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Increased susceptibility to infections
& increased mortality

Highlights

e Monocytes and dendritic cells are impaired in severe alcoholic hepatitis.

e This immune dysfunction is associated with higher risk of infection and

mortality.

e The presence of ACLF does not enhance monocyte and dendritic alterations.

e The altered transcriptomic program of monocytes has strong epigenetic

determinants.
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Lay summary

Patients with severe
alcoholic hepatitis are
at increased risk of in-

fections, which
contribute to the poor
prognosis  associated
with  the disease.
Herein, we show that
epigenetic de-

terminants underly the
immune cell dysfunc-
tion and inappropriate
responses to pathogens
that are associated
with severe alcoholic
hepatitis.
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Epigenetic basis for monocyte dysfunction in patients with severe
alcoholic hepatitis
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and Institute of Interdisciplinary Research in Human and Molecular Biology (IRIBHM), Brussels, Belgium; SUniversité Libre de Bruxelles,
Laboratory of Experimental Gastroenterology; “Inserm Unité 1149, Centre de Recherche sur I'inflammation (CRI), Paris, France

Background & Aims: Severe forms of alcohol-related liver dis-
ease are associated with increased susceptibility to infections
which are associated with poor prognosis. The cellular and mo-
lecular mechanisms responsible for this altered host defense are
incompletely understood.

Methods: We performed whole blood phenotypic analysis and
ex vivo stimulation with various pathogen-associated molecular
patterns (PAMPs). We included 34 patients with alcohol-related
cirrhosis (18 of whom had biopsy-proven severe alcoholic hep-
atitis [sAH]), 12 healthy controls and 11 patients with chronic
alcohol consumption without significant liver disease. We also
evaluated the transcriptomic (RNA-seq) and chromatin accessi-
bility (ATAC-seq) profiles of CD14" monocytes from a subset of
patients.

Results: Circulating monocytes and conventional dendritic cells
(DCs) from patients with sAH displayed complex alterations
characterized by increased expression of both activating and
inhibitory surface markers and an impaired pro-inflammatory
response upon stimulation with PAMPs representative of gram-
negative bacteria (lipopolysaccharide, Pam3CSK4) or fungal
pathogens (Zymosan). Their decreased ability to produce more
than 1 cytokine (polyfunctionality) upon PAMP stimulation
correlated with the risk of developing infection at 28 days or
mortality at 90 days. The presence of acute-on-chronic liver
failure in patients with sAH did not significantly modify the
immune profile of monocytes and DCs. Moreover, CD14" mono-
cytes of patients with sAH displayed altered transcriptional and
epigenomic profiles characterized by downregulation of key

Keywords: Alcoholic liver disease; Alcoholic hepatitis; Acute-on-chronic liver failure;
Immune dysfunction; Infection; Epigenetic.
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innate immune and metabolic pathways and upregulation of
important immunomodulatory factors.

Conclusions: In patients with sAH, the altered transcriptional
program and functional properties of monocytes that contribute
to patients’ susceptibility to infection have strong epigenetic
determinants.

Lay summary: Patients with severe alcoholic hepatitis are at Q3

increased risk of infections, which contribute to the poor prog-
nosis associated with the disease. Herein, we show that epige-
netic determinants underly the immune cell dysfunction and
inappropriate responses to pathogens that are associated with
severe alcoholic hepatitis.

© 2020 European Association for the Study of the Liver. Published by
Elsevier B.V. All rights reserved.

Introduction

Increased susceptibility to infections is a hallmark of severe
forms of alcohol-related liver disease (ALD), like severe alcoholic
hepatitis (sAH) and acute-on-chronic liver failure (ACLF), and
majorly contributes to their poor prognosis.' This susceptibility is
not limited to bacterial infections but also observed for viral and
fungal infections.>* The main clinical challenge remains their
early diagnosis and prompt/adequate management.

The causative mechanisms of this susceptibility remain elusive.
sAH and/or alcohol-related ACLF is associated with an immune
dysfunction characterized by the coexistence of systemic inflam-
mation? and impaired response of immune cells to pathogens and
their products.® Several studies demonstrated a reduced pro-
inflammatory cytokine production by lipopolysaccharide (LPS)-
stimulated monocytes and a decrease in their capacities to kill
microbes. The mechanisms responsible for this monocyte
dysfunction are supposed to be multifactorial: reduced expression
of HLA-DR® increased expression of MER tyrosine kinase
(MERTK),” increased exposure to prostaglandin-E2® and alter-
ations in monocyte glutamine metabolism.” The function of other
mononuclear phagocytes, namely conventional and plasmacytoid
dendritic cells (DCs), that play a major role in the orchestration of
immune responses, remains unexplored in ALD.

Recently, it has been described that myeloid cells from the
innate immune system can be trained through epigenetic
and metabolic programming by diverse mediators resulting in
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hyper- or hypo-responsiveness upon re-stimulation.'® In sepsis,
the current paradigm suggests that pathogen-associated molec-
ular patterns (PAMPs) induce innate immune cell tolerance
through epigenetic silencing of several host defense genes, thus
contributing to the higher risk of secondary infections.!!

In this study, we explored phenotypic profiles of the main
subsets of the mononuclear phagocyte system in different stages
of ALD. We also assessed their responses to diverse PAMPs and
their ability to produce pro-inflammatory cytokines. We
compared these immunological parameters with clinical out-
comes (mortality and risk of infection). Finally, we studied
transcriptional and chromatin accessibility profiles of CD14*
monocytes.

Materials and methods

Patient recruitment

For this study, we prospectively recruited 34 patients with
alcohol-related cirrhosis diagnosed based on liver biopsy or
classical clinical, biochemical and radiological criteria, 11 chronic
alcohol abusers without signs of liver fibrosis (Fibroscan <7 kPa
and Fibrotest <0.3), and 12 healthy control participants at C.U.B.
Erasme Hospital between May 2016 and October 2017. Patients
with cirrhosis were divided into 2 groups based on histology and
severity scores: alcohol-related cirrhosis alone or severe (modi-
fied discriminant function higher than 32'?) biopsy-proven AH.
The sAH group was further divided into patients with or without
ACLF according to the EASL-CLIF definition'® for subgroup ana-
lyses. The inclusion and exclusion criteria used are detailed in the
Supplementary Methods.

Whole blood assays

Ex vivo phenotypic analysis, whole blood stimulation, cytokine
measurements and preparation of the samples for flow cyto-
metric analysis was performed as described previously'* and is
detailed in the Supplementary Methods and Supplementary
CTAT Table.

RNA-Seq and ATAC-seq on CD14* monocytes
Peripheral blood mononuclear cells were isolated by density
gradient centrifugation using Ficoll-Paque (GE Healthcare Life
Sciences) and were cryopreserved. CD14" monocytes were iso-
lated by FACS on a BD FACS Aria IIl (>90% purity) and processed
for RNA isolation or ATAC-seq as previously described’® and
detailed in the Supplementary Methods.

For further details regarding the materials used, please refer
to the CTAT Table and Supplementary Information.

Results

Characteristics of the enrolled individuals

Based on clinical, histological and biochemical parameters
(Table S1), we defined 4 groups: healthy controls (HCs), chronic
alcohol abusers (CAAs) without signs of hepatic disease, patients
with alcohol-related cirrhosis and patients with biopsy-proven
severe alcoholic hepatitis (SAH). Overall, most patients were
male, while cirrhotic patients tended to be older than other
groups. Seven of the 18 patients with sAH had ACLF according to
the EASL-CLIF definition (Table S2).!* Occurrence of infection,
liver transplant or death was monitored for up to 90 days after
recruitment (Table S1).

Cirrhosis and Liver Failure

Skewed pattern of PAMP-elicited cytokine production in
whole blood cells from patients with sAH

In order to gain further insight into the basic features of innate
immune cells in ALD, we used a highly standardized and controlled
protocol of ex vivo whole blood culture assay.'® We assessed the
production of cytokines in culture supernatants with medium alone
or upon stimulation with representative PAMPs: bacterial LPS, a
Toll-like receptor (TLR)4 ligand; Zymosan, a component of the cell
wall from yeast that signals through TLR2 and Dectin-1 and R848, a
synthetic ligand for TLR7/8. For almost all the conditions tested, no
significant changes in cytokine levels in the supernatants were
observed between HCs, CAAs and cirrhotic patients. In response to
LPS (and to a lesser extent to Zymosan), we noted a general trend for
reduced production of pro-inflammatory cytokines such as tumor
necrosis factor-o. (TNF-a), interleukin (IL)-6, IL-1 and IL-12/23p40
in patients with sAH compared to the other groups (Fig. 1A). IL-10
levels in this group were also decreased compared to the cirrhotic
group. However, this was not associated with global hypo-
responsiveness in these patients since, in response to R848, pro-
duction of these cytokines was maintained or even increased in the
case of IL-6. Remarkably, we observed hyperproduction of IL-8 in
patients with sAH compared to the other groups, irrespective of the
stimulus. Conversely, induction of the interferon (IFN)-dependent
chemokine CXCL10 was consistently decreased in these patients.
Complementing this finding, levels of Th1 supporting cytokines IL-
12p70 and IFNy elicited by R848 were also drastically reduced in
sAH samples. In stark contrast, production of R848-induced type I
IFNs (mostly produced by plasmacytoid DCs) was comparable
among the groups (Fig. 1B). These results indicate that innate im-
mune circulating cells from patients with sAH exhibit a distinct
profile of cytokine production characterized by a strongly
compromised IL-12p70/IFNy/CXCL10 axis. The capacity to produce
TNFa, IL-6 and IL-1B is also reduced but in response to certain
PAMPs only. In contrast, production of other cytokines such as IFNo.
was maintained or even increased in the case of IL-8.

Increased severity of ALD is accompanied by alterations in the
frequency and phenotype of circulating mononuclear
phagocytes

In order to establish the cellular basis for altered pathogen-
recognition receptor responsiveness in patients with sAH, we
analyzed the main circulating immune cell populations by multi-
color flow cytometry. We did not observe major changes in
lymphocytes, natural killer cells or granulocytes although there
was a trend toward a decrease in the absolute count of these cells
with the severity of the disease, except for neutrophils (Fig. 2A).
Next, we evaluated the 3 main subsets of monocytes based on
CD14 and (D16 expression (Fig. 2B,C). Intermediate
(CD14MCD16%) and to a lesser extent classical (CD14MCD167)
monocytes were increased in patients with sAH compared to
CAAs. This was associated with a clear decrease in the non-
classical (CD14'°CD16%) monocyte subset. In addition, we
observed that patients with sAH displayed reduced counts of
conventional DC (cDCs) and plasmacytoid DC (pDCs) subsets
(Fig. 2B,C and Fig. S1A). These data indicate that increased
severity of ALD is associated with important changes in the
relative proportions of circulating mononuclear phagocytes.

To gain further insight into the activation status of these cells,
we analyzed the expression of several markers at the surface of
CD14" monocytes, cDCs and pDCs. As previously demonstrated in
ACLF>7 CD14* monocytes from patients with sAH displayed
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Table 1. Clinical characteristics of patients.

Cirrhosis and Liver Failure

Healthy controls Chronic alcohol Cirrhosis Severe alcoholic hepatitis p value
(n =12) abusers (n = 11) (n = 16) (n = 18)
Age (years) 475 (41-52) 50 (39-62.5) 62 (59.5-65) 54.5 (43.25-61.75) 0.013
Sex, male (%) 7 (58) 8(72) 13 (81) 11 (61) 0.508
Total bilirubin (mg/dl) - - 1.55 (1.1-2.9) 11.25 (7.3-18.4) 0.0001
INR - - 1.48 (1.2-1.6) 1.76 (1.56-1.98) 0.0025
Creatinine - - 0.85 (0.8-1.2) 0.95 (0.6-1.2) 0.71
MELD score - - 14.5 (11.3-17.3) 24 (22-33) 0.0001
Child-Pugh score - - B8 (A6-B9) C10 (C10-C11) 0.0016
HVPG (mmHg) - - 16 (13-18) 17 (14-20.5) 0.62
Norfloxacin - - 2 (12%) 0
mDF - - - 61 (48-70)
ACLF (%)—grades (1,2,3) - - - 7 (39%)-(3,3,1)
CLIF-C ACLF score” - - - 49 (45-50)
Corticosteroids (28 days after recruitment)** - - 0 8 (44.4%)
Infection (28 days) - - 3 (19%) 9 (50%) 0.057
Transplant-free mortality (28 days) - - 1(6.7%) 3 (18.8%) 0.31
Infection (90 days) - - 5(31.3%) 11 (61.1%) 0.08
Transplant-free mortality (90 days) - - 3 (20%) 6 (37.5%) 0.28
Liver transplant (90 days) - - 1 (6.3%) 2 (11.1%) 0.11

Data are presented as median (IQR) or number of patients (%).
ACLF, acute-on-chronic liver failure; HVPG, hepatic venous pressure gradient; INR, i
model for end-stage liver disease.

nternational normalized ratio; mDF, modified Maddrey’s discriminant function; MELD,

*Score only calculated for the subgroup of patients with sAH who have ACLF (n = 7).

**Corticosteroid use remains the same at 90 days.

reduced HLA-DR expression (Fig. 3), mainly driven by reduced
expression on classical monocytes (data not shown). HLA-DR
expression by pDCs was significantly reduced in ALD compared
to HCs, even in CAA. Although there was a trend for decreased
HLA-DR expression on cDCs, it did not reach statistical signifi-
cance due to high heterogeneity. Steady-state expression of
CD86, a costimulatory protein, and CD69, an early activation
marker, was stable across the groups. In contrast, for the 3
cellular populations, we observed a decrease of the maturation
marker CD83 in stable cirrhotic patients. In comparison to this
latter group, expression of CD83 was significantly upregulated in
patients with sAH. A similar profile was observed for the inhib-
itory protein, programmed death ligand 1 (or PD-L1). Finally,
expression of the FcyRI receptor CD64 by monocytes, generally
associated with systemic inflammation, was progressively
enhanced with the severity of the disease (Fig. 3). Of note, the
phenotype of monocytes from patients with sAH was not
modified by the presence of ACLF with the exception of lower
CD64 expression (Fig. S2A). Taken together, these data indicate
complex and dynamic alterations of the proportion and pheno-
type of the different subsets of the mononuclear phagocyte
system during ALD. Chronic alcohol abuse in itself induces slight
changes in the phenotype of mononuclear phagocytes with
increased expression of CD64 on monocytes and decreased ab-
solute numbers and HLA-DR expression of pDCs. Cirrhotic pa-
tients display decreased expression of both CD83 and PD-L1
across all mononuclear phagocytes. Yet, the expression of these
markers increases on the cells of patients with sAH. Thus, these
patients have the unique feature of increased markers of both
activation and inhibition compared to cirrhotic patients.

Global alteration of the capacity of monocytes of patients
with sAH to produce cytokines

We identified distinctive patterns of whole blood cytokine pro-
duction and changes in the frequency and phenotype of circulating
mononuclear phagocytes, which led us to assess cytokine pro-
duction at the single-cell level by flow cytometry in response to
various stimuli in the same experimental settings.'® We evaluated

the expression of IL-6, IL-1B, TNF-o and 1L-12/23p40 by CD14*
monocytes in response to PAMPs. We observed that for LPS,
Pam3CSK4 and Zymosan, the proportion of monocytes expressing
each of these cytokines was consistently decreased in patients with
sAH compared to the other groups. For R848, the proportions of IL-
12/23p40™ and to a lesser extent of TNF-o" and IL-6" cells were
decreased but their capacity to produce IL-1p was maintained. For
peptidoglycan (PGN), we did not observe any statistical differences
between the groups (Fig. 4A). There were no major differences in
the ability of monocytes to respond to PAMP stimulation between
patients with sAH, with or without ACLF (Fig. S2B). Furthermore,
¢DCs had a similar response profile to monocytes (Fig. S4A). These
experiments demonstrate that the ability of monocytes and cDCs
to mount an appropriate pro-inflammatory response is severely
impaired in patients with sAH upon stimulation with PAMPs
associated with gram-negative bacteria (LPS, Pam3CSK4) or fungal
pathogens (Zymosan). Yet, these cells are still able to either
partially or globally respond to, respectively, endosomal (R848) or
other bacterial (PGN via NOD2) PAMPs.

To visualize how all the different immune parameters globally
vary across the clinical groups we used t-distributed stochastic
neighbour embedding, an analytical method that compares
biological samples without considering sample classification.
This analysis shows an approximate 3-way separation between
the CAAs/HCs (cluster A), cirrhotic patients (cluster B) and the
sAH group (cluster C), thus showing that immunological features
of patients with sAH are sufficient to distinguish them from
other groups in an unsupervised manner (Fig. S3A). Next, using 2
different metrics, we identified the top 10 immunological pa-
rameters that can discriminate these 3 groups (Fig. S3B). They
encompass predominantly the capacity of monocytes and cDCs
to produce cytokines.

Patients with ALD and poor polyfunctionality are at higher
risk of infection and death

Based on the impaired ability of circulating phagocytes to
respond to stimulation by various PAMPs, we hypothesized that
the ability of a single cell to produce more than 1 cytokine

4 Journal of Hepatology 2020 vol. m | 1-12
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Fig. 2. Alterations of the frequency of circulating mononuclear phagocytes in advanced ALD. (A) Cellular composition of whole blood in HCs (n = 12), CAAs
(n=11), patients with cirrhosis (n = 16) and those with sAH (n = 18). (B) Cellular composition of monocytes and DCs in whole blood of HCs (n = 12), CAAs (n = 11),
patients with cirrhosis (n = 16) and those with sAH (n = 18). (C) Gating strategy and representative plots of monocytes and DCs for each group. Tukey box and
whiskers. *p <0.05, **p <0.01. Kruskal-Wallis test was performed to examine the statistical differences of each cytokine or chemokine per group, followed by
Dunn'’s correction for multiple testing. CAAs, chronic alcohol abusers; DCs, dendritic cells; HCs, healthy controls; NK, natural killer; PAMP, pathogen-associated

molecular pattern; sAH, severe alcoholic hepatitis.

simultaneously (i.e. polyfunctionality) could represent an
important parameter to define the immune status of patients
with ALD. This approach revealed that monocytes from patients
with sAH were deficient in their capacity to produce 3 or 4 cy-
tokines (Fig. 4B). We also performed these analyses on cDCs and
reached similar conclusion (Fig. S4B). Based on these data for our
34 cirrhotic patients, we used an unsupervised approach to

define whether this polyfunctionality parameter was correlated
with clinical outcomes. Using a 2-dimensional reduction, we
identified a cluster of patients at a higher risk of infection
(Fig. 4C) or mortality (Fig. 4F) within 28 or 90 days after sam-
pling, respectively. We generated a radar plot of the most
discriminatory variables for the infectious and mortality
outcome. As shown in Fig. 4D,G, a low degree of
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Fig. 3. Alterations of the phenotype of circulating mononuclear phagocytes in advanced ALD. Median fluorescence intensity of surface markers on CD14"
monocytes, cDCs or pDCs in unstimulated whole blood of HCs (n = 12), CAAs (n = 11), patients with cirrhosis (n = 16) and those with sAH (n = 18). Tukey box and
whiskers. *p <0.05, **p <0.01, ***p <0.001. Kruskal-Wallis test was performed to examine the statistical differences of each cytokine or chemokine per group,
followed by Dunn’s correction for multiple testing. ALD, alcohol-related liver disease; CAAs, chronic alcohol abusers; cDCs, conventional DCs; DCs, dendritic cells;

HCs, healthy controls; pDCs, plasmacytoid DCs; sAH, severe alcoholic hepatitis.

polyfunctionality is significantly associated with a higher risk of
infection in the next 28 days or death in the next 90 days. Of
note, the infection rate in the follow-up was not associated with
the administration of corticosteroids (Table S1) and the ability to
predict the occurrence of an infection was better, although not
significant, using polyfunctionality than the most discriminative
immunological parameters (Fig. 4E). In conclusion, low poly-
functionality of monocytes and cDCs can be used as a predictor of
higher risk of infection or mortality during follow-up in patients
with ALD.

Monocytes from patients with sAH display an altered
transcriptomic profile characterized by immunosuppressive
features

To gain further insight into the molecular features of CD14*
monocytes in sAH, we performed global transcriptional profiling
on a subset of patients. We observed a clear separation between
samples from patients with sAH and HCs upon principal
component analysis (PCA) (Fig. 5A) and identified statistically
differentially expressed genes (610 up- and 111 downregulated
genes compared to HCs, with a fold change >2 and a false dis-
covery rate <0.05, Fig. 5B). Consistent with their altered pheno-
type and functional response, we observed decreased expression
of genes related to key immune pathways such as innate im-
mune responses, cytokines, response to IFNs and antigenic pre-
sentation in monocytes from patients with sAH (Fig. 5C,D). Gene
set enrichment analysis (GSEA) also revealed dysregulated
expression of genes involved in key metabolic processes,
including lipid metabolism, cellular respiration and translation
(Fig. 5C). This was accompanied by increased expression of genes
involved in cell homeostasis and ion transport (Fig. 5E).
Furthermore, we confirmed previous results showing increased
expression of MERTK.” Its ligand GAS6, was also strongly upre-
gulated in patients. High expression of THBS1 (encoding

Thrombospondin 1), a multifunctional extracellular matrix pro-
tein, could contribute to immune-suppression and liver fibrosis
as it controls latent transforming growth factor-p activation.!”
Expression of several semaphorins (SEMA6B, SEMA4C, SEMA3F)
was also elevated in patients. These proteins play multiple roles
in the control of cell migration, inflammation and angiogenesis.'®
Furthermore, important intracellular immunomodulatory pro-
teins were also upregulated such as JAK3 and genes encoding the
transcription factors PPARG and MAF (Fig. 5F). JAK3 was shown to
dampen inflammatory cytokine production by human mono-
cytes upon TLR stimulation.’® Along the same line, treatment
with a peroxisome proliferator-activated receptor (PPAR)-y
agonist reduces TLR-dependent stimulation of DCs?° and c-Maf is
an important immunoregulatory factor that promotes IL-10
expression by macrophages.?!

Recently, Korf et al. also provided transcriptomic data for
monocytes from patients with ACLF.” We observed that genes
that were up- or downregulated in patients with ACLF in their
study were enriched in monocytes from sAH or HC individuals,
respectively (Fig. 5G). This indicates that a core molecular
signature could be identified in independent cohorts. We also
analysed publicly available gene sets from blood monocytes
isolated during gram-negative sepsis or its resolution.”” Inflam-
matory genes that were upregulated during sepsis tended to be
downregulated in patients with sAH compared to HCs, indicating
that during ALD monocytes do not display similarities with those
in the acute phase of sepsis. However, genes that were modu-
lated in the recovery phase (i.e. several weeks after sepsis) were
significantly up- or downregulated in our patients, indicating
potential common underlying mechanisms between these 2
clinical situations associated with heightened sensitivity to in-
fections. Next, we evaluated the potential role of different
circulating mediators in inducing the transcriptomic changes
observed in our patients. Monocytes exposed to LPS display
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altered capacity to respond to rechallenge (the classical model of
endotoxin tolerance).>®> A similar process occurs when cells are
primed by TNFo.>* We observed that genes that were down-
regulated 24 h after LPS or TNFa stimulation were significantly
decreased in monocytes from individuals with sAH. However,
genes induced in these conditions were not enriched in patients,
thus showing that LPS or TNFa, alone, cannot recapitulate the
transcriptomic signature observed in patients with sAH. No
enrichment was observed for gene sets from B-glucan-trained
monocytes; a situation that leads to increased responsiveness
upon rechallenge.?® IFNy priming also leads to functional
reprogramming of monocytes.””> Here we observed that IFNy-
induced genes were significantly decreased in our patients.
Immunosuppressive mediators such as ATP, PGE2 and IL-10 have
a major impact on myeloid cell functional state.?®?” Although
PGE2 was shown to be increased in these patients,”® the gene
signature it induces in myeloid cells was not significantly
modified in our dataset. We reached similar conclusions
regarding ATP-responsive genes. Yet, genes that are up- or
downregulated upon IL-10 treatment were significantly modu-
lated in sAH samples.

Altogether, our data indicate that CD14" monocytes from
patients with sAH display an altered profile with downregulation
of key innate immune and metabolic pathways and upregulation
of important immunomodulatory factors that could account for
their altered responsiveness to PAMPs. This unique profile dis-
plays striking similarities with monocytes from patients that
recovered from sepsis and is compatible with the effect of
immunosuppressive factors such as IL-10.

Monocytes from patients with sAH display altered patterns of
chromatin accessibility

The functional status of monocytes is highly plastic in response
to environmental cues. In the context of endotoxin tolerance,
trained immunity or cytokine priming, epigenetic reprogram-
ming has emerged as a critical determinant.?*>** To further
determine whether similar underlying molecular processes were
at play in the context of sAH, we analyzed the epigenomic
landscapes of these monocytes by ATAC-seq. We observed
extensive modifications in monocytes from patients with sAH
(Fig. 6A). We focused on the 4,316 differentially accessible re-
gions that allow us to segregate sAH vs. HC samples in PCA
(Fig. 6B). We then scanned for binding motifs at the center of
ATAC peaks located in these enhancer regions. Analysis of pu-
tative transcription factor site enrichment in sAH vs. HC-specific
enhancers indicated a significant enrichment for distinct motifs
in both groups. For example, there was a clear over-
representation of AP1 (Jun/Fos), CEBP and MAF binding sites in
the sAH group (Fig. 6C,D). In contrast, NF-kB, STAT or IRF motifs
were preferentially identified in enhancer regions that were less
accessible in this group (Fig. 6C,E). Regulatory regions that were
more or less accessible were clearly associated with genes that
were up or downregulated in monocytes from sAH, respectively
(Fig. 6F,G). This observation strongly suggests that epigenetic
imprinting is responsible for sAH transcriptional signature. This
approach also allowed us to infer genes that are potentially
directly regulated by these differentially active elements
(Fig. 6H). For example, less accessible regions were found in the
loci of HLA genes, while more accessible regions were associated
with important immunoregulatory genes such as MERTK, GAS6 or
PPARG. (Fig. 61).
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Consistent with our transcriptomic data, we observed that
regulatory regions that are less accessible in monocytes from
patients with sAH were associated with genes involved in anti-
gen presentation, innate immune response and cytokine secre-
tion (Fig. 6], Fig. S5A). Regions that were more accessible in this
group were associated with genes that were found to be non-
tolerizeable upon repeated exposure to LPS. This suggests that,
as shown in the context of endotoxin tolerance, some LPS-
responsive genes are epigenetically silenced while others are
preserved or potentiated. Remarkably, these regulatory regions
were also significantly associated with genes encoding compo-
nents of alcohol, phospholipid and sterol metabolic pathways
(Fig. 6K, Fig. S5B). Taken together, these data support the notion
that the altered transcriptional program and functional proper-
ties of monocytes in this pathological context have strong
epigenetic determinants.

Discussion

In recent years, interest in exploring immune dysfunction in
advanced ALD has increased, as bacterial infection is the prin-
cipal event leading to acute decompensation of cirrhosis, ACLF
and death. The current paradigm suggests that this susceptibility
to infections is driven by the dysfunction of immune circulating
cells. We observed that the ability of monocytes and cDCs from
patients with sAH to produce inflammatory cytokines was
severely impaired upon stimulation with PAMPs associated with
gram-negative bacteria or fungal pathogens . Of note, IL-8 levels
in whole blood cultures were actually increased in patients with
sAH and stimulation with R848 or PGN was less affected than
with other ligands, indicating complex functional changes.
Nevertheless, we observed a strong impairment of the IL-12p70/
IFNy/CXCL10 pathway, together with a downregulation of IFN-
related genes at the transcriptional level in these patients. Pol-
yfunctionality is recognized as a parameter to assess the quality
of T cell responses.”® Here, we showed that this parameter might
also represent a useful marker for the functional status of innate
immune cells as low polyfunctionality of monocytes and cDCs in
patients with ALD was associated with a higher risk of infection
and mortality.

In our group of patients with sAH, the presence of ACLF did
not significantly modify the phenotype and PAMP-elicited cyto-
kine production of circulating mononuclear phagocytes, sug-
gesting that observed immune alterations are related to the
presence of sAH and not ACLF. We did not explore the function of
circulating mononuclear phagocytes of patients with ACLF
without sAH.

Multiple molecular mechanisms may account for the unique
phenotypic and functional features of monocytes and DCs in
patients with sAH. We confirmed previous findings showing that
they display increased expression of the inhibitory receptor
MERTK.” In addition, we observed important modifications in
the expression of genes involved in cellular respiration and
metabolic pathways. This is in line with a previous report indi-
cating that in patients with advanced cirrhosis, altered plasma
amino acids levels interfered with the mitochondrial tricarbox-
ylic acid cycle and ATP levels in DCs.?? Furthermore, pharmaco-
logical inhibition of glutamine synthetase could partially restore
the function of these cells.” In parallel, we observed that this
distinct transcriptional status was associated with important
changes in chromatin accessibility within enhancer regions,
indicating that these cells are also reprogrammed at the

Journal of Hepatology 2020 vol. m | 1-12 7

FLA 5.6.0 DTD m JHEPAT7631_proof B 17 April 2020 ® 9:31 pm M ce

788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848



849
850
851

852

853

854
855
856
857
858
859
860
861

862
863
864
865
866
867
868
869
870
871

872
873
874
875
876
877
878
879
880
881

882
883
884
885
886
887
888
889
890
891

892
893
894
895
896
897
898
899
900
901

902
903
904
905
906
907
908
909

print & web 4C/FPO

Research Article

Cirrhosis and Liver Failure

A TNF-a *k IL-6
100 - *x _100 - —
~— o *
E % g ok %’ 2 *
& 80+ - 2 80 ki 2
g g
£ 604 S 60
87 *kk ° £
© i ° 4 -
5 40 £ 40
° L4 g * °
o °
s * ‘8 ° °
= 20 1 é ﬁ ﬁ ;Q;' 20 1 ﬁ o o é i o
w °
zZ X - ﬂ
F<o . . . . . =0 =1z} ; ;
Pam3CSK4 LPS PGN R848 Zymosan Pam3CSK4 LPS PGN R848 Zymosan
8100 IL-12/23p40 100 IL-1B
g T D HC § *kk *
E‘ 3 caa @ @ @ E E E ﬂ
g 80+ @c =,
g I sAH g s . .
- o
2 60 - g
S o 950
o c °
o 404 o S
[o% Fkkk *% -g
S’r o o 04 E °
i‘f 20 ? o wkkk & ﬁ ;
S ol reh W dOsi . 2 ol : . . .
= Pam3CSK4 LPS PGN R848 Zymosan Pam3CSK4 LPS PGN R848 Zymosan
B » Pam3CSK4 LPS PGN R848 Zymosan
> 100 [ 1 cytokine
3 *kkk 3 2 cytokines
'8 o 3 cytokines
5 = wuxx I 4cytokines
“8 é’ 50 H *kk
. Hef il i
<}
5 B
§ O T T T T T T T T T
HC CAA Cirrh. sAH HC CAA Cirrh. sAH HC CAA Cirrh. sAH HC CAA Cirrh. sAH HC CAA Cirrh. sAH
C 800 —pe D --25R::sé;'[‘:f;‘es (%) E 0.9 Individual markers Polyfunctionality
6004  °%0 . - (FDR =0.019)
i 00 oo 1193 — 0.85
;gg - OOD S o % ° o °%o LPS: Monocytes Li2s »
m 0 % 00%° ©°° 2 cytokines (%) : 8 0.8
z 7] (FDR = 0.021) N &
® -200 4 249 562 ) 50.75
4004 8, 00e® Sy 49 99 148498 < 0.7
-600 4 0g0 L es — 66 LPS: cDCs
-800 sode 182+ (FDAR?B?SETS o 0.65
1,0004———2> +————— 1 E S P PR L
-600-400-200 0 200 400 600 800 LPS: Monocytes . S & & Q§2 & NN
t-SNE1 4 cytokines (%) 264 o AN % N X v X
(FDR = 0.021) Q&? o &~ ',19 bf% $o v& q/(%
F 600 G LPS: Monocytes Q’\v /\Q @Q 0'\\, QQ' O/‘)‘ (\0' (\0,
_ 2 cytokines (%)
. Tomcoey O ¥ §& 98 ¥ ¥
400 *%o.° .
o No death
2004 %0. o3’ LPS: ¢cDCs
m LY 4 cytokines (%)
° (FDR =0.02)
(z? 04 8o %% kg 206147 9.8
200 & o0 DN 9.8
| 00 LPS: Mor:ocytes
-400 © 1 cytokine (%)
8 oo
%, (FDR =0.02)
-600 24,

t-SNE1
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epigenetic level. Exposure to IL-10 could contribute to this

finding as this cytokine

was shown to mediate epigenetic

reprogramming, leading to the repression of pro-inflammatory

gene expression in intestinal macrophages.®® Several reports
indicate increased circulating levels of IL-10 in patients with
sAH.2>"*? QOur results suggest that the transcriptional status of

markers of occurrence of infection within 28 days after recruitment. (F) t-SNE plot of polyfunctionality profiles in cirrhosis (n = 16) and sAH (n = 18). Occurrence of
death within 90 days of follow-up (green = no death, red = death). (G) Radar plot showing the most discriminatory features stratifying patients according to their
mortality status at 90 days. Axes show the frequency (%) of monocytes or cDCs producing the indicated number of cytokines upon stimulation with LPS or PGN.
Boxplots are Tukey box and whiskers. *p <0.05, **p <0.01, ***p <0.001, ****p <0.0001 compared to HCs unless specified otherwise. CAAs, chronic alcohol abusers;
cDCs, conventional DCs; DCs, dendritic cells; HCs, healthy controls; LPS, lipopolysaccharide; PAMPs, pathogen-associated molecular patterns; PGN, peptidoglycan;

t-SNE, t-distributed stochastic neighbour embedding.
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Fig. 6. Altered patterns of chromatin accessibility displayed in monocytes from patients with sAH. (A) MA plot of mean ATAC-seq counts per peaks showing
the DOR of CD14" monocytes of HCs (blue) and patients with sAH (red), with the indicated number of regions. Histograms indicate the number of opening or
closing regions in CD14" monocytes of patients with sAH (n = 8) compared to HCs (n = 6) at promoters and enhancers. (B) PCA plot representing the clustering of
monocytes of HCs and patients with sAH based on DORs. (C) CiiiDER analysis for putative transcription factors motifs from DOR at enhancers. Transcription factors
colored according to their gene coverage p value and whether they are over (red) or under (blue) represented. The size of each point is proportional to the Log10 p
value. (D,E) Motif enrichment analysis in more (D) or less (E) accessible enhancer regions in monocytes of patients with sAH using AME. (F,G) Cumulative
distribution plot generated by BETA algorithm showing the predicted activating/repressive function of more (F) or less (G) accessible enhancer regions in
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monocytes in patients with sAH is distinct from the immune
paralysis/tolerance observed during acute sepsis. In contrast, we
observed a strong enrichment for genes that are modulated in
monocytes isolated several weeks/months after the septic event.
This is quite striking as patients that experienced sepsis display a
higher susceptibility to secondary infections that can persist for
years.>® It is therefore tempting to speculate that common
mechanisms may account for long-term innate immune
dysfunction post-sepsis and during ALD progression.

ALD is associated with dysbiosis,** increased bacterial trans-
location and release of damage-associated molecular patterns
(DAMPs) by dying liver cells. These circulating factors lead to
systemic inflammation, which is highest in patients with ACLF.>>
Thus, it is likely that chronic exposure to circulating bacterial
products, PAMPs and DAMPs, plays a major role in the rewiring
of monocytes and cDCs, preventing them from further
responding to a new stimulus. Indeed, antibiotic prophylaxis has
been shown to reduce the incidence of infections in patients
with ACLE.®

In conclusion, we showed a profound epigenetic and tran-
scriptomic reprogramming of circulating monocytes in patients
with sAH. This altered profile was associated with impaired
response to PAMPs and a decrease of polyfunctionality. The
presence of ACLF did not modify the immune profile of patients
with sAH. These immune features were linked to a higher risk of
infections and mortality during follow-up. We provide new in-
sights into the molecular basis of immune dysfunction observed
in advanced ALD.
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