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Université Libre de Bruxelles

Co-supervisor : Professor Alessio FRASSOLDATI
Politecnico di Milano

Thesis jury :
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Summary

The usage of novel combustion technologies, such as Moderate or Intense Low-oxygen
Dilution (MILD) combustion, in the future energy mix provides both a flexible and reliable
energy supply, together with low emissions. The implementation though is highly situa-
tional and numerical studies can help in the assessment of said technologies. However,
the existing uncertainties in numerical modeling of MILD combustion are quite signifi-
cant, and as detailed kinetics should be considered while modeling MILD combustion, a
major part of this uncertainty can be accredited to the kinetics. Combined with the fact
that existing detailed mechanisms have been developed and validated against conventional
combustion targets, there exists a gap between the performance of existing mechanism and
experimental findings. To handle this discrepancy, Uncertainty Quantification (UQ) and
Optimization are highly viable techniques for reducing this misfit, and have therefore been
applied in this work.

The strategy applied consisted of first determining the reactions which showed the
largest impact towards the experimental targets, by not only considering the sensitivity,
but also the uncertainty of the reactions. By using a so-called impact factor, the most
influential reactions could be determined, and only the kinetic parameters with the highest
impact factors were considered as uncertain in the optimization studies.

The uncertainty range of the kinetic parameters were then determined using the un-
certainty bounds of the rate coefficients, by finding the lines which intercepts the extreme
points of these maximum and minimum rate coefficient curves.

Based on this prior parameter space, the optimal combination of the uncertain parame-
ters were determined using two different approaches. The first one utilized Surrogate Mod-
els (SMs) for predicting the behavior of changing the kinetic parameters. This is a highly
efficient approach, as the computational effort is reduced drastically for each evaluation,
and by comparing the physically viable parameter combinations within the pre-determined
parameter space, the optimal point could be determined. However, due to limitations of
the amount of uncertain parameters and experimental targets that can be used with SMs,
an optimization toolbox was developed which uses a more direct optimization approach.
The toolbox, called OptiSMOKE++, utilizes the optimization capabilities of DAKOTA,
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and the simulation of detailed kinetics in reactive systems by OpenSMOKE++. By us-
ing efficient optimization methods, the amount of evaluations needed to find the optimal
combination of parameters can be drastically reduced. The tool was developed with a flex-
ibility of choosing experimental targets, uncertain kinetic parameters, objective function
and optimization method. To present these features, a series of test cases were used and
the performance of OptiSMOKE++ was indeed satisfactory.

As a final application, the toolbox OptiSMOKE++ was used for optimizing a kinetic
mechanism with respect to a large set of experimental targets in MILD conditions. A large
amount of uncertain kinetic parameters were also used in the optimization, and the opti-
mized mechanism showed large improvements with respect to the experimental targets. It
was also validated against experimental data consisting of species measurements in MILD
conditions, and the optimized mechanism showed similar performance as that of the nom-
inal mechanism. However, as the general trend of the species profiles were captured with
the nominal mechanism, this was considered satisfactory.

The work of this PhD has shown that the application of optimization to kinetic mech-
anism, can improve the performance of existing mechanism with respect to MILD com-
bustion. Through the development of an efficient toolbox, a large set of experimental data
can be used as targets for the optimization, at the same time as many uncertain kinetic
parameters can be used contemporary.

IV



Contents

Acknowledgements II

Summary IV

1 Introduction 1
1.1 UQ and Optimization of kinetic mechanisms . . . . . . . . . . . . . . . . 5

1.1.1 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Objectives of this work . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Methodology 11
2.1 Selection of uncertain parameters . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Local sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . 11
2.1.2 Impact factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.3 Cumulative function . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Uncertainty range of the kinetic parameters . . . . . . . . . . . . . . . . 14
2.2.1 Ensuring physically viable values . . . . . . . . . . . . . . . . . 15

2.3 Objective function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Surrogate models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.1 Kriging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5 Optimization algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5.1 DIviding RECTangles (DIRECT) algorithm . . . . . . . . . . . . 20
2.5.2 Evolutionary Algorithm (EA) . . . . . . . . . . . . . . . . . . . 21

3 Optimization of a chemical mechanism for MILD conditions 23
3.1 Experimental data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Choice of mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.1 Parameter selection . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Optimization study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

V



Contents

3.3.1 Validation against conventional conditions . . . . . . . . . . . . . 32
3.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 OptiSMOKE++ 35
4.1 Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1.1 OpenSMOKE++ . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.1.2 DAKOTA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Optimization targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2.1 Ignition Delay Time (IDT) . . . . . . . . . . . . . . . . . . . . . 38
4.2.2 Species profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2.3 Laminar Flame Speed (LFS) . . . . . . . . . . . . . . . . . . . . 39

4.3 Choice of objective function . . . . . . . . . . . . . . . . . . . . . . . . 39
4.4 Penalty function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.5 Uncertain parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.6 Test cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.6.1 Test case 1: Ignition Delay Time for MILD conditions in a Plug
Flow Reactor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.6.2 Test case 2: Ignition Delay Time at high pressures using data from
a Shock-Tube . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.6.3 Test case 3: Methanol oxidation in a Jet Stirred Reactor . . . . . . 48
4.6.4 Test case 4: A combined optimization . . . . . . . . . . . . . . . 51
4.6.5 Test case 5: Optimization of Laminar Flame Speed of methane

diluted in CO2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.6.6 Runtime and number of evaluations . . . . . . . . . . . . . . . . 55

4.7 Optimization of IDT for CH4 and biomass pyrolysis products . . . . . . . 56
4.8 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 Optimization of a kinetic mechanism for propane MILD combustion 61
5.1 Experimental database . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2 Optimization strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.3.1 Validation against JSR data . . . . . . . . . . . . . . . . . . . . . 68
5.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6 Conclusions 73

Nomenclature 79

List of Figures 81

List of Tables 85

Appendices 87

Bibliography 101

VI







CHAPTER1
Introduction

The role of energy production is not something often thought about in our daily lives.
The fact that the light turns on when we flip the switch is considered undisputable. But
where does this energy come from? Depending on where you live, the energy can be
produced by many different means, such as wind, solar, hydro, nuclear power or through
combustion of hydrocarbons. The implementation of hydro power is extremely case de-
pendent and nuclear power has many drawbacks, not only considering social acceptance.
The highly intermittent nature of renewable energy sources, referring to wind and solar,
makes it difficult to rely on only these sources for a stable energy supply.

One measure to solve this, is by storing the surplus energy produced in some form.
The more direct way would be battery storage, however, this is very expensive and not
suitable for long term storage. What instead is appealing is the concept of using the surplus
energy from wind and solar to produce fuels through electrolysis. These fuels can then be
utilized in combustion, which is very flexible, in a sense that a combustion facility can
be turned on/off relatively easily, and constructed at locations most suitable for the end
use. However, one drawback of combustion is fuel flexibility. When a facility is designed,
normally it is designed for the combustion of one specific fuel, and changing the fuel
could be very problematic. As fuels created from electrolysis can consist of a variety of
both gaseous and liquid fuels, a flexible combustion process is needed.

Another major drawback of energy production through combustion is related to emis-
sions. By burning hydrocarbons, carbon dioxide (CO2), nitrogen oxides (NOx), soot, and
other harmful compounds are formed, and if not treated properly, released into the atmo-
sphere. Instead of investing in expensive flue gas treatment facilities, that clean the flue
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Chapter 1. Introduction

gases from these harmful compounds, primary measures can be applied, i.e. changing
the conditions in the combustion chamber in order to produce less emissions. CO2 can
in one sense be considered as a complete product of the combustion of hydrocarbons, to-
gether with water (H2O). Soot emissions can easily be controlled by ensuring that either
non-sooting conditions are used in the combustion zone, i.e. not extremely fuel-rich con-
ditions, or by ensuring that the soot formed is completely oxidized before the flue gases
are released into the atmosphere. NOx emissions on the other hand originate from nitrogen
(N2) from the combustion air which reacts with oxygen (O2) and intermediate species to
form NOx. It is therefore more difficult to reduce the NOx emissions from a combustion
process, as it is necessary to use air for burning the fuel.

One way to counteract this, is by removing the N2 from the combustion air, and only
feed O2 into the combustion chamber for the oxidation of the fuel. This is referred to
as oxy-fuel combustion, and it is a very effective approach for reducing NOx emission.
However, due to the removal of N2, the concentration of O2 in the combustion chamber
is increased, which in turn increases the combustion temperature to infeasible values. To
circumvent this problem, Exhaust Gas Recirculation (EGR) can be applied to dilute the
O2 stream with combustion products, effectively reducing the combustion temperature.
However, these added controls present extra complexity and costs to the facility, as the
removal of N2 from the air, and the EGR, requires additional instruments and energy.
There is therefore an overall reduction of efficiency related to oxy-fuel combustion.

Other primary measures for the reduction of NOx emissions can be considered as fol-
lowing [1]:

— reducing availability of O2 in the reaction zone

— reducing combustion temperatures

— avoiding peak temperatures

— decreasing residence times at high temperatures

— NOx reburning

By reducing the availability of O2 in the reaction zone, the oxidation of the fuel is
inhibited which reduces the efficiency of the combustion process. Also a reduced combus-
tion temperature directly affects the efficiency of the process. There is therefore often a
trade-off between emission reduction and process efficiency for conventional combustion.
To instead achieve all of the five measures listed above, and still keep a high combustion
efficiency, non-conventional conditions such as MILD combustion needs to be applied.

MILD stands for Moderate or Intense Low-oxygen Dilution, and was introduced by
Cavaliere and de Joannon [2], but the same phenomena was reported using different tech-
niques and names, such as; FLOX (Flameless Oxidation) [3], HiTAC (High Temperature
Air Combustion) [4] and Colorless Distributed Combustion (CDC) [5]. According to the
definition of MILD combustion, it is reached when the inlet temperature of the reacting
mixture is above that of the auto-ignition temperature of the mixture, and when the maxi-
mum temperature increase in the system is lower than the auto-ignition temperature of the
mixture. A relatively simple way to achieve this is by recirculating the hot combustion
products back towards the injected stream, which both preheats and mixes the injected
mixture with combustion products, thus also diluting the mixture. These criteria ensures
that both the combustion temperatures and peak temperatures are reduced, as well as the

1
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residence time at high temperatures are reduced. Moreover, as the name entails, the con-
centration of O2 in the reacting zone is reduced due to the dilution of the reacting mixture.
The first criteria in the list above is therefore also satisfied. NOx reburning is a concept
where already formed NOx react with intermediate species from the fuel combustion at
intermediate to high temperatures [6,7]. Again these conditions are present in MILD com-
bustion due to the effect of the recirculation, and already formed NOx are recirculated back
into the reacting zone, where fuel intermediates are present. The combination of all these
facts therefore results in extremely low NOx emissions from MILD combustion processes.

Furthermore, due to the improved mixing between the fuel and oxidizer, the combus-
tion efficiency is also higher for MILD combustion, compared to conventional conditions.

It should also be noted that as the reaction zone is highly diluted in MILD combustion,
the combustion occurs during lean conditions, which directly counteracts the formation of
soot, and the emissions of soot are also negligible.

As previously mentioned, future perspectives include having a fuel flexible combustion
system. Due to the high inlet temperature and good mixing between the fuel and the
oxidizer, ignition of the fuel is assured, as well as a very stable and efficient combustion
process. MILD combustion therefore presents a very promising solution to the problem at
hand, i.e. flexible energy production with low emissions.

The implementation of such a system is of course situational, and to assess this, nu-
merical modeling, in the form of Computational Fluid Dynamics (CFD) simulations, can
be employed. Rather than the more traditional trial-and-error approach, CFD allows for
a faster and more cost-effective evaluation of a system. However, numerical modeling of
combustion is quite a challenging task, as it is a multiphysics problem and it is commonly
subjected to estimations. The predictability is therefore highly dependent on modeling
accuracy of the geometry, flow field, heat transfer and/or chemistry. The modeling of
chemical kinetics is a particularly challenging task, and as mentioned by Lu and Law [8]
the overall simulation cost can roughly be allocated only to the kinetics, as all other com-
ponents are insignificant with respect to the computational cost of solving the kinetics.
The overall simulation cost (C) can be estimated as C = C0 + aK + bK2 + cK3, where
C0 is the computational overhead, a, b and c are coefficients related to the rate evalua-
tion, diffusion and Jacobian factorization respectively, and K the number of species in the
mechanism. The coefficients (a, b and c) are all case specific, but the strong correlation
between the size of the mechanism K and C can still be appreciated from this correlation.

Whether detailed kinetics should be used in CFD simulations depends mostly on which
conditions that are simulated. A common criteria to evaluate this, is by estimating the
Damköhler number (Da), defined as the ratio between the mixing and chemical time
scales [9]. For many conditions, the mixing time scale is significantly higher than the
chemical time scale, i.e. the Da is high for these conditions, and detailed kinetics can
therefore be neglected. However, in MILD conditions the strong recirculation results in
lower mixing time scales due to the good mixing, and at the same time, the dilution in-
creases the chemical time scales, resulting in Da numbers close to unity. This directly
indicates that detailed kinetics is important for MILD conditions.

As the usage of detailed chemical kinetics is important for modeling MILD combus-
tion, a lot of uncertainty in numerical predictions can be allocated only to the kinetics.
Since each kinetic parameter were determined from experimental measurements, theo-
retical calculations and/or expert estimations, they could all be considered uncertain to

3
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some degree [10]. For each reaction in a kinetic mechanism, the modified Arrhenius
law (k = AT βe−Ea/RT , where A is the pre-exponential factor, β the temperature ex-
ponent, Ea the activation energy, T the temperature and R the ideal gas constant) states
that between 1-3 Arrhenius parameters can be added to the pool of uncertain parameters.
Considering that pressure dependent reactions, such as fall-off reactions, are included in a
kinetic mechanism as well, the amount of uncertain parameters are increased even more.
A fall-off reaction is a reaction where the effective rate coefficient is calculated as a blend
between the behavior at high and low pressures. At high pressures a fall-off reaction can
show one specific trend that can be described by one set of Arrhenius parameters, while at
low pressures the behavior is significantly different. Another set of Arrhenius parameters
are therefore needed to describe the low pressure behavior. In most cases, additional en-
ergy is also needed at low pressures for the specific reaction to occur, which is extracted
from a so called third body collision. A species is considered a third body if it stays inert
through the reaction process, and only transfers energy to the process. The total amount
of uncertain parameters in a kinetic mechanism, considering both pressure dependent and
non-pressure dependent reactions, can therefore roughly be estimated as 3 times the num-
ber of reactions.

Additionally, as our knowledge of chemical kinetics increases, the size of kinetic
mechanisms are growing. The development of kinetic mechanisms of different groups
over recent years can be seen in Figure 1.1, where the trend for each group shows an
increase of the number of species/reactions, and therefore also the number of uncertain
parameters.
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Figure 1.1: Displaying number of species vs number of reactions (a) for some chemical
mechanisms (adapted from [8]), as well as number of reactions vs number of uncertain
parameters (b), estimated as 3 × number of reactions. This is applied for several
versions of mechanisms from different groups [11–14].

The problem does not only lie with the number of uncertain parameters, but also the
fact that MILD combustion behave chemically differently compared to conventional com-
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1.1. UQ and Optimization of kinetic mechanisms

bustion. Detailed kinetic mechanisms developed and validated for conventional condi-
tions, and are therefore not performing satisfactorily in MILD conditions, and there have
been several studies that highlight this. Such as the work from Wang et al. [15], where the
chemical and thermal effects of CO2 and H2O on methane counter-flow diffusion flames
were studied. They saw an especially large thermal effect of CO2 on the flame temperature
in this study.

In both the works from Sabia et al. [16] and Lubrano Lavadera et al. [17], the effect
of CO2 and H2O on propane oxidation in MILD conditions were evaluated. They saw
a strong effect of CO2 on the system, and not only considering the thermal effect, due
to the high heat capacity of CO2, but also a large impact of the interaction of CO2 and
H2O as third body species, at low to intermediate temperatures. It was also highlighted
in Lubrano Lavadera et al. [17] that there exists a large discrepancy between the values of
the third body efficiencies of CO2 in different detailed chemical mechanism. In the work
of Sabia et al. [18], the difference in chemical pathways between conventional and MILD
conditions were highlighted for the oxidation of biomass pyrolysis products, as well as the
effect of third body efficiencies. These are but some works that highlights the discrepancy
between the performance of existing detailed chemical mechanism in MILD conditions,
and experimental findings.

Considering all these open issues, i.e. need for detailed kinetics while simulating
MILD combustion, large number of uncertain parameters in detailed kinetics, and finally
the fact that existing detailed kinetic mechanisms are under-performing in MILD con-
ditions, a promising approach would be to use Uncertainty Quantification (UQ) and/or
Optimization techniques, in order to improve the performance with respect to these condi-
tions.

1.1 UQ and Optimization of kinetic mechanisms

Imagining that a simulation code can be considered as a black box, where one set
of input parameters results in one output value, as illustrated in Figure 1.2a (where the
input parameters in this case refers to kinetic parameters). The model output can then be
compared to the experimental value in the output space and a quantitative evaluation of
the mechanisms performance can be made, for one specific design point.

However, in the case of kinetic mechanisms, the values of the input parameters are not
fixed and there exists an uncertainty in the input parameter space. This uncertainty can
be propagated towards the output space (Figure 1.2b), and the accuracy of the mechanism
can be evaluated, considering the uncertainty of the input parameters. This is referred to
as forward UQ and can be used to determine which parameters contribute to the largest
discrepancy in the predictions, as well as to determined the accuracy of the mechanism,
considering also the uncertainty of the parameters. Consequently, this information can be
used to evaluate which parameters needs further analysis, in order to reduce the output
uncertainty of the mechanism.

Instead of propagating the input parameter uncertainty to the output space, the infor-
mation regarding the experimental data can be used to restrict the input parameters in order
to ensure that the predictions lay within the experimental uncertainty. This can be done
by solving what is mathematically called an inverse problem, or in this case inverse UQ.
Here the experimental data, with corresponding uncertainty, is used to determine which

5
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Chapter 1. Introduction

combination of input parameters that predict the experimental data within the experimen-
tal uncertainty (Figure 1.2c). For a simple case, this may be feasible to achieve, but as
the number of experimental data increases, so does the number of input parameters that
are influential for these conditions. The problem therefore quickly arrives with more input
parameters than constraints, and no single combination of the parameters can satisfy all
the experimental constraints [19]. Nevertheless, an inverse UQ procedure can be used to
derive useful statistical information regarding the input parameters, constraining the un-
certainty range of the input parameters and providing useful information for further kinetic
mechanism development.

Rather than constricting the uncertainty range of the input parameters, it would be use-
ful to find one optimal point in the input parameter space, with respect to the experiments.
This optimal point would allow the model to predict the experimental data "best", consid-
ering both the uncertainty of the input parameters and the experimental data (see Figure
1.2d). This optimal point can be found through many different methods, but in principle
the optimal point is that which allows for a minimum or maximum of a specified objective
function (see Section 2.3). Depending on the problem at hand, the absolute optimum is
very difficult to find, if not impossible for some cases.

All the concepts described above, i.e. black box modeling, forward UQ, inverse UQ
and optimization, are illustrated graphically in Figure 1.2.

Design Point Experimental Value

Input space Output space

Nominal Point

Model

(a)

Forward UQ

Input Uncertainty

Input space Output space

Experimental Value

Model

(b)

Model

Experimental Uncertainty

Feasible Input Range

Inverse UQ

Input space Output space

Experimental Value

(c)

Optimal Point

Optimization

Input space Output space

Experimental Value

Model

Input Uncertainty

Experimental Uncertainty

(d)

Figure 1.2: Graphical representation of a black box model (a), forward Uncertainty
Quantification (b), inverse Uncertainty Quantification (c) and Optimization (d).
Adapted from Tamás Turányi [20].

It should also be mentioned that the cases described above, i.e forward UQ, inverse
UQ and optimization, considers that the kinetic mechanism used is complete and is able
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1.1. UQ and Optimization of kinetic mechanisms

to physically predict the output. However, if a kinetic mechanism is incomplete, i.e. some
crucial reaction pathways are missing, then the aforementioned approaches should be used
with caution, as it is easy to arrive with an unphysical mechanism. Nevertheless, these ap-
proaches can still be used in order to determine if a mechanism is complete or not. By
using experimental targets of similar nature, the inability to predict some experimental
targets can in many cases be explained by missing reaction pathways. It is therefore im-
portant to always use a mechanism which has been developed and validated for fuels and
conditions similar as to that of the targets.

1.1.1 Literature review
Forward UQ, inverse UQ and optimization of kinetic mechanisms have been applied in

numerous works for different fuels, conditions, and experimental targets. Listed here are
but a few of them, but they still represent the application of aforementioned techniques on
kinetic mechanisms. For simplicity they are divided into forward UQ and inverse UQ/op-
timization, as the later two often are combined.

Forward UQ

The work of Habib Najm and co-workers [21–24] has applied forward UQ on kinetic
mechanisms for several different systems and for different fuels, by using Polynomial
Chaos Expansion (PCE) methods for propagating the uncertainties of the kinetic parame-
ters. Through this, they were able to highlight how the uncertainty of some specific kinetic
parameters contributes to the uncertainty of the mechanism as a whole, and also providing
information regarding which reaction rates could use further experimental investigation,
for reducing this prediction uncertainty.

The application of forward UQ of kinetic mechanisms has also been applied by Turányi
and co-workers [25] where the effect of kinetic and thermodynamic parameter uncertain-
ties were evaluated for methane flames. They later extended this to both local and global
uncertainty analyses of different systems in [26–29]. In these works they were able to
determine the key kinetic and thermodynamic parameters, which were significantly influ-
encing the simulation results.

Another application of forward UQ to combustion chemistry can be found in the works
of Alison Tomlin and co-workers [30–34], where global sensitivity analysis studies of ki-
netic mechanisms in different systems, were performed. By using a High Dimensional
Model Representation (HDMR), they determined the combined effect of changing pa-
rameters from more than one reaction. Through these studies they were able to identify
key reactions which needed further studies and through high level quantum chemistry and
transition-state theory calculations for these reactions, they were able to improve the per-
formance of existing mechanisms.

Inverse UQ/Optimization

The application of inverse UQ to kinetic mechanisms has been performed in numer-
ous works available in the literature, but one of the first can undoubtedly be accredited
to Michael Frenklach [35–40]. Frenklach applied Surrogate Models (SM) (see Section
2.4) for predicting the behavior of the model with respect to a large set of experimental
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targets, and a feasible set was found in the parameter space by solving an inverse UQ
problem. This was developed into the Bound-to-Bound Data Collaboration (B2B-DC) ap-
proach [38] where not only the feasible set was found, but also the optimal point within
this set (see Figure 1.2d). The target parameters, called active parameters, consisted mostly
of pre-exponential factors (A), some enthalpies of formation and third body efficiencies.
This resulted in the widely known GRI mechanisms [41–43]. The relatively small size of
the GRI mechanisms, and their performance for natural gas in conventional combustion
conditions, proved to be a very effective combination, as they are still used today in a large
extent.

Building on the approach established by both Frenklach and Najm, Hai Wang and
David Sheen developed the Method of Uncertainty Minimization using Polynomial Chaos
Expansions (MUM-PCE) [44,45]. The approach is again based on representing the param-
eter uncertainties through a set PCE, and by combining this with a model representation
using SMs, they were able to solve the inverse-UQ problem. By applying a least-squares
optimization approach (normalized with the standard deviation of the experimental targets)
they were able to determine an optimal mechanism, with new restricted input parameter
uncertainties. The MUM-PCE approach has been applied in several works [46–50] for the
optimization of kinetic mechanisms for different conditions, but still the optimization was
restricted to only A factors. Only in recent works [49,50] has some third body efficiencies
and activation energies (Ea) been added to the optimization procedure.

Liming Cai and Heinz Pitch [51–54] utilized the MUM-PCE approach for the opti-
mization of rate rules. As rate rules are used for sorting reactions which behave in a similar
way, the change of one rate rule will bring a direct change to several reactions, and it is a
very efficient approach for the development of mechanisms for fuels with large molecules
and therefore also many reactions. In these works [51–53], only the A factors were used
in the optimization, and the optimal point was found based on the least-squares, normal-
ized with the standard deviation of the experiment, and a secondary term that penalized
large changes to the A factors. This ensured that optimization was achieved with mini-
mal changes to the nominal parameters. Recently, in vom Lehn et al. [54], they extended
their work to additionally optimize some thermochemical quantities, such as enthalpies of
formation for some species, in combination with some A factors.

By considering all three Arrhenius parameters (A, β and Ea), as well as third body
efficiencies, Turányi and co-workers [55–61] have also had success in optimizing kinetic
mechanisms. By first determining the joint probability distribution of each uncertain reac-
tion they try to find the optimal combination of parameters by sampling these distributions,
and the combination which results in the lowest so-called Error function [62] is considered
the optimum. Their approach is based on using both direct and indirect experimental data
for the optimization, where direct data refers to experimental and theoretical estimations of
a single rate coefficients, and indirect data refers to experimental measurements which are
influenced by several reactions, e.g. Ignition Delay Time (IDT) and Laminar Flame Speed
(LFS). Depending on the complexity of the target fuel and simulation, they used a combi-
nation of direct simulations and SMs in the form of orthonormal polynomials [56–59], for
the optimization.

Although SMs present a highly efficient approach for optimization, the highly com-
plex, and non-linear nature of mechanism optimization presents challenges in accurately
predicting the response with SMs. The above mentioned applications which used SMs,
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used mainly A factors as uncertain variables. The SMs therefore only had to predict the
linear nature of the Arrhenius law at the most, which is feasible. However, as the SMs
have to start predicting the highly non-linear nature several β and Ea parameters adds to
the problem, a SM quickly starts to loose accuracy. Rather than using SMs for representing
the response of the mechanism, each change to the mechanism can be evaluated directly,
thus removing the approximation error that the SMs adds. However, the amount of eval-
uations needed to find the global optimum can add up to millions if the full parameter
space should be covered completely. Sophisticated optimization algorithms can be used
instead, which finds potential optimums within the parameter space, based on the infor-
mation given by previous evaluations. This drastically reduces the number of evaluations
needed to find the global optimum. One such algorithm which is very suited for global
optimization of such complexity is Genetic Algorithms (GA) or Evolutionary Algorithms
(EA). It is a global non-gradient based optimization approach, which will be described in
more detail in 2.5.2. The first application of GA to mechanism optimization was Polifke
et al. [63], which optimized two- and three-step mechanisms for lean-premixed laminar
methane flames, by matching the performance of the global mechanisms with a detailed
mechanism. Elliott and co-workers thereafter applied GA for the optimization of kinetic
parameters for different fuels [64–67]. They even applied GA for optimizing a reduced
mechanism, targeting the performance of the original mechanism [68]. Building on the
approach of Elliott [68], Perini et al. [69] developed an automated mechanism reduction
and optimization approach, where a reduced and optimized mechanism was determined it-
eratively by first reducing and then optimizing the reduced mechanism using GA, targeting
the performance of the full mechanism. Sikalo et al. [70] also applied a similar approach
of mechanism optimization of a reduced mechanism. However, in order to reduce drastic
changes to kinetic parameters, a penalty function was introduced, which increased the ob-
jective function value if large changes to the kinetic parameters were foreseen. By doing
this, they were able to arrive with a reduced optimized mechanism, with minimum amount
of changes to the kinetic parameters.

The application of optimization techniques in different forms has also been applied
with respect to global mechanisms for MILD combustion [71–75]. Kim et al. [71] and Tu
et al. [73] compared different existing global mechanisms and applied some manual modi-
fications to some reactions to achieve better agreement with respect numerical predictions
of MILD combustion using CFD. Wang et al. [72] and Hu et al. [74] used results with the
GRI 3.0 mechanism [43] from a Plug Flow Reactor (PFR) to manually tune the kinetic
parameters in global mechanisms to improve the performance with respect to MILD and
MILD oxy-combustion, where MILD oxy-combustion is a combination of oxy-fuel and
MILD combustion. More recently, Si et al. [75] used a Artificial Neural Network (ANN),
trained with respect to changes in the kinetic parameters of a global mechanism, and op-
timized to match the species profiles of the GRI 3.0 mechanism [43] in different PFR
simulations. In this work, rather than changing kinetic parameters manually, the training
data for the ANN was achieved with random samples from the parameter space. However,
no systematic control of the consistency of the kinetic mechanism was performed in Si et
al. [75], which can result in infeasible rate coefficient values for the optimized mechanism.
This is further discussed in Section 2.2.1.
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1.2 Objectives of this work

In order to strive towards more flexible, and less polluting energy production, non-
conventional combustion technologies such as MILD combustion can be used. To evaluate
the feasibility of such a technology, numerical simulations are needed for cost-efficient
performance predictions. However, detailed kinetic mechanisms are needed to accurately
predict the complex behavior of MILD combustion. This brings a large amount uncertainty
to the simulations in the form of kinetic parameters, which are all uncertain to some extent.
The work in this thesis has therefore focused on developing a strategy for the Uncertainty
Quantification (UQ) and optimization of detailed kinetic mechanisms with respect to non-
conventional, or MILD, combustion.

As with any UQ or optimization works, key reactions for the conditions at hand has
to be determined, considering mainly their influence on the numerical predictions. Addi-
tionally, the uncertainty range of each kinetic parameter has to be defined, and the optimal
combination of the uncertain parameters has to be found within this parameter space.

The feasibility of this was evaluated using a Surrogate Model (SM) based optimization
approach (see Chapter 3). However, the application of optimization with respect to a
larger set of uncertain kinetic parameters and experimental data requires a more efficient
approach. A toolbox was therefore developed for the optimization of kinetic mechanisms
(see Chapter 4). The toolbox was validated for a series of different conditions, considering
different types of experimental targets. Finally, the application of the toolbox to a large
set of experimental targets of propane combustion in MILD conditions was applied (see
Chapter 5).

1

10



CHAPTER2
Methodology

This chapter aims to briefly discuss the different methodologies applied in this work.
The optimization strategies applied can be divided into two different categories; surrogate
model based UQ and optimization, and direct optimization. With direct optimization refer-
ring to methodologies which does not utilize surrogate models for estimating the behavior
of the model, but instead directly evaluates the effect of each change of the uncertain pa-
rameters. The later strategy was realized by developing a toolkit called OptiSMOKE++,
which will be discussed in detail in Chapter 4.

2.1 Selection of uncertain parameters

The first step in any UQ or optimization study is always to determine which param-
eters that should be considered. For some cases, where a mechanism consist of only a
small amount of parameters, such as global mechanisms which consist of only a few reac-
tions, the complete set of parameters can be considered in the study. However, for larger
chemical mechanisms, the amount of parameters quickly increases, and it would be infea-
sible to consider all parameters in an UQ/optimization study. It is therefore necessary to
distinguish which parameters that are most influential for the conditions at hand.

2.1.1 Local sensitivity analysis
The most straightforward approach for determining if a parameter is influencing the

results or not, is that of a brute force sensitivity analysis. Here each parameter is changed
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Chapter 2. Methodology

slightly and the response with respect to the Quantity of Interest (QoI) is evaluated. This
is what is referred to as local sensitivity analysis [10], and can be formulated as:

Sij =
∂Yi
∂xj

(2.1)

where Sij is the sensitivity coefficients, Yi is the QoI of condition i and xj is a kinetic pa-
rameter of index j. However, the unit of these sensitivity coefficients are not universal, as
they depend on both Yi and xj . It is therefore not possible to compare two sensitivity co-
efficients if either the QoI, or the kinetic parameter considered, is different. To circumvent
this problem, the normalized sensitivity coefficients should be used. Here the sensitivity
coefficients (calculated with Eq. 2.1) is normalized with the nominal values of Yi and xj
as:

Sij =
∂Yi
∂xj
· xj
Yi
. (2.2)

This ensures that each sensitivity coefficient in the sensitivity matrix Sij are comparable
and the parameters which are most influential for each condition can be determined.

As already mentioned in Chapter 1, the number of parameters in a kinetic mechanism
quickly increases with the number of reactions, which consequently increases the compu-
tational effort of the sensitivity analysis. To avoid this drastic increase in computational
cost, only the pre-exponential factor (A) of each reaction is commonly used for the sen-
sitivity analysis of kinetic mechanisms. This saves a lot of computational effort, and still
gives an indication of which reactions that are most influential for the conditions at hand.
Eq. 2.2 therefore becomes:

Sij =
∂Yi
∂Aj

· Aj
Yi

(2.3)

where the index j in this case represents the reaction number in the mechanism used.
It should also be mentioned that for some conditions, it is more beneficial to normalize

the sensitivity coefficients with respect to the maximum value of the QoI. This is espe-
cially applicable for when the QoI consists of mass or mole fractions of species, which
can approach values close to/or zero. The sensitivity coefficient is therefore artificially
increased due to the normalization, which is unwanted, and the maximum value of the QoI
should be used instead:

Sij =
∂Yi
∂Aj

· Aj
max(Yi)

(2.4)

Global sensitivity analysis

A local sensitivity analysis considers only the linear effect of changing one kinetic pa-
rameter at a time. For most cases, as mentioned above, only the pre-exponential factor is
considered in local sensitivity analyses of kinetic mechanisms. However, to capture the
non-linear response of changing other kinetic parameters, as well as the effect of chang-
ing more than one kinetic parameter, a global sensitivity analysis is needed. A global
sensitivity analysis does not only take into account small changes to one single parame-
ter, but changes several parameters at the time, and through the response with respect to
the QoI, the parameters specific, or joint, contribution to the prediction uncertainty of the
mechanism can be determined. This is of course a very computationally expensive proce-
dure, as each added kinetic parameter increases the number of combinations that should
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2.1. Selection of uncertain parameters

be evaluated by a factor of three (considering that each parameter can assume a nominal
value, ± a percentage change). The number of possible combination of parameters in a
global sensitivity study can therefore be determined as 3j , where j is the number of kinetic
parameters. This quickly becomes infeasible due to the large amount of parameters in a
kinetic mechanism (see Figure 1.1b). The total number of evaluations can be reduced by
only considering a subset of the total amount of parameter combinations as done in Valkó
et al. [76]. Here response surface techniques (see Section 2.4) were also used to reduce
the computational effort needed. However, when comparing the results of the local and
global sensitivity analyses, the same set of influential reactions could be found using both
approaches. Although the specific order of the reactions were not the same, the quali-
tative information regarding which reactions that are important could still be considered
the same. Similar results were obtained by Zádor et al. [27], where both local and global
uncertainty analyses were compared for methane flames.

An efficient approach for determining global sensitivity coefficients was also proposed
by Bruno Sudret [77], where he used a Polynomial Chaos Expansion model to analyti-
cally determine the variance of the model and attribute that to the input parameters. This
approach of variance-based sensitivity analysis is often called Sobol’ indices [78] and the
approach of Sudret [77] has been used in several works in the scope of UQ and optimiza-
tion [79, 80]. However, Sudret [77] mentioned that this approach is particularly efficient
for a low number of input parameters, specifically less than 10. The application of this
approach to kinetic mechanisms was therefore not considered, as the amount of uncertain
parameters quickly reaches the limit of 10, proposed by Sudret [77].

Considering all this, it was considered sufficient to use the information from only the
local sensitivity analysis in this work, in order to save both computational effort and to
include a large set of parameters. However, it should be mentioned that the additional in-
formation gained from global sensitivity analysis could prove important as the complexity
of the optimization increases and it will be more crucial to restrict the optimization only
to the most influential kinetic parameters. This can partly be seen in Chapter 5, were some
parameters used in the optimization did not prove to be influential.

2.1.2 Impact factor
The sensitivity indices indicates which reactions that have the largest influence with

respect to the QoI, but this effect is based on only a small change in the pre-exponential
factor (for local sensitivity analysis) of the reaction. Considering that the influence is also
proportional to the change of the parameter, the effect of changing a specific parameter is
also correlated to the physical limits of the parameter. If a reaction is highly sensitive to
the QoI, but the allowed change of the reaction parameters are small with respect to other
reactions, the total effect would not necessarily result in a large change of the QoI. The
total impact of a specific reaction is therefore not only related to the sensitivity, but also to
the uncertainty correlated to that reaction.

Warnatz [81] introduced another index, which also considers the uncertainty of the
reaction by multiplying the absolute value of the sensitivity coefficient with the uncertainty
parameter for each reaction:

Iij = |Sij | · fj (2.5)

where Iij is referring to this index for condition i and reaction j, Sij are the normalized
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sensitivity coefficients and fj the uncertainty parameter for reaction j. Warnatz used this
measure for determining which reactions that needed more experimental work, but later
Frenklach [40] started using this measure for determining which reactions that should be
considered in an optimization study. He referred to this index as "impact factor", but it has
also been referred to as "sensitivity uncertainty index" [25] and "optimization potential"
[51,52]. In this work it will be be referred to as impact factor from now on, and as will be
seen, also used to determine the reactions for the optimization studies.

2.1.3 Cumulative function
With either the sensitivity coefficients, or the impact factors, the important reactions

for each condition i can be determined. However, to narrow down the list to a set of
overall important reactions either the average index for each reaction can be considered
(see Section 3.2.1), or a cumulative function of either the sensitivity or the impact factor
indices can be constructed. The cumulative function is constructed by summing up the
indices of each reaction over the complete set of conditions, and by normalizing all these
values with the maximum, a value between 0-1 can be assigned to each reaction. By
specifying a cut-off threshold ε, each reaction with a normalized cumulative value above ε
will be considered in the optimization. An example of such a curve can be seen in Figure
2.1 below.
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Figure 2.1: Example of a cumulative function, where the white and black diamond scatter
represents the reactions which are below and above the cut-off of ε=0.3, respectively.
It should be noted that the Reaction indexes are not necessarily ordered in ascending
order on the x-axis, but according to the reactions specific cumulative function value.

2.2 Uncertainty range of the kinetic parameters

After the most influential reactions with respect to the conditions at hand are deter-
mined, the next step would be to determine the limits of these parameters. The direct
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2.2. Uncertainty range of the kinetic parameters

upper and lower bounds of the Arrhenius parameters are not normally given, instead the
limits of the rate coefficient (kmin and kmax) are often specified for specific temperature
ranges. These can be determined using the spread of available direct experimental data or
theoretical estimations of the rate coefficient value, available in the literature. The nomi-
nal rate coefficient value (k0) is determined such that the limits are symmetrically located
around k0 on a logarithmic scale. Based on this, the uncertainty parameter (f ) can be
defined as:

f = log10

(
k0
kmin

)
= log10

(
kmax
k0

)
(2.6)

or by only using the extreme values of the rate coefficient (kmin and kmax), f can be
determined as:

f = 0.5 · log10
(
kmax
kmin

)
. (2.7)

Based on this, the physically viable values of the rate coefficient for each reaction can
be determined. To correlate this to the Arrhenius parameters on the other hand is not as
straightforward as it would seem. As the parameters are strongly correlated, the combined
effect of changing two parameters could either enhance, or cancel out, the effect of the
change on the rate coefficient. However, by considering the extreme curves of the rate
coefficient, Fürst et al. [82] defined a procedure which can be utilized for determining the
extreme values of each Arrhenius parameter:

(a) Firstly, only the pre-exponential factor A is considered uncertain, which then corre-
sponds to an uncertainty range equal to the extreme curves kmin and kmax.

(b) If either β or Ea are equal to zero, the range of the second non-zero parameter can
simply be determined with the extreme points, kmin(Tmax) with kmax(Tmin) and
kmax(Tmax) with kmin(Tmin), where Tmin and Tmax were taken as a large range
(300 - 2500 K) to ensure a large validity of the mechanism.

(c) Otherwise the range of β is evaluated by fixing the activation energy Ea to its nomi-
nal value, as well as lettingA be unknown. Then by using the extreme points defined
by the temperature range and the maximum and minimum rate coefficient curves,
the maximum and minimum β values can be found. The range of A determined in
this step is not considered, because the range determined in step (a) is used for this
parameter.

(d) Finally, the range of the activation energy Ea, is determined similarly as for β in
step (c), using the extreme points. However, this time the temperature exponent β is
fixed to its nominal value and A is still considered unknown. Again, the range of A
determined in this step is not considered.

An example of this procedure can be seen in Figure 2.2, where the extreme curves
(determined through steps (c) and (d) above) for the rate coefficient for reaction CH4 +
OH→ H2O + CH3 are plotted, as well as the k0, kmin and kmax curves.

It should be noted that this approach of determining the specific parameter bounds
assumes no correlation between the different parameters.

2.2.1 Ensuring physically viable values
Although the ranges of each parameter can be determined through the approach de-

scribed above, a change in two or more parameters can still result in a rate coefficient
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Figure 2.2: Rate coefficient for reaction CH4 + OH→ H2O + CH3 where the black solid
line ( ) corresponds to the nominal curve from the POLIMI C1-C3 [83] mechanism
and the black dashed-dotted lines ( ) corresponds to the extreme curves kmin and
kmax, while the blue dashed lines ( ) corresponds to the extreme curves for the tem-
perature exponent β and the red dotted lines ( ) corresponds to the extreme curves
for the activation energy Ea, derived from the approach described in the text.
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2.3. Objective function

value outside of the extreme curves (kmin and kmax). It is therefore important to always
double check the rate coefficient, to ensure that the suggested combination of parameters
allows for physically viable values. An a posteriori check of the rate coefficient is there-
fore necessary, and only the combination of parameters which satisfy this criteria should
be considered viable candidates for the optimal solution.

2.3 Objective function

In any optimization problem, the optimal solution is always determined based on the
objective function (Obj). This is a measure which determines how close the current eval-
uation (Y sim) is to the experimental targets (Y exp). There exists many different ways to
calculate the objective function in an optimization problem, but arguably one of the most
common is the L2-norm, also referred to as Least Squares (LS). Here the residual between
between the experimental data Y exp and the simulated value Y sim, are squared for each
data point (j) in each data set (i):

Obj =

N∑
i

Ni∑
j

(Y expij − Y simij )2 (2.8)

where N refers to the total number of data sets and Ni the number of data points in data
set i.

This approach has been used in many works, but this is basically weighing each ex-
perimental point equally against each-other. Instead if one experimental data point has a
large uncertainty correlated to it, it would be beneficial to say that this experimental target
should have less weight in the objective function, and vice versa for experimental points
with small uncertainty. This effect can of course be achieved by a weighted LS definition,
and as first introduced in [84], the weight can be directly correlated to the experimental
uncertainty by dividing the residual in Eq. 2.8 with the standard deviation (σ), giving:

Obj =

N∑
i

Ni∑
j

(
Y expij − Y simij

σij

)2

(2.9)

By weighing the residuals with σ, experimental data with large uncertainty have a
lower impact in the overall sum.

In order to avoid that data sets with a large number of data points becomes overly
important, it is also important to weigh the objective function based on the number of data
points in each data set. The objective function for each data set is therefore divided by the
number of data points in each specific data set (Ni), thus removing the bias towards data
sets with many experimental targets. Eq. 2.9 therefore becomes:

Obj =

N∑
i

1

Ni

Ni∑
j

(
Y expij − Y simij

σij

)2

(2.10)

The determination of the standard deviation is in this approach is crucial for the value
of the objective function. As stipulated by Olm et al. [59], the standard deviation can be
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estimated as a combination of the standard deviation based on the reported experimen-
tal errors (σexp) and the standard deviation calculated based on the experimental scatter
(σstat):

σ =
√
σ2
stat + σ2

exp (2.11)

where σexp is calculated based on how many standard deviations the experimental error
represents, i.e.

σexp =
Y exp · ε
X

(2.12)

where ε is the reported relative experimental error and X is the number of standard de-
viations that the experimental error represents. If no specific information regarding how
many standard deviations the experimental error represents was given, it was assumed to
be 2 standard deviations in this work.

For many cases, only the experimental error is given together with the experimental
values. With no repetition of the experimental points, the statistical standard deviation
cannot be determined, and the total standard deviation can then be estimated as only the
σexp.

Another common definition of the objective function is the L1-norm, or also called
Least Absolute Deviation (LAD). Here the absolute value of the residual is used instead of
the square of the residual. This approach has been used in several works [65–67, 69] with
some modifications, but to stay consistent, the following form of the L1-norm was used:

Obj =

N∑
i

1

Ni

Ni∑
j

| Y expij − Y simij |
σij

(2.13)

As mentioned in Olm et al. [85], for experimental targets that have a scatter propor-
tional to the experimental value itself (more specifically data such as Ignition Delay Time
(IDT)) the objective function should be calculated using the natural logarithm of the ex-
perimental and simulated values, i.e. Y expij = ln(yexpij ) and Y simij = ln(ysimij ), where yexpij

and ysimij refers to the absolute experimental/simulated value for data set i and point j.
This ensures that the objective function is more evenly distributed between the data points,
and it will be easier to achieve overall improvements for each point, rather than only for
some. For other experimental targets, such as species concentrations and laminar flame
speeds, the objective function is calculated directly based on the absolute value of the ex-
perimental and simulated values, i.e. Y expij = yexpij and Y simij = ysimij . For the specific
cases where Y exp = 0, which can occur for species concentrations, the σexp from Eq.
2.12 is assumed to be one in order to avoid numerical issues in Eq. 2.10 and 2.13.

2.4 Surrogate models

An optimization study usually consists of hundreds or thousands of evaluations. By
comparing them based on the objective function value (see 2.3), the evaluation which
shows the lowest value can be considered the optimal one. Due to the large amount of
evaluations needed, also a large computational cost should therefore be expected. One way
to speed up this process is by reducing the computational effort for each single evaluation
by utilizing Surrogate Models (SMs), also referred to as Response Surface Models (RSMs)
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or solution mapping, approaches. SMs are approximations of how the actual model would
behave with specific parameter changes, and the computational cost is just a fraction of
the time needed by the actual model for one evaluation. It is therefore very common to use
SMs in combination with optimization studies.

A SM is built up by using a set of known model outputs and parameter values, and
based on these, the SM can predict what the model output would be at another location
in the parameter space. The accuracy of these predictions can be more or less precise de-
pending on both the number of samples used for the construction, and the strategy used
for creating the SM. Some common strategies for SMs are; Polynomial Chaos Expansion
(PCE) [86], Gaussian Process interpolation (GP)/Kriging [87, 88] and High-Dimensional
Model Representation (HDMR) [89]. In this work, the application of Kriging for the opti-
mization of a chemical mechanism has been performed (see Chapter 3). A more detailed
description of the Kriging approach is therefore presented below.

2.4.1 Kriging
The basic concept of Kriging states that the target y(x) can be described as a combi-

nation of a regression (or trend) function f(x), and a residual function Z(x) [90] as:

y(x) = f(x) + Z(x) (2.14)

where x represents the variable vector. The regression function f(x) can universally be
expressed as a weighted linear combination of a set of polynomials:

f(x) =

p∑
i=1

αibi(x) (2.15)

where b represents the basis functions with power base of p and α the weights, which
are determined by Generalized Least Squares (GLS). However, as choosing the regression
function is quite challenging, one can assume a constant known regression function, called
Simple Kriging, where it is usually set to zero, i.e. f(x) = 0. Another common approach is
to assume a regression function of order zero, called Ordinary Kriging, giving f(x) = α.

The residual function Z(x) is modelled as a Gaussian process with mean 0, variance
σ2 and a correlation matrix Ψ:

Ψ =


Ψ(x1, x1) · · · Ψ(x1, xn)

...
. . .

...
Ψ(xn, x1) · · · Ψ(xn, xn)

 (2.16)

where Ψ are the correlation functions and n represents the number of observations. A
common description of the correlation function is the so called powered-exponential:

Ψ(x, x′) = exp

(
−

d∑
i=1

θi | xi − x′i |γ
)

(2.17)

where x and x′ represents two points in the input parameter space, with d dimensions. The
correlation therefore only depends on the distance between these two points, and the rate
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of which the correlation is related to the distance is defined by both γ and θ. γ determines
how the initial drop in the correlation changes with the distance, and γ = 2 (also called
Gaussian correlation function) is often used, assuming a smooth change in the correlation
function. θ on the other hand determines the rate of which the correlation changes with
the distance, and consists of a set of hyper-parameters that are usually determined using
Maximum Likelihood Estimation (MLE).

Finally, the prediction of the target at any point x∗ in the input parameter space can be
expressed as:

y(x∗) = b(x∗)ᵀα+ r(x∗)ᵀΨ−1(y(x)− Fα) (2.18)

whereb(x∗) is the vector of basis function evaluations at point x∗, α is the vector of
weights used for the regression function in Eq. 2.15, r(x∗) is the correlation vector be-
tween the observed points x and point x∗, Ψ is the correlation matrix from Eq. 2.16, y(x)
is the vector of observed targets at x and F is a matrix of the basis functions evaluated at
the observed locations, i.e:

F =


b1(x1) · · · bp(x

1)

...
. . .

...
b1(xn) · · · bp(x

n)

 (2.19)

One thing to note is that once Ψ, F and α have been determined based on the observed
values, they remain constant and Eq. 2.18 can be simplified to:

y(x∗) = b(x∗)ᵀα+ r(x∗)ᵀg (2.20)

where g contains these constants.

2.5 Optimization algorithms

In order to reduce the amount of evaluations needed in a direct optimization approach,
sophisticated optimization algorithms can be used. An optimization algorithm tries to find
the optimal point in the parameter×objective function space based on existing evalua-
tions, with the smallest amount of total evaluations possible. There exists many different
approaches in the literature, some more suited for the problem at hand, i.e. kinetic mech-
anism optimization, than others. In this sections two global optimization approaches used
in this work (see Section 4.6.1) will be described in more detail.

2.5.1 DIviding RECTangles (DIRECT) algorithm
As the name entails, the DIRECT [91] algorithm divides the parameter search space

into different rectangles. Each rectangle is then evaluated based on the center point, and
the different rectangles are divided into promising and non-promising regions (promising
where the objective function is small). In the promising regions, local optimization ap-
proaches are used, i.e. one parameter is changed at the time, while for the non-promising
regions, a global approach is still applied to ensure that a global optimum is not overseen.
The procedure of dividing the rectangles are then repeated each iteration and further di-
vision into promising and non-promising regions are made until a stopping criteria has

2
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been reached. A graphical representation of how three iterations steps with the DIRECT
algorithm in a 2D parameter space can be seen in Figure 2.3.

1st
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ra

tio
n

3rd
ite

ra
tio

n

Start Select 
rectangles

Divide 
rectangles

Figure 2.3: Three iteration steps in a 2D parameter space of the DIRECT algorithm. The
shaded and white areas represent the promising and non-promising regions respect-
fully. Adapted from [92].

Here the shaded areas represent the promising regions, where a local optimization
approach is used, and the white areas are the non-promising areas where a global opti-
mization approach is applied. In the last step, it can be seen that even-though the central
rectangle is not considered as a promising region, it is still divided into sub-rectangles.
This is done to keep a global aspect of the optimization, which can also be controlled by
specifying a so-called global balance parameter. This parameter determines if a small rect-
angle can be subdivided or not, based on the ratio between the size of the small rectangle
and the size of the largest rectangle. If this ratio is greater than this specific threshold,
the small rectangle can be subdivided. This further ensures that no region is overlooked,
and that a global minima is found. This combination of local and global optimization
approaches has proven to be highly efficient for engineering optimization problems.

2.5.2 Evolutionary Algorithm (EA)
Based on the evolutionary theory by Darwin, EA follows the rule of survival of the

fittest, and a logical workflow can be seen in Figure 2.4. EA starts off by creating an initial
population of individuals from random samples. Each individual consists of a parameter
combination which are evaluated and the objective function (see Section 2.3) is calculated.
Each individual is thereafter ranked against each-other, and the "best" individuals are kept
in the population, and through crossover and mutation new individuals are created from the
"best" individuals. These new individuals are then added to the population, replacing the
worst ranking ones from the previous population. This is repeated until a predetermined
stopping criteria has been reached. Crossover refers to the procedure of combining the
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features of two individuals, called parents, and create children which potentially have a
lower objective function value than the parents. Mutation, or small changes, to the children
is added in order to increase the diversity of the population and to avoid falling into local
minima.

Start

Stopping 
criteria 
reached 

Stop

No

Yes

Initialization of 
the population

Ranking of the 
individuals

Selection of 
“best” 

individuals
Crossover and 

Mutation 

Figure 2.4: A graphical representation of the workflow of an Evolutionary Algorithm.
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CHAPTER3
Optimization of a chemical mechanism for

MILD conditions

This chapter describes the application of UQ and optimization on a kinetic mechanism
with respect to MILD combustion. These results were published in Fürst et al. [82] and
it was the first time a large scale optimization study was performed on a detailed kinetic
mechanism with respect to MILD combustion conditions.

3.1 Experimental data

The experimental targets used in this chapter are from Sabia et al. [93] and Sabia et al.
[18]. The data consists of Ignition Delay Time (IDT) data from a Plug Flow Reactor (PFR)
for two different fuels, methane (CH4) and biomass pyrolysis products. The reference
composition of the biomass pyrolysis products was: 1% C2H4, 2% C2H6, 10% CH4, 25%
CO, and 62% CO2. The PFR has a length of 1.4 m and internal diameter of 0.01 m. The
experiments were performed at C/O ratios between 0.025-0.2 and oxygen ratios (Ω) [94]
between 0.9-1, and each condition was evaluated at different inlet temperatures ranging
from 1130 to 1400 K.

The PFR was enclosed inside a heater to reduce heat losses, and the surrounding tem-
perature was set to that of the inlet. The overall heat transfer coefficient was estimated in
Sabia et al. [93] to be 100.4 W/(m2K). The mixture of fuel and combustion air was diluted
with nitrogen (N2) to a total of 85% for the CH4 cases and 90% for the biomass pyrolysis
product cases. The usage of Ω for the biomass pyrolysis products data was due to the
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Chapter 3. Optimization of a chemical mechanism for MILD conditions

presence of partially oxidized compounds in the fuel, and according to Mueller et al. [94],
gives a more accurate description of the characteristics of the mixtures.

In the experiments, the ignition delay time was calculated as the ratio between the
distance where the temperature was 10 K higher than the inlet temperature and the velocity.
The same definition was applied in the present work for a direct comparison between the
experimental data and the simulation results. The temperature was measured along the
reactor axis with thermocouples of type N every 0.05 m. The experimental uncertainty
was estimated on the basis of the displacement of the thermocouples and the inlet velocity
of the mixture [18, 93].

The experimental conditions were simulated using the open-source software
OpenSMOKE++ [95] for non-isothermal and non-adiabatic conditions. According to
Sabia et al. [93] the Reynolds number is higher than 3000 for the experiments, which
verifies the plug flow assumption in the model.

As mentioned by Sabia et al. [93], some of the experimental conditions for the methane
data showed a transitional ignition behavior, where a first stable ignition condition was es-
tablished experimentally, and then a shift towards slower ignition occurred. This behavior
was more prominent at high C/O ratios and at high inlet temperatures, and is the reason
why two significantly different IDT values are presented for some conditions in Figure
3.1d. The average value between the two IDTs were used as targets in the optimization for
these data.

3.2 Choice of mechanism

As there are many different detailed chemical mechanisms available in the literature,
an initial screening was performed in this work in order to find the mechanism which is
predicting the trend of the experimental data most accurately. The mechanisms used for
this study are listed in Table 3.1, together with reference, number of species, number of
reactions and average deviation from the experimental data. The deviation was calculated
as the absolute difference between the experimental and the simulated values, for each
experimental point, divided by the experimental value in that point.

Table 3.1: List of chemical mechanism used in this work with, reference, number of
species, number of reactions and average absolute deviation from experimental data
[18, 93].

Mechanism Reference Nr species Nr reactions Av. abs. dev. [%]
Aramco1.3 [96] 124 766 50.06
Aramco2.0 [97] 502 2716 43.97
Galway Natural Gas [98] 293 1593 44.19
GRI 2.11 [42] 49 279 67.53
GRI 3.0 [43] 53 325 67.86
POLIMI C1C3 LT [83] 107 2642 39.66
San Diego 2016-12-14 [14] 57 268 77.86
Zhukov [99] 549 2518 66.57

The results from the simulations can be appreciated in Figures 3.1-3.2 in so-called

3
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Arrhenius plots, where the IDT is presented in the logarithmic scale on the y axis and the
x axis is represented by 1000 divided by the inlet temperature of the mixture.
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Figure 3.1: IDT for methane at different inlet temperatures for C/O = 0.025-0.2. Experi-
mental data are represented by points with corresponding error bars, while simulation
results for the different mechanisms are presented by the colored lines.

Based on the average deviation, the POLIMI [83] mechanism was chosen for the con-
tinued evaluation.

3.2.1 Parameter selection
As mentioned in Chapter 2, the choice of which parameters to consider in the opti-

mization study is an important task. In this chapter the selection of parameters were done
by ranking the reactions from the mechanisms based on an averaged impact factor (see
Section 2.1.2). An initial screening of the 20 reactions with the highest absolute value of
the sensitivity coefficients, at each of the conditions considered, resulted in 42 different
reactions. The sensitivity indices were determined with respect to temperature, and the
uncertainty parameters were primarily extracted from the Baulch et al. [100] database, but
if a reaction was not listed in [100], estimations of the uncertainty parameter based on data
from the NIST Chemical Kinetics Database [101] were made. The average impact factor
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Figure 3.2: IDT for biomass pyrolysis products at different inlet temperatures for Ω =
0.9 and 1. Experimental data are represented by points with corresponding error bars,
while simulation results for the different mechanisms are presented by the colored lines.

for these 42 reactions can be seen in Figure 3.3, where they are ranked in descending order.
To reduce the number of parameters evaluated in this study, an initial evaluation of

the top five reactions was performed, to determine if the prior uncertainty range for each
reaction was enough to cover the complete range of the experimental uncertainty. This
was performed in a so-called forward UQ study, where the individual uncertainty of each
reaction was propagated to the output of the model, which in this case refers to the IDT. If
the prior uncertainty range for a specific reaction was not sufficient enough, that reaction
was not considered in the optimization process.

This study showed that reactions R229 (O2 + CH3 ⇔ O + CH3O) and R513 (CH3OO
⇔ CH2O + OH) had very small impact on the prediction of the IDT, especially for the
biomass pyrolysis products cases, even though their global impact factor ranking was high.
Reactions R1 (O2 + H⇔ O + OH), R271 (HO2 + CH3 ⇔ OH + CH3O) and R405 (CH4
+ H ⇔ H2 + CH3) on the other hand showed large prior uncertainty ranges on the IDT
predictions with respect to all of the experimental data.

Reaction R1 (O2 + H = O + OH) is indeed very influential in the ignition process as it is
a branching reaction which creates two highly reactive radicals (O and OH), and although
the uncertainty parameter for this reaction is quite low, i.e. f = 0.2, even small changes
to the kinetic parameters has a large impact on the prediction on the IDT.

Reaction R271 (HO2 + CH3 ⇔ OH + CH3O) is an oxidation route for methyl and it is
also highly influential for the IDT in MILD conditions, which is discussed in [93]. This
reaction consists only of a value for the pre-exponential factorA, while the other Arrhenius
parameters are zero. The uncertainty parameter f for this reaction is therefore very high,
i.e. f = 1, hence also the impact factor is high.

Reaction R405 (CH4 + H ⇔ H2 + CH3) is a propagation reaction, which creates the
methyl radical, already mentioned before to be highly influential for the IDT in MILD
conditions.

The complete forward UQ evaluation of these reactions can be found in Appendix A.
Using the approach described in Section 2.2, the uncertainty range for the kinetic pa-
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Figure 3.3: Average impact factor for the 42 reactions which occurred in the top 20 most
sensitive reactions for at least one simulated condition. The reactions are presented in
descending order based on this averaged impact factor.
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rameters of each of the reactions considered was determined and can be found in Table
3.2, together with the nominal values from the POLIMI mechanism [83].

Table 3.2: Uncertain parameters for considered reactions with nominal values from the
POLIMI C1-C3 [83] mechanism and prior uncertainty range of each parameter. The
units of the different kinetic parameters are as follows: A [s - cm3 - mol], β [-] and Ea
[cal/mol].

Kinetic Parameter Nominal value Minimum value Maximum value
R1 (O2 + H⇔ O + OH)

A 9.6×1014 6.1×1014 1.5×1015

β -0.2 -0.6 0.2
Ea 16 625 16 001 17 249

R271 (HO2 + CH3 ⇔ OH + CH3O)
A 6.00×1012 6.00×1011 6.00×1013

R405 (CH4 + H⇔ H2 + CH3)
A 3.0×107 1.2×107 7.54×107

β 2.0 1.13 2.87
Ea 10 000 8 752 11 248

3.3 Optimization study

In this study, the application of Surrogate Models (SMs) was used for determining the
optimal combination of parameters. The SMs were created with the help of the Matlab
toolbox ooDace [90,102]. This toolbox uses the so-called Kriging method [87,88], which
is described in detail in Section 2.4.1. So called Ordinary Kriging, i.e. a regression func-
tion of order zero, was used, with a Gaussian correlation function. One SM was created
with respect to each experimental point to reduce further estimation errors with respect to
either inlet temperature, C/O ratio, or Ω value.

An initial set of samples were produced in order to fit the SMs. These samples were
determined using Latin Hypercube Sampling (LHS), which ensures a good spread of the
samples over the complete parameter space, which is crucial for having accurate predic-
tions from the SMs. Only some of these samples created with LHS were used for building
the SMs, while the rest were used to evaluate the fitting error of the SMs, with respect
to the total set of samples. Then rather than adding other random samples to reduce the
fitting error, the samples which showed the highest fitting error were added to the SM
building process in an iterative way until the maximum fitting error reached a converged
value strictly lower than 10%. This so-called adaptive sampling procedure reduces the
number of samples needed for building the SMs, as well as the size of the initial sample
pool needed, including both samples used for building the SMs and the samples used for
evaluating the fitting error. In order to ensure a good estimation of the fitting error, the total
sample pool were at least twice the size of the number of final samples used to build the
SMs. It should be noted that the size of the sample pool could not be determined a priori,

3
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instead a sufficiently large number of samples were included. For the cases evaluated in
this study, a set of 600 samples were initially created and used for building the SMs and
the fitting error evaluation.

The final SMs were then used to evaluate several thousands of combinations of the
uncertain parameters, in order to find the optimal combinations of values with respect to
the experimental data. However, as mentioned in Section 2.2.1, to ensure that a specific
combination of parameters allowed the rate coefficient to stay within its uncertainty lim-
its, an a posteriori evaluation of the kinetic parameter combinations was performed, and
only the combinations which gave k values within the uncertainty limits were considered.
More specifically, a total number 544 480 valid evaluations were performed and compared
using the least squared residual (described in Section 2.3) as objective function. As the
experimental data used in this work can be considered as one data set, the division with
the number of data points, as mentioned in Section 2.3, was not performed. Additionally,
the standard deviation of the experimental data can be considered constant for the whole
data set, and the division with the standard deviation (as seen in Eq. 2.9) can also be
disregarded. The objective function can therefore be formulated as:

Obj =
∑
i

(Y expi − Y simi (X))2 (3.1)

where Obj is the sum of the square of the residual in each point i, and X the combination
of uncertain parameters considered in this study.

It should be noted that non-linear optimization problems such as this, could consists of
several local minima of the objective function, and finding the global minimum is difficult.
However, using the approach described in this chapter ensures that each viable combina-
tion within the pre-determined uncertainty range were evaluated and compared against
each other, and therefore allows the determination of the optimum out of all the evaluated
parameter combinations.

The optimal combination of parameter was therefore determined and the performance
of this optimized mechanism, with respect to the nominal POLIMI C1-C3 [83] mechanism,
can be seen in Figures 3.4-3.5.
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Figure 3.4: IDT for methane at different inlet temperatures for C/O = 0.025-0.2. Experi-
mental data are represented by points with corresponding error bars, while simulation
results for the POLIMI mechanism are presented by the solid lines ( ) and the opti-
mized mechanism by the dashed lines ( ).
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Figure 3.5: IDT for biomass pyrolysis products at different inlet temperatures for Ω = 0.9
and 1. Experimental data are represented by points with corresponding error bars,
while simulation results for the POLIMI mechanism are presented by the solid lines
( ) and the optimized mechanism by the dashed lines ( ).

The corresponding parameters for the optimized mechanism are presented in Table
3.3, as well as the objective function value, calculated using Equation 3.1. For comparison
the nominal POLIMI C1-C3 [83] mechanism parameters are also presented in Table 3.3,
together with its calculated objective function value.

Table 3.3: Nominal and optimal values for the parameters from R1 (O2 + H ⇔ O +
OH), R271 (HO2 + CH3 ⇔ OH + CH3O) and R405 (CH4 + H ⇔ H2 + CH3). The
nominal values are from the POLIMI C1-C3 [83] mechanism. Also the Obj value is
presented at the end of the table for both the mechanisms. The units of the different
kinetic parameters are as follows: A [s - cm3 - mol], β [-] and Ea [cal/mol].

Reaction Nr Parameter Nominal values Optimized values
1 A 9.6 ×1014 6.1 ×1014

β -0.2 -0.2
Ea 16 625 16 556

271 A 6.0 ×1012 2.56 ×1013

405 A 3.0 ×107 7.54 ×107

β 2 2
Ea 10 000 10 139

Obj [-] 2.03 ×10−3 4.99 ×10−4
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Chapter 3. Optimization of a chemical mechanism for MILD conditions

3.3.1 Validation against conventional conditions

To ensure that the performance of the optimized mechanism did not diminish for con-
ventional conditions, a validation against ignition delay time for methane in conventional
conditions was also performed. This validation showed that the optimized mechanism
gave improved predictions also for conventional conditions, with respect to the nominal
POLIMI mechanism [83]. This validation was performed using data from Hu et al. [103]
and consists of the IDT for methane-air mixtures in a shock-tube at different temperatures,
an equivalence ratio (φ) of 0.5 and pressures ranging from 1-10 atmosphere (atm). As
no experimental uncertainty was mentioned in [103], it was assumed to be ±28×10−6 s,
which was estimated for the same facility by Zhang et al. [104]. As mentioned by Hu et
al. [103], the ignition delay time was simulated as the time before the maximum derivative
of the temperature increase could be observed. The simulations were performed by means
of a NonIsothermal-UserDefinedVolume batch reactor with the OpenSMOKE++ [95] soft-
ware. The initial mixture was exposed to a pressure wave to emulate the pressure in-
crease from the shock. Both the experimental data and the simulation results are presented
in Figure 3.6. A comparison between the original POLIMI C1-C3 [83] mechanism and
the optimized mechanism showed that especially for low pressure (1 atm), the optimized
mechanism gave better agreement with respect to the experimental data. This improve-
ment can be seen in Table 3.4, where the objective function (calculated using Eq. 3.1) is
presented. The objective function was calculated for each pressure condition, as well as
the overall case. Although there is a slight increase in the overall objective value with the
optimized mechanism, a large improvement can be seen specifically at 1 atm, where the
objective function value is reduced by more than a factor of 20. Considering that all the
experimental targets in the optimization study were also at a pressure of 1 atm, it is logical
that the largest change is at those conditions. However, interestingly enough there is a
slight reduction in the objective function also at a pressure of 10 atm, which is due to the
increase of the IDT at intermediate temperatures.
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Figure 3.6: Ignition delay time for methane-air mixture at φ = 0.5, and at different in-
let temperatures and pressures. The solid lines ( ) represents the predictions with
the nominal mechanism and the dashed lines ( ) represents the predictions with the
optimized mechanism from this work.
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Table 3.4: Comparison of objective function value between the nominal and optimized
mechanisms. The objective function values were calculated using Eq. 3.1.

Pressure 1 atm 3 atm 5 atm 10 atm Overall
POLIMI 1.21×10−7 1.30×10−7 1.62×10−8 7.62×10−8 3.43×10−7

Optimized 5.69×10−9 3.97×10−7 9.31×10−8 6.74×10−8 5.64×10−7

3.4 Concluding remarks

This chapter has presented an optimization study of a kinetic mechanism with respect
to MILD combustion targets. It shows the discrepancy between the prediction of sev-
eral existing detailed mechanisms with respect to the IDT of MILD combustion, for both
methane [93] and biomass pyrolysis products [18]. Based on the average deviation from
the experimental targets, the POLIMI mechanism [83] was chosen for the optimization
study, and by performing a forward UQ study on the top five reactions with the highest av-
eraged impact factor, a total number of three reactions and seven parameters were used for
the optimization. The prior uncertainty range for each of the seven parameters were deter-
mined using the approach described in Section 2.2 and SMs were used for predicting the
behavior of the model. The SMs were built up using LHS and the fitting error was reduced
using an adaptive sampling approach, which ensured fitting errors strictly below 10%. The
SMs were then used to evaluate many different feasible combinations of the parameters,
and the least squared residual formulation (see equation 3.1) was used to determine the
optimal combination of the uncertain parameters.

The optimized mechanism showed only slight improvements for most of the methane
cases, but large improvements could be found for all the biomass pyrolysis products cases.
However, improvements for the methane cases could be seen for high inlet temperatures,
and for the C/O=0.2 case, where the optimized mechanism showed improvements for all
inlet temperatures.

For each of the reactions considered in this optimization study, the following modi-
fications to the kinetic parameters are needed in order to improve the performance with
respect to the experimental targets:

— The pre-exponential factor and the activation energy for reaction R1 (O2 + H⇔ O
+ OH) should be decreased slightly, while the temperature exponent should be kept
to the same value.

— The pre-exponential factor for reaction R271 (HO2 + CH3 ⇔ OH + CH3O) should
be increased by almost a factor of 2.

— For reaction R405 (CH4 + H ⇔ H2 + CH3), the pre-exponential factor should be
increased by a factor of 2.5, while the temperature exponent should be kept to its
nominal value, and the activation energy should be reduced slightly.

In order to ensure that the optimized mechanism did not lose predictability for con-
ventional conditions, a validation against IDT for methane-air mixtures in conventional
conditions was also performed, and showed an improved performance also for these con-
ditions.

The results from this study clearly indicate that the approach of mechanism optimiza-
tion with respect to non-conventional conditions is feasible, and by only using the kinetic
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parameters of three reactions, quite significant improvements could be achieved. How-
ever, in order to arrive with a more comprehensive mechanism, more experimental targets
should be added to the optimization process. This would not only require a larger set of
SMs to be built with respect to the expansion of the experimental targets, but also increase
the complexity of the SMs with respect to an increased number of kinetic parameters, as
this would naturally also increase. The limitations of the approach described in this chap-
ter therefore drives us towards the implementation of a more efficient approach, which
can handle both more uncertain parameters and experimental targets. This was realized
through the development of an optimization toolbox called OptiSMOKE++, which will
be described in detail in Chapter 4.

3

34



CHAPTER4
OptiSMOKE++

In order to facilitate the optimization of kinetic mechanisms with respect to a large
number of experimental data, and using many uncertain parameters, a toolbox was created
using the capabilities of DAKOTA [105] and OpenSMOKE++ [95]. The aim of this work
was to ensure a flexible interaction, where the choice of optimization procedure, objective
function formulation and optimization targets could easily be managed by the user. This
chapter aims to describe the different features of this code as well as it presents some test
cases which exemplifies them.

4.1 Workflow

A graphical representation of how the code operates can be appreciated in Figure 4.1,
and it conveys the following logic:

The code starts by reading the specified input file, then changes the parameters in the
kinetic scheme (for the first evaluation the kinetic parameters from the starting kinetics are
used). The code then double checks if the rate parameters (k), for all specified reactions are
within the uncertainty bounds, using a non-linear constraint, i.e. kmin ≤ k ≤ kmax (see
section 2.2.1). If yes, OpenSMOKE++ is used for running the simulations, and the results
are used to calculate the objective function value. If at least one of the rate parameters are
outside of the uncertainty bounds, a penalty function is applied to that evaluation and the
simulations are not carried out. A more thorough explanation regarding the uncertainty
bounds can be found in section 2.2, while the penalty function implemented in the code is
discussed further in section 4.4.
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Chapter 4. OptiSMOKE++

Based on the objective function value, DAKOTA suggests a new set of parameter val-
ues and the process is repeated until at least one of the stopping criteria has been reached.
These stopping criteria can depend on the optimization methodology used, but some typ-
ical universal ones are; maximum number of evaluations, maximum number of iterations,
solution target and convergence criteria. These criteria, and method specific ones, are
explained in further detail in the Reference Manual of DAKOTA [106].

Yes

No

Start

Stopping 
criteria 
reached 

Stop

No

Yes

Read Input

Suggest new set 
of parameters

Update 
kinetics

Run simulations

Calculate 
objective function

Apply penalty 
function

Check if rate 
constants are inside 
uncertainty bounds

Figure 4.1: Schematic workflow of OptiSMOKE++.

As OptiSMOKE++ uses the different features of OpenSMOKE++ and DAKOTA, a
short description of these codes will follow.
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4.1.1 OpenSMOKE++

The OpenSMOKE++ framework [95] was developed specifically for solving react-
ing systems with thousands of species and reactions. It consists of a series of solvers
for 0D reactors (Batch Reactors, Plug Flow Reactors (PFR), Perfectly Stirred Reactors
(PSR), Shock-Tube (ST) Reactors, Rapid Compression Machines (RCM)) and 1D lam-
inar premixed and counterflow diffusion flames. The code was written exclusively in
object-oriented C++, which facilitated the coupling with DAKOTA, also written in C++.
OpenSMOKE++ utilizes advanced numerical techniques to reduce the computational cost
of the simulation, without sacrificing accuracy or robustness. A more extensive description
of the code and its utilities can be found in [95].

4.1.2 DAKOTA

Design Analysis Kit for Optimization and Terascale Applications (DAKOTA) is a frame-
work developed at and distributed by Sandia National Laboratories [107]. It is a toolkit
used for iterative parameter evaluations, such as optimization, sensitivity analysis, forward
and inverse uncertainty quantification, etc. The toolkit consists of many different opti-
mization methodologies which can be divided into the following sub-categories: Gradient-
Based and Derivative-Free Local Methods and Gradient-Based and Derivative-Free Global
Methods.

The DAKOTAUser’s Manual [105] provides useful suggestions regarding which method-
ology to use depending on the case at hand, as well as listing the specific algorithms avail-
able in the different sub-categories.

As DAKOTA was intended to be used together with a separate application, it is consid-
ering the simulation code as a "black box", i.e. it is working completely independently,
only relying on the objective function value for finding new combinations of the uncer-
tain parameters which could potentially reduce the value of the objective function. There
exists many cases in literature where DAKOTA has been coupled with different simula-
tion software for this purpose [108–110]. The OptiSMOKE++ toolbox was written fol-
lowing the instructions provided in the PluginSerialDirectApplicInterface.cpp file avail-
able in the DAKOTA source code. This allowed for an easy coupling between the two
codes, which was one of the reasons why DAKOTA was chosen. The tight coupling be-
tween OpenSMOKE++ and DAKOTA also allows the user to utilize any of the optimization
methodologies available in the DAKOTA package with OptiSMOKE++. However, due
to the problem at hand, i.e. mechanism optimization, some optimization methodologies
are less suited than others, due to the highly irregular behavior of the objective function.
Gradient based methodologies can have problems to determine the optimum because of
the complex structure of the objective function [67], and their use in this context is not
recommended.

There are also applications of Surrogate Model (SM) based optimization using DAKOTA,
with methods such as efficient_global. This method works in a very similar way
as what was presented in Chapter 3, i.e. first a certain number of samples are used to create
a SM using a Gaussian Process (see Section 2.4.1), which is then used for a subsequent
optimization study. The efficient_global approach then uses the NCSU_DIRECT
approach, which is based on the DIRECT algorithm described in Section 2.5.1 for find-
ing the optimum. The issue with this in the case of kinetic mechanism optimization, is
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that the SM is created based on the response of the model, i.e. the objective function.
As already mentioned, the objective function in kinetic mechanism optimization in gen-
eral is multi-modal and highly irregular. It is therefore very difficult to create an accurate
representation of the objective function using SMs. This approach can therefore result in
infeasible parameter combinations, and is therefore also not recommended for this specific
application.

4.2 Optimization targets

Finding the optimal combination of a set of uncertain kinetic parameters with respect
to some experimental targets requires an optimization process typically involving several
thousand evaluations before the global optimum is found. Even if response surface tech-
niques are used, several hundred evaluations are needed initially for creating the response
surface, as has been seen in Chapter 3. It is therefore important that the numerical sim-
ulations are fast, to assure that the optimization reaches convergence within a reasonable
time frame. In the field of kinetic mechanism optimization, it is therefore common to use
experimental data from so-called 0D or 1D reactors as targets. OptiSMOKE++ therefore
focuses on the use of the following solvers: Batch Reactor, PFR, PSR, RCM, ST and pre-
mixed laminar flames. Experimental data from any of these types of reactors can therefore
be used as targets in the optimization. However, it should be mentioned that only experi-
mental data for which 0D or 1D simplifications of the system can be made should be used
as targets. Mayor facility effects and epistemic uncertainties cannot be taken into account
by the simple 0D and 1D solvers.

4.2.1 Ignition Delay Time (IDT)
In order to accurately predict the onset of reactions in a system, the Ignition Delay

Time (IDT) is used. It is a physico-chemical property of a specific mixture [111], and
as the ignition determines the consecutive combustion process, it is a crucial target for
accurately predicting the behavior of a combustion system. IDT is therefore commonly
used for both mechanism development, validation and optimization. However, there does
not exist one single criteria for determining the IDT of a mixture. As the IDT shows
the onset of reactions, a common definition relates to the maximum concentration of OH,
which is generally used as a marker for the flame front. Even the maximum change of
OH is used for determining the IDT [112] in some cases. Other definitions relate to a
change in pressure, commonly used in Rapid Compression Machines (RCMs) [113], or
temperature [93]. As mentioned in Cuoci et al. [95], the IDT data from both ST and
RCMs can be reproduced using a transient closed homogeneous batch reactor simulation,
where facility effects can be accounted for using a volume history profile. OptiSMOKE++
utilizes this for the simulation of STs and RCMs.

To facilitate all this, OptiSMOKE++ utilizes the built in definitions of the Ignition-
DelayTimeAnalyzer available in OpenSMOKE++. The user can therefore easily chose the
definition of the IDT as needed, and several different definitions, e.g. one per each data
set, can be used simultaneously.

However, there could be some experimental data which has been derived at conditions
which does not support the 0D simplification for the evaluation of IDT. This was for exam-
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ple seen in Bourgeois et al. [114], where a comparison between 0D and CFD simulations
for the IDT of n-heptane in a RCM was performed. The results showed that specifically at
low temperatures a significant discrepancy was found in the IDT predictions. The appli-
cation of the 0D assumption can therefore not be applied to this case.

4.2.2 Species profiles
The evolution of different species in a transient system does not only indicate if a

mechanism predicts the onset of reactions in a system, but also the behavior of intermediate
species as well as the behavior of the system after ignition has occurred. It is therefore an
important quantity in the prospect of mechanism optimization. The utilization of species
profiles is therefore supported in OptiSMOKE++ and several species can be used as targets
at the same time. It is also possible to combine an optimization study, utilizing both IDT
and species profiles as targets. This will be demonstrated in 4.6.4.

4.2.3 Laminar Flame Speed (LFS)
As a key quantity for describing the combined effect of a mixtures diffusivity, reactivity

and exothermicity [83], the LFS is often used as a target for the development, validation
and optimization of a kinetic mechanism. The LFS describes at which speed the flame
front is propagating back towards the unburned gases. When the inlet velocity of the mix-
ture is equal to the LFS, a stable flame front is established. The numerical evaluation of the
LFS are mostly done using a 1D premixed flame simulations, and by finding the stable con-
dition, the LFS can be determined for a specific mixture. The numerical solution of such
a system depends on the kinetic and thermodynamic parameters, as well as the transport
properties, which is why it is commonly used for the validation of a kinetic mechanism.
OptiSMOKE++ supports the application of LFS as targets for the optimization by using
the premixed laminar flame solver of OpenSMOKE++.

4.3 Choice of objective function

OptiSMOKE++ has two different formulations of the objective function implemented,
the L1-norm (Eq. 2.13) and the L2-norm (Eq. 2.10). The user is free to choose the
formulation which suits the application the best. However, while performing optimization
with several different data sets, it is important that the objective function values for each
data set are somewhat comparable. If there is a significant difference between the objective
function of two different data sets, the optimizer will naturally work on trying to reduce the
objective function of the data set with a higher value. To demonstrate this, a comparison
between L1-norm (Eq. 2.13) and the L2-norm (Eq. 2.10) can be observed in Figure 4.2,
where the localized objective function value is presented, using both of the definitions, for
two different test cases; test case 1 and 3. These two test cases consists of experimental
targets of IDT for test case 1 and species profiles from a Jet Stirred Reactor (JSR) for test
case 3. More detail about these test cases will follow in sections 4.6.1 and 4.6.3. The
difference between the two y-axis scales of the objective function values in Figure 4.2a
for test case 1 and 3, clearly shows that using the L2-norm definition would give more
weight to the data in test case 3, since the values of the objective function are several
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orders of magnitude higher than for test case 1. Using the L1-norm definition (Figure
4.2b) allows, on the other hand, to obtain local objective function values showing a more
uniform distribution and more comparable numerical values (only 103 difference rather
than 106). In this case, the optimizer would more quickly seek to optimize the mechanism
with respect to both data sets, rather than just for test case 3, as would happen using the
L2-norm definition. This fact will be demonstrated further in Section 4.6.4.
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Figure 4.2: Local objective function values for test cases 1 and 3, using the L1-norm (Eq.
2.13) and the L2-norm (Eq. 2.10) objective function formulations.

4.4 Penalty function

Based on the non-linear nature of the modified Arrhenius curve, it is not guaranteed
that a change of several kinetic parameters, within their specific uncertainty range, ensures
that the rate constant is within its initially prescribed bounds for the complete tempera-
ture span (normally considered 300-2500 K). This was already discussed in 2.2.1, and in
Chapter 3 only the combination of parameters that satisfied this criteria were considered
for evaluation. However, when using a so-called direct optimization strategy, the opti-
mizer decides on-the-fly which new combination of parameter that should be evaluated.
The approach used in Chapter 3 is therefore not suitable in this case. Instead a secondary
constraint on the rate constant can be applied. If this secondary constraint is violated
for a specific parameter combination, it should not be considered as a good combination.
OptiSMOKE++ utilizes a so-called penalty function to ensure this. Penalty functions are
very common for handling constrained optimization problems and can be used for many
purposes. For example, Sikalo et al. [70] used a penalty function for keeping the opti-
mized parameters close to the original values as possible. However, in OptiSMOKE++
the penalty function is implemented to forcefully increase the objective function value, to
a fixed value, for parameter combinations which do not respect the uncertainty limits of
the rate constants, for all of the reactions considered. This ensures that the optimizer does
not choose a parameter combination which violates this restriction, and finds the optimal
combination of parameters which satisfies this constraint.

However, it is important that the evaluations that are issued the value of the penalty
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function are not considered as possible "good" evaluations. If for example the Evolution-
ary Algorithm approach (see Section 2.5.2) is used, and the evaluations with the penalty
function value as objective function are considered as good evaluations, they will become
parents and create new children through crossover and mutation. This directly contradicts
the purpose of the penalty function. To ensure that this does not happen, the value of the
penalty function needs to be very high. Specifically much larger than any potential objec-
tive function values that can be encountered during the optimization process, of parameter
combinations that satisfy the constraint on the rate coefficient. The value of the penalty
function was therefore set to 1012 in this work, to ensure that this problem did not occur.

The combination of a penalty function and non-gradient based global optimizers is
very efficient for problems where a secondary constraint is applied on the optimization.
However, for gradient based optimization approaches, penalty functions are not a good
choice, as these algorithms depend on the prior evaluations for the estimation of the slope
of the objective function. The use of penalty functions disrupts the natural slope of the
objective function and gradient based algorithms would then face issues in finding the op-
timal solution.

There exists many variations of penalty functions for optimization problems, such as
increasing the objective function value linearly for the cases that violates the constraints,
or adaptively changing the penalty function. However, as seen in Figure 4.1, by applying
a fixed value of the penalty function, and not running the simulations and calculating the
objective function, large computational savings could be achieved.

It should also be mentioned that the problem with the secondary constraints can be
avoided by only considering the linear nature of a kinetic mechanism, i.e. considering
only the pre-exponential factors. By removing the degrees of freedom in the optimization
in such a way, you can also ensure that the secondary constraint is never violated.

4.5 Uncertain parameters

The strategy described in 2.2 is also applied in OptiSMOKE++ for determining the
ranges of each kinetic parameter. However, specific limits for each kinetic parameter can
also be specified independently.

As mentioned by Cuoci et al. [95], the computational effort of calculating a rate co-
efficient (k = AT βe−Ea/RT ) involves two expensive functions, namely a power (T β),
and an exponential (e−Ea/RT ). By instead using the linearized form of the Arrhenius
equation (ln(k) = ln(A) + βln(T ) − Ea

R T
−1), and evaluating the rate coefficient as

k = e(ln(A)+βln(T )−Ea
R T−1), only one expensive function evaluation is needed, in the

form of an exponential, as the only other expensive function ln(A) can be evaluated only
once and stored. It is therefore beneficial for OptiSMOKE++ to work directly with the
linearized kinetic parameters (ln(A), β and Ea/R), rather than with the Arrhenius pa-
rameters themselves. However, to stay consistent, the Arrhenius parameter values are
presented for the different test cases that follows.
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4.6 Test cases

In this section, some test cases, which illustrates the functionality of the OptiSMOKE++
toolbox, will be presented. The different optimization methods, and the cases, were not
necessarily chosen based on efficiency or any specific interests, instead they were chosen
in order to show the different features available in the OptiSMOKE++ toolbox. A final
comparison between the runtime and number of evaluations performed for each specific
test case is presented in Section 4.6.6.

4.6.1 Test case 1: Ignition Delay Time for MILD conditions in a Plug
Flow Reactor

Similarly to the work presented in Chapter 3, the experimental target data used in this
test case are from Sabia et al. [18], where the IDT of biomass pyrolysis gas in a PFR was
evaluated during MILD conditions, i.e. high inlet temperature and diluted conditions. The
IDT were evaluated as the time when the mixture reaches a temperature 10 K higher than
the inlet temperature. The experimental uncertainties were evaluated with respect to the
displacement of the thermocouples and the inlet velocity from the experimental measure-
ments [18]. This experimental data set consists of fuel diluted with nitrogen at different
oxygen ratios (Ω) [94]. The nominal mechanism used for this test case was the POLIMI
C1-C3 V1412 [83] mechanism, consisting of 107 species and 2642 reactions. The choice
of which reactions to optimize was done using only a ranking of sensitivity coefficients in
this work. As the OptiSMOKE++ toolbox allows for more kinetic parameters to be used
in the optimization study, without a drastic increase in computational effort, a larger set
of reactions could be used and the screening based on only the sensitivity coefficients was
considered sufficient for the work in this chapter. A cumulative sensitivity function (see
2.1.3) was created for the complete test case, and a threshold of 0.6 of the maximum cu-
mulative sensitivity value was used for arriving with a feasible amount of reactions. This
resulted in 11 reactions, and only the non-zero parameters were used in the optimization
in order to stay as consistent as possible with the nominal mechanism. A total of 26 un-
certain parameters were therefore considered in the optimization, which can be found in
Table 4.1.

The optimization was performed using two different global optimization methodolo-
gies available in DAKOTA; coliny_direct, which is based on the DIRECT algorithm
described in 2.5.1, and coliny_ea, which is based on an Evolutionary Algorithm (EA)
approach (see 2.5.2).

More information about both these methods can also be found in the Reference Manual
of DAKOTA [106]. The specific settings used for the two algorithms, that were not the
default settings, are listed in Table 4.2. For the other method specific settings, please look
in the Reference Manual of DAKOTA [106].

The maximum number of function evaluations/iterations tells the optimizer how many
evaluations/iterations it is allowed to run. An iteration is very method specific, and for
example with the coliny_ea methodology an iteration consists in the creation of each
new complete population, i.e. after mutation, crossover and replacement is performed.
The reason why these values are different for the two methods, is that the more random
aspect of coliny_ea generally gives parameter combinations which does not satisfy the
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Table 4.1: List of the reactions and corresponding kinetic parameters (from the POLIMI
C1C3 V1412 [83] mechanism) considered in the optimization for Test case 1.

Reaction Nr Reaction Formula A β Ea
1 O2 + H⇔ O + OH X X X
23 2CH3 (+M)⇔ C2H6 (+M) X X X
23 [inf] 2CH3 (+M)⇔ C2H6 (+M) X
223 O2 + C2H5→ C2H4 + HO2 X X
258 OH + CH3⇔ CH4 + O X X
271 HO2 + CH3⇔ OH + CH3O X
391 C2H4 + OH⇔ H2O + C2H3 X X
405 CH4 + H⇔ H2 + CH3 X X X
725 CH4 + OH→ H2O + CH3 X X X
813 C2H6 + OH→ H2O + C2H5 X X X
817 C2H6 + CH3→ CH4 + C2H5 X X X

Table 4.2: List of specific settings used for the two optimization algorithms.

coliny_direct coliny_ea
Max function evaluations 5 000 Max function evaluations 1 000 000
Max iterations 5 000 Max iterations 1 000 000
Convergence tolerance 10−8 Convergence tolerance 10−8

Solution target 10−6 Solution target 10−6

Seed 1000 Seed 1000
Global balance parameter 0.1 Population size 300

Mutation rate 0.6
Crossover rate 0.4
Replacement size 10

non-linear constraint on the rate coefficients. In order to have a more fair comparison be-
tween the two methods (in the sense of "good" function evaluations), a larger number of
evaluations and iterations were used for the coliny_ea methodology. The convergence
tolerance determines if the optimization should stop if the relative change in objective
function is lower than the specified value. The solution target specifies that the optimiza-
tion should stop if the objective function is lower than the specified value. The random
seed used for the initialization of the algorithms is specified using the Seed keyword.

The global balance parameter was mentioned in Section 2.5.1, and specifies if a small
rectangle should be subdivided based on the ratio between the size of the small rectangle
and the largest rectangle. If this ratio is smaller than the specified value, the small rectangle
is not subdivided further. This ensures that a more global approach is achieved in the
optimization.

The population size, used for the coliny_ea approach, was considered roughly
10 times the number of uncertain parameters considered in the optimization. The mu-
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tation/crossover rate controls the probability of mutation/crossover to be performed to cre-
ate new individuals in the coliny_ea approach. The replacement size specifies how
many individuals that should be replaced from the previous population to generate a new
population.

For both the methodologies, the L2-norm formulation of the objective function (Eq.
2.10) was used.

The optimized values of each kinetic parameter, together with the nominal values and
the objective function values, for the three mechanisms are presented in Table 4.3.

Table 4.3: List of values for the kinetic parameters considered in test case 1. The nominal
values refer to the values from the POLIMI C1C3 V1412 [83] mechanism. Also the
Obj value is presented at the end of the table for each mechanism. The units of the
different kinetic parameters are as follows: A [s - cm3 - mol], β [-] and Ea [cal/mol].

Reaction Nr Parameter Nominal values coliny_direct coliny_ea
1 A 9.6 ×1014 6.07 ×1014 7.95 ×1014

β -0.2 -0.2 -0.23
Ea 16 625 16 625 16 634

23 A 2.33 ×1034 1.71 ×1034 2.12 ×1034

β -5.03 -5.03 -5.07
Ea -1 200 -1 408 -1 118

23 [inf] A 2.5 ×1013 1.35 ×1013 2.13 ×1013

223 A 1.0 ×1012 2.27 ×1012 1.28 ×1012

Ea 3 000 3 000 3 326
258 A 2.0 ×1012 5.57 ×1012 3.37 ×1012

Ea 8 000 8 000 8 194
271 A 6.0 ×1012 1.23 ×1013 1.25 ×1013

391 A 2.0 ×1013 4.31 ×1013 2.09 ×1013

Ea 6 000 6 000 5 632
405 A 3.0 ×107 6.80 ×107 4.26 ×107

β 2 2 2.03
Ea 10 000 10 000 9 872

725 A 2.796 ×106 2.40 ×106 2.58 ×106

β 2 2 2.03
Ea 1 566.11 1 358 1 938

813 A 3.595 ×106 2.93 ×106 4.66 ×106

β 2 2 1.97
Ea -238.2 -238.2 -230.9

817 A 3.513 ×105 2.33 ×105 4.59 ×105

β 2 2 1.92
Ea 7 622 7 483 7 744

Obj [-] 3.74 ×10−2 1.94 ×10−3 3.15 ×10−3

The difference between the nominal and the two optimized mechanisms can be appre-
ciated in Figure 4.3.

It can clearly be seen that both the optimized mechanisms outperform the nominal
mechanism, and that both the optimized mechanisms show very similar performance. Only
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for the case where Ω = 1.67 (Figure 4.3c) the two optimized mechanisms show slightly
different performance. This can also be noticed in the slight difference of the Obj values
for the two mechanisms (Table 4.3).
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Figure 4.3: IDT for Ω=0.9, 1 and 1.67 at different inlet temperatures, where the experi-
mental data is presented by the black dots with corresponding error bars. The nominal
kinetics (POLIMI C1C3 V1412 [83]) is represented by the solid line ( ), the opti-
mized kinetics from the coliny_direct methodology by the dashed line ( ) and
the optimized kinetics from the coliny_ea methodology by the dotted line ( ).

The reason behind why the two optimized mechanisms perform differently lies in the
difference between the two algorithms. The coliny_ea algorithm starts with a ran-
dom population of samples over the whole parameter space, and keeps a slight random
nature with each new population created. The coliny_direct algorithm on the other
hand quickly determines the promising regions, and if specific directions in the parameter
space result in a drastic increase of the objective function, that direction is not considered
promising. This occurs especially for parameters that have a large impact on the rate coef-
ficient, such as the temperature exponent β. Only a small change in β could easily result
in a rate coefficient outside the uncertainty bounds, which activates the penalty function,
resulting in a large objective function value, i.e. not promising. As coliny_ea has a
more randomized search approach, it will find combinations where the β parameters are
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changed and the rate coefficients are still within the uncertainty bounds, thus considering
these solutions as possible candidates. This can be seen in Table 4.3, where the optimized
values for coliny_direct does not suggest any change in the β parameters, while
coliny_ea does show some small changes to all the β parameters. The same can partly
be said regarding the activation energy Ea as well.

4.6.2 Test case 2: Ignition Delay Time at high pressures using data
from a Shock-Tube

For this test case, the experimental targets consist of IDT of methane diluted in carbon
dioxide in a ST, at high pressures (100 bar) [112]. The IDT was experimentally evaluated
at the moment where the maximum change of the exited species OH∗ was measured.
However, due to the fact that the experiments were performed at very high pressure, the
discrepancy between the OH and OH∗ profiles were minimal, and the numerical IDT could
therefore be evaluated at the moment of maximum change of OH. This was also confirmed
by personal communication with the authors of the paper [112]. The experiments were
performed at stoichiometric (φ=1) and rich (φ=2) conditions. The kinetic mechanism
used for this case was the GRI 3.0 [43] mechanism, which consists of 53 species and 325
reactions. Similarly to the previous case, a cumulative sensitivity function was created in
order to determine which reactions that should be considered in the optimization. With a
threshold of 0.6, 9 reactions and corresponding 20 non-zero parameters were chosen for
the optimization, and are reported in Table 4.4. Again, only the non-zero parameters from
the 9 reactions were considered.

Table 4.4: List of the reactions and corresponding kinetic parameters (from the GRI 3.0
[43] mechanism) considered in the optimization for Test case 2.

Reaction Nr Reaction Formula A β Ea
32 H + O2 + M⇔ HO2 + M X X
33 O2 + CH2O⇔ HO2 + HCO X X
53 H + CH4⇔ H2 + CH3 X X X
116 2HO2⇔ O2 + H2O2 X X
119 HO2 + CH3⇔ OH + CH3O X
121 HO2 + CH2O⇔ H2O2 + HCO X X X
155 O2 + CH3⇔ O + CH3O X X
156 O2 + CH3⇔ OH + CH2O X X
158 [inf] 2CH3 (+M)⇔ C2H6 (+M) X X X

The optimization was performed using the coliny_direct method, and the L2-
norm formulation for the objective function (Eq. 2.10) was used. The same settings as
mentioned for Test case 1 was used for the coliny_direct algorithm (see Table 4.2).
The results can be seen in Table 4.5 and Figure 4.4.

It can clearly be seen in Figure 4.4 that the optimized mechanism captures the exper-
imental data very well. This can also be seen in the reduction of the objective function
value as seen in Table 4.5. What can also be seen in Table 4.5, is that many of the reaction
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Table 4.5: List of values for the kinetic parameters considered in test case 2. The nominal
values refer to the values from the GRI 3.0 [43] mechanism. Also the Obj value is
presented at the end of the table for each mechanism. The units of the different kinetic
parameters are as follows: A [s - cm3 - mol], β [-] and Ea [cal/mol].

Reaction Nr Parameter Nominal values coliny_direct
32 A 1.0 ×1014 4.64 ×1013

Ea 40 000 38 960
33 A 2.8 ×1018 1.30 ×1018

β -0.86 -0.86
53 A 6.6 ×108 1.22 ×109

β 1.62 1.62
Ea 10 800 11 672

116 A 4.2 ×1014 4.2 ×1014

Ea 12 000 12 000
119 A 3.78 ×1013 2.21 ×1013

121 A 5.6 ×106 5.6 ×106

β 2 2
Ea 12 000 12 000

155 A 3.56 ×1013 2.25 ×1013

Ea 30 500 30 480
156 A 2.31 ×1012 1.46 ×1012

Ea 20 300 19 691
158 A [inf] 6.77 ×1016 6.77 ×1016

β [inf] -1.18 -1.18
Ea [inf] 654 654

Obj [-] 1.37 ×10−2 5.63 ×10−4

parameters are not changed during the optimization. This is due to the fact that it is quite
a simple test case, with only few experimental targets. However, it still exemplifies the
application of OptiSMOKE++ to IDT from Shock-Tubes.
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Figure 4.4: IDT for methane at φ= 1 and 2, where the experimental data is presented by
the black dots with corresponding error bars. The nominal kinetics (GRI 3.0 [43]) is
represented by the solid lines ( ) and the optimized mechanism by the dashed lines
( ).

4.6.3 Test case 3: Methanol oxidation in a Jet Stirred Reactor
In this example, the optimization targets consist of species concentrations of methanol

(CH3OH) oxidation at different temperatures in an iso-thermal JSR [115]. A JSR can be
modeled as a Perfectly Stirred Reactor (PSR) in experimental studies. Indeed, the injection
occurs through jet nozzles with a high velocity, which ensures instantaneous mixing inside
the reactor, thus emulating a PSR. The species concentrations were measured after a fixed
residence time (τ=0.05 s), at atmospheric pressure, and at φ=0.5 and 1. The injected
mixture consisted of 2000 ppm CH3OH, 6000/3000 ppm O2 and was balanced out with
N2. The target species for this study were limited to the major species measured (CH3OH,
O2, CO, CO2), but a much larger number of species can be handled by OptiSMOKE++.
The nominal kinetics used for this case was again the POLIMI C1-C3 V1412 [83], and
the sensitivity study, for determining which reactions to consider in the optimization, was
performed based on each targeted species. A threshold of 0.6 was used on the cumulative
sensitivity function, which resulted in the 7 reactions and 17 kinetics parameters listed in
Table 4.6. To stay consistent with the performance of the nominal mechanism for other
cases, only the non-zero kinetic parameters were considered in the optimization, as can be
seen in Table 4.6.

Again the coliny_directmethod was used in this optimization, with the same set-
tings as specified in Table 4.2. For this test case, the L1-norm formulation of the objective
function was used (Eq. 2.13).

As no experimental uncertainty was reported in [115], a standard uncertainty of 1% of
the highest measured concentration of respective species was considered for each point,
according to recommendations from Olm et al. [85].

A comparison between the nominal and the optimized mechanisms are reported in
Figure 4.5 and Table 4.7.

It can clearly be seen that an overall improvement is achieved for each species profile.
This can especially be seen for φ=1 (Figures 4.5c and 4.5d). For φ=0.5 on the other hand,
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Table 4.6: List of the reactions and corresponding kinetic parameters (from the POLIMI
C1C3 V1412 [83] mechanism) considered in the optimization for Test case 3.

Reaction Nr Reaction Formula A β Ea
1 O2 + H⇔ O + OH X X X
4 OH + HO2⇔ O2 + H2O X X
11 H + HO2⇔ O2 + H2 X X
13 2OH (+M)⇔ H2O2 (+M) X X X
176 CH2OH + M⇔ CH2O + H + M X X
410 CH3OH + OH→ H2O + CH2OH X X X
411 CH3OH + HO2→ H2O2 + CH2OH X X

Table 4.7: List of values for the kinetic parameters considered in test case 3. The nominal
values refer to the values from the POLIMI C1C3 V1412 [83] mechanism. Also the
Obj value is presented at the end of the table for each mechanism. The units of the
different kinetic parameters are as follows: A [s - cm3 - mol], β [-] and Ea [cal/mol].

Reaction Nr Parameter Nominal values coliny_direct
1 A 9.6 ×1014 1.4 ×1015

β -0.2 -0.2
Ea 16 625 16 625

4 A 5.0 ×1013 1.08 ×1014

Ea 1 000 2 040
11 A 2.5 ×1013 2.5 ×1013

Ea 700 700
13 A 1.3 ×1018 9.56 ×1017

β -0.90 -0.90
Ea -1 700 -1 700

176 A 3.75 ×1014 1.74 ×1014

Ea 25 000 25 000
410 A 9.2 ×104 6.77 ×104

β 2.53 2.53
Ea -1 000 -1 416

411 A 8.0 ×1013 4.00 ×1013

Ea 19 400 19 400
Obj [-] 1.789 ×102 9.43 ×101

there are only major improvements for the CO profile (see Figure 4.5b), while the other
profiles are very similar, or slightly improved compared to the nominal mechanism.
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Figure 4.5: Oxidation of methanol (CH3OH) at atmospheric pressure in an iso-thermal
JSR at different temperatures and at φ=0.5 and 1. The experimental data is presented
by the scatter, with corresponding error bars. The nominal kinetics (POLIMI C1C3
V1412 [83]) is represented by the solid lines ( ) and the optimized kinetics from test
case 3 by the dashed lines ( ).
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4.6.4 Test case 4: A combined optimization

In practice, many different targets will be used for optimization, ensuring that the opti-
mized kinetics performs good for a wide range of conditions. The combined optimization
of test cases 1 and 3 is therefore used to illustrate this capability of the code. As in test
case 1 and 3, the POLIMI C1C3 V1412 [83] mechanism was used. The combination of the
non-zero kinetic parameters from Tables 4.1 and 4.6 were used in this optimization. The
coliny_direct methodology was used for the optimization, with the settings speci-
fied in Table 4.2. In order to demonstrate the difference between the two objective function
formulations, both the L1-norm (Eq. 2.13) and the L2-norm (Eq. 2.10) formulations were
also used. The results are presented in Table 4.8 and Figures 4.6 and 4.7.

0.8 0.85 0.9

1000 / T
in

 [K
-1

]

10
-3

10
-2

ig
n
 [

s
]

 = 0.9

POLIMI C1C3 V1412

L1-norm
L2-norm

(a)

0.8 0.85 0.9 0.95

1000 / T
in

 [K
-1

]

10
-3

10
-2

ig
n
 [
s
]

 = 1

POLIMI C1C3 V1412

L1-norm

L2-norm

(b)

0.8 0.85 0.9 0.95

1000 / T
in

 [K
-1

]

10
-3

10
-2

ig
n
 [
s
]

 = 1.67

POLIMI C1C3 V1412

L1-normL2-norm

(c)

Figure 4.6: IDT for Ω=0.9, 1 and 1.67 at different inlet temperatures, where the experi-
mental data is presented by the black dots with corresponding error bars. The nominal
kinetics is from test case 1 and is represented by the solid line ( ). The two mecha-
nisms optimized using the L1 and the L2-norm definitions are represented by the dashed
line ( ) and the dotted line ( ) respectively.

The two formulations of the objective function gives the exact same improvements
with respect to the experimental targets in test case 3 (see Figure 4.7). Considering that
the objective function values for test case 3 are much higher than test case 1, for both L1
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Figure 4.7: Oxidation of methanol (CH3OH) at atmospheric pressure in an iso-thermal
JSR at different temperatures and at φ=0.5 and 1. The experimental data is presented
by the scatter, with corresponding error bars. The nominal kinetics is from test case
1 and is represented by the solid lines ( ). The two mechanisms optimized using the
L1 and the L2-norm definitions are represented by the dashed lines ( ) and the dotted
lines ( ) respectively.

and L2-norm formulations, the optimizer is first reducing the relative error to these targets.
Thereafter, the optimizer tries to find combinations which also improves the objective
function values for test case 1. However, for test case 1, the L2-norm formulation tends to
over predict the IDT quite drastically at low temperatures (see Figure 4.6). Instead with the
L1-norm, some quite significant improvements can be found for Ω=0.9 and 1 (see Figures
4.6a and 4.6b), while only slight improvements can be found for Ω=1.67 (Figure 4.6c).
For a more direct comparison, the objective function was calculated using the L1-norm
formulation with the mechanisms resulting from the L2-norm optimization, and vice versa.
The values are presented in parentheses in Table 4.8. Although the L1-norm objective
function value are the same for both the optimized mechanisms, the L2-norm value is even
lower for the mechanism optimized using the L1-norm formulation.
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Table 4.8: List of values for the kinetic parameters considered in test case 4. The nominal
values refer to the values from the POLIMI C1C3 V1412 [83] mechanism. Also the
Obj value is presented at the end of the table for each mechanism. The units of the
different kinetic parameters are as follows: A [s - cm3 - mol], β [-] and Ea [cal/mol].

Reaction Nr Parameter Nominal values L1-norm L2-norm
1 A 9.6 ×1014 8.09 ×1014 7.06 ×1015

β -0.2 -0.2 -0.2
Ea 16 625 16 625 16 209

4 A 5.0 ×1013 5.0 ×1013 2.5 ×1014

Ea 1 000 1 900 1 900
11 A 2.5 ×1013 1.58 ×1013 1.58 ×1013

Ea 700 700 700
13 A 1.3 ×1018 9.56 ×1017 9.56 ×1017

β -0.90 -0.9 -0.9
Ea -1 700 -1 700 -1 700

23 A 2.33 ×1034 3.69 ×1034 2.33 ×1034

β -5.03 -5.03 -5.03
Ea -1 200 -1 200 -1 200

23 [inf] A 2.50 ×1013 2.50 ×1013 1.58 ×1013

176 A 3.75 ×1014 1.74 ×1014 1.74 ×1014

Ea 25 000 25 000 25 000
223 A 1.0 ×1012 5.41 ×1011 1.85 ×1012

Ea 3 000 3 000 3 000
258 A 2.00 ×1012 9.28 ×1011 2.00 ×1012

Ea 8 000 8 000 8 000
271 A 6.0 ×1012 1.03 ×1013 3.51 ×1012

391 A 2.00 ×1013 4.31 ×1013 2.00 ×1013

Ea 6 000 6 000 6 000
405 A 3.00 ×107 5.54 ×107 5.54 ×107

β 2.0 2.0 2.0
Ea 10 000 10 000 10 000

410 A 9.2 ×104 6.77 ×104 6.77 ×104

β 2.53 2.53 2.53
Ea -1 000 -1 000 -1 000

411 A 8.0 ×1013 4.01 ×1013 4.01 ×1013

Ea 19 400 19 400 19 400
725 A 2.796 ×106 4.43 ×106 2.796 ×106

β 2.0 2.0 2.0
Ea 1 566 1 566 1 566

813 A 3.595 ×106 4.89 ×106 3.60 ×106

β 2.0 2.0 2.0
Ea -238 -238 -238

817 A 3.513 ×105 3.513 ×105 4.775 ×105

β 2.0 2.0 2.0
Ea 7 622 7 622 7 622

Obj L1-norm [-] 1.79×102 9.51×101 (9.51×101)
Obj L2-norm [-] 1.35×104 (3.41×103) 3.44×103
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4.6.5 Test case 5: Optimization of Laminar Flame Speed of methane
diluted in CO2

The experimental targets used for this test case consists of LFS data of methane/air
diluted with 10% CO2, at 1 bar and an inlet temperature of 473 K [116]. The experimen-
tal measurements were performed for an equivalence ratio between 0.7-1.2. The kinetic
mechanism used for this test case was the GRI 3.0 [43] mechanism, and using a threshold
of 0.6 on the cumulative sensitivity function resulted in 3 reactions and 7 kinetic parame-
ters, which are listed in Table 4.9.

Table 4.9: List of the reactions and corresponding kinetic parameters (from the GRI 3.0
[43] mechanism) considered in the optimization for Test case 5.

Reaction Nr Reaction Formula A β Ea
38 H + O2⇔ O + OH X X X
109 OH + C2H2⇔ H2O + C2H X X X
145 O2 + 1CH2⇔ H2O + CO X

Again only the non-zero parameter were used for the optimization. The coliny_direct
approach was used for this test case, and the L2-norm formulation for the objective func-
tion (Eq. 2.10). The results can be seen in Table 4.10 and Figure 4.8.

Table 4.10: List of values for the kinetic parameters considered in test case 5. The nominal
values refer to the values from the GRI 3.0 [43] mechanism. Also the Obj value is
presented at the end of the table for each mechanism. The units of the different kinetic
parameters are as follows: A [s - cm3 - mol], β [-] and Ea [cal/mol].

Reaction Nr Parameter Nominal values coliny_direct
38 A 2.65 ×1016 2.67 ×1016

β -0.67 -0.67
Ea 17 041 17 180

109 A 3.37 ×107 1.52 ×107

β 2.0 2.21
Ea 14 000 12 999

145 A 1.20 ×1013 2.90 ×1013

Obj [-] 1.49×102 4.67×101

Even though there are only some minor improvements, the optimized mechanism is
able to capture the experimental targets almost perfectly.
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Figure 4.8: LFS of methane/air diluted with 10% CO2 at atmospheric pressure and an
inlet temperature of 473 K. The experimental data is presented by the black dots with
corresponding error bars, and the nominal kinetics (GRI 3.0 [43]) is represented by
the solid lines ( ) and the optimized mechanism by the dashed lines ( ).

4.6.6 Runtime and number of evaluations
A comparison between the number of experimental targets, number of uncertain pa-

rameters, total number of evaluations, total number of times the penalty function was used
and total runtime on one processor for each specific test case is presented in Table 4.11.
It should be noted that the runtime for the different test cases depends not only on the
number of experimental targets used, or the number of uncertain parameters, but also on
the computational expense for the numerical evaluation of the considered facility. This
can clearly be seen for test case 5, which has a considerably larger runtime than the other
cases as it consists of LFS simulations that are more computationally demanding. The
slight difference in the total number of evaluations, found specifically for the cases ran
with the coliny_direct method, depends on the fact that the optimizer in general fin-
ishes one whole iteration before checking for the stopping criteria, and the iterations are
not always distributed equally over the complete set of evaluations.

Table 4.11: List of number of experimental targets, number of uncertain parameters, num-
ber of total evaluations, number of times the penalty function was used and finally the
total runtime for each specific test case in this chapter.

Test case # targets # parameters # evaluations # penalties Runtime [h]
1 (EA) 34 26 1 000 220 999 023 1.69
1 (DIRECT) 34 26 5 001 1 974 4.29
2 (DIRECT) 14 20 5 021 2 622 0.45
3 (DIRECT) 96 17 5 005 2 992 2.38
4 (DIRECT L1) 122 40 5 013 2 761 5.65
4 (DIRECT L2) 122 40 5 029 2 831 5.58
5 (DIRECT) 6 7 5 001 3 964 44.01
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It can be seen from test case 1 that, even though the Evolutionary Algorithm (EA)
approach runs for many more evaluations, the runtime is actually lower compared to the
DIRECT methodology. This is due to the more random nature of the EA algorithm, which
in turn enforces the penalty function to be used a lot more, and the actual good evaluations
performed with the EA algorithm is actually less than with the DIRECT algorithm. Inter-
estingly enough the performance of the optimized mechanism with EA is very similar to
that of the optimized mechanism with DIRECT, as can be seen in Figure 4.3.

4.7 Optimization of IDT for CH4 and biomass pyrolysis prod-
ucts

To compare the performance of OptiSMOKE++ with the work performed in Chapter
3, the same set of experimental targets were used in an optimization study. The optimiza-
tion was performed again using the same kinetic mechanism, i.e. POLIMI C1C3 V1412
[83], and with the same set of kinetic parameters (see Table 3.2). The coliny_direct
methodology was used for the optimization, with the L2-norm formulation of the objec-
tive function (Eq. 2.10). The performance of the optimized mechanism, together with the
nominal and the optimized mechanisms from Chapter 3 can be appreciated in Figures 4.9
and 4.10.

Overall the optimized mechanism from OptiSMOKE++ performs similarly as the op-
timized mechanism from Chapter 3, i.e. for the methane cases (Figure 4.9) there are no
drastic changes. Except for C/O=0.2 (Figure 4.9d) where there are some further improve-
ments achieved by OptiSMOKE++. For the biomass pyrolysis cases (Figure 4.10) the two
optimized mechanisms are performing equally good.

The kinetic parameter values are shown in Table 4.12 together with the objective func-
tion values. Note that the objective function values with calculated using Eq. 2.10 for a
direct comparison with the optimized mechanism from OptiSMOKE++. Comparing the
objective function values in Table 4.12, it can actually be seen that the optimized mech-
anism from OptiSMOKE++ has a slightly higher value. This is mostly due to the slight
over prediction of the IDT at C/O=0.1 at low temperatures (Figure 4.9c) for the mechanism
from OptiSMOKE++.
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Figure 4.9: IDT for methane at different inlet temperatures for C/O = 0.025-0.2. Experi-
mental data are represented by points with corresponding error bars, while simulation
results for the POLIMI mechanism are presented by the solid lines ( ), the optimized
mechanism from Chapter 3 by the dashed lines ( ) and the optimized mechanism from
OptiSMOKE++ by the dotted lines ( ).
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Figure 4.10: IDT for biomass pyrolysis products at different inlet temperatures for Ω
= 0.9 and 1. Experimental data are represented by points with corresponding error
bars, while simulation results for the POLIMI mechanism are presented by the solid
lines ( ), the optimized mechanism from Chapter 3 by the dashed lines ( ) and the
optimized mechanism from OptiSMOKE++ by the dotted lines ( ).

Table 4.12: Nominal and optimized kinetic parameters, together with the corresponding
objective function values calculated using Eq 2.10. The nominal values are from the
POLIMI C1-C3 [83], while the two optimized mechanisms are from Chapter 3 and the
OptiSMOKE++. The units of the different kinetic parameters are as follows: A [s -
cm3 - mol], β [-] and Ea [cal/mol].

Reaction Nr Parameter Nominal values Chapter 3 OptiSMOKE++
1 A 9.6 ×1014 6.1 ×1014 6.4 ×1014

β -0.2 -0.2 -0.2
Ea 16 625 16 556 16 625

271 A 6.0 ×1012 2.56 ×1013 2.79 ×1013

405 A 3.0 ×107 7.54 ×107 6.80 ×107

β 2 2 2
Ea 10 000 10 139 10 000

Obj [-] 36.48 ×10−3 2.82 ×10−3 2.99 ×10−3
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4.8 Concluding remarks

The development of an efficient toolbox, for the optimization of a large number of
kinetic parameters, with respect to different experimental targets, has been presented in
this chapter. This was realized by coupling the DAKOTA toolkit with the OpenSMOKE++
framework. The toolbox consists of different features, which has been showcased in five
different test cases, and these features are;

— Possibility to use experimental targets from different facilities, i.e. Batch Reactors,
PFRs, PSRs, ST, RCMs and premixed laminar flames. Experimental data from
different facilities can also be used simultaneously.

— Different optimization methodologies available in the DAKOTA toolkit can be em-
ployed.

— Two different definitions of the objective function has been implemented. The user
can therefore choose the objective function definition most suitable for the case at
hand. The benefit of using the L1-norm definition was highlighted, especially when
considering experimental targets of different nature.

— The approach described in Fürst et al. [82] (see 2.2) has been implemented for cal-
culating the upper and lower bounds for each kinetic parameter, based on the uncer-
tainty limits of the rate coefficient.

— In order to arrive with a feasible kinetic mechanism, i.e. physically viable kinetic
parameters, OptiSMOKE++ utilizes a penalty function which forcefully increases
the objective function value when a set of kinetic parameters gives a rate coefficient
outside the uncertainty bounds. This ensures that the optimizer choose an optimal
point which still gives a physically viable rate coefficient value.

Combining all these features allowed OptiSMOKE++ to find a combination of param-
eters, which showed large improvements with respect to the nominal mechanisms used in
each case.

To further evaluate the performance of OptiSMOKE++, the same optimization study
that was performed in Chapter 3 was carried out with OptiSMOKE++. The results showed
that the optimized mechanism from OptiSMOKE++ gave very similar performance over-
all compared to the mechanism from Chapter 3.

Based on the knowledge gathered from the work performed in both in this and in Chap-
ter 3, the optimization of a kinetic mechanism, using many uncertain kinetic parameters,
can be performed. What remains is to combine the two, and optimize a kinetic mechanism
with respect to a large set of data, using OptiSMOKE++, for MILD conditions.
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CHAPTER5
Optimization of a kinetic mechanism for

propane MILD combustion

As a final application, the optimization of a kinetic mechanism with respect to MILD
combustion for a large set of experimental data was performed. Propane was chosen as the
fuel, as it is both representative of the thermochemical and combustion properties of larger
hydrocarbons, and due to the availability of a large database focused on MILD combustion
of propane.

5.1 Experimental database

The experimental data used in this work consists of IDT of propane from two different
publications [16, 117], and species measurements from a JSR [17, 118]. The IDT data
consisted of different inlet temperatures, equivalence ratios, dilution ratios and diluent
species. The species measurements similarly considered the effect of inlet temperature,
equivalence ratio and diluent species. The dilution ratio for the JSR data was always kept
to 90%, and was balanced out with N2. The experimental conditions are summarized in
Table 5.1.

The IDT data were measured at atmospheric pressure in a 1.4 m long PFR with an
inner diameter of 0.01 m. The reactor was enclosed inside a heater, which ensured that
the surrounding temperature was the same as the inlet temperature of the reactor (in order
to reduce the heat losses). The overall heat transfer coefficient was calculated to 100.4
W/(m2K) in [117]. The temperature profile was measured with thermocouples of type N,
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Table 5.1: Experimental data used for the optimization of propane kinetics in MILD con-
ditions.

Type T [K] φ [-] Dilution Nr of experiments Ref
IDT 850-1250 0.1-2.67 90-97% N2 431 [117]
IDT 850-1250 0.1-2.67 90-95% CO2 197 [16]

& 90% H2O
Speciation 720-1100 0.5-1.5 90% N2 + CO2 182 [17]
Speciation 720-1100 0.5-1.5 90% N2 + H2O 278 [118]

placed every 0.05 m along the axis of the reactor. The moment of ignition was identified
at the location where a temperature increase of 10 K, with respect to the inlet temperature,
was measured. The IDT was calculated by dividing the distance with the flow velocity,
which in turn was calculated by dividing the flow rate with the cross area of the reactor.
Based on the spacing between the thermocouples, and the flow velocity, an experimental
error could be estimated as (0.05/2)/vi, where vi is the flow velocity for condition i.

The species profiles were evaluated in a non-isothermal quartz reactor of spherical
shape with a volume (V ) of 113 cm3. The reactor was located inside two electrical fiber
ovens, allowing the surrounding temperature to be the same as the inlet temperature, thus
minimizing heat losses. Nonetheless, as the temperature inside the reactor increases due to
chemical reactions, an overall heat transfer coefficient of 54.392 W/(m2K) was specified
according to [17,118]. All the experiments were performed at a pressure (P ) of 1.1 atm and
at a fixed residence time (τres) of 0.5 s. However, due to the thermal expansion inside the
reactor, the volumetric flow rate (V/τres) cannot be considered constant. What is however
constant is the mass flow rate (ṁ), which can be calculated based on the volumetric flow
rate and the density of the mixture (ρmix), i.e. ṁ = V/τres/ρmix, where the ρmix was
calculated as ρmix =

∑
i(Mixi)P/RT , with Mi being the molar mass and xi the mole

fraction of species i, P the pressure, R the ideal gas constant and T the temperature.
The following species were measured in the two works; O2, H2, CO, CH4, C2H2,

C2H4, C2H6, C3H4 and C3H8 in [17] and O2, H2, CO, CO2, CH4, C2H2, C2H4 and C2H6

in [118].
However, due to an oscillating behavior, reported both in the experiments and simu-

lations of these conditions, the experimental data from the the JSR were not included as
targets for the optimization. The numerical oscillations resulted in infeasibly large simula-
tion times for these data, and as the optimization process requires thousands of evaluations,
it was not viable to use these data as targets for the optimization. They were instead used
as a validation of the optimized mechanism, to evaluate if any major performance changes
had occurred after the optimization.

5.2 Optimization strategy

The optimization was performed in a step-by-step approach similarly as done in Olm et
al. [59], adding a new set of data with each optimization step, and keeping the targets from
the previous step. The uncertain reactions were determined using a cumulative impact fac-
tor (see 2.1.2 and 2.1.3), where one cumulative function was created for each set of data,
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and for each added data set, the reactions not previously considered in the optimization
were added. This gradually increased the amount of reactions considered in the optimiza-
tion, but as many of the most impactful reactions were the same for the different data sets,
the increase was not that drastic with each new data set added to the optimization.

The optimization was performed using the OptiSMOKE++ tool, described in Chapter
4. In an attempt to combine the features of both the EA (see 2.5.2) and the DIRECT
(see 2.5.1) approaches, the optimization was first performed with the DIRECT approach,
and then with the EA approach to add more randomness to the optimization. By doing
so, the strengths of the two approaches are combined, and a better solution can be found.
This is indeed what the developer of the DIRECT algorithm D. R. Jones suggests in [92],
i.e. combining the DIRECT algorithm with another optimizer for the best performance.
Although Jones suggests that the DIRECT algorithm should be combined with a good
local optimizer, in this case another global optimizer was used for refining the search.
This ensures that no global optimum was overseen.

The specific settings used for the two algorithms were as specified in Table 5.2.

Table 5.2: List of specific settings used for the optimization of propane.

coliny_direct coliny_ea
Max function evaluations 15 000 Max function evaluations 1 000 000
Max iterations 15 000 Max iterations 1 000 000
Convergence tolerance 10−8 Convergence tolerance 10−8

Solution target 10−6 Solution target 10−6

Seed 1000 Seed 1000
Global balance parameter 0.1 Population size 300

Mutation rate 0.6
Crossover rate 0.4
Replacement size 10

The Nr of experiments in Table 5.1 refers specifically to the combination of inlet
temperatures, equivalence ratios, dilution ratios and diluent species used in the experi-
ments. However, these numbers are not strictly distributed between the different condi-
tions equally, and some conditions consist of more experimental points than others. It
is therefore important to divide the objective function with the number of experimental
data in each dataset, as discussed in 2.3. This removes any persisting bias towards data
sets which consist of more experimental data points, and an overall improvement for the
complete set of data can be achieved.

The L2-norm definition of the objective function (Eq. 2.10) was used in this work, but
no major difference in the results would be expected if the L1-norm (Eq. 2.13) definition
would have been used.

5.3 Results

The first set of data considered in this optimization, was the data from [117], which
consists of IDT of propane with N2 as diluent. As mentioned in both [117] and [16], the
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POLIMI C1C3 LT [83] mechanism was performing well for the conditions at hand, which
is why it was used for this optimization study. The sensitivity study was performed with
respect to temperature, and the resulting cumulative impact factor study resulted in the list
of reactions presented in Table 5.3 for the IDT data. This set of reactions was determined
using a threshold (ε) of 0.3, i.e. 70% of the impact can be represented with these reactions,
for the specific cases.

Table 5.3: Reactions with cumulative impact factor values above the threshold of 0.3 for
the IDT of propane in MILD conditions. the specific conditions.

Diluent species
Reaction Nr Formula N2 CO2 H2O
1 O2 + H⇔ O + OH X X X
4 OH + HO2⇔ O2 + H2O X
12 2HO2⇔ O2 + H2O2 X X
23 2CH3 (+M)⇔ C2H6 (+M) X
23 [inf] 2CH3 (+M)⇔ C2H6 (+M) X X X
27 CH3 + C2H5 (+M)⇔ C3H8 (+M) X
27 [inf] CH3 + C2H5 (+M)⇔ C3H8 (+M) X X X
161 O2 + CH4⇔ HO2 + CH3 X X X
271 HO2 + CH3⇔ OH + CH3O X X X
391 C2H4 + OH⇔ H2O + C2H3 X X X
407 C3H8 + H⇔ H2 + n-C3H7 X X X
412 C3H8 + HO2 ⇔ H2O2 + n-C3H7 X X
413 C3H8 + HO2 ⇔ H2O2 + iso-C3H7 X X
525 CH3 + CH3OO→ 2CH3O X
904 C3H8 + OH→ H2O + n-C3H7 X X X
933 C3H8 + OH→ H2O + iso-C3H7 X X X

Many of these reactions can also be found in the optimization of methane and biomass
pyrolysis products (see Table 3.2 and Table 4.1). These reactions seems to be highly
influential particularly in MILD conditions. In fact, the oxidation of CH3 through reactions
R271 and R525 are particularly important for the ignition of propane at low temperatures
according to Sabia et al. [117].

The influence of reaction R1 on ignition has already been mentioned in Chapter 3.
This branching reaction creates two highly reactive radicals, namely O and OH, which
participate strongly in other reactions in the ignition process.

At intermediate to high temperatures (Tin>1000 K), the influence of the recombina-
tion of CH3 through reaction R23, becomes significant, as is shown in [16], where it was
shown that this particular reaction showed very high influence to the ignition at high tem-
peratures, regardless the equivalence ratio. This lowers the reactivity of the system, which
also changes the slope of the IDT curve, indicating a so-called Negative Temperature Co-
efficient (NTC) behavior.

At low temperatures, the reactions R412, R413, R904 and R933 describe how propane
(C3H8) undergo dehydrogenation by reacting with OH and HO2 radicals to form normal-
and iso-propyl (n-C3H7 and iso-C3H7) [117]. Although the normal- and iso-propyl radi-
cals are highly reactive species, further reactions involving these radical were not included
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in the optimization study mainly because the sensitivity analysis were performed at the
moment of ignition of the different conditions. Reactions including the normal- and iso-
propyl radicals are more important in the post-ignition segment and did therefore not show
up in the sensitivity analysis.

According to Table 5.3, the dilution of CO2 does not add any other important reactions
that influence the IDT, that was not already important for dilution with N2. However,
as both reactions R23 and R27 are influenced by third bodies, the third body efficiency
of CO2 were included as an uncertain parameter for these two reactions. The upper and
lower limits for the third body efficiencies were assumed ±50% of the nominal value.

For the cases diluted with H2O, only reactions R4 and R27 (low pressure limit) are
added, where R4 directly involves H2O through the reverse reaction step, and R27 again
is a third body reaction. The third body efficiencies of H2O was therefore also included in
the optimization, for both reactions R23 and R27.

Only the non-zero parameters of the above mentioned reactions were used in the opti-
mization. This is done in order to not drastically change the behavior of the mechanism,
which is validated for a wide range of conditions. The number of uncertain parameters for
the different cases therefore adds up to: 29, 31 and 38.

The complete comparison between the nominal and optimized mechanism can be
found in Appendix B, but some key results are presented and discussed below.

A comparison of the performance of the optimized mechanism with respect to the
nominal for stoichiometric conditions can be found in Figure 5.1 at all the different dilu-
tion ratios and diluent species. Interestingly enough, at stoichiometric conditions at 90%
N2 dilution (Figure 5.1a), the optimized mechanism is showing larger tendencies towards
a NTC behavior, which is also supported by the experimental findings [117]. With increas-
ing dilution ratio, and with CO2 and H2O as diluent, this behavior is no longer found, but
large improvements in these conditions can be found nonetheless. However, due to the
strong effect on the IDT at higher dilution ratios (95-97%) and at rich conditions (φ >1),
the major improvements can be found there.

A comparison between the kinetic parameter values of the nominal and optimized
mechanisms can be found in Table 5.4, together with the objective function values for
the two mechanisms. It can be noticed that the objective function value of the optimized
mechanism is lowered by roughly four times, with respect to the nominal mechanism. This
reduction is mostly achieved by changes in the pre-exponential factors of the uncertain
reactions, and only small changes are applied to the temperature exponents and activation
energies. This is mainly due to the fact that a shift towards larger IDT values were enough
as the slope of the nominal mechanism in the log(τ ) vs 1000/T space was good to start with.
A more apparent NTC trend, at close to and at stoichiometric conditions, could be achieved
with only small changes to some temperature exponents and activation energies. Another
interesting fact is that although the conditions considered are highly diluted with third body
species, such as CO2 and H2O, the optimized mechanism presents no changes to these
values. Even for reaction R27, for which the nominal values are only put to the standard,
i.e. 1. This indicates that the effect of the third bodies are not that impactful for these
reactions. Indeed, Sabia et al. [16] discussed mainly the effect of third body efficiencies
of CO2 and H2O for reactions such as H + O2 + M⇔ HO2 + M and H2O2 + M⇔ OH
+ OH +M. As these reactions are not included in the optimization study, the influence of
third body efficiencies were not that significant. Larger improvements could possibly be
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Figure 5.1: IDT for propane diluted with 90-97% N2, 90-95% CO2 and 90% H2O at
different inlet temperatures for φ = 1. Experimental data (from [16, 117]) are rep-
resented by points with corresponding error bars, and the simulation results for the
POLIMI mechanism are presented by the solid lines ( ) and the optimized mechanism
by the dashed lines ( ).

found if such influential third body efficiencies were included in the optimization, and the
approach of selecting the uncertain kinetic parameters could be improved.
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Table 5.4: Comparison between the values for the kinetic parameters considered in the
optimization. The nominal values refer to the values from the POLIMI C1C3 V1412
[83] mechanism. Also the Obj value is presented at the end of the table for the two
mechanisms. The units of the different kinetic parameters are as follows: A [s - cm3 -
mol], β [-], Ea [cal/mol] and M [-].

Reaction Nr Parameter Nominal values Optimized values
1 A 9.6 ×1014 6.71 ×1014

β -0.2 -0.21
Ea 16 625 16 513

4 A 5.0 ×1013 3.71 ×1013

Ea 1 000 1 047
12 A 2.11 ×1012 4.35 ×1012

23 A 2.33 ×1034 4.65 ×1034

β -5.03 -5.04
Ea -1 200 -837

MCO2
3 3

MH2O 5 5
23 [inf] A 2.5 ×1013 4.53 ×1013

27 A 6.8 ×1061 5.88 ×1061

β -13.42 -13.55
Ea 6 000 6 063

MCO2
1 1

MH2O 1 1
27 [inf] A 9.6 ×1014 4.93 ×1014

β -0.50 -0.50
161 A 9.0 ×1013 9.0 ×1013

Ea 56 000 56 088
271 A 6.0 ×1012 7.07 ×1012

391 A 2.0 ×1013 3.72 ×1013

Ea 6 000 7 040
407 A 1.27 ×1014 2.11 ×1014

Ea 10 500 10 283
412 A 4.2 ×1013 1.91 ×1013

Ea 20 400 21 988
413 A 1.4 ×1013 3.26 ×1013

Ea 17 700 19 127
525 A 3.0 ×1013 9.49 ×1013

Ea -1 200 -1 197
904 A 3.195 ×106 6.39 ×106

β 2.0 2.0
Ea -498.69 -989.02

933 A 7.988 ×105 4.00 ×106

β 2.0 2.0
Ea -1 798 -1 548

Obj [-] 8.56 ×10−1 2.31 ×10−1
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5.3.1 Validation against JSR data
As previously mentioned, the experimental data from [17,118] were used as validation

targets. As a whole, the performance of the optimized mechanism is similar as the nominal
one, as can be seen in some species profiles presented in Figures 5.2-5.4. The complete set
of profiles can be found in Appendix B. Although the objective function value was reduced
from 2.51×107 to 1.10×107 (using the L2-norm Eq. 2.10), only slight differences can be
noticed in peak values for species such as propene (C3H6) and ethylene (C2H4). However,
for the major species, such as O2, CO, CO2 and C3H8, there are no major differences
between the two mechanisms, and the general trend of the experiments are predicted. The
major discrepancy between the experimental data and the simulations can be found for
methyl acetylene (C3H4) (see Figures B8g and B9g), where both the mechanisms are over
predicting the molar fractions drastically. However, as this was the same for the nominal
mechanism, no major difference is found with the optimized mechanism.
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Figure 5.2: JSR C3H8 measurements for propane oxidation diluted with CO2 and N2

at different inlet temperatures for φ = 0.5-1.5. Experimental data (from [17]) are
represented by points with corresponding error bars, and the simulation results for the
POLIMI mechanism are presented by the solid lines ( ) and the optimized mechanism
by the dashed lines ( ).
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Figure 5.3: JSR O2 measurements for propane oxidation diluted with CO2, H2O and N2

at different inlet temperatures for φ = 0.5-1.5. Experimental data (from [17, 118]) are
represented by points with corresponding error bars, and the simulation results for the
POLIMI mechanism are presented by the solid lines ( ) and the optimized mechanism
by the dashed lines ( ).
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Figure 5.4: JSR CO measurements for propane oxidation diluted with CO2, H2O and N2

at different inlet temperatures for φ = 0.5-1.5. Experimental data (from [17, 118]) are
represented by points with corresponding error bars, and the simulation results for the
POLIMI mechanism are presented by the solid lines ( ) and the optimized mechanism
by the dashed lines ( ).
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5.4 Concluding remarks

The application of optimization of a chemical mechanism with respect to a large set
of experimental targets in MILD combustion has been presented in this chapter. Propane
was used as the targeted fuel, as a large database of MILD combustion of propane was
available in the form of Ignition Delay Times (IDTs) and species measurements form a Jet
Stirred Reactor (JSR). However, due to numerical instabilities in the simulation of the JSR
data, these were only used as a final validation of the optimized mechanism, rather than
optimization targets. Nonetheless, more than 600 experimental targets of IDT were used
for the optimization. The optimization was performed in a step-by-step approach, where
the each step consisted of adding another data set to the optimization, still keeping the pre-
vious experiments as targets. The uncertain reactions were determined using a cumulative
impact factor for each separate data set. The kinetic parameters of the reactions which
showed a cumulative impact factor above the threshold of 0.3 were used in the optimiza-
tion. With each step, the reactions which were not already considered in the optimization,
were added to the optimization. However, as many of the reactions were in common for the
different data sets, the amount of uncertain parameters did not increase that drastically with
each step. The total amount of 38 uncertain parameters were used in the optimization con-
temporary. The optimization was performed with the toolbox OptiSMOKE++, described
in Chapter 4. By using two different optimization approaches, namely coliny_direct
and coliny_ea, the optimization was achieved using the benefits of both these methods.
The coliny_direct was used to quickly arrive at a good potential optimum, and the
coliny_ea method was used to find further improvements using the more randomized
approach of Evolutionary Algorithm (EA).

Based on the results from this chapter, the following conclusions can be made:

— The optimized mechanism showed large improvements, especially for IDT at high
equivalence ratios, and at high dilution ratios.

— The optimized mechanism showed a change in curvature at lower temperatures and
equivalence ratios close to and at stoichiometric conditions, indicating a so called
Negative Temperature Coefficient (NTC) behavior, which is also something that was
found in the experiments.

— The suggested changes to the kinetic parameters consisted mainly of changing the
pre-exponential factors of the uncertain reactions. Considering that the nominal
mechanism showed good trends with respect to the IDT, a shift towards larger IDT
values was achieved by only changing these parameters.

— Some slight changes to the temperature exponents and activation energies was enough
to change the aforementioned curvature at close to and at stoichiometric conditions
towards a NTC behavior.

Additionally, the validation against the JSR data showed that the optimized mecha-
nism performed very similarly as the nominal mechanism. The only major difference was
found in the peak predictions of C3H6 and C2H4, which were slightly higher for the op-
timized mechanism. However, the major species profiles were very similar for the two
mechanisms.

Although the performance of the optimized mechanism is quite satisfactory, there are
still room for improvements, especially at the conditions diluted with H2O. As the effect
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of third body efficiencies was not influential for the reactions considered, further improve-
ments could be found if reactions where the third body efficiencies are impactful were
included. However, the optimized mechanism from this work can easily be used as a
starting point for further optimization.
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CHAPTER6
Conclusions

Considering that for MILD combustion simulations, the usage of detailed kinetics is
important, a large part of the prediction uncertainty in numerical simulations can be al-
located only to the kinetics. Additionally, as existing detailed mechanisms have been
developed and validated against conventional combustion targets, their performance with
respect to MILD conditions is not optimal. Due to the increased presence of combus-
tion products and higher temperature of the reacting mixture, MILD combustion behaves
chemically differently compared to conventional conditions. To reduce the uncertainty and
improve the performance of detailed kinetic mechanisms with respect to MILD combus-
tion, the application of Uncertainty Quantification (UQ) and Optimization techniques has
been performed in this work.

The first application of this was focused on the optimization of detailed kinetics with
respect to Ignition Delay Time (IDT) of methane and biomass pyrolysis products. The op-
timization was performed using Surrogate Models (SMs) for representing the response of
changing the uncertain kinetic parameters. In this work, the amount of uncertain parame-
ters was directly reduced by performing a forward UQ study to determine which reactions
that had only minor influence on the conditions considered. Such a study would become
even more crucial as the number of experimental targets increase, which directly increases
the amount of reactions that show high sensitivity towards the experiments. The prior
uncertainty ranges of each kinetic parameter were determined using a novel approach de-
veloped in this work. The approach uses the extreme points of the uncertainty band of the
rate coefficient, i.e. at Tmin and Tmax, and by finding the curve, with two unknown pa-
rameters, that intercepts these points, the extreme values of the kinetic parameters can be
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determined. This approach has proven to be suitable, as it presents a somewhat conserva-
tive estimation of the limits of the kinetic parameters, which in turn allows for optimization
of the mechanism with only minor changes to the overall behavior. Physically viable val-
ues of the rate coefficients were assured by only evaluating the parameter combinations
that did not provide rate coefficient values outside of the uncertainty bounds. The optimal
point, out of all the evaluated parameter combinations, provided quite drastic improve-
ments for the IDT of biomass pyrolysis products, as well as for C/O=0.2 and for high
temperatures for the other methane cases. To ensure that no drastic reduction in perfor-
mance of the mechanism was found for conventional conditions, the optimized mechanism
was compared to the nominal for IDT of methane-air mixtures at different pressures. In-
terestingly enough, it was even found that the optimized mechanism is outperforming the
nominal mechanism at low pressures (1 atm).

This first application of optimization towards MILD experimental targets proved suc-
cessful. However, with an increasing amount of experimental targets, the approach of
using SMs would quickly become infeasible. With an increasing number of experimental
targets also the amount of uncertain kinetic parameters that should be considered in the op-
timization would increase. This would directly increase the complexity of the mechanism
response to each change in the parameters, and it would become increasingly difficult to
build accurate SMs for the optimization. An efficient toolbox for the optimization of ki-
netic mechanisms, with respect to a large number of uncertain parameters and experimen-
tal targets was therefore developed. Rather than using SMs for representing the behavior
of changes in the mechanism, this tool tightly coupled an optimization toolkit (DAKOTA)
with a simulation code (OpenSMOKE++) for simulations of detailed kinetics in reactive
systems. By doing so, this new tool, called OptiSMOKE++, is able to use sophisticated
optimization algorithms, which determines potential optimal parameter combinations in
the parameter space based on information from previous evaluations. The global opti-
mum can therefore be found, using a relatively small amount of simulations. The tool was
created in a way that the user has flexibility in the choice of the optimization approach,
experimental targets, objective function formulation and uncertain kinetic parameters. De-
pending on the choice of optimization approach, the tool seems to be remarkably suitable
for optimizing kinetic mechanisms, considering a large amount of uncertain parameters
simultaneously.

The tool (OptiSMOKE++) was finally used for the optimization of a kinetic mecha-
nism with respect to MILD combustion, considering a large amount of experimental data,
and quite a significant amount of uncertain kinetic parameters. The fuel considered was
propane, and a large set of IDT at a wide range of equivalence ratios, inlet temperatures,
dilution ratios and diluent species were considered as targets for the optimization. Large
improvements could be found for rich conditions, as well as for high dilution ratios. These
improvements could be found by mostly changing the pre-exponential factors of the un-
certain reactions. As indeed the nominal mechanism showed a good tendency towards
the IDT, the shift towards larger IDT values was achieved with just this change. How-
ever, by changing only slightly the temperature exponents and activation energies for the
considered reactions, the optimized mechanism was able to show an increased Negative
Temperature Coefficient (NTC) behavior at close to and at stoichiometric conditions with
N2 as diluent, which was also found experimentally. For the conditions diluted with H2O,
only small improvements were found, but considering that the reactions used in the opti-
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mization showed no direct impact of the third body efficiencies of either H2O or CO2, fur-
ther improvements could be achieved if more reactions were included in the optimization.
Specifically reactions where the third body efficiency has a larger influence. Considering
that the approach applied in this work only considers the sensitivity of the pre-exponential
factor towards the simulation results, the effect of the third body efficiencies were not
emphasised in the selection process of the uncertain parameters. This is definitely some-
thing that could be improved in the approach used in this work. The optimized mechanism
was also validated against species measurements from the oxidation of propane in MILD
conditions in a Jet Stirred Reactor (JSR). The performance of the optimized mechanism
was very similar to the nominal mechanism, which were able to capture the general trends
in the species profiles. Only the prediction of the peak values of C3H6 and C2H4 were
slightly higher for the optimized mechanism, but the profiles of the major species were
very similar.

As a final remark, it can be said that the performance of existing detailed chemical
mechanisms can be improved with respect to MILD combustion by applying the optimiza-
tion strategies put forth in this work. Through the development of the OptiSMOKE++
toolbox, an optimization study considering a large set of experimental targets, as well as
many uncertain kinetic parameters simultaneously, can be performed.

Future perspectives

The work performed in this thesis has been focusing on the application of optimization
strategies on existing detailed kinetic mechanism that have not necessarily been validated
against the conditions considered as targets, i.e. MILD combustion. However, as a fur-
ther application of the tools developed here, it would be very interesting to look towards
optimizing new reaction pathways determined for larger fuels. These reaction pathways
are nowadays normally determined using high level theoretical calculations consisting of;
ab-initio electronic structure theory, transition state theory, classical trajectory simulations
and master equations [119,120]. These methods are able to quite accurately determine the
rate constants for new reaction pathways, but as with any methodology, there still exists
a correlated uncertainty. By optimizing these new pathways, within their specific uncer-
tainty bounds, significant improvements can be found much faster than by redoing the
quite computationally expensive theoretical calculations mentioned above.

Another interesting aspect that was already mentioned is the determination of influ-
ential kinetic parameters. As the dimensionality of the problem increases, i.e. more ex-
perimental data is considered, more reactions will show large sensitivities with respect to
some specific condition. If all the kinetic parameters should always be considered in an
optimization study, the amount of uncertain parameters will increase drastically. If in-
stead only the most influential parameters can be determined a priori, the convergence of
the optimization will be much faster, and more detail can be put on only the important
parameters.
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Nomenclature

Acronyms
Acronym Description
ANN Artificial Neural Network
B2B-DC Bound-to-Bound Data Collaboration
CDC Colorless Distributed Combustion
CFD Computational Fluid Dynamics
DAKOTA Design Analysis Kit for Optimization and Terascale Applications
DIRECT DIviding RECTangles
EA Evolutionary Algorithm
EGR Exhaust Gas Recirculation
FLOX Flameless Oxidation
GA Genetic Algorithm
GLS Generalized Least Squares
GP Gaussian Process interpolation
HDMR High-Dimensional Model Representation
HiTAC High Temperature Air Combustion
IDT Ignition Delay Time
JSR Jet Stirred Reactor
LAD Least Absolute Deviation
LFS Laminar Flame Speed
LHS Latin Hypercube Sampling
LS Least Squares
MILD Moderate of Intense Low-oxygen Dilution
MLE Maximum Likelihood Estimation
MUM-PCE Method of Uncertainty Minimization using Polynomial Chaos Expansions
Norm Normalized
Nr Number
NTC Negative Temperature Coefficient
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Nomenclature

PCE Polynomial Chaos Expansion
PFR Plug Flow Reactor
PSR Perfectly Stirred Reactor
QoI Quantity of Interest
RCM Rapid Compression Machine
SM Surrogate Model
ST Shock-Tube
UQ Uncertainty Quantification

Roman symbols
Symbol Unit Description
a Coefficient
A s - cm3 - mol Pre-exponential factor
b Coefficient
b(x) Polynomial function
c Coefficient
C s Computational cost
C0 s Computational overhead
Da Damköhler number
Ea cal/mol Activation energy
f Uncertainty parameter
f(x) Regression function
g Set of constants
I Impact factor
k s−1 Reaction rate coefficient
K Number of species
ṁ kg/s Mass flow rate
M kg/mol Molar mass
N Number of experimental data points
Obj Objective function
P atmosphere (atm) Pressure
r Correlation vector
R 1.987 cal/K/mol Ideal gas constant
S Sensitivity coefficient
T K Temperature
v m/s Velocity
V m3 Volume
x Function parameter/mole fraction
X Number of standard deviations
X Parameter vector
y Absolute value of QoI
y(x) Model representation
Y QoI
Z(x) Residual function

Greek symbols
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Nomenclature

Symbol Unit Description
α Weighing factor
β Temperature exponent
γ Correlation function degree
ε Cut-off threshold
ε Relative experimental error
θ Hyper-parameters for the correlation function
ρ kg/m3 Density
σ Standard deviation
τ s Time
φ Equivalence ratio
Ψ Correlation function
Ψ Correlation matrix
Ω Oxygen ratio

Subscripts
Symbol Description
0 Nominal
d Number of dimensions in the parameter space
exp Experimental
i Index
ign Ignition delay
in Inlet
j Index
max Maximum
min Minimum
mix Mixture
p Number of polynomial functions
res Residence
stat Statistical

Superscripts
Symbol Description
∗ Prediction point
exp Experimental value
n Number of observations
sim Simulation value
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Appendix A: Prior uncertainty range
evaluation

This appendix presents the forward Uncertainty Quantification (UQ) study that was
performed in combination with the work of Chapter 3. The reactions considered were the
following; R1 (O2 + H⇔ O + OH), R229 (O2 + CH3 ⇔ O + CH3O), R271 (HO2 + CH3
⇔ OH + CH3O, R405 (CH4 + H ⇔ H2 + CH3) and R513 (CH3OO ⇔ CH2O + OH).
The reaction numbers refer to the order they appear in the POLIMI mechanism [83]. The
prior uncertainty range for each reaction (represented by the grey area in Figures A1-A10)
was determined using the specific uncertainty ranges of the kinetic parameters, and when
all three parameters (A, β and Ea) were given for a specific reaction, a set of samples
were used to determine the potential uncertainty range with respect to the experimental
targets [18, 93]. It should be noted that this study was only performed on each single
reaction, and that the combined effect of changing the kinetic parameters from more than
one reaction was not evaluated.
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Figure A1: Prior uncertainty range for reaction R1 (O2 + H ⇔ O + OH) for methane
at C/O = 0.025-0.2. Experimental data are represented by points with corresponding
error bars.

0.8 0.85 0.9

1000/T
in

 [K
-1

]

0.001

0.01

ig
n
 [
s
]

 = 0.9  

R1: O
2
 + H  O + OH

(a)

0.8 0.85 0.9

1000/T
in

 [K
-1

]

0.001

0.01

ig
n
 [
s
]

 = 1.0  

R1: O
2
 + H  O + OH

(b)

Figure A2: Prior uncertainty range for reaction R1 (O2 + H ⇔ O + OH) for biomass
pyrolysis products at Ω = 0.9 and 1. Experimental data are represented by points with
corresponding error bars.
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Figure A3: Prior uncertainty range for reaction R229 (O2 + CH3 ⇔ O + CH3O) for
methane at C/O = 0.025-0.2. Experimental data are represented by points with corre-
sponding error bars.

0.8 0.85 0.9

1000/T
in

 [K
-1

]

0.001

0.01

ig
n
 [
s
]

 = 0.9  

R229: O
2
 + CH

3
  O + CH

3
O

(a)

0.8 0.85 0.9

1000/T
in

 [K
-1

]

0.001

0.01

ig
n
 [
s
]

 = 1.0  

R229: O
2
 + CH

3
  O + CH

3
O

(b)

Figure A4: Prior uncertainty range for reaction R229 (O2 + CH3 ⇔ O + CH3O) for
biomass pyrolysis products at Ω = 0.9 and 1. Experimental data are represented by
points with corresponding error bars.
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Figure A5: Prior uncertainty range for reaction R271 (HO2 + CH3 ⇔ OH + CH3O)
for methane at C/O = 0.025-0.2. Experimental data are represented by points with
corresponding error bars.
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Figure A6: Prior uncertainty range for reaction R271 (HO2 + CH3 ⇔ OH + CH3O) for
biomass pyrolysis products at Ω = 0.9 and 1. Experimental data are represented by
points with corresponding error bars.
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Figure A7: Prior uncertainty range for reaction R405 (CH4 + H ⇔ H2 + CH3) for
methane at C/O = 0.025-0.2. Experimental data are represented by points with corre-
sponding error bars.
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Figure A8: Prior uncertainty range for reaction R405 (CH4 + H ⇔ H2 + CH3) for
biomass pyrolysis products at Ω = 0.9 and 1. Experimental data are represented by
points with corresponding error bars.
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Figure A9: Prior uncertainty range for reaction R513 (CH3OO ⇔ CH2O + OH) for
methane at C/O = 0.025-0.2. Experimental data are represented by points with corre-
sponding error bars.
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Figure A10: Prior uncertainty range for reaction R513 (CH3OO ⇔ CH2O + OH) for
biomass pyrolysis products at Ω = 0.9 and 1. Experimental data are represented by
points with corresponding error bars.
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Appendix B: Propane optimization results

This appendix presents the results from the optimization performed in Chapter 5. The
figures are divided into sections based on their type, and the nominal mechanism (POLIMI
C1C3 LT [83]) is represented by the solid lines in the figures, and the optimized mechanism
by the dashed lines.

Ignition Delay Time of propane in MILD conditions

The experimental data are from [16, 117], and consists of IDT of propane at different
inlet temperatures, equivalence ratios, dilution percentages and diluent species.
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Figure B1: IDT for propane diluted with 90% N2 at different inlet temperatures for φ =
0.1-2.67. Experimental data (from [117]) are represented by points with corresponding
error bars, and the simulation results for the POLIMI mechanism are presented by the
solid lines ( ) and the optimized mechanism by the dashed lines ( ).
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Figure B2: IDT for propane diluted with 95% N2 at different inlet temperatures for φ =
0.33-1. Experimental data (from [117]) are represented by points with corresponding
error bars, and the simulation results for the POLIMI mechanism are presented by the
solid lines ( ) and the optimized mechanism by the dashed lines ( ).
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Figure B3: IDT for propane diluted with 97% N2 at different inlet temperatures for φ =
0.5-1. Experimental data (from [117]) are represented by points with corresponding
error bars, and the simulation results for the POLIMI mechanism are presented by the
solid lines ( ) and the optimized mechanism by the dashed lines ( ).

97



Appendix B

0.75 0.85 0.95 1.05

1000/T
in

 [K
-1

]

10
-4

10
-3

10
-2

10
-1

ig
n
 [
s
]

=0.12

90% CO
2

(a)

0.75 0.85 0.95 1.05

1000/T
in

 [K
-1

]

10
-4

10
-3

10
-2

10
-1

ig
n
 [
s
]

=0.13

90% CO
2

(b)

0.75 0.85 0.95 1.05

1000/T
in

 [K
-1

]

10
-4

10
-3

10
-2

10
-1

ig
n
 [
s
]

=0.17

90% CO
2

(c)

0.75 0.85 0.95 1.05

1000/T
in

 [K
-1

]

10
-4

10
-3

10
-2

10
-1

ig
n
 [
s
]

=0.25

90% CO
2

(d)

0.75 0.85 0.95 1.05

1000/T
in

 [K
-1

]

10
-4

10
-3

10
-2

10
-1

ig
n
 [
s
]

=0.33

90% CO
2

(e)

0.75 0.85 0.95 1.05

1000/T
in

 [K
-1

]

10
-4

10
-3

10
-2

10
-1

ig
n
 [
s
]

=0.67

90% CO
2

(f)

0.75 0.85 0.95 1.05

1000/T
in

 [K
-1

]

10
-4

10
-3

10
-2

10
-1

ig
n
 [
s
]

=1

90% CO
2

(g)

0.75 0.85 0.95 1.05

1000/T
in

 [K
-1

]

10
-4

10
-3

10
-2

10
-1

ig
n
 [
s
]

=1.33

90% CO
2

(h)

0.75 0.85 0.95 1.05

1000/T
in

 [K
-1

]

10
-4

10
-3

10
-2

10
-1

ig
n
 [
s
]

=2

90% CO
2

(i)

0.75 0.85 0.95 1.05

1000/T
in

 [K
-1

]

10
-4

10
-3

10
-2

10
-1

ig
n
 [
s
]

=2.67

90% CO
2

(j)

Figure B4: IDT for propane diluted with 90% CO2 at different inlet temperatures for φ =
0.12-2.67. Experimental data (from [16]) are represented by points with corresponding
error bars, and the simulation results for the POLIMI mechanism are presented by the
solid lines ( ) and the optimized mechanism by the dashed lines ( ).

98



IDT of propane

0.75 0.85 0.95 1.05

1000/T
in

 [K
-1

]

10
-4

10
-3

10
-2

10
-1

ig
n
 [
s
]

=0.33

95% CO
2

(a)

0.75 0.85 0.95 1.05

1000/T
in

 [K
-1

]

10
-4

10
-3

10
-2

10
-1

ig
n
 [
s
]

=0.67

95% CO
2

(b)

0.75 0.85 0.95 1.05

1000/T
in

 [K
-1

]

10
-4

10
-3

10
-2

10
-1

ig
n
 [
s
]

=1

95% CO
2

(c)

0.75 0.85 0.95 1.05

1000/T
in

 [K
-1

]

10
-4

10
-3

10
-2

10
-1

ig
n
 [
s
]

=1.33

95% CO
2

(d)

Figure B5: IDT for propane diluted with 95% CO2 at different inlet temperatures for φ =
0.33-1.33. Experimental data (from [16]) are represented by points with corresponding
error bars, and the simulation results for the POLIMI mechanism are presented by the
solid lines ( ) and the optimized mechanism by the dashed lines ( ).
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Figure B6: IDT for propane diluted with 90% H2O at different inlet temperatures for φ =
0.17-2. Experimental data (from [16]) are represented by points with corresponding
error bars, and the simulation results for the POLIMI mechanism are presented by the
solid lines ( ) and the optimized mechanism by the dashed lines ( ).
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Species mole fractions from a Jet Stirred Reactor

The experimental data [17,118] are divided into different figures based on equivalence
ratio (0.5, 1 and 1.5), diluent species (CO2 and H2O) and measured species. In each figure
the different dilution ratios for CO2 and H2O are represented by the different colors. The
lines represent the simulation results, and where the lines are cut, numerical oscillations
were observed.
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Figure B7: JSR species measurements for propane oxidation diluted with CO2 and N2 at
different inlet temperatures for φ = 0.5. Experimental data (from [17]) are represented
by points with corresponding error bars, and the simulation results for the POLIMI
mechanism are presented by the solid lines ( ) and the optimized mechanism by the
dashed lines ( ).
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Figure B8: JSR species measurements for propane oxidation diluted with CO2 and N2 at
different inlet temperatures for φ = 1. Experimental data (from [17]) are represented
by points with corresponding error bars, and the simulation results for the POLIMI
mechanism are presented by the solid lines ( ) and the optimized mechanism by the
dashed lines ( ).
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Figure B9: JSR species measurements for propane oxidation diluted with CO2 and N2 at
different inlet temperatures for φ = 1.5. Experimental data (from [17]) are represented
by points with corresponding error bars, and the simulation results for the POLIMI
mechanism are presented by the solid lines ( ) and the optimized mechanism by the
dashed lines ( ).
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Figure B10: JSR species measurements for propane oxidation diluted with H2O and N2

at different inlet temperatures for φ = 0.5. Experimental data (from [118]) are rep-
resented by points with corresponding error bars, and the simulation results for the
POLIMI mechanism are presented by the solid lines ( ) and the optimized mechanism
by the dashed lines ( ).
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Figure B11: JSR species measurements for propane oxidation diluted with H2O and N2 at
different inlet temperatures for φ = 1. Experimental data (from [118]) are represented
by points with corresponding error bars, and the simulation results for the POLIMI
mechanism are presented by the solid lines ( ) and the optimized mechanism by the
dashed lines ( ).
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Figure B12: JSR species measurements for propane oxidation diluted with H2O and N2

at different inlet temperatures for φ = 1.5. Experimental data (from [118]) are rep-
resented by points with corresponding error bars, and the simulation results for the
POLIMI mechanism are presented by the solid lines ( ) and the optimized mechanism
by the dashed lines ( ).
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