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Abstract—We investigate and experimentally demonstrate a
multi-antenna Wi-Fi-based passive bistatic radar (PBR) to per-
form indoor range-Doppler-angle detection of human targets.
The latest Wi-Fi standard, 802.11ax, is considered as signal
of opportunity, enabling a high range resolution suited for
indoor detection. We build a Uniform-Linear-Array (ULA) using
Universal Software Radio Peripherals (USRPs) as PBR receiver
(RX), and present a novel calibration method to compensate the
hardware-induced phase shift difference between the signals from
the different antennas of the ULA. To avoid data association
problems and limitations on the number of detectable targets
for the Direction-of-Arrival (DoA) estimation, we demonstrate
theoretically the possibility to use only the cell of the target in
the radar range-Doppler maps (RDMs) across antennas as input
to the Multiple Signal Classification (MUSIC) algorithm, rather
than using the raw received signals. We validate the experimental
setup and the processing by detecting the range, speed and DoA
of two human targets moving in a room.

Index Terms—Passive radar, Wi-Fi, 802.11ax, OFDM, SIMO,
multi-antenna, MUSIC, Phase calibration

I. INTRODUCTION

Remote monitoring with Wi-Fi signals has gained a lot
of attention recently with the creation of the Task Group
for Wi-Fi Sensing [1]. One of the main goals consists of
indoor people movements monitoring and object detection,
with various applications such as movement classification [2],
intruder detection [3] or security staffs assistance in public
buildings [4].

It is possible to perform indoor monitoring following a
passive bistatic radar (PBR) approach. Radars can estimate
the distance of targets based on multipath components (MPCs)
propagation time (range processing) and the speed of targets
thanks to the Doppler effect (Doppler/speed processing). In
passive bistatic radar, the transmitter TX is a non-cooperative
source of opportunity, not colocated with RX. One can thus
create a Wi-Fi-based PBR by using a Wi-Fi access point
(AP) as TX to reuse opportunistically existing signals for
radar purposes. Wi-Fi signals are an interesting source of
opportunity thanks to their quasi-ubiquitous availability and
to their Orthogonal Frequency-Division Multiplexing (OFDM)
modulation that is convenient for radar processing [3].

If the PBR features one single antenna at RX, it outputs a
so-called range-Doppler map (RDM) or range-speed map, a
2D map where targets are identified by amplitude peaks. A
radar chain to obtain the RDM using a 2D cross-correlation
function is presented in [3]. However this work relies on old
versions of 802.11 standards featuring a low bandwidth (< 20
MHz), yielding a range resolution above 10 m, which is not
suited for indoor monitoring. Our recent works perform range
and speed processing separately in a decoupled approach
with channel estimation and Doppler Fast Fourier Transform
(FFT) respectively and leverage the 802.11ac Wi-Fi standard,
featuring a bandwidth up to 160 MHz, to obtain a range
resolution of 0.9375 m [5], [6].

For indoor monitoring it is usually more convenient to
detect a target in cartesian (x-y) coordinates to have the
position of the target in a given environment. In that case,
range and speed are not sufficient and the target angle, i.e.
Direction-of-Arrival (DoA), needs to be computed. It can be
computed by resorting to a multistatic PBR [7] or a multi-
antenna PBR. We investigate this second option through the
practical implementation of a multi-antenna Uniform Linear
Array (ULA) PBR, i.e. featuring several antennas following an
ULA pattern at RX. Based on the phase difference between the
received signals at the different antennas, it allows to estimate
the DoA with only one receiver by using the Multiple Signal
Classification (MUSIC) algorithm [8].

There are three main challenges to deal with. Firstly, the
different receiver hardware chains in a multi-antenna system
induce random phase shifts between RX antennas, preventing
the computation of the DoA. Secondly, in the presence of
strong static MPCs, multiple targets or false alarms, per-
forming MUSIC on the raw signals would yield a MUSIC
angle spectrum featuring several peaks, one for each of these
elements. It would require an extra step of data association
between the peaks in the RDM and the peaks in the MUSIC
spectrum. Furthermore, if RX features NA antennas, the
maximum number of DoAs that can be estimated is limited to
NA − 1 [9]. Thirdly, angle processing requires a strong target
SNR to avoid the useful phase shift between antennas due to



DoA to be strongly affected by noise. However, human targets
feature a small reflectivity which causes difficulty to achieve
the required SNR. Our contribution is twofold:
• We demonstrate the usage of the latest Wi-Fi standard,

802.11ax [10], for human target detection with PBR
applications by using the High-Efficiency Long-Training-
Field (HE-LTF) present in the Preamble of each 802.11ax
Wi-Fi packet. It allows the usage of a bandwidth of 80
MHz yielding a range resolution of 1.875 m, suited for
indoor monitoring. For DoA estimation, we tackle the
low target reflectivity problem by formalizing analytically
how MUSIC can be applied per target at the output of
the RDM to leverage the whole radar chain processing
gain. This method also addresses the second challenge
mentioned hereabove.

• We demonstrate experimentally the implementation of
a multi-antenna ULA PBR allowing to perform range-
Doppler-angle detection, enabling detection in Cartesian
coordinates. We propose a novel over-the-air calibration
method that can be performed during the radar processing
itself for each measurement to compensate hardware-
induced phase shifts between RX antennas by exploiting
empty subcarriers imposed by the 802.11 standard around
baseband DC in the OFDM spectrum [10].

This paper is structured as follows: in Section II and
Section III, the system model and radar processing steps are
summarized. In Section IV, the new calibration method and
an experimental validation are presented. As a convention,
lowercase letters correspond to the time-domain signals (e.g.
x), and uppercase letters to the frequency-domain signals (e.g.
X). Bold uppercase letters denote matrices or tensors of time-
domain signals (e.g. X), and bold uppercase calligraphic letters
denote matrices or tensors corresponding to frequency-domain
signals (e.g. X ).

II. SYSTEM MODEL

It is considered that one Wi-Fi packet is transmitted contin-
uously N.M times (where M is an averaging factor detailed
in III-A), in which the first OFDM symbol is a fully standard-
compliant symbol from the HE-LTF of the Preamble of a
802.11ax Wi-Fi packet [10]. This replicates the behavior of a
Wi-Fi access points transmitting packets in which only training
OFDM symbols are known and usable for radar processing.
The HE-LTF contains known complex PSK symbols, each
placed on one of the Q OFDM subcarriers in the frequency do-
main. An Inverse Fast Fourier Transform (IFFT) is performed
to obtain one time domain HE-LTF OFDM symbol [11]. The
transmitted stream can be represented by a matrix X where
each column, denoted with an index k = 0, 1, ..., N.M − 1
(often called slow time index), is one OFDM symbol:

X[i, k] =
1√
Q

Q/2−1∑
q=−Q/2

X [q, k] ej2πqi/Q (1)

and
• X is the matrix of frequency-domain PSK symbols;

• q = −Q/2, ..., Q/2− 1 is the OFDM subcarrier index;
• i = 0, 1, ..., Q−1 is the time samples index (often called

fast time index).
Before transmission, a Cyclic Prefix (CP) of length L is
appended to each OFDM symbol [10]. The size of one time-
domain OFDM symbol is thus Q+ L. By defining the band-
width of the system as B, the time between two consecutive
samples is Ts = 1/B. The time between the reception of two
HE-LTF symbols is defined as T = (κ+1)(Q+L)Ts, where κ
is the number of unknown data OFDM symbols in the packet.

Each target r creates a multipath component (MPC) in the
environment, starting from TX and arriving on each antenna
l = 0, 1, ..., NA − 1 of RX, where NA is the total number of
RX antennas. Here only the first reflection MPC of the target
is considered, characterized by the following elements:
• The complex amplitude αr of the MPC. The path loss

difference between the first antenna and the other anten-
nas of the ULA is negligible.

• The DoA θr of the MPC.
• The propagation delay τr of the MPC from TX to the first

antenna of the ULA. It corresponds to the bistatic distance
dr = dTX−target + dtarget−RX . The corresponding
discrete time instant being the closest to the continuous
delay value is ir ≈

⌊
τr
Ts

⌉
. This is an approximation

since the propagation time of the MPC between the first
antenna and the others can be neglected for the distance
computation. However it cannot be neglected in phase
terms, i.e. complex exponentials. The bistatic distance
can be estimated from ir as dr = irTsc, with c being
the speed of light in vacuum.

• The Doppler frequency shift fr = 2vr
λ εr, with λ being

the wavelength and −1 ≤ εr ≤ 1 an unknown projection
factor depending on the bistatic geometry. The absolute
value |εr| is maximized when the target moves perpen-
dicularly to the baseline TX-RX [12].

A channel impulse response (CIR), discretized into delay
bins, models the environment containing mobile targets and
stationary elements. Since RX holds multiple-antennas, there
is one CIR per RX antenna l. The CIRs also change between
the different received HE-LTF symbols due to Doppler shifts.
Hence, there is one CIR per transmitted HE-LTF symbol,
for each antenna at RX. The different CIRs containing this
information can be stacked in a 3D tensor H whose elements
are [11]:

H[i, k, l] =
∑

τr∈ bin i

αr e
−j2πfcτr ej2πl∆sin(θr)+jΦl ej2πfrkT ,

(2)
with fc the carrier frequency and ∆ = δant/λ where δant is
the spacing between two antennas of the ULA. The exponen-
tial ej2πl∆sin(θr) comes from the phase shift induced by the
extra propagation delay of the MPC between the first antenna
and the others, that depends on its DoA θr. Φl is the phase shift
introduced by the receiver hardware chain connected to the l-
th antenna: the phase-locked-loop, amplifiers and filters each
introduce a phase shift [13]. The total resulting phase shift



cannot be predicted and is modelled as a random variable Φl
that has to be calibrated, i.e. set as identical for all antennas
l before angle processing, as described in section IV-B. A
channel transfer function (CTF) tensor can also be defined
as the FFT of the first dimension of H, and denoted as the
tensor H, with elements H[q, k, l]. Based on the CIR and
CTF model, the values θr, dr and vr are thus to be estimated
for each target r through the radar processing, explained in
section III.

III. RADAR PROCESSING

A. Range Processing

Range processing is the estimation of dr. Time-domain
received symbols are the convolution of one CIR with the
corresponding OFDM symbol. This is equivalent to a product
in the frequency domain, yielding

Y [q, k, l] = H[q, k, l] . X [q, k] + W [q, k, l] ∀q, k, l, (3)

where Y is the 3D tensor of the frequency-domain received
signal for each antenna l for each transmitted OFDM symbol
with index k. W is a 3D tensor in which each vector
W [:, k, l] ∀k, l of the first dimension is the FFT of a
i.i.d. sequence of Additive White Gaussian Noise samples
with a standard deviation ς . The operator . denotes an
element-wise product between all l-th frontal slabs H[:, :, l]
(l = 0, 1, ..., NA − 1) of H and the matrix X .

CIRs can be estimated with those received symbols. The
frequency domain CTF for each OFDM symbol is estimated
by Frequency-Domain Least-Squares Estimation [11]:

Ĥ[q, k, l] = Y [q, k, l] / X [q, k] ∀q, k, l, (4)

where the operator / denotes an element-wise division between
all l-th frontal slabs Y [:, :, l] (l = 0, 1, ..., NA − 1) of Y and
the matrix X . Then, if the Doppler shift is sufficiently small
so that a constant phase can be assumed over M packets,
which is the case for walking human targets, the CTFs are
averaged by groups of M to reduce the impact of noise [12].
The estimated time-domain CIRs are finally obtained by an
IFFT on the first dimension of Ĥ, i.e. one IFFT per averaged
OFDM symbol, yielding the radar cube (RC):

Ĥ[i, k′, l] =
1√
Q

Q/2−1∑
q=−Q/2

 1

M

k′M−1∑
k=(k′−1)M

Ĥ[q, k, l]

 ej2πqi/Q

(5)

= H[i, k′, l] + W̃ [i, k′, l] (6)

where k′ = 0, 1, ..., N−1 is the averaged OFDM symbol index
corresponding to discrete time MT . The last exponential term
from (2) becomes thus ej2πfrk

′MT ∀k′ in (6). The term

W̃ [i, k′, l] =
1√
Q

Q/2−1∑
q=−Q/2

 1

M

k′M−1∑
k=(k′−1)M

W[q,k,l]

X [q,k]

 ej2πqi/Q

(7)
∀q, k, l is the remaining noise in the channel estimation. The
RC contains the estimated delay τ̂r of each target r, yielding

the target bistatic distance d̂r = c τ̂r. If the distance between
TX and RX is inferior to the range resolution dres = 1

2c Ts,
then d̂target−RX ≈ d̂r/2 by the quasi-monostatic assumption
[14]. This is the case in this paper.

B. Speed processing

Speed processing is the estimation of vr [12]. A N -point
FFT is computed across the channel estimations, i.e. along
the second dimension of the RC Ĥ. The time between two
averaged channel estimations being MT , the frequency reso-
lution of the FFT is fres = 1/(NMT ). A Blackman window
is applied prior to the FFT to reduce frequency leakage. This
Doppler FFT yields one RDM per antenna, forming a range-
Doppler-angle cube (RDAC), denoted ĤD, whose elements
are ĤD[i, n, l], where n = 0, 1, ..., N − 1 is the frequency bin
index of this FFT. In the RDAC, the Doppler frequency shifts
f̂r = bfr/frese fres of the target are revealed for each tap. The
speed can then be estimated with v̂r = f̂rλ/2. There is thus
an error on the estimated speed due to the unknown projection
factor εr. Elements for which v̂r = 0 are here referred to as
static clutter and cancelled with Average Removal [6].

C. Angle processing

Angle processing is the estimation of θr. It relies on the
phase shift 2πl∆sin(θr) from (2) between the RX antennas.
However the hardware-induced phase shift Φl is corrupting
this antenna phase shift, requiring to perform a phase cali-
bration prior to angle processing. This process is described
in section IV-B, and it sets the phases Φl at the value of Φ0

for all antennas, i.e. it takes the first antenna as reference to
compensate the random phase variations. Angle processing is
performed separately for each target r with MUSIC [8]. Given
a detected target cell r at range tap ir and frequency bin nr,
a NA × 1 vector hr denoted as RDAC target vector is built:

hr = [ĤD[ir, nr, 0] ... ĤD[ir, nr, NA − 1]]T (8)

It contains the RDAC cell of the target across antennas
l = 0, ..., NA − 1. This vector is used as input to MUSIC.
Firstly, we prove that the RDAC target vector contains suffi-
cient information to be able to compute the target DoA, i.e.
that the phase difference between antennas is still present at
this stage. By neglecting the noise term in the RC Ĥ from (6)
and considering that the phase Φl has been calibrated to Φ0

for each antenna l, the Doppler FFT applied on Ĥ gives the
RDAC expressed as follows:

ĤD[i, n, l] =
1√
N

N/2−1∑
k′=−N/2

Ĥ[i, k′, l]e−j2πk
′n/N (9)

=
1√
N

∑
τr∈ bin i

αr e
−j2πfcτr ej2πl∆sin(θr)+jΦ0

.

N/2−1∑
k′=−N/2

ej2πfrk
′MT e−j2πk

′n/N . (10)

The last term of (10) is the N -point FFT of the exponential
ej2πfrk

′MT = ej2π(fr/fres).(k′/N). If fr/fres = nr ∈ Z, i.e. if



the target Doppler frequency is exactly on a FFT bin, this term
yields a Kronecker delta δ[n − nr]. If fr/fres /∈ Z the term
becomes sinc(π(n−fr/fres)) and there is frequency leakage.
For the sake of simplicity of the final expression the first case
is considered here. By taking the RDAC points of indices ir
and nr to build hr, the term becomes δ[nr − nr] = 1. The
final expression of the RDAC points used to build hr is thus

ĤD[ir, nr, l] =
1√
N

∑
τr′∈ bin ir

αr e
−j2πfcτr′ ej2πl∆sin(θr′ )+jΦ0

(11)
Multiple targets having close values of range and speed could
be detected as one unique RDAC cell r. That is, one RDAC
target vector r could contain multiple targets, denoted as r′ in
(11) to differentiate them. Thus, the targets r′ in the RDAC
cell r have the same range d̂r′ = d̂r and the same speed
v̂r′ = v̂r but different DoAs θr′ . In (11), the term ej2πl∆sin(θ′r)

containing the phase difference between antennas is still
present in the cell containing the target(s). Hence, it is possible
to use the RDAC target vector to compute the DoA(s).

Vector (8) is used as input to MUSIC: an estimate of the
target signal covariance matrix is computed as R̂r = hrh

T
r .

The eigenvalues decomposition of R̂r is computed. Eigen-
vectors are divided into two submatrices, Us and Un, whose
span are the signal and noise subspaces, respectively [8]. The
corresponding NA eigenvalues λj (j = 0, 1, ..., NA − 1) are
also separated in signal and noise eigenvalues:

R̂r = UΛUH
|r = [UsUn]

[
Λs + σ2IKr

0
0 σ2INA−Kr

] [
UH
s

UH
n

]
|r

(12)
where I is the identity matrix and σ = (1/M) ς is the variance
of the noise in the RDAC ĤD, with the 1/M factor being the
noise variance reduction between the received signal and the
RDAC due to averaging. Kr is the number of signal sources
(here the targets) in vector hr. It can be superior to 1 if one cell
detected as one target by the radar contains in reality several
targets r′, as said above. The diagonal matrix Λs contains the
Kr eigenvalues associated to the signal sources. The other
eigenvalues are noise eigenvalues.

The value of Kr is computed by using Eigenvalue Thresh-
olding (ET) [9]. ET is an hypothesis test performed on
the eigenvalues of R̂r ordered in descending order: a noise
threshold is computed for each eigenvalue, and the MUSIC
order Kr is set as the index of the first eigenvalue being
superior to its corresponding threshold [9].

Then, the MUSIC DoA pseudo-spectrum

J−1
MUSIC(θ) =

1

a(θ)HUnUH
n a(θ)

(13)

is computed with a(θ) = [1 ej2π∆sin(θ) ... ej2π(NA−1)∆sin(θ)]T

the array response vector. The Kr local maxima of the DoA
pseudo-spectrum are the estimated DoAs θr′ of the targets r′.
This process is repeated for each detection in the RDAC.

D. Other possible angle processing methods
Although it could seem unusual to estimate the covariance

matrix R̂r with only one sample (the RDAC target vector),

this estimated R̂r is close to the true Rr. This is due to the
high target-SNR, i.e. the ratio between the target peak power
and the noise power floor in the RDAC, because of the radar
processing gain. Indeed, the M -point averaging divides the
noise power by M without affecting the target power. The
N -point Doppler FFT, scaled by a factor 1/

√
N as in (11),

multiplies the target power by N and doesn’t affect the noise
power. The target-SNR is thus multiplied by a factor NM . The
presence of a high target-SNR is demonstrated in section IV-C.
There are also two other possibilities of different inputs to give
to MUSIC, each discarded for reasons explained herebelow:
• RDAC row [12]: It is possible to provide a NA × N

matrix consisting of the ir-th horizontal slab ĤD[ir, :, :]
of the RDAC, i.e. the target horizontal RDAC slab, as
input to MUSIC. This approach is discarded for two
reasons. Firstly, the target FFT frequency leakage affects
the MUSIC spectrum. Secondly, if there are multiple
targets at the same range bin, i.e. the same row in
the RDAC, there will be several peaks in the MUSIC
spectrum which have to be correctly associated each with
the correct peak in the RDAC.

• RC row [12]: It is also possible to provide a NA × N
matrix consisting of the ir-th horizontal slab Ĥ[ir, :, :]
of the RC, i.e. the target horizontal RC slab, as input to
MUSIC. This approach is also discarded for two reasons.
Firstly, it does not take advantage of the processing gain
N provided by the Doppler FFT. The second reason is
identical to the one of the RDAC row approach.

On the contrary, our approach benefits from the FFT gain,
allowing to detect low reflectivity targets like humans. It also
avoids the impact of the leakage and isolates the targets from
each other. It doesn’t require peak association since the peaks
of each MUSIC spectrum all correspond to one RDAC cell.
Once the range, speed and angle processing is complete, one
could use this information to locate the target in Cartesian
coordinates with x̂r = d̂r

2 cos(θ̂r) and ŷr = d̂r
2 sin(θ̂r).

IV. EXPERIMENTAL RESULTS

A. Setup

The experimental setup features one TX antenna and
NA = 4 RX antennas. It uses four USRPs X310: one for
the TX antenna, two for the four RX antennas, and one as
calibration anchor, described in section IV-B. The USRPs are
all connected to one computer with 10 Gigabit Ethernet cables.
Useful signal parameters for the experiment are given in I.

TABLE I
EXPERIMENTAL PARAMETERS

fc B N M κ Q L T
2.3 GHz 80 MHz 128 12 10 1024 256 176 µs

To demonstrate the viability of this work for multiple
targets detection, there are two human targets moving in the
environment. At the measurement instant, Target 1 is located at
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Fig. 1. Experimental setup

2 meters from RX with an angle of 0° and is moving towards
RX at a speed of 1 m/s. Its detected speed should thus be
positive. Target 2 is located at 3 meters from RX with an
angle of -15° and is moving away from RX at a speed of 1 m/s.
Its detected speed should thus be negative. The ground truth
distances are measured with a lasermeter, and the ground truth
speeds are obtained by computing the travelled distance by the
target over one second around the measurement instant and
assuming constant speed during this second. The measurement
environment and the targets are illustrated on Figure 1.

B. Calibration

The hardware-induced phase shift Φl from (2) is preventing
the angle processing to work. Calibration is the process of
setting this phase at the common value of Φ0 for all antennas,
i.e. take the first antenna as reference and cancel the phase
differences Φ0 − Φl, l = 1, ..., NA − 1. By doing this,
the only phase difference remaining between antennas is
2πl∆sin(θr), which is the only relevant phase difference for
angle processing. Here calibration takes place directly on the
received signal before any processing.

Our new calibration method exploits the fact that in 802.11
standards, the OFDM subcarriers around baseband DC are left
empty: in 802.11ax, the subcarriers q ∈ [−2, 2] do not contain
any PSK symbol [10]. A complex exponential at the frequency
fcal of one of these empty subcarriers, i.e. at OFDM subcarrier
index qcal = fcal Q/B ∈ [−2, 2], can be transmitted from a
different device than TX. This device is here called anchor,
and the exponential is denoted as CE (calibration exponential).
TX, RX and the anchor share the same clock to avoid CFO.
The anchor is placed in front of the RX array, as illustrated
on Fig. 1, so that its DoA θ w.r.t. to the array is identical
and equal to 0° at each RX antenna in the far field. At RX,
the received signal spectrum is a superposition of the OFDM
spectrum, coming from MPCs of targets each with a DoA θr,
and a peak at the subcarrier frequency corresponding to the
CE frequency coming with a DoA equal to 0°. This principle
is similar to what is presented in [13]. The peak of the CE
is clearly noticeable in the estimated Power Spectral Density
(PSD) of the received signal on the left of Figure 2.

Each antenna l receives a CE. Since it is present at one
known unique subcarrier of index qcal, the exponential spec-

Fig. 2. Estimated baseband PSD of the received signal at the first antenna
(left). Imaginary part of the CEs in time domain (right).

trum can be extracted from each antenna without requiring
any filtering, by saving the coefficient of that subcarrier, i.e.
by building a Q×NA matrix

S[q, l] =

{
0 if q 6= qcal

Y [qcal, 1, l] if q = qcal
(14)

with the first OFDM symbol k = 1. Then by taking an IFFT
on each column of S the time domain exponential of each
antenna is obtained. CEs are not affected by the phase shift
due to DoA since their DoA is 0°, they are only affected by
the phase shift Φl. This is illustrated by plotting the imaginary
part of the measured CEs on the right of Figure 2. The phase
shift difference Φ0 − Φl creates a sample offset ∆l between
the CEs of antennas l = 1, ..., NA − 1 and the first antenna
l = 0, with the following relation:

Φ0 − Φl = 2πfcal∆lTs. (15)

∆l can be computed by substracting the sample index of the
maximum of the l-th exponential and the one of the first
exponential. The corresponding difference Φ0 − Φl can then
be deduced by (15). By multiplying the received signal tensor
Y [q, k, l] with the scalar exp(2πfcal∆lTs) ∀l, the hardware-
induced phase shift difference Φ0−Φl is thus cancelled. After
this procedure, the CEs are removed from Y [q, k, l] and the
rest of the processing takes place.

C. Detection results

A zoom of the RDM of the first antenna is displayed on
the left side of Figure 3. The two targets are highlighted with
black rectangles. It can be noticed that high intensity spurious
responses are present around each target. They are due to two
elements. Firstly the residual Doppler FFT leakage, present
on the frequency bins neighboring the target bin. Secondly
the sidelobes along range dimension due to the frequency
guard, i.e. the empty subcarriers in the OFDM spectrum. This
sidelobes problem is addressed in [5].

To discriminate targets from noise in the RDM, one could
use Constant False-Alarm Rate (CFAR) thresholding. However
CFAR would produce several false-alarms due to the spurious
returns mentioned above. This is why the targets are detected



Fig. 3. RDM (left) and detection map (right) from the first antenna

Fig. 4. MUSIC angle spectrum of the two targets

by performing a local maxima search on the RDM, yielding
a detection map displayed on the right of Figure 3. It can be
seen that following this approach the two targets are detected
and separated from their surrounding spurious returns.

Finally, to determine the angle, one instance of MUSIC
is applied on each detected target. As discussed in section
III-C, the target-SNR is very high, allowing to estimate the
covariance matrix R̂r with precision with the RDAC target
vector as unique sample. Indeed, the target-SNR processing
gain in dB is here 10 log10(NM) = 31.86 dB. From the first
antenna RDM, the target-SNR for Target 1 and Target 2 is
computed as 77.91 dB and 71.98 dB respectively.

The MUSIC order Kr is computed with ET. For
the first target, the covariance matrix eigenvalues are
129.26, 1.47e−14, 5.55e−15 and 2.01e−15. Intuitively, it is no-
ticed that the 3 last eigenvalues are extremely small and
thus correspond to noise. This is confirmed by ET that
yields a MUSIC order K1 = 1. ET also gives K2 = 1
for the second target with covariance matrix eigenval-
ues 39.36, 7.94e−15, 9.64e−16 and 1.30e−16. There are thus
K1 + K2 = 2 detected targets, corresponding to the real
number of targets. The resulting MUSIC spectra are plotted
on Figure 4. The maximal value of each spectrum corresponds
to the DoA of the target.

By combining Figures 3 and 4, the detected quasi-
monostatic range, speed and DoA for Target 1 and Target 2 are
summarized in II. It can be seen that they correspond to the
real target values, with small errors being caused by the finite
resolution of the radar processing steps. In particular, the two
targets have the same measured speed in absolute value, while
they have different angles and thus different projections |εr|
in absolute value. This is due to the fact that |ε1| and |ε2| are

TABLE II
TARGETS RANGE, SPEED AND DOA

d̂r/2 v̂r θ̂r
Resolution 1.875 m 0.263 m/s /
Target 1 1.875 m 1.053 m/s -2.0°
Target 2 3.75 m -1.053 m/s -13.6°

close to each other since the two targets move perpendicularly
to the baseline with a small difference in DoA. The difference
|v̂1| − |v̂2| is thus inferior to the speed resolution.

V. CONCLUSION

In conclusion, we demonstrated the feasibility of building
a multi-antenna ULA Wi-Fi-based PBR with USRPs to per-
form indoor range-Doppler-angle detection of human targets
using 802.11ax Wi-Fi signals. We proposed new solutions to
deal with hardware non-idealities and multiple targets DoA
estimation and validated them on a real-life scenario featuring
multiple human targets.
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