [55].

2.3 The Dynamical Eikonal Approximation (DEA)
In this section, an approximate method to solve the three-body problem is introduced.
Only the basic principles of the method are presented. It has the advantage of being
valid on both light and heavy targets and has been shown to successfully model reactions
involving one-nucleon halo nuclei at intermediate energies [47, 56, 57]. The interested
reader is referred to [48] on which most part of this section is based.

The eikonal approximation [26] is based on the assumption that the wavefunction of the
movement of the projectile-target system does not differ much from the impinging wave
function Eq. (2.8). This is usually the case when the projectile has a sufficient energy.
Hence, the cylindrical coordinates is a convenient system of coordinates to work with.
The coordinate R of the projectile relative to the target can be expressed as (b, Z), with
b the transverse component of the coordinate (the impact parameter in a semiclassical
interpretation) and Ẑ the beam direction (see Fig. 2.3).
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Figure 2.3: Cylindrical coordinates in the eikonal model.

The solutions of the three-body Schrödinger equation in the first set of Jacobi coor-
dinates (2.7) should satisfy the asymptotic behaviour Eq. (2.8). Hence, we will factorise
the three-body wave function Ψ(R, r) as

Ψ(R, r) = eiK0Z Ψ̂(R, r). (2.36)

With this factorisation, the Schrödinger equation reads[
P 2

2µPT
+ ~K0

µPT
PZ +H0 + VcT + VvT − Etot

]
Ψ̂ = 0, (2.37)

where the term ~K0/µPT , the asymptotic projectile-target relative velocity, is usually
noted v0.

Up to now, no approximation has been made. But since we expect Ψ̂ to be a slowly
varying function of R, the second-order derivatives of Ψ̂ are small compared to the first
order ones

P 2

2µPT
� v0PZ (2.38)

The eikonal approximation consists in neglecting the second-order term. It should be
noted that by neglecting this second-order derivative, part of the interferences between
neighbouring b are missing. The solution Ψ̂DEA is then obtained by solving the equation

i~v
∂

∂Z
Ψ̂DEA(b, Z, r) = (H0 + VcT + VvT − Etot)Ψ̂DEA(b, Z, r), (2.39)

which we can see as a time-dependent Schrödinger equation by introducing the variable
t = Z/v0, with the initial condition that the projectile is in its ground state and thus

Ψ̂(m0)
DEA(b, v0t, r) t→−∞−−−−→ φ0(r) (2.40)

This equation must be solved for every value of b and m0 [47]. The calculations are
done with the algorithm presented in Ref. [58], in which the projectile wave-function is
expanded over a spherical mesh. The coefficients of the partial wave expansion of Ψ̂DEA
and defined as

Ψ̂(m0)
DEA(b, Z, r) = 1

r

∑
ljm

Ψ̂(m0)
DEA,ljm(b, r) [Yl(r̂)⊗ χs]jm (2.41)

can then be used to calculate the elastic scattering cross section. For a projectile going
from its initial state of momentum ~K0 to the final ~K = (~K0,ΩK) it reads

dσel

dΩ = K2
0

1
2j0 + 1

∑
m0m

∣∣∣∣∫ ∞
0

db bJ|m0−m|(qb)S
(m0)
el,m (b)

∣∣∣∣2 (2.42)
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where JM is a Bessel function [51]. The elastic scattering amplitudes then read [56]

S
(m0)
el,m (b) =

〈
φl0j0m(r)

∣∣∣ Ψ̂(m0)
DEA(R, r)

〉
Z=+∞

− δmm0 (2.43)

In these expressions, ~q is the transferred momentum

q = K −K0 (2.44)

and is assumed purely transverse. Its norm is thus linked to the scattering angle θ by

q = 2K0 sin θ/2 (2.45)

Similarly, the breakup amplitude matrix elements read [48]

S
(m0)
ljm (E, b) =

Z→+∞
ei(σl+δlj−lπ/2)

∫ ∞
0

ulj(E, r)Ψ̂(m0)
DEA,ljm(b, r)dr (2.46)

and the differential breakup cross section from the initial state of momentum ~K0 to the
final ~K = (~K,ΩK) then reads

dσBU

dEdΩ = µcvK0K

~2k

1
2j0 + 1

∑
m0

∑
ljm

∣∣∣∣∫ ∞
0

db bJ|m−m0|(qb)S
(m0)
kljm(b)

∣∣∣∣2 (2.47)

In these expressions, the q is also assumed purely transverse.
It should be noted that at low energies, a correction is needed to take into account

the deflection of the projectile due to its interaction with the target. As proposed in
Ref. [59] we can replace the impact parameter by the distance of closest approach beff of
the corresponding classical Coulomb trajectory (see Fig. 2.4). This semiclassical correction
showed to give good results for Coulomb-dominated collisions [59]. In a pure Coulomb
collision, this distance reads [60, 61]

beff = η

K0
+
√
η2

K2
0

+ b2 (2.48)

This Coulomb-corrected DEA will usually be referred simply as the DEA, or as the CC-
DEA in cases where the distinction is needed.

P θ

b

beff

T

Figure 2.4: Distance of closest approach in the Coulomb corrected DEA.

Relation to the usual eikonal approximation
In addition to the Eq. (2.38), the standard eikonal approximation (what people
usually consider as the eikonal approximation) an additional assumption is made:
the adiabatic—or sudden—approximation. It consists in considering the internal
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coordinates of the projectile to be frozen during the collision in Eq. (2.39). This
holds if the impinging energy in the P -T centre of mass is large, so that the collision
occurs in a very brief time. The internal Hamiltonian H0 is then replaced by the
energy of the ground state E0 and they cancel out in Eq. (2.39). The solution to
such equation is then [56]

Ψ̂eik(b, Z, r) = exp [iχ(b, Z, r)]φ0(r) (2.49)

where the phase of the exponential is the eikonal phase

χ(b, Z, r) = − 1
~v

∫ Z

−∞
(VcT (b, Z ′, r) + VvT (b, Z ′, r))dZ ′ (2.50)

In a semiclassical view, this phase describes the projectile following a straight-line
trajectory at a constant impact parameter. Along its path, the projectile wave
function accumulates a (complex) phase that results from the interaction of its
fragments with the target.
Note that since this expression is obtained from an adiabatic expression, it fails to
properly take the Coulomb potential into account and diverges. Indeed, because of
the infinite range of the Coulomb potential, the assumption of a sudden reaction
lapses. Several solutions exist to compensate for this issue. One way is to correct the
eikonal phase as suggested in Ref. [62] in what is known as the Coulomb corrected
eikonal model (CCE) [63]. The first order term of the Coulomb eikonal phase leading
to the divergence is then replaced by the first-order term obtained in a perturbative
treatment of the interaction [63].

2.4 The Recoil Excitation and Breakup model (REB)
The recoil excitation and breakup model (referenced as REB later on), relies on two
simplifying assumptions [37]:

1 the projectile dynamics are treated adiabatically

2 the valence particle’s interaction with the target is neglected (VvT = 0) in comparison
to the c-T interaction.

As we have seen in previous Sec. 2.3, the first approximation means that the projectile
Hamiltonian can be considered as a constant, which for a projectile impinging in its
ground state is the energy E0 of the ground state. It should be noted that the second
approximation was originally introduced in the context of reactions involving one-neutron
halo nuclei. In these collisions, the v-T interaction can be neglected in comparison to the
c-T interaction, which is constituted of a larger nuclear contribution as well as a Coulomb
one. The term VvT of the three-body Hamiltonian is thus nil. Hence, the Schrödinger
equation (2.7) simplifies to[

P 2

2µPT
+ E0 + VcT

(
R− mv

mP

r
)
− Etot

]
ΨREB(r,R) = 0. (2.51)

Moreover, as E0 is the internal energy of the projectile, the term Etot − E0 is simply the
center-of-mass kinetic energy of the system, which can also be written as ~2K2

0/2µPT .
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A second consequence of the adiabatic approximation is the fact that r can be con-
sidered as a parameter [37]. By posing R′ = R −mvr/mP , we simplify the Schrödinger
equation even further, the term between brackets then being an expression that only
depends on the variable R′. This allows us to factorise the wavefunction into the product

ΨREB(r,R) = φ0(r) ei
mv
mP

K0·r ψREB
K0 (R′). (2.52)

which satisfies the boundary condition (2.8) and hence

ψREB
K0 (R′) −−−−→

Z→−∞
eiK0·R′ (2.53)

The wave function ψREB
K0 (R′) is solution to the Schrödinger equation[

T̂R′ + VcT (R′)− ~2K2
0

2µPT

]
ψREB
K0 (R′) = 0, (2.54)

where T̂R′ is the kinetic energy operator on the variable R′. It should be noted that
ψREB

K0 (R′) is the wavefunction of a particle of mass µPT and momentum ~K0 scattered by
the potential VcT . In other words, it corresponds to the wavefunction of a pointlike pro-
jectile scattered by a structureless target through VcT . The fact that the projectile is seen
as pointlike does not mean that breakup is not accounted for. Indeed, the wavefunction
still keeps a dependence in r through the exponential but also through the argument R′

of ψREB
K0 [37].
Let us now look at the elastic scattering transition amplitude from the initial momen-

tum ~K0 to the final one ~K, noted Tel(K,K0). The elastic scattering final state is given
by φ0(r) eiK·R. Tel(K,K0) is thus given by [37]

Tel(K,K0) =
∫∫

φ∗0(r) eiK·R VcT

(
R− mv

mP

r
)

ΨREB(r,R) dr dR. (2.55)

If we now make the change of variable from R to R′, it reads

Tel(K,K0) =
∫∫

φ∗0(r) e−iK·
(

R′+ mv
mP

r

)
VcT (R′) φ0(r)ei

mv
mP

K0·rψREB
K0 (R′) dr dR′ (2.56)

=
[∫
|φ0(r)|2 eiQ·r dr

]
×
[∫

e−iK·R
′
VcT (R′)ψREB

K0 (R′) dR′
]
. (2.57)

where Q = mv/mP (K0 − K) is proportional to the difference between the outgoing
momentum ~K and the incoming momentum ~K0 and has the norm

Q = 2mv

mP

K0 sin (θ/2). (2.58)

We note that the scattering amplitude is factorised into two factors. The first one is a form
factor and the second can be identified as the scattering transition amplitude from initial
state ψREB

K0 (R′) to final state e−iK·R′ by the potential VcT . In other words, as we have
seen previously, it represents the elastic scattering transition amplitude for a pointlike
projectile when scattered by the core-target potential VcT .

The two assumptions of the REB model thus allow us to factorise the elastic scattering
cross section into the form [37](

dσ

dΩ

)
el

= |F0,0(Q)|2
(
dσ

dΩ

)
pt,el

, (2.59)
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where |F0,0(Q)|2 is a form factor of the projectile and (dσ/dΩ)pt,el is the cross section of a
pointlike projectile of mass µPT scattered by the core-target interaction. The form factor
reads

|F0,0(Q)|2 = 1
2j0 + 1

∑
m0

∣∣∣∣∫ |φ0(r)|2eiQ·r dr
∣∣∣∣2 , (2.60)

We see from this expression that F0,0(Q) acts as a modulation of the diffraction pat-
tern of the pointlike cross section and hence accounts for the extension of the halo. It
characterises the relevant scattering angles and energies at which a halo, of a given size
and structure, will cause the cross section to deviate from the scattering of a pointlike
projectile. Moreover, we see from the form of Eq. (2.60) that the form factor is actually
the Fourier transform of the halo-ground state density. Its calculation is nearly immedi-
ate once the projectile wave function φ0 is known. The computation of the cross section
Eq. (2.59) is thus less involved than CDCC or DEA.

As done in Refs. [38, 64], the factorisation can be extended to breakup. Hence, we
can write (

dσ

dEdΩ

)
bu

= |FE,0(Q)|2
(
dσ

dΩ

)
pt,el

(2.61)

with FE,0 being the form factor in the case of a breakup to the energy E in the c-v
continuum and which reads

|FE,0(Q)|2 = 1
2j0 + 1

∑
m0

∑
ljm

∣∣∣∣∫ φ0(r)φljm(E, r)eiQ·r dr
∣∣∣∣2 , (2.62)

The expressions (2.59) and (2.61) are the REB predictions for the elastic cross section
and the breakup to an energy E in the c − v continuum. They are obtained by simply
multiplying the form factors for the different processes by the pointlike term (dσ/dΩ)pt,el.
It should be noted that this pointlike cross section is the same for both processes!

2.5 Interaction potentials
The form of the potentials that simulate the interactions of the different bodies of the
reaction still needs to be defined. Both the potentials VcT and VvT that simulate the
projectile-target interaction in the three-body Schrödinger equation (2.7) as well as the
potential Vcv that simulates the core-valence nucleon interaction in Eq. (2.9) should re-
produce the nuclear and Coulomb interaction of the nucleons of the different fragments.
In this work, these will be chosen as phenomenological potentials. These potentials are
composed of a Coulomb real part and a nuclear part, usually complex. The mathematical
expressions of these potentials is presented hereafter.

The Coulomb potential

The VcT potential will always contain a Coulomb part, as it simulates the interaction of
two charged nuclei. Additionally, when the halo is charged, both the Vcv and VvT will
contain a Coulomb part since they simulate the interaction of a proton with a nucleus.

Due to the finite size of the core and the target, neither of these Coulomb potential
has the form of a pure 1/r Coulomb potential. We can approximate the charge of the
core and the target to be uniformly distributed over a radius RC . For such a charge

33



distribution, the Coulomb interaction of a proton with some nucleus of mass number A
is often reproduced by a potential of the form

VC(r) = ZPZT e
2 ×


(

3
2 − r2

2R2
C

)
1
RC

for r ≤ RC

1
r

for r ≥ RC .
(2.63)

where the radius RC is usually chosen to be equal to rCA1/3. This form of the potential
is can be used as is for the v-T and v-c interactions if the valence nucleon is a proton,
A thus being replaced by the mass number of the target or the core. In the case of the
Coulomb interaction between the core and the target, the same expression is used but
uses a rescaled radius

RC = rC(A1/3
c + A

1/3
T ) (2.64)

Note that usually, rC is chosen between 1.2 and 1.4 fm.

The nuclear potential

As said before, the phenomenological potential that simulate the nuclear interaction are
complex. They can be cast in the form

Vnucl(r) = V (r)− iW (r). (2.65)
This form is handy when some of the reaction channels that are open in reality cannot
be accounted by the model that is used to calculate the reaction (e.g. transfer reactions,
excitations of the target, . . . which cannot be accounted for in the models). Note that
this absorption causes the phase shifts to become complex and the S-matrix to lose its
unitarity.

The use of a negative complex component to simulate removal of flux is reminiscent
of the use of complex refractive indices in optics when studying the propagation of light
beams through a cloudy refractive medium [49]. Because of this similarity, these complex
potentials are usually called optical potentials.

Different potential shapes have been developed to reproduce the different features of
nuclear reactions. Usually however, the shape of the real and complex parts of the optical
potentials is chosen as a Woods-Saxon well. This shape has been first brought by Roger
D. Woods and Davis S. Saxon in 1954 [65] to describe the interaction between a nucleon
and a nucleus or between a nucleus and another nucleus. Its form reads

f(r, R, a) = 1
1 + e(r−R)/a . (2.66)

where a is the diffuseness (typically about 0.6 fm) and R is the nuclear radius, which is
proportional to the size of the nucleus. For a nucleon-nucleus collision and in a similar
fashion as what was done for the Coulomb interaction, the radius R is chosen equal to
r0A

1/3, where A is the nucleus mass number and where the reduced radius r0 is usually
chosen in the range ' 1.2− 1.4 fm. For nucleus-nucleus interactions (i.e. the c-T nuclear
interaction) the radius can be scaled in the same way as in Eq. (2.64).

The nuclear interaction can be modeled by a potential that contains several of these
wells. As an example, the nucleon-nucleus potentials of the Koning and Delaroche
parametrisation have the form [66]

Vnucl(r) =− Vr f(r, Rr, ar)− i
[
Wi f(r, Ri, ai) + 4aDWD

d

dr

(
f(r, RD, aD)

)]
(2.67)

= VV (r) + iWV (r) + iWS(r). (2.68)
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where in addition to the first real term of central depth VV < 0 and known as the volume
term, they include an imaginary volume term of depth WV < 0 and a surface-peaked
imaginary term of depth WS which has the shape of a derivative of a Woods-Saxon well.

In some cases, the potentials can also be spin dependent. The spin-orbit interaction is
a λ = 1 multipole component and corresponds to the coupling of the spin of one particle
and its motion. The vector-potential for a single nucleon interacting with its motion and
reads

Vso(r) = 2Fso(r) l · s (2.69)

where l is the angular momentum of the nucleon and s its spin angular momentum and
where Fso(r) is the spin-orbit form factor and has the form [67]

Fso(r) = Vso

(
~
mπc

)2 1
r

d

dr

( 1
1 + e(r−Rso)/aso

)
(2.70)

where the factor (~/mπc)2 ' 2 fm2 is an arbitrary scaling factor.
Because little information is known about the actual interaction that exists between

the different bodies of the reaction, all these potentials are usually fitted to reproduce
some features of the studied systems, e.g. elastic scattering cross sections.
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3 The ratio method

3.1 The ratio observable
In order to introduce the ratio observable, it is useful to have a look at the elastic scattering
and the angular breakup cross sections of a reaction involving a neutron halo nucleus.
These are shown on Fig. 3.1 for the reaction of 11Be, the best known one-neutron halo
nucleus, on a 12C target at 20 MeV/nucleon as functions of the scattering angle θ between
the initial and final directions of the projectile centre of mass, whether it breaks up or
not. Because it diverges at forward angle, the elastic scattering cross section is divided by
Rutherfords. The breakup cross section is calculated for a breakup of the projectile to a
final c-n scattering state of energy E=125 keV. As it can be observed, both cross sections
seem to oscillate in phase. Also, they exhibit similar decay patterns.

This similar diffraction pattern is also present if we change the target. On Fig. 3.2,
the elastic scattering cross sections (left, in black) and differential breakup cross sections
calculated at the same energy as above (right, in red) are displayed for a 12C (solid), 40Ca
(dashed) and 208Pb (dash-dotted) targets. These cross sections are given as a function
of the momentum transfer Q [Eq. (2.58)] to remove the target-mass dependence. The
differences between these cross sections can be seen both in shape and in magnitude,
with discrepancies up to three orders of magnitude. They are due to the very different
reaction mechanisms at play in these collisions. Because of these discrepancies, the clean
extraction of valuable information on the halo structure itself can be hindered. It should
be noted however that the differential breakup cross sections seem to oscillate in phase
and have a similar decay pattern to their corresponding elastic scattering cross sections.

This behaviour is reminiscent of the expressions of these cross sections in the REB
model [Eqs. (2.59) and (2.61)] where they are both proportional to the same pointlike
elastic cross section (dσ/dΩ)pt,el. In the assumptions of the REB, we should thus observe
a similar oscillation pattern for all these cross sections (if the form factors do not vary too
quickly with Q). This is exactly what we see in Fig. 3.1 for fully-dynamical calculations.
It should be noted that since (dσ/dΩ)pt,el contains all the c-T interaction dependences
of the differential cross sections in which we are not interested, it is tempting to take
their ratio in order to cancel out this pointlike cross sections and hence remove all the
angular dependence that does not originate from the projectile structure. This gives rise
to an observable in the form of a ratio of form factors. This ratio should be sensitive only
to the structure of the projectile and should hence remove all dependences on the core-
target interaction. As these can be ambiguous to describe since the core of halo nuclei is
most often radioactive, this is an additional valuable property for this observable. Note
that any linear combination of elastic or breakup cross sections should also exhibit this
property [see Eqs. (2.59) and (2.61)].

In this work, I will consider the summed ratio

Rsum(E,Q) = (dσ/dEdΩ)bu

(dσ/dΩ)sum
, (3.1)

where (dσ/dEdΩ)bu is simply the angular distribution cross section for breakup at the
energy E in the c-n continuum and where the summed cross section reads(

dσ

dΩ

)
sum

=
(
dσ

dΩ

)
el

+
∫ (

dσ

dEdΩ

)
bu
dE, (3.2)
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Figure 3.1: Elastic scattering and breakup angular distributions for the reaction
of 11Be on 12C at 20 MeV/nucleon as a function of the scattering angle θ. Note
that the elastic scattering cross section is given as a ratio to Rutherford’s and
the breakup angular distributions are given in units of b/MeV sr.

i.e. the sum of the elastic-scattering cross section with the integrated breakup cross
section2. In the REB approximation [see Eqs. (2.59) and (2.61)], this ratio of cross
sections reads

(dσ/dEdΩ)bu

(dσ/dΩ)sum

(REB)= |FE,0(Q)|2
|F0,0(Q)|2 +

∫ |FE′,0(Q)|2 dE ′ . (3.3)

where the form factors are defined in Eqs. (2.62) and (2.60). As the sum of the form factors
for every possible process is 1 because of closure relations (this result is demonstrated in
Appendix A), the ratio simplifies and reads finally

Rsum(E,Q) (REB)= |FE,0(Q)|2. (3.4)

The ratio Rsum(E,Q) leads to the observable with the simplest expression. It has
also been shown to be more optimal to consider and is probably the easiest to measure
experimentally [68]. As seen from expression (3.4), the ratio Rsum(E,Q) represents the
ratio of the differential angular distribution cross section for breakup, (dσ/dEdΩ)bu, at a
given energy E, on the summed angular distribution cross section, (dσ/dΩ)sum. It should
be noted that because it is the ratio of two cross sections, this observable is not sensitive
to normalization. This is a valuable experimental quality.

In the work of Capel et al. [68], the REB prediction and the ratio observable have
been studied and compared to DEA calculations at an energy of roughly 70 MeV per
nucleon for the reaction of 11Be on carbon and lead targets. DEA and REB predictions
proved to be in quite a good agreement. This original study has been carried out at 70
MeV per nucleon because breakup experiments have been performed at this intermediate

2Note that in my work, no other bound state than the ground state are considered for my calculations.
In the expression of the summed cross section, no inelastic process is hence considered. If those were
included in the model, a more general expression of the summed cross section would be Eq. (1.11) which
includes inelastic contributions.
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Figure 3.2: Elastic scattering (black, left) and breakup (red, right) angular dis-
tributions for the reaction of 11Be on 12C, 40Ca and 208Pb at 20 MeV/nucleon
as a function of Q. Note that the elastic scattering cross section is given as a
ratio to Rutherford’s and the breakup angular distributions are given in units of
b/MeV sr.

energy. However, at such energies, all differential cross sections are very forward focused
and it is rather challenging to measure them accurately.

To explore the limits of the ratio method, it is interesting to study this observable
for lower energy reactions. By going to lower energies, the angular range would extend
to larger angles. This becomes clear by noticing how the projectile energy dependence
of |FE,0(Q)|2 appears only through the momentum transfer Q [see Eq. (2.58)]. For a
given target, the smaller the beam energy, the smaller the impinging momentum K0, and
therefore reducing the beam energy widens the distribution to larger angles. Identically,
for a given beam energy, a decrease in the target mass decreases K0, producing a similar
effect. The aim of this work is hence to test the ratio at lower energies of the projectile that
would make the measurement easier as well as appropriate to facilities such as SPIRAL2
(GANIL, Caen, France) and ReA12 at FRIB (Michigan State University). Note that the
energies at which these facilities will operate are outside of the hypotheses of the REB
and it is not trivial that the idea of the ratio will remain valid.

While the REB model, on which the ratio idea is based, was originally thought for
neutron halos at intermediate and high energies, I will also explore the validity of the
ratio for proton halo nuclei. These tests will be carried out for a 8B projectile, which
exhibits a very clear one-proton halo structure and at intermediate energy, at which the
ratio should work best. The study will then be extended to other proton-rich nuclei. All
these tests will allow me to explore the limits of the ratio and hopefully lay the ground
for future experiments.

In order to study the ratio observable, I will perform fully dynamical calculations for
the reactions I have just briefly discussed. The dynamical ratio observable Rsum(E,Q)
will then be compared to its REB approximation |FE,0(Q)|2 [see Eq. (3.4)] to evaluate if
it remains valid. As seen in Ref. [57], while there is a good agreement between CDCC and
DEA breakup-problems calculations for energies of the projectile of about 70 MeV per
nucleon, the DEA is no longer valid at energies of 20 MeV per nucleon. In the case of the
11Be halo nucleus, I will thus study the reliability of the REB prediction and of the ratio
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at such low energies with the CDCC method. In the case of 8B, for which data exist at an
intermediate energy of 44 MeV per nucleon3 [69], calculations will be performed with the
DEA. The use of the DEA has been shown to work well for this reaction [70] and allows
for shorter computation times than CDCC.

3.2 Neutron halos at low energy
In this section, the reaction of a 11Be projectile impinging at 20 MeV/nucleon on several
targets is analysed. Before analysing the validity of the REB hypothesis (3.4) and its
agreement with the dynamical ratio observable Rsum(E,Q), the sensitivity of the form
factor, and hence the ratio, to the projectile structure is studied. After that, calculations
on a light (12C), a medium-mass (40Ca) and a heavy (208Pb) target are considered to
further test the ratio observable. In this way, the whole spectrum of reactions are probed,
from nuclear-dominated processes to Coulomb-dominated ones. The results reported in
this section have led to the publication of Ref. [71].

3.2.1 Numerical details for reactions involving 11Be

Before going through the results of the calculations, let me summarise the parameters of
the optical potentials that I have chosen to simulate the interaction between the valence
fragment—a neutron—and the core Vcn (Tab. I.2) and between the constituents of the
projectile and the target VnT and VcT (Tab. I.3).

In the low-energy spectrum of 10Be, we find a 1/2+ ground state with a binding energy
of 503 keV (with respect to the neutron emission threshold). This state is reproduced as
a neutron in the 1s orbital by the optical potential given in Tab. I.2. Note that another
bound state 1/2− which sits 320 keV above the ground state [72] exists but will not be
considered in this work. In this case, the valence neutron is considered spinless. These
parameters are taken from [45]. The shapes are chosen as in Eqs. (2.68) and (2.69).

Table I.2: Parameters of the single-particle potentials simulating the c-n inter-
actions for 11Be. The binding energy (in keV) of the ground state and partial
wave of the ground state is also given. The depth of the real potential is given
in MeV while radii and diffusenesses are given in fm. See Ref. [45]

c-n E0 [keV] n0l0j0 Vr Rr ar
11Be −503 1s1/2 62.52 2.585 0.6

The n-T interaction parameters are taken from the Koning and Delaroche parametri-
sation [66], which describes the global interaction of a nucleon with a nucleus4 in a wide
range of energies. The parameters of the 10Be-target interaction have been taken from
Ref. [73], where 12C is impinging on 12C and 208Pb at 25 MeV/nucleon, and have been
rescaled to our problem according to (2.64). Note that to study the influence of the c-T
interaction, a different potential developed by Robson [74] to reproduce the elastic scat-
tering of 10B on a carbon target at 18 MeV (total energy) and listed in the Perey and

3Note however that unfortunately, while data indeed exists for this reaction, no breakup angular
distributions nor elastic scattering angular cross sections are provided.

4I am aware that the parameters taken from this paper are not really fit to interactions of a neutron
with nuclei with A < 24 but the large energy range covered by the paper makes this choice convenient.
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Perey compilation [75] is also used. The corresponding parameters of the potential, which
shape potential is given as in Eqs. (2.63) and (2.68), are summarized in Tab. I.3.

Table I.3: Parameters of the optical potentials simulating the interaction
between the fragments of the 11Be projectile and the different target nuclei.
Potential depths are given in MeV while radii and diffusenesses are given
in fm. See Eqs. (2.63) and (2.68) for the shape of these potentials. See
Refs. [66, 73, 74, 75, 76]

P T Vr Rr ar Wi Ri ai WD RD aD RC

n 12C 46.9395 2.5798 0.676 1.8256 2.5798 0.676 28.6339 2.9903 0.5426 −
40Ca 46.709 4.054 0.672 1.728 4.054 0.672 28.926 4.406 0.538 −
208Pb 41.4872 7.3202 0.6469 1.1858 7.3202 0.6469 26.4580 7.3973 0.5102 −

10Be 12C 250 3.053 0.788 247.9 2.982 0.709 0 − − 5.777
12C 100 5.40 0.5 18 5.40 0.5 0 − − 5.40

40Ca 200 4.465 0.837 276.9 5.000 0.653 0 − − 4.465
208Pb 95 7.0129 1.168 250 7.9582 0.662 0 − − 10.503

3.2.2 Sensitivity to the projectile structure

In order to illustrate the properties of the form factor for a 11Be projectile and see how
sensitive it is to the structure of the projectile, we can modify the c-n potential Vcn.
By varying the depth of the s-wave of Vcn, we can modify the halo binding energy. On
Fig. 3.3, the form factor |FE,0|2 (2.62) for halos bound in the 1s wave by 50 keV (dashed),
the realistic 11Be binding energy 0.5 MeV (solid) and 5 MeV (dotted) are represented.
Are also represented the form factors for a halo bound in a 0p (long-dashed line) and 0d
(dash-dotted line) orbitals. These are obtained by fitting the 0.5 MeV binding energy in
these orbitals. As expected from the results of Ref. [38], the form factor exhibits a strong
dependence on the projectile structure, both in shape and in magnitude. This shows that
the ratio could be a very useful method to measure precisely and simultaneously these
two quantities.

To further test the dependence to the halo structure, the sensitivity to the radial wave
function is also explored. These can be varied by modifying the shape of the c-n potential
in the s-wave and then readjusting the depth of the interaction to reproduce the physical
bound state. On Fig. 3.4 the radial wave functions for the original 11Be wave function
(solid), small (dotted) and large (dashed) radii of the potential (Rr in Tab. I.2) and for a
0s state (dash-dotted), that shows the effect of the removal of a node in the wave function,
are represented.

On the left panel of Fig. 3.5, the corresponding form factors |FE,0|2 are shown. While
the differences are less pronounced than for changes in the binding energy or the orbital,
the form factors still exhibit some dependence on the internal and external parts of the
wave function. Interestingly, this dependence can be pinpointed to a different angular
range depending on the part of the wave function that is probed. For example, most of
the sensitivity to the external part of the wave function is found at forward angles. Indeed,
as visible on the right panel of Fig. 3.5, where the form factors have been scaled to the
square of the ANC of the wave function |C00|2 [see Eq. (2.12)], they are superimposed at
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Figure 3.3: Sensitivity of the form factor |FE,0|2 (Eq. (2.62)) to the binding
energy and the partial wave of the halo neutron to the core: included are the
realistic 11Be, i.e. a 1s state bound by 0.5 MeV (solid line), a loosely bound 1s
state Sn = 0.05 MeV (short-dashed line), and a well bound 1s state Sn = 5 MeV
(dotted line). Also shown are the ratios for a 1p (long-dashed line) and a 0d
state (dash-dotted line) both bound by 0.5 MeV.

forward angles. At larger angles, on the contrary, they still exhibit a different behaviour.
This shows that the form factor |FE,0|2 is sensitive to the radial wave function of the
bound state, although the breakup and elastic scattering observables are not [77]. This
result confirms the observations made in Ref. [68].
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Figure 3.5: Sensitivity of the form factor to the radial wave function (see Fig. 3.4).
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3.2.3 Analysis of the ratio method at low energy
12C target

I will start the analysis of the ratio observable at low energy on a light target, namely 12C.
As the target is light, the reaction is nuclear dominated. Since the range of the (nuclear)
potential is small, this reaction should therefore better fit in the adiabatic assumption of
the REB than a Coulomb dominated reaction.

CDCC computations for this reaction are shown on Fig. 3.6 as solid lines. While DEA
calculations (corrected for the Coulomb interaction Eq. 2.48) should not be valid at these
energies, they are still displayed as dashed lines. I will comment on them later. The
figure displays the summed cross section defined in Eq. (3.2) divided by Rutherford’s,
the differential breakup cross section for a n-10Be continuum energy E = 125 keV (in
b/MeV sr) as well as the ratio Rsum (in MeV−1) (3.1) calculated from these cross sections
and the form factor |FE,0|2 obtained in the REB model (thick grey line), all as a function
of the scattering angle θ.

As already observed at higher energies [78, 38, 68] and in Sec. 3.1, the breakup and
summed cross sections exhibit a very similar oscillatory pattern. This is also reminiscent of
the cross sections discussed in the REB model. By taking the ratio of these cross sections,
these oscillations are hence strongly reduced. They give rise to a pretty smooth ratioRsum
that follows quite well its REB prediction. Since the oscillations are not exactly in phase,
the ratio still exhibits remnant oscillations. As observed in Ref. [37], they originate from
the slight shift caused by the n-T interaction. Indeed, in the REB model where the valence
nucleon is seen as a spectator, the breakup occurs solely because of the recoil of the core
due to its interaction with the target. The additional n-T interaction contained in these
calculations (compared to the REB model) is hence responsible for an extra kick on the
valence neutron and hence induces a shift.

As we have seen in the previous sections, the purpose of the ratio is to provide with an
observable that is independent of the reaction mechanism and hence of the potentials used
to simulate the interaction between the projectile components and the target. In order to
test this property, let us analyse the sensitivity of the ratio to the P -T interaction. On
Fig. 3.7, the summed and differential breakup cross sections are plotted as a function of the
scattering angle. The calculations involving both c−T and n−T interactions (and referred
to as the full calculations in the following) (solid) are compared to calculations where the
c-T interaction is modelled with a different potential V ′cT (dash-dotted, see grey line in
Tab. I.3). Additionally, these are compared to calculations involving a non-interacting
valence neutron VnT = 0 (dotted) which is one of the assumptions of the REB model.
The ratio of these cross sections (scaled for readability purposes) is compared to the REB
prediction (thick grey). It should be observed how the differential breakup cross section
drops rapidly under the mb/MeV sr past 15-20◦, probably making the measurements
difficult beyond this angle. A zoom at forward angles is hence given on the right panel of
the figure.

The remnant oscillations of the ratio are very clearly visible on the right panel. As
observed in Ref. [37] and discussed previously, they originate from the slight shift caused
by the n-T interaction. This is confirmed if the calculations are performed by switching
off the interaction of the valence neutron with the target (VnT = 0). In this case, the
oscillations are on phase and the ratio is hence perfectly smooth. It should be noted how
the ratio is then in perfect agreement with its REB prediction despite the low energy of
the reaction.
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Figure 3.6: Comparison between the dynamical ratio Rsum (see Eq. (3.1)) with
its REB prediction |FE,0|2 (2.62) (thick grey line) for a 11Be projectile impinging
on a C target at 20 MeV/nucleon. I consider the breakup to a final c-n scattering
state of energy E = 125 keV. CDCC (solid black lines) and DEA (dashed lines)
calculations are displayed. See text for details.

The most interesting observation is probably the influence of the c-T potential on the
individual cross sections and on the ratio. The full and V ′cT calculations are different
not only in their oscillatory pattern but also in their large discrepancies at large angles.
This shows how heavily dependent both the breakup and summed cross sections are on
the choice of potential. But despite these large differences, their ratio remains nearly
unchanged. Up to the remnant oscillations, their shape and magnitude is indeed very
similar and closely follow the REB prediction. This result is a nice illustration of the
(in)sensitivity of the ratio to the c-T interaction.

The logarithmic scale of these figures makes it easier to capture the trend and shape
of the curves at all angles. However, it hinders some of their fine details. It is hence
interesting to have a look at these results in linear scale. These are displayed on Fig. 3.8
(the labels are the same as for Fig. 3.7, note however that the ratio and its REB prediction
are not scaled here). These theoretical cross sections are convoluted with a Gaussian of
standard deviation 2◦ to simulate the experimental resolution that we could expect from
such measurement. This smoothing is displayed in red.

As already observed on the logarithmic scale, the ratio Rsum obtained by considering
a spectator valence neutron VnT = 0 is in perfect agreement with its REB prediction.
When considering the n-T interaction however, the ratio exhibits remnant oscillations
that are clearly visible here. By choosing a different c-T interaction, the oscillatory
patterns is shifted differently but is very similar in magnitude. The ratio is hence not
totally insensitive to the VcT potential, but its dependence on the c-T is small. This
is particularly true if we fold the ratios with a realistic angular resolution of 2◦ (red),
simulating a finite experimental resolution. In both cases however, the ratios do not
seem to follow the REB as closely as the logarithmic scale hinted or as it did for a
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Figure 3.7: Sensitivity of the ratio to the P -T interaction for a C target at
20 MeV/nucleon. The breakup is considered to a final c-n scattering state of
energy E = 125 keV. The full calculation (solid lines) is compared to the results
obtained when VcT = RPP (dash-dotted lines) [see grey line of Tab. I.3] and with
VnT = 0 (dotted lines). The REB form factor |FE,0|2 is plotted as well (thick grey
line). (Left) Full angular range (using CDCC). (Right) Forward-angle region.

collision at higher energy (see Fig.4 of Ref. [68]). While the ratio for a spectator valence
neutron superimposes to its REB prediction, the other two exhibit the same trend but
are overestimated by |FE,0|2.

These results on a light target at low energy show that the ratio does not exhibit the
same agreement with its REB prediction as it did at intermediate energies. Nevertheless,
it shows that while the conditions of the reaction are beyond the hypotheses of the REB,
the ratio still exhibits some interesting properties, i.e. the attenuation of the oscillatory
pattern of the individual cross sections, its near independence to the c-T interaction
compared to the variations induced by this interaction on the individual cross sections.

As already stated above, at an energy of 20 MeV/nucleon, the CDCC method is the
most reliable model. The calculations shown in Figs. 3.7 and (3.8) have thus been carried
out with this model. Since eikonal models are built on high-energy assumptions which are
not met here, one should not rely on such calculations at this energy. It is nevertheless
interesting to compare these two methods. If we go back to Fig. 3.6, where both these
calculations are displayed, we can see how CDCC and DEA calculations are in good
agreement at forward angles but disagree at larger ones. This behaviour is expected given
that by going to large angles we depart from the eikonal assumptions of the DEA (see
Sec. 2.3). Also, the reaction is there completely dominated by the nuclear part of the
interaction [79]. The Coulomb correction Eq. (2.48) is hence not sufficient to reliably
calculate these individual cross sections [80]. However, very interestingly, even though
the CDCC and DEA individual cross sections do not agree past 15◦, their ratio (3.1)
are in good agreement much beyond that angle. This result indicates that using DEA
calculations seems reasonable to test the validity of the REB prediction, especially since
the DEA is much less computationally expensive than CDCC. For the heavier targets (Ca
and Pb), for which the (repulsive) Coulomb force between the projectile and the target
plays a more dominant role and for which the correction Eq. (2.48) gives better results, I
will only use the DEA to study the ratio method.
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Figure 3.8: The ratios Rsum (black) and REB form factor |FE,0|2 (thick grey)
visible on Fig. 3.7 plotted in a linear scale. Smoothing of the ratios by the folding
with an arbitrary experimental angular resolution of 2◦ is also displayed (red).

40Ca target

As the target mass increases, the reaction becomes less nuclear dominated. On Fig. 3.9,
the results of a series of calculations for a 40Ca target, still at 20 MeV/nucleon. Note
how for this target, the differential breakup cross section decays more rapidly than for a
carbon target [see Fig. 3.7]. This pushes the angular range of interest towards forward
angles. Attaining convergence for the CDCC method turned difficult. But since the
angular region of interest is limited to forward angles where the reaction is dominated by
Coulomb and the DEA is hence reliable, only results obtained with the DEA are shown
here.

As observed for a light target, both summed and differential breakup cross sections
exhibit very similar oscillatory patterns. By taking their ratio, these oscillations are
significantly damped. These are however larger than for a light target. Up to these
remnant oscillations, the ratio nonetheless follows a similar trend as its REB prediction
(thick grey). Like for light targets, Rsum seems to be slightly below |FE,0|2. As previously,
by neglecting the n-T interaction (VnT = 0), the REB assumptions are better satisfied and
the ratio then becomes smooth and in perfect agreement with |FE,0|2. It should be noted
that contrary to the light target case, a slight discrepancy exists at very forward angles.
At these angles (θ ≤ 2◦), the REB prediction over-estimates the ratio. This behaviour is
due to the adiabatic approximation inherent to the REB model. At forward angles the
reaction is completely dominated by Coulomb. This can be seen from the much flatter
summed cross section (which is dominated by the elastic scattering). As the Coulomb
interaction has an infinite range, the collision can hardly be considered adiabatic as it
does not occur in a brief time, causing the REB assumptions to lapse. This also explains
why this effect is barely visible for light targets (see very-forward angles on the right panel
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Figure 3.9: Sensitivity of the ratio to the P -T interaction for a 40Ca target at
20 MeV/nucleon. The breakup is considered to a final c-n scattering state of
energy E = 125 keV. The full calculation (solid lines) is compared to the results
obtained with VnT = 0 (dotted lines). The REB form factor |FE,0|2 is plotted as
well (thick grey line).

of Fig. 3.7), for which the interaction is nuclear dominated. Note however that since cross
sections are hardly measured in this angular range, this might not be noticeable in actual
data taking.

208Pb target

Finally, the same calculations have been performed on a 208Pb target. These are shown
on Fig. 3.10. As in the case of a 40Ca target, convergence of the CDCC calculations has
not been attained. Note however that very interestingly, the convergence rate of the ratio
was better than the one from the individual cross sections. Only CC-DEA calculations,
which have been shown to be reliable for this target at this energy [59] are shown here.
Due to numerical instabilities beyond that angle, results are shown only up to 20◦.

Results are less good than for lighter targets. Indeed, while the ratio Rsum is rather
smooth (mainly because the individual cross sections are also smooth) and has a similar
trend to its REB prediction, it remains away from it. As for the lighter targets, by remov-
ing the n-T interaction, the ratio is in much better agreement with its REB prediction.
However, as it should be expected, the much flatter summed cross section (divided by
Rutherford’s) at forward angles shows that the reaction on this target is totally dominated
by Coulomb in this angular range. At these angles, the adiabatic approximation is hence
even more poorly satisfied than for the calcium target (see Fig. 3.9). This thus leads to
an overestimation of the breakup by the REB model and hence to a overestimation of the
ratio, even for VnT = 0. This observation, already discussed in Ref. [68], is significantly
worsened by the low projectile energy.
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Figure 3.10: Same as Fig. 3.9 for a 208Pb target.

Summary on all targets

It is interesting to have a look at the differential breakup and summed cross sections as
well as their ratio for all targets in the same axes. These are displayed on Fig. 3.11 as
a function of Q (2.58). For clarity, the ratio and its REB prediction are divided by 10
and the differential breakup cross section by 104. The main interest of the ratio is clearly
illustrated here. Although all individual cross sections are significantly different in shape
and magnitude, which shows how different the reaction mechanisms can be for all these
targets, all ratios Rsum lie near from their REB prediction |FE,0|2. As we have seen,
some remnant oscillations still exist, especially for light targets, for which the reaction is
nuclear dominated. But these are much smaller than the oscillations of the individual cross
sections. The effect of the adiabatic approximation inherent to the REB model and more
specifically the impact of the low energy of the reaction is also clearly seen here. At very
forward angles, which correspond to small values of Q, the REB prediction overestimates
the actual ratio. As the target mass increases and the infinite ranged Coulomb interaction
becomes dominant, the sudden approximation lapses. Note however that while the ratio
for the different targets exhibit clear differences, these are orders of magnitude smaller
than the differences that can be observed in their respective individual cross sections.
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Figure 3.11: Sensitivity of the ratio to the target choice: DEA calculations
on 12C, 40Ca, and 208Pb at 20 MeV/nucleon are displayed as a function of Q
[see Eq. (2.58)]. The differential breakup angular distributions, the ratio Rsum
and the REB form factor |FE,0|2 (thick grey line) are calculated at an energy
E = 125 keV in the 10Be-n continuum. Note the very small differences in the ratio
observable for the different targets compared to the differences in the breakup
and summed cross sections.

3.3 Proton halos
Originally thought for high-energy reactions involving neutron-halo nuclei, we have just
seen how some of its valuable properties were still valid outside of the assumptions of
the REB. It is then also interesting to see if the ratio method can be applied to proton-
halos. Because the halo is charged, its interaction with the target includes the Coulomb
force. Because of its infinite range, the Coulomb interaction can be hardly neglected and
collisions with proton-rich nuclei are thus beyond the REB assumptions, which assumes
the process to be adiabatic and neglects the v-T interaction. To study the applicability
of the method at the other extreme of the nuclear chart, tests similar to those shown
in previous section will be performed on the reaction of a 8B projectile, the archetypical
one-proton halo nucleus, at 44 MeV/nucleon. These conditions are the ones of the MSU
breakup experiments of Davids et al. [69]. Calculations of this section will be performed
using the DEA.

To illustrate the idea, some preliminary calculations are displayed on Fig. 3.12, where
the angular distribution for the breakup of 8B into 7Be and p at the continuum energy
E = 125 keV (in b/MeV sr), the summed cross section Eq. (3.2) divided by Rutherford’s,
their ratio Rsum expressed in MeV−1, and the corresponding REB form factor |FE,0|2
(thick grey line) are shown. As observed for a neutron-halo projectile, the breakup and
summed cross sections oscillate in a very similar pattern. By taking their ratio, these
oscillations are once more strongly reduced. However, due to the slight shift that exists
between the elastic and breakup angular distributions, some remnant oscillations are still
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visible. Nonetheless, even though collisions with proton-rich nuclei are beyond the REB
assumptions, the ratio method seems to be applicable to 8B andRsum is in a fair agreement
with its REB prediction. The application of the ratio to this nucleus thus makes sense
and will be studied thoroughly in this section.
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Figure 3.12: Comparison of the ratio Rsum and REB form factor |FE,0|2 (thick
grey line) for the reaction of 8B impinging on 12C at 44 MeV/nucleon. Rsum and
REB form factor |FE,0|2 are considered for an energy E = 125 keV in the 7Be-p
continuum and given in units of MeV−1. Breakup angular distributions are given
in units of b/MeV sr. Note that the ratio is multiplied here by 10 to improve the
readability.

First, I will study the agreement of the ratio with its REB prediction through cal-
culations on a light (12C), a medium-mass (this time 58Ni) and a heavy (208Pb) target.
Second, I will analyse the sensitivity of the form factor to the projectile structure. Finally,
other proton-rich nuclei than this archetypical proton halo nucleus, i.e. 17F, 25Al and 27P,
will be explored to try and extend the ratio method to heavier proton-rich systems. The
results of this section have led to the publication Ref. [81].

3.3.1 Numerical details for reactions involving 8B

Before going through all the calculations made on 8B, I will here summarise the parameters
of the optical potentials that I have chosen to simulate the interaction between the valence
nucleon—a proton this time—and the core Vcp (Tab. I.4) and between the constituents of
the projectile and the target VpT and VcT (Tab. I.5).

The spectrum of 8B includes only one bound state with a binding energy of merely
137 keV below the one-proton separation threshold. It has a 2+ spin and parity and is
obtained predominantly from the coupling of a 0p3/2 proton with the 3/2− spin of the
ground state of 7Be [82]. Following Refs. [70, 83], I use the simplified version of the
description of 8B developed by Esbensen and Bertsch in [84], which neglects the spin
of the core, i.e. 7Be. The ground state is then seen as a 0p3/2 state. This potential
reproduces a non-physical resonance around 2 MeV in the c-p continuum. The effect of
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this resonance will be discussed later. Note that here, because the calculations are done
in the DEA and are hence significantly shorter than for CDCC, I will consider the spin
of the valence proton.

Table I.4: Parameters of the single-particle potentials simulating the c-p inter-
actions for 8B. The binding energy (in keV) of the ground state and partial wave
of the state are also given. The depth of the real potential is given in MeV while
radii and diffusenesses are given in fm. The depth of the spin orbit part is given
in units of MeV fm2. See Eqs. (2.63) and (2.68) for the shape of these potentials.
See Ref. [45]

p-c E0 n0l0j0 Vr Rr ar Vso Rso aso RC

8B −137 0p3/2 44.65 2.391 0.52 19.59 2.391 0.52 2.391

In order to simulate the p-T interaction for a 8B projectile, I use the Koning-Delaroche
nucleon-nucleus global parametrization [66] for the 12C and 58Ni targets. For the 208Pb
target, I consider the global optical potential of Becchetti and Greenlees [76]. The 7Be
core being the mirror nucleus of 7Li, I choose to follow Refs. [70, 83] and simulate the
c-T interaction with optical potentials that were fitted to 7Li elastic-scattering data. For
the 208Pb target, the global potential of Cook of Ref. [85], which reproduces the elastic
scattering of 7Li on a 24Mg target in an energy range 28–88 MeV, is rescaled to 208Pb
according to (2.64). For the 12C target, I consider the potential developed in Ref. [86] to
fit elastic-scattering data of 7Li off 12C at 350 MeV. Finally for the 58Ni target instead, the
potential developed in Ref. [87] to fit elastic-scattering data of 4He off 58Ni at 240 MeV
is rescaled according to (2.64). A second set of potentials (in grey) is used to test the
independence of the ratio to the c-T interaction. These come from Refs. [88, 89], which are
listed in the Perey and Perey compilation [75]. The first reproduces the elastic scattering
of 6Li on 208Pb at 30 MeV and is rescaled according to (2.64) whereas the second simulates
the scattering of 7Li off 12C at 36 MeV. It should be noted how these potentials have been
developed for energies well below the ones considered here. Since these are only used to
test the independence of the ratio to the c-T interaction, the energy dependence of these
interactions is neglected.
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Table I.5: Parameters of the optical potentials simulating the interaction
between the fragments of the 8B projectile and the different target nuclei.
Potential depths are given in MeV while radii and diffusenesses are given
in fm. See Eqs. (2.63) and (2.68) for the shape of these potentials. See
Refs. [66, 70, 76, 83, 85, 87, 88, 89]

P T Vr Rr ar Wi Ri ai WD RD aD RC

p 12C 40.748 2.58 0.676 4.873 2.58 0.676 19.542 2.99 0.512 3.52
58Ni 37.231 4.642 0.669 6.516 4.642 0.669 14.736 4.959 0.489 4.875

208Pb 50.5 6.93 0.75 6.98 7.82 0.66 13.35 7.82 0.66 7.41
7Be 12C 107.6 3.148 0.854 37.9 3.826 0.758 0 − − 2.747

12C 245 2.77 0.759 14.7 4.58 0.909 0 − − 2.98
58Ni 76.6 5.03 0.8 24.2 5.817 0.8 0 − − 5.032

208Pb 114.2 7.62 0.853 9.44 10.3 0.809 0 − − 7.70
208Pb 250 7.19 0.5 13.5 10.23 0.91 0 − − 8.4

3.3.2 Analysis of the ratio for proton halos
12C target

As I did for neutron halos, I will start the analysis of the ratio observable on proton halos
on a 12C target. As the target is light, the reaction is nuclear dominated and should
therefore better fit with the adiabatic assumption of the REB. The energy of the reaction
is 44 MeV/nucleon which corresponds to the conditions of the MSU breakup experiments
of Davids et al. [69]. At this energy, calculations are best done with the DEA.

On Fig. 3.13 are represented the angular distributions for the breakup of 8B into 7Be
and p at the continuum energy E = 125 keV (in b/MeV sr), the summed cross section
divided by Rutherford, their ratio Rsum expressed in MeV−1, and the corresponding REB
form factor |FE,0|2 (thick grey line). The solid curves correspond to the full calculation,
including both p-12C and 7Be-12C interactions and already shown on Fig. 3.12. In addition,
calculations using the alternative 7Be-12C potential V ′cT (see grey line in Tab. I.5) are
displayed with the dash-dotted lines and calculations which do not include the p-12C
interaction (neither the nuclear nor the Coulomb one) and hence consider a spectator
valence proton are displayed by the dotted lines (VpT = 0).

As already briefly discussed in Fig. 3.12 and already observed for a neutron-halo
projectile, the breakup and summed cross sections oscillate in a very similar pattern. By
taking their ratio, these oscillations are strongly reduced. Due to the slight shift that
exists between the elastic and breakup angular distributions, some remnant oscillations
are still visible. Very similarly to what has been observed for neutron-halo nuclei above
and in Ref. [68], they arise from the kick given by the target to the valence proton through
VpT [37, 64]. This is confirmed by considering a spectator proton (VpT = 0, dotted), for
which the DEA ratio is in perfect agreement with the REB prediction.

At forward angle (viz. θ . 3◦), the REB form factor overestimates the full DEA
calculation. This is reminiscent of the problem observed for the reaction of a neutron
halo projectile impinging on a Pb target at low energy (see Fig. 3.10). In both cases,
this overestimation is caused by the adiabatic assumption of the REB. Note however that
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Figure 3.13: Analysis of the ratio method for 8B impinging on 12C at 44
MeV/nucleon. The ratio Rsum and REB form factor |FE,0|2 (thick grey line)
are considered at an energy E = 125 keV in the 7Be-p continuum and are given
in units of MeV−1. Differential breakup angular distributions dσBU/dEdΩ are
given in units of b/MeV sr. DEA calculations using different sets of potentials
are displayed (see text for details). Note that the ratio is multiplied here by 10
to improve the readability.

different aspects of this assumption enter into account here. In the case of the low-energy
reaction of a neutron halo on a heavy target, the overestimation originates mainly from
the low energy of the reaction (compare Fig. 3.10 to Fig. 2(b) from Ref. [68]). Contrary,
here, the effect is clearly caused by the p-T interaction. Indeed, as the latter is neglected,
the ratio and its REB prediction are in perfect agreement even at very-forward angles.
Additional tests—not plotted here for the sake of clarity—have shown that this difference
is solely due to the Coulomb part of the p-T interaction. We can explain this result by
noting that, in the REB model, the breakup is caused by the sole recoil of the core due to
its interaction with the target, the valence nucleon being seen as a spectator. Unlike in
one-neutron halo nuclei, the halo nucleon is charged here, which implies that the repulsive
Coulomb interaction between this valence proton and the target reduces the tidal force,
which is responsible for the dissociation. Due to its coulomb interaction with the target,
the proton recoils with the core and the actual breakup and hence the ratio are then
smaller than those predicted by the REB at forward angles. The reactions on 12C being
nuclear dominated, this reduction happens only at forward angles and is small.

To study the independence of the ratio to the choice of the c-T interaction, an al-
ternative 7Be-12C potential (V ′cT , dash-dotted lines, see Tab. I.5). Unfortunately, both
potentials provide nearly identical angular distributions. Nevertheless, at large angles
(i.e., for θ & 8◦) they produce noticeable differences in the cross sections that are com-
pletely washed out within the ratio, confirming that this observable removes most of the
sensitivity to the c-T optical potential.
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58Ni target

As the target mass increases, the reaction becomes less nuclear dominated, and hence less
adiabatic. But the cross sections are enhanced, which on an experimental point of view,
could be interesting as it would lead to a ratio easier to measure. The same calculations
are hence done for a 58Ni target. The results are displayed on Fig. 3.14. They are
similar to those computed with a 12C target. Here also, the breakup and summed angular
distributions decay and oscillate in a very similar fashion. By taking their ratio, this
oscillatory pattern roughly cancels out and their ratio is smoother. However, it is in less
good agreement with the REB form factor than on 12C: at forward angle (θ . 5◦), the
DEA ratio lies below its REB prediction, while at larger angles, it exhibits more significant
remnant oscillations. Both problems fully disappear when the calculation is performed
without the p-T interaction. As discussed previously, the former issue is due to the
dominance in the forward angle region of the Coulomb part of the p-T interaction, which
hinders the breakup. The second issue is related to the whole VpT , which produces a shift
in the angular distributions, as already discussed in the case of neutron-halo projectiles.
Despite its larger cross sections, the Ni target does not seem the optimal choice for a
measurement of the ratio for 8B because the ratio it produces cannot be directly related
to the REB prediction.
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Figure 3.14: Same as Fig. 3.13 but for a 58Ni target.

208Pb target

Finally, the same calculations are performed on a 208Pb target. These are displayed on
Fig. 3.15. The results obtained on this heavy target are similar to those computed for
the two previous targets. The breakup and summed angular distributions exhibit very
similar decays and oscillatory patterns. Accordingly, their ratio removes most of these
features, leading to a smooth curve that shows a similar trend as the REB prediction
|FE,0|2. Note however that similarly to the case of a neutron halo nucleus in Sec. 3.2.3,
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the smoothness of the ratio is mainly due to the absence of oscillations of the breakup and
summed cross sections at the angles considered here. This result exhibits little dependence
on the choice of the c-T interaction: the ratio obtained with the alternative potential V ′cT
(dash-dotted) is nearly superimposed on the first one. At forward angles, this simply
reflects the fact that both potentials lead to indistinguishable cross sections, which is
to be expected for a Coulomb-dominated reaction. However, at angles θ & 8◦, where
the reaction is more sensitive to the choice of nuclear potential and the individual cross
sections exhibit noticeable differences, both ratios remain superimposed. This result shows
that the independence of the ratio to the optical-potential choice is confirmed in a reaction
that has a totally different mechanism.
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Figure 3.15: Same as Fig. 3.13 but for a 208Pb target.

As for the light and medium-mass targets, the REB prediction |FE,0|2 overestimates
the DEA calculations of the ratioRsum at forward angle. Accordingly it has the same root,
viz. the Coulomb p-T interaction, which hinders the breakup and leads to a larger REB
prediction compared to the actual ratio. However, the reactions on 208Pb being Coulomb
dominated, this reduction is significantly larger than in a nuclear-dominated reaction.
Note however that the adiabatic approximation made in the REB is responsible for an
additional overestimation of the actual ratio by the REB prediction. That adiabatic effect
takes place only at very forward angles. This is confirmed when the p-T interaction is set
to zero (VpT=0, dotted). The ratio then superimposes nearly perfectly with the REB form
factor except at very-forward angles (θ . 0.5◦), where it is smaller. This behaviour was
already observed for neutron halos in Fig. 3.10 at low energy. However, as expected from
the very small binding energy of 8B and the higher impinging energy of the projectile,
the adiabaticity of the reaction assumed within the REB is better fulfilled here. This
overestimation is thus much more forward-focused.

These results show that the overestimation of the ratio observed for 8B with a lead
target is mainly due to the Coulomb repulsion that exists between the proton halo and
the target.
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Summary on all targets

As I have done for a neutron halo projectile, it is interesting to have a look at these results
on all targets in the same axes. These are displayed on Fig. 3.16 as a function of Q [see
Eq. (2.58)]. For clarity, the ratio and its REB prediction are multiplied by 10 and the
differential breakup is divided by 10. The results are very similar to what can be observed
on Fig. 3.11 for neutron halos. While for different targets, the differential breakup and
elastic cross sections exhibit very different behaviours, both in shape and magnitude, their
ratios Rsum are pretty similar to one another, as predicted by the REB. This confirms
that the ratio removes most of the dependence on the reaction mechanism. As observed
for neutron halos, there still remains a target dependence. The ratio is however fairly
close to the REB form factor |FE,0|2. This is especially true for light targets, for which
the reaction is dominated by the nuclear interaction. Note however that this leads to
a ratio which exhibits some remnant oscillations. For heavier targets, for which the
Coulomb interaction is dominant, the individual cross sections and hence their ratio are
smoother. As the mass of the target increases however, the overestimation of Rsum by
|FE,0|2 increases. As we have seen, this is due to adiabatic approximation inherent to the
REB model and has two origins. First, the Coulomb interaction between the core and
the target, which dominates the very forward angle region and second, at larger angles,
the presence of the p-T Coulomb interaction, which reduces the tidal force responsible
for the dissociation. Note however that because of the higher energy of the proton-halo
projectile compared to the case of 11Be considered in Sec. 3.2 and its lower binding energy,
the adiabatic assumption of the REB is better satisfied than for the reaction of neutron
halos at low energy.
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Figure 3.16: Sensitivity of the ratio to the target choice: DEA calculations
on 12C, 58Ni, and 208Pb at 44 MeV/nucleon are displayed as a function of Q
[see Eq. (2.58)]. The differential breakup angular distributions, the ratio Rsum
and the REB form factor |FE,0|2 (thick grey line) are calculated at an energy
E = 125 keV in the 7Be-p continuum.
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3.3.3 Sensitivity to the projectile structure

It is also interesting to analyse the sensitivity of Rsum on the description of the projectile.
In this section, I will first study the sensitivity of the ratio to the 7Be-p potential for a
0p3/2 proton bound to a 7Be core by 137 keV. I will then proceed with the study of the
sensitivity to the binding energy and partial wave of the valence proton. As we have seen
in previous section, the most favourable case for the application of the ratio is on light
targets. I will thus perform this analysis for a 12C target.

Calculations for 8B projectiles described by different 7Be-p potentials all fitted to
reproduce a physical 8B nucleus are shown on Fig. 3.17 in a linear scale. The ratio
calculated using the simplified version of the 7Be-p potential of Esbensen and Bertsch [84]
detailed in Tab. I.4 and already shown in Fig. 3.12 is displayed in solid black. Alongside
this calculation, the results for two modified potentials are also displayed. First, two
potentials adjusted in the s-wave to reproduce the scattering length either in the spin 1
(dash-dotted blue) or spin 2 (dashed green) channels [90] and second, a potential with
its diffuseness modified in all partial waves from ar = aso = 0.52 fm to ar = aso =
0.65 fm (dotted red). These calculations will allow me to study the sensitivity of the
ratio to the low-energy 7Be-p continuum and to the potential geometry, respectively. The
corresponding DEA ratios (thin lines) are plotted alongside the REB form factors (thick
lines).
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Figure 3.17: Sensitivity of Rsum to the projectile description for a 8B imping-
ing on 12C at 44 MeV/nucleon. The breakup is considered at an energy of
E = 125 keV in the 7Be-p continuum. Besides the Esbensen and Bertsch 8B
potential (black) [84], potentials modified in the s wave continuum that repro-
duce the scattering length of the spin-1 (blue) and spin-2 (green) channels, as
well as a potential with a modified diffuseness (red) are also considered. Their
corresponding form factor |FE,0|2 is given as thick lines of the same type and
color.

Before analysing the sensitivity of the form factor to the 7Be-p potential, let me first
remind some of the observations made in previous Sec. 3.3.2, i.e. first, remnant oscillations
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are clearly visible and second, |FE,0|2 overestimates the DEA ratio at very-forward angles.
The reasons for this behaviour have been discussed extensively in Sec. 3.3.2. It should
be noted that all form factors are very similar in magnitude, except for the one that has
a larger diffuseness (red). They are also akin in shape, as if they are a scaled version of
the same curve. The influence of the continuum is thus smaller than the one caused by
the change in geometry. Further tests (not displayed here for clarity) have confirmed this
conclusion. Indeed, by setting the c-p potential to zero in all partial waves but the 0p3/2
ones, no strong changes have occurred neither in Rsum nor |FE,0|2.

In the light of the results discussed from Fig. 3.5 and the similar shape these curves
exhibit, it is interesting to scale them by the square of the ground-state ANC. It can
then be shown in a very similar way as in the right panel of Fig. 3.5, that all curves fall
quite close to one another. At a given energy, the ratio and REB form factor are thus
sensitive mostly to differences in the ANC. This confirms the observations of Ref. [68]
and of previous sections, which showed Rsum to be a peripheral observable at forward
angles, meaning that it probes the tail of the wave function, viz. its ANC. In order to
probe internal parts of the halo ground-state wave function, one would need to measure
the ratio at sufficiently large angles.

In order to study the sensitivity of the ratio to the binding energy and to the partial
wave of the halo, let me proceed as for neutron halos. In Fig. 3.18, similar to Fig. 3.3, the
ratio is plotted for 8B-like projectiles in which the valence proton is bound to the 7Be core
within different orbitals (left, in linear scale) and with different binding energies (right, in
logarithmic scale). The REB form factors (thick lines) are also displayed alongside their
corresponding DEA ratios (thin lines). In addition to the physical 8B (a 0p3/2 proton
bound by 137 keV to the 7Be core; solid black and grey lines), I consider 1s1/2 (dashed
lines) and 0d5/2 (dash-dotted lines) valence protons bound by 137 keV on the left panel of
Fig. 3.18. Additionally, the ratio for a physical 8B is compared to a 8B bound in the 0p3/2
states with binding energies of 1 MeV (green lines) and 4 MeV (red lines) on the right
panel of Fig. 3.18. Since for a given binding energy the ANC dominates the magnitude of
the ratio (see Fig. 3.17), I divide the ratios and form factors by the squared ANC of their
respective ground-state wave function, viz. by 5.81 fm−1, 0.504 fm−1, and 0.010 fm−1, for
the 1s1/2, 0p3/2, and 0d5/2 states, respectively.

As seen before for neutron-halo nuclei and in Ref. [68], the ratio and its REB prediction
are strongly dependent on the binding energy of the halo and the orbital angular momen-
tum in which it is bound. This dependence is visible both in magnitude and in shape. It
should be noted that the square of the ANC for these different partial waves decreases
by one order of magnitude each time l0 is increased by one unit. Therefore, although
the ratios are seemingly of similar magnitude on the left panel of Fig. 3.18, they in fact
exhibit large changes in their magnitude for variations of the orbital momentum. Because
of these large sensitivity to the ANC, it could thus be inferred by merely confronting the
order of magnitude of the data to the REB form factor. Except for the remnant oscil-
lations and the dip around 5 and 6◦, the REB prediction for a projectile bound in the s
or p wave follows fairly well the trend of the DEA ratio. For a projectile bound in the d
wave however, the agreement is not good. This confirms the results already observed for
neutron halos above and in Ref. [68]: the agreement between the REB form factor and
the actual ratio is better for low orbital angular momentum l0. While the binding energy
does not influence the shape of the ratio as significantly as the orbital momentum, it has
a similar influence on its magnitude, as seen on the right panel of Fig. 3.18. The agree-
ment of the ratio and its REB prediction deteriorates as the binding energy increases,
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Figure 3.18: Sensitivity of Rsum to the projectile structure of a one-proton halo
nucleus for the reaction of a 8B on a 12C target at an energy of 44 MeV/nucleon.
Besides the realistic 8B (valence p bound by 137 keV in the 0p3/2 orbit), projectiles
with (left) different orbitals (1s1/2 and 0d5/2), and (right) different ground-state
energies (|E0p3/2| = 1 and 4 MeV) are also considered. Their corresponding form
factor |FE,0|2 is given as thick lines of the same type and color. Note that on the
left panel, the curves are divided by the square of the ANC of the ground state
wave function unlj [see Eq. (2.12)].

indicating that the ratio method works at best for loosely bound systems. This can be
easily understood as an increase of the binding energy causes the adiabatic assumption
to lapse. This confirms again the results observed in Ref. [68].

3.3.4 Sensitivity to the choice of continuum energy

Up to now, all calculations of the ratio have been performed considering a single continuum
energy E = 125 keV between the core and the halo fragment in the breakup channel. But
no measurement of the ratio can be performed at a single continuum energy. Instead,
such data taking requires a continuum-energy range or bin (such bins are also used in the
CDCC expansion, see Sec. 2.2). As this bin is chosen broader, the statistics is improved.
Let us study how influent is the choice of this energy and the width of the bin on the
ratio method. Also, the influence of the presence of a resonance in the continuum will be
considered.

I consider the following bin ratio

Rsum(bin,Q) =
∫ Emax

Emin
Rsum(E,Q) dE (3.5)

=
∫ Emax
Emin

(dσ/dEdΩ)bu dE

(dσ/dΩ)sum
, (3.6)

where Emin and Emax are respectively the lower and higher bounds of the bin. This ratio
is associated to the bin-integrated REB form factor

|Fbin,0(Q)|2 =
∫ Emax

Emin
|FE,0(Q)|2 dE. (3.7)
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The energy distribution for the breakup of 8B described by the potential of Tab. I.4
on a 12C target at 44 MeV/nucleon is presented on left panel of Fig. 3.19. The different
contributions from the s, p, d, and f partial waves in the continuum are shown separately.
The shape of this cross section is typical of the nuclear-dominated breakup reaction of
halo nuclei [45, 36]. A peak is clearly visible around 2 MeV. It arises from a p1/2 resonance
at 2.3 MeV above the one-proton threshold with a width of 1.6 MeV (see [PRC 70, 05460-
6] where it was observed for the first time). This unphysical state originates from the
simplified version of the 7Be-p potential of Esbensen and Bertsch [84] presented in Tab. I.4
and will allow me to study how the presence of a resonance influences the ratio.
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Figure 3.19: Choice of the continuum energy bin for the experimental exploita-
tion of the ratio method. (Left) The breakup cross section plotted as a function
of the continuum energy E. (Right) Rsum computed within the DEA (thin lines)
and its REB estimate (thick lines) for different energy bins in the 7Be-p contin-
uum.

The 7Be-p continuum will be divided into six different bins of increased width, whose
characteristics are summarised in Tab. I.6. The first is chosen such that it is centred
on the energy E = 125 keV used in the previous sections. The next two are chosen in
the low-energy part of the non-resonant continuum. They have an increasing width of
0.5 MeV and 1 MeV, respectively. The fourth and fifth bins are chosen even broader such
as to encompass partly or fully the resonance. Finally, in order to clearly see the influence
of the resonance, we consider a sixth bin centred on it. The corresponding results are
displayed on the right panel of Fig. 3.19.

Table I.6: Interval of energies of the continuum bins considered for the calcula-
tion of the ratio. Energies are given in MeV.

Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6
[Emin, Emax] [0, 0.250] [0, 0.500] [0, 1] [0, 2] [0, 4] [1, 3]

The ratios calculated with the first two bins (0–0.25 MeV and 0–0.5 MeV) provide
ratios very similar to that of the sole E = 125 keV. However, the larger the bin, the
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larger the breakup cross section. The magnitude of the ratio for the second bind is indeed
up to ten times as large as the one calculated with a single continuum energy with no
noticeable worsening of the disagreement between the actual ratio and its REB prediction.
This would be useful in an experimental application of the method. By increasing the
width of the bin however, disagreements between the DEA ratio and their REB prediction
also increase as it can be seen for the third and fourth bins (0–1 MeV and 0–2 MeV). The
much broader bin (0–4 MeV) confirms that trend. For the broader bins, the form factor
is in less good agreement with the DEA ratio. This is expected because higher excitation
energies are less compatible with the adiabatic approximation of the REB. However, they
provide a larger ratio, which could significantly improve the statistics uncertainty in actual
data taking. For practical purposes, a balance will thus have to be sought between the
accuracy of the method and the practicality of its experimental implementation.

The calculation performed with the sixth bin centred on the resonance (1–3 MeV)
does not exhibit any peculiar behaviour when compared to the fourth and fifth bins. This
suggests that the resonance and hence the description of the continuum as a whole (see
the results on the non-resonant continuum of Sec. 3.3.3) does not really affect the ratio
method.

3.3.5 Extension to other proton-rich nuclei: 17F, 25Al and 27P

After the detailed examination of the 8B nucleus, I explore how the ratio behaves when
applied on other proton-rich nuclei with a clear single-particle structure. The cases studied
are 17F, 25Al and 27P. These proton-rich s-d nuclei are all seen as composed of a core of spin
nil (16O, 24Mg, and 26Si, respectively) and a loosely bound valence proton. The results
obtained so far show that the ratio works best at high energy and for light targets. The
reaction of these nuclei is thus first studied on a 12C target at an energy of 60 MeV/nucleon,
which can be produced at various RIB facilities. The effect of choosing a Ni target on
the method is then analysed. As we have seen in Sec. 3.3.2, this target has the effect
of enhancing the cross section significantly. The tests on this target will thus serve as
a check whether choosing an easier experimental feasibility over a better agreement (on
light targets) is a worth trade-off. All the following calculations on these three nuclei
have been performed with the DEA and analysed in collaboration with X. Y. Yun and
D. Y. Pang.

3.3.5.1 Numerical details

Before going through the results of these calculations, I will summarise the parameters
of the optical potentials that have been chosen to simulate the interaction between the
valence proton and the core Vcp and between the constituents of the projectile and the
target VpT and VcT .

The loosely bound nucleus 17F exhibits a 5
2

+ ground state of binding energy 601 keV
below the one-proton threshold. In addition it also has a 1

2
+ bound excited state at

106 keV below the one-proton separation threshold, which is usually depicted as exhibiting
a one-proton halo structure. In an extreme shell-model viewpoint, they can be seen as a
0d5/2 and 1s1/2 proton bound to an 16O core, respectively. This vision has recently been
confirmed by a coupled-cluster calculation by Hagen et al. in [91]. In addition to these two
bound states, 17F exhibits a 3

2
+ resonance at 4.4 MeV above the one-proton threshold. It

is seen as the d3/2 spin-orbit partner of the ground state. Sparenberg, Baye and Imanishi
have developed an 16O-nucleon potential that describes the low-energy spectra of the
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mirror nuclei 17F and 17O [92]. It includes a central plus a spin-orbit terms of Woods-
Saxon form [see Sec. 2.5], and reproduces the three aforementioned states. Its parameters
are given in the first line corresponding to 17F in Tab. I.7.

Being closer to the proton dripline, the other nuclei have a less-known structure. The
one-proton separation energy of 25Al is 2.272 MeV and its ground state has spin and
parity 5

2
+. It is therefore seen as a proton bound to a 24Mg core in the 0d5/2 orbit.

Interestingly, 27P exhibits a 1
2

+ ground state seen as a 1s1/2 proton bound by 870 keV5

to a 26Si core. To describe these two nuclei, I consider simple Woods-Saxon potentials
without spin-orbit term. The potential Vcp is chosen with the usual diffuseness a = 0.65 fm
and reduced radius r0 = 1.25 fm. For each nucleus, its depth is adjusted to reproduce
the experimental one-proton separation energy in the physical partial wave. The same
potential is considered in all partial waves. Their parameters are given in the first line
corresponding to 25Al and 27P, respectively, in Tab. I.7. It should be noted that following
the results of Sec. 3.3.3, thanks to its loose binding energy of a mere 870 keV and the
orbital angular momentum l0 = 0 of its valence proton, 27P could be an interesting test
case for the ratio method close to the proton dripline (see also Sec. 1.1).

In order to study the influence of that choice of description upon the ratio method
applied to these three nuclei, I consider a second set of c-p potential, V ′cp. I use the
Woods-Saxon geometry of the 7Be-p potential of Esbensen and Bertsch [84], viz. with
a = 0.52 fm and r0 = 1.25 fm. In the case of 17F, the central depth is then adjusted to
bind the valence proton at the right energy in the 0d5/2 orbit. For simplicity, I ignore the
spin-orbit splitting. The parameters of this second potential are listed in the second line
corresponding to 17F in Tab. I.7, in grey colour. In that potential, the 1s1/2 is bound by
760 keV, hence below the ground state, and the 0d3/2 state is degenerated with the 0d5/2
state. For 25Al and 27P, the depth of the potential is adjusted to reproduce the correct
binding energy of the nucleus. The parameters are given in the second lines corresponding
to 25Al and 27P, respectively, in Tab. I.7, and given in grey colour.

Table I.7: Parameters of the single-particle potentials simulating the c-p in-
teractions for the 17F, 25Al, and 27P proton halo nuclei or proton halo nuclei
candidates. The binding energy (in MeV) of the ground state and partial wave
of the state [94, 95] are also given. Depths of the real potential are given in MeV
while reduced radii and diffusenesses are given in fm. The depth of the spin orbit
part is given in units of MeV fm2. Two sets of potentials Vcp and V ′cp are given,
the latter being in grey colour.

p-c E0 [MeV] n0l0j0 Vr rr ar Vso rso aso RC

17F -0.600 0d5/2 56.700 1.20 0.642 25.14 1.20 0.642 1.2
57.090 1.25 0.52 0 − − 1.25

25Al -2.272 0d5/2 50.342 1.25 0.65 0 − − 1.25
49.346 1.25 0.52 0 − − 1.25

27P -0.870 1s1/2 47.377 1.25 0.65 0 − − 1.25
48.136 1.25 0.52 0 − − 1.25

For the optical potentials that simulate the P -T interactions, I use the systematic
5Note that recent results give an even lower value of 807 keV [93].
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nucleus-nucleus potential of Xu and Pang [96] for VcT and the Chappel-Hill global nucleon
potential for VpT [97]. The former is obtained by folding the effective JLMB nucleon-
nucleon interaction [98] with the nucleon density distributions of the projectile and target
obtained with Hartree-Fock calculations using the SkX interaction [99]. For all three
projectiles, the real and imaginary parts of the nucleus-nucleus potential are renormalized
with the factors Nr = 0.68 and Ni = 1.22, respectively. To study the effect of different c-T
interactions on the ratio method, calculations are also made with another V ′cT , which is
arbitrarily chosen to have Nr = 0.58 and Ni = 1.02. These potentials have been provided
numerically by D. Y. Pang.

12C target

The breakup and the summed cross sections (divided by Rutherford) as well as their
ratio Rsum and the REB form factor |FE,0|2 (thick grey line) are displayed in Fig. 3.20.
Note that following the results of Sec. 3.3.4, it is interesting to consider the breakup to
an energy contained in an energy bin. This enhances the cross section but keeps the
agreement qualitatively the same as long as the bin is not too wide. Because the 0–1 MeV
bin gave the best results for 8B, I will also choose this bin in the present cases. The
breakup is thus expressed in b/sr since it is integrated on a bin of energy. The first
potential Vcp is used in this study, the influence of that choice on these calculations is
analysed later. The full calculations including both the c-T and p-T interactions (solid
lines) are displayed along with those that do not include the latter (VpT = 0, dashed red
lines), and those using the second c-T potential (V ′cT , dash-dotted lines).
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Figure 3.20: Analysis of the ratio method for 17F (left), 25Al (middle) and 27P
(right) impinging on a 12C target at 60 MeV/nucleon. The ratio Rsum and REB
form factor |Fbin,0|2 (thick grey line) are considered in the bin energy E = 0–
1 MeV in the c-p continuum and have no units. Breakup angular distributions
dσBU/dΩ over that bin are given in units of b/sr. The summed cross section is
given as a ratio to Rutherford’s. Calculations using different sets of potentials
are displayed (see text for details).

Contrary to the 11Be and 8B cases studied above, it should be noted that the breakup
and summed cross sections are out of phase for the 17F and 25Al projectiles. Consequently,
their ratios exhibit large remnant oscillations. These strong oscillations indicate that for
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these two nuclei, the ratio method does not work and does not fully remove the dependence
on the reaction process. This means that the REB does not work for these nuclei. For
the 27P projectile on the contrary, both cross sections are in phase and exhibit a very
similar oscillatory behaviour. Consequently, like in the case of 11Be and 8B, their ratio
removes most of their features. Additionally, in this case Rsum follows quite fairly its
REB prediction. These results are easily explained in the light of the conclusions drawn
from Fig. 3.18, i.e. that the ratio works better for projectiles loosely bound in a low
orbital angular momentum l0. Because of its large binding energy and its proton being
bound in a d wave, 25Al is the less favourable case for the application of the ratio method.
This conclusion is further confirmed when the p-T interaction is neglected (red dashed
in Fig. 3.20). Indeed, while the ratio is then in a near perfect agreement with its REB
prediction for 17F and 27P projectiles, the ratio for 25Al still exhibits significant oscillations,
which further shows that the REB does not work for 25Al.

Interestingly however, the ratios of these three nuclei exhibit very little dependence
on the choice of the c-T interaction. When the reaction calculations are performed with
the alternate potential V ′cT , significant differences are seen in the individual cross sections.
However the corresponding changes in the ratios are much smaller. This is especially true
for the 27P. For this projectile, although the changes in the individual cross sections are
the largest, the differences between both ratios are barely visible.

These results confirm both the interest and limitation of the ratio method applied
to proton-rich nuclei. A direct comparison of the actual ratio to the REB form factor
will be accurate only for loosely bound systems with the last proton in a low-l orbital,
i.e. the ideal cases in which a proton halo may develop. However, in all cases Rsum still
follows at least coarsely |Fbin,0|2 and is independent of VcT . Since the ratio exhibits such
a large sensitivity to the binding energy E0 and l0 (see Fig. 3.18), the method could still
be used to get reliable information about the single-particle structure of nuclei close to
the proton dripline even if the valence proton is significantly bound in a d wave. However
this information will not reach the fine details that can be extracted for s and p wave
loosely-bound halo nuclei such as 11Be. For 27P, the ratio could probably be compared
directly to the REB form factor. For the d-wave projectiles 17F and 25Al, this direct
comparison is not possible, due to the significant effects of the reaction dynamics. Note
however that some information might be gathered by focussing on the order of magnitude
and general shape of the ratio in those cases.

It is interesting to have a look at the ratios in a linear scale, in order to better focus
on the details of these calculations. These are displayed on Fig. 3.21. In addition to the
calculations performed with the first Vcp potentials (solid black and grey lines), the ratios
obtained with V ′cp (green dashed lines) are also presented to study the influence on the
ratio method of the c-p potential used to describe 17F, 25Al and 27P.

As already seen in Fig. 3.20, the ratio method applied to 17F and 25Al merely repro-
duces the order of magnitude of the form factor. Hence, for these d-bound nuclei, at best
an estimate of l0 and/or E0 could be inferred from the comparison of an experimental
ratio to its REB prediction. On the contrary, for 27P there is a fair agreement between
Rsum and the form factor |Fbin,0|2. Although it does not exhibit the perfectly smooth an-
gular dependence of the latter, the ratio merely oscillates around the REB. This suggests
that in this case the direct comparison of the ratio to its REB prediction is possible. In
a practical application of the ratio, it is not clear that the remnant oscillations observed
in Fig. 3.21 (right) will be visible. Depending on the experimental angular resolution of
the detector setup, these rapid variations of Rsum might be smoothed/washed away.
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Figure 3.21: Ratios for a 17F (left), a 25Al (middle) and a 27P (right) projectile
impinging on a 12C target at 60 MeV/nucleon in linear scale. The ratio Rsum
and REB form factor |Fbin,0|2 (thick grey line) are considered in the bin energy
E = 0–1 MeV in the c-p continuum and have no units. Calculations using
different sets of potentials are displayed (see text for details).

In order to test the aforementioned idea of measuring the ratio with a coarse angular
resolution, let me divert briefly from the analysis of Fig. 3.21 and display in Fig. 3.22
the calculations on 27P shown in the right panel of Fig. 3.21 folded with an arbitrary
angular resolution of 2◦ (red), simulating an experimental resolution. The REB prediction
|FE,0|2 is now in very good agreement with the ratio Rsum. This confirms that in these
conditions—light target, high-energy beam, broad energy bin in the continuum and coarse
angular resolution—the ratio could be directly compared to its REB prediction in order
to extract fine details of its structure experimentally.

Let me now go back to Fig. 3.21. The c-p potential used to describe the projectile
has a visible influence on the ratio and its REB prediction. As we have seen in Fig. 3.17,
most of the differences in magnitude between both sets of calculations might be due to
the corresponding change in ANC of the bound state. To test this idea, the red dotted
lines of Fig. 3.21 show the results obtained with the alternate V ′cp normalised to the ANC
generated by the original Vcp (i.e. they are multiplied by |ANCVcp|2/|ANCV ′cp|2). For 27P,
the scaled results are superimposed on the original Vcp calculations, confirming that the
reaction process is peripheral and probes only the tail of the ground-state wave function.
For this nucleus, very similarly to what has been observed from Fig. 3.18 for 8B, the
ANC could probably be inferred by confronting the data to the REB form factor. On the
contrary, for 17F and 25Al, this test confirms that the ratio method does not work. Indeed,
for these two nuclei, although the scaled REB form factors are nearly on top of the Vcp
ones, this is not the case for the DEA ratios. The reaction process for these projectiles
is consequently less peripheral and hence more sensitive to the internal part of the wave
function. This is not unexpected for systems bound in a d wave. These dynamical effects
breach the adiabatic approximation of the REB and hence spoil the original idea of the
ratio method [38]. As already concluded from Fig. 3.20, the ratio method works only at
the qualitative level for these nuclei. Fine details on their structure, like the ANC of their
ground state cannot be inferred with this method.

As we have seen, the 27P nucleus seems to be the best choice to apply the ratio
method. In order to complete this study on this particular nucleus, I analyse in Fig. 3.23
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Figure 3.22: The ratio Rsum (black) and REB form factor |FE,0|2 (thick grey)
visible on the right panel of Fig. 3.21. Smoothing of the ratio by the folding with
an arbitrary experimental angular resolution of 2◦ is also displayed (red).

the best choice of continuum bin upon which to measure the ratio. The bins E = 0 −
0.5 MeV (dashed), E = 0 − 1 MeV (solid), E = 0 − 2 MeV (dash-dotted) and E = 0 −
4 MeV (long dashed) are displayed. As previously observed for 8B (see right panel of
Fig. 3.19) and as expected from the adiabatic assumption inherent to the REB model,
the agreement between the ratio and its REB prediction deteriorates when the continuum
energy increases. Since the breakup cross section increases significantly with the size of
the energy bin, it is interesting on an experimental point of view to consider it as broad
as possible. As for 8B, the range E = 0–1 MeV seems optimal: the ratio is quite close
to the form factor and provides a breakup cross section roughly two orders of magnitude
larger than the E = 0–0.5 MeV bin.
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(dash-dotted) and E = 0− 4 MeV (long dashed) are displayed.

58Ni target

To see if another target choice could increase the magnitude of the breakup cross sections
and hence ease the experimental use of the ratio method, the same calculations are per-
formed on a 58Ni target at the same 60 MeV/nucleon beam energy. The corresponding
summed and breakup cross sections are displayed in Fig. 3.24 as a function of the scatter-
ing angle θ as well as the ratio and its REB prediction (thick grey line); the calculations
correspond to the first Vcp listed in Tab. I.7. Note that due to instabilities beyond 8◦, the
results are shown only up to this angle.
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Figure 3.24: Same as Fig. 3.20 but on a 58Ni target at 60 MeV/nucleon.

As expected, the larger Coulomb P -T interaction leads to a larger breakup cross
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section. It also significantly affects the general shape of the angular distributions, both
the summed and breakup ones. We see the clear appearance of a Coulomb rainbow and
the shift of the oscillatory pattern to larger angles. However, as already observed on the
12C target, for 17F and 25Al the summed and breakup cross sections do not exhibit the
same behaviour. This shows that for these nuclei, the ratio method can be qualitative at
best. For 27P however, both cross section behave similarly, leading to a rather smooth
ratio. Unfortunately, as explained in Sec. 3.3.2, the larger Coulomb interaction leads the
REB form factor to overestimate the ratio. It is therefore not clear that the gain in the
breakup channel will improve the accuracy of the ratio method.

When the p-T interaction is removed (VpT=0, dashed red lines), the conclusions are
very similar to those made for the 12C target. For 27P and 17F the remnant oscillations
in the ratio disappear and the ratio and its REB prediction are superimposed for θ > 2◦.
For 25Al, on the contrary, the ratio still exhibits clear remnant oscillations, showing again
that the ratio method works best for loosely bound systems with the last proton in an s
or p orbital.

Results in Fig. 3.24 also show that the potential VcT used to simulate the c-T inter-
action has little to no influence on the cross sections, especially at small angles. This is
to be expected from this more Coulomb-dominated process. However, at larger angles,
at which some differences can be observed in the individual cross sections, the ratios are
nearly unaffected by the choice of that interaction. Again, this is particularly true for 27P.

To study the influence of the choice of c-p potential on the ratio, we perform the
same series of calculations as in Fig. 3.21 for this 58Ni target; the results are displayed
in Fig. 3.25. Before analysing the difference between the first Vcp (black and grey solid
lines) and the second V ′cp (red dotted lines), let us first note that the agreement between
the ratio and its REB prediction is not as good as on a light target. Although it leads to
a larger—and hence easier to measure—breakup cross section, this choice of target is not
fit for a direct comparison of the ratio to the REB form factor, even for 27P. On a nickel
target, the ratio could be qualitative at best.
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Figure 3.25: Same as Fig. 3.21 but on a 58Ni target at 60 MeV/nucleon.

The sensitivity of the method to the projectile description is very similar to what
has been observed in Fig. 3.21 on a 12C target. In the case of 27P, the choice of the c-p
potential does not affect the quality of the method: the agreement of the REB prediction
with the ratio does not vary much when V ′cp is used instead of the original Vcp. That
change is solely due to the difference in the ground-state ANC, as proven by the red
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dashed lines, which display the V ′cp results scaled to the ANC obtained with Vcp. In
the case of 17F, we observe again that the dynamical calculation of the reaction is less
peripheral than predicted by the REB, the ratio obtained with V ′cp not being superimposed
on the Vcp calculation after its scaling by the ANC. For 25Al, both the DEA and REB
models indicate that the reaction is not peripheral. Since the DEA calculation deviates so
much from its REB estimate, only estimates of l0 and/or E0 could be extracted. Finally,
it should be mentioned that the ratios Rsum for several continuum bins are similar to
the carbon-target case: broadening the bin leads to larger breakup cross sections with
a quality of the agreement between the DEA calculation and the REB prediction that
worsens at high energy for 27P.

3.4 Summary and prospects of the analysis
As we have seen in previous sections, the breakup and elastic scattering cross sections
obtained for the collision of halo nuclei exhibit very similar oscillatory and decay patterns.
These characteristics have been observed both for neutron halos and proton halos and on
light, medium-mass and heavy targets but do not carry much information on the halo
projectile. As such, by taking the ratio of some combination of the breakup and elastic
scattering cross sections, these features are mostly removed and give rise to an observable
Rsum which is sensitive mostly to the structure of the studied projectile. In the REB
model, which assumes the reaction to be adiabatic and considers that the halo does not
interact with the target, the breakup and elastic scattering cross sections can be written as
a product of a some form factor and a pointlike cross section. While the former depends on
the structure of the projectile and on the process (breakup or elastic scattering), the latter
is the same for both processes and represents the elastic scattering cross section of the
core of the halo nucleus with the target. By taking the same ratio of cross sections as for
Rsum in the assumptions of the REB, this pointlike cross section is hence removed. This
gives rise to the REB form factor |FE,0(Q)|2, the REB prediction, which approximates
the dynamical observable Rsum.

In the work of Capel et al. [68], the dynamical ratio and its REB predictions proved to
be in quite a good agreement for the reaction of 11Be, a halo nucleus, on carbon and lead
targets at an energy of roughly 70 MeV per nucleon. To explore the limits of the ratio
method, I have performed the same kind of analysis at a lower energy of 20 MeV/nucleon.
Additionally, I have studied the validity of the ratio for 8B, a proton halo nucleus as well
as for several other proton-halo candidates.

The results obtained in this work show that when the energy of the projectile is low or
when the halo is charged, that is, when the assumptions of the REB are breached, the ratio
method is not as convincing as for neutron halos at high energies. Contrary to the results
for a neutron halo projectile at higher energy [Capel, ratio...], here the agreement between
the ratio Rsum and its REB prediction |FE,0|2 is less good. For neutron halos on light
targets, for which the reaction is dominated by the nuclear interaction, the ratio calculated
dynamically (through CDCC or DEA) is closer to the REB form factor. However, it
exhibits remnant oscillations that are not observed in the REB prediction. On heavy
targets, for which the reaction is dominated by Coulomb, the ratios for neutron halos
are smooth but are slightly overestimated by |FE,0|2. As it was already observed at high
energy, the ratio is overestimated at very forward angle, where the reaction is completely
dominated by the Coulomb interaction between the core and target. In the case of low
energies of the projectile however, this effect is significantly enhanced and extends to larger

69



angles, especially for heavy targets. For proton halos, similar observations to the ones
for neutron halos can be made. On light targets, i.e. nuclear dominated reactions, the
dynamical ratio is closer to its REB prediction. However, it exhibits remnant oscillations
not present in |FE,0|2. On heavy targets, i.e. for reactions dominated by Coulomb, the
dynamical ratios are smooth but slightly overestimated by |FE,0|2. This effect is however
exacerbated for proton halos, for which the overestimation occurs on the whole angular
range and originates from the additional Coulomb interaction of the fragment.

Therefore, because the Coulomb interaction of the projectile with the target has such
a significant impact on the ratio, there remains a substantial sensitivity to the target
choice. This is displayed in Figs. 3.11 and 3.16. But while this sensitivity is limited to the
very forward angle region for neutron halos, it is stronger and extends further in angle
for charged halos, as it is expected from the charge of the valence proton.

Because it is the ratio of two cross sections, this observable is not sensitive to normal-
isation. This is a valuable experimental quality. Moreover, as visible in Figs. 3.7, 3.13
and 3.15, the ratio keeps its independence of the optical potentials used to simulate the
interaction between the core and the target. Because the individual reaction observables
can be strongly sensitive to this choice (see also Ref. [45]), this is another appreciable
quality that can help in the extraction of spectroscopic information from cross sections.
Furthermore, the ratio exhibits significant variations in both shape and magnitude with
modifications in the halo structure. In particular, changes in the core-halo orbital angular
momentum l0 and binding energy in the ground state E0 can impact the ratio by several
orders of magnitude, as illustrated in Figs. 3.3 and 3.18.

It seems therefore that albeit less accurate than for neutron halos at high energy, the
ratio could still enable experimentalists to infer pertinent structure information from the
analysis of actual data. As seen in the previous sections, this is particularly true when
the valence nucleon is loosely bound to a core in a low orbital angular momentum l0, viz.
for halo nuclei. Three variants of the method can be applied in practice to benefit from
this new observable.

In its strict application, i.e. the one suggested in Refs. [38, 68, 71] for the study of one-
neutron halo nuclei, an experimental measurement of the ratio Rsum is to be compared
directly to the REB form factor |FE,0|2 (2.62). As observed in Secs. 3.2 and 3.3, even on
a light target, there can be too large a difference between the DEA ratio and its REB
prediction to allow for this comparison to provide us with fine details about the structure
of the projectile. This is visible on Fig. 3.17 for a proton halo at intermediate energy and
Fig. 3.8, for a neutron halo at low energy. In the particular case of 27P, a possible proton
halo nucleus, with Sp ' 0.8 MeV and most likely a valence proton in an s orbit, such
strict application would still make sense for a reaction on a light target at high energy.
However, this would have to be done with a coarse angular resolution, to smooth out the
remnant oscillations of the ratio (see Fig. 3.22).

Nevertheless, thanks to the strong sensitivity in shape and magnitude of the ratio
to the projectile structure, pertinent information pertaining to that structure could be
obtained by confronting the order of magnitude and general shape of the experimental
ratio to the REB prediction. In this approximate application of the ratio, the small
differences in the ANC or in the continuum of the projectile such as the ones displayed
in Fig. 3.17 cannot be distinguished. However, it could still provide with a good estimate
of l0 and E0, which are difficult to measure directly far from stability. This approximate
application could be done at high energy on nuclei such as 17F and 25Al (see Fig. 3.21) or
at lower energies on 8B (see Fig. 3.17) and 11Be at low energy (see Fig. 3.8).
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In a third application of the ratio, which I coin dynamical, measurements are com-
pared not to the REB prediction, but to the results of state-of-the-art dynamical reaction
calculations like CDCC or DEA. The gain in this case over the more usual analysis of
cross sections for individual reactions lies in the complete independence of the ratio to
the choice of VcT . This is of course the least practical use of the ratio since it requires
an accurate calculation of the reaction, instead of the calculation of the mere form factor
|FE,0|2. On an experimental point of view, this third application would be best used on
heavy targets, for which the breakup cross section is the largest, and hence for which
the statistical experimental uncertainty would be the lowest. This more computationally
involved application of the ratio would provide the most precise information about the
single-particle structure of unstable nuclei near the driplines. It would be applicable to
any nucleus that exhibits a clear single-particle structure but would be cumbersome to
perform.

It should be noted that the major part of the disagreement between the REB form
factor and the dynamical ratio comes from the interaction between the halo fragment
and the target. For neutron halos, these discrepancies are mostly found in the form of
remnant oscillations of the ratio. In the case of proton halos, the Coulomb interaction
of the fragment with the target causes an overestimation of the ratio which adds to
these remnant oscillations. Accounting for interaction between the valence nucleon and
the target, e.g., at the first order of the perturbations, might hence improve the REB
prediction and enable the direct comparison suggested in Refs. [38, 68, 71].
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Chapter II
The neutral-pion photoproduction as
a tool to measure the neutron skin
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4 State of the art in neutron skin measurements

As we have seen in the introduction, the EOSNM which governs the properties of
nuclear matter from microscopic nuclei (R ∼ 10−15 m) to macroscopic neutron stars

(R ∼ 104 m), can be written in its compact form as [see Eq. (6)]

E(ρ, α) = E(ρ, α = 0) + S(ρ)α2 +O(α4) (4.1)

an expansion in the asymmetry of the system α = (ρN − ρZ)/ρ, where ρ is the nuclear
density and where we recognise the energy of symmetric nuclear matter E(ρ, α = 0) and
the symmetry energy S(ρ) on the right-hand side. We can also expand these quantities
in x = (ρ − ρ0)/3ρ0, which characterizes the deviation from nuclear saturation density
ρ0 ' 0.15 fm−1. With the help of a few bulk parameters, we can write the energy of
symmetric nuclear matter as

E(ρ, α = 0) = ε0 + 1
2K0x

2 + . . . (4.2)

where, like in Eq. (5), the parameter ε0 can be interpreted as the energy per nucleon and
K0 represents the incompressibility coefficient of symmetric nuclear matter. Similarly, for
the symmetry energy

S(ρ) = J + Lx+ 1
2Ksymx

2 + . . . (4.3)

where J and Ksym are the symmetry energy counterparts of ε0 and K0. It should be
noticed that an additional linear term exists in the symmetry energy: L, the slope of the
symmetry energy. This term arises from the fact that contrary to its symmetric nuclear
matter energy counterpart, the pure neutron matter pressure does not vanish at saturation
density.

While ε0 ' −16 MeV, K0 ' 230 ± 20 MeV and J ' 31.7 ± 3.2 MeV are rather well
constrained, for example by measurement of density, masses and collective excitations
of nuclei at saturation density [100, 101, 102, 103], L and Ksym are not. This results
from the very small asymmetry that exists in stable nuclei (e.g. α2 ' 0.04 in 208Pb, the
most asymmetric stable nucleus) and from the fact that these quantities are extracted
indirectly, increasing the uncertainties on their value. Of particular interest is the slope of
the symmetry energy L ' 58.7±28.1 MeV, which captures most of the density dependence
of S(ρ) around nuclear saturation density [100].

As we have seen in Fig. 3, L is nicely correlated to the neutron skin of (asymmetric)
heavy nuclei and several experimental techniques have thus been developed to measure
this quantity. But while the precision on the charge distribution has been growing with
the years, the measure of the neutron distribution remains challenging. Indeed, on the one
hand, charge distribution measurements often rely on elastic scattering of electrons, whose
interaction with the nucleus is known for decades. On the other hand, measurements of
the neutron distribution often rely on processes with large theoretical and/or experimental
uncertainties which hinder its clean extraction. Hereafter are discussed some of the most
relevant experimental techniques that have contributed to the study of the neutron skin.
Because 208Pb has the largest asymmetry for a stable (and doubly magic) nucleus and
hence most probably the thickest skin, a significant amount of experiments have studied
this nucleus in the last decades. To illustrate the pros and cons of these experimental
techniques, I will thus discuss and compare some selected results mostly on this particular
nucleus.
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4.1 Hadronic probes
Hadronic probes and especially the scattering of hadrons from atomic nuclei have been the
main method to probe the neutron distribution and the difference between the neutron
and proton distributions. They offer the main advantage of exhibiting large cross sections,
due to the strong interaction. This ensures low experimental errors, which are dominated
by systematic uncertainties. However, while the elementary electromagnetic interaction is
known with accuracy for decades and does not change much in the medium, there is still no
clear understanding of the details of the strong interaction even for elementary processes.
This induces large uncontrolled uncertainties on the theory side: poor understanding
of the reaction mechanism, multiple scattering effects, in-medium modification such as
absorption, density dependences, etc. [104, 105]. Moreover, the strong interaction lacks
isospin selectivity and probes the isoscalar part of the density (the sum of the proton and
neutron densities). Among the experimental techniques that involve hadron probes, we
could list α-, π- and p-nucleus scattering and antiprotonic atoms.

Among all hadronic experiments, p-nucleus scattering has probably been the most
widely used one. Measurements have been made in a large range of energies (mostly
from 200 MeV to 1 GeV, where uncertainties are smaller). However, all these results
still show inconsistencies that are energy and model dependent [104, 106]. More recently,
in order to evaluate the sensitivity of the p-nucleus scattering to the neutron density, a
measurement on 204,206,208Pb has been carried out with low energy protons ∼ 300 MeV.
At these energies, the impulse approximation is valid and the optical potential dynamical
content is simple. The authors extract a neutron skin of ∆r208

np = 0.211+0.054
−0.063 fm [107].

Most of these uncertainties come from the theory: they first introduce a phenomenological
mediummodification in a nucleon-nucleon (NN) interaction in terms of density-dependent
parameters, they then calibrate this medium-modified NN interaction on a 58Ni target
in the framework of the relativistic impulse approximation and they finally apply it to
208Pb.

This result provides a measurement of the skin that agrees with several different theo-
retical calculations but also illustrates how the recent progress in relativistic parametriza-
tions of the NN interaction have strongly reduced the discrepancies between relativistic
and non-relativistic models. But while these progresses are encouraging, recent works
have also shown the p-nucleus cross section to be sensitive only to the isoscalar part of
the density and hence to be very weakly dependent on the details of the neutron distri-
bution. In Ref. [108], several ground state densities from 4 different mean field models
are used to fold a free NN interaction to simulate the p-scattering on 40Ca and 208Pb.
The results are shown on Fig. 4.1. While they all provide a very good description of the
experimental cross sections, there is no way to discern between these models even though
the range of their prediction for the neutron skin thickness (see legend in Fig. 4.1) is wider
than the result cited above. This puts the method at stake.

As early as in the 70’s, α-nucleus scattering was thought as a promising method
for the measurement of the neutron radius of 208Pb. In Ref. [109], a neutron skin of
∆r208

np = 0.30 ± 0.07 fm is extracted. However, because of the plethora of assumptions
on the neutron distributions but also on the optical potential used to simulate the α-
nucleon interaction, we have the right to doubt that such a precision is possible on these
measurements. Moreover, a re-analysis of these results found a significantly different
thickness of ∆r208

np = 0.00±0.10 fm [110], which would be compatible with a negative skin
thickness. The scattering of pions on nuclei suffers from the same issues and sometimes
also results in contradictory measurements of the neutron skin thickness in the same
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FIG. 3: Elastic scattering cross section of Tlab=800 MeV protons from 208Pb as a function of the

momentum transfer to the nucleus. All theoretical models use the KMT optical potential of Eq. (6)

with ground-state densities having values for the neutron skin of 208Pb as displayed in the legend.

The inset shows the differential cross section on a linear scale over a limited range of momentum

transfers. The experimental data is from Ref. [29].

The eikonal results for the differential cross section at Tlab = 800 MeV are displayed in
Fig. 4, with the various predictions labeled as in Figs. 2 and 3. Evidently, there is a significant
loss in quality relative to the full KMT calculation. The cross section is underestimated
at small angles, overestimated at large angles, and the predicted minima are too deep.
Remarkably, however, the diffractive oscillations and the exponential decay of the cross
section are well reproduced. It is the aim of the next section to elucidate these features.
Note in closing that as in the KMT case, there is no discernible difference between the models,
although some slight separation starts to appear at large momentum transfers (q&3.5 fm).

C. Discussion

In this section we resort to analytic insights to elucidate the main features of the elastic
cross section, namely, exponentially modulated diffractive oscillations with filled in min-
ima [20, 21]. In comparing the eikonal results to the experimental data (Fig. 4), the most
glaring deficiency of the model appears in minima that are too deep. Yet the rapid diffrac-
tive oscillations and the exponential falloff are relatively well described. The filling of the
minima is strongly sensitive to the underlying NN dynamics, specifically to the real part
of the elementary NN t-matrix and the Coulomb interaction. While the former is included
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Figure 4.1: Influence of the density on the p-208Pb elastic scattering cross section
as a function of the momentum transfer to the nucleus. The differential cross
section over a limited range of momentum transfers is shown in the inset. Figure
adapted from Ref. [108].

experiment if π+ and π− are considered [111].
In antiprotonic-atom experiments, antiprotons are sent towards a target at low energy.

If they are slow enough, they can form a molecular system with the nucleus of the target.
The periphery of the nucleus can then be probed in two ways. On the one hand, the
nuclear levels and their widths are altered by the antiproton-nucleus strong interaction.
Because these modifications are density dependent, x-ray measurements of the atomic
levels provide information on the neutron to proton density ratio at the periphery of the
nucleus [112]. After extrapolating these densities towards the interior, they provide the
nucleon densities and hence the neutron skin thickness. However, as we have seen before,
the strong interaction is poorly known, which induces significant theoretical uncertainties.
Moreover, this extraction assumes a 2-parameter Fermi Dirac (2pF) nuclear densities.
While this type of densities reproduces rather well the nuclear distribution inside the
nucleus, their applicability at large radii is dubious.

On the other hand, the neutron skin can also be extracted through radiochemical
methods [113]. After some time spent in the vicinity of the nucleus, the antiproton
annihilates with a nucleon and creates a shower of particles (pions mainly). To reduce the
complexity of the mechanism, we are only interested in cold annihilation processes, which
occur far enough from the interior of the nucleus so that most of the pions miss the nucleus
and excite it below the nucleon emission threshold. In this case, only (Z,N −1) and (Z−
1,N) reaction residues are detected. Their relative yield then provides us with a neutron
to proton density ratio at the annihilation site, which is then extrapolated in the same way
as before, by 2pF densities. Both these methods can be used simultaneously to provide us
with the neutron skin on a wide range of stable nuclei (see Fig. 4.2) [114]. Their result on
208Pb, ∆r208

np = 0.15 ± 0.02 fm, has a remarkable precision of 0.02 fm. However, one can
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ask if this tiny number faithfully represents the error on this measurement considering
the model assumptions to extract these values.

February 11, 2004 10:38 WSPC/143-IJMPE jastrzebski

346 J. Jastrzȩbski et al.

the halo factors (fhalo) are also indicated. There is good agreement of both ex-

perimental methods and theoretical predictions for most of the isotopes studied.

The exceptions are 106Cd and 112Sn – isotopes characterized by weakly bound pro-

tons. It was suggested16 that this discrepancy may be explained by the existence

of quasi-bound pp states. The obtained neutron density distributions were used to

determine ∆rnp for several isotopes.

Table 1 lists the calculated ∆rnp values and Fig. 2 presents ∆rnp as a function

of the asymmetry parameter δ = (N − Z)/A. The linear relationship ∆rnp =

(a + b · δ) fm was fitted with a = (−0.03 ± 0.02) and b = (0.90 ± 0.15) and χ2
ν of

0.5. (This relationship is slightly different from the one given in Ref. 8 due to the

larger amount of data evaluated and included in the fit.)
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Fig. 2. Difference ∆rnp between the rms radii of the neutron and proton distributions, as deduced
from the antiprotonic atom X-ray data, as a function of δ = (N −Z)/A. The proton distributions
were obtained from electron scattering data14 (Sn nuclei) or from muonic atom data13,17,18 (other
nuclei). The full line represents the linear relationship between δ and ∆rnp as obtained from a fit
to the experimental data.

4. Comparison with Hadron Scattering Data and Mean Field

Calculations

For a number of years hadron scattering data19,20 were the main source of in-

formation on the neutron distribution in nuclei and the difference between neu-

tron and proton rms radii. Our antiprotonic-atom data as well as pionic atom

measurements21,22 and new methods recently applied23 or proposed24 substantially

diversify the experimental approaches. In what follows we attempt to compare the

antiprotonic results with the information deduced from hadron scattering experi-

ments. Some theoretical predictions are also shown.

We begin the comparison with the 208Pb nucleus, for which the rms neutron

and proton radii difference ∆rnp was particularly well studied.
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Figure 4.2: Neutron skin extracted from antiprotonic data. Figure adapted from
Ref. [114].

As we have seen, the neutron skin measurements with hadronic probes are complex to
analyse, mainly because of the large uncontrolled uncertainties induced by the strong in-
teraction therefore a truly model-independent determination of the density distribution is
impossible [106]. But because hadronic probes exhibit such large cross sections, they cer-
tainly remain one of the fundamental tools to probe nucleon densities in future radioactive
beam facilities.

4.2 Parity-violating electron scattering
In order to circumvent the hadronic uncertainties due to the complexity of the strong
interaction and its nearly identical treatment of protons and neutrons due to charge sym-
metry, a measurement based on parity violating electron scattering (PVES) was suggested
30 years ago [115]. This purely electroweak process relies on the vector coupling of the neu-
tron with the weak-neutral Z0 boson. Because the weak charge of the neutron (QN

W = −1)
is much larger than that of the proton (QZ

W ' 0.075), electroweak processes are highly
sensitive to the neutron distribution. This offers a clean and model-independent way to
extract this isospin-dependent quantity.

In PVES, longitudinally polarized electrons scatter off a polarized target. Because
of the interference between the virtual γ and Z0 boson exchanges, an asymmetry exists
between the cross section of right and left-handed electrons. In the Born approximation,
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the fractional difference between these cross sections

APV =
(
dσR
dΩ −

dσL
dΩ

)/(
dσR
dΩ + dσL

dΩ

)
(4.4)

is directly proportional to the weak form factor FW , which is mostly sensitive to the
neutron distribution. Coulomb distortions caused by the electrons interacting with the
charged nucleus must be included in the calculations but while important, these are well
known and can be computed with accuracy. However, because APV can be as small as
10−7, PVES measurements are challenging and require a very high precision in order to
maintain statistical and systematic errors low.

Recently, the first PVES measurement has been carried out by the Lead (208Pb) Radius
EXperiment (PREX) collaboration. They have measured APV at Jefferson Lab (JLab)
with a precision of 10% at a given 4-momentum transfer Q̄2 ' 0.0088 GeV2 [116]. This
measurement allows for the determination of the weak form factor FW (Q̂2) at this 4-
momentum and hence, after minor assumptions on the surface thickness of the density,
provides a skin thickness of ∆r208

np = 0.33+0.16
−0.18 fm [116, 117]. While the error bars on this

result are much larger than what hadronic measurements claim, they come in this case
almost exclusively from experimental resolution. This method is hence much less sensitive
to the theoretical systematic errors.

PREX has showed that the control of systematic and satistical uncertainties is possible
in PVES measurements. A second run (PREX II [118]) that aims at reducing the error
bars to±0.06 fm and the Calcium Radius EXperiment (CREX [119]) that will measure the
neutron skin of 48Ca have been scheduled to run during this year. Moreover, at the soon-
to-be-commissioned Mainz Energy-Recovering Superconducting Accelerator (MESA), the
Mainz Radius EXperiment (MREX) will repeat this experiment. While the maximum
incident energy at MESA will be lower than at JLab, the higher beam intensities and
full azimuthal coverage will allow to measure the neutron skin of 208Pb with an even
higher precision [120]. Aside from providing with a model-independent way of extracting
the neutron skin, PVES will also help in the interpretation of future measurements with
exotic nuclei at future radioactive beam facilities by serving as a calibration of experiments
involving hadronic probes.

4.3 Electric dipole resonances
Electric dipole resonances originate from collective vibration modes of the nucleons inside
the nucleus. When an external electric field is applied to a nucleus, protons of the nucleus
are displaced relative to neutrons. Spatial regions of high asymmetry then arise, which
are energetically disfavored by the increase of symmetry energy. When the external
field is turned off, the symmetry energy acts as a restoring force. Protons and neutrons
move in opposite directions to regain the (near-)symmetric configuration of the nucleus.
This out-of-phase oscillation is known as the isovector Giant Dipole Resonance (GDR)
[121]. Moreover, for heavy nuclei which exhibit a large number of excess neutrons, the
development of the neutron skin also offers the possibility of a vibration of the symmetric
core against the excess neutrons of the skin. This soft mode of vibration is known as the
Pygmy Dipole Resonance (PDR) and while its purely isovector character is still debatable
[122], it contributes significantly to the electric dipole response of the nucleus.

The quantity that characterizes the electric dipole response of a nucleus to an external
electric field is the electric dipole polarisability αD. It is proportional to the inverse
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squared energy weighted sum of the photoabsorption cross section σabs(ω) which is itself
proportional to the nuclear electric dipole response R(ω;E1) times the photon energy ω

αD ∝
∫ ∞

0

σabs(ω)
ω2 dω ∝

∫ ∞
0

R(ω;E1)
ω

dω (4.5)

By measuring the E1 strength on a wide range of energies that includes both the GDR
and the PDR, we avoid any model dependency in the attempt to separate these two
contributions. This quantity is usually probed through Coulomb excitation, a process in
which a nucleus is excited by the Coulomb interaction in an inelastic collision. Recently,
a new experimental tool has been used to measure αD through the inelastic scattering of
polarized protons at extreme forward angles (including 0◦) [123, 124]. Such forward angles
ensure that the reaction is purely electromagnetic. At proton energies of 200–400 MeV
at which the experiment is run, isovector Coulomb excitation of the non-spin-flip E1
transitions is dominant in the cross section. Spin-flip M1 transitions also contribute
and these must be removed. This can be done for example by a multipole decomposition
analysis technique of the angular distribution of the cross sections and polarization transfer
information analysis [123, 124]. These measurements are shown on Fig. 4.3.

3

Cross sections for ∆S = 0 and 1 from the MDA and PT
analysis for Ex < 9 MeV are compared in Fig. 2. Within
uncertainties the correspondence between the two com-
pletely independent decomposition methods is excellent.
This puts confidence in the MDA results discussed in the
following, which provide much better resolution because
of the superior statistics compared to a double scattering
measurement of PT. In the GDR region no direct com-
parison is possible because of the unknown ∆S content of
the phenomenological background. However, both meth-
ods agree that ∆S = 1 contributions are very small.
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FIG. 3: (Color online) (a) B(E1) strengths in 208Pb in the
region Ex ≃ 4.8− 8.2 MeV as deduced from the present work
in comparison with (γ, γ′) and (n, γ) experiments [26, 29–31].
(b) Photoabsorption cross sections in the GDR region from
the present work compared to (γ, xn) [32] and total photoab-
sorption [33] measurements.

Next we show that reliable B(E1) strengths can be
extracted from the (p, p′) data. While the angular de-
pendence of E1 transitions is generally state-dependent
because of the Coulomb-nuclear interference, cross sec-
tions at very small angles (Θlab < 1◦) arise purely from
Coulomb excitation. Thus the conversion from cross sec-
tion to strength is straightforward using semiclassical
theory [28]. The B(E1) distribution up to 8.2 MeV is
compared in Fig. 3(a) with an average over all available
208Pb(γ, γ′) and 207Pb(n, γ) data (Refs. [26, 29–31] and
refs. therein). Excellent agreement is obtained up to Sn.
The excess strength in the (p, p′) data above the neutron
threshold can be attributed to previously unknown neu-
tron decay widths of the excited 1− states, which modify
the branching ratios in the γ-decay experiments and thus
the extracted B(E1) values. Figure 3(b) shows the pho-
toabsorption cross sections in the GDR region together
with results from a (γ, xn) [32] and a total photoabsorp-

tion [33] experiment. Again, very satisfactory agreement
of all three measurements is observed.
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FIG. 4: Experimental B(E1) strength distribution in 208Pb
in comparison to QPM and RTBA calculations described in
the text. Note the different scales below and above 8.2 MeV.

Figure 4(a) displays the experimental B(E1) distribu-
tion. From the numerous computations of the E1 re-
sponse in 208Pb we show in Fig. 4(b) recent results from
the QPM [26], and (c) the relativistic time-blocking ap-
proximation (RTBA) [34]. The QPM calculations con-
tain up to 3-phonon configurations for Ex ≤ 8.2 MeV
and 2-phonon configurations in the GDR region. Al-
though the RTBA has recently been extended to include
the full set of 2-phonon states [35], the results shown are
based on a particle-hole⊗phonon model space [34]. In
the low-energy region, the QPM provides a realistic de-
scription of the fragmentation but the overall strength
is somewhat too small, while the RTBA model space is
not yet sufficient to reproduce the fine structure, and the
strength is somewhat too large. The width of the GDR
is roughly reproduced by both models. Within the QPM
the effective isovector interaction strength is adjusted to
the experimental GDR centroid at 13.4 MeV. The RTBA
calculations are fully self-consistent and the GDR cen-
troid determined by the covariant EDF parametrization
amounts to 12.9 MeV for the NL3 parameter set used.
Such a comparison between high-precision data and the
3-phonon version of the QPM guides the next genera-
tion of self-consistent extensions of the covariant EDF.
Taking into account higher-order configurations, ground
state correlations, and pairing vibrations should improve
agreement with the data.
Finally, as discussed above, an important quantity is

the electric dipole polarizability. We find αD = 18.9(13)
fm3/e2 for the E1 strength up to 20 MeV. By taking an
average of all available data including excitation energies

B(
E1

)↑
[e

2
fm

2 ] PDR GDR

Excitation energy [MeV]
5 10 15 20

Figure 4.3: Experimental E1 strength distribution in 208Pb (top). (Note the
different scales below or above 8.2 MeV.) The GDR is clearly visible around
14 MeV. The PDR is located around 7-8 MeV. Figure modified from Fig. 4 in
Ref. [123].

A covariant analysis performed within a model with a single Skyrme energy density
functional [125] has shown αD to be strongly correlated to the neutron skin thickness of
208Pb. This covariant analysis has been used to constrain the neutron skin thickness of
208Pb to be ∆r208

np = 0.156+0.025
−0.021 fm. But while this correlation has been shown to hold for

a large set of nuclear energy density functionals, it has also been shown not to be universal
[126]. Indeed, systematically varied models display such a correlation but a significantly
better correlation can be found when scaling αD by J , the symmetry energy at saturation
density (see Eq. (4.3)). This is illustrated on Fig. 4.4, where αD (left) and the product
αDJ (right) are represented as a function of ∆r208

np for several mean-field models. The
dipole polarizability shows a linear dependence within each different model. However, the
results are scattered significantly. The scatter disappears when considering the product
αDJ and all models are then aligned. The extraction of the neutron-skin thickness from
αD must then be handled with care, as it involves several model-dependent assumptions.
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Figure 40: (a) Dipole polarizability αD as a function of neutron skin thickness in 208Pb. (b) The same
like at the left panel, but the dipole polarizability is multiplied by the symmetry energy at saturation
J . See text for details on the interactions employed. Figure taken from Ref. [101].
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Figure 41: Calculated dipole polarizability in 68Ni, 120Sn, and 208Pb for various EDFs in comparison
to experimental data (see text for details). Figure taken from Ref. [179].

(as discussed above), have been employed to constrain the symmetry energy parameters J , L, and ∆rnp.
Fig. 41 shows the results of model calculations for three respective nuclei, based on several families
of EDFs. These include non-relativistic Skyrme parameterizations SAMi-J [258] and KDE0-J [259], and
four relativistic families, NL3Λ, FSUΛ, TAMU-FSU [68, 318, 320, 321], and DDME [231, 79]. As shown
in Fig. 41, αD in 208Pb appears strongly correlated to αD in both 68Ni and 120Sn. Horizontal and
vertical bands in Fig. 41 denote the experimental values of the electric dipole polarizability corrected as
discussed above, including error bars. A number of functionals (denoted by red circles) reproduce the
measured dipole polarizability in all three nuclei. By using this subset of EDFs, the following values
for the symmetry energy parameters have been obtained, J = 30-35 MeV, L = 20-66 MeV; and the
values for ∆rnp in 68Ni, 120Sn, and 208Pb are in the ranges: 0.15-0.19 fm, 0.12-0.16 fm, and 0.13-0.19
fm, respectively [179].

In Ref. [322] the dipole polarizability in 208Pb has been studied within the Skyrme HF+RPA using
the MSL0-based family of parameterizations, as well as with an additional set of interactions obtained
with χ2 minimisation with systematically varied slope of the symmetry energy L(ρc) at sub-saturation
density ρc = 0.11 fm−3 [173] (note that L refers to ρ0 if not specified as in the present case). From
the comparison with the experimental value of αD in 208Pb, together with the symmetry energy at

70

Figure 4.4: αD (left) and αDJ (right) are represented as a function of ∆r208
np

for several mean-field models. Note how the scatter present in the left panel
disappears as we take its product with J . Figure taken from Ref. [127].

4.4 Coherent neutral-pion photoproduction (a primer)
The last way of studying the neutron skin that I will present is the coherent photopro-
duction of a neutral pion. In this process, a photon impinges on a target and produces a
π0 while the target remains in its ground state (coherent). In the incident photon energy
range from threshold to 250 MeV, this reaction is dominated by ∆-resonance excitation
and because of the dominance of QED in this process, it is known with great accuracy.
Protons and neutrons contribute with the same amplitude and the method then probes
the whole nucleon distribution in the nucleus, as in the hadronic probes. In the Plane
Wave Impulse Approximation (PWIA) which assumes that the photoproduction ampli-
tude is merely the sum of the contributions of the elementary amplitudes on each nucleon
and that the π0 exits the nucleus without any final state interaction, the photoproduc-
tion cross section is directly proportional to the square of the nucleon density form factor
[128]. However, distortions in the exit channel can be significant at energies around the
∆ resonance [129, 128]. The coherent π0-photoproduction is thus rather studied using the
Distorted Wave Impulse Approximation (DWIA), which accounts for the pion-nucleus
interaction in the final state. As we have already discussed for hadronic probes, the need
to simulate the strong interaction increases the uncertainties of the method.

While this experimental method has already been applied as early as the 60’s to infer
the matter distribution of some nuclei [130, 131], the extraction was hindered by the too
poor experimental resolution at the time. More recently, such a measurement has been
carried out at the MAinz MIcrotron (MAMI) with a large solid-angle detector system
on 208Pb [132]. Their results have been analysed within the DWIA model of Drechsel
et al. [128, 133], which, in addition to the π0-nucleus interaction, incorporates a self-
energy term for the ∆ in-medium propagation. By modelling the proton and neutron
densities as two separate 2pF Fermi Dirac distributions, they have extracted the neutron
skin thickness of 208Pb and found ∆r208

np = 0.15± 0.03(stat.)+0.01
−0.03(sys.) fm. The precision

on this measurement has raised a lot of criticisms. Theoretical uncertainties seem to
have been largely underestimated since it does not properly quantify the uncertainties
due to the poor knowledge of the pion-nucleus interaction and since the model does not
include pion charge exchange processes nor medium modifications of nucleon resonances
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that could strongly influence the cross section [134].

4.5 Summary
The different results of the extraction of the neutron skin thickness from these selected
experiments are compiled in Fig. 4.5. Note that I have chosen to present only the most
recent results. For this reason, the contradictory results coming from α-nucleus scattering
experiment from the 70’s do not appear in this figure. We could be tempted to perform a
least square fit on these data by considering each experiment as having the same weight.
This provides us with a thickness of ∆r208

np = 0.156 ± 0.014 fm. Note that 1σ and 2σ
intervals around the central value are also given.
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Figure 4.5: Extracted neutron skin thickness of 208Pb from some selected exper-
iments and its least square fit with 1σ and 2σ intervals around the central value
if we consider each experiment with the same weight. From left to right: proton-
nucleus scattering, α-nucleus scattering, antiprotonic atoms, parity violating
electron scattering, electric dipole polarizability, coherent π0-photoproduction.

As we can see, all these results tend to agree on a thickness of the skin around ∆r208
np =

0.15 fm and several methods, namely antipionic atoms, electric dipole polarizability and
coherent π0-photoproduction, even have their central value nearly lined up around this
value. It should however be noted that while PVES exhibits a very large error bar,
it probably is the only measurement that considers both theoretical and experimental
uncertainties. As we have seen, hadron probes suffer from the poor knowledge of the
strong interaction. This could also be said about the π0-photoproduction, in which the
final state π-nucleus interaction is simulated by an optical potential which can significantly
affect the cross section. Electric dipole polarizability on the other hand, while seemingly
clean at first sight, also involves several model-dependencies that are not accounted in
this result. All the theoretical uncertainties for these methods are not shown in the error
bars of the data shown here and this value of the skin should just be considered as an
order of magnitude.
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In the recent years, the importance of including uncertainty estimates in papers in-
volving theoretical calculations of physical quantities has been highlighted [135] by many
authors and notably in the field of neutron skins measurements [136]. With this idea in
mind, a cooperative theoretical and experimental effort has been initiated specifically for
the coherent π0-photoproduction method. In order to investigate how large theoretical
uncertainties can be and how suited is this method to extract the neutron skin thickness,
i.e. how dependent it is on the density, a follow-up experiment using the same experimen-
tal setup has been performed on tin isotopes [137] and 48Ca [138]. On the theoretical part,
I have developed an advanced reaction code, which is the subject of the next sections.

In Sec. 5, I will describe how coherent π0-photoproduction cross sections are measured
experimentally and I will particularise to the MaMi facility in Mainz in which the recent
experiments of Refs. [137, 138] have been performed. In the idea of studying the sensitivity
of the process to the details in the density, I will describe different density models in Sec. 6.
This section will also allow me to define different nuclear properties that will be needed in
Secs. 7 and 8 which detail the implementation of the reaction model. The implementation
can be seen as made of two parts. First, in Sec. 7, which discusses the photoproduction
process in itself, I will define the formalism in which the model is built and the several
simplifying assumptions on which it relies. Second, in Sec. 8, I will discuss how the
rescattering of the pion after its production can be taken into account theoretically and
numerically. Finally, I will compare the results of my model to previous measurements to
validate the implementation of my reaction code in Sec. 9. In this last section, I will also
apply this model on a whole range of targets to analyse the sensitivity of photoproduction
measurements to the neutron-skin thickness.
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5 Experiments on neutral-pion photoproduction

In the π0-photoproduction process (γ, π0), an photon γ impinges on a target of mass A
and produces a neutral pion π0. In the case of a coherent process, the target remains

in its ground state
γ + A→ π0 + A (5.1)

Because it is short-lived, the produced neutral pion, will decay very quickly. Most of
these pions will decay into two photons as the branching ratio for this decay channel has
a ∼ 98.8% probability [139]. On an experimental point of view, one hence needs

1. a way to create high energy photons,

2. a reliable way to measure precisely the energy of these photons,

3. a detector that can cover as much of the 4π solid angle around the target as possible
in order to measure, in coincidence, the two photons that result from the decay of
the pion.

In this section, I will briefly go through some of the experimental details of the recent
π0-photoproduction experiment that I will help analyse.

5.1 The recent measurement at the MaMi facility
The recent experiment of π0-photoproduction on tin isotopes [137] has been carried out
in the A2 hall of the Mainzer Mikrotron (MaMi) facility in the Institut für Kernphysik at
the Johannes Gutenberg Universität in Mainz. In this experiment, a beam of electrons is
accelerated by several race track microtrons and directed onto a thin copper foil radiator.
The interaction of the accelerated electrons with the electrostatic field of the copper
nuclei produce bremsstrahlung photons. The momentum of the corresponding electrons
are tagged by the Glasgow Photon Tagger so that the momentum of these photons is
known with precision. The photons are emitted towards the tin target placed at the
center of the Crystal Ball and TAPS setup, an assembly of two spectrometers that cover
97% of the 4π solid angle. The photoproduced π0 momentum is then reconstructed from
the measurement of the two photons that originate from its decay.

In this section, I review some of the components of this experiment in more details.

Mainzer Mikrotron facility

The Mainzer Mikrotron is an intense continuous wave electron accelerator that has been
in operation since 1979 (the interested reader is referred to the website of MaMi1. In
its original stage (MaMi-AI) it was composed of a linear accelerator and one race-track
microtron that could deliver electrons with an energy of up to 14 MeV and a maximum
intensity of 25 µA. It was upgraded in 1983 (MaMi-AII) by adding a second microtron that
increases the maximum energy of the electrons to 183 MeV (which is above threshold for
pion photoproduction). A third one was then added in 1990 to push the maximal energy
to 855 MeV (MaMi-B) and inspired the logo visible on the right panel of Fig. 5.1.

Race track microtrons basic design is shown on the left panel of Fig. 5.1. A short
linear accelerator (LINAC) is placed between two 180◦ bending magnets that return the

1https://www.kernphysik.uni-mainz.de/beschleuniger/mainzer-mikrotron/
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RF LINAC

Magnet Magnet

Figure 5.1: Schematic view of a simple race-track microtron (left) and logo
of MaMi (right), symbolising three microtrons that are used in series to deliver
electrons with energies of up to 855 MeV to the harmonic double-sided microtron.

electrons to their starting position. Thanks to this shape, the field of the magnets can be
kept constant. As the electrons pass through the LINAC repeatedly, high energies can be
achieved without the need for high accelerations in the LINAC. This also allows the LINAC
to be operated in continuous wave mode, making MaMi a 100% duty electron accelerator.
By working with continuous wave beams for coincidence measurements, the probability
of detecting two or more uncorrelated particles is reduced compared to bunched beams,
where the event rate in the bunch can be very high compared to the time resolution of
the detector.

However, as the energy of the beam gets larger, the size of the magnets grows in size
and weight. To achieve higher energies, the latest stage of MaMi-C has added a harmonic
double-sided microtron (HDSM). A schematic view of such machine is reproduced on
Fig. 5.2. Rather than having two 180◦ bending magnets, the HDSM has four 90◦ bending
ones. Between these, two LINACS accelerate the electrons to energies of up to 1.5 GeV.
This beam is then directed into one of the four experimental halls. In the case of coherent
π0-photoproduction, to hall A2.

RF LINAC I

RF LINAC IIMagnet III Magnet II

Magnet IV Magnet I

Figure 5.2: Schematics of an harmonic double-sided microtron.
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The Glasgow Photon Tagger

After their acceleration, the electrons are directed onto a thin foil of copper which acts
as a radiator. When interacting with the electromagnetic field of the copper nuclei, the
electrons radiate photons by bremsstrahlung. The energy distribution of these photons
hence follows an inverse law in energy and they are produced in a forward cone. To
ensure a small beam spot on the target, which reduces the uncertainty on the reaction
vertex position, the photon beam is collimated after its passage in the Glasgow Photon
Tagger (GPT). The latter is a large momentum acceptance spectrometer that analyses
the bremsstrahlung electrons and reconstructs the energy of the incident photon. It is
schematically shown on Fig. 5.3. The complete spectrometer can tag photons with an
energy of 40 to 800 MeV with an energy resolution between 2 and 8 MeV, depending on
the beam energy [140].

Primary e− beam

Focal plane detector

γ
Radiator

Figure 5.3: Schematics of the Glasgow Photon Tagger. Accelerated electrons im-
pinge on a radiator and radiate photons by bremsstrahlung. The bremsstrahlung
electrons are then tagged on the focal plane detector of this spectrometer and
the energy of the photon is then deduced.

The Crystal Ball and Taps detectors

The target is located at the center of the Crystal Ball (CB) detector. The CB is shaped as
an icosahedron (a polyhedron with 20 triangular faces). Each of these faces (thick black
triangles in Fig. 5.4) is divided into 4 smaller triangles (thick red triangles in Fig. 5.4)
which each contain 9 modules (smallest triangular shapes in Fig. 5.4). These modules
are NaI crystals into which the two photons originating from the π0 decay deposit their
energy. Because the Crystal Ball detector was originally designed for e+ − e− colliding
beams at the Stanford Linear Acccelerator (SLAC) [141], 24 crystals at each poles have
been removed to give space for the passage of the beam and to hold the target (see orange
part on Fig. 5.4). In fixed target experiments such as coherent π0-photoproduction, the
reaction products are forward focused in the lab frame and we need to compensate for
the forward gap at the pole. For this reason, a second spectrometer is added as a forward
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wall: TAPS [142]. TAPS is a highly segmented spectrometer made from 385 hexagonal
BaF2 crystals (see blue part on Fig. 5.4) designed to detect low and high energy single
photons. The combination of both these detectors allows to cover 97% of the 4π solid
angle. More details can be found in the thesis of M. Ferretti.

Figure 5.4: Schematics of the Crystal Ball - TAPS detector. Crystal Ball: each
triangular face of the icosahedron (thick black triangle) is divided into 4 smaller
triangles (thick red) which contain 9 NaI crystals modules (the smallest triangular
surfaces). TAPS: hexagonal BaF2 crystals. Image adapted from Ref. [143].

5.2 GEANT4 simulation and random event generator
The GEANT4 software can be used to determine the experimental resolution of the whole
detector setup. It uses Monte Carlo methods to simulate the interaction of the different
particles involved in the reaction with the detectors. These simulations hence allow to
relate the output of a theoretical model with what is actually measured in the detectors
of the experiment. Each reaction can be described by a limited set of variables (e.g. the
energy of the photon, the scattering angle of the pion, its azimuthal angle, . . . ) where
each of these variables follows a given statistical distribution in a given experiment. To
generate a large set of random events, we need to pick, for each event, a random number
for each of these variables.

This section discusses how I built such random event generator. In future works, it can
be used to feed the GEANT4 simulation with the theoretical predictions of the coherent
π0-photoproduction of my model. This will be useful to observe how these theoretical
cross sections are smeered by the experimental resolution of the detector setup.

In the following, I make the assumption that the pion decays right after its production.
This approximation can be tested by calculating the distance travelled by the pion before
decaying. For a proper time τ , this distance reads ∆x = γβcτ , where

β =

√
(Tπ +mπ)2 −m2

π

Tπ +mπ

γ = mπ + Tπ
mπ

(5.2)

where Tπ is the kinetic energy of the emitted pion in the laboratory frame. If we consider
pions of energies around Tπ = 100 MeV (which is the order of magnitude of the pion
energies encountered in this experiment) and consider that the proper time τ is simply
mean lifetime of the pion τ = 8.52 10−17s [139], this distance is of the order of 10−7 to
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10−8 m. As it can be seen, this is very small compared to the precision we can expect on the
position of the detectors or the target and this assumption is a thus good approximation.

Moreover, we consider the neutral pion to decay only in its most probable decay mode:
the double photon channel. Since this channel has a ∼ 98.8% probability [139], this is a
very good approximation. In the center of mass frame of the pion, these two photons are
emitted back to back and their distribution can be seen as isotropical. The quadri-vectors
P ′′γ1 and P ′′γ2 read

P ′′γ1 = mπ

2 (1, cos ξ sin η, sin ξ sin η, cos η) (5.3)

P ′′γ2 = mπ

2 (1,− cos ξ sin η,− sin ξ sin η,− cos η) (5.4)

where mπ is the mass of the pion. Note that in this system of coordinates, that I will
label as {x̂′′, ŷ′′, ẑ′′}, this decay can then be described by the two angles {η, ξ}.

The GEANT4 simulation takes these two quadri-vectors in the laboratory frame as
input. I hence still need to boost them in this frame. We have, from Eq. (E.16),

P lab
γi = Ru

θ′Λ−1
π P ′′γi (5.5)

where Ru
θ′ and Λ−1

π are rotation and boost matrices dependent on {θ, φ} and defined in
App. E. Note that this transformation is done in a “perfect picture” where the photon
beam is perfectly collimated, infinitely thin and the target consists of a single nucleus at
the center of the Crystal Ball, which I define as the origin of the laboratory axes {x̂, ŷ, ẑ}.
If I add the angles {θ, φ} in which the pion is photo-produced and the energy of the
incident photon Tγ, I only need five numbers to describe each photoproduction event:
{θ, φ, η, ξ, Tγ}.

Of course, we are not in the ideal situation where the incident photon is purely ori-
ented in the direction ẑ. If the incident photon propagates along the direction ~1pz =
(cosϕ sinϑ, sinϕ sinϑ, cosϑ), this needs to be taken into account. For this, the frame
described above has to be rotated along the unit vector ~̂w = (− sinϕ, cosϕ, 0) by an angle
ϑ. In the end, we have

P lab
γi = Rw

ϑR
u
θ′Λ−1

π P ′′γi (5.6)
and the pair of angles {ϑ, ϕ} needs to be added to the list of variables.

Finally, let me note that the incident photon does not always interact at the origin
of the lab frame. The photon beam has a width and can interact in the entirety of the
target, which is of course, not a single nucleus and hence has a thickness. However, this
does not change anything to the quadri-vectors of the photons. It’s only a translation
of the vertex. It will however change the place where the photons are detected in the
detector. This can be taken into account just by adding a vertex (X, Y, Z) distributed
accordingly to the beam specifications.

To the five variables {θ, φ, η, ξ, Tγ} of the “perfect picture”, the two angles {ϑ, ϕ} and
the three distances {X, Y, Z} to describe each photo-production event need to be added.

5.2.1 Random number distributions

Each photo-production event is generated by drawing independently the ten variables
{θ, φ, η, ξ, Tγ, ϑ, ϕ,X, Y, Z}. The distributions of each of these variables are listed in this
section. Note that in the following, I will generate the random numbers from an uniformly
distributed distribution. These will then be transformed such as to reproduce any desired
distribution. Let me thus define u and v as random numbers distributed uniformly on
[0, 1].
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Isotropic decay

As we have seen, in the system of coordinates of the center of mass frame of the pion
{x̂′′, ŷ′′, ẑ′′}, the two photons decay isotropically into the back-to-back directions ±~pγ1

~pγ1 = (cos ξ sin η, sin ξ sin η, cos η) (5.7)

Each pion decay can thus be described by the pair of angles {η, ξ}. The angle ξ is
uniformly distributed over [0, 2π] while η is distributed as a sine. If I use the inversion
method to draw η (see App. F), we have

η = arccos(2u− 1) (5.8)
ξ = 2πv (5.9)

In Fig. 5.5, the result of N = 10000 random draws for ξ and η is displayed.
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Figure 5.5: ξ and η angles (N = 10000) and their distribution in the limit of an
infinite number of events in red.

Pion photo-production

Each photo-production event can be described by the energy of the initial photon Tγ and
the pair of angles {θ, φ} of the emitted pion, where θ is the scattering angle and φ is the
azimutal angle. The distribution that the angles follow is simply the photo-production
differential cross section dσ/dΩ. In this particular process, this distribution depends solely
on θ for symmetry reasons and hence φ is distributed uniformly, like ξ above, and can
hence be picked such as in Eq. (5.9).

φ = 2πv (5.10)

The scattering angle θ is distributed as the normalised differential cross section dσ/dΩ. In
the center-of-mass reference frame of the π-A system, this cross section can be calculated
numerically for any given energy and target (see Sec. 9). In the left panel of Fig. 5.6, the
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result of drawing N = 10000 random angles with the inversion method (see App. F) is
shown.

In the reactions I am interested in, the energy of the photon Tγ is in the range [E0, E0+
∆E]. These photons are created by bremsstrahlung and their energy distribution has a
1/E profile [144]. The right panel of Fig. 5.6 shows the result of N = 10000 random
draws for Tγ in the bin [180, 240] MeV by also using the inversion method.
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Figure 5.6: Random number generated distribution for the scattering angle θ
(left panel) and energy of the incident photon Tγ (right panel) for N = 10000
events. In red are the normalised differential cross section (left) and 1/E profile
(right) which correspond to how these numbers are distributed.

Initial direction of the photon and position of the vertex

As I have said, the photon could be in a direction slightly different than a pure ẑ beam.
We could define the direction of the photon as

~1pz = (cosϕ sinϑ, sinϕ sinϑ, cosϑ) (5.11)
= (px, py, pz) (5.12)

where cosϑ is close to 1. As it can be seen, this direction depends on the pair of angles
{ϑ, ϕ}. As ϕ is distributed uniformly, we simply have

ϕ = 2πv (5.13)

The z component of the momentum pz = cosϑ has been shown to follow a normal distribu-
tion of mean µ = 1 and standard deviation σ = 10−6 but limited to the range [1− 2.5σ, 1]
[from discussions with Maria]. We can apply Box-Muller transforms [145] to our uniformly
distributed random number u (see App. F) to generate the right distribution for pz and
hence ϑ. The result of N = 10000 random draws for cosϑ is shown on the left panel of
Fig. 5.7.

In addition to the beam not being perfectly oriented in the ẑ direction, the target is not
a single nucleus at the center of the detector. The finite size of the target is modelled by
the random numbers {X, Y, Z} that represent the position of the vertex inside the target.
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The target is considered as a rectangle parallelepiped shape with a thickness of 0.2 cm
following axis ẑ, and with a height and a length of both 2 cm [private communications
with Maria]. We consider the beam to be of Gaussian shape along the x̂ and ŷ axis
centered around the origin and of standard deviation σ = 0.5 cm. If we assume that the
photon can interact with uniform probability through the whole thickness of the target,
Z simply follows a uniform distribution

Z = 0.2 (2u− 1) (5.14)

while X and Y are distributed as a Gaussian and can be generated through Box-Muller
transforms [145]. The distribution for N = 10000 random choices is shown on the right
panel of Fig. 5.7.
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Figure 5.7: Result of N = 10000 generated pz = cosϑ (left) and {X, Y, Z}
interaction vertices (right) and their respective distribution in red.
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6 Nuclear densities

As already discussed in Sec. 4.4, the cross section of coherent neutral-pion photopro-
duction is a promising observable to study the neutron skin thickness of nuclei and

several experiments have been or are being carried on to extract it. As I will discuss in
the following sections, this process can involve several-nucleon processes. In the energy
region of the experiments considered in this work, one-nucleon and two-nucleon processes
are sufficient to describe most of the features of photoproduction cross sections.

In order to study the sensitivity of this observable to the neutron skin thickness and
quantify the uncertainties that surround its extraction, it is important to investigate how
sensitive it is to the target nucleus model. For one- and two-nucleon processes, the relevant
properties of the nucleus are encapsulated in one- and two-nucleon densities, which are
the subject of this section.

First, I will properly define these nuclear densities. These will be used throughout
the next sections. Most of this section can be found in more details in Refs. [146, 147].
Second, I will describe several different models to calculate these objects. This will allow
me to study the model dependence of the extraction of the neutron skin thickness as well
as providing with an upper bound on the precision of eventual future experiments.

I will consider six different nuclei in this work: 208Pb, which is studied in the ex-
periment of Ref. [132], 116Sn and 124Sn which are studied in the recent experiment of M.
Ferretti [137] and 48Ca [138], which is currently analysed. Additionally, I will consider 12C
and 40Ca. While for these nuclei N = Z and the neutron skin is hence nearly non-existent,
calculations on these nuclei will allow me to test my model on the data of Krusche et al.
[129].

6.1 One- and two-nucleon densities
In coordinate space and for A nucleons, the one- and two-nucleon densities can be written
respectively as

ρ1(x1|x′1) = A
∑

σ2...σA

∑
τ2...τA

∫ (
A∏
i=2

d~ri

)
Φ†(x′1, x2, . . . , xA)Φ(x1, x2, . . . , xA) (6.1)

and

ρ2(x1, x2|x′1, x′2) = A(A−1)
∑

σ3...σA

∑
τ3...τA

∫ (
A∏
i=3

d~ri

)
Φ†(x′1, x′2, x3, . . . , xA)Φ(x1, x2, x3, . . . , xA)

(6.2)
where xi is short for {~ri, σi, τi}, the position, spin and isospin of each nucleon. Here,
Φ(x1, . . . , xA) is the A-body wave function of the nucleus. The spin-isospin sum of these
matrices can be seen as the one- and two-nucleon density distributions in coordinate space

ρ1(~r1|~r ′1) =
∑
σ1,σ′1

∑
τ1,τ ′1

ρ1(x1|x′1) (6.3)

ρ2(~r1, ~r2|~r ′1, ~r ′2) =
∑

σ1,2,σ′1,2

∑
τ1,2,τ ′1,2

ρ2(x1, x2|x′1, x′2) (6.4)
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Of special importance are the diagonal parts of these densities

ρ1(~r1) = ρ1(~r1|~r1) =
∑
σ1

σ1=σ′1

∑
τ1

τ1=τ ′1

ρ1(x1|x1) (6.5)

ρ2(~r1, ~r2) = ρ2(~r1, ~r2|~r1, ~r2) =
∑
σ1,2

σ1,2=σ′1,2

∑
τ1,2

τ1,2=τ ′1,2

ρ2(x1, x2|x1, x2) (6.6)

They represent the probability to find one nucleon at position ~r1 and two nucleons at
positions ~r1 and ~r2 simultaneously, respectively. Note that they are normalised to A and
A(A − 1), respectively. We can separate the neutron and proton contributions to this
density by projecting on the corresponding isospin. For the one-nucleon densities for
example, the neutron and proton densities respectively read

ρN1 (~r1) =
∑
σ1

ρ1(x1)
∣∣∣
τ1=− 1

2
(6.7)

ρZ1 (~r1) =
∑
σ1

ρ1(x1)
∣∣∣
τ1=+ 1

2
(6.8)

They are normalised to N and Z, the number of neutrons and protons, respectively. These
can be used to define the neutron skin thickness. For spherically symmetric nuclei, Eq. (4)
then reads

∆rnp =
√

4π
N

∫ ∞
0

r4ρN1 (r)dr −
√

4π
Z

∫ ∞
0

r4ρZ1 (r)dr. (6.9)

Of special interest are also the momentum space counter-parts of these quantities,
which are defined as

ρ̂1(~q1) =
∫
d~r1e

i~q1·~r1ρ1(~r1) (6.10)

ρ̂2(~q1, ~q2) =
∫
d~r1d~r2e

i~q1·~r1ei~q2·~r2ρ2(~r1, ~r2) (6.11)

Because of our choice of normalisation in Eqs. (6.1) and Eqs. (6.2), their values at q1 = 0
and at q1 = q2 = 0 should also be A and A(A− 1), respectively.

There are different strategies to obtain these densities. On the one hand, one can
directly compute Eqs. (6.1) and (6.2) from the wave functions of the nucleus. These can
be obtained for example from mean field or shell model calculations, where the constituting
nucleons of the nucleus are subject to a given potential. On the other hand, a simpler
solution is to assume some given phenomenological shape. Both these approaches are
presented hereafter.

6.2 Mean field and shell model calculations
In mean field and shell model calculations, we consider the nucleons to be subject to a
common average field which is produced by the nucleons themselves. In both models, the
nucleons inside the nucleus can be seen as moving independently from the others. They
are then found in single-particle states.

It is convenient to express the wave-function of the nucleus as a Slater determinant,
which naturally satisfies the antisymmetric properties of this fermionic system. The wave
function of the nucleus then reads

Φ(x1, . . . , xA) = 1√
A!

det{ψαi(~rj)} (6.12)
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where ψαi(~ri) are the single-particle states wave function of quantum numbers αi. The
one- and two-nucleon density matrices then respectively read

ρ1(x1|x′1) =
A∑
i=1

ψ†αi(~r
′
1)ψαi(~r1) (6.13)

and

ρ2(x1, x2|x′1, x′2) =
A∑

i,j=1

[
ψ†αi(~r

′
1)ψ†αj(~r

′
2)ψαi(~r1)ψαj(~r2)− ψ†αi(~r ′1)ψ†αj(~r

′
2)ψαi(~r2)ψαj(~r1)

]
(6.14)

= ρ1(x1|x′1)ρ1(x2|x′2)− ρ1(x1|x′2)ρ1(x2|x′1) (6.15)

Note that the two-nucleon density matrix is completely determined by the one-nucleon
density matrix. Moreover, the last term of the right hand side is the only one to contribute
to exchange effects, i.e. two-body processes where a pair of nucleons exchange their
quantum numbers [147].

Let us particularise Eq. (6.5) in both the Florida State University (FSU), which is a
mean field model, and in the HO shell model.

6.2.1 Relativistic mean-field calculations (FSU model)

In mean field calculations, the common average field in which the nucleon evolve is calcu-
lated from some ansatz on the nucleon wave functions. The field then acts retroactively
on these wave functions, which in turn modify the field. The process is repeated itera-
tively and when (if) convergence is achieved, it finally provides with the wave functions
of the nucleons and thus the nucleus [148]. In heavy nuclei which are composed of a large
number of nucleons, the assumption that the nucleons evolve in a common average field
is a good approximation.

Note that since the movement of the nucleons is relativistic for these nuclei, their
description requires a consistent framework that would include these relativistic effects.
Relativistic mean-field (RMF) models treat the nuclear systems microscopically by using
hadronic (baryon and meson) degrees of freedom phenomenologically. They are usually
based on a Lorentz-invariant Lagrangian density and contain only few constants such as
meson masses and meson-nucleon coupling strength parameters [149]. The details of such
models and their formalism is beyond the scope of this work and the interested reader is
referred to Ref. [150] and the references therein for more information.

In Ref. [151], B. G. Todd-Rutel and J. Piekarewicz have introduced the Florida State
University model (FSU). By introducing nonlinear couplings between the isoscalar and
the isovector mesons they are able to modify the neutron skin thickness of heavy nuclei
without changing their isoscalar properties, which are well constrained experimentally.
The field equations resulting from this Lagrangian are then solved in the mean-field limit
by replacing the meson fields as well as the baryon sources by their expectation values
(see Ref. [152] for the details). Single-particle solutions of the Dirac equation are then
found and may be written as

ψnκmτ (~r) = 1
r

(
gnκτ (r)Y+κm(~̂r )
ifnκτ (r)Y−κm(~̂r )

)
η(τ) (6.16)
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where n is the principal quantum number. The functions Y+κm are spin-spherical har-
monics of magnetic quantum number m and generalised angular momentum κ. They are
defined as

Y+κm(~̂r ) ≡ [Yl(~̂r )⊗ χ1/2]jκm with


jκ = |κ| − 1/2

l =

κ if κ > 0
−1− κ if κ < 0

(6.17)

The bound-state wave functions g and f can then be used to compute the one-nucleon
densities such that

ρ1(r) =
occ∑
nκ

(2jκ + 1
4πr2

)
[g2
nκt(r) + f 2

nκt(r)] (6.18)

I will use densities calculated in this formalism for 40Ca, 48Ca, 116Sn, 124Sn and 208Pb.
For all these nuclei, I will study the influence of the skin thickness on the photoproduction
cross section. In this perspective, for each of these nuclei, I have been provided with five
different densities predicting each a different skin thickness. These were calibrated using
various different values of the parameters of the nonlinear couplings of the Lagrangian.
They hence correspond to assumed values for the unknown neutron skin thickness of
208Pb. They will be referred to as FSUxxx, with xxx the value of the isoscalar-isovector
mixed meson coupling parameter.

I thank Jorge Piekarewicz for sharing with me his calculations.

6.2.2 Shell model and harmonic oscillator

In shell model calculations, the mean field is chosen with some given shape. Among
the several different shapes that exist, the harmonic oscillator (HO) has often been used
because of its simplicity. Indeed, it has the advantage that the wave functions of the
nucleons are analytical and so is the wave function of the nucleus. Note however that the
HO reproduces only a few of the magic numbers in the nuclear chart, i.e. the magic num-
bers of light nuclei. For lighter nuclei, with few nucleons, the mean-field approximation
is not as justifiable. It is nonetheless interesting to consider this description because of
its simplicity. For these light nuclei, relativistic effects are not as predominant and they
can be neglected. Note that I will use densities calculated in this formalism for 12C only.

In the harmonic oscillator shell model, the potential is spherically symmetric. The
wave functions ψαi(~ri) can be written in the form

ψαi(~ri) = ϕnilimi(~ri)χ(σi)η(τi) (6.19)

where ϕnilimi is the position part of the wave-function and χ and η the spin and isospin
parts. The collection of quantum numbers that characterizes the state of the nucleon αi
are then ni, the principal quantum number, li, the orbital angular momentum quantum
number and its projection mi as well as σi and τi for the spin and isospin of the nucleon,
respectively.

Analytical expressions for the wave functions are easily obtained. In this model, the
position part of the nucleon wave-functions (6.19) are given by

ϕnlm(~r) = Rnl(r/a)Ylm(θ, ϕ) (6.20)
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where a is the harmonic oscillator parameter and Ylm are the spherical harmonics. The
radial part reads

Rnl(r) = 1
a3/2

√
2n!

Γ(n+ l + 3/2)r
le−

1
2 r

2
Ll+1/2
n (r2) (6.21)

where Γ is the gamma function and Lln(r) are the Laguerre polynomials [51].
In the particular case of closed-shell N = Z = A/2 nuclei (such as 16O or 40Ca) the

one-nucleon density distribution (6.5) in the position space is easily obtained. For these
nuclei, the summation on spins and isospins of Eq. (6.13) simply adds a factor 4 and we
can then show that it acquires the simple form

ρ1(~r1|~r ′1) = 4
A∑
i

ϕ∗nilimi(~r
′
1)ϕnilimi(~r1) (6.22)

It should be noted that the 12C nucleus does not fall in the category of closed-shell nuclei
however. Indeed, it has its 0s1/2 and 0p3/2 shells closed but the 0p1/2 one remains open.
This expression is hence not correct and a proper sum on spins is needed. We can show
that the off-diagonal one-nucleon density distribution reads

ρ1(~r1|~r ′1) = 4
π3/2a3

[
1 + 4

3
~r1 · ~r ′1
a2

]
e−

r2
1+r′21
2a2 (6.23)

In the momentum space, the diagonal part then reads

ρ̂1(~q1) =
(

12− 4
3a

2q2
1

)
e−

1
4a

2q2
1 (6.24)

6.3 Phenomenological and experimental densities
The RMF calculations and the HO shell model ones have the advantage of providing us
with the wave-functions of the nucleus. As we will see later, these are needed to build
the potential between the impinging particle and the nucleus. At the first order however,
only the diagonal part of the one-nucleon density is needed. It is then interesting to resort
to densities which shape are built phenomenologically. I will consider two different types
of these: the Fermi-Dirac shape densities and the experimental densities, built from a
Fourier-Bessel analysis of electron-scattering experiments.

6.3.1 Fermi-Dirac shape (São-Paulo group)

As their name implies, the Fermi-Dirac densities have the shape of a Fermi-Dirac function
(see Eq. (3)). This shape is sufficiently simple so that the influence to some of their
properties (asymptotic behaviour, neutron skin thickness, etc.) can be tested very easily.

In Ref. [153], an extensive systematisation of proton and neutron densities has been
performed by analysing charge distributions extracted from electron scattering experi-
ments as well as theoretical densities derived from mean field models. The proton and
neutron densities are then defined as

ρZ1 (r) ∝ 1
1 + exp

(
r−R0Z
aZ

) and ρN1 (r) ∝ 1
1 + exp

(
r−R0N
aN

) (6.25)
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which are normalised to Z and N respectively and where the radii and diffusenesses are
given by R0Z = 1.81Z1/3 − 1.12

R0N = 1.49N1/3 − 0.79
and

{
aZ = 0.47− 0.00083Z
aN = 0.47 + 0.00046N

(6.26)

I will refer to these densities as the São Paulo densities (SP).
Note that in this work, instead of the usual Fermi-Dirac shapes, I will rather use the

symmetrised form of the Fermi-Dirac shape, which reads

ρ1(r) = 3A
4πR(R2 + π2a2)

[
1

exp((r −R)/a) + 1 + 1
exp(−(r +R)/a) + 1 − 1

]
, (6.27)

= 3A
4πR(R2 + π2a2)

sinh(R/a)
cosh(r/a) + cosh(R/a) , (6.28)

This shape has the advantage of being almost indistinguishable from the usual Fermi-Dirac
shape while having an analytical Fourier transform which reads

ρ̂1(q) = 3A
4πR(R2 + π2a2)

4π
q

πa

sinh(πqa)

[
πa sin(qR)
tanh(πqa) −R cos(qR)

]
. (6.29)

These densities can be used for any nucleus, such as 12C, 40Ca, 48Ca, 124Sn and 208Pb.

6.3.2 Experimental density

In this type of densities, the charge density is given as an expansion on spherical Bessel
functions. This expansion is model independent and was first used to parametrise the
charge distributions in Ref. [154] from electron scattering data.

Charge densities are expanded over a finite domain [0, RB] and take the form

ρch
1 (r) = θ(RB − r)

∞∑
n=1

anj0(qnr) (6.30)

where j0 is the spherical Bessel functions of zeroth order [51] and qn = nπ/RB, where RB

is the truncation radius. The coefficients an are then fitted to experiment. Note that this
means the Fourier transform of the charge density is analytical and reads

ρ̂ch
1 (q) = 4π sin(qRB)

q

∞∑
n=1

an
(−1)n
q2 − q2

n

(6.31)

In [Atomic data and nuclear data tables 36, 495-536], the charge density Fourier
transform measured from several electron-scattering experiments on different nuclei has
been parametrised with such an expansion. In Tab. II.1, the coefficients an of this Fourier-
Bessel analysis (FB) are displayed for 12C and 40Ca nuclei. Note that for both nuclei, the
truncation radius is RB = 8 fm.

It should be noted however that only charge densities are available from electron
scattering experiments. These still need to be converted to nucleon densities. This can
be achieved either by considering that the nucleons are pointlike particles and that the
charge densities are equivalent to nucleon densities, or in a less crude way by considering
that the proton and neutron have a charge form factor Gp and Gn, respectively. Following

95



Table II.1: Coefficients of the Fourier-Bessel expansion for 12C and 40Ca charge
density

12C 40Ca 12C 40Ca
a1 0.15721 10−1 0.44846 10−1 a9 -0.63568 10−3 -0.39346 10−3

a2 0.38732 10−1 0.61326 10−1 a10 0.71809 10−4 0.20338 10−3

a3 0.36808 10−1 -0.16818 10−2 a11 0.18441 10−3 0.25461 10−4

a4 0.14671 10−1 -0.26217 10−1 a12 0.75066 10−4 -0.17794 10−4

a5 -0.43277 10−2 -0.29725 10−2 a13 0.51069 10−4 0.67394 10−5

a6 -0.97752 10−2 0.85534 10−2 a14 0.14308 10−4 -0.21033 10−5

a7 -0.68908 10−2 0.35322 10−2 a15 0.23170 10−5 −
a8 -0.27631 10−2 -0.48258 10−3 a16 0.68465 10−6 −

Chandra and Sauer [Phys Rev C13, 245], we can parametrise the proton form factor as a
superposition of three Gaussians

Gp(q) = 0.506e−
0.6572q2

4 + 0.328e−
0.3732q2

4 + 0.166e−
1.2352q2

4 (6.32)

and the neutron form factor as

Gn(q) = e−
0.6852q2

4 − e− 0.7392q2
4 (6.33)

The Fourier form factor of the nucleon densities are then given as

ρ̂1(q) = ρ̂ch
1 (q)

Gp(q) +Gn(q) (6.34)

The densities that consider this form factor renormalisation will be referred to with the
acronym chFF. Finally, because these two nuclei have an equal number of neutrons and
protons N = Z, are light and stable, I will consider the neutron and proton distributions
to be equal.

6.4 Removal of the center-of-mass motion
It is useful to remove the motion of the nucleus in the reference frame of the reaction we
consider. Indeed, in the next sections, we will consider the interaction of a photon or a
pion with a nucleus. In the γ-nucleus or π-nucleus centre-of-mass frame, if we denote the
momentum of the impinging particle with ~k(′) before (after) the reaction, the momentum
of the nucleus is then correspondingly given by −~k(′). Let us define the Jacobi coordinates
as 

~ξA−1 = ~rA − ~rA−1

~ξA−2 = ~rA + ~rA−1

2 − ~rA−2

...

~ξ2 = ~rA + ~rA−1 + · · ·+ ~r3

A− 2 − ~r2

~ξ1 = ~rA + ~rA−1 + · · ·+ ~r2

A− 1 − ~r1

(6.35)
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The Jacobian of such transformation is just 1. These coordinates correspond to the inter-
nal degrees of freedom inside the nucleus. If we are interested in one-nucleon processes,
we can also define

~ξ = ~r2 + ~r3 + · · ·+ ~rA
A− 1 (6.36)

such that 
~ξ − ~ξ1/A =

∑A
i=1 ~ri
A

~r1 = ~ξ − ~ξ1

(6.37)

where ∑A
i=1 ~ri/A is the position of the nucleus centre of mass. This allows us to factorise

the centre-of-mass motion and write
Φ0(x1, x2, . . . , xA) = e−i

~k(~ξ−~ξ1/A)φ0;σ1σ2...A;τ1τ2...A(~ξ1, ~ξ2, . . . , ~ξA−1)

Φ†0(x′1, x2, . . . , xA) = e+i~k′(~ξ−~ξ′1/A)φ†0;σ′1σ2...A;τ ′1τ2...A
(~ξ′1, ~ξ2, . . . , ~ξA−1)

(6.38)

where φ0;σ1σ2...A;τ1τ2...A are the inner wave functions of the nucleus. If instead we are
interested in two-nucleon processes, we rather define

~ζ = ~r3 + ~r4 + · · ·+ ~rA
A− 2 (6.39)

such that 
~ζ − ~ξ1/A− ~ξ2/(A− 1) =

∑A
i=1 ~ri
A

~r1 = ~ζ − ~ξ1 − ~ξ2/(A− 1)
~r2 = ~ζ − ~ξ2

(6.40)

and which allows us to write
Φ0(x1, x2, x3, . . . , xA) = e−i

~k(~ζ−~ξ1/A−~ξ2/(A−1))φ0;σ1σ2σ3...A;τ1τ2τ3...A(~ξ1, ~ξ2, ~ξ3, . . . , ~ξA−1)

Φ†0(x′1, x′2, x3, . . . , xA) = e+i~k′(~ζ−~ξ′1/A−~ξ′2/(A−1))φ†0;σ′1σ′2σ3...A;τ ′1τ ′2τ3...A
(~ξ′1, ~ξ′2, ~ξ3, . . . , ~ξA−1)

(6.41)

In both cases, we are then left with an inner wave function that depends only on the
internal coordinates ~ξi and a plane wave term representing the centre-of-mass motion of
the nucleus. Very similarly to Eqs. (6.1) and (6.2), we can define densities from these
internal wave functions such as

ρ1(x̃1|x̃′1) = A
∑

σ2...σA

∑
τ2...τA

∫ (
A−1∏
i=2

d~ξi

)
φ†0;σ′1σ2...A;τ ′1τ2...A

(~ξ′1, ~ξ2, . . . , ~ξA)φ0;σ1σ2...A;τ1τ2...A(~ξ1, ~ξ2, . . . , ~ξA)

(6.42)
and

ρ2(x̃1, x̃2|x̃′1, x̃′2) = A(A− 1)
∑

σ3...σA

∑
τ3...τA

∫ (
A∏
i=3

d~ξi

)
φ†0;σ′1σ′2σ3...A;τ ′1τ ′2τ3...A

(~ξ′1, ~ξ′2, ~ξ3, . . . , ~ξA−1)

φ0;σ1σ2σ3...A;τ1τ2τ3...A(~ξ1, ~ξ2, ~ξ3, . . . , ~ξA−1)
(6.43)
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where x̃i = {~ξi, σi, τi}. Similarly to Eqs. (6.3) and (6.4), we can define

ρ1(~ξ1|~ξ ′1) =
∑
σ1,σ′1

∑
τ1,τ ′1

ρ1(x̃1|x̃′1) (6.44)

ρ2(~ξ1, ~ξ2|~ξ ′1, ~ξ ′2) =
∑

σ1,2,σ′1,2

∑
τ1,2,τ ′1,2

ρ2(x̃1, x̃2|x̃′1, x̃′2) (6.45)

where the diagonal parts ρ1(~ξ1) and ρ2(~ξ1, ~ξ2) correspond to x̃′1 = x̃1 and x̃′2 = x̃2 similarly
to Eqs. (6.5) and (6.6). Their momentum space counter-parts read

ρ̂1(~q1) =
∫
d~ξ1e

i~q1·~ξ1ρ1(~ξ1) (6.46)

ρ̂2(~q1, ~q2) =
∫
d~ξ1d~ξ2e

i~q1·~ξ1ei~q2·~ξ2ρ2(~ξ1, ~ξ2) (6.47)

and are often referred to as the nuclear form factors. These expressions will become handy
later. Note that as we have seen previously, the wave functions are not always available.
This means that removing the centre-of-mass motion is not always feasible properly.

It should be noted that additionally to the centre-of-mass motion discussed above and
due to the change of reference frame, an additional motion has to be considered when
calculating the nuclear wave functions in mean field or in shell model calculations. In
these computations, the potential is assumed to have a fixed origin. By convenience, the
individual motion of the nucleons are then given relative to the centre of this potential.
This is especially true for shell model calculations. In reality, the origin should depend on
the mean position of the nucleons and the wave function of the system should thus be a
function only of the relative coordinates of the constituent nucleons [155]. In the case of
the HO, for example, this causes the centre-of-mass to oscillate unphysically around the
origin.

The removal of this motion is not always possible. In the case of the HO however,
it is done relatively simply for example with the correction of Tassie and Barker, which
can be found in Ref. [156]. For the FSU densities on the contrary, this removal cannot
be done in a model-independent way [157]. The São Paulo density and the experimental
one intrinsically remove this motion.

In summary, the diagonal part of the nuclear density Eqs. (6.44) and its Fourier
transform (6.46) are available for all densities except the RMF ones. Note however that
RMF calculations are made only for heavy nuclei. Fortunately, the effect of this correction
is smaller as the target becomes heavier [157]. I will thus neglect it for RMF densities.

6.5 Comparison of the different densities
It is interesting to have a look at the different densities to see what are the main differences
that exist between them. This will help us pinpoint the main characteristics of the
densities that influence the behaviour of the pion photoproduction cross section. This
will be particularly handy for the heavier targets.

The 12C nucleon densities are displayed on Fig. 6.1. These are shown for the different
models discussed above, i.e. the HO model (dash-dotted) without (black) and with (blue)
centre-of-mass correction, the São Paulo model (solid), the FB analysis (dashed) without
(black) and with (blue) charge form factor renormalisation. As discussed earlier, for 12C,
ρN1 = ρZ1 for all densities except the São Paulo ones. For this model, the neutron density
is shown in red.
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On the left panel of Fig. 6.1, these densities are displayed in linear scale. It should be
noted how after the centre-of-mass and the charge form factor corrections for the HO and
FB densities, respectively, the internal part of the densities are very similar. On the right
one, the densities are displayed in log scale. It should be noted that the Fourier Bessel
densities become negative past r = 7 fm. This does not cause any issue in momentum
space however. The HO densities have a very different asymptotic behaviour to the SP
ones, as the former have a gaussian decay, while the latter an exponential one.
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Figure 6.1: 12C nucleon densities. See text for details.

The 40Ca nucleon densities are displayed on Fig. 6.2. These are shown on the left
panel for the different models discussed above, i.e. the FSU model (dash-dotted), the
São Paulo model (solid), the FB analysis (dashed) without (black) and with (blue) charge
form factor renormalisation. As discussed earlier, for 40Ca, ρN1 = ρZ1 for the Fourier-Bessel
analysis but not for the São Paulo and FSU models. The proton densities are shown in
black while the neutron ones are shown in red for these two models.

In the sake of conciseness, only one of the FSU densities is displayed on the left panel.
Four other FSU densities are shown on the right panel of Fig. 6.2. These are obtained
by varying the isoscalar-isovector mixed meson coupling parameter (see Sec. 6.2.1). Note
that the blue one is the same density that is displayed on the left panel. The differences
between the FSU curves are small, especially in the region r ∼ 3 − 4 fm. This is also
visible on Fig. 6.3, where the FSU densities and the SP ones are displayed in log scale. The
exponential decay of the FSU densities are nearly superimposed and no significant changes
are visible. What can be seen however is the clearly different asymptotic behaviour of
the neutron and proton densities as well as the differences that exist between the SP and
FSU densities.

Even though the skin thickness ∆rnp is expected to be very small and its impact on
the pion photoproduction cross section will not be studied on this nucleus, it can be
interesting to actually compute it for these densities. ∆rnp is given in the first line of
Tab. II.2 for the densities that exhibit a skin. In this table, it should be noted how the
neutron skin thickness is negative for this nucleus. This is to be expected because for
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Figure 6.2: 40Ca nucleon densities. See text for details.

N = Z nuclei, the Coulomb interaction pushes the protons out relative to the neutrons.
Note however that the neutron skin reproduced by the SP densities is almost a factor
10 larger (or rather... smaller since it is negative) compared to the ones reproduced by
FSU, which do not vary much. This thickness is probably not physical but illustrates the
differences in ∆rnp that can be obtained by using a different model. This will help me
analyse its influence on the photoproduction cross section later.

Table II.2: Neutron skin thicknesses for the different densities that exhibit a
skin for 40Ca and 48Ca.

∆rnp [fm] São Paulo FSU012 FSU016 FSU022 FSU028 FSU032
40Ca -0.301 -0.052 -0.052 -0.052 -0.050 -0.048
48Ca 0.017 0.147 0.167 0.197 0.232 0.244

Similarly to Fig. 6.2, the 48Ca nucleon densities are displayed on Fig. 6.4, linearly
on the left panel and in log scale on the right one. The proton (dashed) and neutron
(solid) densities are shown for the São Paulo model (with a dot) and FSU ones (without
dot). Like for 40Ca, five different FSU densities have been calculated. As was to be
expected from the fact that 48Ca has 8 extra neutrons compared to its number of protons,
the neutron densities extend significantly farther than the proton ones. This is clearly
visible both in linear scale and in log scale. Contrary to the case of 40Ca, variations in
the isoscalar-isovector mixed meson coupling parameter have a stronger impact on the
neutron densities but leave the proton ones nearly untouched however.

The neutron skin thickness reproduced by these densities are shown in the second line
of Tab. II.2. While in the case of SP, ∆rnp is close to 0, it ranges from 0.15 fm to 0.24 fm
for FSU. While these are larger than the 0.12—0.15 fm range predicted by recent ab initio
calculations [158], they provide with a large range of values (0.1 fm!), which will help me
quantify the effects of the thickness on the pion photoproduction cross section.

The same figures as Fig. 6.4 but for 116Sn, 124Sn and 208Pb are displayed in Figs. 6.5,
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Figure 6.3: 40Ca nucleon densities in log scale. All FSU densities as well as the
São Paulo ones are displayed.

6.6 and 6.7, respectively. It should be noted that I only have the two extreme FSU
densities for 116Sn. The conclusions we can draw from these figures are similar to the
ones I have made for 48Ca. First, the neutron densities extend farther than the proton
ones, giving rise to a neutron skin that is clearly visible. Second, the proton densities
vary much less than the neutron ones for changes in the isoscalar-isovector mixed meson
coupling parameter. Additionally, it should be noted how the density in the interior is
pretty much constant, which nicely illustrates the saturation properties of nuclear matter
already discussed in the introduction and more particularly in Fig. 2.

The neutron skin thicknesses of these densities are shown in the first, second and third
line of Tab. II.3, for 116Sn, 124Sn and 208Pb, respectively. It should be noted that the range
of isoscalar-isovector mixed meson coupling parameters explored here generate a wide
range of values of the slope L and intercept J of the symmetry energy at saturation density
(see Eq.(4.3)). These reproduce the whole range of previous neutron skin measurements
on tin isotopes (see Fig. 17 of Ref. [9]).

Like for 48Ca, the neutron skin thickness reproduced by SP is much thinner than
the ones of FSU (it is even negative for 116Sn). But contrary to 48Ca, the influence of
the isoscalar-isovector mixed meson coupling parameter on the neutron skin thickness
of 116Sn, 124Sn and 208Pb seems to be opposite. Rather than seeking an explanation of
this effect (which I leave to projects related to these type of calculations), the important
message of these tables is the large span of thicknesses that these densities reproduce.
The range of skins thicknesses reproduced by FSU is 0.02 fm, 0.03 fm and 0.11 fm, for
116Sn, 124Sn and 208Pb, respectively. These different ranges represent relative changes of
roughly 50% in the thickness of the skin for all these nuclei. The influence of ∆rnp on the
photoproduction cross section will be studied in Sec. 9.

101



r [fm]

0 1 2 3 4 5 6 7

ρ
1
[f
m

−
3
]

0

0.02

0.04

0.06

0.08

0.1

0.12

ρ
Z

1

ρ
N

1

FSU012
FSU016
FSU022
FSU028
FSU032
SP

r [fm]
0 2 4 6 8 10

ρ
1
[f
m

−
3
]

10−6

10−4

10−2

Figure 6.4: 48Ca nucleon densities. See text for details.

Table II.3: Neutron skin thicknesses for 124Sn and 208Pb.

∆rnp [fm] São Paulo FSU000 FSU010 FSU020 FSU030 FSU040
116Sn -0.035 0.048 − − − 0.029
124Sn 0.013 0.080 0.074 0.068 0.061 0.053
208Pb 0.101 0.286 0.261 0.234 0.207 0.176
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Figure 6.5: 116Sn nucleon densities. See text for details.
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Figure 6.6: 124Sn nucleon densities. See text for details.
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Figure 6.7: 208Pb nucleon densities. See text for details.
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7 Pion-nucleus interaction in the Kerman-McManus-
Thaler formalism

7.1 The Kerman-McManus-Thaler formalism
The Kerman, McManus and Thaler (KMT) formalism [159] is often used to describe the
scattering of a particle from a system of A identical particles in a given state (i.e. the A
nucleons of a nucleus in its ground state). This multiple scattering formalism is shortly
discussed here and is used throughout this work. I will particularise it to the case of π-A
scattering. Some of the final expressions are also extended to photoproduction processes.
It should be noted that in the following, I will adopt the convention ~ = c = 1.

Let us suppose that the pion of mass mπ is impinging with a momentum ~k0 on a
nucleus of mass mA made up of A nucleons of (free) mass mN . The internal A-body
Hamiltonian of this nucleus is given by HN . The eigenstates of this Hamiltonian satisfy

HN |Φi〉 = Ei |Φi〉 (7.1)

where Φi includes the bound states as well as the continuum states of the target nucleus
(i can thus be seen as a “continuous” label of the state in which the nucleus is found).
Here I will consider the target in its ground state Φ0 of energy E0 which I will consider as
nil, i.e. E0 = 0. The energies Ei are thus the excitation energies of the target for i > 0.

Let me define the interaction potential between the pion and the nucleus by V and the
kinetic energy operator of the incident pion as K̂0. The Hamiltonian of the total system
H is then given by

H = HN + K̂0 + VπA (7.2)
= H0 + VπA (7.3)

where H0 is the A+ 1-body Hamiltonian of a non-interacting pion-nucleus (π-A) system.
The eigenfunctions of H0 satisfy

H0 |Ξi〉 = Ei |Ξi〉 (7.4)

where Ei = Ei+K0 is the sum of the nuclear energy and the kinetic energy of the incident
pion. These wave functions correspond to the case where the interaction between the pion
and the nucleus is turned off. The relative π-A motion should thus be in a plane wave
and we thus have

Ξi(~r0, ~r1, . . . , ~rA) = ei
~k0~r0

(2π)3/2 Φi(~r1, . . . , ~rA) (7.5)

The wave function of the total system when the interaction is turned on is noted Ψi,k

and obeys the Schrödinger equation

[(H0 − E) + VπA] Ψi,k = 0 (7.6)

where i is the index of the state Φi in which the nucleus is found and k is the momentum
of the pion. Because the nucleus has an internal structure, we could further write V in
the explicit form

VπA =
A∑
i=1

v(~r0, ~ri) =
∑
i

vi (7.7)
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Here, vi is the two-body interaction between the incident pion at ~r0 and a bound nucleon
of the target at ~ri. For antisymmetric nuclear states, the matrix element 〈Φn| vi |Φn′〉
should not be dependent on the index i and can thus be removed [159]. Because the π-A
potential is non-local (see later), its treatment is easier in momentum space. We can then
re-write the Schrödinger equation formally as the Lippmann-Schwinger equation

TπA = VπA + VπA
1

E −H0 + iε
TπA (7.8)

where we see the non-interacting π-A propagator (E −H0 + iε)−1 appear and where we
introduce the scattering matrix TπA. The cross section for the process of a pion in the
initial momentum ~k0 impinging on a target in its groundstate Φ0 and scattered to the
final momentum ~k, leaving it in the state Φi is given in terms of the matrix elements of
this matrix such that

dσ

dΩ = (2π)4

∣∣∣∣∣∣−µπA
√
k

k0
〈Ψi,k′|TπA |Ψ0,k 〉

∣∣∣∣∣∣
2

(7.9)

where µπA is the π-A reduced mass (note that here, because of the light mass of the pion
compared to the mass of the nucleus, we have µπA ' mπ).

We can use Eq. (7.7) to write [159]

TπA = Av

(
1 + A

E − K̂0 −HN + iε
TπA

)
(7.10)

where A is the antisymmetrization operator. Let us also define the transition operator
on a single bound nucleon [Annals of Physics 8, 551]

τπN = v

(
1 + A

E −K0 −HN + iε
τπN

)
= v

(
1 + 1

α
τπN

)
(7.11)

where I have written the propagator more concisely as

1
α

= A

E − K̂0 −HN + iε
(7.12)

For later, it is interesting to also define αi
1
αi

= A

E − K̂0 − Ei + iε
(7.13)

which can be understood as the π-A propagator for a given state Φi of the nucleus. It
should be noted that τπN is not the free pion-nucleon scattering operator tπN , which is
defined as

tπN = v

(
1 + 1

E − K̂0 − K̂1 + iε
tπN

)
= v

(
1 + 1

h
tπN

)
(7.14)

in which only the kinetic operator of the free nucleon K̂1 appears in the propagator and
not the full nuclear A-body Hamiltonian HN . We can show (see App. C) that TπA can
then be related to τπN by the following equation

TπA = AτπN
1

1− (A− 1) 1
α
τπN

(7.15)
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If we define the auxiliary matrix

T ′πA = A− 1
A

TπA (7.16)

and
V

(0)
πA = (A− 1)τπN (7.17)

we can finally re-write the Lippmann-Schwinger equation in terms of T ′πA and V (0)
πA as

T ′πA = V
(0)
πA + V

(0)
πA

1
α
T ′πA (7.18)

It is interesting to expand this equation into the series expansion

T ′πA = V
(0)
πA + V

(0)
πA

1
α
V

(0)
πA + . . . (7.19)

The first term can be seen as the single scattering part, the second as the double scattering,
etc. We should keep in mind that this equation is a set of coupled integral equations.
As such it involves all the target excited states. When considering ground state elastic
scattering for example, we have

〈Ψ0,k′|T ′πA |Ψ0,k0〉 =
〈
Ψ0,k′

∣∣∣V (0)
πA

∣∣∣Ψ0,k0

〉
+
∫∑
i,k′′

〈
Ψ0,k′

∣∣∣V (0)
πA

∣∣∣Ψi,k′′

〉 1
αi

〈
Ψi,k′′

∣∣∣V (0)
πA

∣∣∣Ψ0,k0

〉
+. . .

(7.20)
The first term consists of the ground-state diagonal part of V (0)

πA . The second term consists
in the scattering to any nuclear state Φi (that could be the ground state) by the first V (0)

πA

(on the right) then a re-scattering to the ground state by the second V (0)
πA term (on the

left). For i > 0, it then consists in the product of two off-diagonal terms. At low energies
and for low mass projectiles such as the pion the diagonal elements of V (0)

πA should have a
larger contribution than the off-diagonal ones. It would then be handy to separate V (0)

πA

into its different terms. In order to do so, we introduce the projectors
P0 = |Φ0〉〈Φ0|
Q0 =

∑
i 6=0
|Φi〉〈Φi| and hence P0 +Q0 =

∑
i

|Φi〉〈Φi| = 1 (7.21)

which project on the nucleus ground-state |Φ0〉 and excited states |Φi>0〉. We can rewrite
T ′πA as (see App. C)

T ′πA = 1
1− V (0)

πA
1
α
Q0
V

(0)
πA

(
1 + 1

α
P0T

′
πA

)
(7.22)

= V̄πA

(
1 + 1

α
P0T

′
πA

)
(7.23)

where we will call V̄πA the potential matrix. This equation is much simpler than Eq. (7.18).
Indeed, V̄πA contains all the effects due to the nuclear excited states. Because of the
ground-state projector, the transition amplitude T ′πA is suppressed for any transition other
than to the ground state. We can thus see V̄πA as an effective single-particle optical
potential for the Lippmann-Schwinger equation. All the complexity arising from the
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many-body aspect of the scattering is thus encapsulated in this optical potential. As an
example, the ground state elastic scattering T ′ matrix obeys

〈Ψ0,k|T ′πA |Φ0,k0〉 =
〈
Ψ0,k

∣∣∣ V̄πA ∣∣∣Ψ0,k0

〉
+
∫
k′

〈
Ψ0,k

∣∣∣ V̄πA ∣∣∣Ψ0,k′
〉 1
α0
〈Ψ0,k′ |T ′πA |Ψ0,k0〉 (7.24)

where as we have seen in Eq. (7.13), α0 can be understood as the propagator of a free-
pion-nucleus system where the nucleus remains in its groundstate. Note also that because
of the presence of the projector to the ground state in Eq. (7.23), any transition to an
excited state will be dependent on the ground-state diagonal auxiliary matrix element
〈Ψ0,k|T ′πA |Ψ0,k0〉.

〈Ψn,k|T ′πA |Ψ0,k0〉 =
〈
Ψn,k

∣∣∣ V̄πA ∣∣∣Ψ0,k0

〉
+
∫
k′

〈
Ψn,k

∣∣∣ V̄πA ∣∣∣Ψ0,k′
〉 1
α0
〈Ψ0,k′ |T ′πA |Ψ0,k0〉 (7.25)

Let us see what is the form of the potential matrix V̄πA. From Eq. (7.22), we know it
obeys a Lippmann-Schwinger type equation

V̄πA = V
(0)
πA + V

(0)
πA

1
α
Q0V̄πA (7.26)

which we can expand at first and second order as

V̄πA = V
(0)
πA + V

(0)
πA

1
α
Q0V

(0)
πA + . . . (7.27)

If we inject this expansion in Eqs. (7.23) and use Eqs. (7.16) and (7.17), we finally have

TπA =
[
AτπN + A(A− 1)τπN

1
α
Q0τπN

]
+ A− 1

A

[
AτπN + A(A− 1)τπN

1
α
Q0τπN

] 1
α
P0TπA

(7.28)
which, if we define the term between brackets as Vopt

V̄πA,opt = AτπN + A(A− 1)τπN
1
α
Q0τπN (7.29)

can be written more concisely as

TπA = V̄πA,opt + A− 1
A

V̄πA,opt
1
α
P0TπA (7.30)

which is a Lippmann-Schwinger type equation for the scattering of a pion off a nucleus
by the effective potential V̄πA,opt.

7.1.1 The impulse approximation

A significant difficulty of many-body scattering comes from the choice of V̄πA,opt and hence
from the calculation of τπN . We can show (see App. C), that tπN and τπN are related
through the equation

τπN = tπN + tπN

( 1
α
− 1
h

)
τπN (7.31)

but this equation is as difficult to solve as the Lippmann-Schwinger one. In order to ease
the problem, let us make a simplifying assumption: the impulse approximation.
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In the impulse approximation, that I will sometimes refer to as IA, we assume two
things. The first one is that the single nucleon amplitude τπN can simply be considered
as the amplitude for the free scattering tπN . The second is to consider that the nuclear
Hamiltonian HN contained in the propagator α is set to E0 = 0, such that α = α0.
Because of these two assumptions, the nucleons could be seen as free nucleons unbound
to the nucleus. The effective optical potential for the scattering of the impinging pion
with the nucleus is then approximated by the expression

V̄πA,opt = AtπN + A(A− 1)tπN
1
α0
Q0tπN (7.32)

In this work, I will take the ground-state averages of these operators

VπA,opt =
〈
Φ0

∣∣∣ V̄πA,opt

∣∣∣Φ0
〉

(7.33)

= A 〈Φ0| tπN |Φ0〉+ A(A− 1)
∑
i>0
〈Φ0| tπN |Φi〉

1
α0
〈Φi| tπN |Φ0〉 (7.34)

It should be noted that the KMT formalism avoids double counting on the pion re scat-
tering on the same nucleon, as visible from the A− 1 factor of the second term.

This formalism can be extended to π-photoproduction, such that the photoproduction
T -matrix for this process Tγπ reads [160]

Tγπ =
A∑
i=1

τγπ,i +
A∑
j 6=i

A∑
i=1

τπN,j
1
α
τγπ,i +

A∑
k 6=i,j

A∑
j 6=i

A∑
i=1

τπN,k
1
α
τπN,j

1
α
τγπ,i + . . . (7.35)

where the sum is on all nucleons. The operators τγπ correspond to the pion photoproduc-
tion operator, also on bound nucleons. In the impulse approximation, the operators on
free nucleons tπN are used instead of the τπN and α = α0. The equation above can thus
be rewritten as an integral equation

Tγπ = Vγπ + A− 1
A

TπA
1
α0
P0Vγπ (7.36)

where TπA is the pion-nucleus scattering T -matrix already encountered in Eq.(7.30) and
where the photoproduction amplitude Vγπ reads

Vγπ =
A∑
i=1

tγπ,i = Atγπ (7.37)

Note that as seen in Eq. (7.10), the index i can be dropped due to the fact that we are
interested only in antisymmetric matrix elements and we consider isospin symmetry.

The right-hand side of Eq. (7.36) is composed of two terms. In what could be seen
as the “first order” term, the pion does not further interact with the nucleus after its
production. Its wave function is hence a plane wave. For this reason, the approximation
that neglects the second term is commonly referred to as the Plane Wave Impulse Ap-
proximation (or PWIA). The second term is the term that simulates the rescattering of
the pion with the nucleus. In what could be called a “second order” of the reaction, the
pion wave function is distorted by its interaction with the nucleus. The full expression
Eq. (7.36) will be referred to as the Distorted Wave Impulse Approximation (or DWIA).

From Eqs. (7.35)–(7.37), it should be noted that only the dominant one-body mech-
anism of the photoproduction is considered: the neutral pion is produced on a single
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nucleon [see Fig. 7.1(a)]. Two-body processes, in which a charged pion is produced on
a first nucleon and then charge exchanges into a neutral pion [see Fig. 7.1(b)], are thus
not considered in this approximation. The influence of this effect on the photoproduction
cross section has been recently investigated in Ref. [161]. While it is relatively small, it
could affect the quality of the extraction of the neutron skin thickness. In my work, the
intermediate states of the reaction in the DWIA are assumed to contain no other particle
than the nucleus and a neutral pion. Two-body processes are hence not considered here.
It should be noted however that the elementary process on a single nucleon tγπ may still
contain charge exchange processes as well as rescattering terms. These happen however
on the same nucleon and are not two-body processes.

n, p n, p

γ

π0

n

p n

p

γ

π0

π−
p

n p

n

γ

π0

π++

(b)

Two-body

(a)

One-body

Figure 7.1: One-body (left) and two-body (right) processes for the photopro-
duction of a neutral pion.

It should be noted that for an impinging on-shell momentum k0 of the pion, the
non-relativistic propagator α−1

0 for a pion with momentum k reads
1

α0(k) = 1
k2

0
2µπA −

k2

2µπA + iε
(7.38)

where the momentum dependence of α0 has been written explicitly. It is useful to define
a non-relativistic Green operator

G0(k) ≡ 1
2µπAα0(k) = 1

k2
0 − k2 + iε

(7.39)

and to define
T̃β = −2µπA

4π Tβ (7.40)

where β refers to the different processes defined above (such as πA, γπ, etc.). In the
example of the π-A scattering, the cross section Eq. (7.9) for a pion going from momentum
k0 to k reads simply

dσ

dΩ = (2π)3 k

k0

∣∣∣T̃ (~k,~k0)
∣∣∣2 (7.41)

Similarly, by defining
Uβ = −2µπA

4π Vβ (7.42)

Eq. (7.30) can be rewritten as

T̃πA = UπA,opt − 4πA− 1
A

UπA,optG0P0T̃πA (7.43)
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Likewise, Eq. (7.36) reads

T̃γπ = Uγπ − 4πA− 1
A

T̃πAG0P0Uγπ (7.44)

If we wish to correct the propagator for relativity, the energies are calculated relativisti-
cally and the π-A reduced mass µπA can be replaced by a relativistic equivalent of the
reduced mass. In Ref. [128], the latter is defined asM, which has the form

M(k) = Eπ(k)EA(k)
Eπ(k) + EA(k) (7.45)

where Eπ(k) and EA(k) are the relativistic energies of the pion and the target, respectively
and the non-relativistic Green operator Eq. (7.39) then becomes

G(k) ≡ 1
2M(k)

1
E(k0)− E(k) + iε

(7.46)

where E(k) = Eπ(k) + EA(k) is the sum of the pion and nucleus energies. The explicit
expressions of these energies will be given in next section.

For reasons that will become clear in Sec. 8.3, when the Lippmann-Schwinger equation
is actually solved, it is useful to rewrite it in terms of the non-relativisctic propagator G0.
In this alternative form, we have

G(k) = 2M̃(k)
2M(k)

1
k2

0 − k2 + iε
(7.47)

where
2M̃(k) = [E(k) + E(k0)][Eπ(k)EA(k) + Eπ(k0)EA(k0)]

E2(k) + E2(k0) (7.48)

In the limit k → k0, M̃(k) → M(k) such that G(k) → G0(k). The explicit expressions
for the PWIA amplitude Vγπ and DWIA amplitude Tγπ and the explicit expressions for
the elementary amplitudes tγπ are detailed in the next two sections.

7.2 Elementary pion-photoproduction
The elementary pion-photoproduction is the process of a photon being absorbed by a single
free nucleon and producing a pion. In the pion-nucleon (π-N) centre-of-mass frame, the
kinematics of this process are reproduced on Fig. 7.2. It should be noted that I will note
the kinematic variables in the π-N frame with a tilde, to clearly dissociate them from the
pion-nucleus variables that we will encounter in next section.

By definition, in the π-N frame, the momentum of the free struck nucleon before
the reaction ~̃p is opposite to the momentum of the impinging photon ~̃kγ, i.e. ~̃p = −~̃kγ .
Similarly, the momentum of the nucleon after the reaction ~̃p ′ is opposite to the momentum
of the outgoing pion ~̃kπ, i.e. ~̃p ′ = −~̃kπ. Because all particles are on-shell, the pion and
nucleon energies read

Ẽπ =
√
m2
π + k̃2

π ẼN =
√
m2
N + p̃2 Ẽ ′N =

√
m2
N + p̃′2 (7.49)

where I remind the reader that mπ and mN are the pion and free nucleon masses, respec-
tively. I will consider the photon momentum to be aligned with the ẑ axis. The scattering
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(Ẽγ, ~̃kγ) (Ẽπ, ~̃kπ)

(ẼN , ~̃p) (Ẽ ′N , ~̃p ′)

tγπ

Figure 7.2: Kinematics of the elementary pion-photoproduction reaction. The
quadrivectors of the photon, the initial free nucleon, the pion and the final nu-
cleon correspond to the index γ, N , π and N ′, respectively.

angle, i.e. the angle between the direction of the outgoing pion and the ẑ axis, is defined
as θ̃. For a given lab energy of the photon Tγ, the total energy of the system is well
defined and is given by

WγN =
√
m2
N + 2TγmN (7.50)

From energy conservation, the momentum of the pion can be calculated to be

k̃π =

√
(W 2

γN −m2
N −m2

π)2 − 4m2
Nm

2
π

2WγN

(7.51)

If we define Jµ as the nucleon electromagnetic current, the T -matrix for the elementary
photoproduction process from a state i to a state f is given by

tγπ,fi =
〈
p̃′k̃π

∣∣∣ εµJµ ∣∣∣p̃〉 (7.52)

where εµ is the photon polarisation quadrivector. It is convenient to express the matrix
element in the π-N centre-of-mass system in terms of Pauli matrices and two-component
spinors χi and χf , the initial γ-N and final π-N ′ states. This allows to use the angu-
lar momentum properties of photoproduction. The quantity F (known as the CGLN
amplitudes [162], see also Ref. [163] for their explicit form) is introduced such that the
elementary t-matrix reads

tγπ,fi = χ†fFχi (7.53)

and F reads [163]

F = i(~σ · ~ε)F1 + (~σ · ˆ̃~kπ)(~σ · (ˆ̃~kγ × ~ε))F2 + i(~σ · ˆ̃~kγ)(
ˆ̃~kπ · ~ε)F3 + i(~σ · ˆ̃~kπ)(

ˆ̃~kπ · ~ε)F4 (7.54)

where ~̂x is a unit vector in the direction of ~x and ~σ are the Pauli spin operators. The
pion photoproduction amplitudes are usually expressed in terms of the electric (Elj) and
magnetic (Mlj) multipoles, l being the pion-nucleon angular momentum and j is the total
spin, resulting from the coupling between l and s = 1/2, the intrinsic spin of the nucleon.
For l > 0, the total spin is further abbreviated to ±, depending on whether j = l ± 1/2.
This eases the analysis of experimental data and allows to study the baryon resonances
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individually. In this expansion, the amplitudes read

F1 = E0+ +
∑
l>0

[lMl+ + El+]P ′l+1(cos θ̃) + [(l + 1)Ml− + El−]P ′l−1(cos θ̃) (7.55)

F2 =
∑
l≥1

[(l + 1)Ml+ + lMl−]P ′l (cos θ̃) (7.56)

F3 =
∑
l≥1

[El+ −Ml+]P ′′l+1(cos θ̃) + [El− +Ml−]P ′′l−1(cos θ̃) (7.57)

F4 =
∑
l≥2

[Ml+ − El+ −Ml− − El−]P ′′l (cos θ̃) (7.58)

where P ′l and P ′′l are the first and second order derivatives of the Legendre polynomials of
order l and where the multipoles depend on theWγN energy. Note that in this work, I will
consider these matrices calculated in MAID, an Unitary Isobar Model (UIM) [164, 165].
An example of the calculation of total photoproduction cross section on a single free
nucleon is shown in App. D. On Fig. 7.3, the result of this calculation for the total
photoproduction as a function of Tγ is displayed for two reactions: γ+p→ π0 +p (circles
in black for the data, solid green line) and γ + p → π+ + n (circles in blue for the data,
solid red line). As we can see, the data is well reproduced in the ∆ resonance region and
around.

Tγ [MeV]
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γ
→

π
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0
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exp n+ π

+

MAID

Figure 7.3: Calculated total photoproduction as a function of energy of the
photon in the lab frame for two channels: γ+ p→ π0 + p (in black) and γ+ p→
π+ +n (in blue). Comparison to experiment taken from the compilation of Fujii
et al., [166] and Menze et al., [167]

It should be noted that the form of Eq. (7.54) has a crucial advantage. As already
discussed in Sec. 7.1, in the impulse approximation, the photoproduction amplitude can
be seen as the sum of the amplitudes on each nucleon. In this work, because the nucleus
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has no spin, it is useful to rewrite the matrix F (7.54) in order to include this hypothesis.
One of the results of App. D is that the second term of the right-hand side of Eq. (7.54)
can be rewritten as

(~σ · ˆ̃~kπ)(~σ · (ˆ̃~kγ × ~ε)) = (~ε · (ˆ̃~kπ ×
ˆ̃~kγ)) + i(~σ · ˆ̃~kγ)(

ˆ̃~kπ · ~ε)− i(
ˆ̃~kπ ·

ˆ̃~kγ)(~σ · ~ε) (7.59)

where spin dependent and spin independent parts of F2 can be separated. The first term
on the right hand side of this expression is the only component of the whole matrix F
that is independent on spin. For the spin 0 nuclei that will be considered in this work,
all components excepts the spin-independent part of the amplitude can thus be dropped.
This much simplifies the problem and provides with a spin-average of the photoproduction
amplitude

F̄ = ~ε · (ˆ̃~kπ ×
ˆ̃~kγ)F2 (7.60)

which is the only component that will be needed in this work.
While I will not go into details of the UIM model MAID, it should be noted that it

considers two different contributions to the amplitudes F2. First, background contribu-
tions, composed of Born and vector mesons exchange terms, and that are calculated by
evaluation of the Feynman diagrams derived from an effective Lagrangian density [164].
And second, resonant contributions, that are calculated by assuming that the relevant
resonant multipoles have a Breit-Wigner shape. At the energies considered in this work,
the M1+ multipole which corresponds to the ∆ resonance, gives the largest contribution
to F2. It is parametrised as [128]

M1+ = fγN∆(WγN) M∆Γ∆(WγN)eiφπN (WγN )

M2
∆ −W 2

γN − iM∆Γ∆(WγN)fπN∆(WγN) (7.61)

where fγN∆ and fπN∆ are the γN∆ and πN∆ vertex functions, respectively. It has a
Breit-Wigner form that describes the decay of the ∆ resonance of energy M∆ and with
total width Γ∆(WγN). If we consider the single-pion branching ratio to be 1, the energy
dependence of the total width of the ∆ resonance reads [164]

Γ∆(WγN) = Γ0

(
k̃π

k̃π,∆

)3 (Λ2 + k2
π,∆

Λ2 + k2
π

)
M∆

WγN

(7.62)

where Γ0 and k̃π,∆ are the total width and the center-of-mass pion momentum at the
resonance peak. According to the PDG [139] M∆= 1232 MeV and Γ0 = 117 MeV. Λ is a
damping parameter chosen as 500 MeV.

In Eq. (7.61), the phase-shift φπN(WγN) is a unitary phase that adjusts the phase of the
total multipole (background as well as resonance) to the corresponding π-N scattering
phase δπN , in accordance with the Fermi-Watson theorem [168]. An expression of the
parametrisation of this phase is given in Ref. [164]. Note however that this procedure
becomes necessary for photon energies well above the ∆ resonance energy [164]

7.3 Pion-photoproduction on a nucleus
The pion-photoproduction on a nucleus is the process of a photon being absorbed by a
nucleus and producing a pion. As already discussed in Sec. 7.1.1, I will consider the photon
to interact with only one bound nucleon. No multiple-body processes will be considered
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here and the neutral pion is hence produced on a single nucleon. In the photon-nucleus
(γ-A) and pion-nucleus (π-A) centre-of-mass frames, which are equivalent, the kinematics
are reproduced on Fig. 7.4. It should be noted that I will note the kinematic variables
in the γ-A/π-A frame without a tilde, to clearly dissociate them from their equivalent in
the pion-nucleon centre-of-mass frame that have been encountered in previous section.

Tγπ

(Eγ, ~kγ) (Eπ, ~kπ)

(EN , ~p1) (E ′N , ~p ′1)

(EA−1, ~pA−1) (E ′A−1, ~p
′
A−1)(EA,−~kγ) (E ′A,−~kπ)

tγπ

Figure 7.4: Kinematics of the pion-photoproduction reaction on a nucleus in
the γ-A/π-A centre-of-mass frame. The quadrivectors of the photon, the nucleus
before the reaction, the pion and the nucleus after the reaction correspond to
the indices γ, A, π and A′, respectively. Inside of the nucleus, the quadrivectors
of the struck nucleon before and after the reaction read (EN , ~p1) and (E ′N , ~p ′1),
respectively, while the quadrivectors for the spectator nucleons read (EA−1, ~pA−1)
and (E ′A−1, ~p

′
A−1), respectively.

By definition, in the γ-A frame, the momentum of the nucleus before the reaction is
opposite to the momentum of the impinging photon ~kγ. Similarly, the momentum after
the photoproduction is opposite to the momentum of the outgoing pion ~kπ. I will suppose
the photon to have a momentum oriented in the ẑ direction. The angle between ẑ and
the direction of ~kπ is defined as the scattering angle θ.

Because these particles are on-shell, the energies of the nucleus before and after the
reaction and the pion energy are unambiguously defined and read, respectively

EA =
√
m2
A + k2

γ E ′A =
√
m2
A + k2

π Eπ =
√
m2
π + k2

π (7.63)

For a given lab energy of the photon Tγ, the total energy of the system (in the π-A frame)
is

Etot = Eγ + EA =
√
m2
A + 2TγmA (7.64)

and the photon momentum is hence

kγ = mATγ
Etot

(7.65)

in this frame.
From energy conservation, the momentum of the on-shell pion reads

kπ =

√
(E2

tot −m2
A −m2

π)2 − 4m2
Am

2
π

2Etot
(7.66)

The energy of the γ-N system in the γ-A centre-of-mass frame is given by

WγN =
√

(EN + Eγ)2 − (~p1 + ~kγ)2 (7.67)
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before the reaction and in the π-A centre-of-mass frame

WπN =
√

(E ′N + Eπ)2 − (~p ′1 + ~kπ)2 (7.68)

after the reaction, where ~p1 (~p ′1) is the struck nucleon momenta before (after) the reaction
and EN (E ′N) is its energy. Note that the choice of nucleon energy is not unambiguous
and different prescriptions will be studied in Sec. 7.3.2.

7.3.1 Plane Wave Impulse Approximation (PWIA)

In the PWIA and for a photon polarisation λ = ±1, the photoproduction cross-section is
given by [133]

dσγπ

dΩ = kπ
kγ

1
2
∑
λ

∣∣∣U (λ)
γπ (~kπ, ~kγ)

∣∣∣2 (7.69)

where, from Eq. (7.37), the matrix element of the amplitude U (λ)
γπ averaged on the nucleus

ground-state simply reads in momentum space

U (λ)
γπ (~kπ, ~kγ) =

〈
kπ
∣∣∣U (λ)

γπ

∣∣∣kγ〉 = A
〈
kπ
∣∣∣ 〈Φ0

∣∣∣ t(λ)
γπ

∣∣∣Φ0
〉 ∣∣∣kγ〉 (7.70)

Explicitly, previous equation takes the form

U (λ)
γπ (~kπ, ~kγ) = A

∫ (
A∏
i=1

dxi

)
dx′1

d~p ′1
(2π)3

d~p1

(2π)3 e
i(~p ′1~r′1−~p1~r1)

Φ†0(x′1, x2, . . . , xA)
〈
~kπ, ~p

′
1

∣∣∣ t(λ)
γπ

∣∣∣~kγ, ~p1
〉

Φ0(x1, x2, . . . , xA) (7.71)

where xi = {~ri, σi, τi} and
∫
dxi ≡

∑
σiτi

∫
d~ri and where the bra-ket is a short notation

for the matrix elements of the elementary photoproduction transition amplitude〈
~kπ, ~p

′
1

∣∣∣ t(λ)
γπ

∣∣∣~kγ, ~p1
〉

= (2π)3δ(~kπ + ~p ′1 − ~kγ − ~p1)t(λ)
γπ (WγN , θ̃) (7.72)

It should be noted that until now, no choice has been made on the prescription for the
calculation of the energy of the γ-N system. As we will see later, for some prescriptions,
the energy and the scattering angle can depend on the momenta of the four particles
involved in the process. For this reason, I will rather write previous equation as〈

~kπ, ~p
′
1

∣∣∣ t(λ)
γπ

∣∣∣~kγ, ~p1
〉

= (2π)3δ(~kπ + ~p ′1 − ~kγ − ~p1)t(λ)
γπ (~kπ, ~p ′1;~kγ, ~p1) (7.73)

where the dependencies on the momenta of the produced pion, final nucleon, impinging
photon and initial nucleon is made explicit.

Let me define the transfer momentum as

~q = ~kπ − ~kγ (7.74)

of modulus
q =

√
k2
π + k2

γ − 2kπkγ cos θ (7.75)

where I remind that θ is the scattering angle. We can then shift the integration variables
~p1 = ~p+ ~q/2 and ~p ′1 = ~p ′− ~q/2 as this change will simplify the expressions of U (λ)

γπ (~kπ, ~kγ)
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in later steps. Note also that the momentum conservation delta intrinsically contained in
the bra-ket cancels the integral over ~p ′1. We have

U (λ)
γπ (~kπ, ~kγ) = A

∫ (
A∏
i=1

dxi

)
dx′1

d~p

(2π)3 e
i(~p−~q/2)~r′1−i(~p+~q/2)~r1

Φ†0(x′1, x2, . . . , xA)Φ0(x1, x2, . . . , xA)t(λ)
γπ (~kπ, ~p− ~q/2;~kγ, ~p+ ~q/2)

(7.76)

As we have seen in Sec. 6, we can factorize the nuclear recoil and centre-of-mass movement
from the wave function. If we apply the change to the internal coordinates ~ξi described
by Eqs. (6.35) and (6.36) and inject Eq. (6.38) in the expression above, we have

U (λ)
γπ (~kπ, ~kγ) = A

∑
σ1,σ′1

∑
τ1,τ ′1

∑
σ2...σA

∑
τ2...τA

∫ (
A−1∏
i=1

d~ξi

)
d~ξd~ξ′1

d~p

(2π)3 e
i(~p−~q/2)(~ξ−~ξ′1)e−i(~p+~q/2)(~ξ−~ξ1)

ei
~kπ(~ξ−~ξ′1/A)e−i

~kγ(~ξ−~ξ1/A)φ†0;σ′1σ2...A;τ ′1τ2...A
(~ξ′1, ~ξ2, . . . , ~ξA−1)

φ0;σ1σ2...A;τ1τ2...A(~ξ1, ~ξ2, . . . , ~ξA−1)t(λ)
γπ (~kπ, ~p− ~q/2;~kγ, ~p+ ~q/2) (7.77)

Since the other nucleons are spectator of the reaction, this can be further simplified if we
use the one-body density matrix defined in Eq. (6.42). We then have

U (λ)
γπ (~kπ, ~kγ) =

∑
σ1,σ′1

∑
τ1,τ ′1

∫ d~p

(2π)3d
~ξd~ξ1d~ξ

′
1 e

i{[~q−(~kπ−~kγ)]~ξ+[−(~p−~q/2)−~kπ/A]~ξ′1+[(~p+~q/2)+~kγ/A]~ξ1}

ρ1(~ξ1|~ξ′1)t(λ)
γπ (~kπ, ~p− ~q/2;~kγ, ~p+ ~q/2) (7.78)

Note that the integral on the first term of the exponential is simply the momentum-
conserving delta. The argument of the exponential can then be re-written by injecting
the alternative definitions ~kγ = ~kγ/2 + (~kπ − ~q)/2 and ~kπ = ~kπ/2 + (~kγ + ~q)/2. We then
have

U (λ)
γπ (~kπ, ~kγ) =

∑
σ1,σ′1

∑
τ1,τ ′1

∫ d~p

(2π)3d
~ξ1d~ξ

′
1 e

i

{
~p(~ξ1−~ξ′1)+

~kπ+~kγ
2A (~ξ1−~ξ′1)+A−1

2A ~q(~ξ1+~ξ′1)
}

ρ1(~ξ1|~ξ′1)t(λ)
γπ (~kπ, ~p− ~q/2;~kγ, ~p+ ~q/2) (7.79)

Because of the exponent, we can shift variables again ~p → ~p − (~kγ + ~kπ)/2A to simplify
these expression so that we finally have

U (λ)
γπ (~kπ, ~kγ) =

∑
σ1,σ′1

∑
τ1,τ ′1

∫ d~p

(2π)3d
~ξ1d~ξ

′
1 e
−i~p(~ξ′1−~ξ1) ei

A−1
2A ~q(~ξ1+~ξ′1)

ρ1(~ξ1|~ξ′1)t(λ)
γπ (~k′, ~p− ~q/2− (~kγ + ~kπ)/2A;~kγ, ~p+ ~q/2− (~kγ + ~kπ)/2A)

(7.80)

This is the expression of the photoproduction amplitude in the PWIA that includes the
recoil of the nucleus. It should be noted that an integral on p, representing the Fermi
averaging, is involved. Such integral is difficult and model dependent. In order to simplify
this integral, I will make another assumption: the factorisation approximation [169, 170].
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In this approximation, the tγπ matrix is considered to be a slowly varying function of ~p.
It is then evaluated at p = 0 to simplify the expressions, such that

t(λ)
γπ

~k′, ~p− ~q

2 −
~kγ + ~kπ

2A ;~kγ, ~p+ ~q

2 −
~kγ + ~kπ

2A

 = (2π)3δ(~p )t(λ)
γπ

~k′,−~q2 −
~kγ + ~kπ

2A ;~kγ,
~q

2 −
~kγ + ~kπ

2A


(7.81)

After integration on ~p, the expression of Uγπ(~kπ, ~kγ) finally reads

U (λ)
γπ (~kπ, ~kγ) =

∑
σ1,σ′1

∑
τ1,τ ′1

∫
d~ξ1 e

iA−1
A

~q~ξ1ρ1(~ξ1|~ξ1)t(λ)
γπ

~k′,−~q2 −
~kγ + ~kπ

2A ;~kγ,
~q

2 −
~kγ + ~kπ

2A


(7.82)

= t(λ)
γπ

~k′,−~q2 −
~kγ + ~kπ

2A ;~kγ,
~q

2 −
~kγ + ~kπ

2A

× ρ̂1 (q̃) (7.83)

where q̃ = (A− 1)/Aq and we see the nuclear form factor ρ̂1 appear (6.46). For medium
heavy and heavy nuclei, (A− 1)/A ' 1 and q̃ ' q and these can be interchanged without
any visible impact. This expression is usually called the tρ form, for obvious reasons. Note
that by making the factorisation approximation, we assign fixed values of the momenta
to the nucleons before and after the reaction. These can be seen as effective momenta, as
these simulate the Fermi motion inside the nucleus. They take into account the recoil of
the nucleus and can be re-written in the more usual way as

~p1,eff = −
~kγ
A

+ A− 1
2A (~kπ − ~kγ) = −A+ 1

2A
~kγ + A− 1

2A
~kπ (7.84)

~p ′1,eff = −
~kπ
A
− A− 1

2A (~kπ − ~kγ) = −A+ 1
2A

~kπ + A− 1
2A

~kγ (7.85)

It should be noted that the tρ form is only a first order term. Higher order terms coming
from the dependence in p of t(λ)

γπ have been explored for example in [170, 171]. Such
calculations are however cumbersome and I will not consider them here.

The amplitude t(λ)
γπ should now be evaluated in the γ-A center-of-mass frame. Going

back to the notation of Sec. 7.2 and in the γ-N centre-of-mass frame, the amplitude
matrix element has the simple form (7.60)

t(λ)
γπ (~̃kπ, ~̃kγ) = F2(~̃kπ, ~̃kγ;WγN)

[
ˆ̃~kπ ×

ˆ̃~kγ
]
· ~ελ (7.86)

Let me link the momenta in the γ-N frame with those in the γ-A frame by a Lorentz
transformation

~̃kγ(π) = ~kγ(π) + αγ(π) ~P (7.87)

where ~P = ~kγ + ~p1 (= ~kπ + ~p ′1) is the total momentum of the γ-N system (π-N system)
evaluated in the γ-A (π-A) centre-of-mass frame and where α reads

αγ = 1
WγN

 ~P · ~kγ
Eγ + EN +WγN

− Eγ
 απ = 1

WπN

 ~P · ~kπ
Eπ + E ′N +WπN

− Eπ
 (7.88)
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By plugging the expressions (7.84) and (7.85) and Eq.(7.87) in Eq. (7.86), we have

ˆ̃~kπ ×
ˆ̃~kγ = 1

k̃πk̃γ

(
~kπ + απA−(~kγ + ~kπ)

)
×
(
~kγ + αγA−(~kγ + ~kπ)

)
(7.89)

= 1
k̃πk̃γ

(1 + A−(αγ + απ))
[
~kπ × ~kγ

]
(7.90)

where A± = (A ± 1)/2A. The elementary amplitude in the γ-A center-of-mass frame
hence reads

t(λ)
γπ (~kπ, ~kγ) = kπkγ

k̃πk̃γ
(1 + A−(αγ + απ))F2(~̃kπ, ~̃kγ;WγN)

[
~̂kπ × ~̂kγ

]
· ~ελ (7.91)

Finally, I will use the phase-space factor WA defined in Ref. [128].

WA = WγN

Etot

√
EAE ′A
ENE ′N

(7.92)

to link the amplitude in these two frames. The PWIA amplitude for the coherent photo-
production of neutral pions on spin-isospin zero nuclei then has the form

U (λ)
γπ (~kπ, ~kγ) = −iλe

iφλ

√
2
WA

kπkγ

k̃πk̃γ
(1 + A−(αγ + απ))

[
~̂kπ × ~̂kγ

]
F2(~̃kπ, ~̃kγ;WγN)ρ̂1(q)

(7.93)
where φ is the azimuthal angle. More compactly, this expression reads

U (λ)
γπ (~kπ, ~kγ) = F (λ)(θ)ρ̂1(q) (7.94)

where

F (λ)(θ) = −iλe
iφλ

√
2
WA

kπkγ

k̃πk̃γ
(1 + A−(αγ + απ)) sin θF2(~̃kπ, ~̃kγ;WγN) (7.95)

where the cross product has been replaced by the sine of the scattering angle.
This expression for the photoproduction amplitude calls for a general comment. It

should be noticed how in the PWIA, the photoproduction cross section is directly propor-
tional to the square modulus of the density form factor ρ̂1. This illustrates the interest of
the coherent photoproduction of neutral pions in the study of the neutron skin thickness.
Indeed, because of this direct proportionality, we can expect, within the assumptions
of the PWIA and the factorisation approximations, to extract the nuclear (or matter)
density directly from the measurement of such observable. If we then know the proton
distribution (from electron scattering measurements, for example) we can directly deduce
the neutron distribution and hence the neutron skin thickness. In this regard, coherent
neutral pion photoproduction should be a rather clean way to extract ∆rnp (see Sec. 5).

In order to show the variations of the cross section due to changes in the target density,
the target is described by three different Fermi-Dirac densities (see Sec. 6.3.1): the first
one (black) uses roughly the same parameters of the São Paolo while the second (red)
and third (blue) have the same parameters but respectively a radius and a diffuseness
increased by respectively 10% and 30%. These densities are displayed in Fig. 7.5.

On Fig. 7.6, the two factors of Eq. (7.94) are displayed for a photoproduction process
involving a photon of incident kinetic energy of 180 MeV in the laboratory frame on
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Figure 7.5: The nuclear density of the target described by three different Fermi-
Dirac densities.

a 208Pb target. On the left panel, the modulus of F (λ) is shown as a function of the
scattering angle (in the γ-A centre of mass frame). As it should be noted, the function
F (λ) resembles a sine function. This is to be expected from its form Eq. (7.93). The
Fourier transform of the three densities are shown in log scale on the right panel. Note
that the solid part of the curves corresponds to the transferred momenta that contribute
to the cross section while the dashed ones do not (see Eq. (7.75)).

As we can see from the right panel of Fig. 7.6, the Fourier transform of the densities
ρ̂1 are peaked at q = 0 and are normalised to A = 208. As the radius of the density
increases, the width of the peak at q = 0 decreases (compare the red and black curves). A
similar observation can be done when the diffuseness increases, although less pronounced
(compare the blue and black curves). This has the impact of pushing the zeros of ρ̂1
towards q = 0, i.e. towards forward angles. Because in the PWIA, the cross section is
proportional to the square of Eq. (7.94), these main characteristics of the densities are
directly visible on the photoproduction cross section, displayed in Fig. 7.7. Indeed, we
can very clearly observe the shifts of the zeros of the cross section with changes in R and
a. Additionally, we can see how the width of the density peak around q = 0 has a strong
impact on the height of the first peak of the photoproduction cross section. From this
very basic analysis, we see which changes in the cross section we can expect from simple
variations of the density.

In a similar fashion to what is done in Ref. [128], I will choose F2 as the isospin average
of the elementary amplitudes on neutrons and protons

F2ρ1(q)→ NFn2 ρN1 (q) + ZFp2ρZ1 (q)
A

(7.96)

where the nucleon density has been separated into its contributions from the proton
density ρZ1 (q) and neutron density ρN1 (q).

It should be noted that the choice of prescription for the γ-N energy WγN has not
yet been discussed. The calculations shown here have been made within one prescription
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Figure 7.6: The function |F (λ)| (see Eq. (7.95)) (left) is displayed for a photopro-
duction process involving a photon of incident kinetic energy of 180 MeV in the
laboratory frame on a 208Pb target. The target is described by three different
Fermi-Dirac densities (right, see text for details).
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Figure 7.7: Photoproduction cross section for a photon of incident kinetic energy
of 180 MeV in the laboratory frame on 208Pb for the three densities shown on
Fig. 7.5.

120



and it is interesting to see how dependent are the photoproduction cross sections on this
choice. This is the subject of next section.

7.3.2 Energy of the active photon-nucleon system

It should be noted that in the case of a photoproduction on a nucleus, there are several
prescriptions for the choice of the nucleon energy E(′)

N in Eqs. (7.67) and (7.68). Contrary
to the elementary process, this choice is not unambiguous. This affects the energy of the
γ-N active system but also the phase-space factor WA (7.92). Following the definitions
of Ref. [172], we can try three different prescriptions for the nucleon energy.

Blankenbecler-Sugar choice (BS)
In this prescription, the total energy of the target is distributed equally between all
the nucleons before the reaction WBS

γN and after WBS
πN . In other words, the mass of

the nucleon is 1/A the mass of the target. The mass of the remaining A−1 nucleons
is then (A−1)

A
mA

E
(′) 2
N − p(′) 2

1 =
(
mA

A

)2
and E

(′) 2
A−1 − (~p(′)

1 + ~kγ)2 =
(

(A− 1)mA

A

)2
(7.97)

By injecting E(′)
A−1 = E

(′)
A − E(′)

N in the second equation, we find for E(′)
N

E
(′)
N = 1

E
(′)
A

[
A
(
mA

A

)2
− ~p(′)

1 · ~kγ(π)

]
(7.98)

and hence

WBS
γN =

√√√√( 1
EA

[
A
(
mA

A

)2
− ~p1 · ~kγ

]
+ Eγ

)2

− (~p1 + ~kγ)2 (7.99)

and similarly

WBS
πN =

√√√√( 1
E ′A

[
A
(
mA

A

)2
− ~p ′1 · ~kπ

]
+ Eπ

)2

− (~p ′1 + ~kπ)2 (7.100)

Active nucleon on-shell (N)
In this prescription, the struck nucleon is assumed to be on-shell before the reaction
WN
γN and after WN

πN . In other words:

E
(′)
N =

√
m2
N + p

(′) 2
1 (7.101)

and hence

WN
γN =

√(√
m2
N + p2

1 + Eγ

)2
− (~p1 + ~kγ)2 (7.102)

and similarly

WN
πN =

√(√
m2
N + p′21 + Eπ

)2
− (~p ′1 + ~kπ)2 (7.103)
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Spectator core on-shell (S)
In this prescription, the A−1 spectator nucleus to which the struck nucleon is bound
is assumed on-shell before the reaction W S

γN and after W S
πN . In other words:

EA−1 =
√
m2
A−1 + (~p1 + ~kγ)2 (7.104)

and hence

W S
γN =

√(
EA −

√
m2
A−1 + (~p1 + ~kγ)2 + Eγ

)2
− (~p1 + ~kγ)2 (7.105)

and similarly

W S
πN =

√(
E ′A −

√
m2
A−1 + (~p ′1 + ~kπ)2 + Eπ

)2
− (~p ′1 + ~kπ)2 (7.106)

In all these prescriptions, the momentum of the struck nucleon ~p1 still needs to be chosen.
To take the Fermi motion into account, I use the results of the factorisation approximation,
already discussed in previous section 7.3.1. While the energies before and after the reaction
should be the same, it will not always be the case in all prescriptions because of this
assumption. By taking again A± = (A± 1)/2A, the momenta (7.84) and (7.85) read

~p1 = −A+~kγ + A−~kπ (7.107)
~p ′1 = −A+~kπ + A−~kγ (7.108)

and such that the expressions derived above become

WBS
γN =

√√√√( 1
EA

{(
mA

A

)2
A−

[
−A+k2

γ + A−~kγ · ~kπ
]}

+ Eγ

)2

− A2
−(~kγ + ~kπ)2 (7.109)

WBS
πN =

√√√√( 1
E ′A

{(
mA

A

)2
A−

[
−A+k2

π + A−~kγ · ~kπ
]}

+ Eπ

)2

− A2
−(~kγ + ~kπ)2 (7.110)

WN
γN =

√√√√(√m2
N +

[
A2

+k2
γ + A2

−k2
π − 2A−A+~kγ · ~kπ

]
+ Eγ

)2

− A2
−(~kγ + ~kπ)2 (7.111)

WN
πN =

√√√√(√m2
N +

[
A2

+k2
π + A2

−k2
γ − 2A−A+~kγ · ~kπ

]
+ Eπ

)2

− A2
−(~kγ + ~kπ)2 (7.112)

W S
γN =

√(
[EA + Eγ]−

√
m2
A−1 + A2

−(~kγ + ~kπ)2
)2
− A2

−(~kγ + ~kπ)2 (7.113)

=
√(

[E ′A + Eπ]−
√
m2
A−1 + A2

−(~kγ + ~kπ)2
)2
− A2

−(~kγ + ~kπ)2 (7.114)

Note that the Blankenbecler-Sugar and active nucleon on-shell prescriptions are different
if we calculate the energy before (the prior case) or after (the post case) the reaction.
However, this difference is not big if we make the factorisation approximation. On the
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other hand, within the factorisation approximation, the energy in the spectator on-shell
prescription is identical in the prior and post forms.

In a similar fashion to what has been done in Ref. [172], we can quantify the kinemati-
cally accessible energies of the γ-N and π-N systems by studying their dependence on the
momentum of the struck nucleon. To have a rough idea of the impact of the Fermi motion
on WγN and WπN , let us suppose a Fermi gas model behaviour for the momentum of the
nucleons inside the nucleus. The momentum ~p1 is then the sum of the average nucleon
momentum in the nucleus −~kγ/A and some momentum ~p which magnitude ranges from
0 to pF and whose direction is uniformly distributed

~p1 = −
~kγ
A

+ ~p (7.115)

Following Ref. [173], we can consider the Fermi momentum pF to be pretty much constant
around 260 MeV/c for all nuclei. I will do these calculations both on a light target and a
heavy one, to see how it impacts this range of energies.

On the left panel of Fig. 7.8, I display the minimal (when ~kγ is aligned with ~p) and
maximal (when they are in opposite direction) energies available in the γ −N system as
a function of the initial momentum of the struck nucleon for the reaction on a 12C target
at an incident photon kinetic energy Tγ = 180 MeV in the lab frame . While the BS
(black) and S (blue) prescription remain close to each other throughout the whole range
of momenta in the Fermi gas-like approximation, they present a sizeable difference with
the N (red) prescription. This difference is visible both in the magnitude of the energy,
which is globally larger for N, but also in the behaviour of its momentum dependence,
which grows (and decays) linearly for N, while it presents a maximum for the two other
prescriptions. It should be noted that there is a slight difference in energy in the prior
case (solid lines) and in the post case (dashed) for the BS and N prescritions. These
differences are the largest in the BS prescription. For the S however, the prior and post
cases are superimposed.

In thick lines, I also display the energies obtained when making the factorisation ap-
proximation. Note that in the latter case, the variation of energy is solely due to the
production angle of the pion, with small and large angles corresponding to lower and
higher energies, respectively. We observe that the range of energies in the factorisa-
tion approximation does not correspond to the whole range of Fermi momenta. This is
expected since the factorisation approximation attributes effective momentum and direc-
tion to the struck nucleon. Only a tiny portion of the energies otherwise available in the
Fermi gas-like model are then available in this approximation. It should also be noted
that the differences between the prior and post cases are much smaller when making the
factorisation approximation. Also, both the BS (black) and S (blue) prescriptions are
superimposed in this approximation. Finally, the difference between the N and other
prescriptions seems to exist only in magnitude. Depending on the angle at which the pion
is photoproduced, the difference goes from around 8 MeV at low angles to nearly 20 MeV
at larger ones.

The same kind of calculations are done on a 208Pb target and displayed on the right
panel of Fig. 7.8. On heavier targets, the discrepancies between the prior and post cases
are much smaller. Moreover, the differences between the BS and S prescriptions is then
nearly imperceptible. The discrepancies with the N prescription remain as large as for
the light target, however.

Because of these sizeable differences between the different prescriptions, one should
expect an important difference in the photoproduction cross sections for these various
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Figure 7.8: Whole range of kinematically possible energies available in the γ−N
system as a function of p in the different prescriptions when considering the
whole range of momenta in the Fermi gas model for p in Eq. (7.115). The
reaction photoproduction takes place on a 12C target (left) or a 208Pb one (right)
at an incident photon kinetic energy of 180 MeV in the lab frame. Thick lines
correspond to the energies available in the factorisation approximation.

prescriptions. On Fig. 7.9, this dependence is tested by comparing photoproduction cross
sections in the PWIA for both targets at an incident photon kinetic energy of 180 MeV
in the lab. As expected, the N prescription (red) is significantly different than the BS
(black) and S (blue) ones. Here, only the prior calculations are shown, as the post ones
are nearly identical to their corresponding prior.

From these results, we see that the choice of the energy of the active γN system has
a significant influence on the photoproduction cross sections. A priori, there is no clear
reason to choose one prescription over the other and these will have to be compared to
actual data to determine which one fits best. Note that because the BS and S prescriptions
are nearly identical and because the prior and post forms do not induce much variations on
the cross sections, I will consider, in the sake of conciseness, only the N and S prescriptions
in the prior form in the next sections.

7.3.3 Distorted Wave Impulse Approximation (DWIA)

While we can expect the PWIA to be a nice approximation at low energies, distortion
has a significant impact on the photoproduction cross section at energies around the delta
resonance energy. The effect of the rescattering of the pion by the nucleus can be taken
into account in the Distorted Wave Impulse Approximation (DWIA), which adds a second
term to the photoproduction cross section (Eq. (7.36)).

When considering the final-state interactions, the photoproduction cross section in the
distorted wave impulse approximation (DWIA) reads [133, 128]

dσγπ

dΩ = kπ
kγ

1
2
∑
λ

∣∣∣U (λ)
γπ (~kπ, ~kγ) +D(λ)

γπ (~kπ, ~kγ)
∣∣∣2 (7.116)
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Figure 7.9: Pion photoproduction cross section in the PWIA on a 12C target
(left) and a 208Pb one (right) at an incident photon kinetic energy of 180 MeV
in the lab. BS (black), N (red) and S (blue) prescriptions are displayed in the
prior form.

~kγ ~k′π

Vγπ

~kπ

TπA

Figure 7.10: Kinematics of the photoproduction of a pion on a single nucleon in
a nucleus in the center-of-mass frame of the γ-A system.

where the additional D(λ)
γπ term coming from the right hand side of Eq. (7.36) has the

form
D(λ)
γπ (~kπ, ~kγ) = −4πA− 1

A

∫
d~k′πT̃πA(~kπ, ~k′π)G(~k′π)U (λ)

γπ (~k′π, ~kγ) (7.117)

where T̃πA is the T -matrix of the scattering of a pion from k′π to kπ momentum (see
Eq. (7.44)). More on this matter and the way to solve the T -matrix for the scattering of
a pion on a nucleus will be discussed in Sec. 8.3.

It should be noted that in Eq. (7.117), the amplitude U (λ)
γπ is needed at off-shell mo-

menta. All the developments of Sec. 7.3.1 have been made with the idea that the produced
pion is on-shell however. Moreover, the Lorentz transformations defined in Eq. (7.87) are
only defined for on-shell values of the pion momentum. As it has been done in Ref. [128],
I will consider that the Lorentz transformation still holds even for off-shell momenta.
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Additionally, I will multiply the photoproduction amplitude by a dipole-like form factor

g(k̃π; k̃π,0) =
(

Λ2 + k̃2
π,0

Λ2 + k̃2
π

)2

(7.118)

where k̃π,0 is the on-shell value of the momentum of the pion in the π-N centre-of-mass
frame and where Λ is a cut-off parameter which I will fix to 450 MeV, like in Ref. [128].
For off-shell values of the pion momentum, the photoproduction amplitude hence reads

U (λ)
γπ (~k′π, ~kγ) = U (λ)

γπ (~k′π,0, ~kγ)g(k̃′π; k̃π,0) (7.119)

where ~k′π,0 is a vector in the same direction as ~k′π but of magnitude k′π,0, the on-shell
momentum of the pion.
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8 Modeling the final state interactions

As we have seen in Sec. 7.3.3, the rescattering of the pion after its production should be
accounted for. In order to model these final state interactions, we need the T -matrix

of the π-A scattering process and hence, we need a potential that correctly simulates this
interaction.

As we have seen in Sec. 7.1.1, this potential can be built from the the much simpler
elementary pion-nucleon interaction. In this section and in a very similar fashion as I have
done in previous Sec. 7.3 for photoproduction, I will start by describing the pion-nucleon
interaction, with the help of a partial wave expansion. From this potential, I will then
build the π-A potential.

After this potential has been defined, I will discuss how to calculate the T -matrix
through the resolution of the Lippmann-Schwinger equation. The numerical methods
used to solve such equation will be discussed later in this section.

8.1 Elementary pion-nucleon interaction
The elementary pion-nucleon scattering is the process of a pion interacting with a free
nucleon. The kinematic variables of this process in the π-N centre-of-mass frame are
shown on Fig. 8.1. Like in Sec. 7.2, the tilde reminds us that we are in the π-N centre-of-
mass frame, in order to clearly dissociate them from the pion-nucleus variables that we
will encounter in next section.

(Ẽπ, ~̃kπ) (Ẽ ′π, ~̃k′π)

(ẼN , ~̃p) (Ẽ ′N , ~̃p ′)

tπN

Figure 8.1: Kinematics of the elementary pion-nucleon scattering. The
quadrivectors of the initial (final) pion and nucleons correspond to the index
π(′) and N (′), respectively.

By definition, in the π-N frame, the nucleon initial (final) momentum ~̃p(′) is opposite
to the pion one ~̃k(′)

π , i.e. ~̃p(′) = −~̃k(′)
π . Because all particles are on-shell, the pion and

nucleon energies read

Ẽ(′)
π =

√
k̃

(′) 2
π +m2

π and Ẽ
(′)
N =

√
k̃

(′) 2
π +m2

N (8.1)

where I remind the reader that mπ and mN are the pion and free nucleon masses, respec-
tively. The total energy of the reaction is defined as ẼπN = Ẽπ + ẼN . I will consider the
initial pion momentum to be aligned with the ẑ axis. The scattering angle, i.e. the angle
between the final and initial pion momenta is defined as θ̃.

In the π-N centre-of-mass frame, the scattering amplitude to final momentum ~̃k′π can
be expanded in the most general way into a spin non-flip and spin-flip part. Each of these
parts is a function of the total energy ẼπN and the scattering angle θ̃. The scattering
amplitude reads

fπN(~̃k′π, ~̃kπ) = g
(
ẼπN , θ̃

)
+ ih

(
ẼπN , θ̃

)
~σ · ~n (8.2)

127



where ~n is the unit vector ~̃kπ × ~̃k′π/ sin θ̃ and ~σ is the nucleon spin vector. Since both the
orbital and total angular momenta, l and j, and the total isospin T are conserved, it is
convenient to expand this in partial waves and into its isospin components as [174]

fπN(~̃k′π, ~̃kπ) =
∑

T= 1
2 ,

3
2

Q̂T

∑
l

(2l + 1)
∑
j

Q̂l,jPl(cos θ̃)f l2T,2j (8.3)

where Q̂T is the projector on a total isostpin T and Q̂l,j is a projector on a π-N state of
orbital angular momentum l and total angular momentum j (with ~j being the result of
the coupling of ~l with the spin of the nucleon ~σ). Their expressions read, respectively

Q̂T= 1
2

= 1
3
(
1− t̂π · τ̂N

)
Q̂T= 3

2
= 1

3
(
2 + t̂π · τ̂N

) (8.4)

where ~tπ and ~tN = ~τN/2 are the pion and nucleon isospin vectors and
Q̂l,j=|l− 1

2 |
≡ Q̂l,− = l − ~σ ·~l

2l + 1

Q̂l,j=|l+ 1
2 |
≡ Q̂l,+ = l + 1 + ~σ ·~l

2l + 1

(8.5)

where ~l is the orbital angular momentum and ~σ is the spin vector. Note that since the
application of ~σ ·~l on a Legendre polynomial gives [174](

~σ ·~l
)
Pl(cos θ) = −i (~σ · ~n)P ′l (cos θ) sin θ (8.6)

The different terms of Eq. (8.3) can then be regrouped such that the scattering amplitude
can thus be expanded as

fπN(~̃k′π, ~̃kπ) =
∑
l

[
f l0 + f l1

(
t̂π · τ̂N

)]
Pl(cos θ̃) +

∑
l

[
f l2 + f l3

(
t̂π · τ̂N

)]
(~σ · ~n)P ′l (cos θ̃) sin θ̃

(8.7)

where 

f l0 = 1
3
[
l(f l1,|2l−1| + 2f l3,|2l−1|) + (l + 1)(f l1,2l+1 + 2f l3,2l+1)

]
f l1 = 1

3
[
l(f l3,|2l−1| − f l1,|2l−1|) + (l + 1)(f l3,2l+1 − f l1,2l+1)

]
f l2 = i

3
[
(f l1,|2l−1| + 2f l3,|2l−1|)− (f l1,2l+1 + 2f l3,2l+1)

]
f l3 = i

3
[
(f l3,|2l−1| − f l1,|2l−1|)− (f l3,2l+1 − f l1,2l+1)

]
(8.8)

The partial wave amplitudes f l2T,2j are energy dependent (through their momentum de-
pendence). They can be expressed through the π-N scattering phase shifts in the different
channels δl2T,2j as [174]

f l2T,2j(k̃π) =
eiδ

l
2T,2j sin(δl2T,2j

k̃π
(8.9)
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These phase shifts have been determined at several energies and have also been parametrized.
An example of such parametrisation is given in Refs. [175, 176], which we will later refer
to as the SAID parametrization. In this parametrisation, the partial-wave amplitudes and
resonances have been extracted and parametrised from an extensive partial-wave analysis
of π±-p elastic scattering and charge-exchange data on a range of energies going from
threshold to nearly 3 GeV in the laboratory pion kinetic energy.

At low and intermediate energies the only resonant phase is the one associated with
the ∆ resonance (P33). At the energies we will consider here, the s and p waves are
dominant [174]. We can thus further reduce this expression by introducing the following
parameters


b0 ≡ f 0

0 = 1
3
(
f 0

1,1 + 2f 0
3,1

)
b1 ≡ f 0

1 = 1
3
(
f 0

3,1 − f 0
1,1

) and



c0 ≡
f 1

0

k̃2
π

= 1
3k̃2

π

(
f 1

1,1 + 2f 1
3,1 + 2f 1

1,3 + 4f 1
3,3

)
c1 ≡

f 1
1

k̃2
π

= 1
3k̃2

π

(
f 1

3,1 − f 1
1,1 + 2f 1

3,3 − 2f 1
1,3

)
d0 ≡

f 1
2

k̃2
π

= i

3k̃2
π

(
f 1

1,1 + 2f 1
3,1 − f 1

1,3 − 2f 1
3,3

)
d1 ≡

f 1
3

k̃2
π

= i

3k̃2
π

(
f 1

3,1 − f 1
1,1 − f 1

3,3 + f 1
1,3

)
(8.10)

such that the scattering amplitude reads

fπN(~̃k′π, ~̃kπ) = b0 + b1(~tπ · ~τN) +
[
c0 + c1(~tπ · ~τN)

]
(~̃k′π · ~̃kπ) + i

[
d0 + d1(~tπ · ~τN)

]
~σ · (~̃k′π × ~̃kπ)

(8.11)
The parameters bi, ci and di are complex energy dependent scalars. The most significant
ones are b0 and c0, which are found in the isospin-independent part of the interaction, as
well as b1, the s-wave isospin-dependent parameter. Their energy-dependence is repre-
sented on Fig. 8.2. The other parameters have a much less important role. As later, the
scattering is considered on a nucleus of spin nil, d0 and d1 will have no influence at all
and the spin dependent part can hence be neglected.

It should be noted that at the energies we are interested in (below 100 MeV), most
of these parameters are very slowly varying functions of the energy, with the exception
of Re[b0] and Im[b0]. Also, s-wave parameters are repulsive (their real part is negative)
while p-wave ones are attractive up to the resonance.

Finally, the π-N interaction in the π-N center-of-mass frame is given by

fπN(~̃k′π, ~̃kπ; ẼπN) = b0 + b1(~tπ · ~τN) +
[
c0 + c1(~tπ · ~τN)

]
(~̃k′π · ~̃kπ) (8.12)

where I have added the energy dependence of the amplitude explicitly in the arguments
of fπN . The transition matrix evaluated in the π-N centre of mass frame can then be
constructed from the simple relation [177]

tπNπN(~̃k′π, ~̃kπ; ẼπN) = − 4π
2ω̄πN

fπN(~̃k′π, ~̃kπ; ẼπN) (8.13)

where, the πN “exponent” marks the centre-of-mass frame in which this expression is
valid, i.e. the π-N centre-of-mass frame here. Similarly to Eq. (7.45), ω̄πN is a reduced
energy for the π-N system which reads

ω̄πN = ẼπẼN

ẼπN
(8.14)
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Figure 8.2: Real and imaginary parts of b0 and b1 (left) and c0 and c1 (right)
as a function of the laboratory pion energy. Coefficients are calculated from
the phaseshifts Eq. (8.9) which are extracted from the web interface of SAID
http://gwdac.phys.gwu.edu/

8.2 Interaction of a pion with a nucleus
As we have seen in Sec. 7.1, the KMT formalism allows me to build an optical potential
for the pion-nucleus interaction from the t-matrix of the elementary process on a single
nucleon. In the impulse approximation discussed in Sec. 7.1.1, only one-body mecha-
nisms are considered and the elementary t-matrix are considered on a free nucleon. From
Eq. (7.32), we see that this potential contains first order and second order scattering.
Both orders are described in the next two sections. The first order describes the scat-
tering of a pion on one single nucleon. Correspondingly, the second order describes the
scattering and subsequent rescattering of a pion on two different nucleons.

In the KMT formalism and in the expressions derived above, a pion can always be
found in the intermediate state. This comes from the fact that no real absorption can
take place in an elementary pion-nucleon process. Indeed, due to energy and momentum
conservation, several nucleons must be involved for a true absorption to happen. In a
nucleus, true absorption is possible as the kinetic and mass energy of the pion can then
be shared among the bound nucleons of the nucleus. One should then also consider this
process in the π-A potential. Because the absorption process seems to be dominated by
two-nucleon processes [178, 179, 180, 181].

As we will see, the two-nucleon density matrix Eq. (6.47) is needed to build the second
order and absorptive part of the potential. This can cause some issues, especially for the
phenomenological and experimental densities of Sec. 6.3, for which the two-nucleon density
matrix is not known. Because I will need a potential that allows me to use such densities,
I will finally present the MSU potential. This potential has also been derived in the KMT
formalism but makes some further simplifying assumptions which I will briefly discuss.

8.2.1 First order of the interaction

The first order of this potential describes the scattering of a pion on a single nucleon. The
useful kinematic variables of the reaction are shown on Fig. 8.3. In the plane wave impulse
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approximation, the first-order potential matrix element for this reaction then reads in the
momentum space (see Eq. (7.34))

V 1st
πA,opt(~k′π, ~kπ) =

〈
k′π
∣∣∣V 1st

πA,opt

∣∣∣kπ〉 = A 〈k′π| 〈Φ0| tπN |Φ0〉 |kπ〉 (8.15)

This expression is the equivalent of Eq. (7.70) for π-N scattering. Correspondingly, in a
very similar fashion to what has been done for photoproduction to get to Eq. (7.83), I
will apply the factorisation approximation such that previous expression can be written
in the tρ form

V 1st
πA,opt(~k′π, ~kπ) = tπN

~k′π,−~q2 −
~kπ + ~k′π

2A ,~kπ,
~q

2 −
~kπ + ~k′π

2A

× ρ̂1

(
A− 1
A

q
)

(8.16)

where the momentum transfer for π-A scattering is

~q = ~k′π − ~kπ (8.17)

and where ρ̂1 is the Fourier transform of the density Eq. (6.46). It should be reminded that
in this expression, there is an implicit summation on spins and isospins in the integral. In
coherent processes on a spin nil nucleus, where the nucleus remains in its ground state,
σ1 = σ′1 and τ1 = τ ′1. Only the spin non-flip part of the potential will hence contribute
(the coefficients b0 and c0). Finally, effective nucleon momenta ~p and ~p ′ can be attributed
to the initial and final nucleon momenta. These are defined in a very similar fashion as
in Eqs. (7.84) and (7.85) and read

~p = −A+ 1
2A

~kπ + A− 1
2A

~k′π (8.18)

~p ′ = −A+ 1
2A

~k′π + A− 1
2A

~kπ (8.19)

(EN , ~p1) (E ′N , ~p ′1)

|Φ0〉 |Φ0〉

(Eπ, ~kπ) (E ′π, ~k′π)

tπN

Figure 8.3: Relevant kinematic variables of the reaction of first order scattering
of a pion with momentum ~kπ and scattered to final momentum ~k′π on a nucleon
with initial and final momenta momentum ~p1 and ~p ′1, respectively.

It should be noted that we still need the expression of the t-matrix in the π-A centre-
of-mass frame. To do so, let me define the total centre-of-mass energy of the π-N system
before (after) the reaction as

W
(′)
πN =

√
E

(′) 2
πN − P (′) 2 (8.20)
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where the total energy E(′)
πN is the sum of the pion and nucleon energies E(′)

π +E(′)
N and where

the total momentum of the π-N system before (after) the reaction ~P (′) = ~kπ+~p (= ~k′π+~p ′).
The same Lorentz transform Eq. (7.87) can then be used for scattering, mutatis mutandis.

For on-shell initial and final momenta the t-matrix for the π-N scattering in the π-A
centre-of-mass frame reads [177]

tπAπN(~k′π, ~kπ;WπN) =

√√√√ẼπẼ ′πẼN Ẽ
′
N

EπE ′πENE
′
N

tπNπN(~̃k′π,
~̃kπ; ẼπN) (8.21)

where the πA “exponent” marks the centre-of-mass frame in which this expression is valid,
i.e. the π-A one. In this expression, the energies of the pion and the nucleon read

Ẽ(′)
π = E(′)

π E
(′)
πN − ~k(′)

π · ~P (′)

W
(′)
πN

and Ẽ
(′)
N = E

(′)
N E

(′)
πN − ~p (′) · ~P (′)

W
(′)
πN

(8.22)

To be consistent with what has been done for photoproduction, the same energy prescrip-
tion for the π-N energy must be chosen.

It should be noted that in the DWIA form of the pion photoproduction Eq. (7.117),
the T -matrix for the π-A scattering is needed at off-shell momenta. This is also the case
in the resolution of the Lippmann-Schwinger equation (see later in Sec. 8.3). However,
all the developments of this section have been made with the idea that the impinging
and scattered pion are on-shell. The Lorentz transformations defined in Eq. (7.87) are
only defined for on-shell values of the pion and nucleon momenta. As it has been done
in Ref. [128] and for photoproduction, I will consider that this transformation still holds
even for off-shell momenta

It is useful to symmetrise the expression of the reduced πN energy Eq. (8.14) into

ω̄πN =

√√√√ẼπẼN

ẼπN

Ẽ ′πẼ
′
N

Ẽ ′πN
(8.23)

With this definition and Eqs. (8.13) and (8.21) the tπN matrix in the π-A center-of-mass
frame reads

tπAπN(~k′π, ~kπ;WπN) = −4π

√√√√ ẼπN
2EπEN

Ẽ ′πN
2E ′πE ′N

fπN(~̃k′π, ~̃kπ; ẼπN) (8.24)

= −4πWπA
πN fπN(~̃k′π, ~̃kπ; ẼπN) (8.25)

As discussed in Ref. [182], the kinematical factor introduced in Eq. (8.25) should be a
reasonable approximation. This is further supported by the fact that the finite nuclear size
contained in the optical potential through the product with the density (see Eq. (8.16))
significantly dampens the influence of far off-shell scattering. Moreover, the factorisation
approximation greatly reduces the importance of unphysical scattering angles [180].

Finally, by injecting this expression in Eq. (8.16) and because of the implicit summa-
tion on isospins already discussed, the first-order potential then reads

V 1st
πA,opt(~k′π, ~kπ) = −4πWπA

πN

[
b0 + c0(~̃k′π · ~̃kπ)

]
ρ̂1(~q) (8.26)

where the scalar product should be transformed according to Eq. (7.87).
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8.2.2 Second order of the interaction and absorption

The second order of the potential describes the scattering of a pion on a single nucleon
to an excited state of the nucleus and its re-scattering on a different nucleon, the target
going back to the ground state of the nucleus. The kinematics of the reaction are shown
on Fig. 8.4.

~p1 ~p′1

|Φ0〉

~kπ

π0 π0

~k′′π

tπN,1
~p2 ~p′2

|Φ0〉

~k′π

π0

tπN,2

|Φi〉

Figure 8.4: Kinematics of the reaction of second order scattering of a pion
with momentum ~kπ and scattered with final momentum ~k′π on two different
nucleons, that go from initial momentum ~p1,2 to final ~p ′1,2. The momentum of
the intermediate state of the pion is ~k′′π.

We can replace the Q0 operator by 1− P0 in Eq. (7.32) so that second order reads

V 2nd
πA,opt(~k′π, ~kπ) =

〈
~k′π
∣∣∣V 2nd

πA,opt

∣∣∣~kπ〉
V 2nd,1
πA,opt(~k′π, ~kπ) + V 2nd,2

πA,opt(~k′π, ~kπ) = A(A− 1)
[
〈k′π| 〈Φ0| tπN,2

1
α0
tπN,1 |Φ0〉 |kπ〉

− 〈k′π| 〈Φ0| tπN,2 |Φ0〉
1
α0
〈Φ0| tπN,1 |Φ0〉 |kπ〉

]
(8.27)

where I have added the indices 1 and 2 on the πN elementary t-matrices refer to denote
the first and second nucleon struck, respectively.

If we develop this expression and use similar approximations as for the first order (see
the derivation in App. H.1), we can show that the first term of this second order potential
reads (Eq. (H.22))

V 2nd
πA,opt(~k′π, ~kπ) =

∫ d~k′′π
(2π)3

1
α0(k′′π) tπN

~k′π,−~q2

2 −
~k′π + ~kπ
2(A− 1);~k′′π,

~q2

2 −
~kπ + ~k′π
2(A− 1)


tπN

~k′′π,−~q1

2 −
~kπ + ~k′π

2A ;~kπ,
~q1

2 −
~kπ + ~k′π

2A

× ρ̂2 (~q1, ~q2) (8.28)

where ~q1 and ~q2 read ~q1 = ~k′′π − ~kπ
~q2 = ~k′π − ~k′′π

(8.29)

Note that there remains an implicit summation on spins and isospins in this expression,
which I will not discuss here. I refer the reader to App. H for more on this matter.
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What should be noted is that this first term involves the Fourier transform of the 2-body
density matrix ρ̂2 [see Eq. (6.47)]. As already mentioned before, this object cannot be
calculated for all the densities presented in Sec. 6 especially for the phenomenological and
experimental densities of Secs. 6.3. The absorptive part of the potential suffers from the
same issue.

While a proper understanding of how a pion is absorbed by a nucleus has not yet been
achieved, the absorption mechanism seems to be dominated by two-nucleon absorption
at low energy and for low-mass nuclei [178, 179, 180, 181]. Because considering processes
involving more than two nucleons would turn intractable, I will consider here that true
absorption is only due to two-nucleon processes.

As a first step, the pion is seen as scattering on a first nucleon and then absorbed
by a second one. After the propagation of this pion-less state, the pion is re-emitted. A
schematic diagram of such process is given on Fig. 8.5. This correction term can hence be
thought of a fourth order term. However, the large imaginary part (which removes flux in
the elastic channel) of this term will significantly contribute to the scattering amplitude,
especially at low energies, for which the imaginary parts of the other terms of the π-N
potential are small.

~p

|Φ0〉

~kπ

π0

τAbs
~p′

|Φ0〉

~k′π

π0

τ †Abs

|Φi〉

Figure 8.5: Schematics of the reaction of true absorption and emission of a pion
from momentum ~k to final momentum ~k′ as a two-nucleon process.

Following Refs. [183, 184], if we consider the true absorption amplitude to have a
similar shape to the isospin non-flip part of the π-N potential, the absorptive part of the
potential reads

fAbs(
˜̃~k′π,

˜̃~kπ; ˜̃EπNN) = B0 + C0(
˜̃~k′π ·

˜̃~kπ) (8.30)

where the double tilde denotes the variables calculated in the πNN centre-of-mass frame
and where the energy EπNN is the sum of the energies of the π and the two nucleons.
Calculations of the parameters B0 and C0 have been done in Ref. [185] in an infinite
nuclear matter Fermi-gas model by assuming that true absorption is dominated by two-
body absorption and is mediated by the exchange of π and ρ mesons. In Ref. [186] a
different approach is chosen. These parameters are considered as free and are fitted to
π±-12C data at low energies (Tπ,lab ≤ 250 MeV) by imposing that their value at 0 energy
is in agreement with meso-atomic data.

After the transformation of this amplitude into the π-A center-of-mass frame, we can
expect a similar form as Eq. (8.26). Since it’s a two-nucleon process however, the one-body
density is replaced by the two-body one and thus will resemble

V Abs
πA,opt(~k′π, ~kπ) ∝

[
B0 + C0(

˜̃~k′π ·
˜̃~kπ)

]
× ρ̂2(q, q) (8.31)
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As we can see, like for the second order of the potential, absorption involves the Fourier
transform of the 2-body density matrix. This form of the absorptive part of the potential
is hence not suited for the use of such densities.

Because this form of the second order and absorptive part of the potential are not
suited for the use of such densities, I will discuss a different form for this potential, i.e.
the MSU π-A potential, which is the subject of next section. The expressions derived in
App. H for the second order of the potential will not be used in this work. I refer the
reader to the thesis of V. Tsaran where such expressions are particularised to 12C in the
HO model. Some of the developments in this model are given in Sec. H.2 of this appendix.
These can serve as a starting point for future works.

8.2.3 MSU total potential

The two-nucleon densities of the target ρ2 (or more precisely their Fourier transforms
ρ̂2) are thus needed to build the second order and the absorptive parts of the optical
potential. As we have seen in Sec. 6.2, the wave functions of the nucleons inside the
nucleus which are needed to obtain ρ2 can be obtained from mean field or shell model
calculations. However, if one wants to use phenomenological or experimental densities
such as the São Paulo densities (see Sec. 6.3.1) or the Fourier Bessel ones (see Sec. 6.3.2),
these wave functions cannot be obtained.

In the PhD of K. Stricker-Bauer [187] and in a series of papers on the derivation of
a π-A optical potential in the KMT formalism [188, 189, 184], the two-nucleon density
matrix ρ2 is simply replaced by the square of the one-nucleon density ρ1 such that its
Fourier transform reads

ρ̂2(q) = F [ρ2
1](q) (8.32)

where instead of putting a hat, which could lead to some confusion as to when the square
is taken, I define F [f ](q) as the Fourier transform of some function f . In addition to this
assumption, the density in the second order terms is sometimes replaced by its Thomas
Fermi approximation2 in the mathematically involved developments. Within these ap-
proximations, calculations then become much simpler and can be performed analytically.
This constant density is then switched back to a coordinate dependent density ρ1 in the
final steps of the development. The details of this derivation can be found in Ref. [187].

In the end, the final form of the nuclear optical potential for a charged pion, which I
will refer to as the MSU potential3, reads

V MSU
πA,opt(~k′π, ~kπ) = −4π

(
p1b(q) + p2B(q) + (~kπ · ~k′π)L(q)− [p′1c(q) + p′2C0(q)] q2

)
(8.33)

where

b(q) = b̄0ρ̂1(q)∓ b1F [δρ1](q) (8.34)
B(q) = B0ρ̂2(q)∓B1F [ρ1δρ1](q) (8.35)
c(q) = c0ρ̂1(q)∓ c1F [δρ1](q) (8.36)
C(q) = C0ρ̂2(q)∓ C1F [ρ1δρ1](q), (8.37)

2The Thomas Fermi approximation consists in considering the density in momentum space to be
constant up to some chosen momentum kF ' 1.4 fm−1 known as the Fermi momentum.

3Michigan State University, i.e. the location where she did her thesis.

135



where the ∓ sign corresponds to a pion of charge ±1 and is simply 0 for a neutral pion
and where δρ1 is the neutron-proton density difference. The function L reads

L(q) = F

[
L

1 + 4π
3 λL

]
(q) (8.38)

where λ is the Lorenz-Lorentz-Ericson-Ericson (LLEE) parameter (more on this later)
and where

L(r) = p−1
1 (c0ρ1(r)∓ c1δρ1(r)) + p−1

2

(
C0ρ

2
1(r)∓ C1ρ1(r)δρ1(r)

)
. (8.39)

p
(′)
1 and p(′)

2 are kinematic factors which expressions are defined as

p1 = 1 + ε

1 + ε/A
p2 = 1 + ε/2

1 + ε/2A (8.40)

p′1 = 1
2(1− p−1

1 ) p′2 = 1
2(1− p−1

2 ) (8.41)

and where ε =
√
k2
π,0 +m2

π/mN .
It should be noted that the s-wave terms of this MSU potential are very similar to

the s-wave part of Eq. (8.26), except for the kinematical factors, which are different.
However, because of the assumptions made to arrive at this expression, the s-wave part
of the second order is also proportional to the density. This tends to modify the value of
b0 of Eq. (8.26) to an effective value b̄0

b̄0 = b0 −
3kF
2π (b2

0 + 2b2
1) (8.42)

where we recognise the (b2
0+2b2

1) factor also present in Eq. (H.32) and coming from nucleon
correlations.

For the p-wave part on the contrary, several other terms appear that have no equivalent
in Eqs. (8.26) and Eq. (8.31). First, let us observe how there appears a term proportional
to q2. This term arises from the Lorentz transformation of the scalar product present
in Eq. (8.26). Moreover, in the term proportional to the scalar product ~k′π · ~kπ, the c0
and C0 constants are replaced by a complex function L. This term is usually called the
Ericson-Ericson, or Lorenz-Lorentz-Ericson-Ericson (LLEE) effect4. It simulates higher-
order terms of the scattering and was first derived for a zero-range interaction and in
the low-energy limit in Ref. [183]. It arises from the inclusion of short-range correlations
between nucleons and effectively reduces p-wave scattering. The extent of this reduction is
determined by the parameter λ or LLEE parameter, and is the strongest as λ approaches
1. It should be noted that this parameter is model dependent. Here, it is chosen equal to
1.4 [184]. The p-wave term of the absorptive part of the potential is also included in the
LLEE effect.

While the initial hypotheses used for the derivation of this potential are the same as
the ones shown in Secs. 8.1 and 8.2, the additional assumptions used in the development
leading to Eq. (8.33) refrain us from using the SAID values of the parameters bi, ci, ...
without further adjustment. In Ref. [184], the parameters of the potential are fitted to

4This Lorenz-Lorentz addition comes from the fact that this term induces a non-linear dependence on
the density, which is analogous to the Lorenz-Lorentz effect in electromagnetism.
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elastic scattering data on several different nuclei ranging from 12C to 208Pb at low energy
(from Tπ=0, i.e. pionic atoms, to Tπ=50 MeV, both in the laboratory frame).

Because only the one-nucleon density is needed to build this potential, the π-A scat-
tering can be computed even for phenomenological densities. Moreover, as it has been
fitted on a wide range of nuclei and at energies close to the ones of interest of this work,
I will use this form of the potential in the following.

8.3 Resolution of the Lippmann-Schwinger equation
Now that I have defined the effective potential that I will use to model the π-A interaction,
I can use it to find T̃πA, i.e. the T -matrix for the π-A scattering process, and calculate
the impact of the distortion in Eq. (7.117). As we have seen in Sec. 7.1, the T -matrix
is obtained by solving a Lippmann-Schwinger equation. For a non-relativistic process it
reads (7.43)

T̃πA = UπA,opt − 4πA− 1
A

UπA,optG0P0T̃πA (8.43)

Since this section concerns π-A scattering and these matrices all concern π-A processes,
I will remove the indices and rewrite this equation in a more concise way as

T̃ = U − η0UG0P0T̃ (8.44)

where the indices have disappeared, η0 = 4π(A−1)/A and the non-relativistic propagator
is defined in Eq. (7.39).

In order to solve this equation, note that we can separate the free particle’s Green
operator into the sum [190]

G0(k) = P
(

1
k2
π,0 − k2

π

)
− iπ 1

2kπ,0
δ(kπ,0 − kπ) (8.45)

where P denotes the Cauchy principal value. Note that since all momenta encountered in
this section are pion momenta, I will remove the π indices on all momenta in the following
in the sake of conciseness. The first term corresponds to the off-shell part GOFF(k) of the
propagator while the second corresponds to its on-shell part GON(k). Eq. (8.43) can thus
be written

T̃ = U − η0UGOFFT̃ − η0UGONT̃ (8.46)

We can separate the problem and define the K-matrix

K ≡ (1 + η0UGOFF)−1U (8.47)

This matrix also satisfies a Lippmann-Schwinger type equation

K = U − η0UGOFFK (8.48)

This last equation reads explicitly, in term of matrix elements

K(~k′, ~k) = U(~k′, ~k)− η0P
∫ d~k′′

(2π)3
U(~k′, ~k′′)K(~k′′, ~k)

k2
0 − k′′2

 , (8.49)
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and is the equation we will solve. Note that in the plane-wave basis, which will be used
in this work, these matrix elements are the simple Fourier transform of the operators. In
order to obtain T̃ from K, we just need to insert Eq. (8.48) back in (8.46)

T̃ = K − η0KGONT̃ , (8.50)

and which explicitly reads

T̃ (~k′, ~k) = K(~k′, ~k) + η0
i

k0
K(~k′, ~k0)T̃ (~k0, ~k) (8.51)

If we solve this for T̃ (~k0, ~k), we finally have

T̃ (~k′, ~k) = K(~k′, ~k) + η0
i

k0
K(~k′, ~k0)

[
1− η0

i

k0
K(~k0, ~k0)

]−1
K(~k0, ~k) (8.52)

We thus see that by solving Eq. (8.49), we get access to the T matrix which can then be
used to calculate the impact of the distortion in Eq. (7.117).

As already discussed in Sec. 7.1, in relativistic processes, the π-A reduced mass µπA
can be replaced byM, a relativistic equivalent of the reduced mass and which is defined
in Eq. (7.45). The propagator then becomes the relativistically corrected one Eq. (7.47).
If one used this propagator instead, Eq. (8.49) becomes

K(~k′, ~k) = U(~k′, ~k)− η0P
∫ d~k′′

(2π)3
M̃(k′′)
M(k′′)

U(~k′, ~k′′)K(~k′′, ~k)
k2

0 − k′′2

 , (8.53)

In the sake of conciseness, I will define

η(k) =


η0 non-relativistic

η0
M̃(k)
M(k) relativistic

(8.54)

so that Eq. (8.53) becomes

K(~k′, ~k) = U(~k′, ~k)− P
∫ d~k′′

(2π)3η(k′′)U(~k′, ~k′′)K(~k′′, ~k)
k2

0 − k′′2

 , (8.55)

and is now valid for both non-relativistic and relativistic approaches. It should be noted
that for k → k0, we have η(k) → η0. In the following, in order to be consistent with the
relativistic treatment of photoproduction, I will use the relativistic propagator.

8.3.1 Partial wave decomposition

In order to solve Eq. (8.55), I will decompose U and K in partial waves

K(~k′, ~k) =
∑
l

(4π)(2l + 1)Kl(k′, k)Pl(cos θ′), (8.56)

where the expression of Kl(k′, k) reads

Kl(k′, k) = 1
4π

1
2

∫ 1

−1
d cos θ′Pl(cos θ′)K(~k′, ~k) (8.57)
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and where cos θ′ is the cosine of the angle between ~k′ and ~k (see Fig. 8.6). Because ~k, ~k′
and ~k′′ are not always coplanar, the angle between ~k′ and ~k′′ can be more easily expressed
from the directions that define it. In order to keep notations simple for all angles, I will
write the cosine of an angle θ′ as the scalar product of the directions that define it, i.e.
cos θ′ = k ·k′, where k(′) denotes a unit vector of direction ~k(′). The Lippmann-Schwinger
Eq. (8.55) can then be rewritten as∑

l

(4π)(2l + 1) (Kl(k′, k)− Ul(k′, k))Pl(k · k′) =

−
∑
ll′

(4π)2(2l + 1)(2l′ + 1)P
(∫ ∞

0

dk′′

(2π)3η(k′′)k
′′2Ul(k′, k′′)Kl′(k′′, k)

k2
0 − k′′2

)

×
∫ 2π

0
dφ′′

∫ 1

−1
d(k · k′′)Pl(k′′ · k′)Pl′(k · k′′)

(8.58)

x

y

z

k

k′′

φ′′

θ′′

k′

φ′

θ′

Figure 8.6: Definition of angles characterising the vectors ~k, ~k′ and ~k′′. Note
that here k, k′ and k′′ denote unit vectors.

We see in the last expression a 4π-integral on the product of two Legendre polynomials.
If we decompose the Legendre polynomial in spherical harmonics as in

Pl(k′ · k′′) = 4π
2l + 1

l∑
m=−l

Ylm(θ′, φ′)Y ∗lm(θ′′, φ′′) (8.59)

and we plug this decomposition in the 4π−integral we have∫ 2π

0
dφ′′

∫ 1

−1
d(k · k′′)Pl(k′′ · k′)Pl′(k · k′′)

= (4π)2

(2l + 1)(2l′ + 1)
∑
m

∑
m′
Ylm(θ′, φ′)Y ∗l′m′(0, 0)

∫ 2π

0
dφ′′

∫ 1

−1
d(k · k′′)Ylm(θ′′, φ′′)Y ∗l′m′(θ′′, φ′′)︸ ︷︷ ︸

δll′δmm′

= 4π
2l + 1Pl(k

′ · k)δll′ (8.60)

and the Lippmann-Schwinger Eq. (8.55) can be written as

Kl(k′, k) = Ul(k′, k)− 2
π
P
(∫ ∞

0
dk′′η(k′′)k′′2Ul(k

′, k′′)Kl(k′′, k)
k2

0 − k′′2
)

(8.61)
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In order to evaluate this integral numerically we use the fact that the principal value
P(
∫
dk′′/(k2

0 − k′′2)) is 0. This term can thus be added to the right-hand side of the
equation. This amounts to add 1/(k2

0 − k′′2) in the integrand of the principal value. In
particular, this term can be multiplied by the constant factor k2

0Ul(k′, k0)Kl(k0, k), so that
the equation can be rewritten as

Kl(k′, k) = Ul(k′, k)− 2
π
P
(∫ ∞

0
dk′′

η(k′′)k′′2Ul(k′, k′′)Kl(k′′, k)− η0k
2
0Ul(k′, k0)Kl(k0, k)

k2
0 − k′′2

)
.

(8.62)
The integrand has now a finite limit for k′′ = k0 and we can hence drop the Cauchy
principal value

Kl(k′, k) = Ul(k′, k)− 2
π

∫ ∞
0

dk′′
η(k′′)k′′2Ul(k′, k′′)Kl(k′′, k)− η0k

2
0Ul(k′, k0)Kl(k0, k)

k2
0 − k′′2

(8.63)

8.3.2 Numerical resolution

Now that the pole has been removed and the integrand is smooth, we can evaluate it with
numerical method routines. I will do it with a Gauss-Legendre quadrature [191] of Nk

abscissas k′′i and weights w′′i . These are generated from the Gauss-Legendre abscissas xi
and weights wi that are then non-linearly mapped following

k′′i = c tan
(
π

4 (1 + xi)
)

(8.64)

w′′i = c
π

4 sec2
(
π

4 (1 + xi)
)
wi (8.65)

where c is a constant that will be discussed later. We then have

Kl(k′i, k) = Ul(k′i, k)− 2
π

Nk∑
j=1

w′′j
η(k′′j )k′′2j Ul(k′i, k′′j )Kl(k′′j , k)− η0k

2
0Ul(k′i, k0)Kl(k0, k)

k2
0 − k′′2j

(8.66)

The grids {k′i} and {k′′j } are chosen identical.
In order to solve this equation, I will try to cast it as a matrix system of the type

AijXj = Bi (8.67)

Let us note however that k0 is not necessarily in this grid (and we will generally try to
avoid that it is). On the right side of the equation we are thus left with a term Kl(k0, k)
that is not on the grid and impedes us from casting this equation directly in this form.

This issue can be solved in three ways :

1. Add a point to the grid : k0. This is the first option we will discuss.

2. By Lagrange interpolation [192]: we express Kl(k0, k) as a weighted sum of the
values of Kl(k′′j , k) on the grid, which allows us to put the last term of the equation
on the left hand side.

3. Iteratively: we first approximate Kl(k0, k) = Ul(k0, k) (the Born approximation) on
the right hand side and then solve the system. If we want to refine the solution,
we then replace Kl(k0, k) by an interpolation of the solution we have obtained for
Kl(kj, k). We then repeat this process until convergence is achieved.
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Note that the c constant above can have a significant impact depending on the method
that we use. The two most important characteristics are the position of k0 compared to
the grid and the proximity of the different points of the grid to k0. We can estimate these
two quantities by defining two numbers: p and d. The first defines the portion of points
of the grid that are smaller than k0. If we define the grid points around k0 as km and
km+1 we can then define d as the number that satisfies

k0 = km(1− d) + dkm+1 (8.68)

If d is close to 0, k0 is close to the mth point of the grid. On the contrary, if d is close to
1, k0 is close to the m+ 1 one. An illustration of these characteristics is given in Fig. 8.7,
with the different points of the grid given as a function of their index. Note that the values
of k are in a logarithmic scale. As should be noted, the points in the grid can thus grow
to values of several thousands of fm−1. In the case of low energy scattering for which k0
lies below or around 1 fm−1, these points of the grid are not very useful. Indeed, because
of the density dependence of the potential, large values of k are significantly suppressed.
A cut-off is thus usually applied around k ∼ 10 fm−1 to avoid unnecessary calculations.
Note that this is also true for small values of k for which the number of points at very
low k values is high in this type of grid.
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Figure 8.7: Left: grids {ki} of Nk = 25 points for the different values of p and
the influence on the position of the grid points around k0 (dashed line). Dotted
line is an example of cut-off of the grid around k ∼ 10 fm−1. Right: influence of
d on the proximity of the grid points to k0.

Option 1 : adding a point to the grid (Nk + 1)

Let us consider a Nk + 1th point in the grid kNk+1 = k0. If we replace k0 in the terms Ul
and Kl (not in the propagator!). This allows us to write the integral (8.66) as

Kl(k′i, k) = Ul(k′i, k)−
Nk∑
j=1

2
π

[
w′′j η(k′′j )k′′2j
k2

0 − k′′2j

]
Ul(k′i, k′′j )Kl(k′′j , k) (8.69)

+ 2
π

Nk∑
j=1

w′′j η0k
2
0

k2
0 − k′′2j

Ul(k′i, k′′Nk+1)Kl(k′′Nk+1, k) (8.70)
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where i can thus also take the values from 1 to Nk + 1. This expression can be simplified
by renaming the terms in the square brackets with

Wj =


− 2
π

w′′j η(k′′j )k′′2j
k2

0 − k′′2j
j 6= Nk + 1

2
π

Nk∑
n=1

w′′nη0k
2
0

k2
0 − k′′2n

j = Nk + 1
(8.71)

such that we can write

Kl(k′i, k) = Ul(k′i, k) +
Nk+1∑
j=1

WjUl(k′i, k′′j )Kl(k′′j , k) (8.72)

We should keep in mind here thatWNk+1 corresponds to the term P(
∫
dk′′/(k2

0−k′′2)) that
I have added in Eq. (8.62). Numerically, this might actually not be equal to 0 depending
on the grid that is chosen. This term actually compensates for the pole of the integrand.
I will come back to that later.

If last expression is rewritten in a matrix form by taking the sum to the left, we get
the (Nk + 1)× (Nk + 1) system

Nk+1∑
j=1

[
δij −WjUl(k′i, k′′j )

]
Kl(k′′j , k) = Ul(k′i, k) (8.73)

Nk+1∑
j=1

F̃ijKl(k′′j , k) = Ul(k′i, k) (8.74)

where δij is the Kronecker delta.
In the end, we have replaced the principal value of Eq. (8.55) by a sum of Nk+1 terms,

the sum of the first Nk gives the result that we would have obtained by just making a
Gauss-quadrature and the last term one compensates for the possible divergence. Note
finally that the resolution of the (Nk + 1)× (Nk + 1) system provides us with Kl(k′i, k) at
the Nk values of the grid as well as the value Kl(k0, k).

Option 2 : Lagrange polynomials (Lag.)

A different approach which does not need the adding of another point to the grid is to
use the Nk Lagrange polynomials f̂j(k) associated to the grid and calculated at k = k0

and their corresponding weights λ̂j [193]

fj(x) = (−1)Nk−j
(

1− x2
j

2

)1/2
PNk(x)
x− xj

(8.75)

λj = 2
N2
k

(1− x2
i )

PNk−1(xi)2 (8.76)

Note that since the grid of Gauss-Legendre {xi} is mapped onto {ki} with (−1, 1) →
(t−1(−1), t−1(1)) and t−1(x) = c tan

(
π
4 (1 + xi)

)
, we need to transform these functions

and weights as

f̂i(k) = [t′(k)]1/2fi(t(k)) (8.77)
λ̂i = λi/t

′(ki) (8.78)
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where t′(k) is the derivative of t. Here we have

t(x) = arctan
(
x

c

) 4
π
− 1 (8.79)

⇒t′(x) = 4
π

c

c2 + x2 (8.80)

We can then write Kl(k0, k) as a sum of these polynomials

Kl(k0, k) =
Nk∑
j=1

λ̂
1/2
j Kl(k′j, k)f̂j(k0) (8.81)

=
Nk∑
j=1

lj(k0)Kl(k′j, k) (8.82)

If we plug this in Eq. (8.66) and use the same definition of the first Nk Wj in Eq. (8.71)
and of bj in Eq. (8.90), we have

Nk∑
j=1

[
δij −

(
− 2
π

w′′j η(k′′j )k′′2j
k2

0 − k′′2j

)
Ul(k′i, k′′j )

]
Kl(k′′j , k) = Ul(k′i, k) +

 2
π

Nk∑
j=1

w′′j η0k
2
0

k2
0 − k′′2j

Ul(k′i, k0)Kl(k0, k)

(8.83)
Nk∑
j=1

[
δij −WjUl(k′i, k′′j )

]
Kl(k′′j , k) = Ul(k′i, k)− bi

Nk∑
j=1

lj(k0)Kl(k′′j , k)

(8.84)
Nk∑
j=1

[
δij −WjUl(k′i, k′′j ) + bilj(k0)

]
Kl(k′′j , k) = Ul(k′i, k) (8.85)

Nk∑
j=1

F̂ijKl(k′′j , k) = Ul(k′i, k) (8.86)

which is a Nk ×Nk system. Its resolution provides us with the values of Kl(km, k) at the
Nk values of the grid {km}. We then can of course also calculate Kl(kn, k) at any other
value kn thanks to expression

Kl(kn, k) =
Nk∑
j=1

λ̂
1/2
j Kl(k′j, k)f̂j(kn). (8.87)

Option 3 : by iteration

A third and last method to cast Eq. (8.66) as a matrix system in order to invert it is to
proceed by iteration. Let me first rewrite it as
Nk∑
j=1

[
δij + 2

π
w′′j η(k′′j )

k′′2j Ul(k′i, k′′j )
k2

0 − k′′2j

]
Kl(k′′j , k) = Ul(k′i, k) + 2

π

Nk∑
j=1

w′′j η(k′′j )k
2
0Ul(k′i, k0)Kl(k0, k)

k2
0 − k′′2j

(8.88)
which can be written into the form

Nk∑
j=1

FijKl(k′′j , k) = Ul(k′i, k)−
− 2

π

Nk∑
j=1

w′′j η(k′′j )k
2
0Ul(k′i, k0)
k2

0 − k′′2j

Kl(k0, k) (8.89)

= Ul(k′i, k)− biKl(k0, k). (8.90)
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Note that in order to write this equation in this form we have had to split the sum
Eq. (8.66) into two terms. In Eq. (8.62), the second term of the sum appears precisely to
smooth out the integrand. By splitting it in two, have we really won anything? This will
be discussed in next section.

In order to cast it as a solvable system, we can at first consider the Born approximation,
which reads Kl(k0, k) ' Ul(k0, k). This can be called the zero-th order of the resolution
K

(0)
l (k0, k). At the first iteration, we then have to solve the system

FijK
(1)
l (k′′j , k) = Ul(k′i, k)− biK(0)

l (k0, k) (8.91)
= Ul(k′i, k)− biUl(k0, k) (8.92)

It should be noted however that this provides with the values only at the grid points.
The value K(1)

l (k0, k) then has to be calculated through interpolation (for example with
Lagrange polynomials see previous method). We can then calculate any higher order m
by solving

FijK
(m)
l (k′′j , k) = Ul(k′i, k)− biK(m−1)

l (k0, k). (8.93)

Comparison of the solving methods

In each of these methods, we solve a system of the type

AijXj = Bi (8.94)

where the matrix Aij is the (Nk + 1) × (Nk + 1) matrix F̃ij (Eq. (8.74)), the Nk × Nk

matrix F̂ij (Eq. (8.86)) or the Nk ×Nk matrix Fij (Eq. (8.90)) depending on the method.
The precision of the solution will of course depend on the number of points of the grid

Nk. An example of converged solution for a high number of points (Nk = 60) is given
on Fig. 8.8 (left), where the elastic scattering cross section of a π0 of 50 MeV laboratory
energy on a 12C target is calculated on a Nk = 60 grid. The convergence of the cross
section is studied on the right panel by analysing the relative error for some selected
angles as a function of the number of points of the grid. The cross section for Nk = 60 is
considered as fully converged. Note how even for a limited number of points in the grid
Nk � 60, the relative error is at least at the percent level.

The precision of the resolution will also depend on how these points are distributed
around k0 and thus on c and thus finally on p and d. I have found that the best value of
d lies around 0.5. This is specially true for the iterative method. This is illustrated on
Fig. 8.9. While for the Nk + 1 and Lagrange methods, no visible changes occur when d is
varied, the iterative method gives significantly different results. This comes from the fact
that contrarily to what is done in the two other methods, the iterative solution splits the
integral of Eq. (8.63) into two parts. The divergence of the argument of the integral is
then better absorbed when the points of the grid are distributed symmetrically around k0.
For this reason, I will take d = 0.5 in the grid in the following. The portion p also does
impact the resolution by reducing the amount of points needed in the grid as illustrated
on right panel of Fig. 8.9. The convergence is faster with a low portion p. This however
means that a higher portion of points are not used in the resolution.

It should be noted that the choice ofNk, d and p will depend on the problem considered.
And there is no general rule to quantify which values are best beforehand. This study
rather serves as an illustration of the influence of these parameters.
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Figure 8.8: Elastic scattering cross section of a π0 of 50 MeV lab energy on a
12C target calculated on a Nk = 60 grid (left). Convergence of the cross section
at selected angles as a function of the number of points of the grid (right).
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Figure 8.9: Left: Influence of d on the resolution for the three different methods
on the elastic scattering cross section of a π0 of 50 MeV lab energy on a 12C
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the value taken for d. The solution found by the iterative method (black lines)
on the contrary is significantly impacted by this choice. Right: influence of p on
the number of points needed in the grid to attain convergence for the iterative
method.
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8.3.3 Comparison to pion-nucleus elastic scattering data

Throughout this section, I have shown how to solve the Lippmann-Schwinger equation. As
we have seen, two methods are nearly equivalent, i.e. the Nk + 1 and Lagrange methods.
While there is no clear reason on why to prefer one over the other, I will rather use the one
which uses Lagrange polynomials as it naturally allows for interpolations of the different
matrix elements involved in the calculations.

This method can be tested on actual pion-nucleus elastic scattering data. My model
will be used at low kinetic energies of the impinging photon, i.e. from 170 MeV to 220 MeV
[private communication with Maria]. The corresponding energies of the emitted pion are
then roughly 50 MeV.

Unfortunately, because of the very short life time of the neutral pion, there does not
exist any data on π0-A scattering and one needs to resort to charged pion elastic scattering
experiments. This means that we need a way to include the Coulomb interaction in the
potential. This interaction is well known and has a very simple form.

The pointlike Coulomb potential between a pion of charge πC and a nucleus of charge
Z can be written as

VC(r) = πC
Zα

r
(8.95)

where α is the fine-structure constant. The matrix elements of this interaction on a
plane-wave basis then read in momentum space

VC(~k′, ~k) = πCZα
4π
q2 (8.96)

where as before, ~q = ~k′−~k. As seen previously, these elements can be expanded in partial
waves following Eq. (8.57),

VC,l(k′, k) = πC
Zα

2

∫ 1

−1
d cos θ′ Pl(cos θ′)

k2 + k′2 − 2kk′ cos θ′ (8.97)

They are clearly singular at k = k′.
Because of its long-range behaviour, the treatment of the Coulomb interaction in

momentum space is hence not straightforward. While in most of the cases, there is no
way yet to account for this interaction properly, some approximate methods exist. One of
these is to screen the Coulomb potential [194]. More information on this method is given
in App. G. It should be noted however that this method is limited to nuclear dominated
processes, i.e. on light nuclei such as 12C. For heavier nuclei, the Coulomb dominance of
the reaction causes this approximation to lapse.

Because of the limitations of the method exposed in App. G, I choose to compare to
elastic scattering data on 12C. At the energy of 50 MeV, five groups have measured such
cross sections [195, 196, 197, 198, 199]. On Figs. 8.10, these cross sections for the reaction
of a positive pion (left) and a negative pion (right) are displayed and compared to the
data. The potential I use is the MSU one, which I have discussed in Sec. 8.2.3.

As we can see, the agreement is not perfect, especially below 60 deg. It should be
noted that the density used for the target does not have much of an influence on the cross
section. This shows that most of the disagreement actually comes from the potential
itself. The agreement is however fair and reproduces correctly the order of magnitude
of the data as well as its global shape. By plugging in Eq. (7.117) the solution to the
Lippmann-Schwinger Eq. (8.43) obtained with the Lagrange method and with the MSU
potential, the distortion is now correctly included in the photoproducion cross sections.
In next section, I will apply this model.
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Figure 8.10: Elastic scattering cross section of a π+ (left) or a π− (right) of
50 MeV lab energy on a 12C target. The density of the target is the São Paulo
density (red) and the Fourier-Bessel one corrected for the charge form factor
(blue). Data from Refs. [195, 196, 197, 198, 199]
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9 Detailed analyses of experimental π0-photoproduction

Very fortunately, there exist recent and precise data on coherent π0-photoproduction
at the energies of interest to the present work. These have been reported in Krusche

et al. [129], who have measured the differential cross section for this process on 12C,
40Ca and 208Pb. These measurements have been carried out at MaMi using the same
set-up as presented in Sec. 5 for an impinging photon kinetic energy of 200 MeV in the
laboratory frame. At this energy of the photon, the re-scattering of the pion after its
production occurs at an energy that would be equivalent to a pion impinging on a nucleus
at a kinetic energy of around 65 MeV in the laboratory frame. While this is slightly above
the 50 MeV at which the MSU potential has been fitted [see Sec. 8.2.3], I will consider
that this potential is still valid.

Now that all the ingredients of the model have been presented, let me apply my
model to directly compare the results of my calculations to the cross-sections reported in
Ref. [129]. This comparison will allow me to validate my model and its implementation.
This will also allow me to discriminate between the different prescriptions for the choice
of energy of the γ-N interacting system described in Sec. 7.3.2. Also, for each of these
nuclei, I will be able to explore the dependence of my cross sections on the density used to
describe the target nucleus and compare these differences to the experimental uncertainty.
I will also see how important is the effect of the distortion. All this will allow me to infer
qualitatively how sensitive this observable is to the neutron skin thickness. This will be
particularly relevant on 208Pb, which exhibits a thick neutron skin.

In future works, this model will provide a quantitative tool to analyse future ex-
periments performed at MaMi. Recently, two different measurements on coherent π0-
photoproduction have been carried out at MaMi. These aim at extracting the neutron
skin of several isotopes on the isotopic chain of tin [137] and of the 48Ca nucleus [138]. I
will thus also perform calculations on these targets.

9.1 Comparison to previous data: 12C, 40Ca and 208Pb
12C

The π0 photoproduction cross sections of Ref. [129] on a 12C target at an incident photon
kinetic energy of 200 MeV in the lab frame are displayed on Fig. 9.1 as black dots5 as
a function of the scattering angle in the π-A centre-of-mass frame. Are also shown the
results of my calculations in the PWIA (left panel) and DWIA (right panel). These are
displayed in the active nucleon on-shell prescription WN

γN (black) and in the spectator
on-shell one WN

γN (red). The density used in my calculations is the Fourier-Bessel density
corrected for the charge form factor of the nucleons [see Sec. 6.3.2].

As already noted in Sec. 7.3.2 at a lower energy, there is a factor around 1.5 and 2
between the nucleon on-shell and spectator on-shell prescriptions. The former seems to
work better than the latter. This is true both in the PWIA and DWIA cases. Notably,
the choice of prescription impacts mainly the magnitude of the curve. Indeed, both pre-
scriptions provide me with a cross section that is very similarly shaped with its maximum

5Note that these data are extracted directly from Fig. 4 of Ref. [129]. For some of these data points,
the error bars on the data are not visible in the figure as they are occulted by the dots representing the
data. For these points, I have made the conservative hypothesis that the data uncertainty is as large as
the size of the dots.
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Figure 9.1: Coherent π0 photoproduction cross sections data of Ref. [129] (dots)
on a 12C target at an incident photon kinetic energy of 200 MeV in the lab frame.
PWIA (left panel) and DWIA (right panel) calculations are shown in the active
nucleon on-shell prescription WN

γN (black) and the spectator on-shell one WN
γN

(red). The density used here for the calculations is the Fourier Bessel corrected
for the charge form factor of the nucleons. On the right panel, the agreement of
the approximation Eq. (9.1) with the DWIA cross section is also evaluated.

nearly at the exact same angle. A more careful analysis of these curves shows that at
larger angles, this is not totally true. However, the magnitude of the cross section at those
angles is very small and such tiny effects cannot be discriminated using experimental data
(nor are these angles even measured).

The distortion increases the photoproduction cross section equally for both prescrip-
tions. The DWIA cross sections are 25% higher than the PWIA in both cases. Moreover,
as it was the case when switching from one energy prescription to the other, the distortion
seems to influence only the magnitude of the cross section. There is no significant effect
on the shape of these curves and the angle of the maximum remains the same with and
without distortion. This is reminiscent of what has been observed in Ref. [200], where the
effect of distortion on coherent π0 photoproduction has been analysed for light targets
and at energies near threshold, i.e. below 200 MeV. The distortion was observed to have
a scaling effect on the PWIA cross section. In the region of the peak, the DWIA cross
section can be approximated by the expression

dσ

dΩ(DWIA) ' (1 + δ) dσ
dΩ(PWIA) (9.1)

where the constant δ, which does not depend on the angle, corresponds to the relative
change induced by the distortion. From what has been observed above, we can expect δ
to be around 0.25 in this case. There are different ways to obtain this parameter. It could
for example be chosen such as to make both the DWIA integrated cross section and its
approximation coincide, or such as to minimise the χ2 between Eq. (9.1) and the data,
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or even such as to reproduce the magnitude of the DWIA cross section at any angle of
interest. Here, I will use the latter way as it is the easiest and fix the value of δ such that
the maximum of the DWIA and its approximation have exactly the same value.

To test if the approximation Eq. (9.1) is in a good agreement with the DWIA calcu-
lations, it has also been plotted on the right panel of Fig. 9.1 as dashed lines. For both
energy prescriptions, it should be observed how the difference between the DWIA calcu-
lation and its approximation Eq. (9.1) are very small. In the angular region of the peak,
Eq. (9.1) is hence an excellent approximation. δ is nearly identical for both prescriptions
(δ=0.254 and for the active nucleon on-shell and δ=0.256 for the spectator-core on-shell
one).

It is interesting to study the effect of the choice of density on these calculations to see
if it can explain the observed disagreement with the data. The π0-photoproduction cross
sections displayed in Fig. 9.2 are calculated in the PWIA (left) and DWIA (right) for the
different densities of Fig. 6.1 [see Sec. 6.5], i.e. the São Paulo (SP, solid), Fourier-Bessel
(FB, dashed) and harmonic oscillator (HO, dash-dotted). The Fourier-Bessel densities
with (chFF) and without the correction for the charge form factor of the nucleons are
displayed in blue and black, respectively. The former (blue) is the density already used
in Fig. 9.1. The HO density with centre-of-mass corrections (HO - cm) and without it
are displayed in blue and black, respectively. Because the nucleon on-shell prescription
seems to work better, only results calculated using this prescription are displayed.
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Figure 9.2: Coherent π0 photoproduction cross sections data of Ref. [129] (cir-
cles) on a 12C target at an incident photon kinetic energy of 200 MeV in the lab
frame. PWIA (left panel) and DWIA (right panel) calculations are shown in the
active nucleon on-shell prescription WN

γN for the different densities of Fig. 6.1.

At the very forward angles, my model predicts the same cross sections for all these
densities. This is to be expected since these angles correspond to low values of the
transferred momentum q. At low q, all the density form factors are close to one another
(since they are normalised to A at q = 0). This is depicted on Fig. 9.3, where the
Fourier transforms of the densities of Fig. 6.1 are displayed. At low angles, the PWIA is
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hence a good (but rather expensive) method to measure the target mass number A. The
differences between the different curves start to be visible above 30◦. This fortunately
corresponds to the region around the angle of the maximum.
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Figure 9.3: Density form factor (6.10) for the different densities of Fig. 6.1. The
thick dotted line represents the range of transferred momenta that contribute to
the PWIA cross section [see also Eq. (7.75)].

The magnitude of the peak exhibits variations of around 10%, both in the PWIA
and in the DWIA. This difference is smaller than the uncertainty on the data which is
of around 15% in the region of the peak (see Fig. 4 in Ref. [129]). Moreover, a careful
analysis of these curves shows that the position of the maximum changes by about 2◦
with the density. Again, this difference is less than the uncertainty on the angle coming
from the experiment which bins are of around 4◦.

Finally, as previously observed for the Fourier-Bessel density on Fig. 9.1, the effect of
the distortion does not seem to affect the shape of the cross section up to 100◦. Below
that angle, the effect of the distortion is a simple scaling [see Eq. (9.1)] of the curve and
the magnitude of this effect is close to 25% for all densities (δ is contained in the range
0.254–0.283). Above 100◦, nonlinear effects come into action but these will be discussed
later on heavier targets such as lead, where they are more visible.

While the agreement between the calculations and the data is not perfect, the order
of magnitude and the shape of the cross section are well reproduced in the DWIA. The
height of the maximum is slightly overestimated in the DWIA nearly for all densities, but
globally, the agreement is fair.

40Ca

Similarly to the case of a carbon target, the π0 photoproduction cross sections measured
in Ref. [129] on a 40Ca target at an incident photon kinetic energy of 200 MeV in the
lab frame are displayed on Fig. 9.4 as black dots. Are also shown the results of my
calculations in the PWIA (left panel) and DWIA (right panel). These are displayed in
the active nucleon on-shell prescription WN

γN (black) and in the spectator on-shell one
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WN
γN (red). The density used in my calculations is the Fourier-Bessel density corrected

for the charge form factor of the nucleons [see Sec. 6.3.2 and see Fig. 6.2]. Additionally,
the approximation Eq. (9.1) is also displayed on the right panel.
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Figure 9.4: Same as Fig. 9.1 for a 40Ca target. The density used here is also the
Fourier-Bessel corrected for the charge form factor of the nucleons [see Fig. 6.2].
Data from Ref. [129].

Since the target is heavier, the curves are pushed towards the forward angle region.
This is due to the larger extent of the nucleus. The Fourier form factor of the density
is then more sharply peaked and the maximum appears at more forward angle. This is
depicted on Fig. 9.5, where the SP densities for 12C (black), 40Ca (red) and 208Pb (blue)
are displayed in coordinate space on the left panel and their Fourier transform normalised
to A are displayed on the right panel. This also means that the zeros of the density
Fourier transform appear at smaller q, and hence smaller angles [see Eq. (7.75)] than for
lighter targets. While no zero is visible for 12C on Fig. 9.1, the first zero of the Fourier
transform of the 40Ca is clearly visible around 80◦ on the left panel of Fig. 9.4. A second
maximum is hence also visible past this zero. It is however much smaller in comparison
to the first peak.

As already noted for a carbon target, there is a factor around 1.5 and 2 between the
nucleon on-shell and spectator on-shell prescriptions. Also, like for the lighter target, the
former seems to work better than the latter in the PWIA. This time however, when dis-
tortion is added, both prescriptions cannot reproduce the data. The choice of prescription
seems to impact mainly the magnitude of the curve. Indeed, both prescriptions provide
with a cross section that is very similarly shaped with its maximum nearly at the exact
same angle. At larger angles, after the first minimum (around 80◦) and in the range of
the second maximum (around 110◦), this remains true, although the cross sections are
too small to observe much.

Like for the 12C target, the distortion increases the photoproduction cross section
equally for both prescriptions (δ=0.349 and 0.350). This effect is thus stronger than in
the case of carbon where δ has its value around 0.25. The distortion influences only the
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Figure 9.5: SP densities for 12C (black), 40Ca (red) and 208Pb (blue) are displayed
in coordinate space on the left panel and their Fourier transform normalised to
A are displayed on the right panel. The larger extent of the target nucleus in
coordinate space means a sharper peak in momentum space and hence zeros that
appear at smaller transferred momenta q.

magnitude of the cross section in the region of the first peak. This is confirmed by looking
at the dashed curve, which is a simple scaling of the PWIA cross section [see Eq. (9.1)].
There is hence no significant effect on the shape of the peak and the angle of its maximum
remains nearly the same with and without distortion. At larger angles however, in the
region of the first minimum and the second peak, the effect of the distortion is stronger.
It should be observed how the first zero of the PWIA (corresponding to first zero of the
density form factor) is filled in the DWIA, as if it was smeered. However, this effect is not
strong enough to explain the plateau observed in the experimental data past the minimum.
Discussions with the lead author who published the data [129] have revealed however that
separating the coherent and incoherent processes has been difficult for the 40Ca nucleus.
There is hence a high probability that the data is significantly contaminated by incoherent
processes. This could also explain why the minimum of my DWIA calculations does not
reproduce the minimum of the data.

To analyse the effect of the choice of density on these cross sections I perform the
calculations for the different densities of Fig. 6.2 [see Sec. 6.5], i.e. the São Paulo (solid),
Fourier-Bessel (dashed) and FSU densities (dash-dotted). These are displayed on Fig. 9.6,
in the PWIA (left) and DWIA (right). The Fourier-Bessel densities with the correction
for the charge form factor of the nucleons and without it are displayed in blue and black,
respectively. The different FSU densities are displayed in the same color code as in the
right panel of Fig. 6.2. Because for 12C, the nucleon on-shell prescription worked better
than the spectator core on-shell one, results calculated only in the former are displayed.

As was to be expected from the results on 12C, at very forward angles the cross sections
for all these densities are superimposed since in this region, they are directly linked to the
target mass. The differences between the different curves start to be visible above 20◦ in
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Figure 9.6: Same as Fig. 9.2 for a 40Ca target. The densities are the ones from
Fig. 6.2. The different FSU densities are displayed in the same color code as in
the right panel of Fig. 6.2. Data from Ref. [129].

the angular region of the maximum.
The maximum of the peak exhibits variations of around 15%, both in the PWIA and

in the DWIA. Contrary to the case of 12C, this difference is larger than the uncertainty on
the data which is slightly above 10%. The angles of the maximum of each density exhibit
at most a 2◦ difference. Contrary to the case of carbon, this difference is similar to the
angular uncertainty of the data. Note however that if we look only at the FSU densities,
these differences are of a mere 1.5%, nearly ten times smaller than the uncertainty on the
data. There is hence no way to discriminate between these FSU densities.

Finally, Eq. (9.1) is valid for all densities. The scaling being δ ' 0.35 for all densities
(δ is equal to 0.329 for SP, 0.350 and 0.349 for FB and FB chFF and in the range 0.341-
0.343 for all the FSU densities). Beyond the minimum however, nonlinear effects start to
appear although the cross sections are too small to observe these effects experimentally.

The agreement between the calculations and the data is not good, especially beyond
the first minimum. As already discussed, this can be caused by the contamination of
incoherent processes in the data.

208Pb

Finally, the π0 photoproduction cross sections of Ref. [129] on a 208Pb target at an incident
photon kinetic energy of 200 MeV in the lab frame are displayed on Fig. 9.7 as black dots.
Are also shown the results of my calculations in the PWIA (left panel) and DWIA (right
panel). These are displayed in the active nucleon on-shell prescriptionWN

γN (black) and in
the spectator on-shell one WN

γN (red). The density used in my calculations is the FSU030
density [see Sec. 6.2.1 and Fig. 6.7]. Additionally, the approximation Eq. (9.1) is also
displayed on the right panel as dashed lines.

Because of the much larger mass of the target, the peak is pushed towards forward
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Figure 9.7: Same as Fig. 9.1 for a 208Pb target. The density used here is the
FSU030 one [see Fig. 6.7]. Data from Ref. [129].

angles and has now its maximum at an angle around 20◦. Additionally, we clearly see the
first two minima of the density Fourier form factor at around 40◦ and 80◦ as well as a
marked second peak between them [see also Fig. 9.5].

In the first peak and similarly to lighter targets, the magnitude of the active nucleon
on-shell prescription is 1.5 times larger than that of the spectator on-shell one, the former
hence working much better than the latter. Contrary to 40Ca however, this is clearly the
case also in the DWIA, where the nucleon on-shell prescription works spectacularly well.
As already observed for carbon and calcium, the choice of prescription impacts the PWIA
cross section nearly only in its magnitude. Both curves are hence similarly shaped and
the angles of the different maxima and zeros are the same.

When distortion is switched on, the DWIA cross section agrees spectacularly well with
the data. This is true not only in the region of the first peak but also in the region of
the minimum. In the region of the second peak, my results slightly overestimate the
data. Up to 35◦, near the minimum, the scaling Eq. (9.1) reproduces nearly perfectly
the DWIA cross section. Note that the effect of the distortion is nearly identical for
both prescriptions but are much smaller than for 12C and 40Ca (δ is 0.099 and 0.086 for
the active nucleon on-shell WN

γN and the spectator on-shell WN
γN , respectively). Beyond

the first peak, non-linear effects become visible, such as the smeering of the first (and
second) zeros as well as the flattening of the third maximum (around 90◦). At these large
angles, the scaling Eq. (9.1) is then not a good approximation as the cross section main
contribution comes from the distortion which varies non linearly with the density.

The effect of the density on these cross sections is displayed on Fig. 9.8 in the PWIA
(left) and DWIA (right) for the São Paulo (solid) and the FSU model (dash-dotted).
Because the nucleon on-shell prescription seems to work spectacularly, only results cal-
culated in this prescription are displayed. At very forward angles once again, the cross
sections for all these densities are superimposed and differ only beyond 10◦, in the angular
region of the maximum of the first peak.
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Figure 9.8: Same as Fig. 9.2 for a 208Pb target. The densities are the ones from
Fig. 6.7. The different FSU densities are displayed in the same color code as in
the right panel of Fig. 6.7. Data from Ref. [129].

In the PWIA, the magnitude at the maximum of the peak exhibits variations smaller
than the 10% experimental uncertainty and the position of the maximum varies by less
than 0.5◦, nearly 4 times less the angular uncertainty of the data. The relative discrep-
ancies between the different density curves in the region of the second maximum remain
roughly the same, below the 10% mark, well below the 30% uncertainty of the experi-
mental data. Moreover, the angular shift that can be observed between the positions of
their second maximum is at most of 1◦, which is well below the angular uncertainty of
the data.

While the distortion simply scales the PWIA curve in the region of the first peak as
in Eq. (9.1), this scaling is much more density dependent in the case of lead than it is for
lighter targets (δ=0.043 for the SP density and goes from 0.117 to 0.094 for the FSU000–
FSU040 ones). Interestingly, this tends to reduce the discrepancies between the different
densities even more (around 2%). Similarly, adding the distortion reduces the angular
shift that exists between these curves. The agreement between the calculations and the
data is very good in this case, especially in the first peak and in the region of the first
minimum, but all densities reproduce the data and it is nearly impossible to discriminate
between them.

Summary of the comparison on all targets

The agreement of my calculations to the data of Ref. [129] varies between targets. For 12C,
the agreement is fair but my DWIA calculations slightly overestimate the data at the peak
for all densities. For 40Ca, the agreement is not good since the data cannot be reproduced
in the DWIA with any density, although it could be caused by the contamination of
incoherent events. For 208Pb, the agreement is perfect for all of them at the DWIA. For
these three nuclei, this comparison seems to confirm that the best prescription is the
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active nucleon on-shell [see Sec. 7.3.2]. From private communications with the authors of
Ref. [129], this result was also observed in their analysis of the data. Therefore, I will use
only this prescription in the following.

In the region of the first peak, the effect of the distortion is mostly to change the
magnitude of the PWIA cross section. Correspondingly, the DWIA cross section can
be approximated with a good accuracy by Eq. (9.1). This works particularly well for all
targets up to the angle of the first minimum. If this remains true for medium heavy nuclei
such as tin, this might make the interpretation of the data easier because the first peak
is thus directly proportional to the Fourier transform of the density. It should be noted
however that while the scaling approximation works well, there is (yet) no way to predict
the value of δ beforehand. Also, while δ is not density dependent on carbon and calcium,
it is on heavier targets. This, on the contrary, is not desirable. Moreover, the differences
between the DWIA cross sections predicted for the different densities is usually smaller
or at least comparable in size to the uncertainty on the data. This is especially true for
208Pb, for which the relative differences between the DWIA cross sections are smaller than
the experimental uncertainty by up to one order of magnitude.

The results on the 208Pb target call for a general comment. As it is visible from Fig. 9.8,
variations of the skin thickness of around 0.11 fm for the different FSU densities (see
Tab. II.3) have a very small impact on the DWIA cross section. The relative differences
at the maximum of the peak are indeed lower than 1%. Adding the São Paulo density
to this comparison enlarges these discrepancies by a factor 2, to 2% but it also increases
the variations of the skin thickness by the same factor of 2, to roughly 0.2 fm. The
angular shifts originating from these changes in the density are also below the degree. It
hence seems that discerning between these densities would require measurements with a
very high precision both in angle and in magnitude. This disagrees with the very high
precision of the recent measurement of Ref. [132], which quotes a neutron skin thickness
of ∆r208

np = 0.15 ± 0.03(stat.)+0.01
−0.03(sys.) fm, even though their uncertainty on the data at

the first peak is around 10%.

9.2 Recent experiments: Sn isotopic chain and 48Ca
Because tin exhibits the largest stable chain of isotopes in the nuclear chart, a recent
measurement has been carried out at MaMi (see also Sec. 5.1) on the three different
isotopes 116Sn, 120Sn and 124Sn [137]. Out of these three isotopes, the analysis of the
measurements has been started only for the lightest and heaviest ones, i.e. 116Sn and
124Sn. In this section, I will apply my reaction code to these two isotopes.

While the measurements have been carried out at energies in a range of energies be-
tween 140 MeV and 300 MeV for the laboratory photon energy, the extraction of coherent
events is best done at a bin energy between 180 MeV and 190 MeV [private commu-
nications with Maria]. I will thus compute the cross sections at these energies, which
fortunately are compatible with the use of the MSU potential [see Sec. 8.2.3].

Additionally, I will run these calculations for a 48Ca target. While being much lighter
than the tin isotopes, it has an 8-neutron excess compared to protons and should thus
exhibit a neutron skin. Recent measurements [138] have been carried out on this nucleus
and my calculations could be helpful in the analysis of the data. I will make calculations
in the same range of energies as for tin.
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116Sn and 124Sn

On Figs. 9.9 and 9.10, the photoproduction cross sections are displayed for the 116Sn and
124Sn targets, respectively. These are calculated in the PWIA (left panel) and in the
DWIA (right panel) at a photon energy of 185 MeV in the laboratory frame. For the sake
of clarity, only three different densities are shown. These are the FSU000 and FSU040
[see Sec. 6.2.1] as well as the São Paulo one [see Sec. 6.3.1]. As discussed in Sec. 6.5, these
two FSU densities correspond to those that reproduce the most extreme thicknesses of
the neutron skin [see also Tab. II.3 and Figs. 6.5 and 6.6].
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Figure 9.9: Coherent π0 photoproduction cross sections on a 116Sn target at
an incident photon kinetic energy of 185 MeV in the laboratory frame. PWIA
(left panel) and DWIA (right panel) calculations are shown in the active nucleon
on-shell prescription WN

γN . The densities correspond to the FSU densities that
reproduce the most extreme thicknesses of the neutron skin [see Fig. 6.5 and
Tab. II.3]. On the right panel, the agreement of the approximation Eq. (9.1)
with the DWIA cross section is also evaluated.

Several of the characteristics already observed in Sec. 9.1 are also visible on these
figures. First, the zeros of the PWIA cross section are clearly visible on the left panels.
These correspond to the zeros of the Fourier transform of the density. Second, these
zeros are pushed towards the forward angle region as the target mass increases (compare
the left panels of Figs. 9.9 and 9.10). This is due to the larger extent of the nucleus in
position space and hence to the Fourier form factor of the density being more sharply
peaked in momentum space. This means that the zeros appear at smaller angles than for
lighter targets. Note however that when comparing two nuclei with a relatively similar
number of nucleons such as 116Sn and 124Sn, this effect is small. Here, this shift is about
1◦. By comparing the zeros of the two isotopes, one could thus hope to gain information
about the distribution of these excess neutrons inside of the nucleus. The extraction of
such information is however hindered by the distortion which tends to smeer the cross
section in the angular range of the PWIA zero, which becomes a local minimum (see
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right panels). As already observed before, the DWIA cross section (solid) can be well
approximated by scaling the PWIA cross section as in Eq. (9.1) (dashed). In the region
of the first peak, these are indeed in a very good agreement. It is interesting to note that
δ is slightly dependent on the density (on 116Sn, δ=0.301 and 0.298 for the FSU000 and
FSU040 densities and 0.271 for the SP one) but that these values of δ are nearly identical
on both targets (on 124Sn, δ=0.300 and 0.298 for the FSU000 and FSU040 densities and
0.268 for the SP one). At larger angles and in the region of the second maximum however,
the DWIA and its approximation Eq. (9.1) do not coincide. As already observed in the
previous section, this confirms that the angular region of the first zero and of the second
peak are influenced non-linearly by the distortion. We should expect this to hinder the
clean extraction of a neutron-skin thickness.
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Figure 9.10: Same as Fig. 9.9 for a 124Sn target.The densities correspond to the
FSU densities that reproduce the most extreme thicknesses of the neutron skin
[see Fig. 6.6 and Tab. II.3]

For both isotopes, the discrepancies observed at the peak for the different densities
are slightly smaller than 10% for the PWIA, while they lie around 6% for the DWIA.
This decrease in the sensitivity to the density is reminiscent of what has been observed
for a 208Pb target. If we only consider the realistic FSU densities, these drop to around
1–1.5% for both the PWIA and DWIA cross sections. In order to realise how these
differences compare to experiment, let me plot these curves alongside preliminary data of
the measurement [137]. These have been given to me by M. Ferretti, who is working on
their analysis.

On Fig. 9.11, the preliminary data on coherent pion photoproduction are shown for
both targets (on the left panel, for 116Sn, on the right for 124Sn). The PWIA and DWIA
cross sections shown above are also displayed. Note however that because the data are
largely overestimated by my calculations, I have scaled these by some arbitrary factor
(0.45 for both targets) so that they fall approximately on top of the measurements. As
these data are preliminary, there is no way yet to know if my predictions are off or if
some normalising factor is missing in the data analysis. Note however that the results of
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previous Sec. 9.1 on 12C and 208Pb seem to suggest the latter. What can be compared
however are the shapes of the data with the predictions of my model, as well as the
order of magnitude of the precision on this data with the discrepancies induced by the
theoretical changes in density.
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Figure 9.11: Comparison of preliminary data on π0 photoproduction cross sec-
tions on 116Sn (left) and 124Sn (right) targets with my theoretical DWIA cal-
culations. The incident photon energy is taken in the 180-190 MeV range of
energies in the laboratory frame. Cross sections are calculated in the nucleon
on-shell prescription for three densities: the FSU000 (black), FSU040 (red) and
São Paulo (blue). Note that my theoretical calculations have been arbitrarily
scaled by a factor of 0.45 for both targets so that they are approximately on top
of the data.

The shape of my (scaled) theoretical predictions reproduces the shape of these pre-
liminary data quite well. This is especially true in the angular region of the first peak.
Additionally, on the one hand, the positions of the first peak and of the minimum as well
as the magnitude of the minimum seem to correspond to ones of the data for both targets.
On the other hand, the position of the second DWIA peak seems to be slightly shifted
towards larger angles and looks wider than the preliminary data. It should be noted
however that the uncertainty on the data is much larger than the discrepancies between
the different densities. This is particularly visible in the first peak, where the relative
uncertainty of the data at the maximum lies between 10 and 15% for both targets, which
is twice the differences between the SP and FSU curves, and around 10 times larger than
between the two FSU ones. At the position of the second peak, where the distortion has
the largest effect, this experimental uncertainty grows to 20%, therefore hindering signif-
icantly the extraction of valuable information from these angles. These results seem to
suggest that the extraction of the neutron skin from these measurements will be difficult
if the uncertainty on the data remains at the level shown here.
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48Ca

On Fig. 9.12, the coherent π0 photoproduction cross sections are displayed for a 48Ca
target. These are calculated in the PWIA (left panel) and in the DWIA (right panel) at
a photon energy of 185 MeV in the laboratory frame. For the sake of clarity, only three
different densities are shown. These are the FSU012 and FSU032 [see Sec. 6.2.1] as well
as the São Paulo one [see Sec. 6.3.1]. As discussed in Sec. 6.5, these two FSU densities
correspond to those that reproduce the most extreme thicknesses of the neutron skin [see
also Tab. II.2 and Fig. 6.4].
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Figure 9.12: Coherent π0 photoproduction cross sections on a 48Ca target at
an incident photon energy of 185 MeV in the lab frame. PWIA (left panel)
and DWIA (right panel) calculations are shown in the active nucleon on-shell
prescription WN

γN . The densities correspond to the FSU densities that reproduce
the most extreme thicknesses of the neutron skin [see Fig. 6.4 and Tab. II.2]. On
the right panel, the agreement of the approximation Eq. (9.1) with the DWIA
cross section is also evaluated.

Several of the characteristics already observed for 40Ca are also visible for 48Ca. First,
the shape of these cross sections are very similar to what has been observed on Fig. 9.4 for
the lighter 40Ca isotope. Indeed, they both exhibit a very small second peak comparatively
to the first, both in the PWIA and the DWIA. From my calculations, we see that a very
high precision would thus be required beyond the angle of the first minimum in the actual
data taking to observe anything. Also, similarly to what has been observed on Fig. 9.4,
the effect of the distortion is to simply scale the PWIA cross section in the angular region
of the first peak, according to Eq. (9.1). Similary to 40Ca, the scaling affects the PWIA
cross section by more than 30%. Contrary to the results of Fig. 9.6 however, this scaling
is nearly identical for all densities (δ ranges from 0.311 to 0.315 for the FSU densities and
equals 0.311 for the SP one).

The changes induced by variations in the density are very small, with relative differ-
ences below 7% in the region of the first peak. These are even twice as small when we only
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consider the FSU densities. If we compare these differences to the skin thicknesses ∆rnp
that these densities reproduce [see Tab. II.2], we see that the precision on the coherent
π0 photoproduction measurement that is needed to be able to discriminate ∆rnp at the
0.1 fm level is already very high.

9.3 Summary and prospects of this model
In the previous sections, I have compared my model for coherent π0-photoproduction on
the data of Krusche et al. [129] who measured this process on several targets, i.e. 12C,
40Ca and 208Pb, at energies of the impinging photon of 200 MeV.

The first result of these comparisons is that for all these targets, the active nucleon
on-shell prescription WN

γN [see Sec. 7.3.2] works best and seems to be the right choice
for future works. In this prescription, the quality of the agreement of my calculations
with the data depends on the target. For the light targets, 12C and 40Ca, my DWIA
predictions overestimate the data [see Figs. 9.1 and 9.4]. This overestimation is however
significant only in the case of 40Ca, for which the data might be contaminated with
incoherent processes. For 12C, the agreement is actually still fair. For the heaviest target
208Pb finally, my DWIA calculations fall directly on top of the data [see Fig. 9.7]. The
agreement is therefore spectacular without any adjustment of the MSU potential.

In the region of the first peak, the distortion has a simple scaling effect on the PWIA
cross section. With a good agreement, the DWIA cross section can then be approximated
by Eq. (9.1), i.e. the product of a constant factor (1 + δ) with the PWIA cross section,
where δ is the rate of increase of the cross section induced by the distortion [see Figs. 9.1,
9.4 and 9.7 at 200 MeV and Figs. 9.9, 9.10 and 9.12 at 185 MeV]. The knowledge of
this factor could help greatly in the analysis of experimental cross sections as we would
then have access to the PWIA cross section (at least in the first peak), which is directly
proportional to the Fourier transform of the density. The value of δ is displayed in
Fig. 9.13 for all the targets and densities analysed in past sections. Note that these
values are calculated for a π0 photoproduction reaction at 200 MeV photon energy in the
laboratory frame for all targets. These are regrouped in the four density families that have
been used in this work: the São Paulo one (asterisks) [see Sec. 6.3.1], the Fourier-Bessel
ones (squares) [see Sec. 6.3.2], harmonic oscillator ones (plus sign) [see Sec. 6.2.2] and
FSU ones (cross) [see Sec. 6.2.1]. While there is currently no way to predict δ beforehand,
we can observe from Fig. 9.13 that it decreases with A. This is a good news since the
cross section is then closer to its PWIA, which is directly proportional to the Fourier
transform of the density. However, while for light nuclei, the dependence of δ on the
density is rather small, it increases with A. This is visible in Fig. 9.13 from the range
of values taken by δ for a given isotope. This has the unfortunate effect of reducing the
differences between the cross sections calculated for different densities [see for example
Fig. 9.8], thereby increasing the precision needed on experimental data taking.

In the large angle region, past the first minimum (for targets heavier than 12C that
exhibit a minimum), the effect of the distortion is not linear. At these angles, the distor-
tion tends to smeer the minimum and to flatten the second maximum [see Fig. 9.8]. For
these angles, the approximation Eq. (9.1) is no longer good and calculations need to be
done in the DWIA to correctly take the distortion into account.

Finally, on 12C, 40Ca and 208Pb targets for which I have access to the uncertainty on
the π0 photoproduction cross section data, the effect of the density is rather small [see
Figs. 9.2, 9.6 and 9.8]. In particular, for 208Pb, the differences induced by changes in the
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Figure 9.13: Value of δ, the linear increase due to distortion [see Eq. (9.1)]
as a function of the target mass number A. The values of δ (calculated for a
coherent π0 photoproduction at a photon energy of 200 MeV in the laboratory
frame) are regrouped in the different families of densities encountered in this
work, i.e. the São Paulo one (asterisks) [see Sec. 6.3.1], the Fourier-Bessel ones
(squares) [see Sec. 6.3.2], harmonic oscillator ones (plus sign) [see Sec. 6.2.2] and
FSU ones (cross) [see Sec. 6.2.1]. Note that for the FSU densities, only the ones
that correspond to the largest and thinnest skin thicknesses are displayed.

density can even be as small as a tenth of the corresponding experimental uncertainty.
While the data on tin isotopes are still preliminary, these observations also seem to be
valid. We should expect a similar behaviour on 48Ca. If we consider the changes of
neutron-skin thickness ∆rnp that these different densities reproduce [see Tabs. II.2 and
II.3], we can safely conclude that with the current experimental resolution, the coherent
π0-photoproduction cross section is not very sensitive to ∆rnp. The precision of future
experiments that rely on this process should thus be at the percent level, at the least, to
discriminate between such neutron-skin thicknesses.

Note however that if one gets to this level of experimental precision, there remains
another uncertainty that needs to be quantified: the sensitivity to the π-A potential
itself. As discussed in Sec. 8.2.3, the one used in this work has been fitted on pion-nucleus
elastic scattering data at one single energy on a whole range of targets. The shape of
this potential can be affected by the different simplifying assumptions used to build it
(especially at the second order [see Sec. 8.2.3]) as well as from the inevitable uncertainty
that exists on its fitted parameters. One of the natural prospects of this work is the
systematic study on the impact of the potential used for the π-A interaction.

To get a foretaste of what one could expect from such study, I have slightly modified
some of the parameters of the MSU potential [see Sec. 8.2.3] and analysed the effect of
this change on the DWIA coherent π0 photoproduction cross section. Here, I have slightly
modified the values of the b̄0 and c0 parameters of the MSU potential [see Eqs. (8.33),
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(8.34) and (8.36)] by a mere 5% separately6. In order to check if this change is not too
drastic, its effect on the π+-12C elastic scattering cross section (calculated at a pion kinetic
energy of 50 MeV in the laboratory frame) is shown on the left panel of Fig. 9.14 as a
grey area and compared to the elastic scattering cross section for the original values of the
potential (red) and to data on this cross section [see also Sec. 8.10]. On the right panel,
the effect of varying these parameters on the DWIA coherent π0 photoproduction cross
section is shown for a 124Sn target described by the FSU040 density at an incident photon
kinetic energy of 185 MeV in the lab frame (grey area). These are compared to DWIA
calculations that use the original MSU potential and a FSU040 (red), a FSU000 (black)
and a SP density (blue) [these curves are the ones displayed in solid lines on the right
panel of Fig. 9.10]. Note that the top right panel of Fig. 9.14 is a zoom on the maximum
of the peak while the bottom right panel is a zoom in the angular region of the minimum
and second maximum.
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Figure 9.14: Effect of slight variations of the parameters of the MSU potential
on the π+-12C elastic scattering cross section at a pion kinetic energy of 50 MeV
in the laboratory frame (left) and on the DWIA coherent π0 photoproduction
cross section on a 124Sn target at an incident photon kinetic energy of 185 MeV
in the lab frame (right). Details in the text.

The left panel of Fig. 9.14 shows that the variations of b̄0 and c0 by 5% are not too
drastic. Indeed, the grey band around the original elastic scattering cross section (red)
has a similar width as the uncertainty on the data of the different experiments displayed
here. These changes on b̄0 and c0 should therefore be a good order of magnitude of the
uncertainty on the MSU potential (at least for 12C). The impact of these variations on
the coherent π0-photoproduction calculated at the DWIA on the right panel of Fig. 9.14,

6Note that in a proper systematic study, these two complex parameters (four real ones) would have to
be modified separately and simultaneously such as to span the whole four-dimensional parameter space.
This however increases significantly the number of parameters combinations and hence the calculation
time. Here, as I aim only at a mere foretaste of what one could obtain in a more systematic study, I will
just change them separately.
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also shown as a grey band, are significant. Let us note how at the first maximum (for
which a zoom is given in the top panel of Fig. 9.15), the uncertainty on the MSU potential
translates into variations of the cross section that are twice as big as the difference between
the FSU000 and FSU040 already observed in Fig. 9.10. Similar observations can be made
in the region of the minimum and the second maximum (for which a zoom is given in the
bottom panel of Fig. 9.15).
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Figure 9.15: Zoom of the plot on the right panel of Fig. 9.14. Top: zoom on
the first maximum. Bottom: zoom on the region of the first minimum and the
second maximum.

While this does not qualify as a proper systematic study of the sensitivity to the π-A
potential, the results of these calculations show that the theoretical uncertainties of the
model should be accounted for. These uncertainties include the values of the parameters
of the potential but also its shape [see the assumptions made to build the second order
in Sec. 8.2.3]. The building of a π-A potential that could allow this sensitivity study
in a systematic way is currently ongoing and will be discussed in the PhD thesis of V.
Tsaran. Finally, the effect of the inclusion of two-body processes in the photoproduction
amplitude [see Fig. 7.1] should also be taken into account. Such study has been conducted
in Ref. [161] and found that the influence of these processes on the photoproduction cross
section can be as large as 5% for a 208Pb target.
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The equation of state of nuclear matter governs the properties of nuclear systems in
a whole range of scales, from the microscopic scale of the nucleus to the macroscopic

scale of neutron stars [8, 9]. However, the ingredients of this equation are not well known
because of how different are the conditions in which nuclear matters appears on Earth or
in neutron stars. By studying the structure of nuclei and how their properties evolve as
we cover the whole chart of nuclides and go from stability to extreme instability, in the
laboratory or by watching distant stars, nuclear physicists hope to better constrain this
equation.

One of the most important ingredients of the equation of state of nuclear matter is the
symmetry energy, which makes the bridge between the properties of the rather symmetric
systems (N & Z) that we find on Earth and the extremely asymmetric neutron stars
(N ≫ Z) found in our universe [8, 9]. But even if this asymmetry is small, its effects
are still visible on medium-heavy and heavy nuclei. Indeed, for these nuclei, the excess
neutrons tend to form a thick layer around the nucleus: the neutron skin. The thickness of
this skin seems to be highly correlated with the symmetry energy and more particularly
its density dependence. The measure of this thickness to attempt at constraining the
symmetry energy are one of the hot topics of today’s nuclear physics.

The advent of radioactive ion beams has opened the exploration of the nuclear chart
far from stability [3]. Close to the driplines, very peculiar nuclear structures have been
discovered: halo nuclei. While most nuclei are usually seen as a compact system of bound
nucleons, some radioactive nuclei have been observed to be unusually large [14]. For
these exotic nuclei, one nucleon extends farther out of the range of the nuclear interaction
and forms a diffuse halo, which gives them their name. Because the nucleon of the halo
spends most of its time far from the nucleus to which it is bound, halo nuclei can be seen
as a compact core around which “orbits” one valence nucleon. The halo phenomenon
questions the traditional vision of nuclei close to stability and the validity of nuclear
structure models far from stability. By studying such systems, nuclear physicists hope to
better understand how the nuclear interaction works and hence improve their description
of nuclear matter. They are studied experimentally through reactions [19], such as elastic
scattering [35] and breakup [36]. The information on the structure of their halo that
can be extracted from these collisions is however reaction and model dependent [44].
This dependence arises from the mechanisms involved in the collision as well as from the
uncertainties on the core-target interactions, which are usually poorly known, especially
when the core is radioactive [45].

My thesis comes within the scope of these two hot topics of today’s nuclear physics
and more particularly on the tools that are used in these fields. On the one hand, my work
aims at the investigation of a new technique for the analysis of one-neutron halo nuclei, i.e.
the ratio method [38]. Originally thought for the reaction of one-neutron halo nuclei at
high energies, I have tested if it works at low energies, that would make the measurement
appropriate to facilities such as SPIRAL2 (GANIL, Caen, France) and ReA12 at FRIB
(Michigan State University), as well as for proton halos. On the other hand, my work
strives to develop a new reaction code that attempts to estimate the neutron-skin thickness
∆rnp of heavy nuclei from recent coherent neutral-pion photoproduction measurements
at MaMi [137, 138] and to study the sensitivity of this process to ∆rnp.

For neutron halos, such as 11Be, the archetypical one-neutron halo nucleus, the angular
distributions of elastic scattering and breakup reactions at intermediate and high energies
exhibit very similar features, which do not carry much information about the structure of
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the halo [44]. Correspondingly, by taking the ratio of cross sections of these two processes
Rsum, we are left with an observable that removes most of these features [38]. This result
can be explained within the Recoil Excitation and Breakup model (REB) [37], in which
the collision is considered adiabatic—or sudden—and the halo-target interaction can be
neglected compared to the core-target one. In this model, the elastic scattering and
angular breakup cross sections factorise into a projectile-structure part and a reaction-
dynamics part. By taking their ratio in the REB, we completely remove the part that
depends on the mechanism of the reaction and are then left with a form factor |FE,0|2
that depends only on the wave functions of the projectile. As such, by measuring this
observable, we can hope to extract valuable information about the structure of the halo
that are much less marred by the reaction mechanism. At high energies, that satisfy
the adiabatic hypothesis of the REB, the ratio observable still exhibits some remnant
oscillations that are due to the elastic scattering and breakup angular distributions not
being perfectly in phase. These oscillations are however small and follow the REB form
factor closely. Correspondingly, Rsum has been shown to be nearly independent of the
reaction mechanism and insensitive to the core-target interaction while still being very
sensitive to the structure of the halo of the projectile [38]. These interesting properties
led to the idea that in an actual experiment, valuable information could be extracted by
directly comparing the form factor to Rsum calculated from the data instead of comparing
the results of cumbersome calculations to the cross sections for the individual processes.
This is known as the ratio method.

In this work, I have explored the validity of this method for one-neutron halos at low
energy and on proton halos at intermediate energy by studying the reactions of 11Be at
20 MeV/nucleon and 8B, the archetypical one-proton halo nucleus, at 44 MeV/nucleon.
These results have led to the publications of Refs. [71] and [81], respectively. For these two
reactions, my calculations have revealed that the remnant oscillations of the dynamical
ratio (which were observed at higher energy and are not predicted by the REB) were
aggravated in comparison to the ratio calculated for a reaction at high energy. Also,
the agreement between Rsum and |FE,0|2 at small angles, where the reaction is Coulomb
dominated, is poorer. These effects are due to the adiabatic assumptions of the REB
being less well satisfied on these reactions. For 11Be, this is caused by the lower energy
of the reaction, which extends the importance of the Coulomb interaction on the cross
section further out in angle. Similarly, for 8B, this originates from the charge of the halo.
The interaction of the valence-proton with the target has an infinite range which does not
comply with the sudden assumption of the REB and which exacerbates the importance
of Coulomb in comparison to neutron halos. Also, for 8B, because of the addition of
Coulomb, the valence-target interaction can hardly be neglected in comparison to the
core-target one. This leads to increased remnant oscillations compared to the case of
neutron halos at the same energy. For both projectiles however, these effects are rather
small on light targets, for which the nuclear interaction still dominates. The agreement
between Rsum and |FE,0|2 is not as convincing as for neutron halos at high energies but
remains fair on light targets. Nevertheless, this agreement deteriorates significantly on
heavy targets, for which the Coulomb interaction dominates. In the idea of applying the
ratio method to other proton-halo candidates, I have also explored the reliability of the
ratio method on several proton-rich nuclei. In the particular case of 27P, the agreement
of the ratio with its REB prediction is surprisingly good on a light target at high energy.

In an extensive study of the reliability of the ratio method and its sensitivity to
the projectile structure and to the reaction model, I have shown that the ratio keeps
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its sensitivity to the single-particle structure of the projectile, especially to the orbital
angular momentum l0 in which the halo is bound and its binding energy E0. Changes
in these two quantities induce significant variations in shape and in magnitude of the
ratio and also influence how well the ratio can be approximated by its REB prediction.
The agreement between Rsum and |FE,0|2 has also been shown to be better when the
projectile is loosely-bound and in a low orbital angular momentum, i.e. for s and p waves.
Moreover, the ratio has been shown to keep its independence of the potential used to
simulate the core-target interaction as well as the reaction model used for the calculations.
It seems from these interesting properties that albeit less accurate than for neutron halos
at high energy, the ratio could still enable experimentalists to infer pertinent structure
information from the analysis of actual data. From the results discussed above, however,
the ratio can be applied in its strict application, i.e. the one suggested in Refs. [38],
only to 27P, a possible proton-halo nucleus bound by 0.8 MeV in the s-wave. In a more
approximate application of the ratio, only the order of magnitude and general shape of
the experimental ratio would be confronted to |FE,0|2. This application makes use of
the strong sensitivity in shape and magnitude of Rsum to the projectile structure. Small
differences in the ANC cannot be distinguished in this variant. However, it could still
provide with a good estimate of the orbital angular momentum and binding energy, which
are difficult to measure directly far from stability. This approximate application could be
done at intermediate energy on 8B or at lower energies on 11Be. Finally, in the dynamical
variant, measurements are compared not to |FE,0|2, but to the results of state-of-the-art
dynamical reaction calculations like CDCC or DEA. The gain in this case over the more
usual analysis of cross sections for individual reactions lies in the complete independence
of the ratio to the reaction mechanism. Also, because it is the ratio of two cross sections,
this observable is not sensitive to normalisation, which is a valuable experimental quality.
This third variant would be applicable to any nucleus that exhibits a clear single-particle
structure but is more computationally involved.

Because the major part of the disagreement between the REB form factor and the
dynamical ratio comes from the interaction between the halo fragment and the target, a
natural prospect of this work would be to account for the valence-nucleon-target interac-
tion, e.g., at the first order of the perturbations. This might improve the REB prediction
and open the strict application to 8B at intermediate energy and to 11Be at low energy.

The measurement of the neutron skin thickness carried out at MaMi relies on the
process of coherent neutral-pion photoproduction. In order to interpret the recent data
measured on tin isotopes and 48Ca [137, 138] and extract the neutron-skin thickness from
these experiments, I have built a reaction code that models this process. Moreover,
this code will help me properly quantify the uncertainty that exists on the extraction of
the neutron-skin thickness in this type of measurements. This is done by including the
possibility to calculate this collision for realistic nuclear densities.

Within the impulse approximation which is one of the main assumptions of my model,
the photoproduction on a nucleus is seen as the coherent sum of the contributions of
the elementary process on each of the nucleons of the target. In the plane wave impulse
approximation in which the produced pion exits the target unscattered after its produc-
tion, the pion-photoproduction cross section is then directly proportional to the Fourier
transform of the nuclear density [128], which is an interesting property. In reality, the
pion scatters off the nucleus after its production. The contribution of this process is taken
into account in the distorted wave impulse approximation. The pion-nucleus interaction
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is then simulated by a potential which I have chosen from the literature [184]. This po-
tential is built within the same formalism as the photoproduction from parametrising the
elementary pion-nucleon scattering potential. The parameters of this elementary process
are then adjusted such as to reproduce the elastic scattering cross sections on a nucleus
on a wide range of targets and at a low scattering energy [184].

While the energy at which the photoproduction reaction takes place is well defined in
the photoproduction process on a single and free nucleon, this is no longer the case on
a nucleus. My calculations show that the choice of prescription for this energy actually
has a very strong impact on the photoproduction cross sections. From the comparison
of my predictions to the data of Ref. [129], in which this reaction has been measured
on 12C, 40Ca and 208Pb targets, the best results are obtained by considering the struck
nucleon to be on-shell. In the particular case of 208Pb target, the agreement of my model
with the data is spectacular. Additionally, my calculations confirm the significant impact
that distortion has in this process [128], therefore emphasising the need for a π-nucleus
potential that correctly reproduces the scattering of the pion after its production. Finally,
since the energy at which this experiment is measured are similar to the conditions of the
recent experiments on tin and 48Ca of Refs. [137, 138], these calculations performed on
several realistic nuclear densities have also served as a test of the sensitivity of the process
to the fine details of the description of the target.

Although distortion causes changes that are less significant in magnitude for heavy
nuclei than for light nuclei, these changes become increasingly dependent on the density
of the target as the target mass grows. Unfortunately, this has actually the effect of
deteriorating the sensitivity of the pion-photoproduction process to the density. In the
particular case of a 208Pb nucleus, which exhibits the largest skin of the nuclei considered
in this work, variations of the neutron-skin thickness ∆rnp of around 0.1 fm have been
shown to impact the photoproduction cross section at the percent level, which is up to ten
times less than the size of the experimental error. These results, although less dramatic,
hold for the tin targets, for which preliminary data exist and 48Ca.

Finally, as a foretaste to a proper analysis of the sensitivity of these cross sections
to the uncertainty on the parameters of the pion-nucleus potential, I have explored the
influence of slight changes in those parameters. This brief study seems to suggest that
the uncertainty on the potential can have a visible effect on the photoproduction cross
section, therefore further hindering the extraction of the neutron-skin thickness.

In the light of all these results, the sensitivity of coherent neutral-pion photoproduction
to the neutron-skin thickness is rather low. This process does not seem to be suited in
the study of the neutron-skin thickness. This conclusion goes in contrast to the results of
Ref. [132], in which the neutron-skin thickness of 208Pb was reported with a remarkable
precision, both on the statistics and the systematics.

In future works, my code could be used as a starting point to a proper systematic
study of the sensitivity of these cross sections to the model of the reaction itself and
hence to a proper quantification of the theoretical uncertainties on the extraction of the
neutron-skin thickness that are induced by the model. In addition to the uncertainty on
the parameters of the pion-nucleus potential briefly explored in this work, one could also
be interested in quantifying the effect of changing the assumptions that lead to the shape
of this potential, e.g. by deriving a new form for this potential. Some of the paths that
could help for such derivation have also been explored very briefly. These will be more
thoroughly investigated in the PhD thesis of V. Tsaran. Finally, one could be interested
in the influence of including the possibility of charge exchange processes in the description
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of the photoproduction. Although not studied systematically, this sensitivity has been
explored in Ref. [161].
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A The completeness relation of the REB form factor
In this section, I will demonstrate that the denominator of expression (3.3), is equal to 1,
that is, that

|F0,0(Q)|2 +
∫
|FE′,0(Q)|2 dE ′ = 1. (A.1)

Let me first write explicitly the form factors, as given in expressions (2.60) and (2.62)
in Dirac notations

|F0,0(Q)|2 = 1
2j0 + 1

∑
m0

∣∣∣〈φ0| eiQ·r |φ0〉
∣∣∣2 , (A.2)

|FE,0(Q)|2 = 1
2j0 + 1

∑
m0

∑
ljm

∣∣∣〈φ0| eiQ·r |φljm(E)〉
∣∣∣2 . (A.3)

The left hand side of expression (A.1) then reads

1
2j0 + 1

∑
m0

∣∣∣〈φ0| eiQ·r |φ0〉
∣∣∣2 +

∫ ∑
ljm

∣∣∣〈φ0| eiQ·r |φljm(E ′)〉
∣∣∣2 dE ′

 . (A.4)

The term between brackets can be written more explicitly as

〈φ0| eiQ·r |φ0〉 〈φ0| e−iQ·r |φ0〉+
∫ ∑

ljm

〈φ0| eiQ·r |φljm(E ′)〉 〈φljm(E ′)| e−iQ·r |φ0〉 dE ′. (A.5)

We can then change the order of the summations and the integrals to find

〈φ0| eiQ·r
 |φ0〉 〈φ0| +

∫ ∑
ljm

|φljm(E ′)〉 〈φljm(E ′)| dE ′
 e−iQ·r |φ0〉 . (A.6)

where the term between brackets is clearly the unity operator. Indeed, it consists of
the sum of every projector on every possible state of the projectile. As these states are
orthonormal to each other, the term between brackets is 1, by the completeness relation.
The expression (A.6) is thus simply 〈φ0|φ0〉 = 1. If we put this result back in Eq. (A.4),
we finally have that

|F0,0(Q)|2 +
∫
|FE′,0(Q)|2 dE ′ = 1

2j0 + 1
∑
m0

1 = 1, (A.7)

as stated in Eq. (A.1).
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B Fresco
Fresco is a free program developed by Ian Thompson over the period 1983 - 2006, to
perform coupled channels calculations in nuclear reaction physics. It uses Fortran 90 or
Fortran 95. This is the program that has been used to solve the Schrödinger equation for
coupled channels Eq. (2.26). In this section I will explain the basics of the program in a
user point of view. I will obviously focus on CDCC calculations for breakup reactions.

All relevant information about Fresco, including a public version of the code, can be
found on the website www.fresco.org.uk.

B.1 Input file
In this section, I will explain most of the content of the input file. An example of the
input file for breakup CDCC calculations is visible on Fig. B.1. Unimportant parameters
have been shaded and will not be discussed deeply here. An explanation of their impact
on calculations can be found in the documentation.

The input file begins with a heading, simply describing the reaction we are dealing
with. This line is not considered by Fresco. It can be seen as a memo to the user,
that here reminds us that 11Be is impinging on a 12C target, with a beam energy of
67 MeV/nucleon. After this heading line, four different namelists gather the parameters
used by Fresco. These namelists are CDCC, nucleus, bin and potential. Let us look at
their use.

CDCC

The CDCC namelist introduces all parameters that will be involved in the calculation
(numerical parameters and reaction parameters) as well as the output options.

Among the numerical parameters, we find hcm and accrcy, that control the step
of integration and the accuracy of the piecewise step length respectively. The matching
radius, at which the calculated wave function of the projectile is matched to its asymptotic
behaviour is given by rmatch. But here, as should be noted, its value is negative. This
tells the code to integrate the coupled equation up to rmatch numerically and then
match them with the coupled-channel Coulomb functions up to rasym. This allows
to include the effects of coupling out to large distances due to the long-range Coulomb
interaction without having to integrate them over a large radius. The cutr parameter will
be explained later. thmax and thinc simply indicate the span of the scattering/breakup
angle and the step to be held into account.

Among the reaction parameters, we find elab, that determines the energy of the
projectile beam and jbord and jump that control the number of projectile-target (P−T )
partial waves included in the calculation. Many P − T partial waves have to be included
for the couplings and including partial waves up to J = 5000 can sometimes be necessary,
J being the projectile-target total spin. In order to avoid calculating them one by one, an
interpolation on the scattering amplitudes is done with jbord and jump. In our input
file example, we start from J = 0 up to J = 200 by steps of one, then from J = 200
to J = 300 by steps of 10 and finally from J = 300 to J = 2000 by steps of 50. The
absend parameter can be used to limit the number of partial wave calculated. Once the
absorption of three successive J sets is smaller than the value of absend in millibarns,
no more P − T partial wave is added. Here, absend value is negative, which means
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CDCC 11Be+12C 67MeV/nucleon

&CDCC
hcm=0.01 accrcy=0.001
rmatch= -60 rasym=1000 cutr=-20
thmax=10 thinc=0.05

elab=737
jbord= 0 200 300 2000 jump= 1 10 50 absend=-50
ncoul=0 reor=0 q=2

smats=2 xstabl=1/

&NUCLEUS part=’Proj’ name=’11Be’ charge=4 mass=11
spin=0 parity=+1 be=0.503 n=2 l=0 j=0/

&NUCLEUS part=’Core’ name=’10Be’ charge=4 mass=10 /
&NUCLEUS part=’Valence’ name=’neutron’ charge=0

mass=1 spin=0 /
&NUCLEUS part=’Target’ name=’12C’ charge=6 mass=12

spin=0 /

&BIN spin=0 parity=+1 start=0.001 step=0.25 end=15
energy=T l=0 j=0 /

&BIN /

&POTENTIAL part=’Proj’ /
&POTENTIAL part=’Core’ a1=1 rc=5.33 v=123 vr0=3.33

a=0.8 w=65 wr0=3.47 aw=0.8 /
&POTENTIAL part=’Valence’ a1=1 v=30.9 vr0=2.75

a=0.623 w=7.82 wr0=3.18 aw=0.667/
&POTENTIAL part=’Gs’ a1=1 v=62.52 vr0=2.585 a=0.6

vso=5.25 rso0=2.585 aso=0.6 /

Figure B.1: Input file example for the breakup CDCC calculation of 11Be on
12C. In a clarity purpose, uninteresting parameters of the file have been shaded.

that every P − T partial wave from jbord/jump is taken into account. When such
amount of partial waves is considered, the strong Coulomb repulsion at small radii can
cause numerical instabilities. The cutr parameter avoids this problem by setting a radial
cutoff. If its value is negative, the cutoff is done inside the Coulomb turning point. ncoul
determines whether only the Coulomb interaction or only the nuclear interaction or both
two must be taken into account, the latter being the case here, reor determines whether
including or not off-diagonal couplings and q is the multipole order of the deforming
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potential.
Finally, the ouput options are smats and xstabl, which, when increased, increase the

amount of printed files and variable details. The parameter IPCGS can also be added
to print the wavefunction of the ground state.

Note that many of these parameters are default parameters and that a great amount
of other parameters exist.

Nucleus

The nucleus namelist introduces all different partitions of the problem. We recognise here
the projectile, its core, the valence neutron and the target as the different partitions. Each
partition has a name, a charge and a mass. The state jπ of the impinging projectile is
described by the parameters spin and parity.

Normally, the 11Be in its ground state should be characterised by the set of quantum
numbers {n, l, j ; spin, parity} = {n, l, s; j, π} = {2, 0, 1/2; 1/2,+1} with a bound-state
energy of be=0.503 MeV. But we have decided here to neglect the spin orbit interaction
and hence set the spin of the neutron to 0.

Bin

The bin namelist will contain all the continuum discrete excited states. The parameters
describe the quantum numbers of the different energies excited states of the projectile :
jπ (with the parameters spin and parity) as well as the orbital angular momentum l and
total spin j (with the parameters l and j).

The different energy binnings are described by the parameters start, end and step,
the first two defining the span of the continuum that is considered and the latter defining
the width of each bin.

The last parameter is energy, which can take the values T (for true) or F (for false)
and that defines the type of binning. In the case of T, each bin has the same width,
defined by the step parameter. There is thus (end-start)/step bins. In the case of F,
the binning is made in the k space. The number of bins is still (end-start)/step but
the bins have now equal size in the k-span. This type of binning allows a finer grid at
low energies of the continuum and a coarser grid at high energies as E ∝ k2. The energy
width of the bins will thus vary for this type of binning but in the sake of conciseness, we
will still refer the parameter step as the width ∆E of the bin. The interest of this type
of binning will be illustrated later.

Multiple bin namelists can be added, in order to describe different excited states, of
other quantum numbers. Here, in the example given on Fig. B.1, only the l = 0 partial
wave of the projectile (the s state) has been discretised. Some other parameters can be
added but I will not explain them here.

Potential

This last namelist provides all the parameters needed to define the interaction potentials
used to model our problem. Different shapes can be used, but the Woods-Saxon shape is
set by default. The part ‘Core’ describes the interaction between the core and the target,
the part ‘Valence’ the interaction of the neutron valence with the target and the ‘GS’
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part (which stands for Ground State) is the interaction potential between the core and
the valence neutron.

As seen before, the optical potentials used to simulate the nuclear interactions are
usually described by a Woods-Saxon shape, Eq. (2.66), while the Coulomb interaction
has the form Eq. (2.63).

v, vr0 and a are the parameters for the Woods-Saxon shape of the real volume com-
ponent (respectively Vr, rr and ar).

w, wr0 and aw are the parameters for the Woods-Saxon shape of the imaginary
volume component (respectively Wi, ri and ai).

wd, wdr0 and awd are the parameters for the Woods-Saxon shape of the imaginary
surface component (respectively WD, rD and aD).

vso, rso and aso are the parameters for the Woods-Saxon shape of the spin-orbit
component (respectively Vso, rso and aso).

rc is the Coulomb radius (rC).
It sould be noted that fresco considers all radii vr0, wr0, rso and rc as a reduced

radii. They are then rescaled as it is done in Eq. (2.64). However, a parameter a1 can be
added to avoid any rescaling if needed. By assigning it the value 1, the radii Rj = rj ·a11/3

are then equal to their reduced radii equivalent.
Note finally that Fresco’s treatment of the potentials given as input can sometimes

be obscure. Indeed, Fresco may change the depth of the core-valence neutron potential
to fit the energy of the bound state given in input. Moreover, the potential conventions
and forms I have defined in Sec. 2.5 could be different from the ones used in the previous
works from which I have chosen my parameters, and could even be different from the
conventions of Fresco. In order to verify that all my results are based on the same
interactions and that hence I analyse the same cross sections, the results obtained on
elastic scattering with Fresco have been compared to a third method, based on the partial
wave expansion method. This has ensured that all problems treated are indeed the same.
The computations based on this method have been carried out with a code written by D.
Baye, which I would like to thank.

B.2 Output files
The output files depend mostly on the output parameters defined in the CDCC namelist
but only some of them are relevant to our study and will be mentioned.

fort.13 contains breakup cross sections energy distributions for each partial wave.

fort.16 contains angular distributions of the breakup cross sections for each energy
bin.

fort.44 contains the bin phase shifts as functions of the energy of the bin. This file
can be used to characterise the eventual resonances.

fort.58 contains the bin wavefunctions.

fort.201 contains the elastic cross section angular distribution. Since it diverges at
small angles, the cross section is actually divided by Rutherford’s cross section.

177



C KMT
We can rewrite Eq. (7.10) as

T = Av
(

1 + 1
α
T
)

(C.1)

⇔
(

1− Av 1
α

)
T = Av (C.2)

This can then be solved formally for T in two ways. Either “on the right”, as in

T = 1
1− Av 1

α

Av (C.3)

where we see that v multiplies the fraction on the right hand side, or “on the left” as in(
1− Av 1

α

)
T = Av

(
1− 1

α
Av
) 1

1− 1
α
Av

(C.4)

⇔
(

1− Av 1
α

)
T =

(
Av − Av 1

α
Av
) 1

1− 1
α
Av

(C.5)

⇔
(

1− Av 1
α

)
T =

(
1− Av 1

α

)
Av

1
1− 1

α
Av

(C.6)

⇔ T = Av
1

1− 1
α
Av

(C.7)

where it multiplies it on the left hand side. In the end, we formally have

T = 1
1− Av 1

α

Av = Av
1

1− 1
α
Av

(C.8)

Similarly, for v we have from Eq. (7.11)

v = 1
1 + τ 1

α

τ = τ
1

1 + 1
α
τ

(C.9)

where τ is either on the right or on the left of the fraction.
If I inject the “on the left” solution for v into the respective “on the left” solution for

T , we have

T = Aτ
1

1 + 1
α
τ

1
1− 1

α
Aτ 1

1+ 1
α
τ

(C.10)

= Aτ
1(

1 + 1
α
τ
)
−
(
1 + 1

α
τ
)

1
α
Aτ 1

1+ 1
α
τ

(C.11)

= Aτ
1(

1 + 1
α
τ
)
−
(
A 1
α
τ 1

1+ 1
α
τ

+ A 1
α
τ 1
α
τ 1

1+ 1
α
τ

) (C.12)

= Aτ
1(

1 + 1
α
τ
)
− A 1

α
τ
(

1
1+ 1

α
τ

+ 1
α
τ 1

1+ 1
α
τ

) (C.13)

= Aτ
1(

1 + 1
α
τ
)
− A 1

α
τ
(
1 + 1

α
τ
)

1
1+ 1

α
τ

(C.14)

= Aτ
1

1− (A− 1) 1
α
τ

(C.15)
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and similarly, on the right
T = 1

1− (A− 1)τ 1
α

Aτ (C.16)

This equation can be cast into the form

T − (A− 1)τ 1
α
T = Aτ (C.17)

A− 1
A

T = (A− 1)τ + (A− 1)τ 1
α

A− 1
A

T (C.18)

The auxiliary matrix T ′ = A−1
A
T (7.16) and V (0) = (A − 1)τ (7.17) and the projectors

(7.21) allow me to re-write this equation as

T ′ = V (0) + V (0) 1
α

(P0 +Q0)T ′ (C.19)

⇔
(

1− V (0) 1
α
Q0

)
T ′ = V (0)

(
1 + 1

α
P0T

′
)

(C.20)

⇔ T ′ = 1
1− V (0) 1

α
Q0
V (0)

(
1 + 1

α
P0T

′
)

(C.21)

Relation between τ and t From the definitions of t and τ in Eqs. (7.14) and (7.11)
and from Eq. (C.9) we see that

v = τ
1

1 + 1
α
τ

v = 1
1 + t 1

h

t
⇒ τ

1
1 + 1

α
τ

= 1
1 + t 1

h

t (C.22)

⇔
(

1 + t
1
h

)
τ = t

(
1 + 1

α
τ
)

(C.23)

⇔ τ = t+ t
( 1
α
− 1
h

)
τ (C.24)

179



D Photoproduction of a pion on a single free nucleon
In the following, I will consider a photon of momentum k impinging on a free nucleon
and photoproducing a pion of momentum q. I will evaluate these momenta in the π-N
center-of-mass frame. I will drop the tilde and indices for conciseness (except when it’s
needed). The pion photoproduction differential cross section from a γ − N initial Pauli
spinor state ξi to a π −N ′ final state ξf is given by

dσi→f

dΩ = q

k
|〈ξi| F |ξf〉|2 (D.1)

where F reads [163]

F = i(~σ · ~ε)F1 + (~σ · ~̂q)(~σ · (~̂k × ~ε))F2 + i(~σ · ~̂k)(~̂q · ~ε)F3 + i(~σ · ~̂q)(~̂q · ~ε)F4 (D.2)

where x̂ is a unit vector and ε is the polarization of the photon. Note that the second
term can be rewritten in Einstein summation indices form as

(~σ · ~q)(~σ · (~k × ~ε)) = σiqikkεlεkljσj (D.3)
= qikkεlεkljσiσj (D.4)

where εijk is the Levi-Civita symbol. I can use the fact that σiσj = δij+iεijmσm to rewrite
this as

(~σ · ~q)(~σ · (~k × ~ε)) = qikkεlεkli + iqikkεlεkljεijmσm (D.5)

Using the properties of the Levi-Civita symbol, namely εkljεmij = δkmδli − δkiδlm, I can
write this as

(~σ · ~q)(~σ · (~k × ~ε)) = qikkεlεkli + iqikkεiσk − iqikiεlσl (D.6)
= (~ε · (~q × ~k)) + i(~σ · ~k)(~q · ~ε)− i(~q · ~k)(~σ · ~ε) (D.7)

I thus have

F = i(~σ ·~ε)F1 +~ε ·(~q×~k)F2 +i(~σ ·~k)(~q ·~ε)[F2 +F3]−i(~q ·~k)(~σ ·~ε)F2 +i(~σ ·~q)(~q ·~ε)F4 (D.8)

It should already be noted at this point that the second term on the right hand side is
the only component that does not depend on spin. In the case that the polarisation of
the initial and final nucleons is not measured, and all possible polarisations of the photon
λ(= ±1) are considered we have

dσγ→π
dΩ = q

k

(
1
2
∑
λ

)(
1
2
∑
mi

)∑
mf

〈ξi| F (λ)† |ξf〉 〈ξf | F (λ) |ξi〉 (D.9)

= q

4k
∑
mi,λ

〈ξi| F (λ)†F (λ) |ξi〉 (D.10)

In {~ex, ~ey, ~ez} axis and for circular polarization, we can write both polarization vectors of
the photon as

~ελ = 1√
2

(~ex + iλ~ey) (D.11)
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For ~k oriented in the z direction and ~̂q = (sin θ cosφ, sin θ sinφ, cos θ), we have

F (λ) = i√
2

(σx + iλσy)F1 (D.12)

+ sin θ√
2

(sinφ− iλ cosφ)F2 (D.13)

+ i
sin θ√

2
(cosφ+ iλ sinφ)σz[F2 + F3] (D.14)

− icos θ√
2

(σx + iλσy)F2 (D.15)

+ i√
2

[
cos θ sin θ(cosφ+ iλ sinφ)σz + sin2 θ cosφ(cosφ+ iλ sinφ)σx (D.16)

+ sin2 θ sinφ(cosφ+ iλ sinφ)σy
]
F4

(D.17)

= i√
2

[
(σx + iλσy)F1 − λ sin θeiλφF2 + sin θeiλφσz[F2 + F3]− cos θ(σx + iλσy)F2

(D.18)

+eiλφ(cos θ sin θσz + sin2 θ cosφσx + sin2 θ sinφσy)F4

]
(D.19)

Let me use the ladder operators σ± defined as

σ± = σx ± iσy (= σ†∓) (D.20)

⇔


σx = 1

2(σ+ + σ−)

σy = 1
2i(σ+ − σ−)

(D.21)

and which have the properties 

σ+ |−〉 = 2 |+〉
σ− |+〉 = 2 |−〉
σ+ |+〉 = σ− |−〉 = 0
σzσ± = ±σ±
σ±σz = ∓σ±

(D.22)

to write

F (λ) = i√
2

[
σλF1 +

(
sin θeiλφ{σz − λ} − cos θσλ

)
F2 + sin θeiλφσzF3 (D.23)

+eiλφ
(

cos θ sin θσz + sin2 θ

2 e−iφσ+ + sin2 θ

2 eiφσ−

)
F4

]
(D.24)

and since σ†±λ = σ∓λ, its complex conjugate reads

F (λ)† =−i√
2

[
σ−λF †1 +

(
sin θe−iλφ{σz − λ} − cos θσ−λ

)
F †2 + sin θe−iλφσzF †3 (D.25)

+e−iλφ
(

cos θ sin θσz + sin2 θ

2 eiφσ− + sin2 θ

2 e−iφσ+

)
F †4
]

(D.26)
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By noting that σzσ±λ = −σ±λσz = ±λσ±λ, we can write F (λ)†F (λ) in the following form

2F (λ)†F (λ) =σ−λσλ|F1|2 +
[
2 sin2 θ(1− λσz) + cos2 θσ−λσλ

]
|F2|2 + sin2 θ|F3|2 + sin2 θ|F4|2

(D.27)
− cos θσ−λσλ(F∗1F2 + F1F∗2 ) (D.28)
+ λ sin θ

(
eiλφσ−λF∗1F3 + e−iλφσλF∗3F1

)
(D.29)

+ sin θeiλφ
(
λ cos θσ−λ + sin θ

2 e−iφσ−λσ+ + sin θ
2 eiφσ−λσ−

)
F∗1F4 (D.30)

+ sin θe−iλφ
(
λ cos θσλ + sin θ

2 eiφσ−σλ + sin θ
2 e−iφσ+σλ

)
F∗4F1 (D.31)

+
(
sin2 θ(1− λσz)− λeiλφ sin θ cos θσ−λ

)
F∗2F3 (D.32)

+
(
sin2 θ(1− λσz)− λe−iλφ sin θ cos θσλ

)
F∗3F2 (D.33)

+
[

sin2 θ cos θ(1− λσz)− λ cos2 θ sin θeiλφσ−λ (D.34)

+ sin3 θ

2 {e−iφ(1− λ)σ+ − eiφ(1 + λ)σ−} (D.35)

−sin2 θ cos θ
2 eiλφσ−λ{σ−eiφ + σ+e

−iφ}
]
F∗2F4 (D.36)

+
[

sin2 θ cos θ(1− λσz)− λ cos2 θ sin θe−iλφσλ (D.37)

+ sin3 θ

2 {eiφ(1− λ)σ− − e−iφ(1 + λ)σ+} (D.38)

−sin2 θ cos θ
2 e−iλφ{e−iφσ+ + eiφσ−}σλ

]
F∗4F2 (D.39)

+ sin2 θ

(
cos θ + sin θ

2 {e
−iφσ+ − eiφσ−}

)
F∗3F4 (D.40)

+ sin2 θ

(
cos θ + sin θ

2 {e
iφσ− − e−iφσ+}

)
F∗4F3 (D.41)

I need to sum this expression over the initial spin of the nucleon and over all polarizations.
Note that

〈m|σ−λσλ |m〉 = 2δλ(−m) 〈m|σm |−m〉 = 4δλ(−m) (D.42)
〈m|σz |m〉 = m (D.43)
〈m|σ±λ |m〉 = 2δλ(∓m) 〈m| −m〉 = 0 (D.44)

〈m|σ−λσ± |m〉 = 2δm(∓1) 〈m|σ−λ |−m〉 = 4δλ(−m)δm(∓1) = 4δλ(±1)δm(∓1) (D.45)
〈m|σ±σλ |m〉 = 2δλ(−m) 〈m|σ± |−m〉 = 4δλ(−m)δm(±1) = 4δλ(∓1)δm(±1) (D.46)

from which we see that only a few terms will stay when we consider∑mi,λ 〈ξi| F (λ)†F (λ) |ξi〉,
namely

dσγ→π
dΩ = q

4k
[
4|F1|2 + 4|F2|2 + 2 sin2 θ|F3|2 + 2 sin2 θ|F4|2 (D.47)

− 4 cos θ(F∗1F2 + F1F∗2 ) + 2 sin2 θ(F∗1F4 + F∗4F1) (D.48)
+2 sin2 θ(F∗2F3 + F∗3F2) + 2 sin2 θ cos θ(F∗3F4 + F∗4F3)

]
(D.49)
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E Kinematics and change of frame
In this section, I will derive the Lorentz transforms to change the coordinates from the
emitted pion frame to the laboratory frame.

Let me take P lab
γ as the quadri-vector for the incident photon in the laboratory frame,

of kinetic energy Tγ and momentum ~p lab
γ , also in the lab frame. It impinges on a target

nucleus at rest which has A nucleons and a mass mA and which is at the origin of the lab
frame axes {x̂, ŷ, ẑ}, where ẑ is the beam axis. The invariant energy of the reaction s is
given by

s2 = (Tγ +mA)2 − T 2
γ = 2mATγ +m2

A (E.1)
where I made the choice of units ~ = c = 1. I need to go to the centre-of-mass reference
frame (coordinates in {X̂, Ŷ, Ẑ} axes for which the origin is considered as the interaction
vertex) in which we know the cross section for the photo-production process. In this
frame, the photon and target quadri-vectors are defined as Pγ and PA (see Fig. E.1).
After the reaction, a pion with quadri-vector P lab

π is created and the target is deflected to
P ′lab
A (or in the COM frame, Pπ and P ′A, respectively).

P lab
γ

P lab
π

P ′lab
A

θlab = θ′ ẑ
x̂

ŷ

Lab frame

Pγ PA Ẑ
X̂

Ŷ

COM frame
Pπ

P ′A

θ

Figure E.1

In the COM frame, Pγ can be obtained by boosting the corresponding quadri-vector
in the lab frame P lab

γ

Pγ = ΛγP
lab
γ (E.2)

where the Lorentz transform in the ẑ direction is given by [201]

Λγ =


γγ 0 0 −βγγγ
0 1 0 0
0 0 1 0

−βγγγ 0 0 γγ

 where


γγ = Tγ +mA

s

βγ = Tγ
Tγ +mA

(E.3)

In the COM frame, I can define the pion and target energies as ωπ and ωA, respectively,
such that ωπ + ωA = s and Pπ = (ωπ, ~pπ) and P ′A = (ωA,−~pπ). Since I work on-the-mass
shell, we have

ω2
π = m2

π + ~p 2
π (E.4)

ω2
A = m2

A + ~p 2
π (E.5)

and hence

pπ =

√
[s2 − (m2

π +m2
A)]2 − 4m2

Am
2
π

2s (E.6)

ωπ = s2 +m2
π −m2

A

2s (E.7)

183



The quadri-vector of a pion emitted in the solid angle {θ, φ} in the COM frame reads
explicitly (ωπ, pπ cosφ sin θ, pπ sinφ sin θ, pπ cos θ). Its quadri-vector P lab

π in the lab frame
then reads

P lab
π = Λ−1

γ Pπ (E.8)

=


γγ 0 0 βγγγ
0 1 0 0
0 0 1 0

βγγγ 0 0 γγ




ωπ
pπ cosφ sin θ
pπ sinφ sin θ
pπ cos θ

 =


γγωπ + βγγγpπ cos θ

pπ cosφ sin θ
pπ sinφ sin θ

βγγγωπ + γγpπ cos θ

 (E.9)

Note how the inverse transform Λ−1
γ is simply given by changing βγ → −βγ since I boost

in the other direction. Let me define the laboratory pion energy Eπ and the laboratory
pion momentum ~π such that P lab

π = (Eπ, ~π) and the angles {θ′, φ′} such that the unit
vector ~̂π = (cosφ′ sin θ′, sinφ′ sin θ′, cos θ′). Note that this vector is the direction of the
emitted pion in the lab frame and that φ′ = φ.

Let me now define the boost from the lab frame {x̂, ŷ, ẑ} to the reference frame of the
emitted pion {x̂′′, ŷ′′, ẑ′′}. To do so, let me first rotate the lab frame to an intermediate
frame {x̂′, ŷ′, ẑ′} such that the axis ẑ′ and the direction ~̂π are aligned. I will then boost
this intermediate frame into the pion frame. A summary of these transformations is shown
on Fig. E.2.

ẑ

x̂

ŷ

~p lab
γ

~̂π = ẑ′

φ′ θ′

~̂u = ẑ×~̂π
|ẑ×~̂π|

θ′

x̂′

ŷ′ ẑ′′

x̂′′

ŷ′′

θ′

θ′

Figure E.2

Let me begin with the rotated frame {x̂′, ŷ′, ẑ′}. In order for ẑ′ and ~̂π to be aligned,
I need to define the vector ~u = ẑ × ~̂π around which I will rotate by an angle θ′. This
vector has components only in the x̂ and ŷ directions. The rotation of a vector around
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this direction ~̂u = (− sinφ′, cosφ′, 0) = (ûx, ûy, 0) by an angle θ′ is given by the rotation
matrix

Ru
θ =


1 0 0 0
0 cos θ′ + û2

x(1− cos θ′) ûxûy(1− cos θ′) ûy sin θ′
0 ûxûy(1− cos θ′) cos θ′ + û2

y(1− cos θ′) −ûx sin θ′
0 −ûy sin θ′ ûx sin θ′ cos θ′

 (E.10)

Note that for a change of coordinates, we rather need the inverse matrix Ru −1
θ′ either

by replacing θ′ ↔ −θ′ or by simply taking its transpose: Ru −1
θ′ = Ru ᵀ

θ′ = Ru
−θ′ .

The quadri-vector of the pion in the rotated lab frame P lab′
π reads

P lab′
π = Rv −1

θ′ P lab
π (E.11)

In order to place ourselves in the COM frame of the pion, we need to boost in the ẑ′
direction. The parameters of this boost are given by

γπ = Eπ
mπ

= γγωπ + βγγγpπ cos θ
mπ

(E.12)

βπ = |~π|
Eπ

=

√
E2
π −m2

π

Eπ
(E.13)

and we then have

P ′′π = ΛπP
lab′
π (E.14)

= ΛπRu −1
θ′ P lab

π (E.15)

where Λπ has the same expression as Λγ in Eq. (E.3) with γπ and βπ instead. The
conversion from this emitted pion reference frame to the laboratory frame is hence simply
the reversal of the operations of Eq. (E.15). As an example, the quadri-vectors of the two
photons in the laboratory frame read

P lab
γi = Ru

θ′Λ−1
π P ′′γi (E.16)
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F Random number generation
In this section, I will detail how we can pick a random number that follows a given
distribution. As we will see, in our case, this can be done from choosing one or two
random numbers distributed uniformly. Only a summary of the methods that I will use
are shown here. The interested reader looking for more details or different methods is
referred to Ref. [202], from which most of this section is taken. Here, I will only detail
the inversion method and the Box-Muller transforms [145].

Note that in the following, u and v are defined as random numbers distributed uni-
formly on [0, 1].

F.1 The inversion method
In order to generate a random number θ within a domain [θi, θf ] that follows a given
distribution F , let me define the normalised cumulative distribution function f , such that

f(y) =
∫ y
θi
F (x)dx∫ θf

θi
F (x)dx

(F.1)

This function is normalised such that f(y) ∈ [0, 1]. It can be shown that the number

θ = f−1(u) (F.2)

obtained from inverting the function f then follows the right distribution F .
A schematic example of the inversion method is shown on Fig. F.1 where we pick a

random angle θ which follows the distribution F (θ) = sin θ dσ/dΩ, i.e. some differential
cross section. On the left, the differential cross section. From this distribution, we can
build the cumulative distribution function f(θ), on the right. Each random number u
hence corresponds to a given angle θ.
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f
(θ
)

0
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1

u

Figure F.1: Photo-production cross-section (left) and normalized cumulative dis-
tribution cross-section (right).

For some functions, this method is very effective. It is particularly the case for cu-
mulative functions that can be inverted analytically. A good example is F (E) = 1/E,
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which is roughly how the energy of brehmsstrahlung photons is distributed [144]. If we
are interested in photons of energies E ∈ [Ei, Ef ], we have

f(E) =
∫ E
Ei
dE ′/E ′∫ Ef

Ei
dE ′/E ′

= lnE/Ei
lnEf/Ei

(F.3)

and the inverse function is then given by

f−1(u) = Ei exp
(
u ln Ef

Ei

)
(F.4)

For distributions that do not have an analytical inverse (such as the differential cross
section above), numerical methods are needed to find the inverse f−1.

F.2 Box-Muller transforms for normal distributions
A normal distribution of mean µ and standard deviation σ is given by the expression

N (x;µ, σ) = 1√
2πσ2

e−
(x−µ)2

2σ2 (F.5)

To draw a number x that follows this distribution, we could use the inversion method
described above. However, no analytical expression exists for the inverse of its cumulative
distribution function and we must rely on numerical methods to invert it. A much faster
way and less computationally expensive way to draw x is through the use of Box-Muller
transforms [145]. These transforms readx =

√
−2 ln u cos 2πv

y =
√
−2 ln u sin 2πv

(F.6)

and generate two independent normally distributed numbers x and y of mean µ = 0 and
standard deviation σ = 1. If we only need one, we just choose one of them and discard
the other.

Note that if we want to modify the mean and standard deviation, we can then apply
the linear transform

x′ = σx+ µ (F.7)

The number x′ is then distributed following a normal distribution of mean µ and standard
deviation σ.
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G The treatment of the Coulomb interaction in mo-
mentum space

In order to test the MSU potential of Stricker-Bauer (see Sec. 8.2.3) on charged-pion
nucleus elastic scattering data, one needs a way to include the Coulomb interaction.
While this Coulomb potential will not be used elsewhere in this work, it could be valuable
in later works, e.g. if one desires to readjust the parameters of the potential at a different
energy or for other densities, or if one wants to include charge exchange processes in the
photoproduction cross sections, etc.

In this appendix, the Coulomb interaction is treated following the approximation of
Deltuva et al. [194], where a screening of the type

V
(n)
C (r) = πCZα

e
−
(

r
RC

)n
r

(G.1)

is considered. This method is analysed in details.
For n = 1, the potential is a Yukawa potential for which the Fourier transform is

analytical and reads
V

(1)
C (q) = πCZα

4π
q2 + 1

Rc2
(G.2)

For n = 2, the Fourier transform of this potential also has an analytical form which reads

V
(2)
C (q) = πCZα

4πRC

q
F
(
qRC

2

)
(G.3)

where F (x) is the Dawson integral function [203]

F (x) ≡ e−x
2
∫ x

0
et

2
dt (G.4)

In the limit of n → ∞, we are just left with a hard cut-off at a radius RC . The Fourier
transform then simply reads

V
(∞)
C (q) = πCZα

4πRC

q2 (1− cos(qRC)) (G.5)

Other values of n (including non-integer ones) are also possible. However, the Fourier
transform of the potential then has to be calculated numerically.

An illustration of these different screenings is shown in position space on left panel of
Fig. G.1. The impact of n on the pure pointlike Coulomb cross sections is analysed on
the right panel of the figure. Note that these are scaled to Rutherford’s cross section, for
which the scattering amplitude (relativistically corrected) reads [204]

fC(θ) = − ηπ
2k0 sin2(θ/2)

M(k0)
mπ

exp
[
−iηπ ln(sin2(θ/2)) + 2iσ0(ηπ)

]
(G.6)

where ηπ is the Sommerfeld parameter of the collision

ηπ = πCZα
mπ

k0
(G.7)
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Figure G.1: Left: radial dependence of the Coulomb potential and different
screenings as defined in Eq. (G.1). The screening radius is chosen as RC = 25 fm.
Right: result of the calculation for the pure Coulomb elastic scattering of a π+

on 12C at 50 MeV lab energy for different screenings.

and σ0(ηπ) = arg Γ(1 + iηπ) is the Coulomb phaseshift andM is the reduced mass defined
in Eq. (7.45) and is evaluated at kπ,0, the on-shell momentum of the pion.

As should be first observed from left panel of Fig. G.1, the screening causes the
Coulomb cross section to poorly describe the scattering at very forward angles. This
is to be expected: nearly all the contribution to these angles comes from the scattering
at large impact parameters, hence large radii. These are precisely the radii that have to
be screened to avoid a q = 0 divergence. At large angles however, which correspond to
small impact parameters and hence small radii which have not been cut off, the cross
section converges in most of the cases to 1. Second, we already observe that for a radius
of RC = 25 fm, not all screenings converge. This is specially the case for the hard cut
Coulomb potential (magenta) and for the Yukawa potential (black). These two screenings
are the most difficult to make converge and will not be considered in the following. For
the other screenings on the other hand, no numerical instabilities are found.

On Figure G.2, I analyse the influence of the screening radius on the particular case
n = 2. The behaviour displayed in these figures is representative of what happens for all
screenings. As the cut-off radius increases, the Coulomb potential at small radii is less
and less touched and the cross section approaches the Rutherford cross section. However,
if RC grows too large, numerical instabilities appear. Note that these instabilities can
be reduced by increasing the number of points of the grid used to calculate the integral
(8.97). However, the number of points needed is large. This can cause some issues if for
example one wants to fit the parameters of a potential for charged pion elastic scattering.
By including Coulomb, calculations would indeed take long, which is not desirable for
fitting procedures.

The data are usually situated between 30 and 160 degrees. For this reason, I would
like the Coulomb interaction to be well reproduced at least in this range. The screening
that satisfies these conditions the best (at least for the pure Coulomb cross section) is
n = 3 and RC = 30 fm. The cross section calculated for these values of the screening is
shown on Fig. G.3 in addition to the ones for n = 2 and n = 4 (also for this value of the
screening radius). As it should be noted, n = 3 ensures the pure Coulomb cross section
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Figure G.2: Left: dependence of the pure Coulomb cross section (divided by
Rutherford’s) of a π+ on 12C at 50 MeV lab energy on the screening radius RC

for n = 2. Right: zoom around 1.

to be well within 1% of the Rutherford’s cross section in the angular range of interest.
It is also stable on nearly the whole range. Some instabilities are visible at these scales.
However, their magnitude is at the 0.01% level. The n = 2 and n = 3 screenings achieve
this precision beyond 60 and 45 degrees respectively.
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Figure G.3: Pure Coulomb cross section (divided by Rutherford’s) of a π+ on
12C at 50 MeV lab energy for the n = 2, 3 and 4. RC = 30 fm.

It is also interesting to see how this screening affects the cross sections when the
target is no longer considered as pointlike. In order to account for this effect, I will
simply multiply the matrix elements (8.96) by the charge density of the target ρZ1 (q).
This corresponds to a convolution of the pointlike interaction over the charge density
of the nucleus in position space. Here, I will choose a simple Fermi-Dirac density (see
Sec. 6.3.1). It is also interesting to see how the different screenings affect the interferences
between the Coulomb and the nuclear interaction. On Fig. G.4, I have calculated the
cross section of a π± on a 12C target at 50 MeV lab energy. The solid red, blue and
green curves correspond to the cross section calculated when considering both nuclear and
Coulomb screened interactions. The dashed line corresponds to pure nuclear interaction.
The solid black line corresponds to the cross section obtained when we consider that
the scattering amplitude is simply the coherent sum of the nuclear and pure Coulomb
scattering amplitudes, i.e. when neglecting interference between nuclear and Coulomb
interactions.

As we can see, the different screenings, although having quite distinct behaviours
when considering pure pointlike Coulomb scattering (see Fig. G.3) produce very similar
results. In the case of the π+ scattering, most of the visible differences are found below 30
degrees, where no data exists and where as we have seen, the screening removes most of the
contribution of the Coulomb interaction. It should be noted how the interferences between
the nuclear and Coulomb interactions are clearly visible between 50 and 150 degrees. At
these angles, the sum of the scattering amplitudes is not significantly different. But this is
mainly due to the fact that we are working on a light target and the Coulomb interaction
is hence small. Similar comments can be made for the π− scattering, for which the
interferences are bigger at larger angles.

We can compare the results of this method to a resolution in position space, where the
Coulomb interaction does not pose any problem. This is done for example by calculating
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Figure G.4: Cross section of a π+ (π− on the right) on a 12C target at 50 MeV
lab energy. Solid red, blue and green curves correspond to the cross section
calculated when considering both nuclear and Coulomb screened interactions.
Dashed line is pure nuclear interaction. The solid black line is the coherent sum
of the nuclear and pure Coulomb scattering amplitudes.

the phase shifts. However, the potential that we have used previously is non local (see also
Sec. 8). In position space, non-localities are more difficult to handle (this was one of the
reasons for the use of a momentum space resolution in the first place). For this reason, we
will use a simpler version of the potential that has the shape of a Woods-Saxon well. Its
radius is chosen equal to the radius of the Fermi-Dirac shape used to model the density.
As we can see from Eq. (8.26), this would correspond to a π-A potential constructed
as a purely s-wave π-N interaction folded on the nucleus density. Note finally that the
Coulomb potential that I use in the position space resolution is a point-sphere Coulomb
potential of the form Eq. (2.63). I will set the radius of this potential as identical to the
Woods-Saxon well radius. Note however that in the case of light targets, the choice of
radius has a very small impact on the elastic cross section.

The results are shown on Fig. G.5, where I compare the resolution above (black) to
the coherent sum of the nuclear and pure Coulomb scattering amplitudes (blue) and to
the position space resolution (red). The dashed line corresponds to the resolution for a
purely nuclear potential. For a positively charged pion (left) none of the momentum space
resolutions reproduce well the position space cross section. It should however be noted
how the shape of the coherent sum is not the same as the one from the momentum and
position space resolutions. A transition seems to occur around 90 degrees for this curve.
It actually corresponds to the angle at which fC and fN are comparable in magnitude.
After this angle, the reaction is completely dominated by the nuclear interaction while at
smaller angles it is by Coulomb. This approximation is thus rather crude.

In the case of a negatively charged pion (right), note how the resolution in momentum
space (black) matches much better the one in position space (red) at forward angles. Note
also how again, the shape of the coherent sum (blue) is not the same as the one from
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the momentum and position space resolutions. But while we could have expected the
coherent sum and the momentum space resolution to have a similar behaviour at large
angles, it is not the case here. Indeed, while the former tends to the pure nuclear cross
section, the momentum space resolution seems to much better capture the interference
between the nuclear and Coulomb potential and as such to much better reproduce the
cross section at larger angles.

It should be noted that in both cases, we do not reproduce correctly the largest
angles. This is unexpected if we think back at how the screening is done. Indeed, we
screen only large distances, which should only contribute to small angles in the scattering
cross section. We also saw on Fig. G.3 how the screening worked properly for large angles
and reproduced the pure pointlike Coulomb cross section at the percent (if not permil)
level. This is hence a rather unexpected result.
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Figure G.5: The cross section calculated in momentum space by considering
both nuclear and Coulomb screened interaction (black) or by considering the
coherent sum of the nuclear and pure Coulomb scattering amplitudes (blue) are
displayed. The solution in position space is in red and the dashed line corresponds
to a pure nuclear potential. These cross sections are calculated for a π+ (left)
and π− (right) on a 12C target at 50 MeV lab energy for a Woods-Saxon well
potential.

Note however that if this method gives satisfactory results for light and very light
targets it does not for heavier ones. Indeed, the procedure of Deltuva et al. [194] becomes
unstable when charges reach values of about Z = 20 and should not be applied to heavy
targets such as lead. This is clearly seen on Fig. G.6, similar to Fig. G.5 but for a 208Pb
target, and where we have used the same simple model as for 12C (i.e. a Fermi-Dirac
density for the density, a Woods-Saxon well for the nuclear π-A potential and a point-
sphere Coulomb potential, all with the same radii adjusted to lead).

To solve this problem, some alternatives might be explored in the future. On the
one hand, there is the matching method of Vincent and Phatak [205]. In this method,
the potential is separated into two zones above and below some sharp cut-off radius.
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Figure G.6: Same as Fig. G.5 on a 208Pb target.

This cut-off is chosen such that in the external zone, the potential is a pure Coulomb
potential. For small cut-offs, we can calculate the nuclear phaseshifts, in the internal zone
in momentum space without numerical instabilities. By matching these phaseshifts to
those of the second zone, which can be calculated analytically, we can then have access
to the phaseshifts of the whole potential. This method has been recently extended in
Ref. [206] to avoid taking a sharp cut-off and hence reducing the numerical instabilities
that can arise in the internal zone. On the other hand, there is the possibility to choose
the momentum-space Coulomb functions as a basis in the Lippmann-Schwinger equation.
Indeed, in the presence of a Coulomb interaction, this base is more suited than the plane-
wave one and the divergence of Eq. (8.97) is avoided. Moreover, the Green operators have
the same form as the free Green operators in the plane-wave basis Eq. (7.39). However,
the calculation of the Coulomb functions is non-trivial. Eremenko et al. have recently
regularized them in Refs. [207, 208]. Note however that this regularization has been
achieved only for positive projectiles.

The solution presented here with the screening Eq. (G.1) is considered satisfactory in
the case of a carbon target. This is especially true since in this work, I consider a neutral
pion. The Coulomb interaction is considered only once to test the MSU potential on π-A
elastic scattering data (see Fig. 8.10). I thus let these alternatives as a perspective of
this work. They might be needed in future works if one wants to refit the potential on
charged-pion elastic scattering data. But I also leave this as a perspective.
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H Development of the second order potential in the
tρ approximation

H.1 General form of the second-order potential
The first term of the second order potential in Eq. (8.27) can be re-written as

V 2nd,1
πA,opt(~k′π, ~kπ) = A(A− 1)

∫ (
A∏
i=1

dxi

)
dx ′1dx

′
2
d~p ′1

(2π)3
d~p1

(2π)3
d~p ′2

(2π)3
d~p2

(2π)3 e
i(~p ′1~r ′1+~p ′2~r ′2−~p1~r1−~p2~r2)

Φ†0(x′1, x′2, x3, . . . , xA)
〈
~k′π, ~p

′
1, ~p

′
2

∣∣∣∣ tπN,2 1
α0
tπN,1

∣∣∣∣~kπ, ~p1, ~p2

〉
Φ0(x1, x2, x3, . . . , xA)

(H.1)

We can introduce a closure relation on the intermediate momentum ~k′′π between the tran-
sition operators such that we have

V 2nd,1
πA,opt(~k′π, ~kπ) = A(A− 1)

∫ (
A∏
i=1

dxi

)
dx′1dx

′
2
d~p ′1

(2π)3
d~p1

(2π)3
d~p ′2

(2π)3
d~p2

(2π)3
d~k′′

(2π)3 e
i(~p ′1~r ′1+~p ′2~r ′2−~p1~r1−~p2~r2)

Φ†0(x′1, x′2, x3, . . . , xA)
〈
~k′π, ~p

′
2

∣∣∣ tπN ∣∣∣~k′′π, ~p2
〉 1
α0(k′′π)

〈
~k′′π, ~p

′
1

∣∣∣ tπN ∣∣∣~kπ, ~p1
〉

Φ0(x1, x2, x3, . . . , xA)

(H.2)

where the dependence of α0 on k′′π has been made explicit. Note that the conservation of
momentum at each step of the reaction requires~k

′′
π + ~p ′1 = ~kπ + ~p1

~k′π + ~p ′2 = ~k′′π + ~p2
(H.3)

which, combined, imply the conservation of momentum ~k′π + ~p ′1 + ~p ′2 = ~kπ + ~p1 + ~p2. As
in Eq. (7.73), the bra-ket is short for〈

~k′π, ~p
′
2

∣∣∣ tπN,2 ∣∣∣~k′′π, ~p2
〉

= (2π)3δ(~k′′π + ~p ′1 − ~kπ − ~p1)tπN(~k′π, ~p ′2;~k′′π, ~p2) (H.4)〈
~k′′π, ~p1

∣∣∣ tπN,1 ∣∣∣~kπ, ~p1
〉

= (2π)3δ(~k′π + ~p ′2 − ~k′′π − ~p2)tπN(~k′′π, ~p ′1;~kπ, ~p1) (H.5)

Let me define the transfer momenta ~q1 and ~q2 at each step as~q1 = ~k′′π − ~kπ
~q2 = ~k′π − ~k′′π

(H.6)

In a similar fashion as what had been done for the first order, we can shift the integration
variables ~p1 = ~p + ~q1/2 and ~p ′1 = ~p ′ − ~q1/2 as well as ~p2 = ~−p + ~q2/2 and ~p ′2 = ~−p ′ − ~q2/2.
Note also that the momentum conservation deltas then cancel the integrals on ~p ′ and ~−p ′

V 2nd,1
πA,opt(~k′π, ~kπ) = A(A− 1)

∫ (
A∏
i=1

dxi

)
dx′1dx

′
2
d~p

(2π)3
d~−p

(2π)3
d~k′′π

(2π)3 e
i

[(
~−p− ~q2

2

)
~r ′2−
(
~−p+ ~q2

2

)
~r2

]

Φ†0(x′1, x′2, x3, . . . , xA)Φ0(x1, x2, x3, . . . , xA)ei
[(
~p− ~q1

2

)
~r ′1−
(
~p+ ~q1

2

)
~r1

]
tπN(~k′π, ~−p − ~q2/2;~k′′π, ~−p + ~q2/2) 1

α0(k′′)tπN(~k′′π, ~p− ~q1/2;~kπ, ~p+ ~q1/2)

(H.7)
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If we factorize the nuclear recoil [see Eqs. (6.39)—(6.41)], we are left with

V 2nd,1
πA,opt(~k′π, ~kπ) = A(A− 1)

∑
σ1,2,σ′1,2

∑
τ1,2,τ ′1,2

∫ (
A−1∏
i=1

d~ξi

)
d~ξ′1d

~ξ′2d
~ζ
d~p

(2π)3
d~−p

(2π)3
d~k′′

(2π)3

e
i

[(
~p− ~q1

2

)(
~ζ−~ξ ′1−

~ξ ′2
A−1

)
−
(
~p+ ~q1

2

)(
~ζ−~ξ1−

~ξ2
A−1

)]
e
i

[(
~−p− ~q2

2

)
(~ζ−~ξ′2)−

(
~−p+ ~q2

2

)
(~ζ−~ξ2)

]
tπN(~k′π, ~−p − ~q2/2;~k′′π, ~−p + ~q2/2) 1

α0(k′′)tπN(~k′′π, ~p− ~q1/2;~kπ, ~p+ ~q1/2)

e
i~k′
(
~ζ−

~ξ′1
A
−

~ξ′2
A−1

)
φ†0;σ′1σ′2σ3...A;τ ′1τ ′2τ3...A

(~ξ′1, ~ξ′2, ~ξ3, . . . , ~ξA−1)

φ0;σ1σ2σ3...A;τ1τ2τ3...A(~ξ1, ~ξ2, ~ξ3, . . . , ~ξA−1)e−i
~k

(
~ζ−

~ξ1
A
−

~ξ2
A−1

)
(H.8)

As before for the first order, the integral on the first term of the exponential term in ~ζ is
simply the momentum conservation between the initial and final momenta. If we group
all the remaining exponentials, we are left with an exponential of argument
~kπ · ~ξ2

A− 1 −
~k′π · ~ξ′2
A− 1 + ~−p

(
~ξ2 − ~ξ ′2

)
+ ~q2

2
(
~ξ2 + ~ξ ′2

)
+
~kπ · ~ξ1

A
−
~k′π · ~ξ ′1
A

+ ~p
[(
~ξ1 − ~ξ ′1

)
+ 1
A− 1

(
~ξ2 − ~ξ ′2

)]
+ ~q1

2

[(
~ξ1 + ~ξ ′1

)
+ 1
A− 1

(
~ξ2 + ~ξ ′2

)]
(H.9)

By writing ~kπ into the trivial sum of two terms ~kπ/2 + ~kπ/2 and injecting the definition
of ~q1 Eqs. (H.6) in the second one, the alternative definition of ~kπ is ~kπ/2 + (~k′′π − ~q1)/2.
Similarly, we have ~k′π = ~k′π/2 + (~k′′π + ~q2)/2. Let me inject these definitions into the first
line of the argument of the exponential such that we have~−p +

~k′π + ~kπ
2(A− 1)

(~ξ2 − ~ξ′2
)

+
~kπ · ~ξ′2 − ~k′π~ξ2 + ~k′′π(~ξ2 − ~ξ′2)− ~q1 · ~ξ2 − ~q2 · ~ξ′2

2(A− 1) + ~q2

2
(
~ξ2 + ~ξ′2

)
(H.10)

=
~−p +

~k′π + ~kπ
2(A− 1)

(~ξ2 − ~ξ′2
)

+ −~q1 · ~ξ′2 − ~q2 · ~ξ2 − ~q1 · ~ξ2 − ~q2 · ~ξ′2
2(A− 1) + ~q2

2
(
~ξ2 + ~ξ′2

)
(H.11)

=
~−p +

~k′π + ~kπ
2(A− 1)

(~ξ2 − ~ξ′2
)

+ 1
2

(
A− 2
A− 1~q2 −

~q1

A− 1

)(
~ξ2 + ~ξ′2

)
(H.12)

Similarly for the term of the second line, we have~p+
~k′π + ~kπ

2A

(~ξ1 − ~ξ ′1
)

+ ~p

A− 1
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− 1
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)(
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)
+ ~q1
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(
~ξ2 + ~ξ ′2

)
(H.13)

If we sum both lines, we have~−p + ~p

A− 1 +
~k′π + ~kπ
2(A− 1)

(~ξ2 − ~ξ ′2
)

+ 1
2
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+
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A

)(
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)
(H.14)
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Similarly to what we had done in first order, we can shift the variables ~−p → ~−p − ~p/(A−
1)− (~kπ + ~k′π)/2(A− 1) and then similarly ~p→ ~p− (~kπ + ~k′π)/2A. If we also plug in the
definition for the the 2-body density matrix Eq. (6.45) into Eq. (H.8), we have

V 2nd,1
πA,opt(~k′π, ~kπ) =

∑
σ1,2,σ′1,2

∑
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∫
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(2π)3 e
i~p2(~ξ2−~ξ ′2)ei~p1(~ξ1−~ξ ′1)
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2
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2
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A

)
(~ξ1+~ξ ′1)

tπN
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2(A− 1) −

~q2

2 ;~k′′π, ~−p −
~p
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2


1

α0(k′′π)tπN

~k′′π, ~p− ~k′π + ~kπ
2A − ~q1

2 ;~kπ, ~p−
~k′π + ~kπ

2A + ~q1

2

 (H.15)

Similarly to what has been done at the first order [see Eq. (7.81)], I will further simplify
this integral by making the factorization approximation [169, 170]. This assumes that the
tπN matrix is a slowly varying function of ~p and ~−p compared to the nucleus two-nucleon
density. The former is then evaluated at p = 0 and −p = 0. After integration on ~p and ~−p,
we then have

V 2nd,1
πA,opt(~k′π, ~kπ) =
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d~k′′π
(2π)3ρ2(~ξ1, ~ξ2|~ξ1, ~ξ2)ei

A−2
A−1~q2~ξ2e

i

(
A−1
A

~q1+ ~q2
A

)
~ξ1 1
α0(k′′π)

tπN

~k′π,− ~kπ + ~k′π
2(A− 1) −

~q2

2 ;~k′′π,−
~kπ + ~k′π
2(A− 1) + ~q2

2

 tπN
~k′′π,−~k′π + ~kπ

2A − ~q1

2 ;~kπ,−
~k′π + ~kπ

2A + ~q1

2


(H.16)

When writing explicitly the Fourier transform of the 2-body density matrix (6.47), this
finally gives

V 2nd,1
πA,opt(~k′π, ~kπ) =

∫ d~k′′π
(2π)3 ρ̂2

((
A− 1
A

~q1 + ~q2

A

)
,
A− 2
A− 1~q2

)
1

α0(k′′π)

tπN

~k′π,− ~kπ + ~k′π
2(A− 1) −

~q2

2 ;~k′′π,−
~kπ + ~k′π
2(A− 1) + ~q2

2

 tπN
~k′′π,−~k′π + ~kπ

2A − ~q1

2 ;~kπ,−
~k′π + ~kπ

2A + ~q1

2


(H.17)

It should be noted that for heavy nuclei, (A−1)/A ' 1, 1/A ' 0 and (A−2)/(A−1) ' 1
so that we can replace the arguments of the Fourier transform of the two-nucleon density
by q1 and q2. Since this is the second-order potential, it should not have that much of
an impact. I will thus make this approximation in order to have easier expressions in the
following. The final expression is thus

V 2nd,1
πA,opt(~k′π, ~kπ) =

∫ d~k′′π
(2π)3

ρ̂2 (~q1, ~q2)
α0(k′′π) tπN

(
~k′π, ~p

′
2,eff ;~k′′π, ~p2,eff

)
tπN

(
~k′′π, ~p

′
1,eff ;~kπ, ~p1,eff

)
(H.18)
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where the effective nucleon momenta read

~p1,eff=−
~k′π + ~kπ

2A + ~q1

2 ~p2,eff=−
~kπ + ~k′π
2(A− 1) + ~q2

2 (H.19)

~p ′1,eff=−
~k′π + ~kπ

2A − ~q1

2 ~p ′2,eff=−
~kπ + ~k′π
2(A− 1) −

~q2

2 (H.20)

The second term of the second order potential in Eq. (8.27) is simpler to handle and
is really similar to what has been done for the first order

V 2nd,2
πA,opt(~k′π, ~kπ) = −A− 1

A

∫ d~k′′π
(2π)3

1
α0(k′′π) tπN

(
~k′π, ~p

′
2,eff ;~k′′π, ~p2,eff

)
tπN

(
~k′′π, ~p

′
1,eff ;~kπ, ~p1,eff

)
ρ̂1 (q2) ρ̂1 (q1)

(H.21)

Since this is second order, we will also consider q̃i ' qi, which is nonetheless a good
approximation in the case of heavy nuclei. When recollecting both terms, the second-
order of the potential reads

V 2nd
πA,opt(~k′π, ~kπ) =

∫ d~k′′π
(2π)3

ρ̂2 (~q1, ~q2)
α0(k′′π) tπN

(
~k′π, ~p

′
2,eff ;~k′′π, ~p2,eff

)
tπN

(
~k′′π, ~p

′
1,eff ;~kπ, ~p1,eff

)

− A− 1
A

∫ d~k′′π
(2π)3

1
α0(k′′π) tπN

(
~k′π, ~p

′
2,eff ;~k′′π, ~p2,eff

)
tπN

(
~k′′π, ~p

′
1,eff ;~kπ, ~p1,eff

)
ρ̂1 (q2) ρ̂1 (q1)

(H.22)

In this work, I consider coherent processes only, where the nucleus remains in its ground
state. The summation on spins σ1, σ

′
1, σ2, σ

′
2 and iso-spins τ1, τ

′
1, τ2, τ

′
2 that is contained

in ρ̂2 should only contain terms where {σ1, σ2; τ1, τ2} is either equal to {σ′1, σ′2; τ ′1, τ ′2}
or {σ′2, σ′1; τ ′2, τ ′1}. Let me note that there are then three different combinations for the
scattering of the pion. The pion can scatter twice in an s-wave, or twice in a p-wave
but it also can scatter in a p-wave and then in an s-wave (and conversely). Contrary to
the results at first order [see Eq. (8.26)], the spin- and isospin-flip parts of the potential
(coefficients b1 and c1 of the π-N scattering amplitude in Eq. (8.12)) can hence contribute
at the second order. Note however that because we are left with a nucleus in its ground
state, only products of the type bibi, bici or cici remain.

We can split the second order further into

V 2nd
πA,opt = V 2nd,1

πA,opt + V 2nd,2
πA,opt (H.23)

= V 2nd,1
πA,opt,ss + V 2nd,1

πA,opt,sp + V 2nd,1
πA,opt,pp + V 2nd,2

πA,opt,ss + V 2nd,2
πA,opt,sp + V 2nd,2

πA,opt,pp (H.24)

Let me start with the first ss term V 2nd,1
πA,opt,ss. On the one hand, for the isospin-flip part

of the potential (b1), only the exchange term of the two-nucleon density (see Eq. (6.14))
contributes. Moreover, a factor two appears after the summation. On the other hand, for
the spin-isospin independent part (b0), the whole two-nucleon density contributes. The
first ss term of the second order potential will hence obey

V 2nd,1
opt,ss(~k′π, ~kπ) ∝

∫ d~k′′π
(2π)3

1
α0(k′′π)

[
b2

0ρ̂2 (~q1, ~q2) + 2b2
1ρ̂ex(~q1, ~q2)

]
(H.25)

where I have used
ρ̂ex(~q1, ~q2) = ρ̂2 (~q1, ~q2)− ρ̂1 (q2) ρ̂1 (q1) (H.26)

198



It should be noted that according to Eq. (8.25), the tπN scattering amplitudes should be
considered in the π-A centre-of-mass frame. As we have seen for photoproduction [see
Eq. (7.92)] and for first-order π-A scattering [see Eq. (8.25)], the kinematical factor is
dependent on the momenta of the initial and final systems. In the second-order of the
potential, these kinematical factors will also depend on the intermediate momentum of
the pion. This complicates expressions as the t-matrices are found inside of the integral.
In order to simplify expressions, I will consider that this dependence can be taken out
of the intergal. This is depicted by the use of the proportionality sign, which reminds
concisely that kinematical factors should be considered.

The reasoning for sp and pp terms is the same except that we also need take the scalar
products into account

V 2nd,1
opt,sp(~k′π, ~kπ) ∝

∫ d~k′′π
(2π)3

~̃k′π · ~̃k′′π + ~̃k′′π · ~̃kπ
α0(k′′π) [b0c0ρ̂2 (~q1, ~q2) + 2b1c1ρ̂ex(~q1, ~q2)] (H.27)

V 2nd,1
opt,pp(~k′π, ~kπ) ∝

∫ d~k′′π
(2π)3

(~̃k′π · ~̃k′′π)(~̃k′′π · ~̃kπ)
α0(k′′π)

[
c2

0ρ̂2 (~q1, ~q2) + 2c2
1ρ̂ex(~q1, ~q2)

]
(H.28)

where I remind the reader that the tilde denotes momenta evaluated in the π-N centre-
of-mass frame.

The second term of the second order [see eq. (H.22)] is easier to handle. For this term,
only the isospin-independent part contributes after the summation has been performed.
We hence have

V 2nd,2
opt,ss(~k′π, ~kπ) ∝

∫ d~k′′π
(2π)3

1
α0(k′′π)

(
−b2

0
A− 1
A

ρ̂1 (q2) ρ̂1 (q1)
)

(H.29)

V 2nd,2
opt,sp(~k′π, ~kπ) ∝

∫ d~k′′π
(2π)3

~̃k′π · ~̃k′′π + ~̃k′′π · ~̃kπ
α0(k′′π)

(
−b0c0

A− 1
A

ρ̂1 (q2) ρ̂1 (q1)
)

(H.30)

V 2nd,2
opt,pp(~k′π, ~kπ) ∝

∫ d~k′′π
(2π)3

(~̃k′π · ~̃k′′π)(~̃k′′π · ~̃kπ)
α0(k′′π)

(
−c2

0
A− 1
A

ρ̂1 (q2) ρ̂1 (q1)
)

(H.31)

We can combine these results by separating (A− 1)/A = 1− 1/A such that we finally
have

V 2nd
opt,ss(~k′π, ~kπ) ∝

∫ d~k′′π
(2π)3

1
α0(k′′π)

[
(b2

0 + 2b2
1)ρ̂ex(~q1, ~q2) + b2

0
A
ρ̂1 (q2) ρ̂1 (q1)

]
(H.32)

V 2nd
opt,sp(~k′π, ~kπ) ∝

∫ d~k′′π
(2π)3

~̃k′π · ~̃k′′π + ~̃k′′π · ~̃kπ
α0(k′′π)

[
(b0c0 + 2b1c1)ρ̂ex(~q1, ~q2) + b0c0

A
ρ̂1 (q2) ρ̂1 (q1)

]
(H.33)

V 2nd
opt,pp(~k′π, ~kπ) ∝

∫ d~k′′π
(2π)3

(~̃k′π · ~̃k′′π)(~̃k′′π · ~̃kπ)
α0(k′′π)

[
(c2

0 + 2c2
1)ρ̂ex(~q1, ~q2) + c2

0
A
ρ̂1 (q2) ρ̂1 (q1)

]
(H.34)

As we can see from these expressions, the two-nucleon density is needed to calculate
the second order of the potential. As discussed in Sec. 6, in this work, I will apply my
model to several nuclei described by different densities, for which two-nucleon densities
are not always known. In order to palliate this issue, I will have to use another form of
the π-A potential. This choice will be discussed in Ref. [?].
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In future works, the influence of the uncertainty on the parameters of this potential
(b0,1 and c0,1 [see Eq. (8.12)]) and the influence of the second order could be of interest.
In the idea of laying a path for this study, I will try and particularise the expressions
Eqs. (H.32)—(H.34) to the simple case of 12C in the HO model. This is the subject of
next section. The reader that would not be interested in this derivation, can skip this
section and go back to Eq. (8.28), from which this appendix originates.

H.2 Particularisation to 12C in the HO model
In this section, le me apply the HO model of Sec. 6.2.2 to calculate an analytical form
of the second order of the π-A potential. While for the first order, this task is simple
and only requires to insert expression (6.24) in Eq. (8.26), the evaluation of second-order
terms requires a bit more work because of the integral on intermediate pion momenta.

First, let me note that the two-nucleon density distribution in the case of a closed-shell
N = Z nucleus reads

ρ2(~r1, ~r2) = ρ1(~r1)ρ1(~r2)− 1
4 |ρ1(~r1|~r2)|2 (H.35)

The 12C nucleus does not fall into this category as in an extreme shell-model, its 0s1/2
shell and 0p3/2 sub-shell are closed but its 0p1/2 sub-shell remains open. Because the
two-nucleon density distribution is used only for the second order of the potential, I will
assume the expression (H.35) to hold even for 12C. From Eq. (6.23), the two-nucleon
density distribution can be calculated and reads

ρ2(~r1, ~r2) = 4
π3a6

4
(

1 + 4
3
r2

1
a2

)(
1 + 4

3
r2

2
a2

)
−
(

1 + 4
3
~r1 · ~r2

a2

)2
 e− r2

1+r2
2

a2 (H.36)

Its momentum space counterpart reads

ρ̂2(~q1, ~q2) = 4
3

[
101− 34

3 a
2(q2

1 + q2
2) + 2a2(~q1 · ~q2)− 1

3a
4(~q1 · ~q2)2 + 4

3a
4q2

1q
2
2

]
e−

a2
4 (q2

1+q2
2)

(H.37)
It should be noted how because of my assumption (H.35), the normalisation ρ̂2(0, 0) =
12× 11 + 8/3 is slightly different from A(A− 1) [see Eq. (6.11)]. However, since this term
only exists in second order and the difference is of a mere percent, I will keep this form.

The exchange part of the ss term (H.32) can be rewritten as

V 2nd
opt,ss,ex(~k′π, ~kπ) ∝ (b2

0 + 2b2
1)

×
∫ d~k′′π

(2π)3

4
3

[
−7 + 2a2(~q1 · ~q2) + 2

3a
2(q2

1 + q2
2)− 1

3a
4(~q1 · ~q2)2

]
e−

a2
4 (q2

1+q2
2)

α0(k′′π)
(H.38)

where ρ̂ex has been replaced by its explicit expression in the HO model. Note that by
taking b0 and b1 out of the integral, I assume that they are constant for any intermediate
momentum k′′π.

The propagator α−1
0 can be replaced by its non relativistic [see Eq. (7.39)] or relativistic

form [see Eq. (7.47)]. Because the non-relativistic one is easier and analytically tractable,
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I will consider this one only. We then have

V 2nd
opt,ss,ex(~k′π, ~kπ) ∝ (b2

0 + 2b2
1)

×
∫ d~k′′π

(2π)3

4
3

[
−7 + 2a2(~q1 · ~q2) + 2

3a
2(q2

1 + q2
2)− 1

3a
4(~q1 · ~q2)2

]
e−

a2
4 (q2

1+q2
2)

k2
π,0 − k′′2π + iε

(H.39)
It is useful to rewrite ρ̂ex in a more convenient form inside this integral. To do so, note
that the scalar product ~q1 · ~q2 can be rewritten in the form

~q1 · ~q2 = (~q1 + ~q2)− (q2
1 + q2

2)
2 (H.40)

= q2 − (q2
1 + q2

2)
2 (H.41)

by using the definitions Eqs. (8.17) and (H.6). Using this expression we can simply rewrite
ρ̂ex into the form

ρ̂ex(~q1, ~q2) = 4
3

[
−7 + 2a2(~q1 · ~q2) + 2

3a
2(q2

1 + q2
2)− 1

3a
4(~q1 · ~q2)2

]
e−

a2
4 (q2

1+q2
2) (H.42)

= 4
3

[(
−7 + a2q2 − a4q4

12

)
+ a2

3

(
−1 + a2q2

2

)
(q2

1 + q2
2)− a4

12(q2
1 + q2

2)2
]
e−

a2
4 (q2

1+q2
2)

(H.43)

=
[
A+B(q2

1 + q2
2) + C(q2

1 + q2
2)2
]
e−

a2
4 (q2

1+q2
2) (H.44)

where A, B and C are only dependent on ~kπ and ~k′π but not on ~k′′π, such that they can
be considered constant inside of the integral. The integral can then be written as

V 2nd
opt,ss,ex(~k′π, ~kπ) ∝ (b2

0 + 2b2
1)
∫ d~k′′π

(2π)3
[A+B(q2

1 + q2
2) + C(q2

1 + q2
2)2] e−a

2
4 (q2

1+q2
2)

k2
π,0 − k′′2π + iε

(H.45)

Let me define the integral

I0 =
∫ d~k′′

(2π)3
e−

a2
4 (q2

1+q2
2)

k2
0 − k′′2 + iε

(H.46)

such that I can rewrite V 2nd
opt,ss,ex by simply deriving with respect to a2 and we have

V 2nd
opt,ss,ex(~k′π, ~kπ) ∝ (b2

0 + 2b2
1)
[
AI0 − 4B dI0

d(a2) + 16C d2I0

d(a2)2

]
(H.47)

The analytical expressions of I0 and its derivatives are given in App. I.1.
For the sp and pp terms, the two scalar products ~̃k′ · ~̃k′′ and ~̃k′′ · ~̃k in Eqs. (H.33) and

(H.34) need to be converted to the πA frame. This can be done according to Eq. (7.87).
In order to simplify the problem, I will consider only the dominant term and simply drop
the tilde.

Similarly to the ss term, the exchange part of the sp term can then simply be rewritten
as

V 2nd
opt,sp,ex(~k′π, ~kπ) ∝(b0c0 + 2b1c1)

×
∫ d~k′′π

(2π)3 (~k′π · ~k′′π + ~k′′π · ~kπ) [A+B(q2
1 + q2

2) + C(q2
1 + q2

2)2] e−a
2

4 (q2
1+q2

2)

k2
π,0 − k′′2π + iε

(H.48)
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where I have used the same constants A, B and C as in Eq. (H.44). Similarly to V 2nd
opt,ss,ex,

this integral can be written as the sum of terms

V 2nd
opt,sp,ex(~k′π, ~kπ) ∝ (b0c0 + 2b1c1)

[
AI1 − 4B dI1

d(a2) + 16C d2I1

d(a2)2

]
(H.49)

where I1 is defined as the integral

I1 =
∫ d~k′′

(2π)3 (~k′ · ~k′′ + ~k′′ · ~k) e−
a2
4 (q2

1+q2
2)

k2
0 − k′′2 + iε

(H.50)

The analytical expressions of I1 and its derivatives are given in App. I.2.
Finally, the exchange part of the pp term can be rewritten as

V 2nd
opt,pp,ex(~k′π, ~kπ) ∝(c2

0 + 2c2
1)

×
∫ d~k′′π

(2π)3 (~k′π · ~k′′π)(~k′′π · ~kπ) [A+B(q2
1 + q2

2) + C(q2
1 + q2

2)2] e−a
2

4 (q2
1+q2

2)

k2
π,0 − k′′2π + iε

(H.51)

using the same constants A, B and C again. Similarly to the two previous terms, this
integral can be written as the sum of terms

V 2nd
opt,pp,ex(~k′, ~k) ∝ (c2

0 + 2c2
1)
[
AI2 − 4B dI2

d(a2) + 16C d2I2

d(a2)2

]
(H.52)

where I2 is defined as the integral

I2 =
∫ d~k′′

(2π)3 (~k′ · ~k′′)(~k′′ · ~k) e−
a2
4 (q2

1+q2
2)

k2
0 − k′′2 + iε

(H.53)

The analytical expressions of I2 and its derivatives are given in App. I.3.
The second term in Eqs. (H.32)—(H.34) is even more cumbersome. First, from

Eq. (6.24), we can rewrite the product of the Fourier transforms of the densities inside
the integral as

ρ̂1(~q1)ρ̂1(~q2) =
(

144− 16a2(q2
1 + q2

2) + 16
9 a

4q2
1q

2
2

)
e−

1
4a

2(q2
1+q2

2) (H.54)

=
(
D + E(q2

1 + q2
2) + Fq2

1q
2
2

)
e−

1
4a

2(q2
1+q2

2) (H.55)

The first two terms are similar to the first two terms of the exchange part of the two-body
density Eq. (H.44). As such, their treatment is identical. For the last term however, a
different approach is needed.

First, let me rewrite this last term as

Fq2
1q

2
2e
− 1

4 (a2
1q

2
1+a2

2q
2
2) (H.56)

where I have added artificially an index 1 and 2 to the harmonic oscillator parameter a.
It should be noted that this can be cast into the form

Fq2
1q

2
2e
− 1

4 (a2
1q

2
1+a2

2q
2
2) = 16F d2

d(a2
1)d(a2

2)
(
e−

1
4 (a2

1q
2
1+a2

2q
2
2)
)

(H.57)
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such that the last term of Eq. (H.55) is

Fq2
1q

2
2e
− 1

4 (a2(q2
1+q2

2) = 16F lim
a1→a
a2→a

d2

d(a2
1)d(a2

2)
(
e−

1
4 (a2

1q
2
1+a2

2q
2
2)
)

(H.58)

This form can be injected in the integrals Eqs. (H.32)—(H.34) and is tractable but will
lead to mathematical expressions that are very cumbersome. These are left to future works
(see also the thesis of V. Tsaran, in which similar developments have been performed).
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I Some mathematical developments for the second
order of the interaction

I.1 The integral I0

In this appendix I will solve the integral Eq. (H.46)

I0 =
∫ d~k′′

(2π)3
e−

a2
4 (q2

1+q2
2)

k2
0 − k′′2 + iε

(I.1)

By recalling Eqs. (H.6), let me first rewrite q2
1 + q2

2 in the exponent in the form

q2
1 + q2

2 = (~k′ − ~k′′)2 + (~k′′ − ~k)2 (I.2)
= 2k′′2 − 2(~k′ + ~k) · ~k′′ + k′2 + k2 (I.3)

= 2
[
k′′2 − 2~P · ~k′′ + k′2 + k2

2

]
(I.4)

= 2
[
(~k′′ − ~P )2 − P 2 + k′2 + k2

2

]
(I.5)

= 2
(~k′′ − ~P )2 + (~k′ − ~k)2

4

 (I.6)

= 2
[
(~k′′ − ~P )2 + q2

4

]
(I.7)

where in third line I have defined
~P =

~k′ + ~k

2 (I.8)

The integral then reads

I0 = e−
a2
8 q

2

(2π)3

∫
d~k′′

e−
a2
2 (~k′′−~P )2

k2
0 − k′′2 + iε

(I.9)

Note that for conciseness, I will rename k′′ → k and define Ĩ0 = (2π)3ea
2q2/8I0. I then

have

Ĩ0 =
∫
d~k

e−
a2
2 (~k−~P )2

k2
0 − k2 + iε

(I.10)

=
∫ 2π

0
dφ
∫ 1

−1
d cos θ

∫ ∞
0

k2dk

k2
0 − k2 + iε

e−
a2
2 k

2
e−

a2
2 P

2
ea

2kP cos θ (I.11)

= 1
a2P

2π
∫ ∞

0

kdk

k2
0 − k2 + iε

e−
a2
2 k

2
e−

a2
2 P

2 (
ea

2kP − e−a2kP
)

(I.12)

= 1
a2P

Î0 (I.13)

Let me pose x = k2
0 − k2 such that −dx/2 = kdk. We then have

Î0 = π
∫ k2

0

−∞

dx

x+ iε
e−

a2
2 (k2

0−x)e−
a2
2 P

2
(
ea

2
√
k2

0−xP − e−a2
√
k2

0−xP
)

︸ ︷︷ ︸
f(x)

(I.14)
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We can use the Sokhotski–Plemelj theorem on the real line

lim
ε→0+

∫ b>0

a<0

f(x) dx
x+ iε

= −iπf(x = 0) + P
(∫ b>0

a<0

f(x) dx
x

)
(I.15)

where P denotes the principal value integral, to rewrite Ĩ0 in the form

Î0 = −iπ2e−
a2
2 k

2
0e−

a2
2 P

2 (
ea

2k0P − e−a2k0P
)

+ 2πP
(∫ ∞

0

kdk

k2
0 − k2 e

−a
2

2 k
2
e−

a2
2 P

2 (
ea

2kP − e−a2kP
))

(I.16)

= −iπ2
(
e−

a2
2 (k0−P )2 − e−a

2
2 (k0+P )2

)
+ 2πP

(∫ ∞
0

kdk

k2
0 − k2

(
e−

a2
2 (k−P )2 − e−a

2
2 (k+P )2

))
(I.17)

The principal value term can be separated into two terms, such that there are two principal
value integrals Î0− and Î0+ such that

Î0 = −iπ2
(
e−

a2
2 (k0−P )2 − e−a

2
2 (k0+P )2

)
+ 2π(Î0− + Î0+) (I.18)

where

Î0± = ∓P
(∫ ∞

0

kdk

k2
0 − k2 e

−a
2

2 (k±P )2
)

(I.19)

Note that by taking k → −k in Î0+, we have

Î0+ = P
(∫ 0

−∞

kdk

k2
0 − k2 e

−a
2

2 (k−P )2
)

(I.20)

and we have
Î0− + Î0+ = P

(∫ ∞
−∞

kdk

k2
0 − k2 e

−a
2

2 (k−P )2
)

(I.21)

By using
k

k2
0 − k2 = 1

2

( 1
k0 − k

− 1
k0 + k

)
(I.22)

we can separate the principal value into

Î0− + Î0+ = 1
2P

(∫ ∞
−∞

dk

k0 − k
e−

a2
2 (k−P )2

)
− 1

2P
(∫ ∞
−∞

dk

k0 + k
e−

a2
2 (k−P )2

)
(I.23)

If we pose k′ = a(k − P )/
√

2, we have

Î0− + Î0+ = 1
2P

∫ ∞
−∞

dk′

a√
2(k0 − P )− k′ e

−k′2
− 1

2P
∫ ∞
−∞

dk
a√
2(k0 + P ) + k′

e−k
′2

 (I.24)

= 1
2P

(∫ ∞
−∞

dk′
e−k

′2

z1 − k′
)

+ 1
2P

(∫ ∞
−∞

dk′
e−k

′2

z2 − k′
)

(I.25)

where I have defined 
z1 = a√

2
(k0 − P )

z2 = − a√
2

(k0 + P )
(I.26)
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Note that from App. J, we have that

Î0− + Î0+ =
√
π(F (z1) + F (z2)) (I.27)

such that
Î0 = (2π)3/2

[
−i12

√
π

2
(
e−z

2
1 − e−z2

2
)

+
√

2
2 (F (z1) + F (z2))

]
(I.28)

If we put all these results together, we finally have for I0

I0 = e−
a2
8 q

2

(2π)3/2
1
a2P

[
−i12

√
π

2
(
e−z

2
1 − e−z2

2
)

+
√

2
2 F (z1) +

√
2

2 F (z2)
]

(I.29)

Let me define I0,0 such that

I0 = e−
a2
8 q

2

(2π)3/2
1
a2P︸ ︷︷ ︸

I0,0

[
−i12

√
π

2
(
e−z

2
1 − e−z2

2
)

+
√

2
2 F (z1) +

√
2

2 F (z2)
]

︸ ︷︷ ︸
I0,1

(I.30)

The first order derivative of I0 reads

dI0

d(a2) = −8 + a2q2

8a2 I0 + I0,0

(
− P2a + z2

1
a2

[
i
1
2

√
π

2 e
−z2

1 −
√

2
2 F (z1)

]
− z2

2
a2

[
i
1
2

√
π

2 e
−z2

2 +
√

2
2 F (z2)

])
︸ ︷︷ ︸

I′0,1

(I.31)

and the second order derivative reads

d2I0

d(a2)2 = I0

a4 −
8 + a2q2

8a2
dI0

d(a2) −
8 + a2q2

8a2 I0,0I
′
0,1 + I0,0I

′′
0,1 (I.32)

where

I ′′0,1 = P

2a3 + z4
1
a4

[
i
1
2

√
π

2 e
−z2

1 +
√

2
2 F (z1)

]
+ z4

2
a4

[
i
1
2

√
π

2 e
−z2

2 +
√

2
2 F (z2)

]
−
√

2
4a

[
z3

1
a3 + z3

2
a3

]
(I.33)

I.2 The integral I1

In this appendix I will solve the integral Eq. (H.50)

I1 =
∫ d~k′′

(2π)3 (~k′ · ~k′′ + ~k′′ · ~k) e−
a2
4 (q2

1+q2
2)

k2
0 − k′′2 + iε

(I.34)

As I have done in Sec. I.1, I can use the definition Eq. (I.8) to write

I1 = e−
a2
8 q

2

(2π)3

∫
d~k′′ (2~k′′ · ~P ) e

−a
2

2 (~k′′−~P )2

k2
0 − k′′2 + iε

(I.35)
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If I rename k′′ → k and define Ĩ1 = (2π)3ea
2q2/8I1 we have

Ĩ1 =
∫
d~k (2~k · ~P ) e−

a2
2 (~k−~P )2

k2
0 − k2 + iε

(I.36)

=
∫ 2π

0
dφ
∫ 1

−1
d cos θ

∫ ∞
0

k2dk

k2
0 − k2 + iε

2kP cos θ e−a
2

2 k
2
e−

a2
2 P

2
ea

2kP cos θ (I.37)

= 2π
∫ ∞

0

k2dk

k2
0 − k2 + iε

2kP e−a
2

2 k
2
e−

a2
2 P

2 1
a4k2P 2

[
a2kP

(
ea

2kP + e−a
2kP

)
−
(
ea

2kP − e−a2kP
)]

(I.38)

which I will separate in two integrals

Ĩ1 = 2π 2
a2

∫ ∞
0

k2dk

k2
0 − k2 + iε

e−
a2
2 k

2
e−

a2
2 P

2 (
ea

2kP + e−a
2kP

)
(I.39)

− 2π 2
a4P

∫ ∞
0

kdk

k2
0 − k2 + iε

e−
a2
2 k

2
e−

a2
2 P

2 (
ea

2kP − e−a2kP
)

(I.40)

where we recognize the second term as a multiple of Î0. I can define Î1 such that

Ĩ1 = 2
a2 2π

∫ ∞
0

k2dk

k2
0 − k2 + iε

[
e−

a2
2 (k−P )2 + e−

a2
2 (k+P )2

]
− 2
a4P

Î0 (I.41)

= 2
a2 Î1 −

2
a4P

Î0 (I.42)

Let me pose again x = k2
0 − k2 such that −k dx/2 = k2dk

Î1 = π
∫ k2

0

−∞

dx

x+ iε

[√
k2

0 − x
(
e−

a2
2 (
√
k2

0−x−P )2 + e−
a2
2 (
√
k2

0−x+P )2
)]

︸ ︷︷ ︸
g(x)

(I.43)

use the Sokhotski–Plemelj theorem on the real line to rewrite Î1 in the form

Î1 = −iπ2k0

(
e−

a2
2 (k0−P )2 + e−

a2
2 (k0+P )2

)
+ 2πP

(∫ ∞
0

k2dk

k2
0 − k2

[
e−

a2
2 (k−P )2 + e−

a2
2 (k+P )2

])
(I.44)

= −iπ2k0

(
e−

a2
2 (k0−P )2 + e−

a2
2 (k0+P )2

)
+ 2π(Î1− + Î1+) (I.45)

where
Î1± = P

(∫ ∞
0

k2dk

k2
0 − k2 e

−a
2

2 (k±P )2
)

(I.46)

Note again that for k → −k, Î1+ becomes

Î1+ = P
(∫ 0

−∞

k2dk

k2
0 − k2 e

−a
2

2 (k−P )2
)

(I.47)

so that
Î1− + Î1+ = P

(∫ ∞
−∞

k2dk

k2
0 − k2 e

−a
2

2 (k−P )2
)

(I.48)
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and that by using
k2

k2
0 − k2 = k

2

( 1
k0 − k

− 1
k0 + k

)
(I.49)

I can separate the principal value into

Î1− + Î1+ = 1
2P

(∫ ∞
−∞

kdk

k0 − k
e−

a2
2 (k−P )2

)
− 1

2P
(∫ ∞
−∞

kdk

k0 + k
e−

a2
2 (k−P )2

)
(I.50)

which from App. J, gives

Î1− + Î1+ = 1
2P

∫ ∞
−∞

(√
2
a
k′ + P

)
dk′

z1 − k′
e−k

′2

+ 1
2P

∫ ∞
−∞

(√
2
a
k′ + P

)
dk′

z2 − k′
e−k

′2

 (I.51)

=
√
π

(
k0(F (z1)− F (z2))−

√
2
a

)
(I.52)

where I have used the same definitions Eq. (I.26) for z1 and z2. We then have for Î1

Î1 = (2π)3/2
[
−i12

√
π

2k0
(
e−z

2
1 + e−z

2
2
)

+
√

2
2 k0(F (z1)− F (z2))− 1

a

]
(I.53)

Finally, we have for I1

I1 = e−
a2
8 q

2

(2π)3/2
2
a2︸ ︷︷ ︸

2PI0,0

[
−i12

√
π

2k0
(
e−z

2
1 + e−z

2
2
)

+
√

2
2 k0(F (z1)− F (z2))− 1

a

]
− 2
a2 I0 (I.54)

The first order derivative reads

dI1

d(a2) = −8 + a2q2

8a2 I1 −
2
a2 I0,0I

′
0,1 + 2

a4 I0 (I.55)

+ 2PI0,0

[
k0
z2

1
a2

(
i
1
2

√
π

2 e
−z2

1 −
√

2
2 F (z1)

)
− k0

z2
2
a2

(
i
1
2

√
π

2 e
−z2

2 −
√

2
2 F (z2)

)
+ k2

0
2a + 1

2a3

]
︸ ︷︷ ︸

I1,1

(I.56)

and the second order one

d2I1

d(a2)2 = I1

a4 −
8 + a2q2

8a2
dI1

d(a2) + 2
a4 I0,0I

′
0,1 −

2
a2

[
d2I0

d(a2)2 −
I0

a4 + 8 + a2q2

8a2
dI0

d(a2)

]
(I.57)

− 4
a6 I0 + 2

a4
dI0

d(a2) − 2P 8 + a2q2

8a2 I0,0I1,1 (I.58)

+ 2PI0,0

[
−k0

z4
1
a4

(
i
1
2

√
π

2 e
−z2

1 −
√

2
2 F (z1)

)
+ k0

z4
2
a4

(
i
1
2

√
π

2 e
−z2

2 −
√

2
2 F (z2)

)
(I.59)

−
√

2k0

4a

(
z3

1
a3 −

z3
2
a3

)
− k2

0
4a3 −

3
4a5

]
(I.60)
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I.3 The integral I2

In this appendix I will solve the integral Eq. (H.53)

I2 =
∫ d~k′′

(2π)3 (~k′ · ~k′′)(~k′′ · ~k) e−
a2
4 (q2

1+q2
2)

k2
0 − k′′2 + iε

(I.61)

As I have done in Secs. I.1 and I.2, I can use the definition Eq. (I.8) to write

I2 = e−
a2
8 q

2

(2π)3

∫
d~k′′ (~k′ · ~k′′)(~k′′ · ~k) e

−a
2

2 (~k′′−~P )2

k2
0 − k′′2 + iε

(I.62)

In order to calculate this integral, let me define the different angles that characterize ~k,
~k′, ~k′′ and ~P . These angles and vectors are represented on Fig. I.1. Note that θP satisfies

cos θP = k + cos θ′k′√
k′2 + k2 + 2kk′ cos θ′

sin θP = sin θ′k′√
k′2 + k2 + 2kk′ cos θ′

(I.63)

and that θv = π/2− θP .

x

y

z

k

k′
θ′ k′′

φ′′

θ′′
P

θP

v

θv

y

Figure I.1: Definition of angles characterising the vectors ~k, ~k′, ~k′′ and ~P , ~v and
~y. The vectors in bold are unit vectors.

Let me define the new system of axes {y,v,P}. In this new system of axes, we have
~k = k(0, sin θP , cos θP )
~k′′ = k′′(sin θ cosφ, sin θ sinφ, cos θ)
~k′ = 2~P − ~k = (0,−k sin θP , 2P − k cos θP )

(I.64)

The double product of scalar products hence reads

(~k′ · ~k′′)(~k′′ · ~k) = k′′2
[

2(kP − k2 sin θP cos θP ) sin θ cos θ sinφ (I.65)
+(2kP − k2 cos θP ) cos θP cos2 θ (I.66)

−k2 sin2 θP sin2 φ sin2 θ
]

(I.67)

209



The integral Ĩ2 = (2π)3e
a2
8 q

2
I2 then reads

Ĩ2 = 2(kP − k2 sin θP cos θP )︸ ︷︷ ︸
f

∫ 2π

0
dφ sinφ

∫ 1

−1
sin θ cos θ d cos θ

∫ ∞
0

k′′4dk′′

k2
0 − k′′2 + iε

e−
a2
2 (~k′′−~P )2

(I.68)

+ (2kP − k2 cos θP ) cos θP︸ ︷︷ ︸
g

∫ 2π

0
dφ
∫ 1

−1
cos2 θ d cos θ

∫ ∞
0

k′′4dk′′

k2
0 − k′′2 + iε

e−
a2
2 (~k′′−~P )2

(I.69)

−k2 sin2 θP︸ ︷︷ ︸
h

∫ 2π

0
dφ sin2 φ

∫ 1

−1
sin2 θ d cos θ

∫ ∞
0

k′′4dk′′

k2
0 − k′′2 + iε

e−
a2
2 (~k′′−~P )2 (I.70)

Note that the integral on φ gives zero on the first line. For the other lines, we have, by
renaming k′′ → k,

Ĩ2 = 2πg
∫ 1

−1
cos2 θd cos θ

∫ ∞
0

k4dk

k2
0 − k2 + iε

e−
a2
2 (~k′′−~P )2 (I.71)

+ πh
∫ 1

−1
sin2 θd cos θ

∫ ∞
0

k4dk

k2
0 − k2 + iε

e−
a2
2 (~k′′−~P )2 (I.72)

which, if we replace sin2 θ = 1− cos2 θ, can be rewritten as

Ĩ2 = (2πg − πh)
∫ 1

−1
cos2 θd cos θ

∫ ∞
0

k4dk

k2
0 − k2 + iε

e−
a2k2

2 e−
a2P2

2 ea
2kP cos θ (I.73)

+ πh
∫ 1

−1
d cos θ

∫ ∞
0

k4dk

k2
0 − k2 + iε

e−
a2k2

2 e−
a2P2

2 ea
2kP cos θ (I.74)

which after integration on θ gives

Ĩ2 = (2πg − πh)
∫ ∞

0

k4dk

k2
0 − k2 + iε

e−
a2k2

2 e−
a2P2

2

[
ea

2kP − e−a2kP

a2kP
+ 2e

a2kP − e−a2kP

a6k3P 3 − 2e
a2kP + e−a

2kP

a4k2P 2

]
(I.75)

+ πh
∫ ∞

0

k4dk

k2
0 − k2 + iε

e−
a2k2

2 e−
a2P2

2

[
ea

2kP − e−a2kP

a2kP

]
(I.76)

In this expression we recognize Î0 and Î1 such that I can write

Ĩ2 = 2g − h
a4P 2

( 1
a2P

Î0 − Î1

)
+ g

a2P
Î2 (I.77)

= −2g − h
a4P 2

a2

2 Ĩ1 + g

a2P
Î2 (I.78)

where I have defined

Î2 = 2π
∫ ∞

0

k3dk

k2
0 − k2 + iε

e−
a2k2

2 e−
a2P2

2
[
ea

2kP − e−a2kP
]

(I.79)

which reads

Î2 = −iπ2k2
0

[
e−

a2
2 (k0−P )2 − e−a

2
2 (k0+P )2

]
+ 2πP

(∫ ∞
0

k3dk

k2
0 − k2

[
e−

a2
2 (k−P )2 − e−a

2
2 (k+P )2

])
(I.80)

= −iπ2k2
0

[
e−

a2
2 (k0−P )2 − e−a

2
2 (k0+P )2

]
+ 2π(Î2− + Î2+) (I.81)
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where again

Î2± = ∓P
(∫ ∞

0

k3dk

k2
0 − k2 e

−a
2

2 (k±P )2
)

(I.82)

For k → −k, Î2+ becomes

Î2+ = P
(∫ 0

−∞

k3dk

k2
0 − k2 e

−a
2

2 (k−P )2
)

(I.83)

so that
Î2− + Î2+ = P

(∫ ∞
−∞

k3dk

k2
0 − k2 e

−a
2

2 (k−P )2
)

(I.84)

and that by using
k3

k2
0 − k2 = k2

2

( 1
k0 − k

− 1
k0 + k

)
(I.85)

I can separate the principal value into

Î2− + Î2+ = 1
2P

(∫ ∞
−∞

k2dk

k0 − k
e−

a2
2 (k−P )2

)
− 1

2P
(∫ ∞
−∞

k2dk

k0 + k
e−

a2
2 (k−P )2

)
(I.86)

which from App. J, gives

Î2− + Î2+ = 1
2P

∫ ∞
−∞

(
2
a2k
′2 + 2

√
2

a
Pk′ + P 2

)
dk′

z1 − k′
e−k

′2

+ 1
2P

∫ ∞
−∞

(
2
a2k
′2 + 2

√
2

a
Pk′ + P 2

)
dk′

z2 − k′
e−k

′2


(I.87)

=
√
π

[
k2

0(F (z1) + F (z2))−
√

2P
a

]
(I.88)

where I have used the same definitions Eq. (I.26) for z1 and z2. We then have for Î2

Î2 = (2π)3/2
[
−i12

√
π

2k
2
0

(
e−z

2
1 − e−z2

2
)

+
√

2
2 k2

0(F (z1) + F (z2))− P

a

]
(I.89)

Finally, we have for I2

I2 = e−
a2
8 q

2

(2π)3/2
g

a2P

[
k2

0

(
−i12

√
π

2
(
e−z

2
1 − e−z2

2
)

+
√

2
2 (F (z1) + F (z2))

)
− P

a

]
− 2g − h

2a2P 2 I1

(I.90)

= gk2
0I0 −

gP

a
I0,0 −

2g − h
2a2P 2 I1 (I.91)

where g and h are defined in Eqs. (I.69) and (I.70). The first order derivative

dI2

d(a2) = gk2
0
dI0

d(a2) + gP

2a3 I0,0 + 8 + a2q2

8a2
gP

a
I0,0 + 2g − h

2a2P 2

[
1
a2 I1 −

dI1

d(a2)

]
(I.92)

and second order reads

d2I2

d(a2)2 = gk2
0
d2I0

d(a2)2 −
gP

a
I0,0

 7
4a4 + 8 + a2q2

8a2 +
(

8 + a2q2

8a2

)2
− 2g − h

2a2P 2

[
2
a4 I1 −

2
a2

dI1

d(a2) + d2I1

d(a2)2

]
(I.93)
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J The Hilbert Transform and the Dawson integral
The Hilbert transform of a function f(x) is defined as [209]

H(f(x))(t) = 1
π
P
(∫ ∞
−∞

f(x)
t− xdx

)
(J.1)

In the particular case where f(x) = exp(−x2), we have

H(e−x2)(t) = 1
π
P
(∫ ∞
−∞

e−x
2

t− xdx
)

(J.2)

= 2√
π
F (t) (J.3)

where F (t) is the Dawson integral [203, 209], defined as

F (t) = e−t
2
∫ t

0
ey

2
dy (J.4)

and which has the properties

F (−t) = −F (t) (J.5)
dF (t)
dt

= 1− 2tF (t) (J.6)

Note that the Hilbert transform of xf(x) is then

H(xf(x))(t) = 1
π
P
(∫ ∞
−∞

xf(x)
t− x dx

)
(J.7)

= 1
π
P
(∫ ∞
−∞

(t− s)f(t− s)
s

ds

)
(J.8)

= 1
π
P
(∫ ∞
−∞

tf(t− s)
s

ds

)
− 1
π

∫ ∞
−∞

f(t− s)ds (J.9)

= tH(f(x))(t)− 1
π

∫ ∞
−∞

f(x)dx (J.10)

We can generalise these results for the Hilbert transform of any function xnf(x)

H(xnf(x))(t) = tnH(f(x))(t)− 1
π

n∑
i=1

tn−i
∫ ∞
−∞

xi−1f(x)dx (J.11)

In the case of f(x) = exp(−x2), we thus have

H(xe−x2)(t) = 1√
π

[2tF (t)− 1] (J.12)

H(x2e−x
2)(t) = t√

π
[2tF (t)− 1] (J.13)
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