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Abstract

The Bondi-Metzner-Sachs-van der Burg (BMS) group is the asymptotic symmetry
group of radiating asymptotically flat spacetimes. It has recently received renewed
interest in the context of the flat holography and the infrared structure of grav-
ity. In this thesis, we investigate the consequences of considering extensions of the
BMS group in four dimensions with superrotations. In particular, we apply the
covariant phase space methods on a class of first order gauge theories that includes
the Cartan formulation of general relativity and specify this analysis to gravity in
asymptotically flat spacetime. Furthermore, we renormalize the symplectic struc-
ture at null infinity to obtain the generalized BMS charge algebra associated with
smooth superrotations. We then study the vacuum structure of the gravitational
field, which allows us to relate the so-called superboost transformations to the ve-
locity kick/refraction memory effect. Afterward, we propose a new set of boundary
conditions in asymptotically locally (A)dS spacetime that leads to a version of the
BMS group in the presence of a non-vanishing cosmological constant, called the A-
BMS asymptotic symmetry group. Using the holographic renormalization procedure
and a diffeomorphism between Bondi and Fefferman-Graham gauges, we construct
the phase space of A-BMS and show that it reduces to the one of the generalized
BMS group in the flat limit.
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Chapter 1

Introduction

To specify most of the physical theories, one has to consider two ingredients: the
kinematics which defines the allowed states and observables of the system, and the
dynamics which dictates the evolution of the state through some equations of motion.
An essential piece to define the kinematics is the set of boundary conditions that
selects, using the equations of motion, the allowed solutions of the theory. Depending
on the context, this set of boundary conditions should enable one to determine the
exact initial conditions/characteristic initial value problem that one has to provide to
select a particular solution in the allowed space. The choice of boundary conditions
is dictated by the physical situation one wants to describe. As broadly illustrated
in this thesis, several sets of boundary conditions may be relevant to specify the
kinematics for the same dynamical part of the theory.

In this work, we are mainly interested by the study of boundary conditions in
gauge theories, and especially in general relativity. Indeed, gauge theories are of
major importance in physics since they are involved in the description of the four
fundamental interactions through the standard model of particle physics and the
general relativity theory. Furthermore, as their name suggests, gauge theories ex-
hibit some symmetries of the dynamics called gauge symmetries. Among the gauge
symmetries preserving the chosen boundary conditions, several will be trivial and
seen as redundancies of the theory, while others will change the physical state of the
system by their actions. The latter are called asymptotic symmetries and form a
group (or, more generally, a groupoid) known as the asymptotic symmetry group.
In particular, different sets of boundary conditions lead to different asymptotic sym-
metry groups.

In a series of seminal papers [1-3], Bondi, Metzner, Sachs and van der Burg have
shown that the asymptotic symmetry group of four-dimensional general relativity
in asymptotically flat spacetimes at null infinity is an infinite-dimensional group
enhancing the Poincaré group and is called the (global) BMS group. It is given by
the the semi-direct product between the Lorentz group and an infinite-dimensional
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enhancement of the translations, called the supertranslations. This result was very
surprising since one could have naively expected to find the symmetry group of flat
space by studying the behaviour of the gravitational field in asymptotic regions.
However, this infinite-dimensional enhancement was necessary to allow for some
radiative spacetime solutions. Furthermore, this analysis led to the Bondi mass
loss formula, which states that the the flux of energy-momentum at null infinity is
positive. This argument served to resolve the then-controversial debate of whether
gravitational waves are physical or a pure gauge artifact of the linearized theory [4].

An extension of the global BMS algebra has recently been proposed, called the
extended BMS algebra [5-7]. More precisely, the Lorentz part of the semi-direct sum
defining the BMS algebra has been enhanced into the infinite-dimensional algebra
of conformal transformations in two dimensions. These new symmetries are called
superrotations (or super-Lorentz transformations [8]). At the level of the group,
these superrotations are singular when considering the topology of the sphere as
sections of null infinity. Therefore, only the global subgroup of the extended BMS
group is globally well defined, which justifies the epithet “global”. As discussed in
the following, this singular extension has been shown to be of major importance
when considered as symmetries of the S-matrix of quantum gravity [9-11]. Even
more recently, an alternative extension of the BMS group has been considered by
replacing the singular superrotations with smooth Diff(S5?) superrotations [12,13].
This new extension, called the generalized BMS group, is made possible by relaxing
the definition of asymptotic flatness and allowing a fluctuating induced boundary
metric.

It should be noted that the analysis of asymptotic symmetries in general rela-
tivity has been purused for other types of asymptotics and other spacetime dimen-
sions, including three- and four-dimensional asymptotically anti-de Sitter (AdS)
and asymptotically de Sitter (dS) spacetimes (see e.g. [14-19]). Furthermore, it has
been performed on other types of gauge theories including Maxwell, Yang-Mills and
Chern-Simons theories (see e.g. [20-26]). The interests of these investigations are
various and depend on the main research question. In section 1.1, following [27],
we relate the study of asymptotic symmetries in gauge theories with major research
directions in theoretical physics.

1.1 Use of asymptotic symmetries

The study of asymptotic symmetries in gauge theories is an old subject that has
recently received renewed interest. A first direction is motivated by the AdS/CFT
correspondence where the asymptotic symmetries of the gravity theory in the bulk
spacetime correspond to the global symmetries of the dual quantum field theory
through the holographic dictionary [28-32]. A strong control of asymptotic symme-
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tries allows us to investigate new holographic dualities. A second direction is driven
by the recently-established connections among asymptotic symmetries, soft theo-
rems and memory effects [10]. These connections furnish crucial information about
the infrared structure of quantized gauge theories. In gravity, they may be relevant
to solve the long-standing problem of black hole information paradox [33-37].

1.1.1 Holography

The holographic principle states that quantum gravity can be described in terms
of lower-dimensional dual quantum field theories [28,29]. A concrete realization
of the holographic principle asserts that the type IIB string theory living in the
bulk spacetime AdSs x S° is dual to the N' = 4 supersymmetric Yang-Mills theory
living on the four-dimensional spacetime boundary [30]. The gravitational theory is
effectively living in the five-dimensional spacetime AdSs, the five dimensions of the
factor S® being compactified. A first extension of this original holographic duality
is the AdS/CFT correspondence, which tells us that the gravitational theory living
in the (d + 1)-dimensional asymptotically AdS spacetime is dual to a CFT living
on the d-dimensional boundary. Other holographic dualities with different types
of asymptotics have also been studied. A holographic dictionary enables one to
interpret properties of the bulk theory in terms of the dual boundary theory. For
example, the dictionary poses the following relationship between the symmetries of
the two theories:

Gauge symmetries in the bulk theory
— (1.1.1)
Global symmetries in the boundary theory.

More specifically for us, consider a given bulk solution space with asymptotic sym-
metries. The correspondence tells us that a set of quantum field theories exist that
are associated with the bulk solutions, such that in the UV regime, the global sym-
metries of these theories are exactly the asymptotic symmetries of the bulk solution
space. Even if the AdS/CFT correspondence has not been proven yet, it has been
verified in a number of situations and extended in various directions.

We now mention a famous hint in favour of this correspondence using the relation
(1.1.1). Brown and Henneaux have shown that the asymptotic symmetry group for
asymptotically AdS3 spacetime with Dirichlet boundary conditions is given by the
infinite-dimensional group of conformal transformations in two dimensions. Further-
more, they have revealed that the associated surface charges are finite, are integrable,
and exhibit a non-trivial central extension in their algebra. This Brown-Henneaux
central charge is given by

3¢

el (1.1.2)

C =
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where ¢ is the AdS; radius (A = —1/¢?) and G is the gravitational constant. The
AdS/CFT correspondence indicates that there is a set of two-dimensional dual con-
formal field theories. The remarkable fact is that, when inserting the central charge
(1.1.2) into the Cardy entropy formula valid for 2d CFT [38], this reproduces exactly
the entropy of three-dimensional BTZ black hole solutions [39,40].

The holographic principle is believed to hold in all types of asymptotics. In
particular, in asymptotically flat spacetimes, from the correspondence (1.1.1), the
dual theory would have BMS as the global symmetry. Important steps have been
taken in this direction in three and four dimensions (see e.g. [41-48| and references
therein). Furthermore, in four-dimensional asymptotically flat spacetimes, traces of
two-dimensional CF'T seem to appear, enabling the use of well-known techniques of
the AdS/CFT correspondence [6,49-57|. The global BMS symmetry can be seen as
a conformal Carroll symmetry [58-60], which is especially relevant in the context of
the fluid /gravity correspondence [61-66].

1.1.2 Infrared structure of gauge theories

A connection has recently been established among various areas of gauge theories
that are a priori unrelated, namely asymptotic symmetries, soft theorems and mem-
ory effects (see [10] for a review). These fields of research are often referred to as
the three corners of the infrared triangle of gauge theories (see figure 1.1).

Asymptotic
symmetries

Soft
theorems

’ ) Memory

effects

Figure 1.1: Infrared sector of gauge theories.

The first corner is the area of asymptotic symmetries, which is extensively stud-
ied in this thesis. The second corner is the topic of soft theorems |[67-71|. These
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theorems state that any (n + 1)-particles scattering amplitude involving a massless
soft particle, namely a particle with momentum ¢ — 0 (that may be a photon, a
gluon or a graviton), is equal to the n-particles scattering amplitude without the
soft particle, multiplied by the soft factor, plus corrections of order ¢°. We have

Mn+1(q7p17 e pn) = S(O)Mn(pla .. pn) + O(qo), (113)

where S(© ~ ¢! is the soft factor whose precise form depends on the nature of
the soft particle involved. Taking as soft particle a photon, gluon or graviton will
respectively lead to the soft photon theorem, soft gluon theorem and soft graviton
theorem. A remarkable property is that the soft factor is independent of the spin
of the n particles involved in the process. Furthermore, some so-called subleading
soft theorems have been established for the different types of soft particles and they
provide some information about the subleading terms in ¢ [72-76]. They take the
form

where S0 ~ ¢% is the subleading soft factor. Proposals for sub-subleading soft
theorems can also be found |77-79).

The third corner of the triangle is the topic of memory effects [80-89]. In gravity,
the displacement memory effect occurs, for example, in the passage of gravitational
waves. It can be shown that this produces a permanent shift in the relative positions
of a pair of inertial detectors. This shift is controlled by a field in the metric,
called the memory field, that is turned on when the gravitational wave is passing
through the spacetime region of interest. The analogous memory effects can also
be established in electrodynamics (electromagnetic memory effect) [90,91] and in
Yang-Mills theory (color memory effect) [89], where a field is turned on as a result
of a burst of energy passing through the region of interest, leading to an observable
phenomenon. Notice that other memory effects have been identified in gravity [8,
92,93,93-98|, including the spin memory effect and the refraction memory effect.

We now briefly discuss the relation between these different topics. It has been
shown that if the quantum gravity S-matrix is invariant under the BMS symme-
try [99], then the Ward identity associated with the supertranslations is equivalent
to the soft graviton theorem [100]. Furthermore, the displacement memory effect
is equivalent to performing a supertranslation [101]. More precisely, the action of
the supertranslation on the memory field has the same effect as a burst of gravi-
tational waves passing through the region of interest. This can be understood as
a vacuum transition process [102-106]. Finally, a Fourier transform enables us to
relate the soft theorem with the memory effect, which closes the triangle. This tri-
angle controlling the infrared structure of the theory has also been constructed for
other gauge theories [89,107,108|. Moreover, subleading infrared triangles have been
uncovered and discussed [8,9,11,93,107,109,110]. In particular, the Ward identities
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of superrotations have been shown to be equivalent to the subleading soft graviton
theorem. Furthermore, the spin memory effect and the center-of-mass memory effect
have been related to the superrotations.

Finally, let us mention that this understanding of the infrared structure of quan-
tum gravity is relevant to address the black hole information paradoz |33]. Indeed,
an infinite number of soft gravitons are produced in the process of black hole evap-
oration. Through the above correspondence, these soft gravitons are related with
surface charges, called soft hairs, that have to be taken into account in the informa-
tion storage [34-37,111,112].

1.2 Original results

The aim of this thesis is to investigate some aspects of the BMS group and its
various extensions, including the associated phase spaces, vacuum structures and
memory effects. In doing so, we elaborate on the covariant phase space methods
for first order gauge theories. In addition, a new version of the BMS symmetry for
asymptotically (A)dS, will be presented. The original results discussed in this thesis
are based on the following works:

e |A] Conserved currents in the Cartan formulation of general relativity
Glenn Barnich, Pujian Mao, Romain Ruzziconi
Proceedings of the workshop "About various kinds of interactions" (2016)
arXiv:1611.01777

e |B] Superboost transitions, refraction memory and super-Lorentz charge alge-
bra
Geoffrey Compere, Adrien Fiorucci, Romain Ruzziconi
Journal of High Energy Physics (2018)
arXiv:1810.00377

e |C] The A-BMS, group of dS; and new boundary conditions for AdS,
Geoffrey Compeére, Adrien Fiorucci, Romain Ruzziconi
Classical and Quantum Gravity (2019)
arXiv:1905.00971

e |D| Asymptotic symmetries in the gauge fixing approach and the BMS group
Romain Ruzziconi
Proceedings of Science (2020)
arXiv:1910.08367

e [E] BMS current algebra in the context of the Newman-Penrose formalism
Glenn Barnich, Pujian Mao, Romain Ruzziconi


https://arxiv.org/abs/1611.01777
https://arxiv.org/abs/1810.00377
https://arxiv.org/abs/1905.00971
https://arxiv.org/abs/1910.08367
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Classical and Quantum Gravity (2020)
arXiv:1910.14588

e |F| The A-BMS, charge algebra
Geoffrey Compeéere, Adrien Fiorucci, Romain Ruzziconi
Submitted in Journal of High Energy Physics
arXiv:2004.10769

e |G| Conserved currents in the Palatini formulation of general relativity
Glenn Barnich, Pujian Mao, Romain Ruzziconi
Proceedings of Science (2020)
arXiv:2004.15002

e |H| Gauges in three-dimensional gravity and holographic fluids
Luca Ciambelli, Charles Marteau, Marios Petropoulos, Romain Ruzziconi
To be published

e |I] Fefferman-Graham and Bondi gauges in the fluid/gravity correspondence
Luca Ciambelli, Charles Marteau, Marios Petropoulos, Romain Ruzziconi
To be published

The next subsection briefly summarizes some of the main results and research guide-
lines of this thesis.

1.2.1 First order program

The covariant phase space methods allowing for constructing meaningful surface
charges in gauge theories are based on jet bundles and homotopy operators. This
powerful machinery can quickly become complicated for theories of second order
derivative or higher. However, for first order theories, namely theories involving at
most first order derivatives in the equations of motion and in the transformation
of the fields, the computations simplify drastically and do not even require the
technology of homotopy operators. Furthermore, for first order theories, the different
procedures to construct surface charges, namely Barnich-Brandt [113-115] and Iyer-
Wald [116-118| procedures, give the same results.

Another interesting feature is that most of the known gauge theories, including
Maxwell, Yang-Mills, general relativity and Chern-Simons, are first order gauge the-
ories, or own a formulation that is of first order using auxiliary fields. For example,
Maxwell theory can be formulated as a first order gauge theory by considering the
field strength as an auxiliary field (see e.g. [119]). Similarly, the Cartan formulation
of general relativity is a first order theory.

In this thesis, we discuss covariant phase space formalism in the context of first
order gauge theories. More specifically, we consider a class of theories that we call
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covariantized Hamiltonian theories, which includes all the examples cited above.
In particular, we investigate the breaking in the conservation of the charges for
these theories. We then specify the general results obtained in this context to write
the expressions of the surface charges in different first order formulations of gravity,
including Cartan formulation and a new Newman-Penrose-type formulation. Finally,
we apply these results to the case of four-dimensional gravity in asymptotically flat
spacetimes at null infinity and obtain the currents associated with extended BMS.
The results of [120] are reproduced in a self-consistent way, and enlarged to allow for
an arbitrary time-dependent conformal factor for the transverse boundary metric.
This discussion is based on the works [A], [E] and |G].

1.2.2 Extended and generalized BMS

As discussed in the introduction, two extensions of the global BMS group have
been considered. The first is called the extended BMS group and involves singu-
lar superrotations (and, consequently, singular supertranslations) on the celestial
sphere [5-7]. The second one is called the generalized BMS group and involves
smooth superrotations on the celestial sphere [12,13]. In this thesis, we investi-
gate both the phase spaces of the first and second extensions, using covariant phase
space methods. A common feature between these analyses is that the associated
charges are non-integrable but still satisfy an algebra, provided one modifies the
Dirac bracket following the prescription of [121]. As reviewed in section 2.3, the
non-integrability of the charges is related to their non-conservation due to the radi-
ation at null infinity.

As explained in subsection 1.1.2, the BMS symmetries are related to gravita-
tional memory effects. This relation shows up by investigating the vacuum orbit of
the theory. Indeed, the vacuum structure of gravity in asymptotically flat spacetime
is degenerate. The fields in the metric parametrizing the different vacua, which
are turned on when acting with BMS transformations on the Minkowski space, are
precisely the memory fields discussed above. In this thesis, we extend the work
of [102-104] by studying the orbit of Minkowski under generalized BMS transforma-
tions. Furthermore, we relate a field that is turned on in the metric under superboost
transformations, to the so-called refraction memory/velocity kick [95,96,122|. We
show that this superboost field satisfies a Liouville equation. These results are based
on [B]

1.2.3 BMS in asymptotically locally (A)dS, spacetimes

The BMS symmetry and its extensions are symmetries of asymptotically flat space-
times. A legitimate question to ask is if the analogue symmetry also exists in
asymptotically locally (A)dS, spacetimes. Such a generalization would be relevant
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for the two research guidelines discussed in subsection 1.1. Indeed, studying the
BMS symmetry in AdS spacetimes, where holography is well controlled, would shed
some light on holography in flat space. Furthermore, if the BMS symmetry exists in
spacetimes with non-vanishing cosmological constant, it may be related to memory
effects and soft theorems in this context [123-130].

In this thesis, we propose a version of the BMS symmetry in presence of a non-
vanishing cosmological constant. This new asymptotic symmetry group, called the
A-BMS, group, is obtained by imposing some partial Dirichlet boundary conditions
in asymptotically locally (A)dS, spacetimes. We show that this proposal reduces
to the generalized BMS group in the flat limit. Furthermore, we prove that the
flat limit also works at the level of the associated phase spaces. This analysis is
based on a diffeomorphism between Bondi and Fefferman-Graham gauges that we
have explicitly constructed. In particular, the charge algebra of the most general
asymptotically locally (A)dS, spacetime is worked out in the Fefferman-Graham
gauge using the covariant phase space methods and the holographic renormalization
procedure. Then, imposing the boundary conditions that lead to A-BMS, symmetry,
we translate the symplectic structure into the Bondi gauge, where the flat limit is
well defined. Taking the flat limit leads to the symplectic structure of generalized
BMS discussed above. This presentation is based on [C|, [D] and [F].

1.3 Plan

The rest of this thesis is organized as follows. In Chapter 2, we present in a self-
consistent way some methods to study asymptotic symmetries in gauge theories and
how to construct meaningful surface charges. This chapter is essentially a review
of the existing literature, with an attempt to present the different concepts in both
a unified and more abstract way. Examples illustrating the general definitions are
provided. Some of those are based on results obtained in the framework of this
thesis and explained in more detail in the subsequent chapters.

In chapter 3, we restrict our study to a particular class of first order gauge the-
ories that we call covariantized Hamiltonian theories. We show that the covariant
phase space methods simply drastically in this framework and do not require the
technology of jet bundles and homotopy operators discussed in Chapter 2 (see also
appendix A). Furthermore, we provide a discussion on vielbeins and connection by
including torsion and non-metricity into the standard discussion. Then we investi-
gate the Cartan formulation of general relativity and its different avatars and derive
the expressions of the surface charges. These are particular examples of covariantized
Hamiltonian theories. Starting from a Newman-Penrose-adapted variational prin-
ciple, we derive the BMS current algebra in a self-consistent way for an arbitrary
u-dependent conformal factor.
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In chapter 4, we study the phase space associated with the generalized BMS
symmetry. In particular, we show that a renormalization procedure using [yer-Wald
ambiguity is needed to obtain finite symplectic structure. The associated charges are
finite, but non-integrable. They satisfy an algebra when using the modified Dirac
bracket.

In chapter 5, we act on the Minkowski space with (both extended and gener-
alized) BMS transformations and obtain the orbit of vacua. We then relate the
superboosts transformations, which are part of the BMS symmetries, to the veloc-
ity kick/refraction memory. Finally, we propose a Wald-Zoupas-like prescription to
isolate meaningful finite charges from the infinitesimal non-integrable expressions.
Applying this prescription to the generalized BMS charges leads to the finite charges
that are used in the Ward identities to establish the equivalence with soft theorems.

In chapter 6, we study the most general solution spaces and the residual gauge
diffeomorphisms of Fefferman-Graham and Bondi gauges in three and four dimen-
sions. We relate the results obtained in the two gauges by constructing a diffeomor-
phism that maps one gauge to the other. We then focus on the four-dimensional
case and propose new boundary conditions in asymptotically locally (A)dS, space-
times. We show that the associated asymptotic symmetry group, called the A-BMS,
group, is infinite-dimensional and reduces to the generalized BMS group in the flat
limit. Then, using the holographic renormalization procedure, we construct the
phase space associated with the most general asymptotically locally AdS, space-
times in Fefferman-Graham gauge. That allows us to derive the associated charge
algebra that we specify for A-BMS, symmetry. Transforming the A-BMS, symplec-
tic structure through the diffeomorphism between Fefferman-Graham and Bondi
gauges, and taking the flat limit, we prove that it reduces to the generalized BMS
symplectic structure. Finally, we study new mixed boundary conditions in asymp-
totically locally AdS, spacetime that allow us to have a well-defined Cauchy problem.
The associated asymptotic symmetry group is an infinite-dimensional subgroup of
A-BMS, consisting of the area preserving diffeomorphisms and the time translations.

This thesis also contains several appendices that are referenced in the core of the
text.



Chapter 2

Asymptotic symmetries and surface
charges

This chapter is an introduction to asymptotic symmetries in gauge theories, with
a focus on general relativity in four dimensions. We explain how to impose consis-
tent sets of boundary conditions in the gauge fixing approach and how to derive the
asymptotic symmetry parameters. The different procedures to obtain the associated
charges are presented. As an illustration of these general concepts, the examples of
four-dimensional general relativity in asymptotically locally (A)dS, and asymptoti-
cally flat spacetimes are covered. This enables us to discuss the different extensions
of the BMS group that will be investigated with more details in the subsequent
chapters.

This chapter essentially reproduces the lecture notes [27].

2.1 Definitions of asymptotics

Several frameworks exist to impose boundary conditions in gauge theories. Some of
them are mentioned next.

2.1.1 Geometric approach

The geometric approach of boundary conditions was initiated by Penrose, who in-
troduced the techniques of conformal compactification to study general relativity in
asymptotically flat spacetimes at null infinity [131,132|. According to this perspec-
tive, the boundary conditions are defined by requiring that certain data on a fixed
boundary be preserved. The asymptotic symmetry group G is then defined as the

19
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quotient:

_ Gauge transformation preserving the boundary conditions

G

2.1.1
Trivial gauge transformations ’ ( )

where the trivial gauge transformations are the gauge transformations that reduce
to the identity on the boundary. In other words, the asymptotic symmetry group is
isomorphic to the group of gauge transformations induced on the boundary which
preserve the given data. This is the weak definition of the asymptotic symmetry
group. A stronger definition of the asymptotic symmetry group is given by the
quotient (2.1.1), where the trivial gauge transformations are now the gauge trans-
formations that have associated vanishing charges.

The geometric approach was essentially used in gravity theory and led to much
progress in the study of symmetries and symplectic structures for asymptotically
flat spacetimes at null infinity [4,133-136] and spatial infinity [137,138]. It was also
considered to study asymptotically (A)dS spacetimes [19,139-141]. Moreover, this
framework was recently applied to study boundary conditions and associated phase
spaces on null hypersurfaces [142].

The advantage of this approach is that it is manifestly gauge invariant, since we
do not refer to any particular coordinate system to impose the boundary conditions.
Furthermore, the geometric interpretation of the symmetries is transparent. The
weak point is that the definition of boundary conditions is rigid. It is a non-trivial
task to modify a given set of boundary conditions in this framework to highlight
new asymptotic symmetries. It is often a posteriori that boundary conditions are
defined in this framework, after having obtained the results in coordinates.

2.1.2 Gauge fixing approach

A gauge theory has redundant degrees of freedom. The gauge fixing approach con-
sists in using the gauge freedom of the theory to impose some constraints on the
fields. This enables one to quotient the field space to eliminate some of the un-
physical or pure gauge redundancies in the theory. For a given gauge theory, an
appropriate gauge fizing (where appropriate will be defined below) still allows some
redundancy. For example, in electrodynamics, the gauge field A, transforms as
A, — A,+0,a (o is a function of the spacetime coordinates) under a gauge transfor-
mation. The Lorenz gauge is defined by setting 0, A" = 0. This gauge can always be
reached using the gauge redundancy, since 0,0'a = —0, A” always admits a solution
for a, regardless of the exact form of A,. However, residual gauge transformations
remain that preserve the Lorenz gauge. These are given by A, — A, + 0,83, where
3 is a function of the spacetime coordinates satisfying 0,05 = 0 (see, e.g., [143]).
The same phenomenon occurs in general relativity where spacetime diffeomorphisms
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can be performed to reach a particular gauge defined by some conditions imposed
on the metric g,,. Some explicit examples are discussed below.

Then, the boundary conditions are imposed on the fields of the theory written
in the chosen gauge. The weak version of the definition of the asymptotic symmetry
group is given by

(2.1.2)

G [ Residual gauge diffeomorphisms ]
weak —

preserving the boundary conditions.

Intuitively, the gauge fixing procedure eliminates part of the pure gauge degrees of
freedom, namely, the trivial gauge transformations defined under (2.1.1). Therefore,
fixing the gauge is similar to taking the quotient as in equation (2.1.1), and the
two definitions of asymptotic symmetry groups coincide in most of the practical
situations. As in the geometric approach, a stronger version of the asymptotic
symmetry group exists and is given by

G _ l Residual gauge diffeomorphisms preserving the boundary ] (2.1.3)

strong conditions with associated non-vanishing charges. o

Notice that Gsprong S Gweak -

The advantage of the gauge fixing approach is that it is highly flexible to impose
boundary conditions, since we are working with explicit expressions in coordinates.
For example, the BMS group in four dimensions was first discovered in this frame-
work [1-3|. Furthermore, a gauge fixing is a local consideration (i.e. it holds in a
coordinate patch of the spacetime). Therefore, the global considerations related to
the topology are not directly relevant in this analysis, thereby allowing further flex-
ibility. For example, as we will discuss in subsection 2.2.4, this allowed to consider
singular extensions of the BMS group: the Witt x Witt superrotations [5,7]. These
new asymptotic symmetries are well-defined locally; however, they have poles on the
celestial sphere. In the geometric approach, one would have to modify the topol-
ogy of the spacetime boundary to allow these superrotations by considering some
punctured celestial sphere [145,146]. The weakness of this approach is that it is not
manifestly gauge invariant. Hence, even if the gauge fixing approach is often pre-
ferred to unveil new boundary conditions and symmetries, the geometric approach
is complementary and necessary to make the gauge invariance of the results mani-
fest. In section 2.2, we study the gauge fixing approach and provide some examples
related to gravity in asymptotically flat and asymptotically (A)dS spacetimes.

1One of the most striking examples of the difference between the weak and the strong defini-
tions of the asymptotic symmetry group is given by considering Neumann boundary conditions
in asymptotically AdSq; spacetimes. Indeed, in this situation, we have Gyeax = Diff(R x S971),
and Gitrong 18 trivial [144].



22  CHAPTER 2. ASYMPTOTIC SYMMETRIES AND SURFACE CHARGES

2.1.3 Hamiltonian approach

Some alternative approaches exist that are also powerful in practice. For example,
in the Hamiltonian formalism, asymptotically flat [147] and AdS [14, 15] spacetimes
have been studied at spatial infinity. Furthermore, the global BMS group was re-
cently identified at spatial infinity using twisted parity conditions [148-150]. In
this framework, the computations are done in a coordinate system making the split
between space and time explicit, without performing any gauge fixing. Then, the
asymptotic symmetry group is defined as the quotient between the gauge transfor-
mations preserving the boundary conditions and the trivial gauge transformations,
where trivial means that the associated charges are identically vanishing on the
phase space. This definition of the asymptotic symmetry group corresponds to the
strong definition in the two first approaches.

2.2 Asymptotic symmetries in the gauge fixing ap-
proach

We now focus on the aforementioned gauge fixing approach of asymptotic symme-
tries in gauge theories. We illustrate the different definitions and concepts using
examples, with a specific focus on asymptotically flat and asymptotically (A)dS
spacetimes in four-dimensional general relativity.

2.2.1 Gauge fixing procedure

Definition [Gauge symmetry| Let us start with a Lagrangian theory in a n-
dimensional spacetime M

S[] = JML[cb, 66, 0,0,,.. ], (2.2.1)

where L = Ld"z is the Lagrangian and ¢ = (¢') are the fields of the theory. A
gauge transformation is a transformation acting on the fields, and which depends
on parameters f = (f®) that are taken to be arbitrary functions of the spacetime
coordinates. We write

;0" = R'[ f]
= R f* + R"0,f* + RU0,0,f* + ...
- Z Rg(m---uk)am o O

k=0

(2.2.2)
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the infinitesimal gauge transformation of the fields. In this expression, Rt
are local functions, namely functions of the coordinates, the fields, and their deriva-
tives. The gauge transformation is a symmetry of the theory if, under (2.2.2), the
Lagrangian transforms as

5,;L = dB;, (2.2.3)
where By = By (d" '2),,.

Examples We illustrate this definition by providing some examples. First, con-
sider classical vacuum electrodynamics

S[A] = JMF A +F. (2.2.4)

where F = dA and A is a 1-form. It is straightforward to check that the gauge
transformation 6,A = da, where « is an arbitrary function of the coordinates, is a
symmetry of the theory.

Now, consider the general relativity theory

S[g] = 16; = JM(R _ 9A)/=gd"s, (2.2.5)

where R and (/—g¢ are the scalar curvature and the square root of minus the
determinant associated with the metric g,, respectively, and A is the cosmologi-
cal constant. It can be checked that the gauge transformation d¢:9,, = L9 =
£P0, G0 + 9up0uE” + 9 0,5°, where & is a vector field generating a diffeomorphism,
is a symmetry of the theory.

Notice that in these examples, the transformation of the fields (2.2.2) is of the
form

59’ = R [+ RI0.f*, (2.2.6)

namely they involve at most first order derivatives of the parameters.

Definition [Gauge fixing| Starting from a Lagrangian theory (2.2.1) with gauge
symmetry (2.2.2), the gauge firing procedure involves imposing some algebraic or
differential constraints on the fields in order to eliminate (part of) the redundancy
in the description of the theory. We write

Glo] =0 (2.2.7)
a generic gauge fixing condition. This gauge has to satisfy two conditions:

e It has to be reachable by a gauge transformation, which means that the num-
ber of independent conditions in (2.2.7) is inferior or equal to the number of
independent parameters f = (f“) generating the gauge transformation.
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e It has to use all of the available freedom of the arbitrary functions parametriz-
ing the gauge transformations to reach the gauge?, which means that the num-
ber of independent conditions in (2.2.7) is superior or equal to the number of
independent parameters f = (f) generating the gauge transformations.

Considering these two requirements together tells us that the number of independent
gauge fixing conditions in (2.2.7) has to be equal to the number of independent gauge
parameters f = (f®) involved in the fields transformation (2.2.2).

Examples In electrodynamics, several gauge fixings are commonly used. Let us
mention the Lorenz gauge 0*A, = 0, the Coulomb gauge 0'4; = 0, the temporal
gauge Ay = 0, and the axial gauge A3 = 0. As previously discussed, the Lorenz
gauge can always be reached by performing a gauge transformation. We can check
that the same statement holds for all the other gauge fixings. Notice that these gauge
fixing conditions involve only one constraint, as there is only one free parameter o
in the gauge transformation.

In gravity, many gauge fixings are also used in practice. For example, the De
Donder (or harmonic) gauge requires that the coordinates x* be harmonic functions,
namely, Oz# = ﬁéy(\/fgé”x“) = 0. Notice that the number of constraints, n, is
equal to the number of independent gauge parameters &#. This gauge condition is
suitable for studying gravitational waves in perturbation theory (see, e.g., [151]).

Another important gauge fixing in configurations where A # 0 is the Fefferman-
Graham gauge [152-156]. We write the coordinates as z* = (p,z%), where a =
1,...,n—1 and p is an expansion parameter (p = 0 is at the spacetime boundary,
and p > 0 is in the bulk). Tt is defined by the following conditions:

(n—1)(n—2)
Gop = — 2Ap2 sy 9pa = 0 (2.2.8)

(n conditions). The coordinate p is spacelike for A < 0 and timelike for A > 0. The
most general metric takes the form

-1 —2)dp?
ds® = — (n 2)/(\” )p_pz + Y (p, 2€)dzda’. (2.2.9)

Finally, the Bondi gauge will be relevant for us in the following [1-3]. This gauge
fixing is valid for both A = 0 and A # 0 configurations. Writing the coordinates as
(u,r,24), where 24 = (6,...,0,_5) are the transverse angular coordinates on the

2If the available freedom is not used, we talk about partial gauge fizing. In this configuration,
there are still some arbitrary functions of the coordinates in the parameters of the residual gauge
transformations.
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(n — 2)-celestial sphere, the Bondi gauge is defined by the following conditions®:
det
Grr = 07 gra = O’ ar (%) =0 (2210)

(n conditions). These conditions tell us that, geometrically, u labels null hypersur-
faces in the spacetime, 24 labels null geodesics inside a null hypersurface, and r is
the luminosity distance along the null geodesics. The most general metric takes the
form

v
ds? = e —du? — 2e*’dudr + gap(dz? — UAdu)(dz® — UPdu) (2.2.11)
r
where 3, U4 and % are arbitrary functions of the coordinates, and the (n — 2)-
dimensional metric g4p satisfies the determinant condition in the third equation of
(2.2.10). Let us mention that the Bondi gauge is closely related to the Newman-Unti
gauge [157,158] involving only algebraic conditions:

g?”?” = 07 gT‘A = 07 gru = _]— (2212)

(n conditions).

Definition [Residual gauge transformation| After having imposed a gauge fixing
as in equation (2.2.7), there usually remain some residual gauge transformations,
namely gauge transformations preserving the gauge fixing condition. Formally, the
residual gauge transformations with generators F' have to satisfy 0;G|¢] = 0. They
are local functions parametrized as f = f(a), where the parameters a are arbitrary
functions of (n — 1) coordinates.

Examples Consider the Lorenz gauge 0*A, = 0 in electrodynamics. As we dis-
cussed earlier, the residual gauge transformations for the Lorenz gauge are the gauge
transformations 6,4, = d,a, where 00, = 0.

Similarly, consider the Fefferman-Graham gauge (2.2.8) in general relativity with
A # 0. The residual gauge transformations generated by £ have to satisty L¢g,, = 0
and L¢g,, = 0. The solutions to these equations are given by

(n—1)(n-2) rdp’ ab 1 e
oA Op0 ) pI'y (p', x°). (2.2.13)

& =a(x%)p, & =)+

These solutions are parametrized by n arbitrary functions o and &§ of (n — 1) coor-
dinates z°.

3Notice that the determinant condition in (2.2.10) is weaker than the historical one considered
in [1-3]. We refer to appendix B for more details on this condition.
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In the Bondi gauge (2.2.10), the residual gauge transformations generated by &/
have to satisfy Legr = 0, Legra = 0 and g8 Legap = 2(n — 2)w, where w is an
arbitrary function of (u,z%) (see appendix B). The solutions to these equations are
given by

=1

AoYA+TA A= —6Bffr dr'(e*7gP), (2.2.14)
. 1

£ = —— 2(DAYA —(n — 2w + Dyl — 05 fUP + §f9716u9)>

where d,f =0 = 0,Y4, and g = det(gap) [24]. The covariant derivative D, is asso-
ciated with the (n — 2)-dimensional metric g4p. The residual gauge transformations
are parametrized by the n functions w, f and Y4 of (n — 1) coordinates (u, z*).

2.2.2 Boundary conditions

Definition [Boundary conditions|] Once a gauge condition (2.2.7) has been fixed,
we can impose boundary conditions for the theory by requiering some constraints on
the fields in a neighbourhood of a given spacetime region. Most of those boundary
conditions are fall-off conditions on the fields in the considered asymptotic region*,
or conditions on the leading functions in the expansion. This choice of boundary
conditions is motivated by the physical model that we want to consider. A set of
boundary conditions is usually considered to be interesting if it provides non-trivial
asymptotic symmetry group and solution space, exhibiting interesting properties for
the associated charges (finite, generically non-vanishing, integrable and conserved,;
see below). If the boundary conditions are too strong, the asymptotic symmetry
group will be trivial, with vanishing surface charges. Furthermore, the solution
space will not contain any solution of interest. If they are too weak, the associated
surface charges will be divergent. Consistent and interesting boundary conditions
should therefore be located between these two extreme situations.

Examples Let us give some examples of boundary conditions in general relativity
theory. Many examples of boundary conditions for other gauge theories can be found
in the literature (see e.g. [20-26]).

Let us consider the Bondi gauge defined in equation (2.2.10) in dimension n > 3.
There exist several definitions of asymptotic flatness at null infinity (r — o) in the
literature. For all of them, we require the following preliminary boundary conditions

4Notice that the asymptotic region could be taken not only at (spacelike, null or timelike)
infinity, but also in other spacetime regions, such as near a black hole horizon [34-37,159-163].
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on the functions of the metric (2.2.11) in the asymptotic region r — oo:

B=o(l), —=o(r?), U*=o0(l), gap=r’qap+7rCap+Dap+0O(r),
(2.2.15)
where qap, Cap and Dyp are (n — 2)-dimensional symmetric tensors, which are
functions of (u,z). Notice in particular that q4p is kept free at this stage.
A first definition of asymptotic flatness at null infinity (AF1) is a sub-case of
(2.2.15). In addition to all these fall-off conditions, we require the transverse bound-
ary metric g4p to have a fixed determinant, namely,

Vi =i, (2.2.16)

where ¢ is a fixed volume element (which may possibly depend on time) on the
(n — 2)-dimensional transverse space |8,12,13,164].

A second definition of asymptotic flatness at null infinity (AF2) is another sub-
case of the definition (2.2.15). All the conditions are the same, except that we
require that the transverse boundary metric g4p be conformally related to the unit
(n — 2)-sphere metric, namely,

4aB = €% 4as, (2.2.17)

where ¢4p is the unit (n — 2)-sphere metric [6]. Note that for n = 4, this condition
can always be reached by a coordinate transformation, since every metric on a two
dimensional surface is conformally flat (but even in this case, as we will see below,
this restricts the form of the symmetries).

A third definition of asymptotic flatness at null infinity (AF3), which is the
historical one [1-3], is a sub-case of the second definition (2.2.17). We require (2.2.15)
and we demand that the transverse boundary metric gap be the unit (n — 2)-sphere
metric, namely,

4AB = (AB- (2.2.18)

Note that this definition of asymptotic flatness is the only one that has the property
to be asymptotically Minkowskian, that is, for r — oo, the leading orders of the
spacetime metric (2.2.11) tend to the Minkowski line element ds* = —du? — 2dudr +
r2Gapdztda’.

Let us now present several definitions of asymptotically (A)dS spacetimes in
both the Fefferman Graham gauge (2.2.8) and Bondi gauge (2.2.10). A prelimi-
nary boundary condition, usually called the asymptotically locally (A)dS condition,
requires the following conditions on the functions of the Fefferman-Graham metric
(2.2.9):

Yab = O(p~?) (2.2.19)
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or, equivalently, v,, = p‘2g(§2)+0(p_2). Notice that the (n—1)-dimensional boundary

metric 9((1?)) is kept free in this preliminary set of boundary conditions, thus justifying
the adjective “locally” [165]. In the Bondi gauge, as we will see below, these fall-off

conditions are (on-shell) equivalent to demand that
gap = O(r?) (2.2.20)

or, equivalently, gap = 7°qap + o(r?).
A first definition of asymptotically (A)dS spacetime (AAdS1) is a sub-case of the
definition (2.2.19). In addition to these fall-off conditions, we demand the following

constraints on the (n — 1)-dimensional boundary metric 9((1(;) :

(0) 2A O _ 0 dot(a® 2
= == t ==
9 = o moy Ya =0 detle) = T
where ¢ is a fixed volume form for the transverse (n — 2)-dimensional space (which
may possibly depend on t¢) [166]. In the Bondi gauge, the boundary conditions
(2.2.21) translate into
V 2r2 A
=o(l), — = ), Ut=o(1 =V 2.2.22
Booll) T o) U o), Vi=VE (2222
Notice the similarity of these conditions to the definition (AF1) (equations (2.2.15)
and (2.2.16)) of asymptotically flat spacetime.
A second definition of asymptotically AdS spacetime® (AAdS2) is a sub-case
of the definition (2.2.19). We require the same conditions as in the preliminary
boundary condition (2.2.19), except that we demand that the (n — 1)-dimensional

0 (2.2.21)

boundary metric 9((12) be fixed [15]. These conditions are called Dirichlet boundary
conditions. One usually chooses the cylinder metric as the boundary metric, namely,

2A
(n—1)(n —2)

where gap are the components of the unit (n — 2)-sphere metric (as in the Bondi

gD dzda’ = dt® + Gapdz?da®, (2.2.23)

gauge, the upper case indices A, B, ... run from 3 to n, and 2 = (¢,2)). In the
Bondi gauge, the boundary conditions (2.2.23) translate into
1% 2r2A .
B=o0(l), —= +o(r?), U*=0(1), qap=dap. (2.2.24)

r o (n—1)(n-2)
Notice the similarity of these conditions to the definition (AF3) (equations (2.2.15)
and (2.2.18)) of asymptotically flat spacetime.
As we see it, the Bondi gauge is well-adapted for each type of asymptotics (see
figure 2.1), while the Fefferman-Graham gauge is only defined in asymptotically
(A)dS spacetimes.

5This choice is less relevant for asymptotically dS spacetimes, since it strongly restricts the
Cauchy problem and the bulk spacetime dynamics [19,139].
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AdS case (A < 0). Flat case (A = 0). dS case (A > 0).

Figure 2.1: Bondi gauge for any A.

2.2.3 Solution space

Definition [Solution space] Given a gauge fixing (2.2.7) and boundary conditions,
a solution of the theory is a field configuration ¢ satisfying G[¢] = 0, the boundary
conditions, and the Fuler Lagrange-equations

SL
| =0, 2.2.25
55 ; ( )

where the Fuler-Lagrange derivative is defined in equation (A.2.1). The set of all
solutions of the theory is called the solution space. It is parametrized as ¢ = ¢(b),
where the parameters b are arbitrary functions of (n — 1) coordinates.

Examples We now provide some examples of solution spaces of four-dimensional
general relativity in different gauge fixings. These examples will be re-discussed in
details in the remaining of the text (see e.g. subsections 6.2.1 and 6.2.2). We first
consider the Fefferman-Graham gauge in asymptotically (A)dSs spacetimes with
preliminary boundary conditions (2.2.19). Solving the Einstein equations

G +Agu =0, (2.2.26)
we obtain the following analytic fall-offs:

_ 0 _ 1 2 3
Yoo = 0290 + p 7% + 68 + pg) + 0(p?), (2.2.27)
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where g((fb) are functions of z® [152-156]. The only free data in this expansion are

ggz) and 9((1?1;)- All the other coefficients are determined in terms of these free data.

Following the holographic dictionary, we call 9((1(1);) the boundary metric and we define

T, VIIAL @ (2.2.28)

b= 167G T
as the stress energy tensor. From the Einstein equations, we have
g1 =0, DOT® =0, (2.2.29)

where DY is the covariant derivative with respect to g((lg). In summary, the solution

space of general relativity in the Fefferman-Graham gauge with the preliminary
boundary condition (2.2.19) is parametrized by the set of functions

{91(1(11)7 Tab}AiO; (2230)

where T, satisfies (2.2.29) (11 functions).
Now, for the restricted set of boundary conditions (2.2.21), that is, (AAdS1), the
solution space reduces to

(9% Tan} avo, (2.2.31)

where gff])g has a fixed determinant and Ty, satisfies (2.2.29) (7 functions). Finally,
for Dirichlet boundary conditions (2.2.23) (AAdS2), the solution space reduces to

{Tu} a0, (2.2.32)

where T, satisfies (2.2.29) (5 functions).

Let us now consider the Bondi gauge in asymptotically (A)dS, spacetimes with
preliminary boundary condition (2.2.20). From the Fefferman-Graham theorem and
the gauge matching between Bondi and Fefferman-Graham that is described in ap-
pendix D (see also [166,167]), we know that the functions appearing in the metric
admit an analytic expansion in powers of . In particular, we can write

1 1 .
9ap = 1°qap +1Cap + Dap + ~Bap + G Fap + o), (2.2.33)

where qap, Cap, Dap, Fap, Fap, ... are functions of (u,z*). The determinant
condition defining the Bondi gauge and appearing in the third equation of (2.2.10)

implies ¢g*20,g45 = 4/r, which imposes successively that det(gap) = r*det(qan),

¢*BC4p = 0 and

1

Dyp = ZQABCCDC(JD + Dap(u, z),
1

Eap = §QABDCDCCD + Eaplu, 29), (2.2.34)
1 1 1

Fup = 5448 [CCDch + §DCDDCD - B—Q(CCDCCD)z] + Fap(u,z°),
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with ¢42Dyp = ¢*BEAp = ¢*PFap = 0 (indices are lowered and raised with the
metric g4p and its inverse). We now sketch the results obtained by solving the
Einstein equations

G +Ag, =0 (2.2.35)

for A # 0 (we follow [166,167]; see also [168] for the Newman-Penrose version). The
component (rr) gives the following radial constraints on the Bondi functions:

1 1 1 1
Blu,r,a) = Bo(u, z) + ﬁ[ — 3—2(JABCAB] + 73[ — ECABDAB] (2.2.36)
1 3 1 1
+ ﬁ[ - 3—20AB8AB — EDABDAB + ﬁ(CABCABy] + O(T‘i‘:’).
where By(u, z) is an arbitrary function. The component (rA) yields
1 1 2 1
U4 = UMu, 2?) + U u, 2P) = + UA(u,xB)—2
" r (2.2.37)
(331 By 1 (L?X pyIn7 -3 B
+ U (u,x )7T3+U (u,x )7—1-0(7" )
with
(1)
UA(U>$B) = 262'805‘1450,
(2 1
UA('LL, Z'B) — 2P0 [CABEBBO + §DBCAB],
) B 2 apo[aa _ L aB e 1 A _ 3 CD HA
UM (u.2®) = —Ze o[N — 50D Cye + (Ppf — s Dp)DP — = CopCPo ﬁo],
(L3) )
U4 (u,2?) = —gewODBDAB. (2.2.38)

In these expressions, U (u, z%) and N4 (u, z?) are arbitrary functions. We call N4
the angular momentum aspect. Notice that, at this stage, logarithmic terms are
appearing in the expansion (2.2.37). However, we will see below that these terms
vanish for A # 0. The component (ru) leads to

g :éewo?ﬁ —r(l + DAUY) (2.2.39)
1 A 2M
— e [5 (R[q] + gCABCAB> +2D 40 By + 45A506Aﬁo] - T o(r ),

where [ = 0, In /g, R[q] is the scalar curvature associated with the metric g4p and
M (u, z) is an arbitrary function called the Bondi mass aspect. Afterwards, we solve
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the components (AB) of the Einstein equations order by order, thereby providing
us with the constraints imposed on each order of g45. The leading order O(r!) of
that equation yields to

A
3CaB = e 2 [(&L —1)qap + 2DaUpy — D¢ quAB]. (2.2.40)
Going to O(r2), we get
%DAB ~ 0, (2.2.41)

which removes the logarithmic term in (2.2.37) for A # 0 (but not for A = 0). The
condition at the next order O(r—?)

0uDap + U DeDap + 2DeaDpyUS = 0 (2.2.42)

is trivial for A # 0. Using an iterative argument as in [167], we now make the
following observation. If we decompose g4p = r? Dm0 gf{%r’", we see that the
iterative solution of the components (AB) of the Einstein equations organizes itself
as Agg% = 8ug1(4"§1) + (...) at order O(r~"), n € Ny. Accordingly, the form of €45
should have been fixed by the equation found at O(r=3); however, this is not the
case, since both contributions of £45 cancel between G 45 and Agap. Moreover, the

equation AgX% = 6ug§% + (...) at the next order turns out to be a constraint for

gg% ~ Fap, determined with other subleading data such as Cyp or 6ugff])3 ~ 0,€AB.
It shows that €45 is a set of two free data on the boundary, built up from two
arbitrary functions of (u,z). Morover, it indicates that no more data exist to
be uncovered for A # 0. Finally, the components (uu) and (uA) of the Einstein
equations give some evolution constraints with respect to the u coordinate for the
Bondi mass aspect M and the angular momentum aspect N4. We will not describe
these equations explicitly here (see [166,167| or subsection 6.2.2).

In summary, the solution space for general relativity in the Bondi gauge with
the preliminary boundary condition (2.2.33) and A # 0 is parametrized by the set
of functions

{Bo. Ug', qas, Ean, M, N} azo (2.2.43)

(11 functions), where M and N4 have constrained evolutions with respect to the
u coordinate. Therefore, the characteristic initial value problem is well-defined
when the following data are given: [y(u,2%), Ut(u,2%), Eap(u, 29), qan(u, ),
M (ug, ) and N4 (ug, ), where uq is a fixed value of u.

Notice that for the boundary conditions (2.2.22) (AAdS1), the solution space
reduces to

{qaB, Eap, M, N a0, (2.2.44)
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where M and N4 have constrained evolutions with respect to the u coordinate, and
gap has a fixed determinant [166] (7 functions). Finally, for the Dirichlet boundary
conditions (2.2.24) (AAdS2), the solution space finally reduces to

{gABaMa NA}A#O? (2245)

where M and N4 have constrained evolutions with respect to the u coordinate (5
functions).

Let us finally discuss the Bondi gauge in asymptotically flat spacetimes [1-3,6,8,
166,169]. We first consider the preliminary boundary conditions (2.2.15). From the
previous analysis of solution space with A # 0, we can readily obtain the solution
space with A = 0, that is, the solution of

G,u,u = 07 (2246)

by taking the flat limit A — 0. The radial constraints (2.2.36), (2.2.38) and (2.2.39)
are still valid by setting to zero (y, Ut (see equation (2.2.15)) and all the terms
proportional to A. Furthermore, by the same procedure, the constraint equation
(2.2.40) becomes

(Ou —1)gan = 0. (2.2.47)

Therefore, the asymptotic shear C4p becomes unconstrained, and the metric gap
gets a time evolution constraint. Similarly, the equation (2.2.41) becomes trivial and
D 4p is not constrained at this order. In particular, this allows for the existence of
logarithmic terms in the Bondi expansion (see equation (2.2.37)). One has to impose
the additional condition DD,z = 0 to make these logarithmic terms disappear.
Finally, one can see that for A = 0, the subleading orders of the components (AB)
of the Einstein equations impose time evolution constraints on Dyg, €45, ..., but
this infinite tower of functions is otherwise unconstrained and they become free
parameters of the solution space. Finally, as for the case A # 0, the components
(uu) and (uA) of the Einstein equations yield time evolution constraints for the
Bondi mass aspect M and the angular momentum aspect N*.

In summary, the solution space for general relativity in the Bondi gauge with
the preliminary boundary condition (2.2.15) is parametrized by the set of functions

{QAB7CABaM7 NA>DABagAB7-FAB7---}A=Oa (2-2-48)

where gag, M, N4, Dag, Eap, Fap, ... have constrained time evolutions (infinite
tower of independent functions). Therefore, the characteristic initial value problem is
well-defined when the following data are given: Cag(u, c®), qap(uo, 2¢), M (ug, z°)
NA(ug, %), Dap(uo, ), Eanlug, %), Fap(ug, ), ... where ug is a fixed value of
u. Notice a subtle point here: by taking the flat limit of the solution space with
A # 0, we assumed that g4p is analytic in 7 and can be expanded as (2.2.33) (this

b
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condition was not restrictive for A # 0). This condition is slightly more restrictive
than (2.2.15) where analyticity is assumed only up to order 1. Therefore, by this
flat limit procedure, we only obtain a subsector of the most general solution space.
Writing gap(u, 7, 2°) = r2qap(u, 2°) + rCup(u, 2€) + Dap(u, 2) + Ep(u,r, 2),
where E 45 is a function of all the coordinates of order O(r~') in r, the most general
solution space can be written as

{QAB,CAB, M, NAaDABugAB}A=O’ (2-2-49)

where gAB is the trace-free part of EAB, and gap, M, N2, Dug, gAB obey time
evolution constraints. Now, the characteristic initial value problem is well-defined
when the following data are given: Cap(u, %), gap(uo, v€), M (ug, %), N*(ug, 2¢),
Dap(ug, z€) and Eap(ug, r, z°).

We complete this set of examples by mentioning the restricted solution spaces
in the different definitions of asymptotic flatness introduced above. For boundary
conditions (AF1) (equations (2.2.15) with (2.2.16)), we obtain

{qABacABaMa NAaDABagNAB}A=O7 (2250)

where gap, M, N4, D5 and Eap obey time evolution constraints, and /q is fixed.
In particular, if we choose a branch where /g is time-independent, from (2.2.47), we
immediately see that d,qap = 0. For boundary conditions (AF2) (equations (2.2.15)
with (2.2.17)), the solution space reduces to

{¢,Cap, M, N*, Dap, Ean}aco, (2.2.51)

where M, N4, Dp and c‘:’AB obey time evolution equations. Notice that the metric
qap of the form (2.2.17) automatically satisfies (2.2.47). This agrees with results of
[6]. Finally, taking the boundary conditions (AF3) (equations (2.2.15) with (2.2.18))

yields the solution space
{CABaM7 NAaDABagAB}A:(]a (2252)

where M, N4, Dp and Ean obey time evolution equations. This agrees with the
historical results of [1-3].

2.2.4 Asymptotic symmetry algebra

Definition [Asymptotic symmetry| Given boundary conditions imposed in a cho-
sen gauge, the asymptotic symmetries are defined as the residual gauge transforma-
tions preserving the boundary conditions®. In other words, the asymptotic symme-
tries considered on-shell are the gauge transformations R[f] tangent to the solution

6This is the weak definition of asymptotic symmetry, in the sense of (2.1.2).
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space. In practice, the requirement to preserve the boundary conditions gives some
constraints on the functions parametrizing the residual gauge transformations. In
gravity, the generators of asymptotic symmetries are often called asymptotic Killing
vectors.

Definition [Asymptotic symmetry algebra] Once the asymptotic symmetries are
known, we have

[R[f1], R[f2]] = 05, R[f2] — 65, R[1]
~ R[[fl; fQ]A]a

where &~ means that this equality holds on-shell, i.e. on the solution space. In this
expression, the bracket [f1, fo]a4 of gauge symmetry generators is given by

[fla f2]A = C(flv f2) - 5f1f2 + 6f2f17 (2254)

where C(f1, f2) is a skew-symmetric bi-differential operator [170, 171]

(2.2.53)

Clfi,f2) = Y CUa 0, 0 f00, . O f5. (2.2.55)

k=0

The presence of the terms —dy, fo + dp, f1 in (2.2.53) is due to the possible field-
dependence of the asymptotic symmetry generators. We can verify that (2.2.54)
satisfies the Jacobi identity, i.e. the asymptotic symmetry generators form a (so-
lution space-dependent) Lie algebra for this bracket. It is called the asymptotic
symmetry algebra. The statement (2.2.53) means that the infinitesimal action of
the gauge symmetries on the fields forms a representation of the Lie algebra of
asymptotic symmetry generators: [0, d¢,]¢ = s, f,].¢- Let us mention that a Lie
algebroid structure is showing up at this stage [146,170,172]. The base manifold
is given by the solution space, the field-dependent Lie algebra is the Lie algebra
of asymptotic symmetry generators introduced above and the anchor is the map

f— RLf]-

Examples The examples that we present here will be re-discussed in much de-
tails in the remaining of the text. Let us start by considering asymptotically AdS,
spacetimes in the Fefferman-Graham and Bondi gauge. The preliminary boundary
condition (2.2.19) does not impose any constraint on the generators of the residual
gauge diffeomorphisms of the Fefferman-Graham gauge given in (2.2.13). Similarly,
the generators of the residual gauge diffeomorphisms in Bondi gauge given in (2.2.14)
do not get further constraints with (2.2.20).

Now, let us consider the boundary conditions (AAdS1) (equation (2.2.19) to-
gether with (2.2.21)) in the Fefferman-Graham gauge. The asymptotic symmetries
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are generated by the vectors fields £# given in (2.2.13) preserving the boundary con-
ditions, namely, satisfying £§g£f ) = 0, Eggt(g) = 0 and gf‘g)ﬁggg) = 0. This leads to
the following constraints on the parameters:

1 1 A 1
(au - §z) & =5DVG, oYt = —Zaifosth, o =DV + &, (2:2.56)

where [ = 0, In/g. In this case, the Lie bracket (2.2.54) is given by

[£1,&]a = Le&o — 06,8 + 0,6 (2.2.57)

and is referred as the modified Lie bracket [6]. Therefore, the asymptotic symmetry
algebra can be worked out and is given explicitly by [£(&],&0), (604, 68%)]a =

£(88,¢3'), where
R 1 o
& = &10a80 0 + 553,11)1(4)56%2 - 5g(§371,gg§1)53,2 — (1 2),

A A (2.2.58)
551 = 55153564,2 - 558,196?5356,2 - 55(53’1,55"1)56%2 — (1< 2).
In the Bondi gauge with corresponding boundary conditions (2.2.22), the constraints
on the parameters are given by
A

1 1
(au - 51) f= DAY At = S apf, w=0 (2.2.59)

and the asymptotic symmetry algebra is written as [£(f1, Vi), €(fa, Vi) ]a = €(F, V),
where

A 1

f=Y{"0ufs + §f1DAY2A — Oe(pyyfe— (1 2), 2260)
N A /N
YA =YP0pYy = Sha* 08f2 = gy ¥y = (1 = 2).

This asymptotic symmetry algebra is infinite-dimensional (in particular, it contains
the area-preserving diffeomorphisms as a subgroup) and field-dependent. It is called
the A-BMS, algebra [166] and is denoted as bms}. The parameters f are called the
supertranslation generators, while the parameters Y4 are called the superrotation
generators. These names will be justified below when studying the flat limit of this
asymptotic symmetry algebra bmsf. The computation of the modified Lie bracket
(2.2.57) in the Bondi gauge for these boundary conditions® follows closely [6].

"The terms 55(53,1{&1)53_2 and 65(56,1:5&1)5&2 in (2.2.58) take into account the possible field-

dependence of the parameters (& 5,&5's)-
8This completes the results obtained in [166] where the asymptotic symmetry algebra was
obtained by pullback methods.
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Let us consider the Fefferman-Graham gauge with Dirichlet boundary conditions
(AAdS2), that is, (2.2.19) together with (2.2.23). Compared to the above situation,
the equations (2.2.56) reduce to

A, 1
Sdaropsh, o =sDVet (2.2.61)

1
L= -DWet v = —
auf[) 2 A 50 ) au 3 2

where fo) is the covariant derivative associated with the fixed unit sphere met-

ric ¢gap. Furthermore, there is an additional constraint: Eggff])g = o(p?), which
indicates that &' is a conformal Killing vector of §4p, namely,

DYe% + D¢ = DS gap. (2.2.62)

The asymptotic symmetry algebra remains of the same form as (2.2.58), with (e 1{?1)5&2 =
0= 55(56,1:€§1)£é2‘ In the Bondi gauge, Dirichlet boundary conditions are given by
(2.2.20) together with (2.2.24). The equations (2.2.59) become

1 A
Ouf = 5DaYA, 0" = —2q"Papg, w=0, (2.2.63)
where D4 is the covariant derivative with respect to ¢4z, while the additional con-

straint Legap = o(r?) gives
DAYp + DpYs = DeYCqup. (2.2.64)

This means that Y4 is a conformal Killing vector of 4. The asymptotic symmetry
algebra (2.2.60) remains of the same form, with ¢, yayfo =0 = 5£(f17Y1A)}/2A. It can
be shown that the asymptotic symmetry algebra corresponds to so(3,2) algebra for
A < 0 and s0(1,4) algebra for A > 0 [24] (see also appendix A of [166]). Therefore,
we see how the infinite-dimensional asymptotic symmetry algebra bmsf reduces to
these finite-dimensional algebras, which are the symmetry algebras of global AdS,
and global dS,, respectively.

Let us now consider four-dimensional asymptotically flat spacetimes in the Bondi
gauge. The asymptotic Killing vectors can be derived in a similar way to that in
the previous examples. Another way in which to proceed is to take the flat limit
of the previous results obtained in the Bondi gauge. We sketch the expressions ob-
tained by following these two equivalent procedures. First, consider the preliminary
boundary conditions (2.2.15). The asymptotic Killing vectors &" are the residual
gauge diffeomorphisms (2.2.14) with the following constraints on the parameters:

1 1
(au - 5l) f= 3Dyt —w, Xt =0, (2.2.65)
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where | = 0J,In/q. These equations can be readily solved and the solutions are
given by

NI

f—q lT(xA) + % j du'[q= (DAY — Zw)]] YA YAGE),  (2.266)

0

where T are called supertranslation generators and Y4 superrotation generators.
Notice that there is no additional constraint on Y4 at this stage. Computing the
modified Lie bracket (2.2.57), we obtain [£(f1, i, wi), E(f2, Yo', wo)]a = €(f, YA, Q)

where

A 1
f=Y"0uf+ §f1DAYQA — (1 2),
Y4 =YPopYs' — (1 2),

w=20.

(2.2.67)

Now, we discuss the two relevant sub-cases of boundary conditions in asymptot-
ically flat spacetimes. Adding the condition (2.2.16) to the preliminary condition
(2.2.15), i.e. considering (AF1), gives the additional constraint

w=0 (2.2.68)

Note that this case corresponds exactly to the flat limit of the (AAdS1) case (equa-
tions (2.2.19) and (2.2.21)). The asymptotic symmetry algebra reduces to the semi-
direct product

bms™" = 0iff(S?) ¢ s, (2.2.69)

where 0iff(S?) are the smooth superrotations generated by Y4 and s are the smooth
supertranslations generated by T'. This extension of the original global BMS, algebra
(see below) is called the generalized BMS, algebra [8,12,13,164|. Therefore, the A-
BMS, algebra reduces in the flat limit to the smooth extension (2.2.69) of the BMS,
algebra.

The other sub-case of boundary conditions for asymptotically flat spacetimes
(AF2) is given by adding condition (2.2.17) to the preliminary boundary condition
(2.2.15). The additional constraint on the parameters is now given by

DAYg + DYy = DeY%qup, (2.2.70)

i.e. Y4 is a conformal Killing vector of the unit round sphere metric gapz. If we allow
Y4 to not be globally well-defined on the 2-sphere, then the asymptotic symmetry
algebra has the structure

[(2iff(S*) @ 0iff(S)) ¢ s*] D R. (2.2.71)
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Here, 0iff(S!) @ 0iff(S!) is the direct product of two copies of the Witt algebra,
parametrized by Y4. Furthermore, s* are the supertranslations, parametrized by
T, and R are the abelian Weyl rescalings of ¢4, parametrized by w. Note that the
supetranslations also contain singular elements since they are related to the singular
superrotations through the algebra (2.2.67). This extension of the global BMS,
algebra is called the extended BMS; algebra |6] and is denoted as bms" @R. Finally,
as a sub-case of this one, considering the more restrictive constraints (2.2.18), i.e.
(AF3), and allowing only globally well-defined Y4, we recover the global BMS,
algebra |1-3], which is given by

bms& = 50(3,1) & s, (2.2.72)

where s are the supertranslations and so(3,1) is the algebra of the globally well-
defined conformal Killing vectors of the unit 2-sphere metric, which is isomorphic
to the proper orthocronous Lorentz group in four dimensions.

Definition [Action on the solution space] Given boundary conditions imposed in
a chosen gauge, there is a natural action of the asymptotic symmetry algebra, with
generators f = f(a), on the solution space ¢ = ¢(b). The form of this action can
be deduced from (2.2.2) by inserting the solution space and the explicit form of the
asymptotic symmetry generatorsg.

Examples Again, the examples given here will be discussed in more details in
the text. In the Fefferman-Graham gauge with Dirichlet boundary conditions for
asymptotically AdSy spacetimes (AAdS2) ((2.2.19) with (2.2.23)), the asymptotic
symmetry algebra so(3,2) acts on the solution space (2.2.32) as

1
OecTap = (ﬁsg + §D§0>§g) T (2.2.73)

In the Bondi gauge with definition (AF3) ((2.2.15) with (2.2.18)) of asymptotically
flat spacetime, the global BMS, algebra bms&°" acts on the leading functions of the

9This action is usually not linear. However, in three-dimensional general relativity, this action
is precisely the coadjoint representation of the asymptotic symmetry algebra [173-177].
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solution space (2.2.52) as
1 o
Os)Caan = [f0u+ Ly = 5 DY “1Cap = 2DaDpf + GasDe DS,
3 1
Ss/M = [fOu+ Ly + DY CIM + SN D4 Dy f

1 1
+ §DA fDNAB + gDCDBDAYACBC ,

SwyNa = [fu + Ly + DeYCINy +3MDaf — %DAfNBCCBC (2.2.74)
- 3—12DADBYBCCDCCD + E(QDBf +DPDe D f)Cagp
2Dy f(DPDOCac ~ DADEC™) + 2 DA(DEDR FCP)
+ S(DaDpf — 5DeDC fiap)DeC™ + LDy fN" Cac,

where Nap = 0,Cap [6]. For the action of the associated asymptotic symmetry
group on these solution spaces, see [178§].

2.3 Surface charges

In this section, we review how to construct the surface charges associated with gauge
symmetries. After recalling some results about global symmetries and Noether cur-
rents, the Barnich-Brandt prescription to obtain the surface charges in the context of
asymptotic symmetries is discussed. We illustrate this construction with the exam-
ple of general relativity in asymptotically (A)dS and asymptotically flat spacetimes.
The relation between this prescription and the Iyer-Wald construction is established.

2.3.1 Global symmetries and Noether’s first theorem

Definition |Global symmetry| Let us consider a Lagrangian theory with Lagrangian
density L[¢, 0,¢, . ..] and a transformation dg¢ = @ of the fields, where @) is a local
function. In agreement with the above definition (2.2.3), this transformation is said
to be a symmetry of the theory if

JoL = dBg, (2.3.1)

where Bg = Bf(d"'x),. Then, as defined in (2.2.2), a gauge symmetry is just a
symmetry that depends on arbitrary spacetime functions f = (f%), i.e. @ = R[f].
We define an on-shell equivalence relation ~ between the symmetries of the theory
as

Q ~ Q + R[f]. (2.3.2)
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i.e. two symmetries are equivalent if they differ, on-shell, by a gauge transformation
R[f]- The equivalence classes [Q] for this equivalence relation are called the global
symmetries. In particular, a gauge symmetry is a trivial global symmetry.

Definition [Noether current| A conserved current j is an on-shell closed (n — 1)-
form, i.e. dj =~ 0. We define an on-shell equivalence relation ~ between the currents
as

j~j+dK, (2.3.3)

where K is a (n — 2)-form. A Noether current is an equivalence class [j] for this
equivalence relation.

Theorem [Noether’s first theorem| A one-to-one correspondence exists between
global symmetries (Q and Noether currents [j], which can be written as

[Q) < i]. (2.3.4)

In particular, Noether currents associated with gauge symmetries are trivial. Recent
demonstrations of this theorem can for example be found in [113,171].

Remark This theorem also enables us to construct explicit representatives of the
Noether current for a given global symmetry. We have

5QL = dBQ = (@Bg)d”x (235)
Furthermore, writing L = Ld"z, we obtain
;0L L ; oL 5L
[ 7 L
-5 6¢z HO G T (2.3.6)
_Ql(ﬁL oL >+6<Qi oL N > e
o6 G AT A0ue) T
. 0L
= Q" ‘ — 4+ ...,
-o5+a (@)
where, in the second line, we used
[0g,0,] =0 (2.3.7)

and, in the last equality, we used (A.2.1). Putting (2.3.5) and (2.3.6) together, we
obtain

;0L ; OL .
szau (Bg—@a(ﬁu(bi) —i—) = ;Jg (2.3.8)
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or, equivalently

oL
- = dj
6¢Z JQ’

Q" (2.3.9)

where jo = j5(d"'x),. In particular, djo ~ 0 holds on-shell. Hence, we have ob-
tained a representative of the Noether current associated with the global symmetry
@ through the correspondence (2.3.4).

Theorem [Noether representation theorem| Defining the bracket as

{jQ17jQ2} = 6Q1jQ27 (2'3'10)

we have

{i01,d0.) = 1010 (2.3.11)

(n > 1), where [Q1,Q2] = dg,@2 — dg,@1- In other words, the Noether currents
form a representation of the symmetries.

To prove this theorem, we apply dg, on the left-hand side and the right-hand
side of (2.3.9), where @ is replaced by Q2. On the right-hand side, using the first
equation of (A.2.4), we obtain

6Q1de2 ~ d5Q1jQ2' (2'3'12)
On the left-hand side, we have

oL 6L 6L
80, (Qz@) = 5@@2(@ + 25Q1575,~

- i 0L i 0 i k anl oL
— 5Q1Q2W + QQW(&LL) Q5 ;;0( 1) Opy -+ Oy, <m@
0L . a@j SL
= 00,Q— — @} —1’“81...5‘ . = :
Q QQ 5¢1 QQ l;( ) Iz Hk <a¢f¢1m« (5¢J>

(2.3.13)

where, to obtain the second equality, we used (A.2.5). In the last equality, we used
(2.3.1) together with (A.2.2). Now, using Leibniz rules in the second term of the
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right-hand side, we get

J an oL w L n
(Q25¢1> 0Q, 25¢Z Z Opn -+ - O Q3 («%bm o 5¢1) +9 TQ1 (QQ’ ¢> d*z

k=0

oL L
= (00,Q5 — 5Q2QZ)5¢Z + 015, <Q2, 5¢) d"z

oL
? ﬁuT(gl (QQ, %) d"z

= djig..q. +dTq, (QQ, = ¢)

= [Q1, Q'

(2.3.14)

where Tsl <Q27 %) is an expression vanishing on-shell. In the second equality, we

used (A.2.3), and in the last equality, we used (2.3.9). Putting (2.3.12) and (2.3.14)
together results in

d l%ljczz —Jie1.e1 — Ta <Q2, 5¢>] 0. (2.3.15)

We know from Poincaré lemma that locally, every closed form is exact'’. However,
this cannot be the case in Lagrangian field theories. In fact, this would imply
that every n-form is exact, and therefore, there would not be any possibility of
non-trivial dynamics. Let us remark that the operator d that we are using is not
the standard exterior derivative, but a horizontal derivative in the jet bundle (see
definition (A.1.3)) that takes into account the field-dependence. In this context, we
have to use the algebraic Poincaré lemma.

Lemma [Algebraic Poincaré lemma| The cohomology class H?(d) for the operator
d defined in (A.1.3) is given by

[a"] ifp=n
H(d)={ 0 if0<p<n (2.3.16)
R iftp=20

where [a"] designates the equivalence classes of n-forms for the equivalence relation
a" ~a"ifa” =a" +dB ! 171].

19The Poincaré lemma states that in a star-shaped open subset, the de Rham cohomology class
HY, is given by
o _{ 0 if0<p<n
dR T ) R ifp=0 '
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Le us go back to the proof of (2.3.11). Applying the algebraic Poincaré lemma
0 (2.3.15) yields

6Q1JQ2 = .][Ql Q2] + TQ1 (QZ; ¢> + d’l’]7 (2.3.17)

where 1 is a (n — 2)-form. Therefore, on-shell, since T, <Q27 %) ~ 0 and because

Noether currents are defined up to exact (n—1)-forms, we obtain the result (2.3.11).
Notice that in classical mechanics (i.e. n = 1), from (2.3.16), constant central
extensions may appear in the current algebra.

Definition [Noether charge] Given a Noether current [j|, we can construct a
Noether charge by integrating it on a (n — 1)-dimensional spacelike surface ¥, with
boundary 0%, as
Hqlo] = J J: (2.3.18)
)
If we assume that the currents and their ambiguities vanish at infinity, this definition
does not depend on the representative of the Noether current. Indeed,

L] = L(j #dK) = Hold] + | K. (2.3.19)

where we used the Stokes theorem. Since {,. K = 0, we have Hy)[¢] = Hg[6).

Remark [Conservation and algebra of Noether charges| The Noether charge (2.3.18)
is conserved in time, that is,

d
dtHQ[d)] ~ 0. (2.3.20)
In fact, consider two spacelike hypersurfaces >; =t; = 0 and Xy = t5 = 0. We have
Hglo) — Hgle] = f Jo —f jo = f djo ~ 0, (2.3.21)
Z:2 21 22—21

where Yy — X, is the spacetime volume encompassed between »; and X,. In the
second equality, we used the hypothesis that currents vanish at infinity and the
Stokes theorem.

The Noether charges (2.3.18) form a representation of the algebra of global sym-
metries, i.e.

{HQ17 HQQ} ~ H[leQQ]’ <2'3'22>
where the bracket of Noether charges is defined as
{Hq,, Hq,} = 0, Ho, = J 00132 (2.3.23)
b

This is a direct consequence of (2.3.11).
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2.3.2 Gauge symmetries and lower degree conservation law

Definition |Noether identities| Consider the relation (2.3.9) for a gauge symmetry:

7 5L .
R [f](gi = 0uj}- (2.3.24)
The left-hand side can be worked out as

oL
St

oL
oot

oL oL oL
= -0, | R* 0,0, R““’) ) ]
- l “5g O ( (¥6¢z) + O ( 55 ) T (2.3.25)
oL
m — fap i(pv)
afmerl s (i) |

g

st

Rl = (RLf® + R¥0, [ + RU9,0,f + ...

Therefore, the equation (2.3.24) can be rewritten as

oL
7ol (35 ) = otk - st (23.26)

where R (W) R} 3% — 0, (Rg“ggﬁ) + 0,0, (RZ(W gqﬁ) + ... Since f is a set of
arbitrary functions, we can apply the Euler-Lagrange derivative (A.2.1) with respect
to f¢ on this equation. Since the right-hand side is a total derivative, it vanishes

under the action of the Euler-Lagrange derivative (see (A.2.2)) and we obtain

R (fsf;) =0. (2.3.27)

This identity is called a Noether identity. There is one identity for each independent
generator f¢. Notice that these identities are satisfied off-shell.

Theorem [Noether’s second theorem| We have

R'[f] 5L, = dS; [5—L] : (2.3.28)

where Sy = S(d" 'x), is the weakly vanishing Noether current (i.e. Sy ~ 0) that
was defined in the last line of (2.3.25). This is a direct consequence of (2.3.25),
taking the Noether identity (2.3.27) into account.
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Example Consider the theory of general relativity L = (167G) ' (R—2A)/—gd"x.
The Euler-Lagrange derivative of the Lagrangian is given by

SL
0w

= —(167G)~H(G" + g"' A)/—gd"z. (2.3.29)

The Noether identity associated with the diffeomorphism generated by & is obtained
by following the lines of (2.3.25):

5L
167G)0e g~ = —2V,6,(G™ + g"' A)y/—gd"
(167G)eg, 3Gy ol g MV ed's (2.3.30)

=26, V,G"\/—gd"x — 0,[26,(G* + g""A)\/—g]d"z.
Therefore, the Noether identity is the Bianchi identity for the Einstein tensor
V,.G" =0 (2.3.31)

and the weakly vanishing Noether current of Noether’s second theorem (2.3.28) is
given by

_ -9 uy uv n—1
Se =~V 6, (G + gAY (@), (2.3.32)

Remark From (2.3.24) and (2.3.28), we have d(j; —S) = 0, and hence, from the
algebraic Poincaré lemma (2.3.16),

jr =Sy + dKj, (2.3.33)

where Ky is a (n — 2)-form. Therefore, as already stated in Noether’s first theo-
rem (2.3.4), the Noether current associated with a gauge symmetry is trivial, i.e.
vanishing on-shell, up to an exact (n — 1)-form. A natural question arises at this
stage: is it possible to define a notion of conserved quantity for gauge symmetries?
Naively, following the definition (2.3.18), one may propose the following definition
for conserved charge:

Hf = j jf ~ Kf (2334)
b ox

where, in the second equality, we used (2.3.33) and Stokes’ theorem. This charge
will be conserved on-shell since dj; ~ 0. The problem is that the (n — 2)-form
K/ appearing in (2.3.34) is completely arbitrary. Indeed, the Noether currents are
equivalence classes of currents (see equation (2.3.3)). Therefore, we have to find an
appropriate procedure to isolate a particular K.
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Definition [Reducibility parameter| Reducibility parameters f are parameters of
gauge transformations satisfying

R[f] ~ 0. (2.3.35)

Two reducibility parameters f and f’ are said to be equivalent, i.e. f ~ f',if f ~ f.
Note that for a large class of gauge theories (including electrodynamics, Yang-Mills
and general relativity in dimensions superior or equal to three [113,171]), these
equivalence classes of asymptotic reducibility parameters are determined by field-
independent ordinary functions f(x) satisfying the off-shell condition

R[f] = 0. (2.3.36)

We will call them ezact reducibility parameters.

Theorem [Generalized Noether’s theorem| A one-to-one correspondence exists
between equivalence classes of reducibility parameters and equivalence classes of on-
shell conserved (n — 2)-forms [K], which can be written as

1-1

[7] <5 [K]. (2.3.37)
In this statement, two conserved (n — 2)-forms K and K’ are said to be equivalent,

ie. K~ K/, if K~ K’+ dl where lis a (n — 3)-form [179,180].

Remark The Barnich-Brandt procedure allows for the construction of explicit
representatives of the conserved (n—2)-forms for given exact reducibility parameters
f]113,114]. From Noether’s second theorem (2.3.28) and (2.3.36), we have

ds; = 0. (2.3.38)
From the algebraic Poincaré Lemma (2.3.16), we get'!
—dK; = S; ~ 0. (2.3.39)
Using the homotopy operator (A.2.12), we define
ki[¢;60] = —I3 'S5 (2.3.40)

This kf[¢;0¢] is an element of Q" >! (see appendix A) and is defined up to an
exact (n — 2)-form. This enables us to find an explicit expression for the conserved
(n — 2)-form Ky[¢] as

Kylo] = | Krloid0) (23.41)

1 The minus sign on the left-hand side of (2.3.39) is a matter of convention.
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where 7 is a path on the solution space relating ¢ such that Sf[¢] = 0 to the
solution ¢ of interest. Applying the operator d on (2.3.41) gives back (2.3.39),
using the property (A.2.14) of the homotopy operator. Notice that the expression
(2.3.41) of Ky[#] generically depends on the chosen path «. Therefore, in practice,
we consider the (n —2)-form k;[¢; d¢] defined in (2.3.40) as the fundamental object,
rather than K¢[¢].

Example Let us return to our example of general relativity. The exact reducibility
parameters of the theory are the diffeomorphism generators &, which satisfy

O¢9uw = LG =0, (2.3.42)

i.e. they are the Killing vectors of g,,,. Note that for a generic metric, this equation
does not admit any solution. Hence, the previous construction is irrelevant for
this general case. Now, consider linearized general relativity around a background
9y = Guv + hy. We can show that

5ghuy = ngw =0, (2.3.43)

i.e. the exact reducibility parameters of the linearized theory are the Killing vectors
of the background g,,. If g, is taken to be the Minkowski metric, then the solutions
of (2.3.43) are the generators of the Poincaré transformations. The (n — 2)-form
(2.3.41) can be constructed explicitly and integrated on a (n — 2)-sphere at infinity.
This gives the ADM charges of linearized gravity [113].

2.3.3 Asymptotic symmetries and surface charges

We now come to the case of main interest, where we are dealing with asymptotic
symmetries in the sense of the definition in subsection 2.2.4. The prescription to
construct the (n — 2)-form k¢[¢, d¢| associated with generators of asymptotic sym-
metries f is essentially the same as the one introduced above for exact reducibility
parameters. However, this (n — 2)-form will not be conserved on-shell. Indeed,
for a generic asymptotic symmetry, (2.3.38) does not hold; therefore, the equation
(2.3.39) is not valid anymore. Nonetheless, as we will see below, we still have a
control on the breaking in the conservation law.

Definition |[Barnich-Brandt (n —2)-form for asymptotic symmetries| The (n —2)-
form ky associated with asymptotic symmetries generated by f is defined as

k¢[p;00] = I3, 'Sy, (2.3.44)

where [Z;;l is the homotopy operator (A.2.12) and Sy is the weakly vanishing
Noether current defined in the last line of (2.3.25). For a first order gauge theory,
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namely a gauge theory involving only first order derivatives of the gauge parame-
ters f = (f) and the fields ¢ = (¢°) in the gauge transformations, and first order
equations of motion for the fields, the (n — 2)-form (2.3.44) becomes

0
ky[g; 0] = ——W o W) (adxusf>, (2.3.45)
where
Sy =Ry [ 5;(01” ') (2.3.46)

The simplicity of these expressions motivates the study of first order formulations
of gauge theories in this context [181-184] (see chapter 3).

Example Let us consider the theory of general relativity. Applying the homotopy
operator on the weakly vanishing Noether current S¢ obtained in equation (2.3.32),
we deduce the explicit expression

ke[g; ] = Y2 (d"20), [€/VF R + E9V 0 + €,V7 hoH
| 8rG X (2.3.47)
+ SRV 4 BTV, + TV

where h,, = dg,,. Indices are lowered and raised by ¢, and its inverse, and h = h*,
[113]. Notice that this expression has also been derived both in the first order Cartan
formulation and in the Palatini formulation of general relativity [181,185].

Theorem [Conservation law| Define the invariant presymplectic current as

SL
W(¢; 66, 0¢] = I5¢ (M&b") . (2.3.48)

We have the following conservation law

dky[¢;00] ~ W(g; R[], 6¢], (2.3.49)

where, in the equality =, it is implied that ¢ is a solution of the Euler-Lagrange equa-
tions and ¢ is a solution of the linearized Euler-Lagrange equations. Furthermore,

we use the notation W{¢; R[f],6¢] = ir[gW/|¢; ¢, d¢].

The proof of this proposition involves the properties of the operators introduced
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in appendix A. We have

dks[¢; 0] = —dI57'S;

= 0S; — I},dS;

~ —[gl(z)de
— I (R [£] W) (2.3.50)
1. (., 0L
Sirindss (5¢ @)
irWe; 0, 6¢]
~ W[¢; R[f],0¢].

&€

&

@

In the second equality, we used (A.2.14). In the third equality, we used the fact that
0S; ~ 0, since d¢ is a solution of the linearized Euler-Lagrange equations. In the
fourth equality, we used Noether’s second theorem (2.3.28). In the fifth equality, we
used

ir W3 00,60] = TR <5¢ 5751) = —1I5 (R /] 5@) : (2.3.51)
The proof of this statement can be found in appendix A.5 of [115]. Finally, in the
sixth equality, we used the definition (2.3.48).

Definition [Surface charges| Let ¥ be a (n — 1)-surface and 0¥ its (n — 2)-
dimensional boundary. We define the infinitesimal surface charge §Hy|¢| as

gitglo) - |

ox

kylos36] ~ | Wlos Rlf).50]. (2.3.52)

The infinitesimal surface charge §H[¢] is said to be integrable if it is d-exact, i.e. if
FgH¢[¢] = 0Hf[¢]. The symbol §in (2.3.52) emphasizes that the infinitesimal surface
charge is not necessarily integrable. If it is actually integrable, then we can define
the integrated surface charge Hy|¢| as

Hilo) = | atlol+ N1 = | | kglosso + Vel (235

v

where 7 is a path in the solution space, going from a reference solution 6 to the
solution ¢. N|[¢] is a chosen value of the charge for this reference solution, which
is not fixed by the formalism. Notice that for integrable infinitesimal charge, the

integrated charge Hy[¢| is independent from the chosen path ~ [186].
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Theorem [Charge representation theorem| Assuming integrability'?, the integrated
surface charges satisfy the algebra

{Hf17 HfQ} ~ H[fhfz]A + Kf1;f2 [¢] (2'3'54)

In this expression, the integrated charges bracket is defined as

{Hy, Hp,} = 6p,Hp, = LE ky [¢;05,0]. (2.3.55)

Furthermore, the central extension Kjy,.,[¢], which depends only on the reference
solution ¢, is antisymmetric with respect to f; and fo, i.e. Kp.p5[0] = K5, [0]- 1t
satisfies the 2-cocycle condition

K[fl:fZ]A?fS [¢] + K[f2»f3]A}fl [¢] + K[f3,f1]A;f2 [¢] ~ 0. (2-3'56)

Therefore, the integrated charges form a representation of the asymptotic symmetry
algebra, up to a central extension [113,115].
For the proof of this theorem, see e.g. section 1.4 of [186].

Remark In the literature, there are several criteria based on properties of the
surface charges, that make a choice of boundary conditions interesting. The main
properties are the following:

e The charges are usually required to be finite. Two types of divergences may
occur: divergences in the expansion parameter defining asymptotics, say r,
and divergences when performing the integration on the (n — 2)-surface 0.

e The charges have to be integrable. As explained above, this criterion enables
us to define integrated surface charges as in (2.3.53). Integrability implies that
the charges form a representation of the asymptotic symmetry algebra, up to
a central extension (see (2.3.54)).

e The charges have to be generically non-vanishing. Indeed, the asymptotic
symmetries for which associated integrated charges identically vanish are con-
sidered as trivial in the strong definition of asymptotic symmetry group (2.1.3).

e The charges have to be conserved in time when the integration is performed
on a spacelike (n— 2)-dimensional surface 0¥ at infinity. This statement is not
guaranteed a priori because of the breaking in the conservation law (2.3.49).

120ne also has to assume E[¢; 06, 6¢] = 0, where E[¢; d¢, 6¢] is defined in (2.3.85).
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However, even if these requirements seem reasonable, in practice, some of them
may not be satisfied. Indeed, as we will see below, the BMS charges in four dimen-
sions are not always finite, neither integrable, nor conserved [121]. We now discuss
the violation of some of the above requirements:

e The fact that the charges may not be finite in terms of the expansion parameter
r can be expected when the asymptotic region is taken to be at infinity. Indeed,
consider 7 as a cut-off. It makes sense to integrate on a surface 0% at a
constant finite value of r, encircling a finite volume. Then, taking the limit
r — oo leads to an infinite volume; therefore, it does not come as a surprise
that quantities diverge. Furthermore, it has recently been shown in [187] that
subleading orders in 7 in the (n — 2)-form k¢[¢; 0¢] contain some interesting
physical information, such as the 10 conserved Newman-Penrose charges [188].
Therefore, it seems reasonable to think that overleading orders in r» may also
contain relevant information (see e.g. [189-191]).

e The non-integrability of the charges may be circumvented by different proce-
dures to isolate an integrable part in the expression of the charges (see e.g. [11§]
and |8]). However, the final integrated surface charges obtained by these pro-
cedures do not have all the properties that integrable charges would have. In
particular, the representation theorem does not generically hold. Another phi-
losophy is to keep working with non-integrable expressions, without making
any specific choice for the integrable part of the charges. In some situations,
it is still possible to define a modified bracket for the charges, leading to a
representation of the asymptotic symmetry algebra, up to a 2-cocycle which
may depend on fields [8,121]. However, no general representation theorem
exists in this context, even if some progress has been made [192].

e Finally, the non-conservation of the charges contains some important infor-
mation on the physics. For example, in asymptotically flat spacetimes at
null infinity, the non-conservation in time of the charges associated with time
translations is known as the Bondi mass loss. This tells us that the mass
decreases in time at future null infinity because of a flux of radiation through
the boundary. Hence, the non-conservation of the charges contains important
information on the dynamics of the system.

Even if the charges have these pathologies, they still offer important insights on
the system. They could be seen as interesting combinations of the elements of the
solution space that enjoy some properties in their transformation (see e.g. [175,178]).

Examples We now provide explicit examples of surface charge constructions in
four-dimensional general relativity. First, consider asymptotically AdS, spacetimes
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with Dirichlet boundary conditions (AAdS2) (condition (2.2.19) together with (2.2.23)),
the associated solution derived in subsection 2.2.3 (equation (2.2.32)), and the asso-
ciated asymptotic Killing vectors derived in subsection 2.2.4. Inserting this solution
space and these asymptotic Killing vectors into the (n — 2)-form (2.3.47) results
in an integrable expression at order p°. Therefore, we can construct an integrated
surface charge (2.3.53) where the 2-surface 0% is taken to be the 2-sphere at infinity,
written SZ. We have the explicit expression

He[g] = Lg d*Q (&T.), (2.3.57)

where d%() is the integration measure on the 2-sphere (see e.g. [144]). These charges
are finite and generically non-vanishing. Furthermore, we can easily show that they
are conserved in time, i.e.

%Hg[g] ~ 0. (2.3.58)

Now, we consider definition (2.2.15) with (2.2.18) of asymptotically flat space-
times in four dimensions (AF3). The surface charges are obtained by inserting
the corresponding solution space derived in subsection 2.2.3 (see equation (2.2.52))
and the asymptotic Killing vectors discussed in subsection 2.2.4 into the expression
(2.3.47), and then integrating over S2. The result is given by

$He[g; 0] ~ 6J¢[g] + O¢lg; dg], (2.3.59)
where
1 2 A 1 CB
Jﬁ[g] = d“Q 4fM +Y (2NA + —5,4(0 OCB))
167TG S2 ].6
- 7 (2.3.60)
10g] = d*Q | =NapoC*?
O¢[g; dg] 167G )2 [2 4B0C ]
and where Nyp = 0,Cap [121]. As mentioned above, the infinitesimal surface

charges are not integrable. Therefore, we cannot unambiguously define an integrated
surface charge as in (2.3.53) (see, however, [8,118]). In particular, the representation
theorem (2.3.54) does not hold. Nevertheless, we can define the following modified
bracket [121]:

{Jers Je }o = 0eaJei [9] + O g5 e, 9] (2.3.61)

We can show that
{Jers Jeo o = Jier 614 19] + Key 6, 19], (2.3.62)
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where K¢ ¢,[g] is a field-dependent 2-cocycle given explicitly by'?

1
K£1§£2 [g] = 327TG 52

d*Q [CBC(f,DpDcDAYS — foDpDeDAYM].  (2.3.63)

It satisfies the generalized 2-cocycle condition
K[El»fQ]A7§3 + 5§3K§1,§2 + CyCliC (1a233) ~ 0. (2.3.64)

For the algebra (2.3.62) to make sense, its form should not depend on the particular
choice of integrable part Je¢[g]| in (2.3.60). In particular, defining J' = J — N and
© =0 + 0N for some N = N¢|g|, we obtain

(s Ti e = Ty e l9] + KL g, 91, (2.3.65)
where {J},, Ji,}s = 0e,J{, [9] + O, [9: 9, 9] and
Kéu&z = K¢ e, — 0g, Ne, + 0g, Ne, + N[€1,52]A' (2.3.66)

Notice that —d¢, N¢, + 0¢, Ne, + Nig, 65], automatically satisfies the generalized 2-
cocycle condition (2.3.64) [121]. Another property of the surface charges (2.3.59)
and (2.3.60) is that they are not conserved. Indeed,

C%éHg[g] = L?[ Wg; 09, d9], (2.3.67)

where W{g; dg, dg] was computed'! in [8]. We have

W|g;dg,d9] = —

G J d?Q [6N4P A 6C 5] (2.3.68)
S2 SZ,

Notice that taking f = 1 and Y* = 0 in (2.3.67), we recover the famous Bondi
mass loss formula [1-3]. This formula indicates that the mass is decreasing in time
because of the leak of radiation through .#*. This was a striking argument for the
existence of gravitational waves at the non-linear level of the theory. Finally, despite
the BMS charges (2.3.59) and (2.3.60) not being divergent in r'°, we can show that
some of the supertranslation charges diverge for the Kerr solution [121].

13Notice that this 2-cocycle is zero for globally well-defined conformal transformations on the 2-
sphere. It becomes non-trivial when considering the extended BMS, group with 2iff(S') ®0iff(S*)
superrotations.

M4 More precisely, in [8], we computed the presymplectic form w(g;dg,dg] introduced below.
However, as we will see, this is equal to the invariant presymplectic current in the Bondi gauge.

15 As explained in [8,57,193], when taking into account the contact terms due to the meromorphic
poles on the celestial sphere, divergences in r actually appear in the expressions (2.3.60).
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Remark A non-trivial relation seems to exist between conservation and integrabil-
ity of the surface charges. For example, in the case of Dirichlet boundary conditions
in asymptotically AdS, spacetimes (AAdS2) considered above, we see that the sur-
face charges are both integrable and conserved. Reciprocally, there is a relation be-
tween non-conservation and non-integrability of the surface charges. For example,
in the asymptotically flat case (AF3), we see that the source of non-integrability
is contained in the asymptotic shear Cyp and the news function Ny = 0,Cap.
These are precisely the functions involved in the right-hand side of (2.3.68). We can
consider many other examples where this phenomenon appears. Therefore, non-
integrability is related to non-conservation of the charges. We will see below that
for diffeomorphism-invariant theories, the relation between non-conservation and
integrability is transparent in the covariant phase space formalism.

2.3.4 Relation between Barnich-Brandt and Iyer-Wald pro-
cedures

In this subsection, we briefly discuss the covariant phase space formalism leading
to the Iyer-Wald prescription for surface charges [116-118,194]. Notice that this
method is valid only for diffeomorphism-invariant theories (including general rela-
tivity), and not for any gauge theories. In practice, this means that the parame-
ters of the asymptotic symmetries are diffeomorphisms generators, i.e. f = ¢ and
0rp = L¢¢. Finally, we relate this prescription to the Barnich-Brandt prescription
presented in detail in the previous section.

Definition [Presymplectic form| Consider a diffeomorphism-invariant theory with
Lagrangian L = Ld"z. Let us perform an arbitrary variation of the Lagrangian.
Using a similar procedure as in (2.3.6), we obtain

oL
0L = 6 i
‘baqs 0 ) T
. oL
= 5 Yo% . 2.3.69
o5 ¢ (¢a<6u¢z) § ) (2:3.69)
—w?w 0161 56],

where

oL

0(¢; 6] = 0"p; 60](d" '), = (fW a1 W)

) (d" '), = L (2.3.70)
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is the presymplectic potential. Taking into account that ¢ is Grassmann odd, the
equation (2.3.69) can be rewritten as

SL = 5¢’? — d6[¢; 0] (2.3.71)

Now, the presymplectic form w is defined as

w[d; 86, 60] = 60[¢, 36, (2.3.72)

Definition |[Iyer-Wald (n — 2)-form for asymptotic symmetries] The Iyer- Wald
(n — 2)-form k{" associated with asymptotic symmetries generated by ¢ is defined
as

k' [0;00] = —0Qe[¢] + 1c6]d; 9], (2.3.73)
up to an exact (n — 2)-form'®. In this expression, Qe[¢] = —If7'0[¢; L] is called
the Noether- Wald surface charge.

Example For general relativity theory, the (canonical) presymplectic potential
(2.3.70) is given by

ﬁ

0lg: h] = L—L(V,h — VD) (A" '), (2.3.74)
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where h,, = dg,,. Indices are lowered and raised by g, and its inverse, and h = h* .
From this expression, the Noether-Wald charge can be computed; we obtain

Qelg] = —177'6]g; Leg] = ng(d”—%)w (2.3.75)

and we recognize the Komar charge. Finally, inserting these expression into (2.3.73)
yields

V=g 1
ke[ h] = = (g#v W = VIR VIR 4 ShVTEE — hﬂ”vpgﬂ> (d"722)
(2.3.76)

16 Tn the definition (2.3.73), we assumed that the variational operator ¢ in front of the Noether-
Wald charge does not see the possible field-dependence of the asymptotic Killing vectors £*. Strictly
speaking, one should write k[ [¢; 6¢] = —0Qe[¢] + Qse[¢] + 1c0[d; ¢].
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Theorem [Conservation law| We have the following conservation law:

Ak{" [¢:00] ~ w(er Leo, 66, (2.3.77)

where, in the equality =, it is implied that ¢ is a solution of the Euler-Lagrange equa-
tions and d¢ is a solution of the linearized Euler-Lagrange equations. Furthermore,

w[¢; Leg, 00] = i pw|¢;00,00] = —w[g; 00, Leg].
This can be proved using Noether’s second theorem (2.3.28) (see e.g. [186] for a
detailed proof).

Remark In the covariant phase space formalism, the relation between non-integrability
and non-conservation mentioned in the previous subsection is clear. Indeed,

SpH 0] - LE 5K 6, 56]
= J +0¢0(g, 69]
ox
= —J 1661y, ]
oX

= _J [’fw[g;597 59]7
[

(2.3.78)

where we used (2.3.73) and (2.3.72) in the second and the fourth equality, respec-
tively. The surface charge §H¢[¢| is integrable only if §§H¢[¢] = 0, if and only
if

Ja Lewlg; 0g,0g] =0 (2.3.79)
2

Therefore, from

adol - |

dkéw[g,ég] ~ J w|p; Lep, d9), (2.3.80)
% on

the non-conservation is controlled by w|g,dg, dg] and is an obstruction for the inte-
grability.

Remark As in the Barnich-Brandt procedure, the Tyer-Wald (n — 2)-form (2.3.73)
is defined up to an exact (n—2)-form. However, there is another source of ambiguity
here coming from the definition of the presymplectic potential (2.3.70). In fact, we
have the freedom to shift 6 by an exact (n — 1)-form as

0[¢;60] — 0[¢; d0] — dY[¢; 6], (2.3.81)
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where Y[¢;0¢] is a (n — 2)-form. This implies that the presymplectic form (2.3.72)
is modified as

w[p;6¢,00] — w(p;6¢,0¢] + doY[¢;0¢], (2.3.82)

where we used the fact that both d and ¢ are Grassmann odd. The Noether-Wald
charge becomes

Qel[o] = Qe[o] + Y[¢; Leo], (2.3.83)

up to an exact (n — 2)-form which can be reabsorbed in the (n — 2)-form ambiguity
for k{" discussed above. Therefore, this ambiguity modifies k" given in (2.3.73)
by

ke [0:00] — k¢ [¢300] — 0Y [6; Le¢] — 1edY [ 99)]. (2.3.84)

Definition Let us introduce an important (n — 2)-form which is involved in the
relation between the Barnich-Brandt and Iyer-Wald prescriptions discussed in the
remark below. We define

1 1
E[¢; 60,00 = —5131;19 = —51;;11;¢L. (2.3.85)

Remark We now relate the Barnich-Brandt and the Iyer-Wald prescriptions to
construct the (n—2)-form. Let us start from the expression (2.3.71) of the variation
of the Lagrangian. We apply the homotopy operator on each side of the equality.
We have

oL

5L (2.3.86)
= I3, (5¢@) — 06 —dI;'e.
Therefore,
n n 5L n—1
]5¢5L + 460 = I, 5@5% — dIM 6. (2.3.87)

Since [0, I};] = 0 because §* = 0, the left-hand side of the last equality can be
rewritten as 6I5,L + 00 = 2060 = 2w where we used (2.3.70). Now, using (2.3.48)
and (2.3.85), we obtain the relation between the presymplectic form w and the
invariant presymplectic current W as

w(p;0¢,6¢] = W[g; 66, 0¢] + dE[¢; 66, 0¢]. (2.3.88)

Contracting this relation with iz, results in

w[¢; Leo, 60] = W[¢; Le¢, 6¢] + dE[¢; 00, Leg]. (2.3.89)
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Finally, using the on-shell conservation laws (2.3.49) and (2.3.77), we obtain

K[V [6;06] ~ ke[6;00] + E[¢: 86, Led], (2.3.90)

up to an exact (n — 2)-form. Therefore, the Barnich-Brandt (n — 2)-form ke[¢; d¢]
differs from the Iyer-Wald (n — 2)-form k{" [¢; d¢] by the term E[¢; 6¢, Le¢].

Examples We illustrate these concepts with the case of general relativity. The
(n — 2)-form E[¢; ¢, d¢| can be computed using (2.3.85). We obtain

Blg:9. 9] = 5 2(59)%, A (39)° (0" ) (2.3.91

When contracted with i, this leads to

Blg: g, £eo] = (T4, + V) (09) (0"2), (2:3.92)
e

up to an exact (n — 2)-form. This expression can also be obtained from (2.3.90) by
comparing the explicit expressions (2.3.47) and (2.3.76). Notice that the difference
between the Barnich-Brandt and the Iyer-Wald definitions (2.3.92) vanishes for a
Killing vectors £*. Furthermore, a simple computation shows that the relevant
components of the (n — 2)-form (2.3.91) involved in the computation of the surface
charges vanish in both the Fefferman-Graham gauge (2.2.8) and the Bondi gauge
(2.2.10). Therefore, the Barnich-Brandt and the Iyer-Wald prescriptions lead to the
same surface charges in these gauges. For an example where the two prescriptions
do not coincide, see for instance, [195].
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Chapter 3

First order formulations and surface
charges

As mentioned in the previous chapter, the formalism to construct the co-dimension 2
forms containing the information on the surface charges is particularly well-adapted
for first order gauge theories. In this chapter, we review some first order formulations
of general relativity and apply the techniques of the covariant phase space formalism
in this context.

In section 3.1, we study a class of theories that encompasses most of the first
order gauge theories, including general relativity in Cartan and Newman-Penrose
formulations, first order Maxwell theory, first order Yang-Mills theory and Chern-
Simons theory. We also discuss vielbeins and connections in presence torsion and
non-metricity. In section 3.2, we review important first order formulations of general
relativity, Cartan and Newman-Penrose formulations, and apply the surface charges
formalism. For each case, we relate the obtained results to the standard second
order metric formulation of general relativity discussed in the examples in section
2.3.

This chapter essentially reproduces [181, 182, 185].

3.1 Generalities

3.1.1 Covariantized Hamiltonian formulations

In this subsection, we study an important class of first order gauge theories that is
particularly well-adapted to the application of the surface charges formalism pre-
sented in section 2.3. Let us consider a first order theory that depends at most
linearly on the derivatives of the fields,

L =a}d.¢’ —h, (3.1.1)

61
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with a generating set of gauge transformations that depends at most on first order
derivatives of the gauge parameters,

079" = R'[f] = RLf™ + R¥0,f°, (3.1.2)

and where the derivatives of the fields occur at most linearly in the term that does
not contain derivatives of gauge parameters,

R, = R) + RY".0,¢’. (3.1.3)

We thus assume that o[z, ¢, h[z, ¢], RV [z, ¢], R, [z, ¢], R¥'[x, ¢] do not depend
on derivatives of the fields.

As the notation indicates, this is a covariantized version of first order Hamiltonian
actions, where ¢ contains both the canonical variables and the Lagrange multipliers,
while h includes both the canonical Hamiltonian and the constraints. For instance,
for a first class Hamiltonian system, we have

L{z,u] = ax(2)2* — H(2) — uy,(2). (3.1.4)

Here 24 are the phase-space variables and a4(z) are the components of the sym-

plectic potential. In the case of Darboux coordinates for instance, z4 = (¢*,pj) and
as = (p1,---Pn,0...,0). Furthermore, H is the Hamiltonian, -, are the first-class
constraints and u® are the associated Lagrange multipliers. The symplectic 2-form

oap = Oaap — Opay is assumed to be invertible, %4045 = 6g with associated
OF ap 0G.

Poisson bracket {F,G} = e -5 and
(s W} = Cop()ve, {H, 7} = V2 (@) (3.1.5)
For such systems, a generating set of gauge symmetries is given by
Spzt = {2 vl Y Sput = - Coulfe— Vo fh, (3.1.6)

see e.g. [196] for more details.

By using suitable sets of auxiliary fields, namely fields whose equations of motion
can be solved algebraically in terms of the other fields and their derivatives [196], the
class of theories (3.1.1) is relevant for gravity in the standard Cartan formulation
or the one adapted to the Newman-Penrose formalism, as discussed below. Chern-
Simons theory is directly of this type, while Yang-Mills theories are of this type
when using the curvatures as auxiliary fields (see e.g. [119] for the case of Maxwell’s

theory).
For a Lagrangian of the form (3.1.1), the Euler-Lagrange derivative of the La-
. oL oL oL . . . .
grangian reduces to iy o, (W and is explicitly given by
oL H J o-h J M M o.at — d.at oot
55 = i W — Oih — S, Oy = 0 — Ojai = 0oy, = 0, (3.1.7)
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0
09t
It is instructive to repeat the reasoning of section 2.3 leading to (2.3.27) and
(2.3.28) for the class of theories at hand. Starting from

where ¢; =

(5f¢25¢2 W (3.1.8)
where j% is a representative of the Noether current (see equation (2.3.24)), and
integrating by parts on the left hand side so as to make the undifferentiated gauge
parameters appear, one obtains

[R5 — QRIS

a5¢1 « 5¢1 (3]‘9)

I =) —Sp, Sp= RIS

Since this is an off-shell identity that has to hold for all f*[z], one concludes not
only that the Noether identities

RZ

a5¢z — 0, (RW

i W) —0 (3.1.10)

hold, but also that d,(j; — S%) = 0, which is the second Noether theorem. This
implies in particular that S“ is a representative for the Noether current associated
with gauge symmetries that is trivial in the sense that it vanishes on-shell. Further-
more, every other representative j“ differs from S“ at most by the divergence of an

arbitrary superpotential ﬁunf ",

Since the fields and their derivatives can be seen as independent coordinates on
the jet space (see appendix A.1), the Noether identities (3.1.10) can be separated
into terms involving 0,,0,¢7, 0,¢"0,¢’, 0,4’ or no derivatives. The vanishing of the
coefficients of these terms yields

Rg(“aiyj) =0,

ou(R¥ o) + 0;(R¥o ) Rt oY — R o

ka z] Jjo zk
i0 i k 5 0 v (3.1.11)
Ry o + 0 [R*(0;h + 6 ~a;)] — RL(Okh + 5 —ay) — o (Ryoi;) =0,
i0 (3. J vy Y (. J v\l _
RO(@h + 50 at) = 52 [RE@h + 2o a?)] = 0.

The construction of the co-dimension 2 form deeply relies on the linearized theory.
Writing ¢° the Grassmann even variation of ¢, the Lagrangian L(®[¢; ] of the
linearized theory is obtained by collecting the quadratic terms in the expansion of
L[¢ + ¢] in ¢* and their derivatives around a solution ¢. We obtain

LO[¢; 0] = dialfp' 0’ + 5000} 6" a0 — S0:0;hep' . (3.1.12)
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The linearized equations of motion are then given by

SL[¢; o]

0
il LT 0,00 00" — 0;(ih + 5 af)]¢? = 0. (3.1.13)

Consider now the co-dimension 2 form,
K Ng;60] = RVotlogd o, (3.1.14)

and the invariant presymplectic current

W[5 001,66 = Sols061 A 065, (3.1.15)

By using the equations of motion, the linearized equations of motion and the Noether
identities in the form of (3.1.11), one may then check by a direct computation that
OL _ o _ SLPIsi¢l
R P
This means that this co-dimension 2 form is conserved on all solutions of the lin-
earized equations of motion around a given background solution ¢ when using re-
ducibility parameters f¢, which satisfy

ok ¢:66] = —W"[¢; R[f],6¢] when

(3.1.16)

R[f] = RLf*+ R*0,f* = 0. (3.1.17)

In terms of forms, we can write

k¢[¢; 0] = R¥o%,6¢7 f(d" ), (3.1.18)
where
ksfo: 661 = Wio: RIS, 6] when 2% =0 = 20104 (3.1.19)
with o
W|[¢;8¢,0¢] = 505‘].5& NS¢ (A" ), (3.1.20)

We see that we have re-derived some key results of section 2.3 (in particular, the
conservation law (2.3.49)) without using the properties of the homotopy operator
(A.2.12). Therefore, the class of covariantized Hamiltonian theories considered here
drastically simplifies the computations in the Barnich-Brandt formalism.

These results can be related to the Iyer-Wald formalism introduced in subsection
2.3.4. The presymplectic potential is given by

8[6;66] = 36/ (d" 2. (3.1.21)
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and its associated presymplectic form reads as

w(p;6¢,00] = 660[¢; 0¢] = We;d¢,6¢]. (3.1.22)

In particular, we see that the (n — 2)-form defined in (2.3.85) and that controls the
difference between Barnich-Brandt and Iyer-Wald procedures vanishes for covari-
antized Hamiltonian theories, i.e. E[¢;d¢,0¢] = 0. Finally, equation (3.1.18) can
be expressed in terms of 0[¢; d¢] as

N
kyl9; 0] = —5 < aR&MW) ++00[0; 6] (3.1.23)

3.1.2 Vielbeins and connection

Now, we recall several notions of vielbeins and connections by including torsion and
non-metricity into the standard discussion. This formalism is useful in section 3.2
when discussing the first order formulations of general relativity.

General case

Consider an n-dimensional spacetime with a moving frame (or vielbein)

O e e, dzt, (3.1.24)

where e,"e?, = ¢, ele’, = 6 and d,f = e,(f). Under a combined frame and

coordinate transformation, we have e/*(z') = A,’(x)ey”(z)A¥,(x), where A%(x)
. . ox'" .

denotes a local GL(n,R) element with A,” = (A7)’  while A, = ;;V is the

Jacobian matrix of the coordinate transformation, with A,” = % The Lie algebra

generators of gl(n,R) are denoted by A", (A,)¢, = 56", with generators for the
vector representation denoted by t,,

[AL A = 00AT — 62AL, ALt = 0%, (3.1.25)
The structure functions are defined by
[eq, ep] = D, = de® = —%D“bcebec. (3.1.26)
For further use, note that if e = dete®,, then
du(ee’,) = e D', (3.1.27)

and, if we define,
d%e = e"x0pec, (3.1.28)
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then
A7y = —ed”0pe, D = 2d"p, (3.1.29)

where it is understood that tangent space indices a, b, ... and world-indices p, v, . ..
are transformed into each other by using the vielbeins and their inverse.
In addition, we assume that there is an affine connection

Daeb = Fcbaec = vaa = 5()1)(1 + Facbvc' (3130)

If 'y = T'%ee, T = F“bAab, and e = e%t,, the torsion tensor and curvature tensors
are defined by

1
T=T"%%=de+T rne, R=R%A,=dl+ ST, (3.1.31)

where the bracket is the graded commutator. More explicitly, 7¢ = 1T%.e® A e¢ =

2
de® + T% A €®, so that

T, = 0, — 0ye”, + F“buebl, — F“byebu, (3.1.32)
TCw = ZFC[ba] + D%, = Q(Fc[ba] + dc[ba]), (3133)
and R%, = JR%cqe A e? = dI'%, + T A T%, so that
R, =007, —o,17, +17,1%, —T1,1,, (3.1.34)
Rfcab = aachb - abcha + Ffda]:wlcb - I_\fdbrdca - Ddabrfcd~ (3135)
Furthermore,
[Da, Db]l}c = —Rdca(ﬂ}d — TdadeUC. (3136)
Under a local frame transformation, we have
¢ =Ae, TI"=ATA' 4+ AdAY, (3.1.37)
so that
T =AT, R =ARA™. (3.1.38)
Defining A = 1 + w + O(w?), with w = wi A, and also wy® = —w%,, we have
0,0 = —(dw + [Iw]) = 0,1% = dw,® + T%w,* — T%w.?, (3.1.39)
and also
bpe = [w,e] == 6.e* = wed. (3.1.40)

Under a coordinate transformation, we have

elau — A’ul/eay’ Flab‘u — Auyrabyg (3141)
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and for 2" = 2+ — & + O(&?), A*, = 6# — 0,&* + O(£?), so that w,* = 0,&" and
(556au = ,Cgez, 5§Fabﬂ = ﬁgrab#, (3142)

where L denotes the Lie derivative.
The Bianchi identities are

dT+T'AT =R nre, dR+[[,R]=0. (3.1.43)
Explicitly,
Rpeay = DpT ey + T s T ey, DigRpieay = —R%g1sT s (3.1.44)

where a bar encloses indices that are not involved in the (anti) symmetrization. The
Ricci tensor is defined by R, = R4, while S, = Rq. Contracting the Bianchi
identities gives

Ray — Rpa = Sap — DcTcab - 2D[ach]c - Tcdchaby (3145)
2Dy Rppjay + D Ry = RpgTY g5 — QRcbmg‘ng]c, (3.1.46)
DiySeq) = —Sg51% cqy- (3.1.47)
Assume now that there is a pseudo-Riemannian metric,
Juv = eaugabebu: (3148)
i.e., a symmetric, non-degenerate 2-tensor . As usual, tangent space indices a, b, . ..
and world indices p, v, ... are lowered and raised with gu, g,., and their inverses.

The non-metricity tensor is defined as =% = dg® + 2I'®®). The associated
Bianchi identities are given by dZ® + I'*,Z® + I'*,Z% = 2R More explicitly,

B = Deg®, 2D E"q = —ET/ 4+ 2R . (3.1.49)
It should also be noted that from g®°g,. = §¢, it follows
chab = _Eabc- (3150)
Contracting the last of (3.1.49) with g, gives

—=a 1'—~a
Sed = JabD[c= bd] + 5= afocda (3.1.51)

while (3.1.46) with g%/ gives

1

1
DbRba - §DaR = §RbcdaTdbc + RbcTcab

1 —b —cd b —b
— 5(: cc-Rba, + ‘:C bR cda + = CaRbc)

—bc 1—\ c —bc 1~ c
+ DC(D[b:b a] + §Eb deba) + (D[b:b d] + §:b debd)Tdac- (3152)
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The curvature scalar is defined by R = ¢*’ Ry, the Einstein tensor by

1
Gab = R(ab) - igabR. (3.1.53)

When combining with (3.1.45), the contracted Bianchi identity (3.1.52) written in
terms of the Einstein tensor is

1 1
Dbia = éRbcdaTdbc + RbcTcab - §EabbR
1
+ §Db(Sab - DcTcab - 2D[aTCb]c - Tcdchab)

L _ - -
- 5(:*bccRba + ‘:CdbRbcda + :‘bcaRbc)

—be 1_ c —be 1_ c
+ DC(D[b:b a] + §:b deba) + (D[b:b d] + §:b debd)Tdac. (3154)

By the usual manipulations, one may show that the existence of the metric
implies that the most general connection can be written as

Fabc = {abc} + Mabc + Kabc + Tabe (3155)

where the Christoffel symbols, the conmetricity, the contorsion tensor, and the co-
structure functions are given by

{abe} = %(gab,c + Gacb — Gbe,a) = {ach}, (3.1.56)
Mape = %(Eabc + Zach — Zbea) = Mach, (3.1.57)
Kute = 5 (Thoe + T — Ture) = K, (3.0.59)
Tabe = %(Dbac + Deab — Dabe) = —Tbac- (3.1.59)

Furthermore, one can directly show that
[, = e (Ouer” + T pue’s) = Tae = €alcer” + el'er e’ Ty (3.1.60)
Finally, we need the following variations,

SRy = D, 0T, — D,0T%,, (3.1.61)

6R%eq = Do0T%g — Dg6T % + T 46T%,;
+ e/ o [D% Dy + 0T %q — D9 gl |de.”
— el [T D, + 0pT % — D94 % |deq”.  (3.1.62)
To write the latter variation, we introduced the derivative operator D defined

through
Duéeb" = ﬁuéeb” + d"#péebp — dcubéec". (3163)
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Metricity and Lorentz metric

When requiring metricity, D,g* = 0 = Z%,, the connection is given by

Cape = {abe} + Kave + Taves (3.1.64)
From Dy,Dygcqa = 0 it also follows that

Raped = —Rpacd, Sap = 0. (3.1.65)

This can be used to show that

3
Rabcd - Rcdab = §(D[bﬂa\cd] + Taf[becd] - D[aﬂb|cd] - be[ancd]
— DiTeiar) — TepiaT’ ar) + DicLajan) + Tape T ary),  (3.1.66)

while the contracted Bianchi identities (3.1.54) become

1 1
Dbia = §RbcdaTdbc + RbcTCab - §Db(DcTcab + 2D[aTCb]c + TchTdab). (3167)

If metricity holds and we assume a constant Lorentz metric g,y = 7,5, We have
{abc} = 0 and
Love = —Thge- (3.1.68)
Local Lorentz transformations are denoted by A,”(x) with A’npeAg® = 14q, or equiv-
alently, A%A," = 62 In terms of the Poincaré algebra,

[Jab> ch] = 77chad - nact]bd - 77deac + nadem [Jab> Pc] = nbcpa - nacpba (3169)

one defines the Lorentz connection I' = %F“bJab, e=¢e"P,, R= %R“bJab, T=TP,,
so that R = dI' + 1[I,T'], T' = de + [T, ¢]. In this case,

du(ev) = e (D, + e d,e", )v" = D,(ev"), (3.1.70)
with D,v* = d,v* for the Lorentz connection and the definition
D,e =e(e)”d,e,). (3.1.71)
In particular, this implies that
D.(ee",) = eT’y. (3.1.72)
The connection reduces to
Cove = Kape + Tabe- (3.1.73)

Finally, if one imposes, in addition, vanishing of torsion, the connection is reduced
further to
Fabc = Tabe, (3174)

and the contracted Bianchi identities (3.1.67) reduce to
DG, = 0. (3.1.75)
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Coordinate basis, torsionless connection

In a coordinate basis, e, = §,”, D*,, = 0 and T*,, = I'*,, — T*,,. Imposing van-
ishing of torsion, I'*,, = T'%,,, (3.1.45) implies S, = R,, — R,, and the contracted
Bianchi identities (3.1.54) become
D'G,, = D"Ry,; + D\R™™,,
1

- §(D,,g”ARM + D, g R’ \pu + D,g" Ry + D"g,,R), (3.1.76)

while the variation (3.1.61) simplifies to
dR“3, = D,,6T%5, — D,06I'%3,,. (3.1.77)

We also have

v 1 12
aﬂ(\/mvy) Y |g|(DLL -T ju% + 59 )\augz/)\)vu = D#(\/mvu), (3178)
where we defined )
DM\/H = \/H(§gy>\6ugu>\ - Fylw) (3179)

to write the last equality. Under an infinitesimal coordinate transformation, besides
0¢e9u = Leguw, we have

0eIHy, = 0,0,8" + 70,1, — 0x6M17,, + 0,67 T o, + 0,67TH 5. (3.1.80)

Requiring in addition metricity, this leads to the Levi-Civita connection (D, =

Vi)

1
F)\w/ = 5(&/9}\” + aug)\u - 5>\9W), (3181)
while the contracted Bianchi identities (3.1.76) reduce to
vV'G,, =0, (3.1.82)

and (3.1.78) to

2.(V/1glv") = A/19]V 0. (3.1.83)

3.2 First order formulations of general relativity

In this section, we review some first order formulations of general relativity including
Cartan and Newman-Penrose formulations, and apply the surface charges formal-
ism. In particular, we see that these are first order formulation in the sense of the
covariantized Hamiltonian theories of subsection 3.1.1. For each case, we relate the
obtained results to the standard second order metric formulation of general relativity
discussed in the examples in section 2.3. We use the compact notation

1
K = )
167G

(3.2.1)
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3.2.1 Cartan formulation 1
Variational principle

In the standard Cartan formulation, the variables of the variational principle are the
components of the vielbein e,* and a Lorentz connection 1-form in the coordinate
basis, I'%;,, in terms of which the action is

Se,”, T,] = /{Jd”x L€ = /{Jd”m e(R™ e.l'e,” —21). (3.2.2)
Using (3.1.61), the variation of the action is given by
6589 = Hfd"xe [2(G*, + Ae,)del” + entey” (D, 0T, — DZ,(SFZI’)]. (3.2.3)

Now, using (3.1.70) and neglecting boundary terms, this gives

65 = /ifd”:c [2e (G, + Ae®,)de.” + 2D, (e e, "ey” )T, ], (3.2.4)
so that
SLC o @
Sei = 2e (G, + Ae?),), (3.2.5)
OLY oD (eenten”) = e (Tly + 264 T (3.2.6)
5Fab“ v [a ©b] ab [at blc) L

Contracting the equations of motions associated to (3.2.6) with e,’ gives T°,, = 0.
When re-injecting, this implies T%,. = 0. It follows that when the equations of
motion for F“bﬂ hold, the connection is torsionless and thus given by L'y = 7ape-
The fields Fab# are thus entirely determined by e,* so that F“b” are auxiliary fields.

Symmetries

The gauge symmetries of the action (3.2.2) are the diffeomorphisms and the Lorentz
gauge transformations. The infinitesimal transformations of the fields under these
symmetries are given by

b
dewed" = &0 e — 0,81 es” + wy ey,

3.2.7

5T, = €°0,T, + 0,6 T, — D,w™. (3:27)
Following the lines of (2.3.25), we consider
C C

LY WL W (3.2.8)

deg M oTab,
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and integrate by parts in order to isolate the undifferentiated gauge parameters w®

and &P, Discarding the boundary terms, this leads to the Noether identities

§LC SLC
mem” + Duﬁ =0, (3.2.9)
C

Identity (3.2.9), associated with Lorentz gauge symmetries, can be shown to be
equivalent to (3.1.45). Using (3.2.9), identity (3.2.10), associated with diffeomor-
phisms, can be written as

SLC SL¢ SLC b
ﬁu ((Seaﬂeau) + @Dpea’“‘ + MRG oy = 0, (3211)

and can then be shown to be equivalent to (3.1.67).

Construction of the co-dimension 2 form

When keeping the boundary terms, one finds the weakly vanishing Noether current
associated with the gauge symmetries as

C
(—w™ + T £7) — %ea“fp. (3.2.12)

SLC
—1lgoun
K Sﬁ,w - (H"‘abu

The associated co-dimension 2 form ke, = kf, (d"21),, computed through (3.1.18)
is given by

/-f_lk;g"; =e [(256,{‘6;,” + ec,\éec’\ea”eb“)(—w”b + T“bpfp)
+ 0%, (EPeol e’ + 26"e, ey”) — (n«— v)]. (3.2.13)

This can also be written as

0

where

K{, = 2ree e (—w™ + T, (A" 1), © = 2ke 0T e, e, (A" '),
(3.2.15)
According to the general results reviewed in section 2.3, the co-dimension 2 form
is closed, dke,, = 0, or, equivalently, 0,k¢,, = 0, if e, 1'%, are solutions to the
Euler-Lagrange equations of motion, and thus to the Einstein equations, de ", 5F“bu
solutions to the linearized equations and w?, £” satisfy

Leeg" +we =0, LI, ~ D,w®, (3.2.16)
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where ~ now denotes on-shell for the background solution and is relevant in case
the parameters w®, ¥ explicitly depend on the background solution e,*, %, around
which one linearizes. The first equation also implies in particular that £° is a possibly
field dependent Killing vector of the background solution g,,,

'Cfguu ~ 07 (3217)
and that
W x —eb Lee ~ —elb Loe (3.2.18)
Reduction to the metric formulation

To compare with the results in the metric formulation, let us go on-shell for the
auxiliary fields T'*, and eliminate w® using (3.2.18). The former implies that we
are in the torsionless case with the Lorentz connection simplified to ['*?, = r®,

while (3.1.60) reduces to
I, = e, Ve = el Ve, (3.2.19)

with V,v¥ = d,0” + {¥,,}v”. Note also that the Killing equation can be written as
V,.& + V€, ~ 0. Together with (3.2.19), we have

—w® 4 T g~ —elo el vreo (3.2.20)
5Fabp _ (56[“gvpeb]” + e[ag(g{oTp}eb]T + e[ao_vp(geb]g7 (3'2.21)
with |
0{7eot = 597 (VoOsr + V1005, — V509r,). (3.2.22)
Using that
o€’ €q, = %h;w + 0€*[4€al] (3.2.23)

with h,, = 0gu, indices being lowered and raised with g,, and its inverse, and
h = hf, substitution into (3.2.13) gives

6+/19|V ,(SeqMel ey + kLY, (3.2.24)

where the first term can be dropped since it is trivial in the sense that it corresponds
to the exterior derivative of an n — 3 form, while

K = /1gl|§ 9+ &V 4 & VR
1 1 1
+ SHVIE 4 SHTVGE STV — (e u)]. (3.2.25)

We have thus recovered the results of the metric formulation since the last expression
agrees with the one given in (2.3.47).
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3.2.2 Cartan formulation 11
Variational principle

This version of the Cartan formulation is an intermediate between the Cartan for-
mulation of subsection 3.2.1 and the Newman-Penrose formulation discussed in sub-
section 3.2.3. Here, the variables of the variational principle are the components
Lape = T'fap)e of a Lorentz connection in the non-holonomic frame and the vielbein
components e,*. In term of these variables, the action reads

SONHT e, 4] = /ifd"xLCNH = ﬁfd”xe(Rabcdnacnbd —2A). (3.2.26)
Varying the action by using (3.1.62) and dropping the boundary terms, one obtains
5LCNH h _c h g ch h cd
Sor = 2e(G" €l + Ael) +e(2T9,, 0", — T" .q1,), (3.2.27)
h
5LCNH

= eI .n™n™ + 2D, [eet (nl1nf1%)]

0T any (3.2.28)

— o(T% 4 opflaTlet] )

Contracting the equations of motion associated with (3.2.28) with 7, gives T, = 0.
When re-injecting, this implies 7/, = 0. This torsionless condition for on-shell
connection is the analogue of the one encountered in (3.2.6) above. The fields I'yy
are thus auxiliary fields in this formulation. Taking these fields on-shell in (3.2.27),
one obtains the Einstein equations, as expected.

Symmetries

The gauge symmetries of the action (3.2.26) are the diffeomorphisms and the Lorentz
gauge transformations. The infinitesimal transformations of the fields under these
symmetries are given by

dewed" = &0 e — 0,8 e, + waer”, (3.2.29)

6£,wrabc = fpaprabc - Dcwab + Fabclwcd (3230)
Following the lines of (2.3.25), we consider
SLC SLC

wég’weau + 5T upe 5§,wrabc (3231)

and integrate by parts to isolate the undifferentiated gauge parameters w® and £°.
Discarding the boundary terms, this leads to the Noether identities
5LCNH 6LCNH 6LCNH

Jelal ¢+ 67 oTab T Wr\cﬂb] =0 (3.2.32)
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6LCNH 5LCNH 5LCNH
—0,e; + —0o,I', o, | ——¢e' 1 =0 3.2.33
ser pCh T 0Ty plabf + Oy ( sel eh) ( )

The first identity corresponds to Lorentz gauge symmetry and can be shown to be
exactly the same as the one found in (3.2.9) in the first Cartan formulation. The
second identity corresponds to diffeomorphism symmetry and can be shown to be
the same as (3.2.10). Then, as above, the Noether identities are equivalent to the
Bianchi identities (3.1.45) and (3.1.67).

Co-dimension 2 form and equivalence with the other formulations
When keeping the boundary terms, one finds the weakly vanishing Noether current
5LCNH 5LCNH

—laop _ K KT
K S{,w = —mefwab - (5@2 eh§ . (3234)

Then the co-dimension 2 form is given by

/f_lk:gz =e [(25ea“eb” + ec,\éec’\ea”eb”)(—w“b + F“bdezf’p)
+ (5(F“bdeﬁ)(£pea”eb” + 28, er’) — (< v)], (3.2.35)

which is obviously the same as (3.2.13) by performing the field redefinition I'"*, =
[ ec.
<Cp

3.2.3 Newman-Penrose formulation
Variational principle

The Newman-Penrose (NP) equations are a set of first order equations involving the
spin coefficients, the vielbein and the curvature components at the same footage [197,
198]. The NP formulation that we introduce here leads to Euler-Lagrange equations
that impose vanishing of torsion together with all NP equations. This is achieved
by introducing additional auxiliary fields in the Cartan formulation II (3.2.26). It
involves as dynamical variables the vielbein components e,*, the Lorentz connection
components in the non-holonomic frame I'y;., and a suitable set of auxiliary fields
Roped = R[ab] [ed]» Aabed — )\[ab] [Cd]7

S[Fabcy ea/i’ Rabcda )\ade] =K J dnl’LNP

_— J dnxe[Rabcd (nacnbd . /\abcd) + )\adeRabcd . 2A],
(3.2.36)
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where Rgpeq = Nae R peq is explicitly given in (3.1.35) as a function of the variables
ea", U'upe and their first order derivatives.

The equations of motion for the auxiliary fields follow from equating to zero the
Euler-Lagrange derivatives of LVY

SLNP 1
— _e |:)\abcd o _(nacnbd o 7,Iaclnbc):| 7
OReaea 2 (3.2.37)
SLNP -
W = —e [Rabcd - Rabcd] .
They thus fix the auxiliary A fields in terms of the Minkowski metric,
aoc 1 ac a C aoc
A bed __ _(77 nbd —n dnb ) = )\nb d’ (3238)

2

and impose the definition of the Riemann tensor in terms of vielbein and connection
components as on-shell relations, Rypcq = Rapeq, Which is desirable from the view-
point of the NP formalism. They can be eliminated by solving inside the action.
The resulting reduced action coincides with the action associated with the Cartan
formulation IT (3.2.26).

The next equations of motion follow from the vanishing of

(SLNP

1
o 2e | DAl 4 N (Th 55+ ~TC) | (3.2.39)

2

When putting A%? on-shell, they are equivalent to vanishing of torsion, 7%, = 0.
It follows that Iy = 7rape or, equivalently, that I'%. = e%, eV, 6", where V,,
denotes the Christoffel connection. In other words, the connection components are
also auxiliary fields that can be expressed in terms of vielbein components and
eliminated by their own equations of motion.

The last equations of motion follow from the vanishing of

5LNP cdfa 5LNP . . 5LNP
S O l2e(A P Rea) = S FC‘”’] SO [e(R 2N |
(3.2.40)
On-shell for the auxiliary fields, we have
oL
(se_u|aux on_shel = 2e€”, (G + AP, (3.2.41)

which imply the standard Einstein equations.

Finally, it should be noted that the equations of motion associated with (3.2.39)
and (3.2.40) consistently reduce to (3.2.27) and (3.2.28) when taking the auxiliary
fields A% and R,y on-shell.
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Improved gauge transformations and Noether identities

Diffeomorphisms and local Lorentz transformations are extended in a natural way
to the auxiliary fields. If &* w'", = —wp® denote parameters for the infinitesimal
transformations, they act on the fields as

O¢wea® = £ 0sea" — 0,6"e,” + w."ey’,

S¢wlabe = €0, T ape — Dewap + we T apa,
Oc wRabed = €0 Reabed + W' Ropped + W, Raged + w0 Rapsa + Wy  Raves,
e A% = €79, 0068 4 gy \bed b yefed 4 e habfd 4 d yabe]

In terms of the redefined gauge parameters, which are spacetime scalars and thus in
agreement with the general strategy of the NP approach,

g = e M W’ = w + EFTP e, (3.2.43)

a

(3.2.42)

these gauge transformations become
5{’,w’€au = (glchac — Daflb + w;b)eb“,
d d d
65’,w’rabc = _gl Rabcd + (gldecf - chl + wé )Fabd - Dcw;ba
0¢r w Rabea = flfoRabcd + wéfbecd + ngRafcd + wéfRabfd + W(/ijabcfy
B¢t o \abed _ é—/fo/\abcd + w/afAfbcd + w/bf)\afcd + w/cf/\abfd + w/df/\abcf.

Isolating the undifferentiated gauge parameters by dropping the exterior deriva-
tive of an n — 1 form, the invariance of action (3.2.36) under these transformations
leads to the Noether identities. Since the change of gauge parameters is invertible,
the identities associated with both sets are equivalent. We can thus concentrate on
this second set. For later use, note that

55’7w’1—‘abc - (5§/7w/60“)6durabd = —f/dRabcd — Dcw;b. (3245)

When using (3.1.71), the Noether identities associated with the Lorentz param-
eters w!, become

5LNP

(3.2.44)

5LNP b 5LNP 5LNP

2 Rb]c 2—Rc 2 f[a)\b]hcd 9l f[CL)\\Cd\b]h
OR facd| v ORcafal ) T (thcdn + 5>\cdfh77
SLNP SLNP SINP

" Led” De+TCp)(e™ —0. (3.2.46

+ e et + 5ot ed ' T+ e[( e+ 1) (e ST )] ( )

while the Noether identities for the vector fields &’ ! read

(SLNP 5LNP 5LNP NP
DRyped + ——— D A\l TP, rept T Tuvd — Rabe
R, D Raved + g DN 4 S Taper - p (T s Tapa = Ravey)
(SLNP (SLNP

H

Dc Thc —1
+e[( + h)e (560“ ef” + 3T,

Tapp)] = 0. (3.2.47)
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It follows from general results on auxiliary fields (see e.g. [196]) that these
Noether identities are equivalent to those of the Cartan formulation IT (see equations
(3.2.32) and (3.2.33)), which have been investigated and related to the Bianchi iden-
tities. More explicitly, we have LN? = LEN 4 A with A = [(Raped — Ravea) (1°n4 —
Aebed)]. Identity (3.2.46) for LN replaced by A is equivalent to (3.1.45). This then
implies that (3.2.46) reduces to

5LCNH 5LCNH

1 5LCNH
5Fabc

blu

T + e[ (De + T7.
derq T Ol cdfa +" +el(De+Thep)le

)] =0, (3.2.48)

which in turn is also equivalent to (3.2.32) and so to (3.1.45).
Identity (3.2.47) for LN? replaced by A is equivalent to the second identity of
(3.1.44). This then implies that (3.2.47) reduces to

5LCNH 5LONH
Tba K Td cFa - Ra C
Son Lase” + —5p— (Tl aba — Raber)
(5LCNH (SLCNH
+ e[(Dc + Thch)e_l( GfN + Fabf)] =0, (3249)

560” é‘Fabc

which is equivalent to (3.2.33) and so to (3.1.67).

Co-dimension 2 form and breaking

Writing ¢' = (Rapea; A%, Tape, €a"), the presymplectic potential associated with the
action (3.2.36) is given by

0[¢; 0] = 2keXe 0T gy e’ ge (A" '), (3.2.50)

where (5Fab,,e”d = 6Fabd — Fabfefyéed”.
Writing the gauge parameters as f* = (wap, &), the weakly vanishing Noether
current is given by

5LNP NP

1)
ﬁ(w;b + Taps€?) +

Tt f wian—1
e ]ec(d ), (3.2.51)

Se w[0] = —f*f[

The co-dimension 2 form can be obtained from (3.1.18) or alternatively from (3.1.23).
Using the Euler-Lagrange equations for the auxiliary fields, we obtain

ke or[6;06] = 2re [ — (20e,"es” + €°ade eq e o' ™
+ 5(Fabd6z)(£’cecpea“ebv —+ 2§’Cecueal/ebﬁ)] (dn_QZE)m,. (3252)

Notice that this last expression obtained from the NP formulation is exactly the
same as (3.2.35) obtained from the Cartan formulation II, up to the parameters
redefinition (3.2.43).
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The breaking in the conservation law of k[¢, 0¢] (see equation (2.3.49)) is given
by the invariant presymplectic current (3.1.20) with an evaluated variation. For the
present case, using the equations of motion for the auxiliary fields, we explicitly find

W[gb, 55/701/925, (5@25] = 2me[5§r,w/eb“5fabyea”ecu + 65,7w,ea“5F“CM
— 0 Ine T, e,” — (6 «— 0)|ef(d" '2),. (3.2.53)

Exact reducibility parameters General considerations on auxiliary fields imply
that, on-shell, reducibility parameters should be given by Killing vectors £“ of the
metric (see e.g. [196]). Let us see how this comes about here.

Merely the first of (3.2.44) encodes gauge transformations of fields that are not
auxiliary. The associated equation 0 ge,” ~ 0 is equivalent to

D(agll)) - glcT(ba)c ~ 07 (D:zb ~ D[agll)] - EICT[ba]c' (3254)

On-shell when torsion vanishes, the first indeed requires €“ to be a Killing vector,
while the second uniquely fixes the Lorentz parameters in terms of it. In particular,

why ~ Dy ~ —Dy€l. (3.2.55)

The other equations impose no additional constraints. Indeed, 5@/7@)\““1 ~ 0 is
satisfied identically on account of the skew-symmetry of @'®. Instead of g o Labe = 0
we can consider the combination (3.2.45). Requiring this to vanish on-shell amounts
to

Dewpy, ~ =€ Raped, (3.2.56)
which holds as a consequence of the second equation in (3.2.54), when using that
DDyl ~ R €l (3.2.57)

which can be shown as in [199] appendix C.3, and when also using (3.1.66). Finally,
g i Ravea = 0, reduces on-shell to

g’foRade + (D(Il fbecd + (IJ;) fRafcd + (Z)é fRabfd + @(lifRabcf ~ (. (3.2.58)

This equation holds because one can show that, on-shell, the left-hand side is equal
to its opposite when using the previous relations (3.2.55), (3.2.6) together with the
Bianchi identities (3.1.44) and the on-shell symmetries of the Riemann tensor.
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3.3 Application to asymptotically flat 4d gravity

In this section, we illustrate the general results obtained in the first order formula-
tions presented above into a concrete situation. More precisely, starting from the
solution space of general relativity in asymptotically flat spacetime in NP formalism,
we compute the asymptotic symmetries, the currents and the breaking in their con-
servation laws. This derivation is done in a self-consistent way, without resorting to
the metric formulation. This contrasts with the approach used in [120,158], where
the expressions of the currents in the NP formulation were obtained by translation
from the metric formalism. Our direct road allows us to extend the previous results
for a time-dependent (but non-dynamical) conformal factor P = P(u, (, ().

In this section (and this section only), we follow the conventions of [178] and work
with a metric of signature (+—— —), which is more adapted to the NP literature. In
particular, one has to adapt some signs in the equations established in the previous
section before applying them here. We refer to our article [182] where the convention
(+ — — —) was chosen from the very beginning.

3.3.1 Newman-Penrose notations

Following the literature on NP formalism [197,198,200|, we assign some notations
to the fields of the NP formulation introduced in subsection 3.2.3. In four spacetime
dimensions, the tetrads e; = [, e = n, e3 = m, e4 = m are chosen as null vectors,
€a * €p = Ngp With

01 0 O
a 10 0 O
mw=1"=10 0 o0 _1 (3.3.1)
00 -1 0
The components of the Lorentz connection are traded for the spin coefficients,
1
k=D, m=—-T4n, €= §(F211 - F431)»
1
T=1I312, v=—T4yn, 7= §(F212 - I‘432)7
1 (3.3.2)
o0 =133, p=-Tps /= §(F213 — Iys3),
1

p =314, A= Ty, a= §(F214 - F434)-

The other half of the spin coefficients are denoted with a bar on the symbols in the
left-hand sides and obtained by exchanging the index 3 and 4 on the right-hand
sides. The Weyl tensor Cpeq is encoded in terms of

\I]O = _013137 \Ijl = _01213; \I[2 = _013427 ‘113 = _C12427 \114 = _023247 (333)
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with the same rule as above for W;, i = 0, ..., 4, while the Ricci tensor is organized
as |
Poo = —5R11, Py = —Z(Ru + Ray), ®yy = —1 Roo,
gy = —%R:s:s, gy = —%Rw, Qg = —%Rz& (3.3.4)
Pop = —%R44, Py = —%Rm,l oy = —%R% o
A= R= (R — Ra).

There is no torsion in the NP approach, T%, = 0. In this case, the vacuum Einstein
equations in flat space are equivalent to the vanishing of the ®’s. The equations
governing the NP quantities can then be interpreted as follows: (i) The metric
equations express commutators of tetrads in terms of spin coefficients. This is the
first of (3.1.26) when taking into account that D%, = 2I'*[4 in the absence of
torsion. (ii) The spin coefficient equations express directional derivatives of spin
coefficients in terms of spin coefficients and the Weyl and Ricci tensors. In the
torsion-free case, they are equivalent to the definition of Rgpeq in (3.1.35). (iii) The
Bianchi identities express directional derivatives of the ¥’'s and ®’s in terms of spin
coefficents and ¥’s and ®’s. They are equivalent to the second of (3.1.44) in the
absence of torsion.

3.3.2 Solution space

Four-dimensional asymptotically flat spacetimes at null infinity in the NP formalism
have been studied in [157,197,201] (see [178] for a summary and conventions appro-
priate to the current context). In terms of coordinates z* = (u,r, z4), 24 = (¢, ()
and using the notations of section 3.3.1, the Newman-Unti solution space is entirely
determined by the conditions

k=e=m=0, p=p, T=a+/70,
2 o .0 2 0 4 (3.3.5)

_ _ e A Y _ .,
l_ﬁr’ " 5u+U57‘+X orA’ mn w8r+ oxrA’

where U, X4, w and L# are arbitrary functions of the coordinates, together with
the fall-off conditions
1

XA=00™"Y, =0 4+00r°, p= — o), 7=0(@7?),
d¢d¢
gapdrida? = —2r2 Jgpg + O(r).

(3.3.6)

Here, ¥ and P are arbitrary complex functions of (u, ¢, ). Below we also use the
real function ¢(u, ¢, () defined by PP = 2¢72%. ‘The associated asymptotic expan-
sion of the solution space in terms of Wo(ug, 7, ¢, ¢) , (U3 + U9 (ug, ¢, C), ¥(ug, ¢, )
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at fixed 1o and of the asymptotic shear o°(u, ¢, ¢) and the conformal factor P(u, ¢, ()
is summarized in appendix C.1. These data characterizing the solution space are
collectively denoted by .
On a space-like cut of .#* we use coordinates ¢, (, and the (rescaled) induced
metric
ds* = —Jpdrtda®? = —2(PP)~'d¢d(, (3.3.7)
with PP > 0. For the unit sphere, we have ( = cot £¢" in terms of standard
spherical coordinates and

P(C,€) = %(1 NG (3.3.8)

The covariant derivative on the 2 surface is encoded in the operators
on® = PP *0(P*n®) = Pon® + sPoIn Pn® = Pon® + 2sa’n°, (33.9)
B = PP*O(P~*) = Poy® — sPoIn P = Poy® — 250", a

where s is the spin weight of the field n and 0 = 0,0 = d¢. The spin and conformal
weights of relevant fields are listed in Table 3.1. Complex conjugation transforms

Table 3.1: Spin and conformal weights

O | A [ |0 [0 [N | WY [ Wy WY | W) wg| Y
s| 1|00 [ —1[0 ]2 [—=2[—=2[-1]0]1]2][-1
w1 1|12 =21 —2[=3]-3[=3]-3[-3]1

the spin weight into its opposite and leaves the conformal weight unchanged. The
operators 0, O respectively raise and lower the spin weight by one unit. The Lapla-
cian is A = 4e 2¥00 = 200. Note that P is of spin weight 1 and “holomorphic”,
0P = 0 and that

[0,9]n° = ans, (3.3.10)
with R = —4p° = AIn(PP), Rg = 2. We also have
[04,0]n° = —2(7°0 4+ s0v")n*, [04,0]|n° = —2(7°0 — s07")n*. (3.3.11)

The components of the inverse metric associated with the tetrad given in (3.3.5)
is
g =0t g =20 —ww), g = X4 — (WL + wa), g8 = —(LAZB + LBZA).
Note furthermore that if L4 = gagL®? with g4p the two dimensional metric inverse
to g48, then LALy = —1, L L, =0 = ZAEA. The co-tetrad is given by
el = —[U + XMNwLa +TL,)]du + dr + (WL 4+ WLy )dz?,

h _ 3.3.12
e =du, €= XL du— Lada?, e* = XAL du — Lyda?. ( )
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3.3.3 Residual gauge transformations

The parameters of residual gauge transformations that preserve the solution space
are entirely determined by asking that conditions (3.3.5) and (3.3.6) be preserved
on-shell. This is worked out in detail in appendix C.2, where it is shown that these
parameters are given by

@, ¢,0), Y=Y, Y =Y(), wiucJ). (3.3.13)

The associated residual gauge transformations are explicitly determined by the gauge
parameters,

€= f0,G.0, € =yt - ass [ AL 1 AL,

. o (3.3.14)
£ = —0ufr+ §Af — 6Aff dr[wl? + wL* + X4,
and
W12 :6uf + XAaAfa w23 = EA&Af? w24 = LAaAf7
+00
W18 =0+ 7)POf ~ POOF + 0af | dr[AL 4 uLA),
(3.3.15)

+00
w' =(1° +3°)Pof — Po,of + aAff dr[ALY + pL4],

W =wdt(u, ¢, () — oaf JJFOO dr[(a — B)L* + (B — a)L”].

For the computations below, the leading orders of their asymptotic on-shell expan-
sions are also useful,

goog, oy P TP oy @i
r_o_r (3.3.16)
1. . 00°Df+050f
5r=—7"6uf—i—§Af— " +O0(r ),
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and
5 50 003
w? =0,f +0(r™%), W= of _ 7 ?f +2 Uff +0(r ),
r r r
—. = N8 f 4 n'd
W =0 +70Bf —Bouf + LT
—~0,,0 005 05
T WOf T o A0f  W50f +0(r ), (3.3.17)
- o 272
S = Poln POf ; Poln Pof
Al PAOAF _ P 05
N Poln Po 3fT2P61nP0 of Lo,
with w?* = w2, W = W13, W3 = —wW3.

3.3.4 Residual symmetry algebra

The variation of the free data parametrizing the solution space under residual gauge
transformation in terms of the parametrization provided by (3.3.13) is given by

0t vuw P = Pouf + f0.P+YOP+YoP — PoY + Puwi', (3.3.18)

together with the variation of the rest of the free data and derived quantities that
is written in appendix C.3.

To make these variations more transparent, it is useful to re-parametrize residual
gauge symmetries through field-dependent redefinitions. In a first step, one trades
the real function @, f(u, ¢, () and the imaginary w*(u, ¢, () for a complex Q(u, ¢, )
according to

1 1 _

Ouf = =[0Y —YOIn(PP) +8Y —YoIn(PP)] + f(7° +7°) + 5(Q +Q),

N~

[0Y —YO0ImP +Y0InP —0Y +YJdlnP —Ydln P]

34 _
Wy =

FIE =) + 5@ - D).
(3.3.19)

It then follows that the first of (3.3.19) can be solved for f in terms of an integration
function Txr((, (), (called T in [6,121,158])

(BY +0Y) —You—You+ %(Q + )], (3.3.20)

|

fu,¢.0) = [Tr(¢,C) +

3-
N
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where

i = J duv/ PP, Q= f duv/ PP Q. (3.3.21)
uQ uo

This redefinition of parameters is such that
dyrnaP = QP, (3.3.22)

together with the complex conjugate relation dy 7, o P = QP.
Denoting by ¢ the fields (e,*, Tape) (together with the auxiliary fields Rgpeq, A2
if useful), it follows from (3.2.42) that

[55176017 552,102](15& = 5§,w¢aa

¢ =[,&]" (@), = & 0w’ +wiwa — 352
- 1,82] » W)a _51 pw2a +w1a Wac (1(_)2)7

when the gauge parameters &, w are field-independent. In case gauge parameters do
depend on the fields, one finds instead

[551 W1 652@2]925& = 551»1,&11\1 Qsa’

éxf = [61) 52]# - 6&170.1155 + 662,(@5?; (3324)
(('Z]M)ab = flpapWQab + wlacw2cb - 6517w1w2ab — (1 <~ 2)

We now have the following result:
The gauge parameters ([Y, Tg, ], w[Y, TrY]) equipped with the modified com-
mutator for field dependent gauge transformations realize the direct sum of the
ext

abelian ideal of complex Weyl rescalings with the (extended) BMS algebra, bmsg™,
everywhere in the bulk spacetime,

éM = 5[?7TR7 Q]; C‘:)M = W[}A/, TR) Q]a
Y/A _ }/leaB}/QA o }/QBaB}/lA7

. 1 (3.3.25)
Tr =Y 04Tgs + 5TmaAYQA — (1< 2),

Q=0.

The proof follows by adapting the ones provided in [6,24,158] to the current set-up.

3.3.5 Action of symmetries on solutions

A further field-dependent redefinition consists in

Y =P), Y =DP). (3.3.26)
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The transformations (C.1) then become

S0 = [VO+ I8 + 20V — S0V + 20— L0Jo” + [0~ 07,

0,05 = (YO + Y0 + gay + %W + gQ + %Q]\pg + fOUY + 3£ Y + 4000,
6,09 = [V3 + Y3 + 20 + Y + 20 + QU0 + fOUI + 2f0"WY + 305,

U+ U9\ —= . 3 3 3 3. /094+ 1Y
55(7)_[y6+y6+§8y+§6y+§§2+§§2]< 5 )
(fOUS + fo'WY + 2051 + (c.c.)),

N

_l’_

(3.3.27)

while (C.2)-(C.4) read as

5,0y = [V0 + Y0 + 30Y + 0Y + 3Q + Q| ¥
— O[5 f Vg + fOU) + 4fT6"], (3.3.28)

5,05 = [ YO + Y3 + ;637 + ;W + ;Q + ;Q]\Dg
[~ 357 00300 L f35 - fR]v}
+[—5508 - g FO9 + g Fo8 + 5f30°3 + 3958 + % £592 + g F9%5° + g FaO\0
+ 50070 f + 15060 f + 500 f0 + 350 f0| ¥y

9
+ [59) +120°6°0 f + 12f0%06° + 2 (055" + 3 fo%5°0]| v

1
+ ?E’f(go)%oqu, (3.3.29)

— 1 — 1 =
5.0 = Y0+ 75+ 2 Moy 4 L My 4 2 o 1 o]

+ (inhomogeneous terms). (3.3.30)




3.3. APPLICATION TO ASYMPTOTICALLY FLAT 4D GRAVITY 87

Finally, the variations (C.5) are given by
I — _ 1— —
S A0 = [V3 + V3 + 25 + 2Q]\° — FI9 — 562(632 +3Y),

6,09 = [V3 + VD + gay + gﬁ + ;Q + gﬁ]qu
6, U% = [VO + Y3+ 3Y + 20Y + Q + 2Q]¥S + fov! + viaf,

1. 5. 1 5_
6,0 = (YO + VB + 50V + S0V + 52+ SOV
+ f0, 09+ 2(29° + 7)1,

3.3.6 Reduction of solution space

Besides conditions (3.3.5) and (3.3.6), additional constraints may be imposed on
solution space. A standard choice is to fix the conformal factor P to be equal to Pg
given in (3.3.8). We also fix P here, without committing to a specific value. In other
words, we consider P to be part of the background structure. As a consequence,
infinitesimal complex Weyl rescalings (whose finite counterparts have been discussed
in [178]) are frozen and © = 0 in the formulas above, while in the formulas below,
s stands for (), ), Tr,0). The main reason we do not perform the analysis below
while keeping P(u,(,() arbitrary is computational simplicity. We plan to return
elsewhere to a detailed discussion of the current algebra and its interpretation when
complex Weyl rescalings are allowed.

3.3.7 Breaking and co-dimension 2 form

Under this additional constraint on the solution space, the invariant presymplectic
current can be computed using equation (3.2.53),

W(o, 050, ] = —W;(O)dudg“d(_ + (9(7‘71), (3.3.32)
where

1
Wipy = —==
O 8rGPP
The expression containing the information about the non-conservation of the cur-
rents, it should not come as a surprise that it involves the news functions encoded
in A% and \°.
Furthermore, the co-dimension 2 form (3.2.52) takes the form

(50055/\0 + 555 — 506,00 — cﬁoasao) . (3.3.33)

k[0 06] = ki) dCdC — kS dudC + kS dud¢ + O ), (3.3.34)
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where
w1 0 040 0=0 , Lai 00 0
ksl = PPSWG((S[f(\IfQ—l—U)\)—l—y(U o] +26(00)+\If1)

= %5(320050) —r0(V5°)] — fA%0° + c.c.), (3.3.35)

, [ pre—
Ky = — g (O[O = Ty) — £ + zso— (0Y —BY) + 20 3@y — V)

B VA + 00 +5%)] - YN0 + )\0500)), (3.3.36)
and kg(ro) given by the complex conjugate. By construction
Oukig(oy + 6<k )+ Q«k Cr = —Wo): (3.3.37)

which may also be checked by direct computation. Note that k{f, ,k:ggo), k:gro) also

contain, in addition to a finite contribution, linearly divergent terms when r — co.
Following [120], the latter can be removed through an exact 2-form ¢,74*?. Defining

. _ 1 .
Pyl = N = =1 Y50 — 5)}0050, nlrdl = NE =0, (3.3.38)
and splitting into an integrable part
1 1
T = _m[f(\pg + 0\ + Y[o'd5° + ) + 56(0050)] +c.c.], (3.3.39)
m

1 |— 1— — 1— .
T = e [yqu +fU, + 53}(%0 — N5 + 5600(632 —3Y)

1 — — —0—
— 5006(632 —0)Y) + Aoﬁf], (3.3.40)
and a non-integrable one

O 0x) = A0 +cc), O5(0x) = —=V(A\%6a” + X (550) (3.3.41)

8G(

one finally arrives at

G

8T = PPk, — onld — onlrd] — e,

3.3.42
8T8 = P[k:éz})) +6un£“’< + el — e, (3:342)

where J¢, < @C_ are the complex conjugates of J¢, ©$. The results of [120] are recovered
when taking P to be u-independent, which implies v = 7% = 0 and A\’ = 3°. The
associated forms are given by

J, = (PP)"'\7%d¢dC — P 78dudC + P~ 78dudc,

_ , o (3.3.43)
0, = (PP)'0"d¢d¢ — P~ '05%dud{ + P*OSdud(.
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3.3.8 Current algebra

Using the relations of appendix C.4, the first independent component of the current
algebra can be written as

05, T5y + 045, (051 X) = T[sy 5] T K5y + 0L, 55 + 0Ly, 5, (3.3.44)
where
K s = — 150 [f152(6y2 + @2)] — f10f20u° — (1 < 2)) +cc.|, (3.3.45)
IrG L\2

and
Loyss = NTE = LTS
S;G [( (001 +0Y1)df2 - —y152f2 — 100 f2)7"
- 53?16 f20° = V10£,05° + V,0£,05° — f,0 fg)\O]. (3.3.46)
The second independent component of the current algebra is

532j§ +@C L(05,x) = jc_ —i—ICC

[51 82 51,52

au£51,52 — 270£31752 + 6./\/1517327 (3347)

where
K = o | PORT + LORTV. + DL + fi3(0"00° + 557
+1y2 3OV, + V1) + y282(5y1+6371)a _(1H2)] (3.3.48)
and
Mo = V275 — | 500, — OV)Ofs + JOV00S] e (3:3.49)

3.3.9 Cocycle condition

The components of K, s, satisfy the 2-cocycle conditions

KE aogss T 05 K8 o, + cyelic(1,2,3) = ONG, .0 + ON g, 0505, (3.3.50)
where
Ny snss = —[3KS 515, T cyelic(1,2,3), (3.3.51)
and
K2, g T 05K, o Heyelic(1,2,3) = —0uNoy 0.0, =27 Moy g 7005, sy (3.3.52)
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where

1 — T e
051,52,53 = —%y:a[(ﬁyz - f2y1)0057/0 + 500(37253371 - y153y2)
+ %(6 O Yy — 00 W) + (fobf1 — f10 fz)ﬁuo] — c.c. +eyclie(1,2,3). (3.3.53)

A situation where this 2-cocycle is relevant is discussed in [146].

3.3.10 Discussion

The results obtained in this section generalize the results discussed in one of the
examples of subsection 2.3.3 for an arbitrary time-dependent non-dynamical con-
formal factor P = P(u,(,() and in the Newman-Penrose formalism. In particular,
equations (3.3.33), (3.3.39), (3.3.41) and (3.3.44) can be compared with (2.3.68),
(2.3.60) and (2.3.62).

Let us now give some comments about the results. The BMS current algebra
discussed in the previous section not only involves a consistent mathematical struc-
ture, but also contains some physical information on the system that would have
been lost by considering only an integrable piece in the currents. To illustrate this
claim, let us restrict ourselves to globally well-defined quantities on the sphere, with
P = Pg = \%(1 + ((), there are no superrotations and K¥ . =0 = K§ . In this
case, BMS charges are defined by integrating the forms (3.3.43) at fixed retarded
time over the celestial sphere,

Qs = f Jy = f (PsPs)~" 71 d¢dC (3.3.54)
u=cte u=cte
(see one of the example in subsection 2.3.3). If one also defines
0, = J 0, = J (PsPs)~'e"d¢dc, (3.3.55)
u=cte u=cte
and the bracket
{Qs1: Qs s = 05,Qs1 + O, [05, X1, (3.3.56)
the integrated version of equation (3.3.44), becomes
{QSN Qsz}* = Q[s1,sg]7 (3357)
This charge algebra contains for instance information on non-conservation of BMS
charges. Indeed, let us take sy = 0,, by which we mean that T = A/ PsPs,Y =

0=Y,sothat f =1,Y =0 =Y. In this case, equation (3.3.57) together with the
definition on the left-hand side in (3.3.56) becomes

55uQs + @6u [53X] = Q[s,@u]~ (3358)
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When using that
d

0
@Qs = 66“@8 + %Qs; (3359)

P .
and %Qs = Qosjou = —Qs,0,], it follows that

d
Lo el (3:3.00

If one now chooses s = d,, one recovers the Bondi mass loss formula.

More generally, equation (3.3.44) is the local version of (3.3.57), where super-
rotations and arbitrary fixed P(u,(,() are allowed. When choosing s, = @, in
that equation, it encodes the non-conservation of BMS currents (cf. equation (4.22)
in [120]). For particular choices of sy, it controls the time evolution of the Bondi
mass and angular momentum aspects.

Even though we concentrated here on the case of standard Einstein gravity, all
the kinematics is in place to generalize the constructions to gravitational theories
with higher derivatives and /or dynamical torsion.

For the most part of section 3.3, the standard discussion has been extended to
include an arbitrary u-dependent conformal factor P. This has been done so as to
manifestly include the Robinson-Trautman solution [202,203] in the solution space.
The application of the current set-up to these solutions requires the inclusion of a
dynamical conformal factor in the derivation of the current algebra.
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Chapter 4

Generalized BMS, and renormalized
phase space

In section 3.3, we discussed the solution space of four-dimensional general relativity

in asymptotically flat spacetime (AF2) (see equations (2.2.15) and (2.2.17) for these

boundary conditions in metric formalism). Furthermore, we investigated the asso-

ciated phase space, assuming the conformal factor to be non-dynamical. As stated

in subsection 2.2.4, the asymptotic symmetry algebra is given by the extended BMS
ext

algebra written as bms,™, namely the semi-direct sum between the superrotations
0iff(S?) @ 0iff(S!) and the supertranslations s* [5,6,121].

In this chapter, we consider another set of boundary conditions (AF1) (see equa-
tions (2.2.15) and (2.2.16)) corresponding to a new definition of asymptotic flatness.
We also study the associated asymptotic symmetry algebra and phase space. The
former is given by a new extension of the global BMS algebra, called the general-
ized BMS algebra. This is given by bms§™ = 0iff(S?) & s [8,12,13,164,204]. This
alternative extension of the global BMS algebra is motivated by two points: (i) it is
essential to establish the full equivalence between Ward identities for superrotations
and subleading soft graviton theorem, and (ii) bms§™ is obtained in the flat limit of
bms?, the latter being a version of BMS in asymptotically locally (A)dS, spacetime.

In section 4.1, we recall the set of boundary conditions that leads to the gener-
alized BMS group and we discuss the associated solution space. In section 4.2, we
compute the corresponding symplectic structure and notice the presence of diver-
gences in ~ r. We renormalize these divergences by using the Iyer-Wald ambiguity
and obtain a finite symplectic structure, from which we derive the charge algebra.

This chapter has strong intersections with [8].

93
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4.1 Generalized BMS, group and solution space

4.1.1 Solution space

We recall that the Bondi gauge (2.2.10) leads to coordinates (u, 7, z%) where u labels
null outgoing geodesic congruences, r is a parameter along these geodesics, and z%
are two coordinates on the 2-sphere. The Bondi metric is parametrized as

ds® = Kewdu2 —2¢¥dudr + gap(dz? — UAdu)(d2® — UPdw), (4.1.1)
r

where gap satisfies the determinant condition
det
o, (M> ~0. (4.1.2)

We choose the definition (AF1) of asymptotic flatness (equations (2.2.15) and
(2.2.16)) and repeat it here:

f=o(l), —=ol?), U*=o()
gap =1r°qap +rCap + Dap + O(r™Y), g =14/

Using these gauge and fall-off conditions, the Einstein equations entirely determine
the solution space (see equations (2.2.48) for a parametrization of the solution space).
Furthermore, we assume two additional constraints:

Dup =0, Vi=+/q (4.1.4)

where D4 is the trace-free part of D45 and ¢ is the determinant of the unit 2-sphere
metric. The first condition in (4.1.4) guarantees that there is no logarithmic term
in the expansion of  and U#. The second condition ensures that [ = d,1In /g = 0.
The solution space is then explicitly given by

(4.1.3)

Vv R 2M B
? = —5 + T + O(T )7
_ 1 AB -3
B = 327“20 Cap + O(’/’ ), (4 ) 5)
1 P B
gap =1r°qap +rCap + ZQABCCDCCD +0 ),
A 1 AB 21 A 1 AB nC —4

where all functions appearing in the expansions of % depend upon u and z4. All
2-sphere indices in (4.1.5) are raised and lowered with gap, and D, is the Levi-
Civita connection associated with gap. The determinant condition (4.1.2) imposes
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in particular that g4C4% = 0. Cp is otherwise completely arbitrary, and its time
derivative Nyg = 0,Cap is the Bondi news tensor which describes gravitational
radiation.

Let us recall that the Finstein equations impose the following time evolution
equations:

dugas =0, (4.1.6)
OuM = —%NABNAB + iDADBNAB + éDADAR, (4.1.7)
OuNA = DAM + %DA(NBCCBC) — ENBCDACBC

— iDB(CBCNAC — NB9C40) — iDBDBDCC’AC (4.1.8)
+ %DBDADCOBC + %CABDB}?.

Here M (u, z*) is the Bondi mass aspect, N (u, 27) is the angular momentum aspect.
Concerning this quantity, our conventions are those of Barnich-Troessaert 6, 121]
(also followed by [205]), but differ from those of Flanagan-Nichols (F'N) [169] and
Hawking-Perry-Strominger (H PS) |35]. Here is the dictionary to match the different
conventions:

1 3
N(ElFN) =Ny + ZCABDCCBC + 3—26,4(0300]30), (419)
NP = NNV _uD M. (4.1.10)

4.1.2 Asymptotic Killing vectors

The asymptotic Killing vectors £* are obtained by imposing the preservation of the
Bondi gauge (equations (4.1.1) and (4.1.2)) and the asymptotic flatness conditions
(equations (4.1.3) and (4.1.4)). They are explicitly given by

Su = f(u>xA)>
= YAt + T4, 14 = _DBfJ; dr'(e*g"P), (4.1.11)

1
§" = —5r(DaY " + Dal* = U” Dy ),

with 0,f = 6,Y4 = 0. Furthermore, the parameters satisfy

0. Y4 =0 = Y4 =YD,
1 41.12
0uf = 3DV = f = T(a®) + gDAYA. ( )
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We can perform the radial integration in (4.1.11) to get a perturbative expression of
the infinitesimal residual diffeomorphisms using the explicit solution space (4.1.5):

e g (4.1.13)
A 4 1o 1 (1 45 1 1 BC A —4
=Y _;D f+ﬁ 50 Dgpf +ﬁ _ECBCC D°f —1-0(7“ )7
(4.1.14)
1 1 1/ 1 1
ge:—ErDAYA+-§DADAf+;;(—aDACABDBf——ZOABDADBf)4—0075-

(4.1.15)

The asymptotic Killing vectors are spanned by 0iff(S?) super-Lorentz transforma-
tions generated by Y4(x?) and by (smooth) supertranslations generated by T'(z*).
We therefore denote them as £(7',Y). Notice that in chapters 4 and 5 (and only in
these chapters), we find it convenient to call the extension of the Lorentz transforma-
tions as the super-Lorentz transformations instead of superrotations. Any 2-vector
on the sphere can be decomposed into a divergence-free part and a rotational-free
part. A super-Lorentz transformation whose pullback on the celestial sphere is
divergence-free is a superrotation. This generalizes the rotations. A super-Lorentz
transformation whose pullback on the celestial sphere is rotational-free is a super-
boost. This generalizes the boosts.

4.1.3 Asymptotic symmetry algebra

As discussed in subsection 2.2.4, to obtain the asymptotic symmetry algebra, one
has to consider the modified Lie bracket

[€1,&]a = [€1, 6] — (07, & — 6L,61) (4.1.16)

where (5?152 denotes the variation of & caused by the Lie dragging along &; of the
metric contained in the definition of &. We find

[Ty, Y1), 6(T0, Yi)]a = £(T,Y), (4.1.17)
where
. 1
T =YADsTy + ~T1 DY — (1 < 2),
) P DaTo+ STDaYy — ) (4.1.18)
YA=YPDpY — (1 - 2).

This defines the generalized BMS algebra bms§™. It consists of the semi-direct sum
of the diffeomorphism algebra on the celestial 2-sphere 2iff(S?) and the abelian ideal
s of supertranslations, consisting of arbitrary smooth densities (of weight —1/2) on
the 2-sphere:

bms§™ = 0iff(S?) & s. (4.1.19)
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4.1.4 Action on the solution space

The vectors (4.1.11) preserve the solution space in the sense that infinitesimally

Lery)guw 0] = 90" + 0y 9'] — gu[9'] (4.1.20)

where ¢' = {qap, Cap, M, N4} denotes the collection of relevant fields that describe
the metric in Bondi gauge. The action of the vectors preserve the form of the metric
but modify the fields ¢°, in such a way that the above equation is verified. We can
show that

S(ry)qas = 2D(aYp) — DoY “qap, (4.1.21)
1
S(ry)Cap = [fOu + Ly — §DCYC]CAB —2D4Dpf + qapDcDC f, (4.1.22)
1
Sry)yNap = [f0u + Ly]Nap — (DaDpDcY® — §CIABDCDCDDYD), (4.1.23)
3 1
OryyM = [fou + Ly + 5 DY IM + S Daf DR (4.1.24)
1 1 1
+ gDcDBDAYACBC + ZNABDADB f+ 5 D4 fDpNAB, (4.1.25)
3
SryyNa = [fOu, + Ly + DcYCIN4s +3MDyf — EDA fNpcCBC
1 1 :
— 3_2DADBYBCCDCCD + (DY fR+ DBDeDC f)Cuup
3

3
— ZDB f(DPDCC e — DaDCPY) + gDA(DCDB fCB9)

1 1 1
+5(DaDf - §DCDC fqap)DcCPC + D5 FNBCCue.  (4.1.26)
Note that the boundary Ricci scalar R transforms as

SryvyR=Y*DAR+ DAY*R + D*DgY". (4.1.27)

4.2 Renormalized phase space

In this section, we define an extended phase space invariant under the action of
Diff(5?) super-Lorentz transformations and supertranslations. Super-Lorentz trans-
formations are overleading in the sense that they change the boundary metric, which
is usually fixed in standard asymptotically flat spacetimes. We can therefore expect
that a renormalization procedure will be required. In this context, we use the
Iyer-Wald procedure described in subsection 2.3.4 that allows us to remove the di-
vergences by utilizing the ambiguity in the definition of the presymplectic potential.
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4.2.1 Presymplectic potential

In the metric formalism, the canonical presymplectic potential is given in equation

(2.3.74). Plugging the solution space (4.1.5) into this expression, we obtain
0"[9:99] = 0y + 0oy + 700 + O, (12.1)
0"g;09] = 9 givy + 00y + O(r™). (4.2.2)

We have GE”diU)océﬁ and therefore G?div) = 0 as a result of the boundary condition
(4.1.3). Furthermore, we find ;) = 0. The other components are

Oty = %—CABanB, (4.2.3)

V4 1 g AB
o = —YLsp -~ VI N s 124
(div) T e RN STl (4.2.4)
. \/5 1 AB 1 AB
o = — YL 51N —9M + =D4D
(0) TorG O | Car T 5 DalsC

5 V4 L ¢ AB
+0 fluz + 167TGDA 5D Cpcdq™ |, (4.2.5)

where we define with hindsight the important quantity

7] _ Wa gt ap 1 a1 ¢ AB
Oe = T G[2NAB(SC 1RCapdq"” — SDChoDadq ] (4.2.6)

We note that one can isolate a total derivative and a total variation as

o0 = —oY", (4.2.7)

gy = —0uY™ — IR r)=—0,Y"™ — oY (4.2.8)

where Y = —Y" = —r%lngC’AgéqAB and Y = rﬁ@fd(q; dq) is 7 times
the presymplectic potential of the two-dimensional Einstein-Hilbert action, 065, =

5(\/aR).

4.2.2 Presymplectic form

The bare Lee-Wald presymplectic form is given by wlg;dg,dg] = d0[g;0g] (see
equation (2.3.72)). We have already obtained that the bare presymplectic potential
0[g; 0g] is divergent (see (4.2.1) and (4.2.2)). However, it is ambiguous under the
change 0[g; 0g] — 0[g;dg] —dY|g; dg], where Y|g;dg] is a co-dimension 2 form (see
(2.3.81) and the associated discussion). We have already identified in (4.2.7) and
(4.2.8) the counterterms required to make the presymplectic potential finite.
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Let us discuss this point in detail, starting from the bare presymplectic form.
We have

u _ i 1 AB -2

W= e 26qAB A OC + O(r—), (4.2.9)
r_ V4 l AB

W' = r167rG 25NAB A 0q (4.2.10)

Vva |1 AB |, L an 1 c AB —1
e 26 N +2Rq A50A3+25(DAD Cgc) A 0q +O@r™).

Clearly, such a presymplectic form is divergent. After choosing the boundary term
Y|[g;0g] as in (4.2.7) and (4.2.8), the presymplectic form becomes well-defined,

wt = 0(r?), (4.2.11)

ren

ro_ \/EI 1 AB 1 AB 1 c AB —1
When = 1o |30 (N7 + 5Ra™ ) A 3Cap + S0(DaDCpe) A 0g™ | +O(r ).
(4.2.12)

Since Y47 is exact, it does not contribute here. This defines the presymplectic
structure at & "

Qren[g; 09, 09]

1 1 1 1
= dud?®Q | =6 | NAB + ZR¢AP ) —8(DsDoCS) A 5gAP
e Iw U [2 ( + 2Rq ) ANOC s + 5 (DADcCR) A 0q ]

= J dud®z (605140[g; 09]) (4.2.13)
T+

where éﬂux is defined in (4.2.6), after discarding a boundary term.

4.2.3 Infinitesimal surface charges

The (ur)-component of the bare Iyer-Wald co-dimension 2 form is

ke"lg; 0g] = —0Q¢" [g] + Q5¢lgl + £"0"[g; 69] — €70%[g; dg] (4.2.14)

(we note the presence of the term Qjf[g] compared to the expression (2.3.73), as
already discussed in the footnote 16 of subsection 2.3.4). Expanding in powers of
1/r, we get

ke"Lg:09] = rh{gi) + ko) + O ). (4.2.15)
We define §H; = Ssz, ke[g;dg]. The divergent term is
g = 20 | §(YADCB) — f6R — = fNapdg™® + —~DcYCqapdCAB
d ¢ 167G Jg2, ( 5Cx) — fOR 2f ABOq +4 cY " qapdC

(4.2.16)
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while the finite term is

_ 1 1
JHO = oG ). 4?0 [5 (4 FM +2YAN, + EYADA(CBCCBC))] (4.2.17)

1 1 1
Q|=f( N2+ Z¢*BR ) 6C
HRTE @ [zf( + a4 AB

1 1
+DsfDCCredg? + 3 fDADCCpcdg*? — Z—lD? quBcSCAB] .

Clearly, the charges are neither finite nor integrable.
For covariant counter-term Y[g;dg|, the modification at the level of the co-
dimension 2 form is

ke — KT — 0Y (g3 Leg) + Y [g; Locg) + EXAI™ — £TAG". (4.2.18)

More specifically, for the Y|[g;dg] given in (4.2.7) and (4.2.8), we have

ur q
—0Y""[g; Leg] = 5" 1ng5(CAB5(T,Y)qAB); (4.2.19)

Y [g; Lseg] = 0, (4.2.20)

where the last equation follows from the fact that the fields are not modified by 0&
at leading order in r. Moreover,

u T U rA 1 \[ AB \/7
NG = F@Y™ + 04y = Sr GfN B0q" + o (FOR) (4.2.21)
=4 u __ T ury __ 1 \f c AB 1 \/7 C AB -1
ETAQY = =£"(0,Y") = — 4167rGTDCY Capdq 416 GDCD fCapdg™” + O(r—).
(4.2.22)

Here, the O(1) part in (4.2.22) is due to the O(1) contribution from £", and exactly
cancels the last non-integrable term at O(1) in the charges (4.2.17).

We see that any divergent term will disappear due to this choice of Y, and the
infinitesimal surface charges reduce to

) . 1 1
Hlntermedlate _ d2 4fM 2YAN Y DA(C CBC
s ¢ 167G L?[ M + At 16 4(Cre )

1 1 1
" 167G Lz e [5f <NAB i EqABR) PCan+ §DA(chC§)5qAB] .
(4.2.23)

Before proceeding, let us notice a very subtle point. Using the Iyer-Wald ambiguity,
we saw that Y[g;dg] allowed us to cancel the divergent part of the presymplectic
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form, but did not affect the finite part. However, when reporting this Iyer-Wald
modification at the level of the co-dimension 2 form in (4.2.18), we showed that it
affected the finite part of the charges. This is in tension with the fact that the co-
dimension 2 form is completely determined by the presymplectic potential through
the fundamental relation (2.3.77). This apparent discrepancy in the formalism is
due to an inappropriate use of the algorithm that brings the renormalization at the
level of the charge. More precisely, the formula (4.2.18) is valid only for Y[g; dg]
covariant with respect to the bulk and thus does not hold in our current context.
We therefore used an alternative way to obtain the surface charges and checked that
the finite part (4.2.17) of the bare charge satisfies the fundamental relation

5U§H§(O) = _Qren[g; 6{97 59]7 (4.2.24)

where Qyen|g; 9¢g, g] is the renormalized symplectic form given in (4.2.13). The final
renormalized infinitesimal charge is finite and given explicitly by

1 2 A 1 ya BC
§H = e S;d Q [(5 <4fM+2Y Ny + 16Y DA(CpcC™")
1 1
* Tor [ 037 (317 + 3R 50 )
S%

1 1
+D 4 fD Cpcdg™? + §fDADCCBO5qAB - ZDQfCIAB(;C'AB] :

When ¢4p is the fixed unit metric on the sphere, it reproduces the expression of
Barnich-Troessaert [121] (see equations (2.3.59) and (2.3.60)).
The infinitesimal surface charges can be written as

§He[g] = 6 Helg] + Ze[g; 09), (4.2.26)
where
1 1
H:[g| = 2Q0(4fM +2YAN,+ —Y4D BC 4.2.2
elg] 167G L?[d < M+ T A(CpcC )> ( 7)
and
1 1
Elg:0gl = —— | A?Q|=f( NAB + Z¢*BR) 6 D4 fDCCredg™t
¢lg; 9] 167G Js [Qf( +2q R) Cap + DafD"Cpciq

1 1
+§fDADCCBc(5qAB - 1D2quBécAB] .
(4.2.28)
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Of course, the canonical Hamiltonian (4.2.27) cannot be deduced solely from the
relation (4.2.26) since one can shift He as

dHelgl = 0(He[g] + AHc[g]) + Zclg; 69] — dAHe[g]. (4.2.29)

We therefore need additional input to fix the finite Hamiltonian. This is discussed
in subsection 5.3.

4.2.4 Charge algebra

After an involved computation, we get the following charge algebra

5§2H§1 [g] + E§2 [gv 5519] = H[E1,£2]A [g] + ,C§1,52 [g] (4230)

In this relation,

Ee,[95 0, 9]

1 1
d*Q [§f2 (NAB + §qABR> 0¢,Cap + Daf2D" Cpede g™”

e .
+%f2DADCCBc551QAB - iDQfQC]AstglCAB] :
(4.2.31)
Furthermore, the 2-cocycle K¢, ¢,[g] is antisymmetric and satisfies
Kie eal,e5 + 06,Ke, ¢, + cyclic(1,2,3) = 0. (4.2.32)
It is given explicitly by

1
Keeldl =15 o

1 .1
d%0 [QleAfQDAR + §CBCf1DBDcDDY2D —(1 e 2)] .
(4.2.33)

The result (4.2.30) is the analogue of (2.3.62) (or (3.3.44) in NP formalism), but
for iff(S?) superrotations.



Chapter 5

Vacuum structure, superboost
transitions and refraction memory

In section 5.1, we study the vacuum structure of the gravitational field in asymp-
totically flat spacetimes for both extensions of the BMS group. This analysis shows
that one field in the metric that is turned on after acting with superboost trans-
formations exhibits the properties of a Liouville field. Furthermore, in section 5.2,
we argue that this field is precisely the memory field associated with the velocity
kick /refraction memory effects. In section 5.3, using some definitions introduced in
the previous sections, we propose a prescription to obtain meaningful finite charges
out of (4.2.25). Applying this procedure, we find precisely the charges needed to
establish the equivalence between Ward identities and soft theorems.

5.1 Vacuum structure

The orbit of Minkowski spacetime under the BMS group is defined as the class
of Riemann-flat metrics obtained by exponentiating a general BMS transforma-
tion starting from Minkowski spacetime as a seed. The subset of this orbit where
only supertranslations act are the non-equivalent vacua of asymptotically flat space-
times, which are characterized, contrary to Minkowski spacetime, by non-vanishing
super-Lorentz charges, while all Poincaré charges remain zero [102|. In the global
BMS case, the exponentiation leads to a single fundamental field labeling inequiv-
alent vacua: the supertranslation field C'(z*). The displacement memory effect is
a transition among vacua mediated by gravitational or other null radiation, which
effectively induces a supertranslation of C [101].

For the extended BMS asymptotic symmetry group, this exponentiation leads
to two fundamental fields: the supertranslation field and what we will call the
superboost or Liouville field . The corresponding solution in Bondi and Newman-

103
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Unti gauges was constructed in [102]. Here, we extend the construction to finite
Diff(S?) super-Lorentz transformations following methods similar to the appendix
of [103]. The corresponding boundary fields will also be the supertranslation C
and superboost ® fields, complemented by an additional superrotation field ¥. To
understand the memory effects associated with super-Lorentz transformations, we
start by deriving the structure of the vacua.

5.1.1 Generation of the vacua

In this subsection, we construct the finite diffeomorphisms associated with the
asymptotic Killing vectors (4.1.13-4.1.15) acting on the Minkowski space. We start
from the Minkowski metric written in complex plane coordinates'

ds* = —2du.dr. + 2ridz.dz.. (5.1.1)

We define the background structures

01 0 1
m=[1 0]’ eab=[_1 0] (5.1.2)

with inverse Y% = v, €?® = €4. The goal is to introduce a diffeomorphism to Bondi
gauge (Ue,Te, 2e, Z.) — (u,7,2, %) that exponentiates Diff(S?) super-Lorentz trans-
formations and supertranslations. Requiring that (u,r, z, Z) are Bondi coordinates
leads to two sets of conditions: (i) the algebraic conditions g, = 0 = g,4, and (i7)
the determinant condition 0,(r~*det g4p) = 0.

The first set of conditions yields

Te = T‘C(’f’,u, 272); (513)
e = Wu, 2, 2) — 1. ‘Yo H (u, 2, 2)H" (u, 2, %), (5.1.4)
28 = G2,2) —r Y H(u, 2,2), H%u,z,2) = —Dg ¢ ye*Po,WapGe  (5.1.5)

where Dg = det(04G") = SeaeP04G*0pG®. The second condition fixes the func-
tional dependence of r, as

2

re(ryu, z,z2) = Ro(u, 2z, 2) + \/(&f—W)Z + Ri(u, 2, 2). (5.1.6)

!The metric (5.1.1) can be related to the standard Minkowski metric ds? = —du? — 2du,drs +

4r? - . . . . .
s - jzdzsdzs by performing the following coordinate transformation (see appendix A of [103]):
\/575 Us 14252 _ ZSZSuz _ _ ZsUs 3 _ 3 __ ZsUs
Tiz.z T Ve U= 75 Us Bre e T BT gy Fe T B T gy

Te =
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For [ = 0, In /g = 0 to be satisfied (see (4.1.4)), we have to impose that 921V = 0,
so W is at most linear in u. Moreover, regularity implies that J,W is nowhere
vanishing. Therefore,

W (u, z¢) = exp l%@(z, 2)] (u+ C(z, 2)). (5.1.7)

Expanding gap in powers of r as in (4.1.5), we can read the boundary metric as
ap = @i = ¢ "0aG G a. (5.1.8)

It is indeed the result of a large diffeomorphism and a Weyl transformation. If one
is restricted to the transformations that lead to /g = v/¢ (see equation (4.1.4)), we

have the relation 5
|det(6AGa)| = me(b. (519)

The shear Cyp is found to be the trace-free (TF) part of the following tensor

2
Cap = CV% = lmau (DAWDEW) —

TF
DiDgW . 5.1.10
oW AT ] ( )

Introducing (5.1.7), it becomes

N3 = [LDs®Dp® — DADpd]""
c®) = —2D4DpC + qupD*C.

(5.1.11)
We find that all explicit reference on ~,, or G* disappeared. Moreover, the news
tensor of the vacua N5 is only built up with ®. It can be checked that the boundary
Ricci scalar is given in terms of ® as

Ciis[®, C] = (u+ C)NS + T, {

R = D*®, (5.1.12)
which implies
1
DANZ5 = —§DBR. (5.1.13)

We can therefore add a trace to N335 to form the conserved stress-tensor

1 1 1
Tapl®] = 5Da®Dp® — DaDp® + 50a5 (2D2<I> - 5DC<I>DC<I>) . (5.1.14)

Its trace is equal to D?®. The tensor T4 is precisely the stress-tensor of Euclidean
Liouville theory

1
L[®;qa8] = v (§DA<I>DA<I> + Ae® + R[q]q>> , (5.1.15)
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where the parameter A is zero in order to satisfy (5.1.12). To derive the stress-tensor
from the Lagrangian, one must set the Liouville field off-shell by not imposing the
equation (5.1.12) but considering the metric as a background field. Under a super-
Lorentz transformation

Sy (D?*® — R) = (Ly + DY) (D*® — R). (5.1.16)

Therefore, imposing the Liouville equation is consistent with the action of super-
Lorentz transformations.

Using this boundary metric and shear, one can work out the covariant expressions
for Ry and Ry in (5.1.6). They are given by

1 1
Ry = §e’¢’D2W and R, = ge’q’CABCAB. (5.1.17)

Finally, after some algebra, one can write the full metric as

R 1
ds? = —odu? = 2dpdu + (Paap + pOYE + CEHCLaan)dr*do”

(5.1.18)
+ DECdrAdu

vac

where p = \/ r? + %CZ?BC’CD is a derived quantity in terms of the Bondi radius r.
The metric is more natural in Newman-Unti gauge (u, p, 2!) where g,, = —0f (see
(2.2.12)).

Let us also comment on the meromorphic extension of the Lorentz group in-
stead of Diff(S?). When super-Lorentz transformations reduce to local conformal
Killing vectors on S2, i.e. G* = G(z) and G* = (G(%), the boundary metric after a
diffeomorphism is the unit round metric on the sphere

2
Gapdzdz? = 2v,dzdz, Vs = ( (5.1.19)

1+ 2z)?

(and R = 2) except at the singular points of G(z). The Liouville field reduces to the
sum of a meromorphic and an anti-meromorphic part minus the unit sphere factor

® = ¢(2) + #(2) — logs. (5.1.20)

The metric (5.1.18) then exactly reproduces the expression of [102| with the substi-
tution 7' ffgere) = 1/2N75. We have therefore found the generalization of the metric
of the vacua for arbitrary Diff(S?) super-Lorentz transformations together with ar-
bitrary supertranslations.
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5.1.2 The superboost, superrotation and supertranslation fields

A general vacuum metric is parametrized by a boundary metric ¢%5, the field C' that
we call the supertranslation field and ® that we will call either the Liouville field or
the superboost field. Under a BMS transformation, the bulk metric transforms into
itself, with the following transformation law of its boundary fields:

orya%s = DaYp+ DYy —qR5DeY©, (5.1.21)
ory® = Y40,® + DYH, (5.1.22)

1
oryC = T+Y40,C — 5(JDAYA. (5.1.23)

Only the divergence of a general super-Lorentz transformation sources the Liouville
field. Since rotations are divergence-free but boosts are not, we call ® the superboost
field. In general, one can decompose a vector on the 2-sphere as a divergence and a
rotational part. For a generic superrotation, there should be a field that is sourced
by the rotational of YA. We call this field the superrotation field ¥ and we postulate
its transformation law

oryV = Y40,V 4+ 48D, V5. (5.1.24)

Where is that field in (5.1.18)7 In fact, the boundary metric ¢'25 is not a fundamental
field. It depends upon the Liouville field & and the background metric v,. Since
it transforms under superrotations, the metric (5.1.8) should also depend upon the
superrotation field W. The explicit form ¢'{5[Vap, P, ¥] is not known to us. We call
the set of boundary fields (®, V) the super-Lorentz fields.

Under a BMS transformation, the news of the vacua N} and the tensor Cgoé
transform inhomogeneously as

1
Sy NYS = LyN§ — DaDpDcYC + §qABD2DCYC, (5.1.25)

1
5T7y01(40% = ,Cycg% — §D0YCC£‘0% —2D4DgT + qABDQT. <5126>

From (5.1.18), one can read off the explicit expressions of the Bondi mass and
angular momentum aspects of the vacua

1
M=—- ZlaBCC\glcg7

% . (5.1.27)
Ni =~ L DACHECES) - LCiEDeCis.

The Bondi mass is time-dependent and its spectrum is not bounded from below
because 0,M = —s N}SNAP as observed in [102]. Nonetheless, the Weyl tensor is
identically zero, so the standard Newtonian potential vanishes. This indicates that
the mass is identically zero. The relationship between the Bondi mass and the mass

is given below in subsection 5.3.3.
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5.2 Superboost transitions

The main interest of the non-trivial vacua lies in the dynamical processes that allow
transitions from one vacuum to another. In what follows, we focus on the processes
associated with both Diff(S') x Diff(S!) and Diff(S?) super-Lorentz extensions of the
BMS, group. We study several examples of transitions and investigate the related
memory effects at null infinity.

5.2.1 The impulsive Robinson-Trautman metric as a vacuum
transition

The impulsive limit of the Robinson-Trautman type N of positive 2-curvature (M =
0, R = 2) can be rewritten after a coordinate transformation as the metric of the
impulsive gravitational waves of Penrose [206,207], as shown in [208,209]?

ds* = — du® — 2dpdu
2 vac u? vac \7CD Aq..B (521)
+ (p daB + up@(u)NAB + gG(U)NCDN qAB)dx dx ,

vac

where N = [1DadyDpoy — DADngf]TF. The vacuum news coincides with (5.1.11)
after substituting ® = —log~ys + ¢ as in (5.1.20). This metric is in Newman-Unti

gauge, not in Bondi gauge. It represents the transition between two vacua labelled

by distinct meromorphic superboost fields® (initial ¢; = 0 for v < 0 and final

¢r = ¢(2) + (%) for u > 0). The metric gap is the unit sphere metric globally for

u < 0 and locally for v > 0 but it contains singularities at isolated points for u > 0.

These singularities can be understood as cosmic string decays [145,209, 210].

5.2.2 General impulsive gravitational wave transitions

In general, both the supertranslation field C' and the superboost field ® can change
with hard (finite energy) processes involving null radiation reaching Z*. Such pro-
cesses induce vacuum transitions among initial (C_, ®_) and final (C, ®, ) bound-
ary fields. The difference between these fields can be expressed in terms of compo-
nents of the matter stress-tensor and metric potentials reaching Z*. The simplest
possible transition between vacua are shockwaves that carry a matter stress-tensor
proportional to a §(u) function, as in the original Penrose construction [206]. A

21t is exactly the solution (2.10) of [95] with € = +1 upon substituting U — u/~/2, V — —/2p,
H — —1/2NY2¢. Strictly speaking, gy, = —1— D72¢ at the poles of the meromorphic function ¢(z),
but g, = —1 otherwise.

3The singular impulsive limit requires considering singular diffeomorphisms transitions which
turn out to reduce to meromorphic superboost transitions.
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distinct vacuum lies on each side of the shockwave and the transition between the
boundary fields is dictated by the matter stress-tensor. Such a general shockwave
takes the form

R 1
ds* = — EdUQ — 2dpdu + (pZQAB + pCAB + —CCDCCDqAB)dxAdLEB

8 (5.2.2)
+ DBCypda?du,

where

qap = O(—u)gip[P ]+ O(u)giz[P], 2.
Cap = O(—uw)C%[D_,C |+ OW)CE[P.,C.], (5.2.4)

where ¢i5[®] and CYE[®, C] are given in (5.1.8) and (5.1.11). The metric (5.2.1)
is recovered for &_ = —log~v,, ;. = —logvs + &(z) + ¢(Z) as in (5.1.20) and
C+ == C_ == O

5.2.3 Conservation of the Bondi mass aspect and the center-
of-mass

In the absence of superboost transitions and for the standard case of the unit round
celestial sphere, the integral between initial u; and final retarded times uy of the
conservation equation for the Bondi mass aspect (4.1.7) can be reexpressed as the
differential equation determining the difference of supertranslation field AC' = C, —
C_ between initial and final retarded times after assuming suitable fall-off conditions
[101]

1 Ut
—ZDQ(DQ +2)AC = AM + J du Ty, (5.2.5)

U—

where T\, = §NapN*? and AM is the difference between the Bondi mass aspects
after and before the burst. The four lowest spherical harmonics ¢ = 0,1 are zero
modes of the differential operator appearing on the left-hand side of (5.2.5). Recall
that translations precisely shift the supertranslation field as (5.1.23). The four lowest
harmonics of C' can thus be interpreted as the center-of-mass of the asymptotically
flat system. This center-of-mass is not constrained by the conservation law (5.2.5).

A new feature arises in the presence of a superboost transition. The four zero
modes of the supertranslation field C' are now determined by the conservation equa-
tion. This can be seen in the context of impulsive transitions (5.2.2). For simplicity,
we take C =0 and & = —logvs (qap[P_] = ¢ap the unit round sphere metric).
Given that the Bondi mass aspect and the Bondi news of the vacua are non-zero
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(5.1.27), we first define the renormalized Bondi mass aspect and Bondi news as

A 1
M = M+§CABNV§§[@+], (5.2.6)
Nap = Nap—OW)NE[D,], (5.2.7)

which are zero for the vacua (5.1.18). This mass is obtained in section 5.3 in (5.3.9).
After integration over u of (4.1.7) and using the corollary of the Liouville equation
(5.1.13) we obtain

1 1 1
— ZD"’(D2 + R)Cy + ZJ\f;‘f[<I>+]DADBC+ + §C+D2R
U4

— AMJFJ du Ty, (5.2.8)

U—

where T}, = %N ABN AB and AM act as sources for C, and all quantities are eval-

uated on the final metric ¢45[®,]. We have that AM = 0 for transitions between
vacua but we included it for making the comparison with (5.2.5) more manifest.

The lowest ¢ = 0,1 spherical harmonics of C' are not zero modes of the quartic
differential operator on the left-hand side of (5.2.8) for any inhomogeously curved
boundary metric. Therefore, the center-of-mass is also determined by the conserva-
tion law of the Bondi mass aspect.

5.2.4 Refraction/Velocity kick memory

We now consider the simplified case where the change of the boundary metric is
localized at individual points. This happens for impulsive gravitational wave tran-
sitions that relate the initial and final boundary metric by a meromorphic super-
Lorentz transformation (which is a combination of superboosts and superrotations).
One example is the original Penrose construction [206]. In these cases we consider
observers away from these singular points so that we can ignore these singularities.

We can consider either timelike or null geodesics leading respectively to the
velocity kick and refraction memory. Let us first discuss a congruence of timelike
geodesics that evolve at finite large radius r in the impulsive gravitational wave
spacetime (5.2.1). Such observers have a velocity v*d, = d,+O(p™!). The deviation
vector s* between two neighboring geodesics obeys V,V,s# = R“QMU%BSV, where
the directional derivative is defined as V,, = v#V,. We have R, 4,p = —g@gC’AB +
O(p°) where Cup = uO(u) NS and therefore

1
quap0>s? = %é(u)NfBCSB—i-(’)(p*Z). (5.2.9)
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We deduce that s = si1  (z4) + %sfub(u, z) + O(p~?) and after two integrations
in u,

sty = 5O P NFES oy (5.2.10)
Before the shockwave, there is no relative angular velocity between observers. After
the shockwave, there will be a relative angular velocity at order ocp=!. This is
the velocity kick between two such neighboring geodesics due to the shockwave
[95,96,122]. This is a qualitatively distinct effect from the displacement memory
effect [83,84,211-213] and the spin memory effect [11,92,214].

Analogously, one can consider a congruence of null geodesics that admits a con-
stant leading angular velocity Q4(2%)d,, with total 4-velocity

0, = (VAP + O(p))ou + O(p )0, + %(QA O Y)on (5.2.11)

A A

: : _y _ Ay 4 1A A
We consider again a deviation vector of the form s = sic,,(z%) + 555, (u, %) +

O(p~2). The deviation vector obeys again (5.2.10). Null geodesics are refracted by
the shockwave. This is the refraction memory effect usually described in the bulk
of spacetime [95,96,122|. We identified here the class of null geodesics that displays
the refraction memory effect close to null infinity.

Let us now shortly discuss the case where the change of boundary metric is not
localized at individual points. The main point is that timelike geodesics will now
admit non-trivial deviation vector already at leading order oc p°, s4 = s (u, x) +
O(p 1), with

1 1 1
§QABaZS£ad+ §5Z(QABS£ad) = —3 4AB S ead: (5.2.12)

A velocity kick will therefore already occur at order p°.

5.2.5 A new non-linear displacement memory

It should also be mentioned that there is a non-linear displacement memory induced
by a superboost transition, when it is accompanied by a supertranslation transition.
This case was not considered in [95,96,122|, where all supertranslation transitions
were vanishing. In order to describe the effect, we can consider either timelike or
null geodesics. For definiteness, we consider a congruence of timelike geodesics that
evolve at finite large radius p in the general impulsive gravitational wave spacetime
(5.2.2). For simplicity we assume global Minkowski in the far past and we only
consider the simplified case where the change of the boundary metric is localized at

individual points. In other words, we assume ®_ = —log~y, (¢'25[®_] is the unit
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sphere metric), C_ = 0, ®, = —logv, + ¢(2) + #(2) and C. = C, (2, z) arbitrary.
The velocity is now v*d, = \/%ﬁu + O(p~"). We have Ryaup = —502Cap + O(p°).

Following the same procedure as above, we obtain s4 = s/ (z4) + %s‘s“ub(u, ) +
O(p~?) and away from the singular points on the sphere,

Squb = %QABCBCSJC;M« (5.2.13)

= §®(u)qf‘30§‘ccsiad~ (5.2.14)

= 0P WOMINEE + OW)OW, +OWONE) sy (5.2.15)

The first term oc u©(u) leads to the velocity kick memory effect. The second term
oc @(U)Cg)g leads to the displacement memory effect due to a change of supertrans-
lation field C' between the final and initial states [L01]. The third and last term
o O(u)C' N is a new type of non-linear displacement memory effect due to changes
of both the superboost field ® and the supertranslation field C. The four lowest
spherical harmonics ¢ = 0,1 of C, interpreted as the center-of-mass, do not con-
tribute to the standard dis%)lacement memory effect because they are zero modes of
the differential operator C’Aol);. Here, they do contribute to the non-linear displace-
ment memory effect. The transition of the supertranslation field and in particular
of the center-of-mass are determined by (5.2.8), as discussed earlier.

5.3 Finite charges and soft theorems

In this section, we present a prescription to extract a meaningful integrable charge
from the non-integrable infinitesimal charge expression obtained in equation (4.2.25)
of the previous chapter. This procedure is based on ingredients introduced in section
5.1 and is inspired by the Wald-Zoupas procedure* [118]. We then relate our asso-
ciated finite charge to the existing literature and show that this is consistent with
the soft graviton theorems, the action of asymptotic symmetries and the vanishing
energy of the vacua.

5.3.1 Finite surface charges

In this analysis, we assume that the Liouville equation

R = D*®, (5.3.1)

4Notice that the Wald-Zoupas procedure discussed in [118] could not be readily applied to our
case due to the non-vanishing contribution of the term Qg{[g] in (4.2.14) to the non-integrable
part.
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which was derived for the vacua orbit in (5.1.12), holds in our phase space. This
is not guaranteed a priori for the general phase space studied in chapter 4 and is
therefore an additional restriction. In particular, equation (5.1.13) will be satisfied.

Starting from (4.2.25), we want to define the finite charges H associated with &.
Following the Wald-Zoupas procedure [118], it would be natural to request that the
flux 0, He[g] is identically zero in the absence of news. However, the news tensor
transforms inhomogeneously under (both Diff(S')xDiff(S') and Diff(S?)) super-
Lorentz transformations so this condition is not invariant under the action of the
asymptotic symmetry group. Instead, we request that the flux d,H¢[g] is identically
zero in the absence of shifted news N AB,

Nyp = Nag — N} (5.3.2)

Since the latter transforms homogeneously under super-Lorentz transformations,
this prescription is #nwvariant under the action of all asymptotic symmetries. For
future use, we define the shifted C'4p tensor

Cup = Cap — uN S, (5.3.3)

such that 0,Ca5 = Nag. To obtain our ansatz, let us start with the charge (4.2.27).
The flux associated with (4.2.27) reads as

1
327TG SQL

0uH"[g] = d*Q[fNapNAP —2fDoDpNAP — fD4DAR — YAH 4(N,C)

+Y4DpDPDCac — YADpDsDcCPY — YAC 5 DR
(5.3.4)

Here, we defined for later convenience the bilinear operator on rank-2 spherical
traceless tensors Pap and Q4p:

Ha(P,Q) = %5A(PBCQBC) — PPYDAQpc + Dp(PP°Qac — QP“Puc)  (5.3.5)

which enjoys the property Ha(P, P) = 0. When Nap = 0, we are left with

1

int
Ol s 0 = “370

vac

J *Q[fNFENAS = YAHL(NY™,C) —YACupD"R
S2,

+Y4DpDP D Cac — YA DpDsDcCPC]
(5.3.6)

after using the relation (5.1.13), which follows from our additional boundary con-
dition (5.3.1). We now want to define a counterterm that is only built out of the
fields at ™ (qap, Cap, Nag) and out of N3, which is the only boundary field that
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appears in the condition (5.3.2). Our prescription that cancels the right-hand side
of (5.3.6) is

1
AHlg:og] = - LQ d2Q[gYADBDBDCCAC _ gYADBDADCCBC

vac

1
—%YA(JABDBR +5TCanNAT - gYA”H,A(NV“, )

2 2
+%DCYC N NAB 4 uZYANEgDBR]. (5.3.7)
This is the minimal ansatz that cancels the right-hand side of (5.3.6). Of course,
there is considerable ambiguity in defining AH¢[g;dg]. We will justify our mini-
mal choice in (5.3.7) by showing consistency with the leading and subleading soft
theorems, and for defining the charges of the vacua.

Our final prescription for the canonical charges is He[g] = H{"[g] + AH¢[g].
The charges are conveniently written as

1
167G Jg2

Helg] 420 [4TM + 2YANA] (5.3.8)

where the final mass and angular momentum aspects are given by

vac

1
M = M+§CABNAB- (5.3.9)

1 A A A 1
Nis = Ny—udsM + 3—25,4(00,300[’) + f—GaA(CCDNgag) — 3—2u25A(NgagNBC) (5.3.10)

2
—%HA(NV“, ¢) — %CEDBR n %DBDBDCCE . %DBDADCCE . %N;ngBR.

This is a new prescription for the charges. In the standard asymptotically flat
spacetimes where the boundary metric is the round sphere (gap = qap with R = 2),
our expressions reduce to

MzM;

) 1
Na = Na = udaM + 5504(CepC®P) + %DBDBDCCAC - %z)ng)Az)CCBC .
(5.3.11)

The Lorentz charges differ from the existing prescriptions |35, 121, 169| since the
angular momentum aspect is now enhanced with the two soft terms linear in wu.
We will show that our prescription correctly reproduces the fluxes needed for the
subleading soft theorem. Furthermore, our expressions are exactly those needed for
the BMS flux balance laws discussed in [215].
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Let us mention that another interesting prescription for AHe[g;dg] has been
proposed in [193]. The finite charges considered in that reference have two interest-
ing properties: (i) the charges of the vacua are all vanishing, and (ii) the charges
represent bms§™" without central extension at the corners of null infinity under the

standard Dirac bracket. We refer to [193] for more details about this prescription.

5.3.2 Flux formulae for the soft Ward identities

Let us show that our expressions for the fluxes reproduce the expressions of the
literature used in the Ward identities displaying the equivalence to the leading [70]
and subleading [77] soft graviton theorems. The final flux can be decomposed in soft
and hard parts, where the soft terms (resp. hard terms) are linear (resp. quadratic)
in éAB or its time variation NAB. We have

f dud,Helg] = Qs[T] + QulT] + Qs[Y] + QulY] (5.3.12)
g+
where
Qs[T] = — dud?Q 0 (TD D OAB) (5.3.13)
S 167TG P u ALYB 3 -
1 1.
T] = dud®Q { —=TN,gNAE 5.3.14
@ulTl =156 P (2 AB ) ( )
1 .
V] = 2Q AB 31
QslY] = 1 Jvﬁdud wd, (c SAB), (5.3.15)
1 1 A A U N U R
Y] = 20 2YAH AN —YANED NS + —NCPy4AD N,
(5.3.16)
and
o o TF
o R 1 , R
sap = | DaDpDcY"™ + §D(AYB) — §D(A(D + E)YB) (5317)

after integrations by parts on the sphere.

In the standard case where N} = 0, the flux of supermomenta reproduces
(2.11) of [100] up to a conventional overall sign, which itself agrees with previous
results [137]. After one imposes the antipodal matching condition on M at spatial
infinity, one can equate the flux on .#* with the antipodally related flux on .# .
The result of [100] is precisely that the quantum version of this identity is the Ward
identity of the leading soft graviton theorem. We have now obtained a generalization
in the presence of superboost background flux.
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We now consider the hard terms for super-Lorentz transformations. Using the
identity

%(NACOBC 4+ CAB ) — %(NBCOBC)(sg (5.3.18)
and integrating by parts, it can be shown that (5.3.16) can be rewritten as
1 2 L aB A 1 cA u C K
QulY] = 167G . dud=Q l_ﬁN (KYCAB — §DCY Cap + §DCY NAB)
+uNV/;§YCDCNAB]
_ _323TG L du 420 [NAB(S{;’ Cap — Qqu“,c‘fYCDCNAB] (5.3.19)

where 6# is the homogeneous part of the transformation of Cup. After restricting to
standard configurations where N3 = 0, the expression matches (up to the overall
conventional sign) with equation (40) of [13].

Next, we consider the soft terms for super-Lorentz transformations. Noting that
D8y qac = De DY, + %YA we can rewrite (5.3.17) as

TF

R 1
D(AYB) — §D(ADC(5qu)C . (5320)

SAB = [DADBDCYC + 5
The tensor sap is recognized as the generalization of equation (47) of [13] in the
presence of non-trivial boundary curvature. After some algebra, we can rewrite it in

terms of the inhomogeneous part 6{.Cap of the transformation law of Cyp (4.1.22):
1
—usap = 64Cap = —u(DaDpDcY + EqABDCDCDEYE). (5.3.21)

Now that we identified our expressions with the ones of [13], we can use their results.
After imposing the antipodal matching condition on N, at spatial infinity, one can
equate the flux of super-Lorentz charge on .#* with the antipodally related flux
on .# as originally proposed in [35] (but where the expression for N4 should be
modified to (5.3.11)). The result of [13] is precisely that this identity is the Ward
identity of the subleading soft graviton theorem [77].

We end up with two further comments. Note that the soft charges for super-
Lorentz transformations agree with equation (41) of [13] (up to an overall conven-
tional sign) after an integration by parts on u and after using the restrictive boundary
condition Cyp = o(u™),

V4 NAB W NAB II_ V4 TAB
el A s [“C S"‘B]z+ TonG | v (N sap)

= —18;6(; Jdu (uNABSAB) = —Qs[Y].

(5.3.22)
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However, the boundary condition Cyup = o(u!) is not justified since displacement
memory effects lead to a shift of C', e.g. in binary black hole mergers. Therefore,
using more general boundary conditions, the valid expression for the soft charge is
only given by (5.3.15).

Considering only the background Minkowski spacetime (gap = §ap the unit met-
ric on the 2-sphere and N5 = 0), one can check that in stereographic coordinates
one has s,, = Y% = D?Y*. The soft charge then reads as

Qs[Y] =

1 . N
dud®z v, (uN**D3Y* + uN**D3Y? 5.3.23
GG | duds . DY 4 uN DY) (53.23)

where we keep Y404 = Y*(2,2)0,+Y?*(2,2)0; arbitrary. In the case of meromorphic
super-Lorentz transformations, this reproduces equation (5.3.17) of [10] (up to a
conventional global sign). It shows that the Ward identities of supertranslations
and super-Lorentz transformations are equivalent to the leading and subleading soft
graviton theorems following the arguments of [12,100].

5.3.3 Charges of the vacua

Using the values (5.1.27) in our prescription (5.3.8) we deduce the mass and angular
momenta of the vacua

1

Hvac(I) - -
12l 8tG Jqo

APQR2TM™™ + VAN (5.3.24)

where

Mvac _ O7
1. . 1. . - (5.3.25)
Nvac _ _ZCABDCCBC o 1_66A(CCDCCD)7

and Cyp = CNYS — 2D4DC + qapDCDeC in this case.

The supermomenta are all identically vanishing. Remember that the Lorentz
generators are uniquely defined as the six global solutions Y4 to the conformal
Killing equation D4Yp + DgYa = qapDcYC. In general, the Lorentz charges as
well as the super-Lorentz charges are non-vanishing.

For the round sphere metric gap = qup (& = —log,), we have R = 2, N} = 0
and DBC g = DBCS)])3 = —D4(D? + 2)C. The charges then reduce to

1

HYac _
¢ [C] 87TG S

1
2’0 [T x0+v*4( = ;COhDeCls - (Jg%c

I_I
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As shown in appendix A.3 of [102]|, the Lorentz charges are identically zero. The
difference of charges between our prescription and the one of [102] are the last two
terms of (5.3.11), which exactly cancel for the vacua with a round sphere boundary
metric. Therefore, we confirm that the vacua with only the supertranslation field
turned on do not carry Lorentz charges. The super-Lorentz charges are conserved
and non-vanishing in general, which allows us to distinguish the vacua.

5.4 Discussion

Supertranslation BMS symmetry, the leading soft graviton theorem and the dis-
placement memory effect form three corners of a triangle describing the leading
infrared structure of asymptotically flat spacetimes at null infinity [10]|. The three
edges of the triangle can be described in the language of vacuum transitions, Ward
identities and Fourier transforms. In the case of super-Lorentz BMS symmetry, it
seems that this network of relations is more subtle. Indeed, while the connection
among super-Lorentz symmetry, subleading soft theorem and spin memory effect
has been established [9,11-13,92|, we have shown in this chapter that another mem-
ory effect associated with superboosts appeared at the leading order metric at null
infinity. More precisely, we clarified how the superboost transitions lead to the
refraction or velocity kick memory effect at null infinity. We also described a non-
linear displacement memory effect that occurs in the case of combined superboost
and supertranslation transitions. Finally, we obtained a new definition of the angu-
lar momentum for standard asymptotically flat spacetimes that is consistent with
the fluxes required for the subleading soft graviton theorem.



Chapter 6

A-BMS, group

In this chapter, we investigate a new set of boundary conditions in asymptotically
locally (A)dS, spacetime which is such that the associated asymptotic symmetry
algebra is infinite-dimensional and reduces to the generalized BMS algebra bms§™"
in the flat limit (A — 0). For this reason, we call this new asymptotic symmetry
algebra the A-BMS, algebra! and we write it as bmsfl\.

In section 6.1, we investigate the most general solution spaces of three-dimensional
general relativity in both Fefferman-Graham and Bondi gauges in asymptotically lo-
cally (A)dSs3 spacetime. We construct the explicit diffeomorphism between the two
gauges and identify their solution space. Imposing the Dirichlet boundary condi-
tions, we show how the associated asymptotic symmetry group 0iff(S') @ 0iff(S*)
reduces to bmsg = 0iff(S!) G.q vect(S') in the flat limit.

After this warm-up, in section 6.2, we repeat the analysis in four-dimensional
asymptotically locally (A)dS, spacetime. We derive the most general solution spaces
in Fefferman-Graham and Bondi gauges and construct the explicit diffeomorphism
that maps one to the other. Then we propose a new set of boundary conditions
that leads to the bmsflX asymptotic symmetry algebra and we show how it reduces
to bms§™" in the flat limit.

In section 6.3, repeating the holographic renormalization procedure, we construct
the phase space and derive the associated co-dimension 2 form for the most general
solution space in Fefferman-Graham gauge. In section 6.4, imposing the new set
of partial Dirichlet boundary conditions, we find the bmsfl\ phase space. In the flat
limit, we exactly recover the regularized phase space of section 4.2.

Finally, in section 6.5, we restrict the analysis to the case A < 0 and require that
the symplectic flux vanishes at infinity to have a globally hyperbolic spacetime. This
is done by imposing Neumann-type boundary conditions, in addition to the partial
Dirichlet boundary conditions already imposed. The associated asymptotic symme-

! As we discuss in this chapter, bmsfl\ is not strictly speaking a Lie algebra, but a Lie algebroid.

119
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try algebra is an infinite-dimensional subalgebra of bmﬁff formed by the direct sum
between the area preserving diffeomorphisms and the abelian time translations. We
show that the phase space contains interesting solutions, including a new stationary
and axisymmetric solution different from Kerr-AdS,.

This chapter has strong intersections with [166,193], except for section 6.1, which
partially reproduces [216,217].

6.1 Bondi and Fefferman-Graham gauges in three
dimensions

In this section, we present the Fefferman-Graham and Bondi gauges in three di-
mensions following this general pattern: off-shell definition of the gauge, residual
gauge diffeomorphisms, solution space and on-shell variation of the solution space.
This analysis follows the logic discussed in section 2.2 and particularizes it to the
three-dimensional case. In Bondi gauge, the results that we obtain generalize previ-
ous considerations by allowing an arbitrary boundary structure encoding the notion
of asymptotically locally (A)dS;3 spacetime. Furthermore, we construct the explicit
diffeomorphism that maps one gauge to the other. We finish this section with a
discussion on the asymptotic symmetries aspects and investigate the flat limit in
the Bondi gauge.

6.1.1 Fefferman-Graham gauge in 3d
Definition

In the Fefferman-Graham gauge (2.2.8), the metric is given by

1
ds? = =50 + qun(p, 2)datda’, (6.1.1)

with coordinates (p,z%), 2* = (t, ¢), and the boundary located at p = 0. The three
gauge fixing conditions are

1

gpp = —A—pQ, gpa = 0. (612)

Residual gauge diffeomorphisms &, namely diffeomorphisms that preserve the
gauge fixing conditions (6.1.2), satisfy

Legop =0, Legpa = 0. (6.1.3)
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The explicit solution of these equations is given by
a a 1 P dp/ a
&\ =po(x), & =¢&(x)+ —8;,0[ — "(p, z), (6.1.4)
A o P
where o(z) and £§(z) are arbitrary functions of x°.

Solution space

We impose the preliminary boundary condition v, = O(p2). Solving the three-
dimensional Einstein equations leads to the analytic finite expansion

Tan(py ) = p 290 (@) + ¢S () + pPg) (@), (6.1.5)

where g((:é) is determined by 9((1(1))) and gﬁ) as

gy 1 cd (2
g = Zgi?g({f)géb). (6.1.6)

On the other hand, the Einstein equations leave gc(i) unspecified up to its trace

Tr[¢®¥] = ;5 R© and the dynamical constraint D?O)gg) = igg)D?ﬂ)R(o). Here,
©

D?o) is the covariant derivative with respect to gab) and indices are lowered and

raised by gg;) and its inverse. Motivated by the holographic dictionary [218,219], we

define the holographic energy-momentum tensor

A
T = V(@ 0 [g))

8rG
VIAL (@ _ 1 o
~ — —gRY ). 6.1.7
87} Yab 2Agab ( )
Therefore the Einstein equations infer
T, = p——R®, D% T, =0 (6.1.8)
a _772477' ) 0)tab = Y oL
where 7 = —sgn(A) and ¢ = %‘A' is the three-dimensional Brown—Henneaux central

charge [14,220].

The solution space is thus characterized by five arbitrary functions of . Three
are in the symmetric tensor gffl],) and two in the symmetric tensor Ty, with constrained
trace. These data are subject to two dynamical equations given by D?O)Tab = 0.
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Variation of the solution space

The residual gauge diffeomorphisms (6.1.4) evaluated on-shell are given by
P P! (2) db 6
& =ap, £ =€+ ﬁggo)aba — Hg?oc)gcd 9oy + O(p°). (6.1.9)

Under these residual gauge diffeomorphisms, the unconstrained part of the solution
space transforms as

569512) = 'Cfog((lg) - 2‘7951))) (6.1.10)
while the constrained part transforms as
1
Ocu, = Lo, + 53 Loatuy - (6.1.11)

from which one can extract the variation of 1.

6.1.2 Bondi gauge in 3d

We now repeat this analysis for the Bondi gauge and extend the results of [6,17] to
asymptotically locally (A)dSs space-times by including the boundary metric in the
solution space.

Definition
In the Bondi gauge (2.2.10), the metric is given by

%4
ds? = —e*’du? — 2¢*’dudr + r?e*(d¢ — Udu)?, (6.1.12)
r
with coordinates (u,r, ¢). In this expression, V', 8 and U are functions of (u,r, ¢),

and ¢ is a function of (u, ). The three gauge fixing conditions are

Grr =0, Grg =0, gps=r"e*. (6.1.13)
Note that g4 = 72€?# is the unique solution of the determinant condition
9o¢
2 (7) ~ 0, (6.1.14)

which can be generalized to define the Bondi gauge in higher dimensions (see (2.2.10)
and appendix B).

The residual gauge diffeomorphisms ¢ preserving the Bondi gauge fixing (6.1.13)
have to satisfy the three conditions

Legrr =0, Legrs =0,  9%°Legos = 2w(u, ¢). (6.1.15)



123

The explicit solution of these equations is given by

&= (6.1.16)
&
€ = —r[0s8% —w —Udyf + 2000 + fOup), (6.1.18)

where f(u,®), Y(u,¢) and w(u, ¢) are arbitrary functions of (u, ¢).

Solution space

In this section, we discuss the most general solution space for three-dimensional
general relativity in Bondi gauge. This analysis is new and generalizes the results
of [6]. Interestingly, we do not have to impose any preliminary boundary condition
here. This is in contrast with the procedure followed in the Fefferman-Graham
gauge. Therefore, in three dimensions, the gauge conditions (6.1.13) are to some
extent stronger than those imposed to define the Fefferman-Graham gauge (6.1.2).

First we impose the Einstein equations leading to the metric radial constraints.
Solving G, + Ag,, = R, = 0 gives

B = Bolu, ¢). (6.1.19)

The equation G,y + Ag,¢ = Ry = 0 leads to
L 98y —o L 9g, o
U= Us(u, ) + =2e"e"**0,8 — —e" e "*N(u, ¢). (6.1.20)
r r

Eventually, G\, + Agy, = 0 gives
4 2 28 L gy —2 L o9gy 20 r72
— = Ar*e™™ = 2r(dup + DylUs) + M(u, @) + —4e" e ¥ Nyy — — e e ¥ N7,
r r r
(6.1.21)
where DyUy = 05Uy + 0ppUy. Taking into account the previous results, the Einstein
equation Gys + Agse = 0 is automatically satisfied at all orders.
We now solve the Einstein equations to get the time evolution constraints on M
and N. The equation G, + Agyus = 0 returns

1
(8u + 6ugo)N = (50(]5 + d;sﬂo) M — 2N&¢U0 — U0(6¢N + N&¢go)

T 4e27202(0,80)° — (000)(60)” + (050) (E260)].  (6.1.22)
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Moreover, G, + Agy, = 0 imposes

OuM = (=20, + 20,80 — 20,Uy + Up20480 — Up205p — UpOy) M
— 20" 2[0,N + N (40500 — 0pp)]
— 2e¥0722{0,U[8(050)” — 4055005 + (Optp)” + 40560 — 205¢] — 03U0
+ U 0s60(805 80 — 205) + 0pp(—203 50 + 05p) + 20350 — 050

+ 2ﬁuﬁ¢ﬁo(45¢ﬁo — 5¢(,0) + au5¢§0(—25¢50 + 5¢(,0) + 25u5§)60 — (?uﬁigo}
(6.1.23)

The solution space is thus characterized by five arbitrary functions of (u, ¢),
given by 5y, Uy, M, N, ¢, with two dynamical constraints expressing the time
evolution of M and N. This counting argument is in agreement with the results
obtained by solving the Einstein equations in the Fefferman-Graham gauge. The
precise matching between the two solution spaces is established in section 6.1.3.

Variation of the solution space

The residual gauge diffeomorphisms (6.1.16-6.1.18) evaluated on-shell are given by

et (6.1.24)
¢y %%f (202 (6.1.25)
£ = —1[0sY —w—Updsf + Ysp + fOup]

+ e 22 f — 0y fOsp + 404 f05B0) — %62502%45 fN. (6.1.26)

Under these residual gauge diffeomorphisms, the unconstrained part of the solution
space transforms as

dep = w, (6.1.27)
1 1 1
6eUp = (fOu + Y0y — 0sY VU — (0.Y + Ae*e 220, f) + Up(0uf + Ups f),
(6.1.29)
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while the constrained part transforms as

§eN = (O, + Y0y +20,Y + foup + Yso —w — 2Updsf)N

+ Moy f — e07[305 f (20,50 — Opp) + 05 f

+ 05.f (4(040) — 8048000 + 2(0pp)” + 20360 — 05¢)], (6.1.30)
0eM = — 4N0,fe*™ 2PN + (fOu + Ouf + fOup + Yy + 05Y + YOsp —w)M

_ 9¢Pbo-2 [2&; F2uBo + 40,00 0o + 2uGf + O2F2Us + 823,80l

+ 0, (40,80 — 041) (20,50 — Dup) + 40,2550 + U800 — 20)

— AUy — 20,00 + Un(—40,B000 + 8(00)* + 40280 + (0p0)” — Qa;go))
— 282 fUsBotp + O3 fUo — 0udp fOpp — 02FBup — 284 Boduoe

+ 20,005 — 2056005Y D — 205003Y — 20,86Y o . (6.1.31)

These are the most general variations of the solution space in the Bondi gauge. They
are key ingredients in the computation of the asymptotic charge algebra.

6.1.3 Gauge matching

In this section, we perform an explicit diffeomorphism to go from the Bondi gauge
to the Fefferman-Graham gauge (we refer to appendix D for the four-dimensional
analogous discussion). This will enable us to identify the most general solution
spaces obtained separately in the two gauges. We proceed in two stages.

First, we pass from Bondi to tortoise coordinates (u,r, @) — (t., 7+, ¢.), where

U—te =T, ¢ — Py

— = cot (rev/=A) i A <0 (6.1.32)
- ﬁcoth (r*\ﬂ) ifA>0 "

Second, we go from tortoise to Fefferman-Graham performing the coordinates trans-
formation (t., 7., ¢.) — (p,t, ), with

e = t+ Tl (ta (b)p + T2(t7 ¢)p2 + T3(t7 ¢)p3 + O(p4)7 (6133)
re = Ri(t,0)p+ Ra(t, 0)p” + Rs(t,¢)p” + O(p*), (6.1.34)
925* = ¢ + Zl(tv ¢)p + Z2(t7 ¢)p2 + Z3(t7 ¢)p3 + O(p4) (6135)

The explicit form of the functions T;(¢, ¢), R;(t,¢) and Z;(t,¢) (i = 1,2,3) can be
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worked out explicitly. For the sake of brevity, we report here only the leading orders

Rl(ta ¢) = %7 (6136)
Rg(t, 925) = — 6_2/80%(54)(]0 + U05¢g0 + 515(,0), (6137)
Ta(t,0) = — 51— e2) (6:1:39

A
1
Tg(t, 925) = — 6_4BOP[62508¢U0 + Uo(ﬁd)ﬂo + 625°5¢g0) + 5tﬁ0 + €2B05tg0], (6139)

1
Zy(t,¢) = Ke—zﬁoUg, (6.1.40)

1 2
Zo(t,0) = — 55 |267% 0 + 1€ U0y

1 1
- Ke*wD&tUg - K€74BOU0(6¢U0 — 2atﬂo)] (6141)

Solution space matching

In this subsection, we use the notation A = —1/¢2 for compactness of the expressions
(le Rif A <0 and il € Rif A > 0). Using the diffeomorphism (6.1.33-6.1.35),
the solution space of the Fefferman-Graham gauge (left-hand side) is related to the
solution space of the Bondi gauge (right-hand side) through

e*Po 20772 2
- + el —e*?U,
g9 = < E—e%ofjo 0 eew 0> (6.1.42)
and
1
Tyw = me_%_%{‘lesﬂo [2(0580)* = 05B00sp + 05 50] + €[ (M — ANUp)
— ((0sU0)* + Us (=805B00sp + (050)* + 4059) + (Orp)?
+ 28¢U0(U0(—45¢ﬁ0 + 36¢g0) + 8,5@) + 2U0(2635U0 + (—46(7550 + 5‘¢g0)atg0
+ 26@7590))] + €4w€2Ug [GQBOM + 62((6¢U0)2 + Ug(—46¢606¢g0 + (&¢(,0)2 + 26(]2%0)
+ 204p0:Up + Orp(—40:8 + Orp) + 205Un(2Un(— 080 + )
— Qatﬁo + 8tgp) + 2U0(53>U0 — 28¢508t<p + §¢gp(—28tﬁo + 8tg0) + 28t6¢,90)
+ 20,0 + )]}, (6.1.13)
1 B X
E(j) = m€ 4’80{266[30]\[ — 264&)62[6(25[]0(26(1)60 — 6¢90) — 6§U0
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+ Uo (2048004 — 050) + 20480010 — 0100]

+ 2P0 [—e*° M — 02((0,U0)” + U (—405B00s + (Opp)? + 2050)

+ 26(25906,5[]0 + 6tgo(—48t50 + 8t90) + 28¢U0(2U0(—8¢50 + 6¢g0) — 26,550 + 6th)

+ QU()(aiUQ — 25(7550575@ + 6¢g0(—26tﬁo + 6,:@) + 26té‘¢go) + 2(6té‘¢U0 + éfgo))]},
(6.1.44)

r
Tos = {6-c® 0T2{ 200 2N+ 01[(05U0)* + Ug (=405800p + (Op)” + 2050)

+ 26(;5908,5[]0 + atQO(—Zlatﬂo + @90) + 26¢U0(2U0(—8¢50 + 6¢g0) — 261560 + 6tg0)

+ 2U()(635U0 — 26¢505ﬁ0 + 6(75@0(—26,550 + ath) + 26,:%90) + 2(6t8¢U0 + 8390)]}
(6.1.45)

One can check on the right-hand side expressions that the trace condition given by
the first equation of (6.1.8) is satisfied.

Taking Uy = 0, By = 0 and ¢ = @ (three-dimensional analogue of the boundary
gauge fixing of [166]), T, reduces to?

2 =\2 2 =
1 (M (2(0,) 2N + 20%0,04p > (6.1.46)

T = 75c0 \on + 20°0;040 €*?0?[M + €2((0:p)* + 207 9)]

Residual gauge parameters matching

Using the diffeomorphism (6.1.33-6.1.35), the parameters of the residual gauge dif-
feomorphisms of the Fefferman-Graham gauge (6.1.4) are related to those of the
Bondi gauge (6.1.16-6.1.18) as

& = (6.1.47)
& =, (6.1.48)
o = 0pY —w—Up0sf +Y0pp+ fOrp. (6.1.49)

6.1.4 Flat limit in the Bondi gauge

In this subsection, we investigate the flat limit of the above results. Notice that
the flat limit is well defined in the Bondi gauge, but not in the Fefferman-Graham
gauge. This is an illustration of our general statement: the Fefferman-Graham gauge
is well adapted for computations in asymptotically (locally) (A)dS spacetime due to
its covariance with respect to the boundary structure. However, to consider the flat
limit, the results have to be translated into the Bondi gauge, where the computations
are more involved but the limit is perfectly defined.

2In term of A, the pre-factor in the right-hand side of (6.1.46) is given by 4/|A|/167G.



128 CHAPTER 6. BONDI AND FEFFERMAN-GRAHAM GAUGES IN 3D

Let us first study the solution space in the Bondi gauge for vanishing cosmolog-
ical constant. In three dimensions, the full solution space in the Bondi gauge for
vanishing cosmological constant can be readily obtained by taking the flat limit of
the solution space obtained in section 6.1.2 for non-vanishing cosmological constant.
This contrasts with the four-dimensional case where only the analytic part of the
solution space is recovered (see the difference between (2.2.48) and (2.2.49) and the
associated discussion). In practice, we take A — 0 in the equations. The equation
G, = 0 gives

8 = Bo(u, ) (6.1.50)

Solving G4 = 0 leads to
1 1
U = Uy(u, ¢) + ;262&)672908(]560 — ﬁezﬁoe’z“ON(u, b). (6.1.51)

Solving G, = 0 gives

V 1 1
- = —2r(0up + DpUy) + M(u, @) + ;462506_2“”]\76(7550 — T—262606_2<‘0N2, (6.1.52)

where DyUy = 03Uy + 04pUy. Taking the previous results into account, the Einstein
equation G4 = 0 is satisfied at all orders. Finally, we solve the Einstein equations
giving the time evolution constraints on M and N. The equation G4 = 0 gives

(5u + é‘ugo)N = (%5¢ + 5¢ﬁo) M — 2N5¢U0 — Ug(dj)N + N&&O)
+4e*Me 22[2(0480)% — (Op0)(0p50)* + (0550)(0550)],  (6.1.53)

whereas G, = 0 results in

8UM = (—28ug0 + 251160 — 25¢Ug + U025¢50 — U025¢90 — an(z))M
— 262072240, Us[8(0s00)" — 40580050 + (Opp)? + 40350 — 2050] — 03U0
+ Uo[0580(80350 — 205¢) + sp(—205 B0 + 05p) + 20350 — O3]

+ 26u6¢ﬁo(48¢60 - 6¢,<p) + 6u6¢go(—26¢ﬁ0 + 8¢90) + 281‘63560 — @ﬁzgo}
(6.1.54)

The solution space is thus characterized by five arbitrary functions of (u, ¢), given
by 8o, Uy, M, N, @, with two dynamical constraints given by the time evolution
equations of M and N.

Through a similar procedure, the on-shell residual gauge diffeomorphisms and
the variations of the solution space are obtained by taking A — 0 in the expres-
sions (6.1.24-6.1.26) and (6.1.27-6.1.31), respectively. The on-shell residual gauge
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diffeomorphisms are given by

¢ = /) (6.1.55)
€y %%f (202 (6.1.56)
= —r[0yY —w—Uylsf +Ypp + fOuy]

n ezﬁo—zw(a;f — Oy fOpp + 40,4y 50) — %62502%"%]“ N. (6.1.57)

Under these residual gauge diffeomorphisms, the unconstrained part of the solution
space transforms as

oep = w, (6.1.58)
1 1 1
0efo = (fou +Y0y)P0 + (§5u — 50up + U0(3¢> f— 5(5¢Y +Ysp —w), (6.1.59)
6eUo = (fOu + Y0y — 0sY)Uo — (0uY + Ae*™e 220, f) + Up(0uf + UpOs f),
(6.1.60)

while the constrained part transforms as
55N = (f&u + Y6¢ + 2(9¢Y + f@ugo + Yc%go — W — 2an¢f)N
+ Mﬁ(bf — 22 [35§f(25¢50 — 5¢90) + 535f
+ 04 f(4(0580)% — 8045004p + 2(0pp)* + 20580 — 050) ] (6.1.61)
0eM = (fOu+ Ouf + fOup+ Y0y + 0sY +YOpp —w)M

9220 [255 F2uBo + 40,050y + 0 F + D2 Us + 802 0,80
+ 6¢f<(4&‘¢ﬁo — 6¢Q0) (Qauﬁo — &‘ugo) + 46u6¢60 + 8¢Ug(86¢60 — 2&\(75@)
— AUy — 20,00 + Un(—40,B000p + 8(0B0)* + 4828 + (0p0)? — 2&3,90))

— 202 fUpdsip + 03 FUp — up fOpp — O2Futp — 2f o BoPuop
+ 20,8009 — 2053004 Opp — 20,002 — 2@501/5‘;@]. (6.1.62)

6.1.5 From asymptotically AdS; to asymptotically flat space-
time
Here, we discuss how the bmss algebra can be obtained by taking the flat limit of
0iff(S1) @ 0iff(S?) in asymptotically AdS3 spacetime.
In asymptotically locally AdS; spacetime, the Dirichlet boundary conditions are
obtained in the Fefferman-Graham gauge by imposing

gDdzeda® = Adt? + dg® (6.1.63)
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(see definition (AAdS2) given in equation (2.2.23)). It is a well-known result that the
asymptotic symmetry algebra associated with Dirichlet boundary conditions is given
by the direct sum between two copies of the Witt algebra, 0iff(S') @ 0iff(S*) [14].
The corresponding surface charges are finite, integrable and form a representation
of 0iff(S!) @oiff(S!) with a central extension involving the Brown-Henneaux central
charge ¢ = %IAI

The analogous boundary conditions of (6.1.63) in Bondi gauge can be readily
obtained from (6.1.42) and are explicitly given by

fo=0, Up=0, =0 (6.1.64)

(see equation (2.2.24)). The residual gauge diffeomorphisms preserving these con-
straints are given by (6.1.24-6.1.26), where the parameters satisfy

Ouf =05Y, 0 = —Adyf, w=0. (6.1.65)

We express fand Y as f = £(YT+Y7), Y = 2(Y* =Y ™), where ¥ = —Au+ ¢
and Y= = Y*(z+) [221]. Using the modified Lie bracket (2.2.57), one can show that
[€(Y1"),€(Y5)]a = §(V*), where

YE = VLY - YLy, (6.1.66)

which corresponds to 9iff(S?) @0iff(S'), as it should. Furthermore, on the cylinder,
we can expand Y* as YE(zF) = 31 YE™ T with YE = YE . Writing [} =
EYt =em" Y- =0)and [, = (Y =0,Y" =™ ), the commutation relations
(6.1.66) become
i[5, 150 = (m—n)l% ., [I=,15]a = 0. (6.1.67)
The flat limit A — 0 can be readily taken in the Bondi gauge. In this context,
the boundary conditions (6.1.64) become asymptotically flat boundary conditions
(AF3) (equation (2.2.15) together with (2.2.18)). The constraint equations (6.1.65)
reduce to
Ouf = 04Y, oY =0 w = 0. (6.1.68)

These equations can be solved as
f=T+uosY, Y =Y(¢) (6.1.69)

where T' = T'(¢) and Y = Y (¢) are the parameters of supertranslations and super-
rotations, respectively. Using the modified Lie bracket (2.2.57), one can show that
[£(T1, Y1), §(T3, Y2)]a = &(T,Y'), where

T = }/16(;57—'2 + T16¢Y’2 — 1/26¢T1 — T26¢Y1,

. (6.1.70)
Y = Yid,Ys — Ya0,Yi,
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which corresponds to the algebra bmss = 0iff(S') .4 vect(S'). Expanding T and
Y on the circle as T(¢) = Y., T,e™™® and Y(¢) = 3, ., Yme™?, and writing

Pn=&T =e™ Y =0)and J,, = &£(T =0,Y = e™?), the commutation relations
(6.1.70) reduce to

Z[Jma‘]n]A = (m_n)‘]m-‘rna [Pmupn]A = 07 Z[Jmapn]A = (m_n)Pm-‘rn'
(6.1.71)

6.2 Bondi and Fefferman-Graham gauges in four di-
mensions

In this section, we repeat the analysis performed in the previous section but for the
four-dimensional case. After briefly introducing the Fefferman-Graham gauge in the
four-dimensional case, we focus on the Bondi gauge where we derive the most general
solution space in asymptotically locally (A)dSs spacetime (these results were already
summarized in an example of subsection 2.2.3). As in the three-dimensional case,
the results that we obtain here in four dimensions generalize previous considerations
(see e.g. [24,221]) by allowing an arbitrary boundary structure encoding the notion
of asymptotically locally (A)dS, spacetime. We also briefly discuss the flat limit
of these new results, which allows to find the solution space described in (2.2.48).
Notice that the flat limit process in four dimensions is more subtle and requires a
prescription in order to get the right results. Furthermore, we construct the explicit
diffeomorphism that maps the Bondi to the Fefferman-Graham gauge, which is the
second main result of this section. We finish this section by defining a new set of
boundary conditions in asymptotically locally (A)dSs spacetime whose asymptotic
symmetry algebra is the A-BMS, algebra, written bmﬁi\. The latter is infinite-
dimensional and reduces to bms§™" in the flat limit, which was studied in chapter 4.
This is the third main result of this section.

6.2.1 Fefferman-Graham gauge in 4d
Definition

We particularize to the four-dimensional case the results discussed in section 2.2.
The Fefferman-Graham metric is given by
ds* = _Ed_pz + Yab(p, 7°)dzdz® (6.2.1)
A p2 (lb ) N N
(see (2.2.8)). The infinitesimal diffeomorphisms preserving the Fefferman-Graham
gauge are generated by vector fields {* satisfying L¢g,, = 0, L¢gpo = 0. The first
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condition leads to the equation 0,” = %59, which can be solved for &7 as

£’ =oa(x)p. (6.2.2)

The second condition leads to the equation pz%bﬁpfl’ — %&15” = 0, which can be
solved for &% as

£ = &2 + Z oo 7’?7“}’(;)’, z°). (6.2.3)

Solution space
Assuming v, = O(p~2) (see (6.2.4)), the general asymptotic expansion that solves
Einstein’s equations is analytic,

1 1
Yab = 3 g+ ngi) + 95 + 95 +O(p") (6.2.4)

a

where 9((1? are arbitrary functions of 2% = (¢, z

(0)
ab

4). Following the standard holographic

dictionary (see e.g. [222]), we call g, the boundary metric and

T, VIIAL @) (6.2.5)

b TerG Jab

)

the energy-momentum tensor. Einstein’s equations fix g((l}) =0 and gg)) in terms of

9((12) while all subleading terms in (6.2.4) are determined in terms of the free data

ggz) and Ty, satisfying
pOT® =0, 9T =0. (6.2.6)

Here, DC(LO) is the covariant derivative with respect to gc(l?)) and indices are raised with

the inverse metric g?é’).

Variation of the solution space

Expanding the residual gauge diffecomorphisms (6.2.2) and (6.2.3) in power of p
yields

£ =po(a?)
a a 3 2 ab 3 4 _ab 3 5 ab 6
&8 =8 + S P 90T — 1P IR0 — P Y00 + O(p°).

The variations of the data parametrizing the solution space under the residual gauge
transformations are given by (see also [156])

(6.2.7)

bed) = Legdun — 2094,

5§Tab = ﬁggTab + 0o Tab-
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Useful expressions

Here, we collect some useful formulae needed in the process of holographic renor-
malization below (see section 6.3), especially the coefficients of the Levi-Civita con-
nection in the Fefferman-Graham gauge.

The inverse v of the 3d metric

1
o= g (6l + 70+ 00+ 0t + 0) (6.2.10)
is given by
7 = p? [9%’) —p’ Q?Qb) —p’ gé‘é’) +p' (- 9(4) + g?zc)gg)g ) +O(p )] (6.2.11)

We denote g?g = 9(0) gé’g gcd Only 9(0) is the true inverse matrix of gfl?; the indices

of other fields are simply raised with respect to the boundary metric.
The volume form is given by

31
V=g = \%; Vil (6.2.12)

with
_ i Lq Lo @ 2 1 5.0
= ylgol 51+ 9<o>gab 7+ et °+ O")
pl (6.2.13)
4
—3(1 + p y +O(p )).

We compute the Christoffel symbols for (6.2.1). Gauge conditions imply directly
that

1 1 .
F'Zp = §gppapgpp = _;7 Fga = 07 Fpp =0. (6.2.14)
Using the power series for v,;, and its inverse, we get
1 A
FZI) = _égppﬁpf)/ab = EPQap’yab
Al g A (6.2.15)
= _gzgab + 6P gab +0(p’),
and
a 1 ac
pr = 57 " Vbe
(6.2.16)

1 a ac 3 ac (3
= —;(% +pgison + = 5 P’ g5 g + O(p°).
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Finally,
e = T5l]
a 1 a 0 2 2 0 2
= Tilgol + 57°65) (D 95 + DP9 — DyVgil)) (6.2.17)

1 a
+ 5/)39((%(13150)952) + D¢ — DYV gDy + 0.

6.2.2 Bondi gauge in 4d

We now briefly discuss again the Bondi gauge in four dimensions (see section 2.2).
Then we provide a full derivation of the most general solution space in four-dimensional
asymtotically locally (A)dS, spacetime. Throughout this analysis, we discuss the
flat limit of these results and relate them to those considered in chapter 4.

Definition and residual transformations

The four-dimensional Bondi metric is given by

ds® = ewzdu2 — 2 dudr + gap(dz? — UAdu)(dz? — UPdu) (6.2.18)
r

where 3, U4, gap and V are arbitrary functions of the coordinates. The 2-dimensional
metric gap satisfies the determinant condition

o, (M> = 0. (6.2.19)

Any metric can be written in this gauge. For example, global (A)dS, is obtained
by choosing 8 =0, U4 =0, V/r = (Ar?/3) — 1, gap = 72Gap, where Gap is the unit
round-sphere metric.

Infinitesimal diffeomorphisms preserving the Bondi gauge are generated by vector
fields & satisfying

Legr =0, Lega=0, g*BLegap = 4w(u,z?). (6.2.20)

The prefactor of 4 is introduced for convenience. As discussed in appendix B, the
last condition is equivalent to the determinant condition (6.2.19). From (6.2.20), we
deduce

=1,
GAoyALTA A= —6Bff dr'(e*7g17), (6.2.21)

. 1
& = —§(DAYA — 2w+ DI — 05 fUP + 5]”971%9),
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where 6,f = 0 = 0,Y*, and g = det(gap). The covariant derivative D, is asso-
ciated with the 2-dimensional metric g4g. The residual gauge transformations are
parametrized by the 4 functions w, f and Y4 of (u,z%4).

Procedure to resolve Einstein’s equations

We solve the Einstein equations G, + Ag,, = 0 in Bondi gauge. We follow the
integration scheme and notations of [6]. In particular, we use the Christoffel symbols
that have been derived in this reference.

Minimal fall-off requirements: We impose the preliminary boundary condition
gap = O(r?) (see (2.2.33)) and assume an analytic expansion for g4z, namely

1 1
gAB = r? ga + 1 Cap + Dyp + ; Eap + ﬁ Fap + O(T_s)a (6'2'22)

where each term involves a symmetric tensor whose components are arbitrary func-
tions of (u,z%). For A # 0, the Fefferman-Graham theorem [152-156] together
with the map between the Fefferman-Graham gauge and Bondi gauge, derived in
appendix D, ensures that the expansion (6.2.22) leads to the most general solution
to the vacuum Einstein equations. For A = 0, the analytic expansion (6.2.22) is a
hypothesis since additional logarithmic branches might occur [223-225].

This fall-off condition does not impose any constraints on the generators of
residual diffeomorphisms (6.2.21). In the following, upper-case Latin indices are
lowered and raised by the 2-dimensional metric 45 and its inverse. The gauge con-
dition (6.2.19) implies 20,945 = 4/r which imposes successively that det(gap) =
rtdet(qap), ¢*PCap = 0 and

1

Dap = ZQABCCDCCD + Daplu, 2°),
1

Eap = §QABDCDCCD + Eap(u, 29), (6.2.23)
1 1 1

Fap = 948 [CCDch + EDCDDCD - 3—2(CCDCCD)2] + Fap(u, ),

with ¢*PDap = ¢*PEsp = ¢*PFap = 0.

Organization of Einstein’s equations: We organize the equations of motion as
follows. First, we solve the equations that do not involve the cosmological constant.
The radial constraint G,, = R, = 0 fixes the r-dependence of 3, while the cross-
term constraint G, 4 = R,4 = 0 fixes the r-dependence of U4.

Next, we treat the equations that do depend on A. The equation G, + Ag,, = 0
determines the r-dependence of V/r in terms of the previous variables. Noticing
that R = g" R, = 29" Ryr + 9" Ry + 29" R, 4 + ¢*P R 45, and taking into account
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that R,, = 0 = R, ., one gets G, + Agy, = Ry, + %gwR + Agy, = %gurgABRAB =0
so that we can solve equivalently g*P R,z = 0.

Next, we concentrate on the pure angular equation, G ap + Agap = 0, which can
be split into a trace-free part

Gap — %QAB g“PGep =0 (6.2.24)
and a pure-trace part
9“PGep +2A = 0. (6.2.25)
Consider the Bianchi identities V,G*" = 0 which can be rewritten as
2¢/— gV ,,G" = 20,(v/—gG") — /—gG"*8,g,\ = 0. (6.2.26)
Since 0, g,x = —gwgmé‘ygo‘ﬁ, we have
20,(v/—9G") + v/—9G i\ 0,g"* = 0. (6.2.27)
Taking v = r and noting that G,, + Ag, = 0 have already been solved, one gets
Gapdrg™f = %. (6.2.28)

Recalling that (6.2.24) holds, and that the determinant condition implies that g0, g4 =
4/r, we see that (6.2.28) is equivalent to (6.2.25). As a consequence, the equation
Gap + Agap = 0 is completely obeyed if (6.2.24) is solved. Indeed, once the trace-

free part (6.2.24) has been set to zero, the tracefull part (6.2.25) is automatically
constrained by the Bianchi identity. Another way to see this is as follows: imposing

that G,o + Agro = 0 holds, (6.2.24) is equivalent to

1
(MTF) = My = S05MG =0, M = g"“Rep, (6.2.29)

since the trace part of M~ has already been set to zero to fix the radial dependence
of V/r.

At this stage, Einstein’s equations (r,r), (r, A), (r,u) and (A, B) have been
solved. The (u,u) and (u, A) components remain to be solved. In doing so, we will
derive the evolution equations for the Bondi mass and angular momentum aspects
(see section 6.2.2 below). Expressing the A component of the contracted Bianchi
identities (6.2.26) yields

2 [ﬂ (GuA + AguA)] — 2 [7“2 (RuA — Agu,4>] —0. (6.2.30)

Therefore, we can isolate the only non-trivial equation to be the 1/r% part of G4 +
Agua = 0. This will determine the evolution of NgA) (u, zP) related to the Bondi
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angular momentum aspect. Assuming that G,4 + Ag,a = 0 is solved, the last
Bianchi identity (6.2.26) for v = u becomes

2, [r2 (GW + Aguu>] _ 2, [r2 (Ruu _ Aguu)] _0, (6.2.31)

and the reasoning is similar. We will solve the r-independent part of r*( Ry, — Aguu),
which will uncover the equation governing the time evolution of M® (u, z4) related
to the Bondi mass aspect.

Solution to the algebraic equations

We define several auxiliary fields as in [6] Starting from (6.2.22), we can build
kap = %d,gAB, lag = 5ugAB, and ny = —e —284450,UB. The determinant condition
(6.2.19) allows us to spht the tensors kAB and [ap in leading trace-full parts and
subleading trace-free parts as

1
ks = g kpe = —5A + Kg, Ki{ =0,
1 . (6.2.32)
I = 9"lpe = 561 “Ougpc + ;Lé, Ly =0.
Note that
1
l=14= 5qABaquB = d,1n \/q. (6.2.33)
Let us start by solving R, = 0, which leads to
1
OB ==+ 4kBk;A = @Kgqu. (6.2.34)
Expanding K7 in powers of 1/r, we get
Blu,r, z) = Bo(u xA)—l—l[—iCABC’A ]—i—l[—iC’ABDA ] (6.2.35)
IR 0\, r2 32 B 3 B =p
1 3 ~AB L i AB ] -5
—-= — —DABD, .
7’4[ R IT: Ap 128(0 Cag)"| + O™

Up to the integration “constant” 3y(u,x"), the condition (6.2.22) uniquely deter-
mines 5. In particular, the 1/r order is always zero on-shell. This equation also
holds for A = 0 but standard asymptotic flatness conditions set 5y = 0 (see equa-
tion (2.2.15)). We keep it arbitrary here.

Next, we develop R,4 = 0, which gives

8, (r?ny) = 12 (ar - %) 048 — DKk B, (6.2.36)
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We now expand the transverse covariant derivative Dy
1r1
IGclgas] = Ticlgas] + ;[é(DACCB + Do CY — DBCAC)] +0(r™?),  (6.2.37)

in terms of the transverse covariant derivative D4 defined with respect to the leading
transverse metric gap. This implies in particular that

1 1 1
DpK} = —QDBCAB + ;[ — DPDyp + g@1(030030)] +0(r?).  (6.2.38)

Explicitly using (6.2.35), we find

171 1
na = —0400 + ;[EDBCAB] + T—2[IHTDBDAB + NA] + 0(7’72) (6239)

where N4 is a second integration “constant” (i.e. 0,N4 = 0), which corresponds to
the Bondi angular momentum aspect in the asymptotically flat case. After inverting
the definition of n,4, integrating one time further on r and raising the index A, we
end up with

1) @) )
U4 = UMu, 2%) + U (u, 2P) = + UA(u,xB)—2
" " (6.2.40)
®) B 1 (L?X ponr 3
+UNu,27)— + U (u,x )F"'O(T )
with
€Y)
UA(UJB) = 262%5'450,
(2) 1
UA(U,IB) — 2P0 [CABaBBO + QDBCAB]’
(31)4 B 2 95[ A L aB o 1 AB_ 9 CD AA
UA(u,2P) = —Ze [N — 50D Cpe + (@p6 — s Dp)DP — =CopCPo ﬁo],
(L3) )
U4 (u, 2%) = —§eQB°DBDAB, (6.2.41)

where Ugt(u,2P) is a new integration “constant”. Again, this equation also holds
if A is absent, but standard asymptotic flatness sets this additional parameter to
zero. As known in standard flat case analysis, the presence of Dyp is responsible
for logarithmic terms in the expansion of U4. We will shortly derive that for A # 0,
D 4p vanishes on-shell.
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Given that

2 1 1
M4, = e*”[(&r + ;)(zg + kg‘g + iDBUA + iDAUB)
+ KEDRUC = K§DCU™ + (0, + Dk + Do(Uky) | (6:242)

+ Riglgep] — 2(Dpé’ B + 04 Bopp + n'np),
we extract the r-dependence of V /r thanks to M4 = 0, which reads as

0,V = —2r(l + DAUM+

e*Pr? [DADAﬁ + (n = 0B)(na — 0aB) — Dan®* — %R[gAB] + A}. (6.2.43)
Considering (6.2.22), (6.2.35) and (6.2.40), we get, after integration on r
g :gezﬁoﬂ — ol + DaUN (6.2.44)
L [% (Rlq] + %CABOAB) +2D40" o + 404800 o | — ¥ +o(r™)

where M (u, x") is an integration “constant” which, in flat asymptotics, is recognized
as the Bondi mass aspect.

Afterwards, we solve (6.2.29) order by order, which provides us with the con-
straints imposed on each independent order of gap. The leading O(r ') order of
that equation yields

A
gCAB = ¢ 2 [(au —1)qap + 2DaUpy — DCquAB]. (6.2.45)

This result shows that there is a discrete bifurcation between the asymptotically flat
case and the case A # 0. Indeed, when A = 0, the left-hand side vanishes, which
leads to a constraint on the time-dependence of g45. Consequently, the field qp is
constrained while Cyp is completely free and interpreted as the shear. For (A)dS,
asymptotics, Cap is entirely determined by qap, By and Ug', while the boundary
metric gap = qap(u, v?) is left completely undetermined by the equations of motion.
This is consistent with previous analyses [19,167,226-228|.
Going to O(r~?), we get

A
3Das =0, (6.2.46)

which removes the logarithmic term in (6.2.40) for A # 0, but not for A = 0. The
condition at next O(r—3) order

OuDap + UUCDCDAB + 2DC(ADB)UOC =0, (6.2.47)
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is thus trivial for A # 0, but reduces to d,D g = 0 in the flat limit, consistently
with previous results.
Using an iterative argument as in [167|, we now make the following observation.

If we decompose gag = 12 Zn>o gﬁxnf);r_”

organizes itself as Ag%% = (?uggLB_l) + (...) at order O(r~™), n € Ny. Accordingly, the
form of €45 should have been fixed by the equation found at O(r~?), but it is not
the case, since both contributions of €45 cancel between G4 and Agsp. Moreover,

the equation Ag%% = ugﬁ{% + (...) at next order turns out to be a constraint for

gfﬁ; ~ Fap, determined with other subleading data such as C'yg or 8ugffl)3 ~ 0,€ARB.
It shows that £4p is a set of two free data on the boundary, built up from two
arbitrary functions of (u,z?). It shows moreover that there is no more data to be
uncovered for A # 0. This matches with the number of free data of the solution
space in the Fefferman-Graham gauge, as discussed in subsection 6.2.3.

As a conclusion, Einstein’s equations (r,r), (r, A), (r,u) and (A, B) can be solved
iteratively in the asymptotic expansion for A # 0. We identified 11 independent
functions {Sy(u, ), U (u, 2P), qap(u, %), M(u,z), Ns(u,z), Eap(u, 2°)} that
determine the asymptotic solution. We see in the following subsection that the re-
maining equations are equivalent to evolution equations for M (u, 2) and Na(u, ).
This contrasts with the asymptotically flat case A = 0 where an infinite series of
functions appear in the radial expansion, see e.g. [6].

, we see that the iterative solution of (6.2.29)

Boundary gauge fixing

In this section, we simplify our analysis by imposing a (co-dimension 1) boundary
gauge fixing. The latter can also be interpreted as a partial Dirichlet boundary
condition with respect to the bulk spacetime. Let us consider the pullback of the
most general Bondi metric satisfying (6.2.22) to the boundary .% = {r — oo},

A
ds’|, = |3 + Ug'US |du? — 2US dude” + qapdads®. (6.2.48)

We use the boundary gauge freedom to reach the gauge

Bo=0, Ut=0, a=+/7 (6.2.49)

where /7 is a fixed area of the two-dimensional transverse space spanned by x.
This gauge is a temporal boundary gauge for A < 0, a radial boundary gauge for
A > 0 and a null boundary gauge for A = 0 with g,, = =1+ O(r~') in (6.2.18).
Intuitively, this amounts to using the gauge freedom at the boundary .7, to
eliminate three pure-gauge degrees of freedom thanks to a diffeomorphism defined
intrinsically on .# and lifted to the bulk in order to preserve the Bondi gauge. Such a
transformation also involves a Weyl rescaling of the boundary metric, as can be seen
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from (6.2.21), which consists in a redefinition of the coordinate r by an arbitrary
factor depending on (u,z4). We can use this Weyl rescaling to gauge-fix one further
quantity in the boundary metric, namely the area of the transverse space. The
details are provided below.

Computing the Lie derivative on the Bondi metric on-shell and retaining only
the leading O(r?) terms, we get the transformation laws of the boundary fields g4z,
Bo and Ug' under the set of residual gauge transformations (6.2.21):

5§QAB = f(au - Z)QAB + (/;y — Dcyc + 2w)qAB

|
— 2(Ul08) f — §C_IABU0050f), (6.2.50)
1 13 1
6¢Bo = (fOu + Ly)Bo + 5[(% — gl + §U0A8A}f — Z(DAYA — 2w), (6.2.51)
1
05! = (Fou+ Ly)U — 0,7 — et oy [+ U@t + Ufonf). (6252)

The first equation implies that ¢*%0:qap = 4w. We can therefore adjust the Weyl
generator w in order to reach the gauge /¢ = 4/q. The form of the infinitesimal
transformations (6.2.51)-(6.2.52) involves 0, f and 3,Y*. This ensures that a finite
gauge transformation labelled by f, Y4 can be found by integration over u to reach
Bo =0, Ut =0, at least in a local patch. As a result, the conditions (6.2.49) can be
reached by gauge fixing, at least locally. The vanishing of the inhomogeneous con-
tributions in the transformation laws (6.2.51)-(6.2.52) constrains parameters f, Y4
and reduces the set of allowed vectors among (6.2.21). The remaining residual
transformations are studied in subsection 6.2.4.

Constraint equations as Bondi evolution equations

Assuming the gauge fixing conditions (6.2.49), we are now ready to present the
evolution equations that follow from the remaining Finstein equations. Moreover,
we suppose that Dg = 0 in the case A = 0 to simplify our computation. As justified
before, the O(r®) part of r?(R,a — Ag,a) = 0 will fix the temporal evolution of N 4.
From the Christoffel symbols, we can develop the first term as

+ nBDBUA — 6Bﬁ'DAUB + QUB(ﬁAﬁﬁBB + nAnB)

1
+Dp [zf + 5(DPUs = DAUS) + UP (248 - nA)] + 2nplt

1 2V Vv 2 s VOV
- 5(&} + 2&,ﬁ + )5A7 - ?(& + ;)HA + k:A(537 + 2?713)

r

2 \%
_ 672’8(&” + ;)[UB(ZAB + ?k’AB + D(AUB))}
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\%
_ e‘ZBUB |:(5u + l)k?AB — 4l&k33)0 — 2]{721{330? + DC(kABUC) — QkC(ADCUB)] .

Let us emphasize that the r-dependence of the fields is not yet explicit in this
expression, so the upper case Latin indices are lowered and raised by the full metric
gap and its inverse. Expanding all the fields in power series of 1/r in R, 4 and Agy,a
and selecting the 1/r? terms yields

A
(0w + DN — 0, MW — 5D%Jap =0. (6.2.54)

Here, we defined with hindsight the Bondi mass and angular momentum aspects for
A #0 as

1
M®™ = M+ 1_6(5“ +1)(CapC©P), (6.2.55)

N,ElA) =Ny — —DB(NAB — EZCAB) - ZaA(_R[Q] - g

CD
= X CopCCP),  (6.2.56)

and the traceless symmetric tensor Jap (¢*%Jap = 0) as

3 1 A 1
Jap =—Eap — F[ﬁu(NAB — §ZCAB) — EQABCCD(NCD — EZCCD)]
3 1 c
+ F(DADBZ — §QABDCD l)
1 1
— K(D(ADCCB)C - §QABDCDDOCD)
5 1
C [—C cP 4 R ] 6.2.57
+ CaB TG +2A lq] ( )
We used the notation Nag = 0,Cap. This tensor is symmetric and obeys ¢4ZNjp =
%CABCAB. When A = 0, Nyp is thus traceless and represents the Bondi news tensor.
We will justify the definitions of Bondi mass and angular momentum aspects in
section 6.2.3. Note that d,gap has been eliminated using (6.2.45). The transfor-
mations of these fields under the residual gauge symmetries £ preserving the Bondi

gauge (6.2.18) and the boundary gauge (6.2.49) are given by

3 A
BeM® = [f0, + Ly + S(DaY" + 1 2)]M™ — SNV, (6.2.38)

A
5N = [fou + Ly + DpY® + fl — 20N + 3M Mo, f + EJABaB £, (6.2.59)

1
SeJap = [fOu + Ly + g(DcYc + fl —2w)]JaB

4 1
— 3 (NQam [ = 5NV faan). (6.2.60)
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The asymptotically flat limit is not trivial in the equation (6.2.54) due to terms
~ A1 above which we collect here:

3

1 1
_ﬁ[(au + Z)DB(éuCAB - §ZCAB) — DBau(auCAB — §ZCAB)

| ) (6.2.61)
+5(0u+ D)0aRlq) + DP(DaDsl - 5z)cpczq,w)].

There are two subtle steps here needed to massage the evolution equation before
taking the limit A — 0. First, we must develop the remaining u-derivatives acting
on covariant derivatives and taking the constraint (6.2.45) into account to highlight
A factors. Next, we can extract the trace of Ny, which also contains a residual
contribution ~ A. We end up with

1 1 1
(6.2.61) = 5DC(JVLE(,“BC) + ZNE@DACBC — ZDADBDCCBC ( )
6.2.62
1 3
+ gcgcgaAz — 1—61&,4(0502)

where N1L denotes the trace-free part of Nyp. The following identities turn out to
be useful for the computation:

2A
(0w + DH? = "0, Hop™? — 1H'P — Z2CUH),
1
(0u + 1)(DPHap) = DP0,H p — 5qCDHCDaAz

A 1
-3 [DC(HABC’BC ) + 5HBCDA(LBC],

(5u + Z)CABCAB = QNABCAB — ZCABCAB,

(6.2.63)

1 A
(0u + 1)0aR|q] = —(DPDp + 5R[q])aAz + §DADBDCCBC

where H ,p(u, %) is any symmetric rank 2 transverse tensor. We note that N1 ECB¢+
CapNES = §GCppNEE | thanks to which the first term of (6.2.62) can be rewritten
as

%DC(NgchC) _ iDB(NgchC _ CaoNES) + i&A(CBDN%?). (6.2.64)
We can now present (6.2.54) in a way that makes terms in A explicit:
(O )N — 240 — {Capd” Rlg] - %aA(Ngchc) (6.2.65)
— 3%[6,4((]30030) + iNggDAOBC + }lDB(OBCNfg — NECC40)
+ EDB(DBDCCAC — DADcCBY) + éDB(SAB — 10,205@13) =0.

4 2 96
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As a result, the asymptotically flat limit can be safely taken and (6.2.65) reduces to

1 1
(6u + l)NA — 04 M — ZCABéBR[q] — EaA(NBCCBC)

1 1 1
— 3—218A(CBCCBC) + ZNBCDACBC + ZDB(CBCNAC — NBCC,0)

1
+ ZLDB(DBDCCAC — DADCcBC) =0, (6266)

which fully agrees with (4.49) of [6] after a change of conventions®. It must be
mentioned that Nap = N1% when A = 0.

We now derive the temporal evolution of M, encoded in the r-independent part
of TQ(RW — Agyu) = 0. The first term is worked out to be

2
Ryw = (8 + 20,8+ D%, + (0, + 20,8 + ;)F;u + (Da +2048)T2,

(6.2.67)

where all Christoffel symbols can be found on page 26 of [6]. We finally get

3 A A?
MW £ ZpANDD L2
(au+2l)M + 6D N7+ 51

Here, the asymptotically flat limit is straightforward and gives

3 1 1 1 1
(0w + =D)M + ~NpNAB — ZIN pCAB + —12Cy5C*P — —D,DAR[q]
2 8 8 32 8
1 1 1 1
—ZDADBNAB + ZcABDADBz + Zﬁ(AlDB)CAB + 31Da DpC4B = 0,

CapJ?? =0. (6.2.68)

(6.2.69)

in agreement with (4.50) of [6]. As a conclusion, in Bondi gauge (6.2.18) with fall-
off condition (6.2.22) and boundary gauge fixing (6.2.49), the general solution to
Einstein’s equations is entirely determined by the seven free functions of (u, %) for
the case A # 0: qap with fixed area /¢, M, N4 and trace-free J45 where M and Ny
are constrained by the evolution equations (6.2.68) and (6.2.54). This contrasts with
the asymptotically flat case A = 0 where an infinite series of functions appearing
in the radial expansion of g4p have to be specified to parametrize the solution (see

e.g. [6]).
6.2.3 Dictionary between Fefferman-Graham and Bondi gauges

In appendix D, we establish a coordinate transformation between Fefferman-Graham
and Bondi gauges, which extends the procedure used in [167] to a generic spacetime

3The Bondi news tensor is defined in [6] as N = 9,Cap — ICap while we define N3%e =
a'U,CVAB-
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metric.

The boundary metric in the Fefferman-Graham gauge is related to the
functions in the Bondi gauge through

A
g = 3L USUL, gl =-U% gl = (6.2.70)

where all functions on the right-hand sides are now evaluated as functions of (¢, z*).

The parameters {o, &, &5} of the residual gauge diffeomorphisms in the Fefferman-

Graham gauge (6.2.2) and (6.2.3) can be related to those of the Bondi gauge ap-
pearing in (6.2.21) through

&=,
& =Y,

(6.2.71)
1
o= §(DAYA + fl=Uosf — 2w),

where all functions on the right-hand sides are also evaluated as functions of (¢, z%).

The boundary gauge fixing (6.2.49) described in section 6.2.2 can now be under-
stood as a gauge fixation of the boundary metric to

A A
g’ =5 gl =0, detlge) = 51 (6.2.72)
For A < 0 (resp. A > 0), this is exactly the temporal (resp. radial) gauge for the
boundary metric, with a fixed area form for the 2-dimensional transverse space.
Let us develop the constraint equations (6.2.6) after boundary gauge fixing. First,
the tracelessness condition determines the trace of T4p to be

3
¢PTyp = — T (6.2.73)
We define T3/ as the trace-free part of Tap, i.e. Tap = Tip — 5:1uqap. The
conservation equation DT = 0 reads as
3 A A
(0 + §l)ﬂt + gDATtA - gétQABTqéﬁB =0,

) A (6.2.74)
(0 + D) Tia — 04T+ §DBTZ§ = 0.

Pursuing the change of coordinates to the Fefferman-Graham gauge up to fourth

order in p, it can be shown that the stress tensor is given, in terms of Bondi variables,
by

Ty = VAL =00 3N 6.2.75
"= U6nG | 2N 20 gy | (6:2.75)
T 3NA Jap + AM gAB
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where M® (¢, 24) and NIEXA) (t, zP) are the boundary fields defined as (6.2.55)-(6.2.56)
and Jap is precisely the tensor (6.2.57), all evaluated as functions of ¢ instead of w.
The conservation equations (6.2.74) are, in fact, equivalent to (6.2.68) and (6.2.54)
after using the dictionary (6.2.75) and solving 0;gap in terms of Cyp using (6.2.45).
Moreover, we checked that the transformation laws (6.2.58)-(6.2.60) are equivalent
to (6.2.9). We therefore identified the Bondi mass aspect M) and the Bondi
angular momentum aspect NEXA) as the components T;; and T;4 of the holographic
stress-tensor, up to a normalization constant.

6.2.4 Symmetries and flat limit

In contrast to the three-dimensional case discussed in subsection 6.1.5, the BMS
group in four dimensions is not readily obtained by taking the flat limit of the
asymptotic symmetry group associated with Dirichlet boundary conditions in AdS.
In the following, we discuss the technical issue of finding a version of BMS in AdS,
which reduces to the BMS group in the flat limit. Then, we present our new set of
boundary conditions in asymptotically locally (A)dS, spacetime that leads to the
A-BMS, algebra bms}. We show that in the flat limit, this reduces to bms&™.

The problem to obtain BMS in the flat limit

In this subsection, mimicking the three-dimensional case discussed in subsection
6.1.5, we consider Dirichlet boundary conditions defining asymptotically AdS, space-
times in the Fefferman-Graham gauge:

A
gD dadab = 348 + gapdetda”, (6.2.76)

where ¢ap is the unit sphere metric (see definition (AAdS2) given in equation
(2.2.23)). It has been shown in [15] that the asymptotic symmetry algebra is given
by s0(3,2) and the associated charges are finite, integrable, and form a representa-
tion of s0(3,2) without central extension. Therefore, we obtain a finite-dimensional
algebra, which already ends any hope of obtaining BMS in the flat limit.

Using (6.2.70), we can translate the Dirichlet boundary condition (6.2.76) into
the Bondi gauge as

By = 0, Ug =0, qaB = (aB (6.2.77)

(this is the four-dimensional analogue of (6.1.64)). The residual gauge diffeomor-
phisms preserving these constraints are given by (6.2.21), where the parameters
satisfy

1 A
auf = §DAYA7 auYA = __qOABana w =0,

3 (6.2.78)
LyGap = (DY) s,
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where the last equation tells us that Y4 is a conformal Killing vector of the unit
2-sphere metric. One can show that these conditions imply that f and Y4 are the
parameters of the s0(3,2) asymptotic symmetry algebra, as it should be |24, 166].
Therefore, we conclude that, despite the conditions being interpreted as asymptoti-
cally flat boundary conditions (AF3) (see equation (2.2.15) together with (2.2.18))
in the flat limit A — 0, we recover the Poincaré group instead of the BMS group
[24,166|. In particular, the supertranslations cannot be recovered through this pro-
cess.

The A-BMS group and its flat limit

We now circumvent this issue by proposing a new set of boundary condition in
asymptotically locally (A)dS,. We require that

Bo=0, US=0, a=4+/q (6.2.79)

where ¢ is the determinant of the unit sphere metric (this last condition leads to
d,/q = 0). Several comments can be made about these boundary conditions. They
are very similar to (6.2.77), except that we allow some fluctuations of the two-
dimensional boundary metric g4 with fixed determinant. These boundary condi-
tions are inspired by those investigated in the asymptotically flat context in chapter
4 (see equation (4.1.3)). Furthermore, the boundary conditions (6.2.79) are pre-
cisely the conditions imposed in the boundary gauge fixing (6.2.49) (with ¢ = ¢q) to
write the evolution equations of the Bondi mass and the angular momentum aspect
with respect to the u coordinate. Finally, we notice that the boundary conditions
(6.2.79) are valid for both A > 0 and A < 0. Indeed, as discussed around equation
(6.2.49), every solution written in the Bondi gauge and satisfying the preliminary
boundary conditions gap = O(r?), can be transformed through a diffeomorphism to
satisfy (6.2.79). Therefore, this does not constrain the Cauchy problem in dS,. This
contrasts with the Dirichlet boundary conditions (6.2.77) that do not make sense to
impose in dS, since they would strongly constrain the Cauchy problem.

The residual gauge diffeomorphisms (6.2.21) preserving the boundary conditions
(6.2.79) have the following constraints on their parameters:

Ouf = %DAYA, 0, Y = —%qABan, w =0, (6.2.80)
Note that the solutions of these equations admit three integration “constants” S(z4),
VA(zP), though these are difficult to solve explicitly for an arbitrary transverse
metric gap in terms of these functions (see appendix C of [193] for an explicit
solution in the case qap = Gap). We call the vectors generated by S(z?) and
VA(2P) the supertranslation and superrotation generators, respectively. The use
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of this terminology will be justified below. In the Fefferman-Graham notation, the
equations in (6.2.80) are equivalent to

1

7= 0w 6.2.81
t 1 (0) A A A g t ( o )
&y = §DA &, Oy = —390) IBE(0)-

As already discussed in one of the examples in subsection 2.2.4, the asymptotic
Killing vectors satisfy the following commutation relations with the modified Lie
bracket (2.2.57):

[ECFL YN, 602 YaD]a = £, Y7, (6.2.82)
where
. 1
f=Y 00 2 + 5le,mA — vy — (1 2), (6.2.83)
- A
YA =vPopYs - gchf“—%’an2 —OepymYs — (1< 2). (6.2.84)

In the asymptotically flat limit A = 0, the functions Y4, f reduce to Y4 = Y4 (2P),
f =T + 2DV and the structure constants reduce to the ones of the gener-
alized BMS, algebra bms§™ (see equations (4.1.12) and (4.1.18)). For A s 0, the
supertranslations do not commute and the structure constants depend explicitly on
qap. We therefore find the structure of a Lie algebroid [146, 170, 172,229]*. We
call it the A-BMS, algebra and we write it bmﬁf. This algebroid gives an infinite-
dimensional algebra at each point of the solution space. Indeed, it always contains
the area preserving diffeomorphisms given by & = £(f = 0,Y4 = YA(2P)), where
DAY 4 = 0°.

When the transverse metric g4 is equal to the unit round sphere metric g4z, we
are back to the Dirchlet boundary conditions (6.2.77) and, therefore, bms} reduces
to 50(3,2) for A < 0 and the so(1,4) algebra for A > 0 (see |24] and appendix A
of [166]).

6.3 Holographic renormalization and surface charges

In this section, we reproduce the holographic renormalization in asymptotically lo-
cally (A)dS, spacetime in the Fefferman-Graham gauge [144,154,222]. In this pro-

1The existence of the A-BMS, Lie algebroid is not in contradiction with recent no-go results [230]
that were obtained for Lie algebra deformations. Here, we have a field-dependent Lie algebroid
deformation of the BMS Lie algebra in asymptotically locally (A)dS, spacetimes.

5These vectors are called area preserving diffeomorphisms since, for a diffeomorphism on a two-
dimensional Riemannian manifold with metric ¢4, the determinant transforms infinitesimally as
dy~\/q = DAYA. Therefore, the divergence-free vectors fields Y4 generate diffeomorphisms that
preserve the area.
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cess, we assume only the preliminary boundary condition v, = O(p2) (see (6.2.4)).
This allows us to obtain the renormalized presymplectic form, from which we ex-
tract the charges for the most general solution space of asymptotically locally (A)dS,
spacetime in the Fefferman-Graham gauge. Then, we compute the charge algebra
and show that it closes under the modified bracket, without central extension.

6.3.1 Presymplectic structure and its ambiguities

In what follows, we will see that the counter-terms brought to the presymplectic
form by the holographic renormalization process can be interpreted as ambiguities
from the point of view of the Iyer-Wald procedure discussed in subsection 2.3.4. Let
us mention two possible sources of ambiguities in the procedure that will appear in
this process.

A first ambiguity is the one discussed in subsection 2.3.4 (see equation (2.3.81)
and the discussion that follows) and allows us to shift the presymplectic potential
0|g; 0g] by an exact (n — 1)-form as

0lg; 5] — O[g: 6g] — dY[g; dg]. (6.3.1)
This leads to the following shift in the presymplectic form
wlg;dg,0g] — wlg.dg,dg] — ddY[g; dg]. (6.3.2)

In particular, this ambiguity has already been used in section 4.2 to renormalize the
symplectic structure in asymptotically flat spacetime.
Another freedom that we have is to modify the Lagrangian L[g| of the theory
by boundary terms,
Lpulg]l = Lerlgl + dA[g]. (6.3.3)

This shifts the presymplectic potential by an exact term
6lg; 0g] — 0lg; 9] + 0 Alg] (6.3.4)

but leaves the presymplectic form invariant (6> = 0). Therefore, this freedom does
not lead to further ambiguity in the symplectic structure.
For a non-vanishing cosmological constant, the Einstein-Hilbert Lagrangian is

1

= 1o (Rlgl —24) V—gd'z. (6.3.5)

Liulg]

The associated canonical presymplectic potential is given by

Ounly: 0] = 22 (V500" — V*(60)", ) (@), (6:3:6)
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where (§g)" = g"*g"P5gas (see equation (2.3.74)).
The radial component of the presymplectic potential can be computed as follows:

O%ulg;dg] = vy (Va(5g)”a - 9””(%(59)“&)

167G (6.3.7)
(T2 0% — 977251 )

_ V79
167G

Expanding the metric v, (p, z°) in powers of p, we get

3 | _12A0lgol 1

3 a
O%nlgidg] = W[ 33 16mC Ty <_Z(5LEH’<°) +aa9EH,<0))]
1
+ 5sen(A)y/lg| T893 + O(p). (6.3.8)

We denoted by Lgu ) = 15 R0)2/19(0)| the Einstein-Hilbert Lagrangian density

for the boundary metric field ggg) and G)L}EH,(O) the canonical boundary term in the
variation 0 Ly, o). We observe that the presymplectic potential is radially divergent
as we approach the boundary .# = {p = 0}, so we need a renormalization proce-
dure to obtain a well-defined symplectic structure at .#, allowing us to compute
the surface charges. The precise form of the divergence suggests that there is a
boundary-covariant way to subtract these divergences by refining the action princi-
ple of pure gravity in asymptotically locally (A)dS, spacetimes: this is the point of
the holographic renormalization [144,154,222] that we review in the next section.

6.3.2 Holographic renormalization

The action for general relativity in asymptotically locally (A)dS, spacetimes is given
by [144, 154,222

o1 J d'z+/Tg] (Rlg] — 20) + J & Lony + J Erly  (6.3.9)
167G J 4 5 y

Here, .# denotes the bulk spacetime and .# = 0.4 its boundary. We impose

that S// d*z = SSO dp/ Sp:p, d®z. Remark that this convention sets the lower bound

of the radial integral to be the boundary. The integration measure d3x should

be understood as a measure on the hypersurface at fixed p = p’. In particular,

consistently with the notations of appendix A, we have

1 1
(dPz)"=3 = gegﬁgdxa Ada® A dat = Tyeztj)idx“ Ada A dat = (d?’x);bﬂl. (6.3.10)

This allows us to interpret the top form on the hypersurface p = p’ as co-dimension 1
with respect to the four-dimensional spacetime (for example, Lagy (d*z)"=3|,—, =
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LgHY(dgx);}:ﬂp:px). The first term in (6.3.9) is the bare Einstein-Hilbert action
SEgm, the second term is the Gibbons-Hawking-York term Sgpy and the third term
is the counter-term action S,;.

Let us describe the additional boundary terms in (6.3.9) and justify their pres-
ence. To have a well-defined variational principle for Dirichlet boundary condi-
tions, i.e. when all induced fields at the boundary are kept fixed (07y4,|s = 0),
the action must be completed by the usual Gibbons-Hawking-York boundary term
ScHy = Sa// d*z Loy . Let us denote the outward normal unit vector by n = ntd,,
such that n*n, = n, where n = —sgn(A). Here, “outward” means that the vector
points from the inside of the enclosed region to the outside. Recall that .# is defined
as the set of roots of the scalar field f(p,2*) = p. Hence n,, is collinear to 0, f and
differs only by a normalization factor and a relative sign. Since the coordinate p in-
creases inwards, n* must point in the direction of decreasing f, such that n*d, f <0,
independently of n. We get n, = —14/|g,[05. The knowledge of this unit normal
vector allows us to define the extrinsic curvature as the trace of the second fun-
damental form K = v*K, = %vabﬁn%b, and build the Gibbons-Hawking-York

piece
SGHY = _UJV df[f | |K— b —f d x—/760’\/| y| (6311)

An important observation is that the on-shell action Sgy + Sgpy is divergent. In
order to deal with these divergences, we introduce an infrared cut-off € > 0 (called
the regulator) sufficiently small so that the Fefferman-Graham expansion is still valid
around {p = ¢}. The regulated variational principle

1
Sree = g] —2A — 3 K (6.3.12
e [ Wi+ ggn | dVBIK 6312

possesses two divergent pieces on-shell

1 1
reg __ 3 1
o 167TG\/|ZJ; Ed gol= + Ro> 90| 2 +(’)(5)]. (6.3.13)

The holographic renormalization procedure amounts to supplying the regulated vari-
ation principle with a second counterterm S, = szg d3z L,; which must obey several
requirements: S is a boundary action constructed from a Lagrangian L. consid-
ered as a top-form living on the regulated hypersurface {p = e}. The latter is built
up from covariant objects living on {p = £}, but is not required to be covariant with
respect to the bulk geometry. In particular, it will involve the metric v, (e, z¢) only.
The renormalization requirement imposes that S™ + S, = O(e) after expanding
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in power series of . The working counterterm has been prescribed in [154,222] and
is given by

Su= [ #rLab) Lab) - 5 1S R I ET| B CE S

Indeed, it evidently satisfies the first two requirements, and we also check the last
one by expanding L. in ¢,

1 3 |4A 1 1 1
Lee = T6:a\ A | 3 =5 - 3.1
“ 16&\/@[ 5V 90l 5 — 5 R/ lsol2 +@(6)]’ (6.3.15)

hence S™8 + S, = O(e). For later purposes, we define the presymplectic potential

associated with Ly as 0Le = £t 54 + 0,02 [v; 0]. It is given explicitly by

5,Yab

a 1 3 a a C
02,1y 0] = _W“WV Y| [Do(67)® — v Dy(67)°, |

1 b b . (6.3.16)
T 9] [ Do (67)* = v** Dy (67)°,]

= —p0pylv;07],

where D, denotes the Levi-Civita connection with respect to 7,,. Therefore,

3

1
Oclvionl] = =71 Obn.l90); 6g(o>]g + O(e). (6.3.17)

p=¢

Now we can concentrate on the renormalization of the presyplectic potential.
On-shell, we have

ssgh - |

p=e

d*x 0,00 1g; 09] = —J d*z 0%.,;1g; 09, (6.3.18)
p=¢
where the minus sign in the last equality is due to the fact that we integrate on p
from the boundary to the bulk, which gives the negative orientation to the Stokes
formula. The resulting integrand is only the p component of @gy since the outward
normal to the regulating surface is collinear to 0,. Therefore, we can prove by a
straightforward computation that the renormalization of the presymplectic potential
works as follows [144]:
1

Otenl9;09] = Oy — Lamy — 6Lt + Oully, = LAY |g(0)|Tabégc(£) + O(p). (6.3.19)
We deduce from (6.3.19) that the modification brought to the presymplectic poten-
tial by the holographic renormalization is two-fold. The contribution of the exact
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terms with respect to § are top-forms on the regularized boundary that can be pro-
moted as bulk co-dimension 1-forms, collectively denoted by A = A?(d*x),, with
A? = —(Lguy + L&), such that Ogg — 0 = Opy + A after renormalization
(see (6.3.4)). The contribution of the Iyer-Wald ambiguity appears here thanks to
0%, which is a co-dimension 1-form on the regularized boundary. Again we can
promote it as a co-dimension 2-form on the bulk geometry Y = Y7(d*z),,, and
Y*eg;dg] = 0%[v; 6v]. The potential will be modified as 8’ — 6’ —dY (see (6.3.3)),
or in components,

07 — 07+ 0,Y" = 0" + 0,0 (6.3.20)

ct?

0 — 0%+ 3,Y% = 0" — 0,0°,, (6.3.21)

In particular, (6.3.20) is consistent with (6.3.19), and it can be shown that (6.3.21)
renormalizes the tangent components of the presymplectic potential as well. Finally,
the renormalized presymplectic current is given by

1
Whenl9: 89, 09] = =510 («/ |g<o>|T“b) A 69 1+ O(p). (6.3.22)

6.3.3 Surface charges

Once the expression for the renormalized presymplectic potential Ope,[g; dg] is es-
tablished, one can compute the Iyer-Wald co-dimension 2 form as kg en[g;0g] =
—0Q¢ ren[9] + Qseren[g] + 1¢Oren[g; 0g] (see equation (2.3.73)). In the present con-
text, instead of directly computing this expression, we propose an ansatz for the
co-dimension 2 form inspired by the results of [144] that were obtained for a sub-
case (0 =0, 06* = 0, A < 0). Our ansatz for the components pa of the co-dimension
2 form associated with the most general asymptotically locally (A)dS, spacetime in
Fefferman-Graham gauge is given by

a a 1 a C
kerenlg; 091 = no ( l9(0)|T b) & — 5/ 1901 & T"5g) + O(p). (6.3.23)

To confirm that this proposal is the correct one, we check that it satisfies the con-
servation law (2.3.77), namely

dKe ren[9;09] = Wrenlg; Leg,09] = 0ukl5n19:09] = whilg; Leg, dg].  (6.3.24)

The detailed computation can be found in appendix E.1. Since the co-dimension
2 form kg ren|g; 0g] is defined up to an exact co-dimension 2 form, we are certain
that the proposal (6.3.23) is the right one for the renormalized presymplectic form
(6.3.22).



154 CHAPTER 6. BONDI AND FEFFERMAN-GRAHAM GAUGES IN 4D

6.3.4 Charge algebra
Modified Lie bracket for residual gauge diffeomorphisms

Let us denote by & and y two arbitrary residual gauge diffeomorphisms of the
Fefferman-Graham expansion which are of the form (6.2.2) and (6.2.3). We recall
that the modified Lie bracket is given by

[€,x]a = [§,x] = dex + 0,&, (6.3.25)

with 6¢gu = Leguw (see (2.2.57)). We now provide an explicit computation of this
bracket for the present case. Since £ and x preserve the Fefferman-Graham gauge,
they satisfy

a a 3 1 a : a a
O = poe(a®), 98" = £o9"doe,  lim e = €5(a"),
p p—0
31 ' i (6.3.26)
X0 = poelat), X" = o0 00w T = X ().
As a result, the computation of [, x] is straightforward and gives
1
;[5, X% = (£90,0y — X"0u0¢) — O¢0y + 05,0¢. (6.3.27)

Taking a derivative with respect to p, and again using pz%bépfb — %&lff’ = 0, we get

1
Op <;[€, x]i) = 0,£" 0,0y — 0pX“0a0¢ = 0, (6.3.28)
which shows that [, x]? = pd, and

.1
o= ;[fa X]Z‘ = £60a0y — X§0u0¢ — 0c0y + 0y,0¢. (6.3.29)

p=
Let us now consider the transverse components. By evaluating the commutator at
leading order, we derive that

~

&6 = (&, x]% = [So, X0l — dex + 0: &5 (6.3.30)

Recalling that 07" = Ly = poed,y™ + 04" — 2v°@9,£% and explicitly us-
ing (6.3.26) to express 0, and d,x" in terms of o¢ and o, respectively, a direct

computation yields
31
2, ([£,x]%) = ==~7"0,6. 6.3.31
(i) = 5570 (6:3:31)
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We have just proven that residual gauge diffeomorphisms £ and x of the Fefferman-
Graham gauge satisfy

~

[5(05750),X(UX>X0)]A = f(@Co)» (6-3-32)

where
(3' = fgﬁaax — XgaaO'g — 5§UX + (Sxdg,

~a b a b a a a (6333)
C* = &o0X0 — Xo%bSo — deXo + 0x&p -

Charge algebra with modified bracket

The co-dimension 2 form derived in (6.3.23) is generically non-integrable for the
most general asymptotically locally (A)dS, boundary conditions in the Fefferman-
Graham gauge. Therefore, the representation theorem (2.3.54) does not hold and
one has to consider the modified bracket for the charges.

The leading term of (6.3.23) (~ p°) can be written as

K renl9; 59]‘ , = 0J¢lgl + Z¢lg og], (6.3.34)

p=

where the integrable part is taken as

JeLgl = /19| 965 Tues (6.3.35)
and the corresponding non-integrable part
E¢lg: 0g] = —%77 190)/€5 (Tbc5g§2)) — Jie- (6.3.36)
Defining the modified bracket as
{Jelgl, Tlglys = oxJgTg] + Z11g; ded] (6.3.37)
(this is the analogue of (2.3.61)), we show in appendix E.2 that
{Telgl, Ielalts = Jie . Lo] + 0ot [g]. (6.3.38)

where 0,(®°[g] (see equation (E.2.4)) is a term that will disappear once integrated
on S2. Therefore, when considering the modified bracket (6.3.37), we conclude that
the currents satisfy a consistent algebra without central extension. This contrasts
with the asymptotically flat case where a 2-cocycle appears in the right-hand side
(compare (6.3.38) with (2.3.62)). Of course, as discussed around equation (2.3.66),
modifying the split (6.3.35)-(6.3.36) between integrable and non-integrable parts will
bring a trivial 2-cocycle in the algebra (6.3.38). This situation is similar to the case
studied in [231| where the 2-cocycle could be absorbed by choosing an appropriate
split.
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6.4 A-BMS, phase space and its flat limit

In the previous section, we obtained through the holographic renormalization process
the renormalized co-dimension 2 form associated with the most general asymptoti-
cally locally (A)dS, boundary conditions in the Fefferman-Graham gauge. We saw
that the associated currents satisfy an algebra by using the modified bracket. In sub-
section 6.4.1, we particularize the analysis for the boundary conditions (6.2.79) and
obtain the symplectic structure and the surface charges associated with the bmsfl\
asymptotic symmetry algebra. In subsection 6.4.2, we express the symplectic struc-
ture in terms of the Bondi gauge variables and perform the diffeomorphism discussed
in appendix D. As discussed in section 6.2.2, the solution space with boundary con-
ditions (6.2.79) reduces to the solution space considered in chapter 4. Similarly, in
section 6.2.4, we showed that bms} reduces to bms®™ in the flat limit. In subsection
6.4.3, after renormalization of ~ 1/A divergences, we prove that this limit also holds

at the level of the phase space.

6.4.1 A-BMS, phase space in Fefferman-Graham gauge

Using (6.2.70), the boundary conditions (6.2.79) can be expressed in the Fefferman-
Graham gauge as

A Al -
Qt(f) -3 gt(ﬁ? =0, |g(o)| = ?\/;1, (6.4.1)

where ¢ is the determinant of the unit sphere metric. The asymptotic Killing vectors
are the residual gauge diffeomorphisms given in (6.2.2) and (6.2.3), whose parameters
satisfy (6.2.81). Inserting the conditions (6.4.1) into the renormalized presymplectic
potential (6.3.19), we obtain

va Al
0% suslo; 09l = 5 ?9(%385ng + O(p), (6.4.2)
where T35 = Tap — %gfé(g(%?TCD). Similarly, the presymplectic form (6.3.22)
reduces to
Vg A
Wi pnslg; 09] = 5 %59639 A STHE + O(p) (6.4.3)

From (6.3.23), we deduce that the A-BMS, surface charges are given by

5H£_BMS[9] - J 2(d2$)Ptk§fA-BMS[g;5g] = 5H?_BMS[9] T QQ_BMS[% dgl, (6.4.4)
SZ
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where we performed a split between integrable and non-integrable parts as in (6.3.35)
and (6.3.36):

) 3
Hé\ BMS [g] _ _\/%JSQ d20 [féTtt + f(l)thB] )
(6.4.5)
@A BMS g;0q] = \/|:L2 420 fog (0) 5TAB] - H(%_BMS [g].

Here, d°Q = 24/G(d*z),; denotes the measure on S2. As a corollary of (6.3.38), they
satisfy an algebra for the modified bracket

{HEP 9], Hy PP lglh = Hig )yl (6.4.6)

with {HAPMSg], HEPMS[g]}e = 0, HEPMS[g] + O3 PY8]g; deg), and [€, x]a given by

[£(66, &) x(xbs X 1a = €&, &) (6.4.7)

where

0)
& = €oaxh + foD,(4 Xo — Oecer e2yXo — (€ < X),
(6.4.8)

&' = &osxi — fogABaBXo Oe(ep.eXo — (€< )

This is a corollary of (6.3.33) and (6.3.32). Alternatively, one can obtain the com-
mutation relations (6.4.8) from those written in the Bondi variables (6.2.84), using
the dictionary (6.2.71).

6.4.2 Translation into the Bondi gauge

The next step is to perform the change of coordinates described in appendix D
between Fefferman-Graham and Bondi gauges and deduce the transformation of
the presymplectic potential. Starting from Fefferman-Graham coordinates, we first
go to tortoise coordinates (r,,z?). The presymplectic potentlal reads as O .puvs =
Or ns(4°7), + 0% gys(d®z)q. At leading order, p = —47, + O(r?) and 2 = 22 +
O(r.), hence Oy sys = O s + O(rh). Therefore, the leading order of the radial
component of the presymplectic potential is not affected. Now we can reach the
Bondi gauge (u,r, ') by a second change of coordinates

31 1 31 1 A_ A
t —U+X—+O<r3)a T*_AT+O<7“3>’ r, =a . (649)
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We obtain 0% gy = O3 pus + O(r)®. Therefore, using (6.2.75), the renormalized
presymplectic potential (6.4.2) is expressed in Bondi gauge as

r A Vq _
O-pusly; 0g] = 5% ¢*P8Jap + O (6.4.10)

The associated presymplectic form is readily obtained

A VG o oap -
A 09l = ————9¢ § h. 6.4.11
wi-pms|g; 09] 5167 040 N Jap +0O(r) ( )
As discussed in [166], by analogy with the flat case (see e.g. (2.3.68)), this last
expression allows us to identify the Bondi news functions in (A)dS, as the symplectic

couple (¢*B, Jap).

6.4.3 Renormalization in A and flat limit

The Bondi gauge admitting a well-defined flat limit, nothing prevents us from con-
sidering the flat limit of the above symplectic structure. Let us recall the prescription
followed in subsection 6.2.2 when discussing the flat limit of the solution space:

1. In the Bondi gauge, we explicitly identify the dependence in A in the different
expressions by using the relations in section 6.2.2 (see e.g. (6.2.55), (6.2.56),
(6.2.57)), until obtaining only the functions Cap, qap, N15, M, N4 and their
derivatives with respect to the angles, where N1E designates the trace-free
part of Nyp = 0,Cxp. These functions are those that admit a well-defined
interpretation in the flat limit, which contrasts with J4p, M® and NI(LXA).

Furthermore, the relation (6.2.45) is extensively used in order to exchange

terms ~ 0J,qap for terms ~ AC4p. The following identities turn out to be

useful for the computation:

2A
auHAB _ qACauHCDqBD _ ?CC(AHg),

A 1
0u(DPHap) = DP0,Hap — g[DC(HABCBC) + §HBODACBC]7
0,C*PCyp = 2N*BCyp,

(6.4.12)

A
0u0aR[q] = gDADBDCOBC,

where H,p(u,z%) is any symmetric rank 2 transverse tensor.

6Since the field-dependence involved in the diffeomorphism (6.4.9) appears only at subleading
orders in 7, we assumed that the variational operator § is not affected at leading order and therefore
does not bring any contribution to the leading order in the transformation of 64 5\ q-



6.4. AN-BMS, PHASE SPACE AND ITS FLAT LIMIT 159

2. Once this procedure is achieved, we take the flat limit by putting A — 0. As
we later explain, this limit may require a renormalization procedure to remove
the divergences ~ %

Let us apply the first step of the procedure to the presymplectic potential. Start-

ing from its expression in the Bondi gauge (6.4.10) and using (6.2.57), we get

V4 [ 3 TFs AB a1 AB
- > 0. (NTES S (N#F + S Rlalg*?)sC
1

+ 504D Cpedg™ | + O(As17),
where the notation O(A,r™!) designates terms O(r~!) and/or O(A). A striking
observation is that we have a term ~ A~! in this expression, which does not allow
us to go to the second stage of the flat limit procedure. We have to suppress this
divergence before taking A — 0. A way to proceed is to use the ambiguity allowed
by the covariant phase space formalism (2.3.81). Indeed, noticing that the term
~ A~ ! can be expressed as

GX—BMS [93 59] (6 A 13)

Vi 3 TF s AB I 3 1 - AB Vq AB TF
2 4,(N L V4 N
(6.4.14)
we define L oaq
Yolg:og) = ——=—+5 i AB 41
(19 69] 6-C A 2%(\/& Capdq™"), (6.4.15)

and Y™ = 0. As discussed in [193], the presence of this Iyer-Wald ambiguity
can be justified by adding corner terms in the variational principle (6.3.9). The
presymplectic potential is renormalized as

Oren(ny[95 09] = O3 puslg; 09] + .Yyl g; 09]

_ Vi L, ] AB 1 c AB AB \fTF

~ 167G [5 (NTF + 5 Rlalg )60,43 + §(DAD CBc)éq +6(C NAB)]
+O(A; 7™

(6.4.16)

and is finite in the limit A — 0. The associated symplectic potential Wren(A) is
explicitly given by

Wren(A) 195 019, 029

- , 1
- 18?(; [551 (N?f? + §R[q]q"‘3) A 8:Cap + 501 (DADCCie) A @&B]
+ O(A; ™).

(6.4.17)
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Finally, taking the flat limit A — 0, we obtain

Wren(n) [9; 619, 29]

\/5 1 1 1
= Toma |30 A NoE + 5Rlala™” ) A 0:Cap + 501 (DaD Cc) A 62q""

+ 0.

(6.4.18)

This result precisely corresponds to the presymplectic form (4.2.12) obtained in
asymptotically flat spacetime. Therefore, we have shown that through an appropri-
ate renormalization process, the flat limit of the bmﬁflX symplectic structure yields
the bms$™ symplectic structure in asymptotically flat spacetime.

An interesting observation is that, to obtain (4.2.12), we had to renormalize

the symplectic structure using the Iyer-Wald ambiguity (2.3.81) with a term Y™ =

—r%lg{FGCAgéqAB to remove the ~ r divergences. To take the flat limit in the

present context, we also had to renormalize the symplectic structure with a term
Yy = —ﬁ%%&u(\/@CAB(SqAB) to remove the ~ A divergences. Therefore, even
if the nature of the divergences is different in both contexts, the expressions are

astonishingly very similar and may rely on deeper reasons.

6.5 New boundary conditions for asymptotically lo-
cally AdS, spacetime

We now particularize our discussion to the case A < 0. The presymplectic form
(6.3.22) obtained through the holographic renormalization procedure is generically
non-vanishing for asymptotically locally AdS, spacetimes. Allowing some flux at
infinity leads to an ill-defined Cauchy problem [232]. Depending on the physical
context, one may be interested in studying open systems allowing flux at infinity
(see e.g. [233]) or isolated systems with a well-defined dynamics (see e.g. [232]). In
this section, we propose a new set of boundary conditions for which the symplectic
flux vanishes. The associated phase space admits the Schwarzschild-AdS, black
hole and a stationary rotating solution distinct from the Kerr-AdS, black hole. The
asymptotic symmetry algebra is shown to be a subalgebra of bmsix consisting of time
translations and area-preserving diffeomorphisms.
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6.5.1 Mixed boundary conditions

We start from the expression of the presymplectic form (6.3.22) that we repeat here
for A<0(n=1)

1
Whulg: 09,09] = —§5< |g<o>|T“") A 69 1 O(p). (6.5.1)

In the literature, both Dirichlet and Neumann boundary conditions have been stud-
ied to set this presymplectic form to zero. On the one hand, Dirichlet boundary
conditions [15] amount to freezing the components of the boundary metric gfl(;) to
the ones of the unit cylinder while leaving the holographic stress-tensor 7% free. The
resulting asymptotic symmetry algebra is the algebra of exact symmetries of global
AdSy, namely s0(3,2). On the other hand, Neumann boundary conditions [144]
freeze the components of 7% while leaving the boundary metric ggz) free. The re-
sulting asymptotic symmetry group is empty: all residual gauge transformations
have vanishing charges.

We now present new mixed Dirichlet-Neumann boundary conditions. We first
impose the boundary conditions (6.4.1), which leads to bms,. This is a Dirichlet
boundary condition on a part of the boundary metric, which is reachable locally by
a choice of boundary gauge. The symplectic flux at the spatial boundary is then
given by (6.4.11), which we repeat here:

A Vi

wi-puslg; 09] = 3160 6q*B A0 Jap +O(r ). (6.5.2)

We now further impose the Neumann boundary conditions
Jap = 0. (6.5.3)

This cancels the symplectic flux, as required. The boundary condition (6.5.3) re-
stricts the solution space.

6.5.2 Asymptotic symmetry algebra

Let us now derive both the asymptotic symmetries preserving the boundary condi-
tions and the associated charge algebra.

The boundary gauge fixing (6.4.1) is preserved by the bmsﬁl\ asymptotic symmetry
algebra of residual gauge transformations as derived in section 6.2.4 (see equation
(6.2.81)). We now show that the boundary condition (6.5.3) further reduces bms,
to the direct sum R ® A, where R are the time translations and A is the algebra of
two-dimensional area-preserving diffeomorphisms. We further show that the charges
associated with this asymptotic symmetry algebra are finite, integrable, conserved
and generically non-vanishing on the phase space.
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The variation of J4p is given by

4 1
5£JAB = (géﬁt + ‘Cfg + O')JAB — g[N(AaB)g(g - §N0605(§QAB]
2. 1 4 1
(6:2.81) [565,5 + ,Cgoc + §DA§64] Jap — g[N(AéB)fé — §N050§(§QAB]-

We recall that D4 is the covariant derivative with respect to the transverse metric
gg% = qap. Imposing d6¢Jap = 0 leads to the following constraint on the bmsfl\

asymptotic Killing vectors:

(6.5.4)

da&; = 0. (6.5.5)
Therefore, the asymptotic symmetry generators satisfy the relations
1
0k = §DA§§1, 065 = 0. (6.5.6)

The second equation implies &' = VA(2P), while the first gives
t
§=S+§DMM (6.5.7)

where S is a constant by virtue of (6.5.5), and DoV# = ¢, where c is also a constant.
Using Helmholtz’s theorem, the vector V4 can be decomposed into a divergence-free
and a curl-free part as V4 = e2B0p® 4 ¢*P05V, where ¥ and ® are functions of
x¢. Injecting this expression for V4 into this equation gives D4DAV = c. This
equation admits a solution if and only if ¢ = 0, which is given by W = 0. Therefore,
the asymptotic symmetry generators are given by

&=195, & =Popoa”) (6.5.8)

where S is a constant and ®(x¢) is arbitrary. Writing £ = (S, ®), the resid-
ual gauge diffeomorphisms, the commutation relations (6.4.7) and (6.4.8) reduce to
[5(817 (I)l): 5(827 (I)Q)]A = 5(5’ CI))J where

~

S=0, &=e"Po,D059,. (6.5.9)

Hence, after imposing the boundary condition (6.5.3), bms} reduces to the R @ A
algebra, where R denotes the abelian time translations and A is the algebra of
two-dimensional area-preserving diffeomorphisms. The latter symmetries are an
infinite-dimensional extension of the so(3) rotations.

Let us now study the associated surface charges. Starting from the bms} surface
charges given in (6.4.4) and (6.4.5), and imposing the boundary condition (6.5.3),
one sees that the charges are integrable. The integrated charges reduce to

H?ds[g] = T4 % j *Q STy + Tyae*P 0pd). (6.5.10)
S2
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From this expression, we see that the charges associated with the symmetry R @ A
are generically non-vanishing. Taking S = 1 and ® = 0 gives the energy. The first
harmonic modes of ® give the angular momenta, while the higher modes give an
infinite tower of charges. Using (6.5.9) and (6.2.74), a simple computation shows
that the charges (6.5.10) satisty the algebra

O(sa.02) He$ 00) = Hig g (6.5.11)

The charges form a representation of R @ A without central extension. This result
is also a direct consequence of (6.4.6) when taking (6.5.3) into account.

6.5.3 Stationary solutions

Here, we study the stationary sector of the phase space associated with the bound-
ary conditions. In this subsection, we write A = —3/¢*. The Schwarzschild-AdS,
solution is included in the phase space. Indeed, Schwarzschild-AdS, can be set in
the Fefferman-Graham gauge, which allows to identify qap = ¢4p the unit metric
on the sphere, as well as T}; = _FMGw T.a =0and Jug = 0.

The boundary metric and holographic stress-tensor of Kerr-AdS, are given in

the conformally flat frame by [234-236]

0Qdztda® = —0-2dt + do? + sin? 0dg?, (6.5.12)
3¢
- TI%er = _M(?)uaub + ggé)))’ (6513)
8T

where = = 1 — a?¢~2 and

a _ a’
'y =0+ 5505), ' = W (6.5.14)

The mass and angular momentum are M = —¢ { d*Q T}, = &, J=Ma= —({ Ty =
Zz. We observe that J4p # 0. Therefore, the Kerr-AdS, solution is not included in
the phase space. However, it is possible to obtain a stationary axisymmetric solu-
tion with Jsp = 0 as follows. The most general diagonal, traceless, divergence-free,
stationary and axisymmetric 7% is given by

T = P[2T%(0) + tan 6 T'(9)], T =T%(H),

corr corr
1

198 = —5—[T%(0) + tan g T%'(¢

%= a0 + a0 T 0]

and the other components are set to zero. We consider the sum of Tierr + Teorr. We
solve for T%(6) to set JAZ = 0. The regular solution at .# is unique and given by

pie = M0 e _30m0? - ap s (6.5.16)

47’ 8t 8

(6.5.15)
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The mass and angular momentum are M = —¢{d*Q T, =m, J = —£{d*QT;4 = 2.
It would be interesting to know whether this solution is regular in the bulk of
spacetime.

From the conservation of the stress-energy tensor 7% given by the first equation
of (6.2.6), the most general stationary solution with flat boundary metric (6.5.12)
is only constrained by the following conditions:

DyN* =0 N4 = e*®Dpa(2¥), 04M =0, (6.5.17)
where a(z¢) is an arbitrary function of 2. To obtain these expressions, we also
used equations (6.2.75) and (6.5.3). Therefore, even for stationary solutions, we see
that the charges associated with the area-preserving diffeomorphisms are generically
non-vanishing. It would be interesting to study the regularity of the general solutions
(6.5.17) in the bulk of spacetime.



Chapter 7

Conclusion

The discovery of the global BMS symmetry group at null infinity came as a surprise
in 1962. This infinite-dimensional endowing of the Poincaré group was, however,
necessary to include radiative spacetimes in the four-dimensional analysis. Since
then, the extensions of the BMS group have highlighted the richness of the asymp-
totic structure of the gravitational field.

In this thesis, we have explored the extensions of the BMS group and their
implications for the phase space of the theory. Furthermore, we have established
new relations between those symmetries and the gravitational memory effects. We
have also elaborated on the covariant phase space methods, allowing us to compute
the gravitational surface charges in a first order framework.

Before concluding this manuscript, we would like to mention some current or
future research directions that are suggested by the present work.

As discussed in chapter 2, we have always adopted the gauge fixing approach
throughout this thesis [27]. This approach allows us to eliminate the arbitrary func-
tions of the gauge transformations and therefore fix the dependence of the residual
gauge diffeomorphisms at all orders in the expansion parameter. However, even if
one can always reach a gauge by definition, the gauge transformations that are neces-
sary to reach a particular gauge might be large gauge transformations, namely, they
could be associated with non-vanishing surface charges [18,237]. Therefore, it would
be interesting to study asymptotic symmetries by considering only partial gauge fix-
ings. For example, we showed in [216,217| that the Bondi gauge can be embedded
in the Derivative expansion, which is a partial gauge fixing admitting additional pa-
rameters in its solution space. Another example is the extended Fefferman-Graham
gauge considered, for example, in [18,238], where the Weyl transformations preserv-
ing the radial foliation are well defined.

Furthermore, it has been noted that the solution space of three-dimensional gen-
eral relativity transforms in the coadjoint representation of the asymptotic symmetry
group [175]. It would be insightful to investigate how the coadjoint patterns appear
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in the transformation of the solution space of four-dimensional gravity. Based on the
results established in section 3.3, we have already found that only a subsector of the
solution space transforms in the coadjoint representation of BMS,. This subsector
couples with the radiation to form the full four-dimensional gravitational theory.
Furthermore, it has been shown that three-dimensional gravity could be described
by a geometric action defined on coadjoint orbits [176]. It would be fascinating to
have the same construction for the coadjoint subsector of four-dimensional gravity.
These questions are part of our current research.

Moreover, we saw in this thesis that some gravitational memory effects could
be related to the BMS symmetries in asymptotically flat spacetimes. Since, in
chapter 6, we found the analogue of the BMS group in asymptotically locally (A)dS,
spacetimes, it would be worth investigating if similar relations exist with memory
effects in these kinds of asymptotics (see e.g. [125,126]).

The AdS/CFT correspondence and the associated holographic dictionary are now
clearly stated and have been checked in many situations. Surprisingly, though, the
analogous holographic correspondence in asymptotically flat spacetimes is poorly
understood. However, all the ingredients needed to clearly state the holographic
duality in flat space and its associated dictionary are now present. Indeed, from the
point of view of the bulk theory, the Bondi expansion of the metric enables us to
approach the spacetime boundary in the flat case, as the Fefferman-Graham does
in the AdS case. Furthermore, as discussed in much detail in chapter 6, the Bondi
gauge also exists in asymptotically AdS spacetimes and has been related to the
Fefferman-Graham gauge [166,167]|. Therefore, many results and interpretations of
the bulk spacetime metric obtained in AdS can be directly imported into flat space
by taking the well-defined flat limit in the Bondi gauge. For example, the process of
holographic renormalization could be adapted for asymptotically flat spacetimes at
null infinity. From the point of view of the dual boundary theory, using the geometric
action construction mentioned above which is based on coadjoint methods, one could
construct a boundary action invariant under the BMS, symmetry. This would be
the effective action of the theory dual to the coadjoint subsector of four-dimensional
asymptotically flat gravity. Adding Hamiltonians and source terms to this action
would lead to an effective dual description of the full asymptotically flat gravity
theory.



Appendix A

Useful results and conventions

In this appendix, we establish some important frameworks and conventions. The
aim of this formalism is to manipulate some local expressions, as this is convenient
in field theory. We closely follow |27,186,239).

A.1 Jet bundles

Let M be the n-dimensional spacetime with local coordinates z# (u =0,...,n—1).
The fields, written as ¢ = (¢'), are supposed to be Grassmann even. The jet space
J consists in the fields and the symmetrized derivatives of the fields (¢, ¢, ¢, . - .),

where ¢!, = axim o agj% ¢'. The symmetrized derivative is defined as
0
i — A =0, - 6;’; (5Z (A.1.1)
0Pt

In the jet space, the cotangent space at a point is generated by the variations of the
fields and their derivatives at that point, namely (6¢, 6¢,, 0@, . ..). The variational
operator is defined as
5= 068, g (A1.2)
k=0 H1--- [k

We choose all the d¢, §¢,,, 6@, . .. to be Grassmann odd, which implies that 6 = 0.
Hence, ¢ is seen as an exterior derivative on the jet space.
Now, we define the jet bundle as the fiber bundle with local trivialization (x#, ¢, ¢, P, - - -).
Locally, the total space of the jet bundle looks like M x J. A section of this fiber
bundle is a map = — (¢(z), (), ¢ (), ...). The horizontal derivative is defined
as

d =da"d,, where

( 1- ¢ )
=~ Vi...V, a e l/ VE a s o
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In this perspective, the variational operator can also be seen as the vertical deriva-
tive, i.e. the derivative along the fibers. The exterior derivative on the total space
can be defined as dr,; = d + 6. Notice that both d and § are Grassmann odd and
they anti-commute, namely

dé = —od. (A.1.4)

On the jet bundle, we write P4 for the set of functions that are p-forms with respect
to the spacetime and g-forms with respect to the jet space'.

A.2 Some operators
In this subsection, we introduce additional operators used in the text and discuss
their properties.

The Euler-Lagrange derivative of a local function f,i.e. a function on the total
space of the jet bundle f = f[x, ¢, ¢, du, .. .|, is defined as

5f.=2(—1)kam.. o, ( of ) (A.2.1)

5¢Z k>0 a¢ﬂ1 Mk
This operator satisfies
of 0
55 0 < f=3d" (A.2.2)

where j* is a local function (for a proof, see e.g. section 1.2 of [171]).
The variation under a transformation of characteristic Q (i.e. dg¢' = Q) is
given by

of - of
Sof = 00 @) s+ (O, - 0 0QT ) ———. (A.2.3)
kZ;) H Mk a¢u1muk H Mk a5¢fn...uk

The Lie bracket of characteristics is defined by [Q1, Q2] = g, @2—0g, @1 and satisfies
[00,:00.] = 0[0,,g.]- A contracted variation of this type is Grassmann even and we
have

dod = ddg, ddg = dgo. (A.2.4)
We also have the following relation between the variation under a transformation of

characteristic () and the Euler-Lagrange derivative:

of 0 07 of
5Q5T¢i - 57#(5Qf) - Z(_l)kam o O ( ¢M B %) : (A.2.5)

k=0

1One often refers to a wvariational bicomplex structure
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Let a € Q™ %4, We use the notation

a = oA k) (A.2.6)

H1.-fk>

where

1

(dn_kx)mmuk - meﬂlmﬂkl’lml’nfkdxyl

Ao A datnk (A.2.7)

is completely antisymmetric and €p,_, 1 = 1. We can check that

da = (—1)(1500([“1“'”’“_10] (dn_lﬁ'lx)/il---ukq . (A28)

and where €, ,,

The interior product of a spacetime form with respect to a vector field £ is defined
as 5
Le =& .
¢ =& o
We can also define the interior product of a jet space form with respect to a char-
acteristic ) as

(A.2.9)

| N0
k>0 p e,
It satisfies
Q0 + 0ig = 0q, 19,00, — 0Q,iq, = 1Q1,Q2]- (A.2.11)
The homotopy operator If, : QP9 — QP~H0+1 is defined as
k+1 ) oo
I§¢a = ——————— 0y, --- Oy <5¢1i——y> (A.2.12)
];n—p—i-k‘—i-l 1 k (5¢#1.“Hkyﬁdx
for o € QP4 This operator satisfies the following relations
.0
§ = 5#57& —dl§y  when acting on spacetime n-forms, (A.2.13)
§ = Ig’;ld — dI, when acting on spacetime p-forms (p < n). (A.2.14)
Furthermore,
(5[(1?(;5 = [§¢5. (A.2.15)
Notice that the homotopy operator is used to prove the algebraic Poincaré lemma
(2.3.16).

Similarly, the homotopy operator with respect to gauge parameters f = (f) is
defined as I} : QP > QP19 where

k+1 ) oo
Pa=S—""2 o o -2 ) A.2.16
7 l;)n—p—l—k:—i—l e O (f 5 ﬁl._uw&dx”) ( )

It satisfies
a4 dry = 1. (A.2.17)
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Appendix B

Determinant condition in Bondi
gauge

In this appendix, we discuss the determinant condition used to define the Bondi
gauge in equation (2.2.10) and repeated here:

det gap

Let us emphasize that this condition is weaker than the historical one given by
det(gag) = r*""2 det(gap), where ¢ap is the unit sphere metric [1-3|. The relaxed
determinant condition (B.1) is inspired by [6] and is essential if one wants to consider
Weyl rescalings of the transverse boundary metric.

To illustrate this claim, we derive the implication of the determinant condition
in the derivation of the residual gauge diffeomorphisms. The equation (B.1) is
equivalent to

det(gag) = r*™ Dy (u, z°), (B.2)
where x is an arbitrary function of (u,2%). When the preliminary boundary condi-
tion gap = O(1?) < gap = r’qap +o(r?) is imposed, we have x(u, %) = det(qap).
From (B.2), we obtain

o¢ In[det(gap)] = g5 Legap = de Inx = 2(n — 2)w, (B.3)
where we introduced the parameter w(u, z). We deduce

(n—2)

& =— Dt — UA08" + %f“ﬁu Ing—(n— 2)w] : (B.4)

where Dy is the covariant derivative with respect to gap and g = det(gap). Indices
are lowered and raised by gap and its inverse.
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In this derivation, the introduction of the parameter w in (B.3) is somewhat
peculiar and may seem artificial. This way of introducing the parameters of the
residual gauge diffeomorphisms by hand was also used in [216,217| to define the
additional parameters in the Derivative expansion compared to the Bondi gauge.
Let us show here that (B.4) can be deduced from the determinant condition without
forcing w in (B.3). The condition (B.3) tells us that

S¢ In[det(gag)] ~ order r°. (B.5)

Working out the left-hand side yields

-2 1
(nr—)ﬁr + Dt + 55“@ Ing — UA046" ~ order ° (B.6)

Taking into account the other gauge conditions in (2.2.10), the preliminary bound-
ary conditions g4 = O(r?) and the associated fall-offs imposed by the Einstein
equations, we obtain that £ is determined at all orders, except at leading order
~ r. In other words, writing ™ = 7 R(u, ) + o(r), the remaining free parameter is
R(u, z) and

€ = rR(u,a) + [— (DaI* — U406, f)] ‘O (B.7)

(rn<1)7

(n—2)

where 74 is defined in (2.2.14) and the notation O(r"<!) means that the expression
inside the brackets is truncated for terms of order ~ r or higher. Finally, doing the
following field-dependent redefinition of the free-parameter:

1
— [DAYA + §§“au Ing — Ugtox f] , (B.8)

we recover the original result (B.4).



Appendix C

Further results in Newman-Penrose
formalism

C.1 Newman-Unti solution space in NP formalism

When conditions (3.3.5) supplemented by the fall-off conditions (3.3.6) are imposed,
the asymptotic expansion of on-shell spin coefficients, tetrads and the associated
components of the Weyl tensor can be determined. All the coefficients in the ex-
pansions are functions of the three coordinates u,(,(. In this approach to the
characteristic initial value problem, freely specifiable initial data at fixed u is given
by Wo(ug,r,¢,¢) in the bulk with the fall-offs given below and by (V9 + W) (ug, ¢, ¢),
U(up,¢,¢) at #*. The asymptotic shear ¢°(u,(,() and the conformal factor
P(u,(, () are free data at #* for all w.

Explicitly,
vy Up , Vg s

\IJOZF"FT—G-FF—FO(T ), )

S L 207509 + 205° V() + 15°00) — ;09 Lo

L 5 6 r)

U0 FUO 2050 + LAOW 1 3505009 + L0500 + L1500

\112_7"_32_ T’41+ ; — 752 : — 0+O(r_6)>
T Uy o 3wy ,

Uy= 3 ——2+00 "), Wi=—t-—"24+007),
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1 00 0 5.00.00.0 _ l\I/O
p= _; - UT(; + 0(7’75)7 g = % + TQO + O(Tﬁ%),
v 16009 + 0v) - a® 7% %% 4
e gt g YO a= Tk T e e 00,
5 a 0030 B aoaoao;r SUY L O, 4= g N 2009 4 oW} — a"wY
r r r 2r2 or3
0 0)\0+\I’0 0.05.0 0+ 18\1}0 \IJO 5\1,0
p=t -T2 “r3 G N R AR
A U0 000N + 1600 B
)\:7_ r2 * 7“32 +O(T4)’
— P _ 30?0050 + U9 »
X¢ = XC = 6T31+(9(7° Y, w= r— = 2 21007,
U9+ Ty 30 + 500
_ (0, =0 0 2 2 1 1 -3
U=-—r(y'+7") +u 5 Tz TOUT),
— o0p . — p 050 p
L6 = I = _07«_2 oG, Lf=If== ? fg + O,
where
1= 1 _ _
o’ =-PolnP, °=-—=0,nP, °=0r"+7"),
2 2
| _ 1- _ R .
pl = —§PP861nPP = —5561111313 -7 N =50 +5°(37" —7°),
U) — Y = 0%0° — %6 + 5N — o"N\°
U = -0\ + o,
U = a0 — (8, + 47°)\°,
and

0,05 + (70 + 57°)¥g = 0 + 30705,
0,00 + 2(7° 4 27°) 09 = Y + 20709,
0,9 +3(7° +7°) W) = 90U} + 0"V,
0. U3 + 2(29° +7°)0Y = ov,

oup’ = —=2(7" +7°)u’ +90(v° +7°),

20 = =272 — 37°,

0. V8 4 (29° + 67°) U = —B(0TY + 46°0Y),
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1

1— —
0LV + (3° + T3 WG = —SB0WG + 3" Wg + 5(WT] — Wowg 5\1/8\1/2)
_ 5 o= 5 1 9
+ 500300 + 305 00 + 50062\118 + 5070 + 700 + oo 0w

15

5
+120°05° W + 25°00° W + 7 (0°) 05 + Jo AW,

C.2 Parameters of residual gauge transformations

For computational purposes, it turns out to be more convenient to determine the
parameters of residual gauge transformations by using the generating set given in
(3.2.42) rather than the one in (3.2.44).

Asking that conditions (3.3.5) be preserved on-shell yields

o 0=10c, el = —0,6" = &" = f(u,(,0).
0=10¢, € =—e50,f +w? = w! 2=0,f + X404f.

0=0cp €4 = —€§0uf +w?? = w? = LA04f.

0=0cp €4 = —€30uf +w?? = w? = LA04f.

0=0¢wef = —ef af’"—l—wza "= ¢ = —0,fr+Z(u,C(, C 5Afs+°o wLA—i—
WL + X4

o 0 =0, eff = —€§0,8" + wed = N = YMu,(, () — dpf § 7 dr[LALP +
LALP.

[ ] 5fw T=0 < 0= 5§w F321 = l“@uw“ + Fggaw2a — w14 = wé‘l(u,(’,f) +
oaf §7° dr[ALA + pLA).

0 Jey m=0 &= 0 =10¢p 01 = l“@uwgl + Tyow?t = w3 = wé%u,(,&) +
Oaf §7 dr[ALA + uLA).

@ ey (6—6) =0 = 0="0¢, Dyz1 = M0, w* + T 3,07 = W = W (u, (, () —

Oaf §77 dr[(@— B)LA + (B — ) L.

e c+é =0 =k = Kisequivalent to ['y;; = I'311 = I'y11 = 0, p—p = 0is equivalent
to I's;4 — T'y13 = 0 while 7 — @ — 8 = 0 is equivalent to I'y;3 — I's19 = 0. On-
shell, i.e., in the absence of torsion, these conditions on spin coefficients hold
as a consequence of the tetrad conditions imposed in (3.3.5). It follows that
requiring these conditions to be preserved on-shell by gauge transformations
does not give rise to new conditions on the parameters. This can also be
checked by direct computation.
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Asking that the fall-off conditions (3.3.6) be preserved on-shell yields
¢ Seneh =00 )= oY =0.

(55&, ge¢ = O(Tﬁl) — BYC =0 < Y¢= Y(C)

e 9ee = O(r 1) = W< =0 — Y =Y().

Ocw I'31a = OFr3)= 7= %Af

O¢w I's10 = Or?)=uwit=0""+ ”_yO)Péf — Po,of.

5§,w F412 = O(T_Q) — w(l)?’ = (’)/O + f‘yO)Pﬁf — P&u&‘f

d¢w ¥o = O(r~°) does not impose further constraints.

C.3 Action on solution space: original parametriza-
tion
Besides (3.3.18), if s, = (Y,Y, f,wp), one finds

85,0 =[YO+ YO+ f0, + Ouf + 2wit]0? — D*f,
6, U0 = [YO+ Y0+ fOu+30uf + 2w | W) + 4000 f,
8, W = [YO+ Y0+ fo, + 30, f +wi' W) + 3090 f, (C.1)

0 T,0 0 T,0
Ss, <\D2 ;r qj?) =[YO+ Y0+ fo, + 30.f] <\DZ + ¥y

) 005 + BB,

n
[e) v

When ¥, can be expanded in powers of 1/r, ¥o = > | =%, one also has

6,V =[YO+ YO+ fO, + 40, f + 2wV}
+ [—gAf — 50f0 — 0f0]|U) — 40’0V, (C.2)

6, U2 =[YO+ YO+ fO, +50uf + 2wi*|VE + [-3Af — 300 — 03] ¥}
+ [500°0 f + 1505°0 f + 5600 + 35°0 0] W) + 120°5°3f ¥, (C.3)

5, U =[YO+ YO+ fo,+ (n+3)0uf + 2w3' 0y
+ (inhomogeneous terms). (C.4)
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For later purposes, we also give the variations of composite quantities in terms of
free data,

S A =[YO+ Y0+ fo,+20.f — 2w\ — 0,0 f + (7° — 37°)3°f,
05, Uy =[YO+ YO+ f0, + 30, f]¥5 + 2V,

6, U3 =[YO+ Y0+ fO, + 30, f — w' |3 + WiDf,

6, Uy =[YO+ Y0+ fO, + 30uf — 2w Y.

(C.5)

C.4 Useful relations

Some useful relations for the computation of the current algebra are summarized
here.

1 _
duf = 5(0Y +0Y) + f&+7%,
~ 1 _ _
f= §f1(5y2 + 5372) + W0fs + V10fs — (1 A 2)7
V= N0V, — V0%V, V=0V, — V0D,
0%Y = OO + V0PV, — (1 & 2), 00Y = Y100 Vs — (1 o 2),
Y = 20V, + M Vs — (1 2), 90V = V,00° Vs — (1 & 2),
%Y = 200210 + 40p°0Y, 0%V = 200p°Y + 20,00 + 4(1°)2Y,
L1 . _ 1 _
of = §f15(5y2 +0Y,) + V10 fo + V,00f, + 5(5371 —0Y1)0fs — (1 & 2),
o0y = 2u°y, @0y =24°Y, 0,0) = 20°Y,
0.8f = 30OV +T9) +3/(2" —7) + S,
0,0%Y = 207°Y + 20°8) — 2752,
0,00 = 200°Y — 27°80Y,
0,0%f = %62(837 +BY) + (10 — 37°) + FOT°,
0,00f = %65(832 +0)Y) —00f(° +7°) +afP° + 00 + far’,
0,06" = 0\° + %" — (7° + 37°)05°,
0,0’ = v — 2u°0° — 2(4° + 27°)a,°,
907" = 520 — 2,077,

If one wants to compute the current algebra from the expressions derived in the
standard Cartan formalism [181], one needs to transform the spin coefficients into
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a Lorentz connection with a space-time index in NU gauge. Using the notations of
subsection 3.3.1, together with the gauge choice for the tetrads (3.3.5) (and thus
also (3.3.12)), we have

F12u=—(’y+’7)—TXAEA—?XALA7 Do = 7La + 7La,
Tigu=—7—0X Ly — pX*La, T34 =0La+ pLa,
Dy = —T7— X L — pX“Ly, Ciga = pLa+ 6Ly,
Toge = 74+ AXAL4 + g XL, Toss = —ALa — iLa,
Doy = v+ puXAL 4 + AXAL, Tosa = —pLg — ALy,

Tspw=(v=9) 4+ (B— @)X 'La+ (= B)X*La, Tsaa=(a—B)La+ (B—a)La,
Fabr = 0.



Appendix D

Map from Bondi to
Fefferman-Graham gauge

In this section, we find the explicit change of coordinates that maps a general vacuum
asymptotically locally (A)dS, spacetime (A # 0) in Bondi gauge to Fefferman-
Graham gauge [166]. This procedure will lead to the explicit map between the
free functions defined in Bondi gauge {qag, B0, US', Eap, M, N4} and the holographic

functions defined in Fefferman-Graham gauge, namely the boundary metric 91(1?7) and

the boundary stress-tensor encoded in gg’,).
We follow and further develop the procedure introduced in [167]. We first note

that one can map the (A)dS, vacuum metric in retarded coordinates

A 2
ds® = (Tr — 1) du® — 2dudr + TQQAdeAde, (D.1)

to the global patch

A 2 A 2, -1
ds? = —(1 — %) dt? + (1 — %) dr? + r2gapdz’dz? (D.2)

by using u = t—r,, where the tortoise coordinate is r, = —% [arctan (7“ —%) — g}

for A <0 and r, = % [arcoth (r\/§>] for A > 0. The next step is to transform

the radial coordinate r into the tortoise coordinate r, which maps r = oo to r, = 0.

The change of coordinates from (t.,7,, z2) to Fefferman-Graham gauge (¢, p, z*) can

then be performed perturbatively in series of p around p = 0, identified with r, = 0.
The general algorithm is then the following:

1. Starting from any asymptotically locally (A)dS, solution formulated in Bondi
gauge (u,r, %), we perform the preliminary change to the tortoise coordinate

179
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system,

U —> T — Ts, a:A—m:f,

) y-dtan (r /-4 +3) A <0 _B o n Ao
\/%mth (7’* %) ifA>0 Are 3 135 ’
(D.3)
2. We reach the Fefferman-Graham gauge at order N > 0 perturbatively,
__Ei 1 O N+1 _io N+1 _io N+1 D4
Gpp = AL+00™ ™)), gu==500""), ga=—=50(p"""), (D4)
Ap p p
thanks to a second change of coordinates,
N+1
Ty — Z Rn(taxA)pna
n=1
N+1
t, > t+ Z To(t, ™) p", (D.5)
n=1
N+1
vt — ot 2 XA, 2B)pm.
n=1

To obtain all the free functions in 7,,, we must proceed up to order N = 3. For
each n, each gauge condition (D.4) can be solved separately and will algebraically
determine R,, T;, and X respectively. Only the function R;(¢,z*') remains un-
constrained by these conditions, since it represents a Weyl transformation on the
boundary metric that is allowed within Fefferman-Graham gauge. We fix this free-
dom by requiring the normalization gg% = QaAB.

We use the following shorthand notations for subleading fields in Bondi gauge:

vV A 2M
o= §r2 +7r V(l)(t,mA) + Vioy(t, :BA) + - + (9(7”2),

1 1 1 _
UA = U64(t7 xB) + ;Ué)(thB) + ﬁUé)(ta xB) + ﬁU(Ai’»)(tv xB) + O(T 4)7 (DG)
1
8= olt, %) + 5Bt 2) + OG-,
whose explicit on-shell values can be read off in (6.2.44) and (6.2.41). That will state

the equations in a more compact way. All the fields are now evaluated on (¢,2%)
since the time coordinate on the boundary can be defined as t as well as u. We
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also define some recurrent structures appearing in the diffeomorphism as differential
operators on boundary scalar fields f(¢, z4):

PLf] = 3¢ (@ + Ug'oal),
QLf: 1 = PLFI -~ 2Pl 0.7
Balf] = %6_260(@1 —204f0) [-

P"[f] denotes n applications of P on f, for example P?[f] = P[P[f]]. Now we can
write down the perturbative change of coordinate to Fefferman-Graham gauge:

Ru(t, ™) = —%,
9
Ry(t, ™) = 2A2 7250‘/(1
3 _ 27 3 _
Rs(t,z") = 5(2) ( + e e~V ) A3 (Q[V(1) Bo] — 3¢ 4ﬁ0‘/(1))
3 5)
Ralt,2%) = g (M +2e" P[Bo)] - §V<1>5<2>)
9
A3 {Q[V(o Bo] + ~e 4P [U{ll)aA‘/(l) — 2V(1)U(‘L1‘)5A% — 3Viyy (2% + V(o))}}
27 1 _ 3 _
+ Fewo [P2[V(1)] - 2‘/(1)(132[50] + 56 460@[‘/(1);50] - 3_26 860‘/(21)) B 2P[50]P[V(1)]}
Ti(t,z?) = (1 — e )Ry (¢, ),
_ 18 1
T2(t7 xA) = (1 —€ QﬂO)RQ(ter) o F (P[BO] - Ze 460‘/(1))7
3
Ts(t,2) = (1 — e72) Ry(t, 2) — Fe_gﬁo(l + eV — 20 By o)
9 1 _
+ e (QIViy Aol — 4e P P[] — e V),
Ty(t,z?) = (1 — e Ry(t, 2?)
9 _ 1
2A2[ 480 (M BayViy — SUé)aAﬁo) — §(P[5(2)] - 8ﬁ(2)P[ﬁo])}
201 _ 0 —4p0
e (3alVioy o) — 5 PLAIVio) — 26V Vio )

1 3
+ 56_250 (P[U(?)]ﬁAﬁo + éUé)aAP[60]>

1
— 5674,80 [Ué)BA[V(l)] + 6V — 2(Vi1)0afo + 253505AUUB)§Aﬁ0]}



182 APPENDIX D. MAP FROM BONDI TO FEFFERMAN-GRAHAM GAUGE

+ 1 (PPViy] = 2y P2[5o]

PLs[ (e V) — 8PLs] ) Vi + PV

1 _
- (- o

4 %{ ; 4Bo (P3[BO] + 2P[ ] P [/30])
1
"6

X{'(t,2%) = (T, — R)Ug,

3 9
Xéq(thB) = (TQ - R?)U64 - ﬁeizﬁoUé) + EP[U({X]?
1
X't 2%) = (Ts = Ry)Ug! + ™ Uy
6 1 I _
" QLU o] + 5B Vo] + 3¢ (U 06U — ViU
+ —36260Q[P[Uo l; /60],
3 1
Xf(t, JZB) ( R4)UA _ ﬂe 2Bo [UA _6250 (aAﬁ (2) — 86(2)6A50)}

9 - )
" W[Q[U@” bl = 56 " (V“)U(?) B §U5>5BU(A0>> — 2B P|UG']

1 1 1
+ BVl + 504 BelVil + 3¢ UG, BelUg] |

1
22 (Pl poll + PLBVio)l - %QACP [BelVin))
et (5 -
+ 5PV JUR — 5 (Vi = 8608 o) PLUS ] — UG PLOsUR )
%(aAU(?)BC[V(l)]] + 3P[Bo] Vi) o
— [i (aw&)) Do, ) + —<V<1>a% - 6CﬁoacUoB>@BUoA] J-

Several consistency checks can be performed at each stage of the computation.
The boundary metric in Fefferman-Graham gauge must be equivalent to the pulled-
back metric on the hypersurface {r — oo} in Bondi gauge, up to the usual replace-
ment v — t:

g [ 4o ] o8

Jab = —Uy 4AB

At subleading orders, g(g? and g((j)) must be algebraically determined by 9((12) and its
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first and second derivatives, which turns out to be the case. The constraint (6.2.45)
forces gc(é) = 0 while the annulation of D4p(t,2¢) (6.2.46) results in

O 3[R<>

oy =% TRROL ()] (D.9)

4

We do not give the full general form of g(g?,;), but it can be proven that this tensor is
traceless with respect to g(g), and that the equations of motion in Bondi gauge are

necessary and sufficient to show its conservation D(O)gg’) = 0, as we argued in the

main text.
After boundary gauge fixing 8y = 0, Ug' = 0, the expressions of each coefficient
in the diffeomorphism simplify drastically:

3
t,xt) = =
Rl( 7‘r ) A’
9
Ry(t,a?) = Wv(l)v

ni = St~ 0+ )+ B~ 1)

3 9 3
Ry(t,2?) = = (M + 0By — 5‘/(1)5(2)) Ag[ Vo) — V(2 + V(O))]
27 /1, 1., 6
+ A4( % Vinl = 70V + 32‘/(1)>
Tl(tva) = 07
9
TQ(ty':EA) = 2A2‘/(1)7
3
Tyt 2%) = —5(1+ Vio) + 575 (atv ~V3).
9 9or 9 3 1
Ty(t,x") = W[M - —(atﬁ(z + 4‘/(1)5(2))] + F[ - 1_66tv(0) + 5‘/(1)(1 + 5‘/(0))]
81 9 9
+A4( oV 45”/<1>Jr 6V<1>)

X (t,a%) = XA (t,2") =0,

1 3
X3t 2®) = ~UQ) - —aAV<1

A 2A2
3 9 1 1
Xf(t, IB) = 4A (U (3) + 5A6 2)) 2A2 ( 615 5‘/(1)[](13) + g&A‘/(O))
27

1
~ 16A3 q (51&53‘/(1) + 5‘/(1)531/(1))-
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Appendix E

Detailed computations in
Fefferman-Graham gauge

E.1 Check of the conservation law

We explicitly check that the ansatz (6.3.23) satisfies (6.3.24). We start by computing
the right-hand side of (6.3.24). The variations d¢4/|g(0)| and 0¢T* are given by

1 ab s (0 a
55\/|9<0)| = 5\/|9(0>| 9idegss = A/ loo| (D& — 3o). (E.1.1)
5£Tab = ﬁgoTab + 505Tab. (E12)

Recalling that T}, obeys T%, = 0 and D((IO)T‘“’ = 0 on-shell, we get

5‘91€en[g; »ng] = _775 (\/ |g(0)|Tab> DC(LO)S)) -7 \/ |g(0)|7—’ab(S (D((zO)gl?) ) (E13)
1
~0ebrenlg: 091 = 5/ Loy | (DOGT + L&, T) 0g,5) + 1/l | T*0(DVE).
(E.1.4)
The left-hand side reads as

0ukt"19:69] = =03 (y/lg)|T") DL = my/lao)| T69i D¢

1 arbe 0 1 a c 0
+ 5 |90 | DOeaT 69 + 50 l90)|€e DO T 545

(E.1.5)
Using Le, (T%) = DT — 27 D¢l we have
Oakg®19; 09] + whenly; 69, Leg]
1
= s/ lgo| (La T30 + 2159 DO — EDOT53)) = o0,
(E.1.6)
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which finishes the verification.

E.2 Charge algebra

Here, we write the explicit computations leading to the result (6.3.38).

The computation is on-shell, so in particular g(O)Tab =0 and D(O)T“b 0. Let us
start by computing ¢ J“[ ]. The computation is direct and takes benefit of (E.1.1)
and (E.1.2):

5ng[9] |g | )(XoTab)gbc §o—1 |g(0 |deDd ngzgg &6
(E.2.1)
+ 17/ 190)| T (DX + T3 elg]-
To obtain the second term is just a matter of replacement, so
=2 [0¢g, 9] = — T D€l — Jg E.2.2
E%00¢g, 9] = —=m/ 9@ IXe T Dy, "&c — T5 9] (E.2.2)

Summing both contributions and using the fact that T is divergence-free, we get
SxJ¢ L9l + E¢10¢g, 91
900 T% (€DOXG = XEDOE) + T3¢ — Jie — 2005 (/oo KET85)
= oo Tl X1 + T3¢ — T — 200, (3 low NG TS
= Jieng + e = T — 200 ( 19(0) |Xo cfo)

4~ 210 (\/ 90 IXE'T b]cé*é) :

The last term exhibits the exterior derivative of a 2-form,

(E.2.3)

€= ((d)a, L = =24 /gy (b TS (E.2.4)

Therefore, we have shown that the charge algebra represents the vector algebra
without additional 2-cocycle,

{Jelgl, Ilglys = T lo] + at[g]. (E.2.5)
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