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Notations

⊗ the usual Kronecker product

D→ convergence in distribution

Lr

→ convergence in the Lr -norm

0 the null vector

A− the Moore–Penrose generalized inverse of matrix A

B(Ω) the Borel σ-algebra on Ω

cp
Γ(p/2)p

πΓ((p−1)/2)

χ2
d the chi-square distribution with d degrees of freedom

χ2
d ,α

the α-quantile of the chi-square distribution with d degrees of
freedom

χ2
d (λ)

the noncentral chi-square distribution with d degrees of freedom
and noncentrality parameter λ

e` the `th vector of the canonical basis of Rp

F
the class of functions

{
f :R→R+}

such that f is monotone
increasing, twice differentiable at 0 and f (0) = f ′(0) = 1

Γ(·) the Euler Gamma function

Ip the p ×p identity matrix

Iν(·) the order-ν modified Bessel function of the first kind

IA the indicator function of condition A

iid independent and identically distributed

Jp the matrix
(
vecIp

)(
vecIp

)′
Kp the p2 ×p2 commutation matrix

∑p
i , j=1

(
ei e′j

)
⊗ (

e j e′i
)

λ̂ni the i th largest eigenvalue of the sample covariance matrix Sn

LAN Locally Asymptotically Normal

N
(
µ,σ2

)
the univariate normal distribution with mean µ and variance σ2

Np
(
µµµ,ΣΣΣ

) the multivariate normal distribution with meanµµµ and covariance
matrixΣΣΣ
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P(n)
0 the Xni ’s, i = 1, . . . ,n are iid and uniformly distributed on S pn−1

P(n)
θθθn ,Fn

the Xni ’s, i = 1, . . . ,n are iid, rotationally symmetric about θθθn on
S p−1(x) and X′

niθθθn has cumulative distribution Fn

P(n)
Fn

a special case of P(n)
θθθn ,Fn

with θθθn chosen as the first vector of the
canonical basis of Rpn

P(n)
θθθn ,κn , f

the Xni ’s, i = 1, . . . ,n are independent and identically distributed
(iid) with density x 7→ cpn ,κn , f f

(
κn x′θθθn

)
1S p−1 (x)

P̆(n)
θθθn ,κn , f

the Xni ’s, i = 1, . . . ,n are independent and identically distributed
(iid) with density x 7→ cpn ,κn , f f

(
κn (x′θθθn)2

)
1S p−1 (x)

φ(n)
Bing the Bingham test, see (3.1)

φ(n)
Ray the Rayleigh test, see (2.2)

Φ(·) the cumulative distribution function of the standard normal
distribution

ψp (·) the cumulative distribution function of the chi-squared
distribution with p degrees of freedom

ψp (·;λ)
the cumulative distribution function of the noncentral

chi-squared distribution with p degrees of freedom and
noncentrality parameter λ

Qn the Bingham test statistic, npn (pn+2)
2

(
tr

[
S2

n

]− 1
pn

)
QSt

n
the high-dimensional Bingham test statistic,

Qn−dpnp
2dpn

, where

dpn = pn(pn +1)/2−1
Rn the Rayleigh test statistic, npn‖X̄n‖2

RSt
n the high-dimensional Rayleigh test statistic, Rn−pnp

2pn

sa the sign of real number a

Sn the covariance matrix of the observations, n−1 ∑n
i=1 Xni X′

ni

Sp−1 the unit sphere in Rp ,
{

x ∈Rp : ‖x‖ = 1
}

tr(A) the trace of matrix A

X̄n the mean vector of the observations, n−1 ∑n
i=1 Xni

vecA
the vector obtained by stacking the columns of matrix A on top of

each other
zα the upper α-quantile of the standard normal distribution N (0,1)
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Introduction

In directional statistics, inference is based on p-variate observations lying on the unit
sphere Sp−1 := {x ∈Rp : ‖x‖ =p

x′x = 1}. This is relevant in various situations.

(i) First, the original data themselves may belong to Sp−1 like the times of day at which
thunderstorms occur (p = 2) or epicentres of earthquakes (p = 3) (see [Mardia and
Jupp, 2000] for more examples).

(ii) Second, some fields by nature are so that only the relative magnitude of the obser-
vations is important, which leads to projecting observations onto Sp−1. In shape
analysis, for instance, this projection only gets rid of an overall scale factor related
to the (irrelevant) object size.

(iii) Finally, even in inference problems where the full (Euclidean) observations in prin-
ciple need to be considered, a common practice in nonparametric statistics is to
restrict to sign procedures, that is, to procedures that are measurable with respect
to the projections of the observations onto Sp−1; see, e.g., [Oja, 2010] and the refer-
ences therein.

While (i) is obviously restricted to small dimensions p, (ii)-(iii) nowadays increasingly
involve high-dimensional data. For (ii), high-dimensional directional data were consid-
ered in [Dryden, 2005], with applications in brain shape modeling; in text mining, [Baner-
jee et al., 2003] and [Banerjee and Ghosh, 2004] project high-dimensional data on unit
spheres to remove the bias arising due to the length of a text when performing clustering.
As for (iii), the huge interest raised by high-dimensional statistics in the last decade has
made it natural to consider high-dimensional sign tests. In particular, [Zou et al., 2014]
recently considered the high-dimensional version of the [Hallin and Paindaveine, 2006]
sign tests of sphericity, whereas an extension to the high-dimensional case of the location
sign test from [Chaudhuri, 1992] and [Möttönen and Oja, 1995] was recently proposed in
[Wang et al., 2015]. Considering (iii) in high dimensions is particularly appealing since for
moderate-to-large p, sign tests show excellent (fixed-p) efficiency properties.

We consider the problem of testing uniformity on the unit sphere Sp−1. This is a very
classical problem in multivariate analysis that can be traced back to [Bernoulli, 1735]. It
is discussed at length in strictly all textbooks in the field; see, among many others, [Fisher
et al., 1987], [Ley and Verdebout, 2017], and [Mardia and Jupp, 2000]. As explained in the
review paper [García-Portugués and Verdebout, 2018], the topic has recently received a lot
of attention: to cite only a few contributions, [Jupp, 2008] proposed data-driven Sobolev
tests, [Cuesta-Albertos et al., 2009] proposed tests based on random projections, [Sun
and Lockhart, 2019] obtained Bayesian optimality properties of some tests while [García-
Portugués et al., 2019] transformed some uniformity tests into tests of rotational sym-
metry. Possible applications of testing uniformity on high-dimensional spheres include
outlier detection; see [Juan and Prieto, 2001]. Other natural applications are related with
testing for sphericity in Rp , in the spirit of (iii) above.
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As pn can diverge to infinity with n, it is necessary to consider triangular arrays of
observations Xni , i = 1, . . . ,n, n = 1,2, . . . such that for any n, Xni ∈ Spn−1 (some other
works, including [Chikuse, 1991, Chikuse, 1993], actually rather consider a fixed-n large-
p asymptotic scenario). Results to test uniformity on high-dimensional spheres already
exist but they often impose conditions on the way pn and n diverge to infinity. For ex-
ample, [Cai et al., 2013] study the asymptotic behaviours of the pairwise angles among n
uniformly distributed vectors on Spn−1 as n → ∞, while pn is either fixed or growing to

infinity with n. Let O ≤Θi j ≤π denote the angle between the unit vectors
−→
OXni and

−→
OXn j

for all 1 ≤ i < j ≤ n, and Θmin := min
{
Θi j : 1 ≤ i < j ≤ n

}
. When pn →∞ as n →∞, three

different regimes have to be considered:

• the sub-exponential case: log pn
n → 0 as n →∞. Then

2pn logsinΘmin +4logn − loglogn
D→ Y,

as n →∞, where Y has cumulative distribution function

F(y) = 1−exp

(
− e y/2

4
p

2π

)
, y ∈R.

• the exponential case: log pn
n → β ∈ (0,∞) as n →∞. Then

2pn logsinΘmin +4logn − loglogn
D→ Y,

as n →∞, where Y has cumulative distribution function

F(y) = 1−exp

(
−

√
β

8π(1−e−4β)
e(y+8β)/2

)
, y ∈R.

• the super-exponential case: log pn
n →∞ as n →∞. Then

2pn logsinΘmin + 4pn

pn −1
logn − log pn

D→ Y,

as n →∞, where Y has cumulative distribution function

F(y) = 1−exp

(
− e y/2

2
p

2π

)
, y ∈R.

In each case, uniformity is rejected if the statistic based on Θmin is too small and the
critical value can be found thanks to the cumulative distribution functions above. In prac-
tice, though, if only one sample is available, it is not possible to know which regime applies
and therefore which test to use.

On the contrary, test statistics that work in low dimensions and that do not need to
be corrected to be valid in high-dimensions are called high-dimension robust as defined
by [Paindaveine and Verdebout, 2016]. This notion arises first in [Ledoit and Wolf, 2002]
who showed that the Gaussian sphericity test from [John, 1972] is robust against high
dimensionality. Let Zn1, . . . ,Znn be Gaussian observations in Rpn−1. When pn = p is fixed,
the Gaussian sphericity test from [John, 1972] rejects the null when

np

2
U > χ2

dp ;1−α,

10



where

U := p

(
tr(S2

n)

tr(Sn)2
− 1

p

)
,

Sn := n−1 ∑n
i=1 Zni Z′

ni is the covariance matrix of the observations, χ2
d ,1−α denotes the up-

perα-quantile of the χ2
d distribution and dp := p(p+1)/2−1. In high dimensions, dpn →∞

as pn →∞ and it is expected that

npnU/2−dpn√
2dpn

D→N (0,1).

This is indeed the case when pn/n → c ∈ (0,∞) as shown in [Ledoit and Wolf, 2002].
In an even more general framework, pn → ∞ as n → ∞ without any condition on

the way pn goes to infinity with n, [Paindaveine and Verdebout, 2016] showed the high-
dimension robustness of several sign test statistics thanks to a martingale theorem that
will be stated in Chapter 1 and used in Chapter 4. In particular, they studied the most
classical test of uniformity, the [Rayleigh, 1919] test, which rejects the null of uniformity
for large values of Rn := npn‖X̄n‖2, where X̄n := n−1 ∑n

i=1 Xni . In low dimensions (pn = p
for all n), the test is based on the null asymptotic chi-square distribution with p degrees
of freedom, χ2

p , of Rn . In the high-dimensional setup (pn →∞ as n →∞), [Paindaveine
and Verdebout, 2016] showed that

RSt
n := Rn −pn√

2pn

D→N (0,1).

Therefore, denoting by Φ(·) the cumulative distribution function of the standard normal
and defining zα := Φ−1(1−α), the high-dimensional Rayleigh test rejects the null of uni-
formity when

RSt
n >

χ2
pn ,1−α−pn√

2pn
(= zα+o(1))

has asymptotic size α under the null hypothesis, irrespective of the rate at which pn di-
verges to infinity with n, and is therefore, in that sense, high-dimension robust.

In low dimensions the Rayleigh test is the score test of uniformity within the popu-
lar Fisher–Von Mises–Langevin (FvML) model. It is then natural to consider an extension
of this model to study its non-null behaviour. This is why we will focus in Chapter 2 on
mutually independent observations with a common rotationally symmetric density pro-
portional to x ∈ Spn−1 7→ f

(
κn x′θθθn

)
, where θθθn ∈ Spn−1 is a location parameter, κn > 0 is a

concentration parameter and f is monotone strictly increasing. If κn is too small, the al-
ternatives are too close to the null of uniformity and no test can be consistent. We say that
the alternatives are contiguous to the null and we will see how small κn must be. Whenθθθn

is known, we will show thanks to Local Asymptotic Normality (LAN) that the Rayleigh test
is not optimal even though it shows some power against contiguous alternatives in low di-
mensions. However, when θθθn is unknown, it becomes optimal against general monotone
alternatives in low dimensions and against FvML alternatives in high dimensions.

Despite its nice optimality properties, the Rayleigh test will detect only asymmetric
deviations from uniformity. It will show no power when the common distribution of
the Xni ’s attributes the same probability to antipodal regions. Far from being the excep-
tion, such antipodally symmetric distributions are actually those that need be considered
when practitioners are facing axial data, that is, when one does not observe genuine lo-
cations on the sphere but rather axes (a typical example of axial data relates to the direc-
tions of optical axes in quartz crystals; see, e.g., [Mardia and Jupp, 2000]). Models and
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inference for axial data have been considered a lot in the literature: to cite a few, [Tyler,
1987b] and more recently [Paindaveine et al., 2018] considered inference on the distribu-
tion of the spatial sign of a Gaussian vector, [Watson, 1965], [Bijral et al., 2007] and [Sra
and Karp, 2013] considered inference for Watson distributions, [Dryden, 2005] obtained
distributions on high-dimensional spheres while [Anderson and Stephens, 1972], [Bing-
ham, 1974] and [Jupp, 2001] considered uniformity tests against antipodally symmetric
alternatives.

In low dimensions, the textbook test of uniformity for axial data is the [Bingham, 1974]
test, that rejects the null hypothesis of uniformity whenever

Qn = npn(pn +2)

2

(
tr

[
S2

n

]− 1

pn

)
> χ2

dpn ,1−α,

where Sn is the covariance matrix of the observations on Spn−1 and dp is defined as above.
In high dimensions, Theorem 2.5 from [Paindaveine and Verdebout, 2016] implies that,
under the null hypothesis of uniformity,

QSt
n = Qn −dpn√

2dpn

= pn

n

n∑
i< j

i , j=1

{(
X′

ni Xn j
)2 − 1

pn

}
D→N (0,1),

as soon as pn diverges to infinity with n. Therefore the Bingham test is also robust to high-
dimensionality. Again, this property is not enough to justify its use and we are interested
in its nonnull behaviour. In this case it is natural to consider an extension of the Wat-
son distributions, namely axial rotationally symmetric distributions. In Chapter 3 we will
assume that the observations share a density proportional to x ∈ Spn−1 7→ f

(
κn (x′θθθn)2

)
,

where θθθn and f are defined as above and κn ∈ R is still a concentration parameter. The
contiguity rate in this model is higher than in the monotone one and suggests the prob-
lem is more complicated. When θθθn is known, LAN yields optimal tests and enables to
show that the Bingham test is not optimal when θθθn is unknown but shows some power
against contiguous alternatives in low dimensions. Consequently we turn to single-spiked
tests based on the extreme eigenvalues of the covariance matrix and derive in the low-
dimensional case their limiting behaviour under contiguous alternatives.

In Chapter 4 we will prove with a martingale central limit theorem that the null high-
dimensional asymptotic distributions of the Rayleigh and Bingham tests, after appropri-
ate standardisation, actually hold under broad classes of rotationally symmetric distribu-
tions. This entails that the Bingham test, which is blind to contiguous alternatives in the
monotone and axial models, can detect more severe alternatives in both cases. Through-
out, simulations confirm our findings.

In Chapters 2-4 proofs are to be found in the last section. To make this document
as accessible as possible, theorems that require long technical proofs are followed by
sketches of proofs for readers who want the general idea without having to go into too
many details or need help getting their bearings. For theorems which are proven in a
similar way, the outline of the proof is given after the first one.

This thesis is based on two published and one submitted articles:

• Cutting, Christine; Paindaveine, Davy; Verdebout, Thomas. Testing uniformity on
high-dimensional spheres against monotone rotationally symmetric alternatives.
Ann. Statist. 45 (2017), no. 3, 1024–1058. https://projecteuclid.org/euclid.
aos/1497319687
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• Cutting, Christine; Paindaveine, Davy; Verdebout, Thomas. On the power of axial
tests of uniformity. Electronic Journal of Statistics 14, 2123-2154 (2020). https:

//projecteuclid.org/euclid.ejs/1589335309

• Cutting, Christine; Paindaveine, Davy; Verdebout, Thomas. Testing uniformity on
high-dimensional spheres: the non-null behaviour of the Bingham test.
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In this chapter we introduce various unrelated notions that arise in subsequent chap-
ters. We start in Section 1.1 with some distributions on the sphere: the uniform distribu-
tion and rotationally symmetric distributions. We then focus on two special cases, mono-
tone and axial distributions. In Section 1.2 we define Local Asymptotic Normality which
can be used to find optimal tests and compute asymptotic powers under suitable alterna-
tives thanks to Le Cam’s lemmas. Section 1.3 is devoted to the invariance principle and the
reduction by invariance. Finally, Section 1.4 is about Billingsley’s Theorem, a martingale
central limit theorem that will be applied to find the non-null behaviour of the Rayleigh
and Bingham tests.

1.1 Some distributions on the sphere

1.1.1 Uniform distribution

If X is uniformly distributed over Sp−1, then its density is

Γ
(

p−1
2

)
cp

2π(p−1)/2
I{x∈Sp−1}, with cp := Γ

(p
2

)
p
πΓ

(
p−1

2

) , (1.1)

where Γ(·) is the Euler Gamma function and IA is the indicator function of condition A. As
OX has the same distribution as X for any orthogonal matrix O, E [X] = 0 and Var [X] must
be proportional to the identity matrix Ip . For ‖X‖ = 1 almost surely,

Var [X] = E
[
XX′]= 1

p
Ip . (1.2)

Besides we can prove that (see [Tyler, 1987a], page 244)

E
[

vec
(
XX′)(vec

(
XX′))′]= 1

p(p +2)

(
Ip2 +Kp + Jp ,

)
(1.3)

where Jp = (
vec Ip

)(
vec Ip

)′, vecA is the vector obtained by stacking the columns of ma-
trix A on top of each other and Kp is the commutation matrix (see [Magnus and Neudecker,
2007]).

For anyθθθ ∈ Sp−1, the distribution ofθθθ′X is symmetric about 0 and
(
θθθ′X

)2 ∼ Beta
(

1
2 , p−1

2

)
(see, e.g., [Muirhead, 1982], Theorem 1.5.7(ii)). Therefore,θθθ′X has cumulative distribution
function

Fp (t ) := cp

∫ t

−1
(1− s2)(p−3)/2 d s, for t ∈ [−1,1] ,

and

E
[
θθθ′X

]= cp

∫ 1

−1
s(1− s2)(p−3)/2 d s = 0, (1.4)

E
[(
θθθ′X

)2
]
= cp

∫ 1

−1
s2(1− s2)(p−3)/2 d s = 1

p
, (1.5)

E
[(
θθθ′X

)4
]
= cp

∫ 1

−1
s4(1− s2)(p−3)/2 d s = 3

p(p +2)
. (1.6)

Consider triangular arrays of observations Xni , i = 1, . . . ,n, n = 1,2, . . .; we denote
by P(n)

0 the hypothesis that for any n, Xn1,Xn2, . . . ,Xnn are mutually independent and uni-
formly distributed on Spn−1.
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1.1.2 Rotationally symmetric distributions

A p-dimensional vector X is said to be rotationally symmetric about θθθ ∈ Sp−1 if and
only if OX is equal in distribution to X for any orthogonal p×p matrix O satisfying Oθθθ=θθθ.
Such distributions are fully characterized by the location parameter θθθ and the cumulative
distribution function F of X′θθθ. Popular examples of rotationally distributions are the FvML
and Watson distributions described in Sections 1.1.3 and 1.1.4.

If X is rotationally symmetric about θθθ ∈ Sp−1 then we can show that (see [Saw, 1978])

E [X] = e1θθθ, (1.7)

E
[
XX′]= e2θθθθθθ

′+ 1−e2

p −1

(
Ip −θθθθθθ′) , (1.8)

with e1 := E
[
X′θθθ

]
and e2 := E

[(
X′θθθ

)2
]

. Moreover, X can be decomposed into

X = uθθθ+ v S (1.9)

where u := X′θθθ, v :=
p

1−u2 and

S :=
{

X−uθθθ
‖X−uθθθ‖ if X 6=θθθ,

0 otherwise.

The multivariate sign vector S is uniformly distributed on Sp−1
(
θθθ⊥

)
:= {

v ∈ Sp−1 : v′θθθ= 0
}

and is independent of u (see (9.3.32) in [Mardia and Jupp, 2000]).

o

θθθ

uθθθ
X

Sv S

Figure 1.1 – The tangent-normal decomposition of X, rotationally symmetric about θθθ ∈ Sp−1

Consider triangular arrays of observations Xni , i = 1, . . . ,n, n = 1,2, . . .; we denote
by P(n)

θθθn ,Fn
the hypothesis that for any n, Xn1,Xn2, . . . ,Xnn are on Spn−1, mutually indepen-

dent and rotationally symmetric about θθθn , with cumulative distribution function Fn .
In the two following sections we will be interested in particular cases of rotationally

symmetric distributions: monotone and axial ones.

1.1.3 “Monotone” rotationally symmetric distributions

We define “monotone” rotationally symmetric densities (with respect to the surface
area measure on Sp−1) as densities of the form

x 7→
Γ

(
p−1

2

)
cp,κ, f

2π(p−1)/2
f
(
κx′θθθ

)
, x ∈ Sp−1, (1.10)

where
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1. θθθ ∈ Sp−1 is a location parameter;

2. κ> 0 is a concentration parameter (irrespective of f , κ= 0 corresponds to the uni-
form distribution and negative values of κ are discarded in this model because they
only swap the roles of θθθ and −θθθ);

3. the function f belongs to the class of functions F := {
f :R→R+ : f monotone in-

creasing, twice differentiable at 0, with f (0) = f ′(0) = 1
}
;

4. the constant cp,κ, f is such that

cp,κ, f

∫ 1

−1
(1− s2)(p−3)/2 f (κs)d s = 1.

These conditions on f guarantee identifiability of θθθ, κ and f : clearly, the strict mono-
tonicity of f implies that θθθ is the modal location on Sp−1, whereas the constraint f ′(0) = 1
allows to identify κ and f .

This family of distributions is an extension of the Fisher–von Mises–Langevin (FvML)
distributions; indeed, choosing f (·) = exp(·) in (1.10) provides

x 7→ cFvML
p,κ exp

(
κx′θθθ

)
I{x∈Sp−1}, with cFvML

p,κ := (κ/2)p/2−1

2πp/2Ip/2−1(κ)
, (1.11)

where Iν(·) is the order-ν modified Bessel function of the first kind; see Section 9.3.2. in
[Mardia and Jupp, 2000] for more details.

Note that if X is a random vector with density (1.10), then X′θθθ has density

s 7→ cp,κ, f
(
1− s2)(p−3)/2

f (κs) I{|s|≤1}.

For any θθθn , κn and f defined as above, we will denote as P(n)
θθθn ,κn , f

the hypothesis under

which the Xni ’s, i = 1, . . . ,n, are mutually independent and share the common density

x 7→
Γ

(
pn−1

2

)
cpn ,κn , f

2π(pn−1)/2
f
(
κn x′θθθn

)
.

1.1.4 “Axial” rotationally symmetric distributions

We define “axial” rotationally symmetric densities (with respect to the surface area
measure on Sp−1) as densities of the form

x 7→
Γ

(
p−1

2

)
c̆p,κ, f

2π(p−1)/2
f
(
κ

(
x′θθθ

)2
)

, x ∈ Sp−1, (1.12)

where

1. θθθ ∈ Sp−1 is a location parameter;

2. κ ∈R is a concentration parameter: the larger |κ|, the more the probability mass will
be concentrated: symmetrically about the poles ±θθθ for positive values of κ (bipolar
case) or symmetrically about the hyperspherical equator Sp−1

(
θθθ⊥

)
for negative val-

ues of κ (girdle case). The value κ= 0 (irrespective of f ) corresponds to the uniform
distribution over the sphere;
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3. the function f belongs to the class of functions F := {
f :R→R+ : f monotone in-

creasing, twice differentiable at 0, with f (0) = f ′ (0) = 1
}
. If κ 6= 0, then f and the

pair
{±θθθ} are identifiable, but θθθ itself is not (which is natural for axial distributions).

If κ= 0, the location parameter θθθ is unidentifiable, even up to a sign.

4. the constant c̆p,κ, f is such that

c̆p,κ, f

∫ 1

−1
(1− s2)(p−3)/2 f

(
κs2)d s = 1.

Density (1.12) is a symmetric function of x, it attributes the same probability to an-
tipodal regions on the sphere, hence is suitable for axial data. This family of distributions
is actually an extension of the Watson distributions (the rotationally symmetric/single-
spiked [Bingham, 1974] distributions) obtained by choosing f (·) = exp(·) in (1.12); see
Section 9.4.2. in [Mardia and Jupp, 2000] for more details.

Note that if X is a random vector with density (1.12), then X′θθθ has density

s 7→ c̆p,κ, f
(
1− s2)(p−3)/2

f
(
κs2) I{|s|≤1}.

For any θθθn , κn and f defined as above, we will denote as P̆(n)
θθθn ,κn , f

the hypothesis under

which the Xni ’s, i = 1, . . . ,n, are mutually independent and share the common density

x 7→
Γ

(
pn−1

2

)
c̆pn ,κn , f

2π(pn−1)/2
f
(
κn

(
x′θθθn

)2
)

.

1.2 Le Cam’s theory

1.2.1 Convergence of experiments

A statistical experiment or statistical model ξ is a measurable space (Ω,A ), called the
sample space, equipped with a collection of probability measures P := {

Pθθθ :θθθ ∈Θ⊂Rp
}
.

The notion of convergence for statistical models is challenging and the sequel offers a
glimpse. For more details, see Sections 6.1 and 6.2 in [Liese and Miescke, 2008] or Sections
2.1 and 2.2 in [Le Cam and Yang, 2000].

Fix a decision space D equipped with a σ-field BD , a loss function L : D ×Θ→ [0,1] :
(d ,θθθ) 7→ Lθθθ(d) and a mapping δ that attributes to every x ∈ Ω a probability measure on
(D,BD). The average loss over all decisions d when a value x ∈Ω is observed is∫

D
Lθθθ(d)dδx(d).

The risk function associated with δ is then

Rδ(θθθ) :=
∫
Ω

(∫
D

Lθθθ(d)dδx(d)

)
dPθθθ(x)

and represents the overall average loss when x is picked according to Pθθθ. Since one crite-
rion to judge the quality of decision procedures is their risk functions, we are led to study
more closely the space of risk functions available for an experiment ξ and a loss function
L. Define

R(P ,D,L) :=
{

r :Θ→ [0,1] : there exists δ such that Rδ(θθθ) ≤ r (θθθ)∀θθθ
}

,
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and its pointwise closure

R̄(P ,D,L) :=
{

r :Θ→ [0,1] : r (θθθ) = lim
i→∞

ri (θθθ)∀θθθ, where ri ∈R(P ,D,L)

}
.

Definition 1.2.1.
Let ξ1 := (

Ω1,A1,P1 =
{
P1,θθθ|θθθ ∈Θ⊂Rp

})
and ξ2 := (

Ω2,A2,P2 =
{
P2,θθθ|θθθ ∈Θ⊂Rp

})
. The

deficiency of ξ1 with respect to ξ2 is

∆(ξ1,ξ2) := inf
{
ε ∈ [0,1] : for every finite decision space D, ∀L : D×Θ→ [0,1] and

∀r2 ∈R(P2,D,L), ∃r1 ∈ R̄(P1,D,L) such that r1(θθθ) ≤ r2(θθθ)+ε ∀θθθ ∈Θ
}

.

In other words, ∆(ξ1,ξ2) is the smallest number such that for every L : D ×Θ→ [0,1], the
set R̄(P1,D,L) contains {R(P2,D,L)+∆(ξ1,ξ2)} := {r2 +∆(ξ1,ξ2)|r2 ∈R(P2,D,L)}.

The distance between ξ1 and ξ2 is

∆dist(ξ1,ξ2) := max(∆(ξ1,ξ2),∆(ξ2,ξ1)) .

The equality ∆dist(ξ1,ξ2) = 0 does not imply that ξ1 and ξ2 are the same but rather
are equivalent or of the same type, like two different experiments to measure the gravity
of Earth for example. If ∆dist(ξ1,ξ2) = δ, it means that any risk function you can have
on one of the two experiments can be matched within δ by a risk function on the other
experiment.

In this definition only loss functions L such that 0 ≤ Lθθθ(d) ≤ 1 are allowed. This is
because multiplying the loss function by a constant c ≥ 0 would multiply the distance by
the same constant c and it could be made as large as one pleases unless the distance is
zero.

We can finally give a meaning to the convergence of statistical models.

Definition 1.2.2.
Let ξ(n) :=

(
Ω(n),A (n),P (n) :=

{
P(n)
θθθ

∣∣θθθ ∈Θ⊂Rp
})

and ξ := (
Ω,A ,P := {

Pθθθ
∣∣θθθ ∈Θ⊂Rp

})
. We

say that (ξ(n)) converges weakly to ξ as n →∞ if and only if, for every finite subset Θ0 ⊂Θ,

∆dist
(
ξ(n)
Θ0

,ξΘ0

)
n→∞−→ 0.

The restriction to finite subsets in the definition stems from the fact that, in the finite-
parameter case, equivalence of convergence in the sense of Le Cam’s distance and of con-
vergence of distributions of likelihood ratios has been proven. The infinite-parameter
case is much more complex but this weak form of convergence is enough to have impor-
tant consequences in the sequel.

1.2.2 Local Asymptotic Normality (LAN)

Intuitively, a sequence of statistical models is locally and asymptotically normal if
it converges (in the sense of the previous section) to a Gaussian model after a suitable
reparametrisation. If X1, . . . ,Xn is an iid sample from a distribution Pθθθ on (Ω,A ), define

ξ(n) :=
(
Ω(n),A (n),P (n) :=

{
P(n)
θθθ

∣∣θθθ ∈Θ⊂Rp
})

,

a sequence of experiments associated with X1, . . . ,Xn . If, for ν(n) → 0 as n →∞,

ξ(n)
θθθ

:=
(
Ω(n),A (n),P (n)

θθθ
:=

{
P(n)
θθθ+ν(n)τττ

∣∣τττ ∈Rp
})

→ ξθθθ := (
Ω,A ,Pθθθ := {

Pθθθ,τττ

∣∣τττ ∈Rp})
,

the optimal procedure in ξθθθ is asymptotically optimal in ξ(n)
θθθ

hence locally and asymptot-

ically optimal in ξ(n).
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Definition 1.2.3. A sequence of experiments ξ(n) is Locally Asymptotically Normal (LAN)
if for all θθθ ∈Θ, there exist:

1. a sequence ννν(n) of p × p full rank, non-random, symmetric and positive definite1

matrices, called the contiguity rate, such that
∥∥ννν(n)

∥∥ → 0 as n → ∞, where
∥∥ννν(n)

∥∥
denotes the Frobenius norm of ννν(n);

2. a sequence of random p-vectors ∆∆∆(n)
θθθ

measurable with respect to X1, . . . ,Xn , called
the central sequence;

3. a non-random p ×p matrixΓΓΓ(θθθ), called the Fisher information matrix;

such that for every bounded sequence of vectors τττ(n) ∈Rp , we have under P(n)
θθθ

(i) log
dP(n)

θθθ+ννν(n)τττ(n)

dP(n)
θθθ

= (
τττ(n))′∆∆∆(n)

θθθ
− 1

2

(
τττ(n))′ΓΓΓ(θθθ)τττ(n) +oP(n)

θθθ
(1), (1.13)

(ii)∆∆∆(n)
θθθ

D→Np
(
0,ΓΓΓ(θθθ)

)
.

Consider the Gaussian shift experiment

ξθθθ := (
Rp ,B(Rp ),Pθθθ := {

Pθθθ,τττ :=Np
(
ΓΓΓ(θθθ)τττ,ΓΓΓ(θθθ)

)∣∣τττ ∈Rp})
with a single observation that we denote as∆∆∆, where B(Rp ) is the Borelσ-field onRp . The
log-likelihood ratio in ξθθθ is

log
dPθθθ,τττ(∆∆∆)

dPθθθ,0(∆∆∆)
=τττ′∆∆∆− 1

2
τττ′ΓΓΓ(θθθ)τττ. (1.14)

We see that the log-likelihood ratio in (1.13) behaves asymptotically like the one in (1.14).
The similarity is not just a coincidence; define

ξ(n)
θθθ

:=
(
Ω(n),A (n),P (n)

θθθ
:=

{
P(n)
θθθ+ννν(n)τττ

∣∣τττ ∈Rp
})

.

It can be shown that ξ(n)
θθθ

converges weakly to ξθθθ (see for example Corollary 6.66 in [Liese
and Miescke, 2008] or Theorem 9.4 in [van der Vaart, 1998]).

Example 1.2.4 (One-parameter exponential family).
Let X1, . . . ,Xn be iid from (Ω,A ,P := {Pθ|θ ∈Θ0 ⊂R}) such that P is absolutely contin-

uous with respect to some σ-finite measure µ and

fθ(x) := dPθ
dµ

= exp(θT(x)−A(θ))

for all θ ∈Θ0. Note that X(n) := (X1, . . . ,Xn) comes from
(
Ω(n),A (n),P (n) :=

{
P(n)
θ

∣∣θ ∈Θ0 ⊂R
})

.

The set Θ0 is the natural parameter space defined as{
θ ∈R such that

∫
Ω

pθ(x)dµ(x) <∞
}

.

Let θ0 be a point inside Θ0. Then

log
dP(n)

θ0+n−1/2τ

dP(n)
θ0

= log
n∏

i=1

fθ0+n−1/2τ(Xi )

fθ0 (Xi )
= τp

n

n∑
i=1

T(Xi )−n

(
A

(
θ0 + τp

n

)
−A(θ0)

)
. (1.15)

1This condition is not necessary but is added for convenience ; see [Le Cam and Yang, 2000]
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It can be shown (see for example Problem 2.16 in [Lehmann and Romano, 2005]) that

Eθ0 [T(Xi )] = A′(θ0),

Varθ0 [T(Xi )] = A′′(θ0),

so that, by a Taylor expansion, as n →∞,

n

(
A

(
θ0 + τp

n

)
−A(θ0)

)
=p

nτA′(θ0)+ 1

2
τ2A′′(θ0)+o(1).

The log-likelihood ratio (1.15) becomes

log
dP(n)

θ0+n−1/2τ

dP(n)
θ0

= τ∆(n)
θ0

− 1

2
τ2A′′(θ0)+o(1), (1.16)

where A′′(θ0) is the Fisher information matrix and where, under θ0, the central sequence
∆(n)
θ0

is such that

∆(n)
θ0

:= 1p
n

n∑
i=1

(
T(Xi )−Eθ0 [T(Xi )]

) D→N (0, A′′(θ0)),

as n →∞.

An approximate result like (1.16) can actually be obtained for much more general fam-
ilies like iid observations, either by setting conditions on the second derivative of the log-
likelihood or under the single condition of differentiability in quadratic mean of f 1/2

θθθ
at θθθ

(see Section 7.2 of [van der Vaart, 1998] or Section 12.2 in [Lehmann and Romano, 2005]).

1.2.3 Contiguity

The concept of contiguity was introduced by [Le Cam, 1960] as an equivalent to "asymp-
totic absolute continuity". Contiguity implies a strong relation between the asymptotic
behaviour of a sequence of statistics under laws Q(n) (typically an alternative hypothesis)
and its asymptotic behaviour under laws P(n) (typically a null distribution) and enables to
find the former from the latter.

Definition 1.2.5. Let (Ωn ,An) be measurable spaces equipped with two sequences of
probability distributions P(n) and Q(n).

The sequence Q(n) is contiguous to P(n), denoted as Q(n)/P(n), if P(n)(An) → 0 implies
Q(n)(An) → 0 for every sequence of measurable sets An ∈An . If Q(n)/P(n) and P(n)/Q(n),
we say that Q(n) and P(n) are mutually contiguous: Q(n) ./ P(n).

To get an idea of what contiguity is, consider the problem of testing{
H (n)

0 : {P(n)}

H (n)
1 : {Q(n)}

and suppose P(n) and Q(n) are mutually contiguous. Consider a sequence of nonrandom-
ized tests2 φ(n). Then

P(n)[φ(n) = 1] → 0 ⇔ Q(n)[φ(n) = 1] → 0

2A nonrandomized test is a test statistic that can have only two values: 0 (the null hypothesis is not
rejected) and 1 (the null hypothesis is rejected).
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and
Q(n)[φ(n) = 1] → 1 ⇔ P(n)[φ(n) = 1] → 1.

If the size of the tests converges to zero, then the power of the tests converges to zero too.
Conversely if the power of the tests converges to one, then the size of the tests converges
to one too. The sequences of probability distributions P(n) and Q(n) are so close that no
test has a power converging to one.

1.2.4 Le Cam’s First Lemma

Contiguity can be proven thanks to the following result known as Le Cam’s first lemma
(see Lemma 6.4 in [van der Vaart, 1998]).

Lemma 1.2.6 (Le Cam’s First Lemma). Let (Ωn ,An) be measurable spaces equipped with
two sequences of probability distributions P(n) and Q(n). Then the following statements are
equivalent :

(i) Q(n)/P(n).

(ii) If dP(n)/dQ(n) D→ U under Q(n) along a subsequence, then P[U > 0] = 1.

(iii) If dQ(n)/dP(n) D→ V under P(n) along a subsequence, then E[V] = 1.

(iv) For any statistics Tn :Ωn 7→Rk : if Tn → 0 under P(n), then Tn → 0 under Q(n).

To prove mutual contiguity, one therefore needs to prove that if dQ(n)/dP(n) D→ U un-
der P(n) along a subsequence, then P[U > 0] = 1 and E[U] = 1. For example, if P(n) and Q(n)

are two probability measures on arbitrarily measurable spaces such that, under P(n),

dQ(n)

dP(n)
D→ eN (µ,σ2),

then Q(n) and P(n) are mutually contiguous if and only if µ=−σ2/2 (like P(n)
θθθ+ννν(n)τττ(n) and P(n)

θθθ

when ξ(n) =
(
Ω(n),A (n),P (n) =

{
P(n)
θθθ

∣∣θθθ ∈Θ⊂Rp
})

is Locally Asymptotically Normal).

1.2.5 Le Cam’s Third Lemma

This section allows computing the asymptotic distribution of a statistic Xn under Q(n)

from its asymptotic distribution under P(n) (see Lemma 6.6 in [van der Vaart, 1998]).

Lemma 1.2.7. Let P(n) and Q(n) be sequences of probability measures on probability spaces
(Ωn ,An) and let Xn : Ωn 7→ Rk be a sequence of random vectors. Suppose that Q(n) /P(n)

and (
Xn ,

dQ(n)

dP(n)

)
D→ (X,V)

under P(n). Then L(B) := E
[
I{X∈B}V

]
defines a probability measure, and Xn

D→ L under Q(n).

The following lemma is a famous special case that will be useful for computing the
asymptotic power of tests under sequences of experiments that are locally and asymptot-
ically normal (see Example 6.7 in [van der Vaart, 1998]).
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Lemma 1.2.8 (Le Cam’s Third Lemma). If(
Xn

log dQ(n)

dP(n)

)
D→Nk+1

((
µµµ

−σ2/2

)
,

(
ΣΣΣ c
c′ σ2

))

under P(n), then Q(n)/P(n) and Xn
D→Nk

(
µµµ+c,ΣΣΣ

)
under Q(n).

Example 1.2.9. Consider a sequence of experiments ξ(n) :=
(
Ω(n),A (n),P (n) :=

{
P(n)
θθθ

∣∣θθθ ∈Θ⊂Rp
})

that is LAN, so

log
dP(n)

θθθ+ννν(n)τττ

dP(n)
θθθ

=τττ′∆∆∆(n)
θθθ

− 1

2
τττ′ΓΓΓ(θθθ)τττ+oP(n)

θθθ
(1),

where∆∆∆(n)
θθθ

D→Np
(
0,ΓΓΓ(θθθ)

)
under P(n)

θθθ
as n →∞. We can apply Le Cam’s Third Lemma and

since

CovP(n)
θθθ

(
log

dP(n)
θθθ+ννν(n)τττ

dP(n)
θθθ

,∆∆∆(n)
θθθ

)
= EP(n)

θθθ

[
∆∆∆(n)
θθθ

(
∆∆∆(n)
θθθ

)′]
τττ→ΓΓΓ(θθθ)τττ,

as n →∞, we obtain that

∆∆∆(n)
θθθ

D→Np
(
ΓΓΓ(θθθ)τττ,ΓΓΓ(θθθ)

)
under P(n)

θθθ+ννν(n)τττ
as n →∞.

1.3 Invariance

Let (Ω,A ,P ) be a statistical model and X a sample from P ∈ P . Let G be a group of
transformations acting on Ω. We say that (Ω,A ,P ) is invariant under G if for all P ∈ P

and for all g ∈ G, there is Q ∈P such that

Pg X = QX,

where PX is the measure induced by X defined by PX(B) = P(X ∈ B). Each transformation
g induces a mapping

ḡ : P →P : PX 7→ Pg X.

In the parametric case, P = {
Pθθθ :θθθ ∈Θ⊂Rp

}
, so ḡ :Θ→Θ :θθθ 7→ ḡθθθ. The set of all induced

transformations, Ḡ, is also a group.
Let {H0,H1} be a partition of P . We say that the testing problem{

H0

H1
(1.17)

is invariant under G if (Ω,A ,H0) is invariant under G. Note that if (Ω,A ,P ) and (1.17) are
invariant under G, then so is (Ω,A ,H1). According to the invariance principle it is then
natural to restrict to invariant tests, that is tests φ such that

φ
(
g x

)=φ(x)

for all g ∈ G and all x ∈ Ω. Any invariant test can be written as a function of a maximal
invariant test T, that is such that, for some g in G,

x ′ = g x ⇔ T(x ′) = T(x),
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for all x, x ′ ∈ Ω. Moreover, if G is a generating group (i.e. Ḡ has only one orbit) then all
invariant tests are distribution-free. More details on invariance can be found in Section
6.3 in [Shao, 2003] or in Chapter 6 in [Lehmann and Romano, 2005].

Now, suppose we have an invariant testing problem; we will then restrict to invari-
ant tests that depend on the observations only through a maximal invariant statistic,
T : (Ω,A ) → (ΩT,AT) say. We may then apply a reduction by invariance and switch to
the reduced model (

ΩT,AT,PT)
(1.18)

where it is often easier to find an optimal test.

Example 1.3.1 (for more details, see Section 5.2 in [Liese and Miescke, 2008]). Suppose
we want to test {

H0 :µµµ= 0

H1 :µµµ 6= 0

in the model
M := (

Rp ,B(Rp ),P := {
Pµµµ :=Np

(
µµµ,Ip

)∣∣µµµ ∈Rp})
.

This testing problem is multisided and a most powerful test does not in general exist.
However, as the testing problem and the model are invariant under the orthogonal group
O(p), we will focus on statistics invariant with respect to that group. We can show that any
such statistic can be written as a function of

T(x) := ‖x‖2.

The measure induced by T is

PT
µµµ(A) = Pµµµ

(‖X‖2 ∈ A
)= Pµµµ

(
p∑

i=1
X2

i ∈ A

)
= P

(
χ2

p

(∥∥µµµ∥∥2
)
∈ A

)
,

where χ2
p (λ) is the non-central chi-squared distribution with p degrees of freedom and

noncentrality parameter λ. The reduced model is then

M ′ :=
(
R+,B(R+),P T :=

{
χ2

p

(
δ2)∣∣δ ∈R})

.

It can be shown that if T is an observation from M ′, the test that rejects H0 when

T > χ2
p,1−α,

where χ2
d ,α the α-quantile of the chi-square distribution with d degrees of freedom, is uni-

formly most powerful among the class of level-α tests for{
H0 : δ2 = 0,

H1 : δ2 > 0.

Therefore, if X is an observation from M , the test that rejects H0 when

‖X‖2 > χ2
p,1−α (1.19)

is uniformly most powerful invariant among the class of level-α invariant tests for{
H0 :µµµ= 0,

H1 :
∥∥µµµ∥∥2 > 0.

This test has another nice optimality property. We say that a test φ∗ is maximin for (1.17)
within a class C if its minimal power is maximal in C , i.e.
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1. φ∗ ∈C ,

2. for all tests φ ∈C , infP∈H1 EP
[
φ∗]≥ infP∈H1 EP

[
φ

]
.

We can show that the test in (1.19) is maximin for{
H0 :µµµ= 0,

H1c :
∥∥µµµ∥∥2 > c.

in the class of level-α tests, irrespective of c > 0.

We conclude this section by a lemma (Lemma 2.5.1 in [Giri, 1996]) that enables us to
find the likelihood function in model (1.18).

Lemma 1.3.2. Let G be a group of transformations, λ an invariant 3 probability measure
on (Ω,A ) and X a random variable on (Ω,A ) with density p with respect to λ.

Let λ∗ be the measure induced 4 by a maximal invariant T : (Ω,A ) → (ΩT,AT) with
respect to some group of transformations G.

The density function of the maximal invariant T with respect to λ∗ is given by

p∗(y) =
∫

p
(
g x

)
dµ(g ),

where x is any point in Ω for which T(x) = y and where µ is an invariant probability mea-
sure on G.

1.4 Billingsley’s Theorem

We introduce in this section a theorem that will be used in Chapter 4 to prove the
asymptotic normality of the Rayleigh and Bingham test statistics under general rotation-
ally symmetric distributions. Let us first recall that if Z1,Z2, . . . is a sequence of random
variables on a probability space (Ω,F ,P) and F1,F2, . . . is a sequence ofσ-fields in F , the
sequence ((Zn ,Fn)) is a martingale if these four conditions hold:

(i) Fn ⊂Fn+1 (i.e., the Fn form a filtration);

(ii) Zn is measurable with respect to Fn ;

(iii) E [|Zn |] <∞;

(iv) E [Zn+1|Fn] = Zn with probability one.

Consider triangular arrays of observations Zni , i = 1, . . . ,n, n = 1,2, . . .; suppose that
for each n, Zn1,Zn2, . . . ,Znn is a martingale with respect to Fn1,Fn2, . . . ,Fnn . Let us define
Dn` := Zn`−Zn,`−1 and suppose the Dn`’s have finite second moments.

Theorem 1.4.1 (Theorem 35.12 in [Billingsley, 1995]).
Letting σ2

n` := E
[
D2

n` |Fn,`−1
]

(with Fn0 = {;,Ω} for all n), assume that, as n →∞,

n∑
`=1

σ2
n` = 1+oP(1), (1.20)

n∑
`=1

E
[
D2

n` I{|Dn`|>ε}
]→ 0, (1.21)

for every ε> 0. Then
∑n
`=1 Dn` is asymptotically standard normal.

3λ(g A) = λ(A) for all g ∈ G, A ∈A .
4λ∗(C) = λ(

T−1(C)
)

for all C in AT.
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Condition (1.20) will typically be proven by showing that, as n →∞,

n∑
`=1

E
[
σ2

n`

]→ 1 and Var

[
n∑
`=1

σ2
n`

]
→ 0,

so that
∑n
`=1σ

2
n`→ 1 in the L2-norm, and hence in probability.
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2.1 Introduction

Let Xni , i = 1, . . . ,n, n = 1,2, . . . , be a triangular array of observations such that, for any
n, the Xni ’s form a random sample on Spn−1. Perhaps the simplest test of uniformity is the
[Rayleigh, 1919] test, that rejects the null of uniformity for large values of

Rn := npn‖X̄n‖2,

where X̄n := n−1 ∑n
i=1 Xni . For fixed p, Rn

D→ χ2
p . In the high-dimensional setup, Theorem

2.1 in [Paindaveine and Verdebout, 2016] implies that, under the null of uniformity,

RSt
n := Rn −pn√

2pn
=

√
2pn

n

∑
1≤i< j≤n

X′
ni Xn j

D→ N (0,1) (2.1)

as soon as n and pn diverge to infinity, where
D→ denotes weak convergence. The high-

dimensional Rayleigh test, say φ(n)
Ray, then rejects uniformity at asymptotic level α when-

ever

RSt
n > zα, with zα :=Φ−1(1−α). (2.2)

Remarkably, this test does not impose any condition on the way pn goes to infinity
with n, hence can be applied as soon as n and pn are large, without bothering about
their relative magnitude. It is nonetheless necessary to study its nonnull behaviour as the
trivial test, that would discard the data and reject uniformity with probability α, also has
asymptotic level α, yet has a power function uniformly equal to α.

In order to do so, we will focus in this chapter on specific alternatives to uniformity:
monotone rotationally symmetric distributions. This family of alternatives is a natural
extension of the well-known FvML distributions (see Section 1.1.3). Assume that the tri-
angular array Xni , i = 1, . . . ,n, n = 1,2, . . . , is such that, for any n, Xn1,Xn2, . . . ,Xnn are mu-
tually independent and identically distributed. Recall that P(n)

0 is the hypothesis that they

are uniformly distributed on Spn−1 and P(n)
θθθn ,κn , f

the hypothesis under which they share the

common density

x 7→
Γ

(
pn−1

2

)
cpn ,κn , f

2π(pn−1)/2
f
(
κn x′θθθn

)
.

The larger the concentration parameter κn is, the more severe the deviations from the
null of uniformity are, which is obtained as κn goes to zero. It is then natural to wonder
how small κn must be to make P(n)

θθθn ,κn , f
and P(n)

0 mutually contiguous (see Section 1.2.3).

This question is answered in the following theorem which covers both the low- and high-
dimensional cases.

Theorem 2.1.1. Let (pn) be a sequence in {2,3, . . .}, (θθθn) a sequence such that θθθn ∈ Spn−1 for
all n, (κn) a positive sequence such that κ2

n = O(pn/n), and assume that f is twice differen-
tiable at 0. Then, the sequence of alternative hypotheses P(n)

θθθn ,κn , f
and the null sequence P(n)

0

are mutually contiguous.

Sketch of the proof. The complete proof of this theorem can be found in Section 2.5.2.
We start by proving a lemma that gives an expansion of cpn

∫ 1
−1(1− s2)(pn−3)/2g (κn s)d s

for positive sequences κn such that κn = o(
p

pn) as n →∞ and any g :R→R twice differ-
entiable at 0.
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Then we split the log-likelihood ratioΛn := logdP(n)
θθθn ,κn , f

/dP(n)
0 in two terms and letting

En1 := E
[
log f

(
κnX′

niθθθn
)]

and Vn := Var
[
log f

(
κnX′

niθθθn
)]

we expand them thanks to the
lemma to get

Λn =−nκ2
n

2pn
+

√
nκ2

n

pn
+o

(
nκ2

n

pn

) n∑
i=1

log f
(
κnX′

niθθθn
)−En1p

nVn
+o

(
nκ2

n

pn

)

=: −nκ2
n

2pn
+

√
nκ2

n

pn
+o

(
nκ2

n

pn

) n∑
i=1

Wni +o

(
nκ2

n

pn

)
. (2.3)

If κ2
n = o(pn/n), then Λn

L2

→ 0 under P(n)
0 so exp(Λn)

D→ 1 under P(n)
0 , and Le Cam’s First

Lemma (see Section 1.2.6) yields that P(n)
θθθn ,κn , f

and P(n)
0 are mutually contiguous.

If κ2
n = τ2

n pn/n, where the positive sequence (τn) is O(1) but not o(1), (2.3) can be
written as

Λn =−τ
2
n

2
+

√
τ2

n +o(1)
n∑

i=1
Wni +o(1). (2.4)

We show that
∑n

i=1 Wni satisfies the Lévy–Lindeberg condition, hence is asymptoti-
cally standard normal. Therefore for any subsequence (exp(Λnm )) converging in distribu-
tion, we have under P(n)

0 that

exp(Λnm )
D→ exp(Y), with Y ∼N

(
−1

2
lim

m→∞τ
2
nm

, lim
m→∞τ

2
nm

)
and mutual contiguity ensues from Le Cam’s First Lemma.

In the low-dimensional case, the usual parametric rateκn ∼ 1/
p

n provides contiguous
alternatives, which implies that, irrespective of f , there exist no consistent tests forH (n)

0 :
{

P(n)
0

}
H (n)

1 :
{

P(n)
θθθn ,κn , f

} (2.5)

if κn = τ/
p

n, τ > 0. The high-dimensional case is more interesting. First, we stress that
the contiguity result in Theorem 2.1.1 does not impose conditions on pn , hence in partic-
ular applies when (a) pn/n → c for some c > 0 or (b) pn/n →∞. Interestingly, the result
shows that contiguity in cases (a)-(b) can be achieved for sequences (κn) that do not con-
verge to zero: a constant sequence (κn) ensures contiguity in case (a), whereas contiguity
in case (b) may even be obtained for a sequence (κn) that diverges to infinity in a suitable
way. In both cases, there then exist no consistent tests for (2.5), despite the fact that the
sequences (κn) are not o(1). This may be puzzling at first since such sequences are ex-
pected to lead to severe alternatives to uniformity; it actually makes sense, however, that
the fast increase of the dimension pn , despite the favourable sequences (κn), makes the
problem difficult enough to prevent the existence of consistent tests.

In the remainder of this chapter we will start by assuming thatθθθn is known and address
the testing problem H (n)

0 :
{

P(n)
0

}
H (n)

1 : ∪κ>0 ∪ f

{
P(n)
θθθn ,κ, f

}
.

(2.6)

An optimal test is given in Section 2.2 thanks to a Local Asymptotic Normality result.
When θθθn is not specified, the testing problem becomes in low dimensionsH (n)

0 :
{

P(n)
0

}
H (n)

1 : ∪θθθ∈Sp−1 ∪κ>0 ∪ f

{
P(n)
θθθ,κ, f

} (2.7)
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and Section 2.3.1 shows that the Rayleigh test becomes the optimal test against general
monotone rotationally symmetric distributions. In high dimensions an invariance ap-
proach yields in Section 2.3.2 that it is optimal against FvML distributions.

2.2 Optimal testing under specified modal location

When the modal location θθθn is specified, optimal tests of uniformity can be obtained
from the following Local Asymptotic Normality (LAN) result. To the best of our knowledge,
this result provides the first instance of a LAN structure in high dimensions.

Theorem 2.2.1. Let (pn) be a sequence in {2,3, . . .} and (θθθn) a sequence such thatθθθn ∈ Spn−1

for all n. Let κn = τn
√

pn/n, where the positive sequence (τn) is O(1) but not o(1), and
assume that f is twice differentiable at 0. Then, as n →∞, under P(n)

0 ,

Λn := log
dP(n)

θθθn ,κn , f

dP(n)
0

= τn∆
(n)
θθθn

− τ2
n

2
+oP(1), (2.8)

where ∆(n)
θθθn

:=p
npn X̄′

nθθθn is asymptotically standard normal.

In other words, the sequence
({

P(n)
θθθn ,κ, f

: κ≥ 0
})

(where P(n)
θθθn ,0, f

:= P(n)
0 for any θθθn and f )

is locally asymptotically normal at κ= 0 with central sequence ∆(n)
θθθn

, Fisher information 1,

and contiguity rate
√

pn/n.

Sketch of the proof. The complete proof of this theorem can be found in Section 2.5.3.
The fact that∆(n)

θθθn
is asymptotically standard normal follows from the central limit the-

orem. To prove (2.8) we rewrite (2.4) as

Λn =−τ
2
n

2
+τn

n∑
i=1

Wni +oP(1)

and show that τn

[∑n
i=1 Wni −∆(n)

θθθn

]
converges to zero in quadratic mean and therefore in

probability.

This result, that covers both the low- and high-dimensional cases, reveals that the
rate κn ∼√

pn/n in Theorem 2.2.1 is actually the contiguity rate of the considered model
(that is, more severe alternatives are not contiguous to the null of uniformity). In low
dimensions, the usual parametric contiguity rate κn ∼ 1/

p
n is obtained. In high di-

mensions it is non-standard. Yet in the FvML high-dimensional case, this rate may be
related to the fact that, as p → ∞, one needs to consider κp ∼ p

p to obtain FvML p-
vectors that provide non-degenerate weak limiting results that are different from those
obtained from p-vectors that are uniform over the sphere (more precisely, if X has density
(1.11) with κ = p

pω, then, as p → ∞,
p

pθθθ′X converges weakly to the normal distribu-
tion with mean ω and variance 1; see [Watson, 1988] for more details). The contiguity
rate κn ∼ √

pn/n then intuitively results from a standard 1/
p

n-shrinkage starting from
this non-trivial κp ∼p

p high-dimensional situation.
Now, assume that κn = τ√pn/n. By Theorem 2.2.1, as n →∞,

CovP(n)
0

[
∆(n)
θθθn

,Λn

]
= τVarP(n)

0

[
∆(n)
θθθn

]
= τ
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Therefore, by Le Cam’s Third Lemma (see Lemma 1.2.8), ∆(n)
θθθn

is asymptotically normal

with mean τ and variance one under P(n)
θθθn ,κn , f

. Define for some fixed θθθn and fixed f

ξ(n) :=
((

Spn−1)(n)
,A (n),

{
P(n)
θθθn ,κ, f

∣∣∣κ> 0
})

,

where A (n) is the trace sigma-algebra of
(
Spn−1

)(n)
in B (Rpn × . . .×Rpn ). Local asymptotic

normality implies that

ξ(n)
0 :=

((
Spn−1)(n)

,A (n),

{
P(n)

θθθn ,τ
p

pn /n, f

∣∣∣τ> 0

})
converges to

ξ := (
R,B(R),

{
N (τ,1)

∣∣τ> 0
})

.

The testing problem H (n)
0 :

{
P(n)

0

}
H (n)

1, f : ∪κ>0

{
P(n)
θθθn ,κ, f

} (2.9)

can then be locally rewritten as {
H (n)

0 : τ= 0

H (n)
0 : τ> 0.

Let ∆ stand for an observation from ξ. From Theorem 3.4.1. in [Lehmann and Romano,
2005] we know that a uniformly most powerful test for{

H0 : τ= 0

H0 : τ> 0.

within the class of level-α tests rejects H0 at level α when

∆> zα.

Consequently, the test φ(n)
θθθn

rejecting H (n)
0 at asymptotic level α whenever

∆(n)
θθθn

=p
npn X̄′

nθθθn > zα (2.10)

is locally asymptotically most powerful for (2.9). As it does not depend on the function f , it
is also locally asymptotically most powerful for (2.6). Its asymptotic power under P(n)

θθθn ,κn , f
,

with κn = τ√pn/n, is

lim
n→∞P(n)

θθθn ,κn , f

[
∆(n)
θθθn

> zα
]
= 1−Φ(zα−τ). (2.11)

While all results of this section so far covered both the low- and high-dimensional
cases, we need to treat these cases separately to investigate how the Rayleigh test com-
pares with the optimal test φ(n)

θθθn
.

We start with the low-dimensional case. Le Cam’s Third Lemma allows to show that,
under the contiguous alternatives P(n)

θθθn ,κn , f
, with κn = τ√p/n,

Rn
D→ χ2

p (τ2) (2.12)
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as n → ∞ (see proof in Appendix A). Denoting by Ψ` (·;λ) the cumulative distribution
function of the χ2

`
(λ) distribution, the corresponding asymptotic power of the Rayleigh

test is therefore
lim

n→∞P(n)
θθθn ,κn , f

[
Rn > χ2

p,1−α
]
= 1−Ψp

(
χ2

p,1−α;τ2
)

, (2.13)

which is strictly smaller than the asymptotic power in (2.11). We conclude that, in the
specified-θθθn case, the low-dimensional Rayleigh test is not locally asymptotically most
powerful yet shows non-trivial asymptotic powers against contiguous alternatives.

The story is different in the high-dimensional case, as can be guessed from the fol-
lowing heuristic reasoning. In view of (2.12), we have that, as n → ∞ under P(n)

θθθn ,κn , f
,

with κn = τ√p/n,

RSt
n = Rn −p√

2p

D→ χ2
1(τ2)−1√

2p
+
χ2

p−1 − (p −1)√
2p

,

where the two chi-square variables are independent. When both n and p are large, it is
therefore expected that, under the same sequence of alternatives,

RSt
n ≈N

(
τ2√
2p

,1+ 2τ2

p

)
,

where Zn ≈L means that the distribution of Zn is close to L . Thus, in the high-dimensional
case (where p = pn →∞), RSt

n is expected to be standard normal under these alternatives,
which would imply that the high-dimensional Rayleigh test in (2.2) has asymptotic pow-
ers equal to the nominal level α.

The high-dimensional LAN result in Theorem 2.2.1 allows to confirm these heuristics.
Letting κn = τn

√
pn/n, where τn is O(1), Theorem 2.2.1 readily yields that, as n →∞,

CovP(n)
0

[
RSt

n ,Λn
]= CovP(n)

0

[
RSt

n ,∆(n)
θθθn

]
τn +o(1)

=
p

2pn

n3/2
τn

n∑
i=1

∑
1≤k<`≤n

EP(n)
0

[(
X′

niθθθn
)(

X′
nk Xn`

)]+o(1)

= o(1),

so that Le Cam’s Third Lemma implies that RSt
n remains asymptotically standard nor-

mal under P(n)
θθθn ,κn , f

. This confirms that, unlike in the low-dimensional case, the high-

dimensional Rayleigh test does not show any power under the contiguous alternatives
from Theorem 2.2.1.

However, the high-dimensional Rayleigh test does not make use of the specified value
of the modal location θθθn , hence does not primarily address the specified-θθθn problem but
rather the unspecified-θθθn one. Therefore, the key question is whether or not the Rayleigh
test is optimal for the latter problem. We answer this question in the next section.

2.3 Optimal testing under unspecified modal location

Building on the results of the previous section, two natural approaches, that may lead
to an optimal test for the unspecified-θθθn problem, are the following. The first one con-
sists in substituting an estimator θ̂θθn for θθθn in the optimal test φ(n)

θθθn
above. For the spheri-

cal mean θ̂θθn = X̄n/‖X̄n‖ (which is the Maximum Likelihood Estimator, MLE, for θθθn in the
FvML case), the resulting test rejects the null for large values of

∆(n)

θ̂θθn
=p

npn X̄′
nθ̂θθn =p

npn ‖X̄n‖ = R1/2
n ,
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hence coincides with the Rayleigh test. The second approach, in the spirit of [Davies,
1977, Davies, 1987, Davies, 2002], rather consists in adopting the test statistic

sup
θθθn∈Spn−1

∆(n)
θθθn

=p
npn ‖X̄n‖,

which again leads to the Rayleigh test. These considerations suggest that the Rayleigh test
may indeed be optimal for the unspecified-θθθn problem. In this section, we investigate
whether this is the case or not, both in low and high dimensions.

2.3.1 The low-dimensional case

To investigate the optimality properties of the low-dimensional Rayleigh test for the
unspecified-θθθn problem, it is helpful to adopt a new parametrisation. For fixed p and f ,
the model is indexed by (θθθ,κ) ∈ Sp−1×R+, where the value κ= 0 makes θθθ unidentified (for
fixed p, the dimension of θθθ does not depend on n, so that there is no need to consider
sequences (θθθn)). We then consider the alternative parametrisation in µµµ := κθθθ, for which
the fixed-p result in Theorem 2.2.1 readily rewrites as follows.

Theorem 2.3.1. Fix an integer p ≥ 2 and letµµµn =√
p/nτττn for all n, where the sequence (τττn)

in Rp is O(1) but not o(1). Assume that f is twice differentiable at 0. For anyµµµ ∈Rp \ {0}, let
P(n)
µµµ, f := P(n)

θθθ,κ, f
, whereµµµ=: κθθθ, with θθθ ∈ Sp−1. Then, under P(n)

0 ,

log
dP(n)

µµµn , f

dP(n)
0

=τττ′n∆∆∆(n) − 1

2
‖τττn‖2 +oP(1),

as n →∞, where∆∆∆(n) :=p
np X̄n is asymptotically standard p-variate normal.

Similarly to the specified-θθθn case, if µµµn = √
p/nτττ, by Theorem 2.3.1 and Le Cam’s

Third Lemma, ∆∆∆(n) is, under P(n)
µµµn , f , asymptotically normal with mean τττ and covariance

matrix Ip . Define

ξξξ(n) :=
((

Sp−1)(n)
,A (n),

{
P(n)
µµµ, f

∣∣∣µµµ ∈Rp
})

.

As

ξξξ(n)
0 :=

((
Sp−1)(n)

,A (n),

{
P(n)

τττ
p

p/n, f

∣∣∣τττ ∈Rp
})

→ ξξξ := (
Rp ,B(Rp ),

{
Np

(
τττ,Ip

)∣∣τττ ∈Rp})
,

for some fixed f , the testing problemH (n)
0 :

{
P(n)

0

}
H (n)

1, f : ∪µµµ∈Rp \{0}

{
P(n)
µµµ, f

}
,

(2.14)

which is equivalent to H (n)
0 :

{
P(n)

0

}
H (n)

1, f : ∪θθθ∈Sp−1 ∪κ>0

{
P(n)
θθθ,κ, f

}
in the new parametrisation, can then be locally rewritten as{

H (n)
0 :τττ= 0

H (n)
1 :τττ 6= 0.
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Let∆∆∆ stand for an observation from ξξξ. Example 1.3.1 implies that the test that rejects H0

at level α when
‖∆∆∆‖2 > χ2

p,1−α
is maximin within the class of level-α tests for{

H0 :τττ= 0

H1c : ‖τττ‖2 > c

irrespective of c > 0, and uniformly most powerful invariant among the class of level-α
invariant tests with respect to the orthogonal group O(p) for{

H0 :τττ= 0,

H̃1 : ‖τττ‖2 > 0.
.

Consequently, the test rejecting H (n)
0 at asymptotic level α whenever∥∥∆∆∆(n)
∥∥2 = np

∥∥X̄n
∥∥2 > χ2

p,1−α,

that is the low-dimensional Rayleigh test, is locally asymptotically maximin and locally
asymptotically most powerful invariant for (2.14). As it does not depend on the func-
tion f , it is also locally asymptotically maximin and locally asymptotically most powerful
invariant for (2.7). This new optimality property of the low-dimensional Rayleigh test
complements the one stating that this test is locally most powerful invariant in the FvML
model (see, e.g., [Chikuse, 2003], Section 6.3.5.).

The specified-θθθn and unspecified-θθθn testing problems are two distinct statistical prob-
lems, that, even in the low-dimensional case, provide different efficiency bounds. In low
dimensions, the Rayleigh test is optimal for the unspecified-θθθn problem, but not for the
specified-θθθn one. This thoroughly describes the optimality properties of this test in the
low-dimensional case, so that we may now focus on the high-dimensional case.

2.3.2 The high-dimensional case

If pn goes to infinity, then the dimension of the parameter (θθθn ,κ) increases with n, so
that there cannot be a high-dimensional analogue of the LAN result in Theorem 2.3.1. We
therefore rather adopt, in the present hypothesis testing context, an invariance approach
that is close in spirit to the one used by [Moreira, 2009] in a point estimation context.

The null of uniformity and all collections of alternatives P (n)
κ, f :=

{
P(n)
θθθ,κ, f

:θθθ ∈ Spn−1
}

are

invariant (see Section 1.3) under the group of rotations

G (n) :=
{

g (n)
O : O ∈ SO(pn)

}
,

where g (n)
O (x1, . . . ,xn) = (Ox1, . . . ,Oxn) for any (x1, . . . ,xn) ∈ Spn−1 × . . .×Spn−1 (n times) and

where SO(pn) stands for the collection of pn ×pn orthogonal matrices with determinant
one. The problem of testing uniformity against rotationally symmetric alternatives is
hence also invariant under G (n). The invariance principle then suggests restricting to
G (n)-invariant tests, that automatically are distribution-free under any P (n)

κ, f (their distri-

bution does not depend on θθθ). Indeed, G (n) is a generating group and the set of induced
transformations {

ḡO : O ∈ SO(pn)
}

,
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where ḡO(θθθ) = Oθθθ, has only one orbit. Therefore, if Sn is an invariant statistic with respect
to G (n), for any θθθ1,θθθ2 ∈ Spn−1, there is ḡ such that ḡO

(
θθθ1

)=θθθ2, so that

Pθθθ2 (Sn(x1, . . . ,xn) ∈ A) = PḡO(θθθ1) (Sn(x1, . . . ,xn) ∈ A) = Pθθθ1 (Sn(Ox1, . . . ,Oxn) ∈ A)

= Pθθθ1 (Sn(x1, . . . ,xn) ∈ A)

for some A ∈A (n).
As mentioned in Section 1.3, optimal invariant tests are to be determined in the image

of the original model by a maximal invariant Tn with respect to G (n). The likelihood (with
respect to the surface area measure mpn on Spn−1) associated with the image of P (n)

κn , f
by Tn is given by

dP(n)Tn
κn , f

dmpn

=
∫

SO(pn )

n∏
i=1

Γ
(

pn−1
2

)
cpn ,κn , f

2π(pn−1)/2
f
(
κn(OXni )′θθθn

) dO,

where the integral is with respect to the Haar measure on SO(pn); see Lemma 1.3.2. The
resulting log-likelihood ratio to the null of uniformity is therefore

Λ
Tn
n, f := log

dP(n)Tn
κn , f

dP(n)
0

= log
cn

pn ,κn , f

∫
SO(pn )

∏n
i=1 f

(
κnX′

ni

(
O′θθθn

))
dO

cn
pn

= log
cn

pn ,κn , f E
[∏n

i=1 f
(
κnX′

ni U
) |Xn1, . . . ,Xnn

]
cn

pn

, (2.15)

where U is uniformly distributed over Spn−1 and is independent of the Xni ’s. The fol-
lowing theorem shows that, in the FvML case f (·) = fFvML(·) = exp(·), this collection of
log-likelihood ratios enjoys the LAN property.

Theorem 2.3.2. Let (pn) be a sequence of positive integers diverging to ∞ as n → ∞ and
let κn = τn p3/4

n /
p

n, where the positive sequence (τn) is O(1) but not o(1).
Then we have, under P(n)

0 , that

log
dP(n)Tn

κn ,exp

dP(n)
0

= τ2
n∆

(n)Tn − τ4
n

4
+oP(1), (2.16)

as n → ∞, where ∆(n)Tn := RSt
n /

p
2 is asymptotically normal with mean zero and vari-

ance 1/2.

Sketch of the proof. The complete proof of this theorem can be found in Section 2.5.4.
We already know from (2.1) that, under P(n)

0 ,∆(n)Tn is asymptotically normal with mean
zero and variance 1/2. To prove (2.16), the FvML version of the log-likelihood in (2.15) is
rewritten as ΛTn

n,exp = Ln1 +Ln2, where

Ln1 := n log
cFvML

pn ,κn

cpn

=−n logHpn /2−1(κn)

Ln2 := logE
[
exp

(
κnnX̄′

nU
) | X̄n

]= log
cpn

cFvML
pn ,nκn‖X̄n‖

= logHpn /2−1
(
κnn‖X̄n‖

)
,
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with Hν(x) := Γ (ν+1)Iν(x)(x/2)−ν. We then use bounds for logHν(x) that can be ex-
panded if κn = τn p3/4

n /
p

n (with n, pn →∞ and (τn) bounded) and we obtain expressions
of Ln1 and Ln2 under P(n)

0 that lead to

Λ
Tn
n,exp = τ2

n
RSt

np
2
− τ4

n pn

4(pn +2)
+oP(1).

Applying Le Cam’s Third Lemma, we obtain that, as n →∞ under P(n)Tn
κn ,exp,

∆(n)Tn D→N
(
Γτ2,Γ

)
with κn = τp3/4

n /
p

n and Γ = 1/2. The model
{

P(n)Tn
κ,exp : κ≥ 0

}
(where P(n)Tn

0,exp := P(n)
0 ) is thus

“second-order" LAN, in the sense that the mean of the limiting Gaussian shift experiment
is quadratic (rather than linear) in τ. Clearly, this does not change the form of locally
asymptotically optimal tests, but only their asymptotic performances. Note that the con-
tiguity rate κn ∼ p3/4

n /
p

n associated with this new LAN property differs from the contigu-
ity rate κn ∼√

pn/n in Theorem 2.2.1.
Theorem 2.3.2 entails that the test rejecting the null of uniformity at asymptotic level α

whenever
∆(n)Tn /

p
Γ= RSt

n > zα,

that is, the high-dimensional Rayleigh test in (2.2), is, in the FvML case, locally asymptot-
ically most powerful invariant. This optimality result is of a high-dimensional asymptotic
nature and also covers cases where κn does not converge to 0, hence does not follow from
the aforementioned local optimality result from [Chikuse, 2003]. Le Cam’s Third Lemma
readily implies that as n →∞, under P(n)Tn

κn ,exp,

RSt
n

D→N

(
τ2

p
2

,1

)
,

with κn = τp3/4
n /

p
n, so that the corresponding asymptotic power of the Rayleigh test is

given by

lim
n→∞P(n)

θθθn ,κn ,exp

[
RSt

n > zα
]= 1−Φ

(
zα− τ2p

2

)
, (2.17)

where the sequence (θθθn) is such that θθθn ∈ Spn−1 for all n but is otherwise arbitrary. While
the Rayleigh test is blind to alternatives in κn ∼ √

pn/n, it thus detects alternatives in
κn ∼ p3/4

n /
p

n, which, in view of Theorem 2.3.2, is the best that can be achieved for the
unspecified-θθθn problem.

Interestingly, we might have guessed that these alternatives in κn ∼ p3/4
n /

p
n are those

that can be detected by the high-dimensional Rayleigh test. Recall indeed that heuristic
arguments in Section 2.2 suggested that, under P(n)

θθθn ,κn , f
, with κn = τ√p/n,

RSt
n ≈N

(
τ2√
2p

,1+ 2τ2

p

)
for large n and p. Consequently, to obtain, in high dimensions, an asymptotic non-null
distribution that differs from the limiting null (standard normal) one, we need to consider
alternatives of the form P(n)

θθθn ,κn , f
, with κn = τp3/4

n /
p

n, under which we expect

RSt
n ≈N

(
τ2

p
2

,1

)
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for large n and p. This is fully in line with the non-null distribution and local asymptotic
powers obtained from Le Cam’s Third Lemma in the previous paragraph.

Provided that f is four times differentiable at 0 and that pn = o(n2), tedious computa-
tions allow to show that a fourth-order expansion of the f -based log-likelihood ratioΛTn

n, f

above, still based on κn = τn p3/4
n /

p
n, exactly provides the righthand side of (2.16), with

the same central sequence ∆(n)Tn . However, turning this into a proper f -based version of
Theorem 2.3.2 requires controlling the corresponding (fifth-order) remainder term, which
proved to be extremely difficult. Yet we conjecture that Theorem 2.3.2 indeed extends
to an arbitrary f admitting five derivatives at 0, under the aforementioned assumption
that pn = o(n2) (an assumption that is superfluous in the FvML case, since Theorem 2.3.2
allows pn to go to infinity in an arbitrary way as a function of n). Proving this conjecture
would establish that the Rayleigh test is locally asymptotically most powerful invariant
under any such f , with the same asymptotic powers as in (2.17).

2.4 Simulations

In this section, we present the results of a Monte Carlo study we conducted to check
the validity of our asymptotic results. We generated independent random samples of the
form

X(`)
i ; j i = 1, . . . ,n, j = 1,2, `= 0,1,2,3,4. (2.18)

For `= 0, the common distribution of the X(`)
i ; j ’s is the uniform distribution on the unit

sphere Sp−1, while, for ` > 0, the X(`)
i ; j ’s have an FvML distribution on Sp−1 with location

θθθ= (1,0, . . . ,0)′ ∈Rp and concentration κ(`)
j , with

κ(`)
1 = 0.6`

√
p

n
and κ(`)

2 = 0.6`
p3/4

p
n
·

The case j = 1 relates to the contiguous alternatives (see Theorem 2.2.1), whereas j = 2
is associated with the alternatives under which the Rayleigh test shows non-trivial asymp-
totic powers in the high-dimensional setup (see Theorem 2.3.2).

For any (n, p) ∈ C×C, with C := {30,100,400}, any j ∈ {1,2}, and any ` ∈ {0,1,2,3,4}, we
generated M = 2,500 independent random samples X(`)

i ; j , i = 1, . . . ,n, as described above,
and evaluated the rejection frequencies of

(i) the specified-θθθn test φ(n)
θθθn

in (2.10),

(ii) the high-dimensional Rayleigh test φ(n)
Ray in (2.2),

the two conducted at nominal level 5%. Rejection frequencies are plotted in Figure 2.1 as
well as the corresponding asymptotic powers, obtained from (2.11), (2.17), and the fact
that φ(n)

θθθn
is consistent against ( j = 2)-alternatives.

Clearly, rejection frequencies match extremely well the corresponding asymptotic pow-
ers, irrespective of the tests and types of alternatives considered (the only possible excep-
tion is the test φ(n)

θθθn
under (` = 1, j = 2)-alternatives; this, however, is only a consequence

of the lack of continuity of the corresponding asymptotic power curves). Remarkably, this
agreement is also reasonably good for moderate sample size n and dimension p. Beyond
validating our asymptotic results, this Monte Carlo study therefore also shows that these
results are relevant for practical values of n and p.
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Figure 2.1 – Rejection frequencies (dashed) and asymptotic powers (solid), under the null of uni-
formity over the p-dimensional unit sphere (` = 0) and increasingly severe FvML alternatives
(`= 1,2,3,4), of the specified-θθθn testφ(n)

θθθn
in (2.10) (red/orange) and the high-dimensional Rayleigh

test φ(n)
Ray in (2.2) (light/dark green). Light colors (orange and light green) are associated with con-

tiguous alternatives, whereas dark colors (red and dark green) correspond to the more severe al-
ternatives under which the Rayleigh test shows non-trivial asymptotic powers in high dimensions;
see Section 2.4 for details.
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2.5 Proofs

2.5.1 Preliminary lemma

Lemma 2.5.1. Let g :R→R be twice differentiable at 0. Let κn be a positive sequence that is

o(
p

pn) as n →∞. Then Rn(g ) := cpn

∫ 1
−1(1−s2)(pn−3)/2g (κn s)d s = g (0)+ κ2

n
2pn

g ′′(0)+o
(
κ2

n
pn

)
.

Proof of Lemma 2.5.1. We know from (1.5) that

cpn

∫ 1

−1
s2(1− s2)(pn−3)/2 d s = 1

pn
. (2.19)

Now, write

Rn(g ) = g (0)+ cpn

∫ 1

−1
(1− s2)(pn−3)/2 (

g (κn s)− g (0)−κn sg ′(0)
)

d s.

Letting t = κn s and using the identity (2.19) then provides

Rn(g ) = g (0)+ κ2
n

pn

∫ κn

−κn

hn(t )

(
g (t )− g (0)− t g ′(0)

t 2

)
d t ,

where hn is defined through

t 7→ hn(t ) = (t/κn)2
(
1− (t/κn)2

)(pn−3)/2∫ κn
−κn

(s/κn)2
(
1− (s/κn)2

)(pn−3)/2 d s
I{|t |≤κn }.

It can be checked that, since κn = o(
p

pn), the hn ’s form an approximate δ-sequence (see
(1.157) in [Arfken et al., 2013]), in the sense that

∫ ∞
−∞ hn(t )d t = 1 for all n and

∫ ε
−εhn(t )d t →

1 for any ε> 0. Hence,

Rn(g ) = g (0)+ κ2
n

pn
lim
t→0

(
g (t )− g (0)− t g ′(0)

t 2

)
+o

(
κ2

n

pn

)
which, by using L’Hôpital’s rule, yields the result.

2.5.2 Proof of Theorem 2.1.1

In this proof, all expectations and variances are taken under the null of uniformity P(n)
0

and all stochastic convergences and oP’s are as n →∞ under P(n)
0 . Consider then the local

log-likelihood ratio

Λn := log
dP(n)

θθθn ,κn , f

dP(n)
0

=
n∑

i=1
log

cpn ,κn , f f
(
κnX′

niθθθn
)

cpn

= n

(
log

cpn ,κn , f

cpn

+En1

)
+

n∑
i=1

(
log f

(
κnX′

niθθθn
)−En1

)
=: Ln1 +Ln2.

Throughout, we write ` f ,k := (log f )k and Enk := E
[
` f ,k (κnX′

niθθθn)
]

(Enk actually depends
on κn , pn and f , but we simply write Enk to avoid a heavy notation).
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Lemma 2.5.1 readily yields

n log
cpn ,κn , f

cpn

=−n log

(
cpn

∫ 1

−1
(1− s2)(pn−3)/2 f (κn s)d s

)
=−n log

(
1+ κ2

n

2pn
f ′′(0)+o

(
κ2

n

pn

))
=−nκ2

n

2pn
f ′′(0)+o

(
nκ2

n

pn

)
. (2.20)

Similarly, for any positive integer k,

Enk = cpn

∫ 1

−1
(1− s2)(pn−3)/2` f ,k (κn s)d s = κ2

n

2pn
`′′f ,k (0)+o

(
κ2

n

pn

)
. (2.21)

Combining (2.20) and (2.21), and using the identity `′′f ,1(0) = f ′′(0)−1 readily yields

Ln1 =
nκ2

n

2pn

(
− f ′′(0)+`′′f ,1(0)

)
+o

(
nκ2

n

pn

)
=−nκ2

n

2pn
+o

(
nκ2

n

pn

)
.

Turning to Ln2, write

Ln2 =
√

nVn

n∑
i=1

Wni :=
√

nVn

n∑
i=1

log f
(
κnX′

niθθθn
)−En1p

nVn
,

where we let Vn := Var
[
log f

(
κnX′

niθθθn
)]

. First note that (2.21) provides

nVn = n
(
En2 −E2

n1

)= nκ2
n

2pn
`′′f ,2(0)+o

(
nκ2

n

pn

)
= nκ2

n

pn
+o

(
nκ2

n

pn

)
, (2.22)

which leads to

Λn =−nκ2
n

2pn
+

√
nκ2

n

pn
+o

(
nκ2

n

pn

) n∑
i=1

Wni +o

(
nκ2

n

pn

)
. (2.23)

Since the Wni ’s, i = 1, . . . ,n are mutually independent with mean zero and variance 1/n,
we obtain that

E
[
Λ2

n

]= E[Λn]2 +Var[Λn] = n2κ4
n

4p2
n

+o

(
n2κ4

n

p2
n

)
+ nκ2

n

pn
+o

(
nκ2

n

pn

)
. (2.24)

If κ2
n = o(pn/n), then (2.24) implies that exp(Λn)

D→ 1, so that Le Cam’s First Lemma (see
Section 1.2.4) yields that P(n)

θθθn ,κn , f
and P(n)

0 are mutually contiguous.

We may therefore assume that κ2
n = τ2

n pn/n, where the positive sequence (τn) is O(1)
but not o(1). In this case, (2.23) can be rewritten

Λn =−τ
2
n

2
+

√
τ2

n +o(1)
n∑

i=1
Wni +o(1).

Applying the Cauchy-Schwarz inequality and the Chebychev inequality, then using (2.21)
and (2.22), provides that, for some positive constant C,

n∑
i=1

E
[
W2

ni I{|Wni |>ε}
]≤ n

√
E

[
W4

ni

]
P[|Wni | > ε] ≤ n

ε

√
E

[
W4

ni

]
Var[Wni ] =

p
n

ε

√
E

[
W4

ni

]

≤ Cn1/2E1/2
n4

εnVn
=

C

(
nκ2

n`
′′
f ,4(0)

2pn
+o

(
nκ2

n
pn

))1/2

ε
(

nκ2
n

pn
+o

(
nκ2

n
pn

)) = o(τn)

ε
(
τ2

n +o(τ2
n)

) = o(1),
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where we have used the fact that `′′f ,4(0) = 0. This shows that
∑n

i=1 Wni satisfies the classi-
cal Lévy–Lindeberg condition, hence is asymptotically standard normal (as already men-
tioned, the Wni ’s, i = 1, . . . ,n are mutually independent with mean zero and variance 1/n).
For any subsequence (exp(Λnm )) converging in distribution, we then have exp(Λnm ) →
exp(Y), with Y ∼ N (−1

2 limm→∞τ2
nm

, limm→∞τ2
nm

). Mutual contiguity of P(n)
θθθn ,κn , f

and P(n)
0

then follows from the fact that P[exp(Y) = 0] = 0 and E[exp(Y)] = 1.
�

2.5.3 Proof of Theorem 2.2.1

As in the proof of Theorem 2.1.1, all expectations and variances in this proof are taken
under the null of uniformity P(n)

0 and all stochastic convergences and oP’s are as n →∞
under P(n)

0 . The central limit theorem then directly establishes the asymptotic normality

of ∆(n)
θθθn

, since E
[
∆(n)
θθθn

]
= 0 and Var

[
∆(n)
θθθn

]
= pn

n Var
[∑n

i=1 X′
niθθθn

]= 1.

It therefore remains to establish (2.8). Recall that, in the case where (τn) is O(1) but
not o(1), we have obtained in the proof of Theorem 2.1.1 that

Λn =−τ
2
n

2
+

√
τ2

n +o(1)
n∑

i=1
Wni +o(1) =−τ

2
n

2
+τn

n∑
i=1

Wni +oP(1),

where
n∑

i=1
Wni =

n∑
i=1

log f
(
κnX′

niθθθn
)−En1p

nVn

is asymptotically standard normal. To establish the result, it is therefore sufficient to show

that τn

[∑n
i=1 Wni −∆(n)

θθθn

]
converges to zero in quadratic mean. To do so, write

τn

(
n∑

i=1
Wni

)
−τn∆

(n)
θθθn

= τnp
nVn

n∑
i=1

(
log f

(
κnX′

niθθθn
)−En1 −

√
pnVn X′

niθθθn

)
=:

Mnp
nVn

·

Then using E[X′
n1θθθn] = 0 and E[(X′

n1θθθn)2] = 1/pn , we obtain

E
[
M2

n

]= nτ2
n E

[(
log f

(
κnX′

niθθθn
)−En1 −

√
pnVn X′

niθθθn

)2
]

= nτ2
n

(
2Vn −2

√
pnVn E

[
X′

niθθθn
(
log f

(
κnX′

niθθθn
)−En1

)])
= 2nτ2

nVn −2τnn3/2
√

Vn E
[
κnX′

niθθθn log f
(
κnX′

niθθθn
)]

,

which, letting g (x) := x log f (x), provides

E

[(
τn

(
n∑

i=1
Wni

)
−τn∆

(n)
θθθn

)2]
= 2τ2

n − 2τnnp
nVn

E
[
g

(
κnX′

niθθθn
)]

. (2.25)

Using Lemma 2.5.1,

E
[
g (κnX′

niθθθn)
]= cpn

∫ 1

−1
(1− s2)(pn−3)/2g (κn s)d s = κ2

n

2pn
g ′′(0)+o

(
κ2

n

pn

)
= κ2

n

pn
+o

(
κ2

n

pn

)
.

Plugging in (2.25) and using (2.22) then yields

E

[(
τn

(
n∑

i=1
Wni

)
−τn∆

(n)
θθθn

)2]
= 2τ2

n −
2τn

(
nκ2

n
pn

+o
(

nκ2
n

pn

))
(

nκ2
n

pn
+o

(
nκ2

n
pn

))1/2
= o(1),

as was to be shown.
�
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2.5.4 Proof of Theorem 2.3.2

The FvML version of the log-likelihood in (2.15) can be rewritten

Λ
Tn
n,exp = n log

cpn ,κn ,exp

cpn

+ logE
[
exp

(
κnnX̄′

nU
)∣∣X̄n

]=: Ln1 +Ln2, (2.26)

where

Ln1 =−n log
cpn

cpn ,κn ,exp
=−n log

Γ
(
pn/2

)
Ipn /2−1(κn)

(κn/2)pn /2−1
=: −n logHpn /2−1(κn),

(see (1.1) and (1.11) for explicit expressions of cp and cp,κ,exp = cFvML
p,κ , respectively) and

Ln2 = logE

[
exp

(
nκn‖X̄n‖U′X̄n

‖X̄n‖
)∣∣∣ X̄n

]
= log

(
cpn

∫ 1

−1
(1− s2)

pn−3
2 exp(nκn‖X̄n‖s)d s

)
= log

cpn

cFvML
pn ,nκn‖X̄n‖

=: logHpn /2−1
(
κn

p
nTn

)
,

where Tn :=p
n‖X̄n‖. Now, we use the bounds

S(pn−1)/2,(pn+1)/2(κ) ≤ logHpn /2−1(κ) ≤ S(pn−2)/2,(pn+2)/2(κ)

(see (5) in [Hornik and Grün, 2014]) with

Sα,β(κ) :=
√
κ2 +β2 −α log

(
α+

√
κ2 +β2

)
−β+α log(α+β)

= β
(√

(κ/β)2 +1−1+ α

β
log

(
α/β+1

α/β+√
(κ/β)2 +1

))
.

If κn = τn p3/4
n /

p
n, with n, pn →∞ and (τn) bounded, then limn→∞κn/βn = 0 with βn ∼

pn/21 so that Sαn ,βn (κn) can be expanded as

κ2
n

2(αn +βn)
− κ4

n

8β(αn +βn)2
+O

(
1p

pnn3

)
,

where αn ∼ pn/2. It implies that

Ln1 =−nκ2
n

2pn
+ nκ4

n

4p2
n(pn +2)

+o(1) (2.27)

under P(n)
0 . Similarly, as T2

n −1 = √
2/pnRSt

n
D→ 0 as n →∞ under P(n)

0 from (2.1) and Slut-
sky’s Lemma, Tn = 1+oP(1) and we can apply Corollary 5.1.6 from [Fuller, 1995] to get

Ln2 =
nκ2

n

2pn
T2

n − n2κ4
n

4p2
n(pn +2)

T4
n +oP(1) (2.28)

Plugging (2.27) and (2.28) into (2.26) and using again the fact that Tn = 1+oP(1) entails
that, as n →∞ under P(n)

0 ,

Λ
Tn
n,exp = nκ2

n

2pn
(T2

n −1)− n2κ4
n

4p2
n(pn +2)

T4
n +oP(1) = τ2

n
RSt

np
2
− τ4

n pn

4(pn +2)
+oP(1).

Jointly with (2.1), this establishes the result. �
1Two sequences (xn) and (yn) are of the same order, xn ∼ yn , if limn→∞ xn

yn
= 1.
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Testing uniformity against a
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3.1 Introduction

In the previous chapter we were interested in testing uniformity against monotone
rotationally symmetric distributions and the Rayleigh test stood out as the optimal test in
the unspecifiedθθθn-case in low dimensions and in the FvML case in high dimensions (and
presumably in general). However it will show no power when the common distribution of
the Xi ’s is antipodally symmetric.

In low dimensions the most classical test of uniformity for axial data is the [Bingham,
1974] test, that rejects the null hypothesis of uniformity whenever

Qn = npn
(
pn +2

)
2

(
tr

[
S2

n

]− 1

pn

)
> χ2

dpn ,1−α, (3.1)

where Sn := n−1 ∑n
i=1 Xni X′

ni is the covariance matrix of the observations (using the centre
of the sphere as a specified location) and dp := p(p + 1)/2− 1. In the high-dimensional
case, Theorem 2.5 from [Paindaveine and Verdebout, 2016] implies that, under the null
hypothesis of uniformity,

QSt
n = Qn −dpn√

2dpn

= pn

n

n∑
i< j

i , j=1

{(
X′

ni Xn j
)2 − 1

pn

}
D→N (0,1) , (3.2)

as soon as pn diverges to infinity with n. Therefore the Bingham test that rejects the null
of uniformity when

QSt
n > zα (3.3)

is a natural test of uniformity in high dimensions in the context of axial data—just as the
Rayleigh test is a natural test of uniformity in high dimensions in the framework of non-
axial data.

In order to study the non-null behaviour of the Bingham test, we will in this chapter
consider as alternatives to uniformity a family of distributions that include the classical
Watson distributions: axial rotationally symmetric distributions (see Section 1.1.4). Recall
that P̆(n)

θθθn ,κn , f
is the hypothesis under which the Xni ’s, i = 1, . . . ,n, are mutually independent

and share the common density

x 7→
Γ

(
pn−1

2

)
c̆pn ,κn , f

2π(pn−1)/2
f
(
κn

(
x′θθθn

)2
)

.

We first identify the sequences (κn) that make the corresponding sequences of alter-
natives contiguous to the null hypothesis of uniformity. In Section 3.2, we tackle the prob-
lem of testing uniformity under specified θθθn and show that the resulting model is locally
asymptotically normal in low- and high-dimensions. We define the resulting optimal tests
of uniformity and determine their asymptotic powers under contiguous alternatives. In
Section 3.3, we turn to the unspecified-θθθn problem. In low dimensions, our LAN result
naturally leads to the Bingham test that shows asymptotic power under contiguous alter-
natives. We show that this is not the case in high dimensions anymore. In Section 3.4,
we focus on the fixed p-case and we turn our attention to tests that take into account the
“single-spiked" structure of the considered alternatives, namely the tests from [Anderson
and Stephens, 1972]. We derive the limiting behaviour, under sequences of contiguous al-
ternatives, of these tests. Doing so, we obtain in particular the limiting behaviour, under
local alternatives, of the extreme eigenvalues of the spatial sign covariance matrix, which
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is a result of independent interest; see [Dürre et al., 2016] and the references therein for
a recent study of these eigenvalues. While all results above are confirmed by suitable nu-
merical exercises in Sections 3.2–3.4, we specifically conduct, in Section 3.5, Monte Carlo
simulations in order to compare the finite-sample powers of the various tests.

Our first result identifies the sequences of alternatives P̆(n)
θθθ,κn , f

that are contiguous to
the sequence of null hypotheses P(n)

0 .

Theorem 3.1.1. Let
(
pn

)
be a sequence in {2,3, . . .},

(
θθθn

)
a sequence such that θθθn ∈ Spn−1 for

all n, f ∈ F and (κn) a sequence in R0 := R \ {0} that is O
(
pn/

p
n

)
. Then, the sequence of

alternative hypotheses P̆(n)
θθθ,κn , f

and the sequence of null hypotheses P(n)
0 are mutually con-

tiguous.

Proof. See Section 3.7.2.

In other words, if κn = O
(
pn/

p
n

)
, then no test forH0n :

{
P(n)

0

}
H1n :

{
P̆(n)
θθθn ,κn , f

}
can be consistent. In the low-dimensional case, the contiguity rate κn ∼ 1/

p
n coincides

with the one obtained in the non-axial case (see Theorem 2.1.1). This is not the case in
high dimensions: the contiguity rate in the axial case (pn/

p
n) is larger than the one in the

non-axial case (
√

pn/n). It is therefore more challenging to detect axial departures from
uniformity than non-axial ones.

3.2 Testing uniformity under specified location

In this section, we consider the problem of testing uniformity over Spn−1 against the
class of alternatives introduced in the previous section, in a situation where the loca-
tion θθθn is specified. In other words, this corresponds to cases where it is known in which
direction the possible deviation from uniformity would materialize. Depending on the
exact type of alternatives we want to focus on (bipolar, girdle-type, or both), we will then

consider, for θθθn ∈ Spn−1, the problem of testing H (n)
0 :

{
P(n)

0

}
against

(i) H (n)
1 : ∪κ>0 ∪ f ∈F

{
P̆(n)
θθθn ,κ, f

}
;

(ii) H (n)
1 : ∪κ<0 ∪ f ∈F

{
P̆(n)
θθθn ,κ, f

}
;

(iii) H (n)
1 : ∪κ6=0 ∪ f ∈F

{
P̆(n)
θθθn ,κ, f

}
.

3.2.1 In low dimensions

As the dimension of θθθn does not depend on n in this section, it will be written θθθ. Opti-
mal testing may be based on the following Local Asymptotic Normality (LAN) result.

Theorem 3.2.1. Fix p ∈ {2,3, . . .}, θθθ ∈ Sp−1, and f ∈ F . Let κn = τn p/
p

n, where the real
sequence (τn) is O(1). Then, letting

∆̆(n)
θθθ

:= pp
n

n∑
i=1

{(
X′

niθθθ
)2 − 1

p

}
and Γp := 2

(
p −1

)
p +2

,
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we have that, as n →∞, under P(n)
0 ,

Λ̆ΛΛn = log
d P̆(n)

θθθ,κn , f

dP(n)
0

= τn∆̆
(n)
θθθ

− τ2
n

2
Γp +oP (1) , (3.4)

where ∆̆(n)
θθθ

is asymptotically normal with mean zero and variance Γp .

In other words, the sequence
({

P̆(n)
θθθ,κ, f

: κ ∈R
})

(where we let P(n)
θθθ,0, f

:= P(n)
0 ) is locally asymp-

totically normal at κ= 0 with central sequence ∆̆(n)
θθθ

, Fisher information Γp , and contiguity
rate 1/

p
n.

Proof. See Section 3.7.3.

This result confirms that in low dimensions the contiguity rate when testing unifor-
mity against the considered axial alternatives is 1/

p
n. Note also that the central sequence

rewrites

∆̆(n)
θθθ

=p
n

(
pθθθ′Snθθθ−1

)
.

Consequently, optimal testing of uniformity for axial data will be based in low dimensions
on Sn . The optimal axial tests of uniformity in the specified location case directly result
from the LAN property above: Theorem 3.2.1 entails that, for the problem of testingH (n)

0 :
{

P(n)
0

}
H (n)

1 : ∪κ>0 ∪ f ∈F

{
P̆(n)
θθθ,κ, f

}
,

(3.5)

the test φ(n)
θθθ+ rejecting the null hypothesis at asymptotic level α whenever

T(n)
θθθ

:=
∆̆(n)
θθθ√
Γp

> zα (3.6)

is locally asymptotically most powerful. A routine application of Le Cam’s Third Lemma
shows that, under P̆(n)

θθθ,κn , f
, as n →∞,

T(n)
θθθ

D→N
(
Γ1/2

p τ,1
)

,

with κn = τp/
p

n (τ> 0). Therefore, the corresponding asymptotic power of φ(n)
θθθ+ is

lim
n→∞ P̆(n)

θθθ,κn , f

[
T(n)
θθθ

> zα
]
= 1−Φ

(
zα−Γ1/2

p τ
)

. (3.7)

Note that this asymptotic power does not converge to α as p diverges to infinity. This
may be surprising at first since departures from uniformity here are of a single-spiked na-
ture, that is, only materialize in a single direction out of the p directions in Sp−1. The fact
that this asymptotic power does not fade out for larger dimensions is actually explained by
the fact that we did not consider local alternatives associated with κn = τ/

p
n but rather

with κn = τp/
p

n, which properly scales local alternatives for different dimensions p
(note also that the behaviour of high-dimensional Watson distributions—see Chapter 8
in [Chikuse, 2003]—intuitively explains that, at least in the Watson case, the concentra-
tion should indeed scale linearly with the dimension).
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Optimal tests for the other one-sided problem and for the two-sided problem are ob-
tained in a similar way. More precisely, for the problem of testingH (n)

0 :
{

P(n)
0

}
H (n)

1 : ∪κ<0 ∪ f ∈F

{
P̆(n)
θθθ,κ, f

}
,

(3.8)

the test φ(n)
θθθ− rejecting the null hypothesis of uniformity at asymptotic level α whenever

T(n)
θθθ

<−zα

is locally asymptotically most powerful and has asymptotic power

lim
n→∞ P̆(n)

θθθ,κn , f

[
T(n)
θθθ

<−zα
]
=Φ

(
−zα−Γ1/2

p τ
)

under P̆(n)
θθθ,κn , f

with κn = τp/
p

n (τ< 0).

The corresponding two-sided test, φ(n)
θθθ± say, rejects the null hypothesis at asymptotic

level α whenever ∣∣T(n)
θθθ

∣∣> zα/2.

This test is locally asymptotically maximin forH (n)
0 :

{
P(n)

0

}
H (n)

1 : ∪κ6=0 ∪ f ∈F

{
P̆(n)
θθθ,κ, f

}
,

(3.9)

and has asymptotic power

lim
n→∞ P̆(n)

θθθ,κn , f

[∣∣T(n)
θθθ

∣∣> zα/2

]
= 2−Φ

(
zα/2 −Γ1/2

p τ
)
−Φ

(
zα/2 +Γ1/2

p τ
)

under P̆(n)
θθθ,κn , f

with κn = τp/
p

n (τ 6= 0). Again, the local asymptotic powers of these tests

do not fade out for larger dimensions p but rather converge to a constant larger than α.
We conducted the following Monte Carlo exercise in order to check the validity of our

asymptotic results. For any combination (n, p) of sample size n ∈ {100,1000} and di-
mension p ∈ {3,10}, we generated collections of 5000 independent random samples of
size n from the Watson distribution with location θθθ = (1,0, . . . ,0)′ ∈ Rp and concentra-
tion κn = τp/

p
n, for τ=−2,−1,0,1,2. The value τ= 0 corresponds to the null hypothesis

of uniformity over Sp−1, whereas the larger the non-zero value of |τ| is, the more severe
the alternative is. Kernel density estimates of the resulting values of the test statistic T(n)

θθθ
in (3.6) are provided in Figure 3.1, that further plots the densities of the corresponding
asymptotic distributions (for the null case τ = 0, histograms of the values of T(n)

θθθ
are also

shown). Clearly, our asymptotic results are confirmed by these simulations (yet, unsur-
prisingly, larger dimensions require larger sample sizes for asymptotic results to materi-
alize).

3.2.2 In high dimensions

In high dimensions we have a LAN result similar to the one in low dimensions.
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Figure 3.1 – Plots of the kernel density estimates (solid curves) of the values of the test statis-
tic T(n)

θθθ
in (3.6) obtained from M = 5000 independent random samples, of size n = 100 (top) or

1000 (bottom), from the Watson distribution with location θθθ = (1,0, . . . ,0)′ ∈ Rp and concentra-
tion κ= τp/

p
n, with τ=−2,−1,0,1,2 and with p = 3 (left) or p = 10 (right); for τ= 0, histograms

of the values of T(n)
θθθ

are shown. The densities of the corresponding asymptotic N
(
Γ1/2

p τ,1
)

dis-

tributions are also plotted (dashed curves). Throughout this chapter, kernel density estimates are
obtained from the R command density with default parameter values.
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Theorem 3.2.2. Let
(
pn

)
be a sequence of positive integers diverging to ∞ and

(
θθθn

)
a se-

quence such thatθθθn ∈ Spn−1 for any n. Fix f ∈F and let κn = τn pn/
p

n, where (τn) is O(1).
Then, as n →∞, under P(n)

0 ,

Λ̆ΛΛn = log
d P̆(n)

θθθn ,κn , f

dP(n)
0

= τn∆̆
(n)
θθθn

−τ2
n +oP (1) ,

where ∆̆(n)
θθθn

:= p
n

(
pnθθθ

′
nSnθθθn −1

)
is asymptotically normal with mean zero and variance

two .

Proof. See Section 3.7.3.

The result readily implies that Le Cam optimal tests can be found in a similar fashion
as in low dimensions. For example the Le Cam optimal test of uniformity for testingH (n)

0 :
{

P(n)
0

}
H (n)

1 : ∪κ6=0 ∪ f ∈F

{
P̆(n)
θθθn ,κ, f

}
,

(3.10)

rejects the null hypothesis at asymptotic level α whenever∣∣∆̆(n)
θθθn

∣∣>p
2zα/2.

Applying Le Cam’s Third Lemma then entails that, under P̆(n)
θθθn ,κn , f

with κn = τn pn/
p

n and

τn → τ, the central sequence ∆̆θθθn is asymptotically normal with mean 2τ and variance 2,
which provides the asymptotic power

lim
n→∞ P̆(n)

θθθn ,κn , f

[∣∣∆̆(n)
θθθn

∣∣>p
2zα/2

]
= 2−Φ

(
zα/2 −

p
2τ

)
−Φ

(
zα/2 +

p
2τ

)
. (3.11)

This optimal test can thus detect these contiguous alternatives and shows a symmetric
power pattern against girdle alternatives (τ< 0) and bipolar alternatives (τ> 0).

These results show that optimal testing of uniformity for low-dimensional and high-
dimensional axial data is based on Sn , at least in the considered model. This is to be
compared with the non-axial case investigated in Chapter 2, where optimal testing of uni-
formity in high dimensions is rather based on X̄n . This will have important consequences
when considering the unspecified-θθθ case we turn to in the sequel.

3.3 Testing uniformity under unspecified location: the Bing-
ham test

It is important to note that the optimal tests described in Section 3.2 are of little prac-
tical relevance because the polar axis ±θθθn has to be known, which is almost never the case
in applications. In contrast, the Bingham test (see (3.3)) does not need such knowledge.

3.3.1 In low dimensions

We focus first on the one-sided problem of testingH (n)
0 :

{
P(n)

0

}
H (n)

1 : ∪θθθ∈Sp−1 ∪κ>0 ∪ f ∈F

{
P̆(n)
θθθ,κ, f

}
,

(3.12)
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It is convenient to reparameterise the submodel associated with κ ≥ 0 by defining
ϑϑϑ := p

κθθθ. In this new parametrisation (which, unlike the original curved one, is flat),
the testing problem rewritesH (n)

0 :
{

P(n)
0

}
H (n)

1 : ∪ϑϑϑ∈Rp \{0} ∪ f ∈F

{
P̆(n)
ϑϑϑ, f

}
,

that is, simply consists in testing {
H (n)

0 :ϑϑϑ= 0

H (n)
1 :ϑϑϑ 6= 0,

Theorem 3.3.1 below then describes the asymptotic behaviour of the corresponding local
log-likelihood ratios.

Theorem 3.3.1. Fix p ∈ {2,3, . . .} and f ∈F . Letϑϑϑn = (
p/

p
n

)1/2
τττn , where (τττn) is a sequence

in Rp that is O(1) but not o (1). Then, letting

∆̆∆∆
(n)

:= p
p

n vec

(
Sn − 1

p
Ip

)
and ΓΓΓp := p

p +2

(
Ip2 +Kp − 2

p
Jp

)
,

we have that, as n →∞, under P(n)
0 ,

log
d P̆(n)

ϑϑϑn , f

dP(n)
0

= (
vec

(
τττnτττ

′
n

))′
∆̆∆∆

(n) − 1

2

(
vec

(
τττnτττ

′
n

))′
ΓΓΓp vec

(
τττnτττ

′
n

)+oP (1) , (3.13)

where ∆̆∆∆
(n)

is, still under P(n)
0 , asymptotically normal with mean vector zero and covariance

matrixΓΓΓp .

Proof. See Section 3.7.4.

Theorem 3.3.1 shows that the contiguity rate for ϑϑϑ is n−1/4, which corresponds to the
contiguity rate n−1/2 obtained for κ in Theorem 3.2.1 (recall thatϑϑϑ=p

κθθθ); however, as we
will explain below, the limiting experiment in Theorem 3.3.1 is non-standard. A natural
test of uniformity is the test rejecting the null hypothesis at asymptotic level α whenever(

∆̆∆∆
(n)

)′
ΓΓΓ−p ∆̆∆∆

(n) = np
(
p +2

)
2

(
tr

[
S2

n

]− 1

p

)
> χ2

dp ,1−α, (3.14)

with dp = p(p +1)/2−1. We recognize the Bingham test (see (3.1)) that will be denoted
as φBing in the sequel. This test, which rejects the null hypothesis when the sample vari-
ance of the eigenvalues λ̂n1, . . . , λ̂np of Sn is too large, also addresses the problem of testing
uniformity against the one-sided alternatives associated with κ < 0 or against the two-
sided alternatives associated with κ 6= 0.

Local asymptotic powers of the Bingham test can be obtained from the LAN result in
Theorem 3.2.1 and Le Cam’s Third Lemma. We have the following result.

Proposition 3.3.2. Fix p ∈ {2,3, . . .}, θθθ ∈ Sp−1, and f ∈F . Let κn = τn p/
p

n, where the real
sequence (τn) converges to τ. Then, under P̆(n)

θθθ,κn , f
,

Qn
D→ χ2

dp

(
2
(
p −1

)
τ2

p +2

)
. (3.15)
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Figure 3.2 – Left: Plots of the kernel density estimates (solid curves) of the values of the Bingham
test statistic Qn in (3.14) obtained from M = 5000 independent random samples of size n = 2000
from the Watson distribution with location θθθ = (1,0, . . . ,0)′ ∈ Rp and concentration κ = τp/

p
n,

with τ = −4,−3,0,3,4 and with p = 3; for τ = 0, histograms of the values of Qn are shown. The
density of the corresponding asymptotic distributions in (3.15), which do not depend on the sign
of τ, are also plotted (dashed curves).
Right: The corresponding results for p = 10 and n = 10000.

Under the same sequence of alternatives, the asymptotic power of the Bingham test is there-
fore

lim
n→∞ P̆(n)

θθθ,κn , f

[
Qn > χ2

dp ,1−α
]
= 1−Ψdp

(
χ2

dp ,1−α;
2
(
p −1

)
τ2

p +2

)
. (3.16)

Proof. See Section 3.7.5.

This result in particular shows that the Bingham test is a two-sided procedure, as the
asymptotic power in (3.16) exhibits a symmetric pattern with respect to girdle-type al-
ternatives (τ < 0) and bipolar alternatives (τ > 0). This power, unlike the powers of the
specified-θθθ tests in the previous section, converges to α as p diverges to infinity, which
illustrates the fact that, for larger dimensions, the Bingham test severely suffers (even
asymptotically) fromθθθnot being specified. Note also that since the Bingham test is invari-
ant with respect to rotations, its limiting power naturally does not depend on the location
parameter θθθ under the alternative.

We conducted the following simulation to check the validity of the asymptotic results
of this section. In dimension p = 3, we generated 5000 mutually independent random
samples of size n = 2000 from the Watson distribution with location θθθ = (1,0, . . . ,0)′ ∈ Rp

and concentration κn = τp/
p

n, for τ = −4,−3,0,3,4. We did the same in dimension
p = 10, with sample size n = 10 000. For both dimensions p, Figure 3.2 reports kernel
density estimates of the resulting values of the Bingham test statistic Qn . They perfectly
match with the corresponding asymptotic distribution in (3.15). The results also confirm
the two-sided nature of the Bingham test, that, irrespective of τ0, asymptotically behaves
in the exact same way under τ=±τ0.

Proposition 3.3.2 means that the Bingham test shows non-trivial asymptotic powers
under P̆(n)

θθθ,κn , f
with κn = τn p/

p
n such that (τn) converges to τ. However, it is not Le Cam

optimal for this problem. Indeed, let (τττn) → τττ in the LAN result of Theorem 3.3.1. Then,
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under P̆(n)
ϑϑϑn , f

withϑϑϑn = (
p/

p
n

)1/2
τττn ,

∆̆∆∆
(n) D→Np2

(
sτττ,ΓΓΓp

)
,

with sτττ =ΓΓΓp vec
(
ττττττ′

)
, so that the sequence of asymptotic experiments at hand does con-

verge to a Gaussian shift experiment ∆̆∆∆ ∼ N
(
sτττ,ΓΓΓp

)
involving a constrained shift sτττ. The

Bingham test would be Le Cam optimal (more precisely, locally asymptotically maximin,
like the low-dimensional Rayleigh test in Section 2.3.1) for an unconstrained shift s ∈Rp2

,
but is here “wasting" power against multi-spiked alternatives that are incompatible with
the present single-spiked axial model. This is in line with the fact that the Bingham test,
which rejects the null hypothesis of uniformity when the sample variance of the eigen-
values λ̂n1, . . . , λ̂np of Sn is too large, uses these eigenvalues in a permutation-invariant
way. In the considered single-spiked models, it would be more natural to consider specif-
ically λ̂n1 and/or λ̂np to detect possible deviations from uniformity. This will be done in
Section 3.4.

3.3.2 In high dimensions

It is natural to wonder whether the Bingham test also shows power against the con-
tiguous alternatives considered in the previous section in the high-dimensional case.

Proposition 3.3.3. Let
(
pn

)
be a sequence of positive integers diverging to ∞ and

(
θθθn

)
a

sequence such that θθθn ∈ Spn−1 for any n. Let κn = τn pn/
p

n, with (τn) → τ, and fix f ∈ F .
Then, Cov

[
QSt

n ,Λ̆ΛΛn
]= o (1) as n →∞ under P(n)

0 , so that Le Cam’s Third Lemma implies that

QSt
n remains asymptotically standard normal under P̆(n)

θθθn ,κn , f
.

Proof. See Section 3.7.6.

A direct corollary is that, unlike the low-dimensional case, the Bingham test does
not show power against the contiguous alternatives considered in Proposition 3.3.3. It
is extremely challenging to derive a similar result to Theorem 2.3.2 with axial alternatives
or even Watson distributions. We will nonetheless tackle in Chapter 4 the question of
whether there exist more severe alternatives than the contiguous alternatives considered
in this section that can be detected by the Bingham test.

3.4 Testing uniformity under unspecified location: single-
spiked tests

A natural question is then: how to construct a test that is more powerful than the Bing-
ham test? We will focus in this section on the low-dimensional case; the high-dimensional
one is a lot trickier.

We now describe two constructions that actually lead to the same test(s). Focus-
ing again at first on the one-sided problem involving the bipolar alternatives, we saw in
Section 3.2.1 that, in the specified location case, Le Cam optimal tests of uniformity re-

ject H (n)
0 :

{
P(n)

0

}
in favor of ∪κ>0 ∪ f ∈F

{
P̆(n)
θθθ,κ, f

}
for large values of ∆̆(n)

θθθ
=p

n
(
pθθθ′Snθθθ−1

)
.

In the unspecified location case, it is then natural, following [Davies, 1977, Davies, 1987,
Davies, 2002], to consider the test, φ(n)

+ say, rejecting the null hypothesis of uniformity at
asymptotic level α when

T(n)
+ := sup

θθθ∈Sp−1
∆̆(n)
θθθ

=p
n

(
pλ̂n1 −1

)> cp,α,+, (3.17)
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where cp,α,+ is such that this test has asymptotic size α under the null hypothesis.
A similar rationale yields natural tests for the other one-sided problem and for the two-

sided problem: since Le Cam optimal tests of uniformity reject H (n)
0 :

{
P(n)

0

}
in favor of

∪κ<0∪ f ∈F

{
P̆(n)
θθθ,κ, f

}
for large values of −∆̆(n)

θθθ
=p

n
(
pθθθ′Snθθθ−1

)
, the resulting unspecified-θθθ

test, φ(n)− say, will reject the null hypothesis of uniformity at asymptotic level α when

T(n)
− := sup

θθθ∈Sp−1

(
−∆̆(n)

θθθ

)
=−pn

(
pλ̂np −1

)> cp,α,−, (3.18)

where cp,α,− is such that this test has asymptotic size α under the null hypothesis. Finally,

since Le Cam optimal tests of uniformity reject H (n)
0 :

{
P(n)

0

}
in favor of ∪κ6=0∪ f ∈F

{
P̆(n)
θθθ,κ, f

}
for large values of

∣∣∆̆(n)
θθθ

∣∣ = p
n

∣∣pθθθ′Snθθθ−1
∣∣, the resulting unspecified-θθθ test, φ(n)

± say, will
reject the null hypothesis of uniformity at asymptotic level α when

T(n)
± := sup

θθθ∈Sp−1

∣∣∆̆(n)
θθθ

∣∣=p
n max

{∣∣pλ̂n1 −1
∣∣, ∣∣pλ̂np −1

∣∣}> cp,α,±, (3.19)

where cp,α,± is still such that this test has asymptotic size α under the null hypothesis of
uniformity.

Another rationale for considering the above tests is the following. For the sake of
brevity, let us focus on the one-sided problem involving the bipolar alternatives, that is,
the ones associated withκ> 0. A natural idea to obtain an unspecified-θθθ test is to replaceθθθ
in the corresponding optimal specified-θθθ testφ(n)

θθθ+ with an estimator θ̂θθn . Now, under P̆(n)
θθθ,κ, f

,

we know from (1.7) and (1.8) that E[Xn1] = 0 and

E
[
Xn1X′

n1

]= g f (κ)θθθθθθ′+ 1− g f (κ)

p −1

(
Ip −θθθθθθ′) ,

with

g f (κ) := Eθθθ,κ, f

[(
X′

n1θθθ
)2

]
= c̆p,κ, f

∫ 1

−1

(
1− s2)(p−3)/2

s2 f
(
κs2) d s.

It is easy to check that, for any f ∈ F , the function κ 7→ g f (κ) is differentiable at 0, with

derivative g ′
f (0) = Var(n)

0

[(
X′

n1θθθ
)2

]
> 0, where Var(n)

0 still denotes variance under P(n)
0 . Con-

sequently, for κ > 0 small, we have g f (κ) > g f (0) = 1/p, so that θθθ is, up to an unim-
portant sign (recall that only the pair

{±θθθ} is identifiable), the leading unit eigenvector
of E

[
Xn1X′

n1

]
(for many functions f , including the Watson one f (z) = exp(z), this remains

true for any κ > 0). Therefore, a moment estimator of θθθ is the leading eigenvector θ̂θθn

of Sn = 1
n

∑n
i=1 Xni X′

ni . Note that in the Watson parametric submodel
{

P̆(n)
θθθ,κ,exp

: κ> 0
}

, this

estimator θ̂θθn is also the MLE of θθθ. The resulting test then rejects the null hypothesis of
uniformity for large values of

∆̆(n)

θ̂θθn
:=p

n
(
pθ̂θθ

′
nSnθ̂θθn −1

)
= T(n)

+ ,

hence coincides with the test φ(n)
+ in (3.17). A similar reasoning for the other one-sided

problem leads to the test φ(n)− .
The critical values in (3.17)–(3.19) above can of course be obtained from the asymp-

totic distribution of the corresponding test statistics under the null hypothesis. For p = 3,
the asymptotic null distributions of T(n)

+ and T(n)− were obtained in [Anderson and Stephens,
1972], where the corresponding one-sided tests φ(n)

+ and φ(n)− were first proposed. We ex-
tend their result to the two-sided test statistic T(n)

± and, more importantly, to the non-null
case. The key to do so is the following result.
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Theorem 3.4.1. Fix p ∈ {2,3, . . .} and f ∈F .
Let Z be a p ×p random matrix such that vecZ ∼Np2

(
0,ΓΓΓp

)
, with

ΓΓΓp = p

p +2

(
Ip2 +Kp

)
− 2

p +2
Jp .

Then,

(i) under P(n)
0 , (p

n
(
pλ̂n1 −1

)
p

n
(
pλ̂np −1

)) D→
(

Lmax
p

Lmin
p

)
,

where Lp,max (resp., Lp,min) is the largest (resp., smallest) eigenvalue of Z;

(ii) under P̆(n)
θθθ,κn , f

, where κn = τn p/
p

n involves a real sequence (τn) converging to τ,(p
n

(
pλ̂n1 −1

)
p

n
(
pλ̂np −1

)) D→
(

Lmax
p,τ

Lmin
p,τ

)
,

where Lmax
p,τ (resp., Lmin

p,τ ) is the largest (resp., smallest) eigenvalue of Zτ := Z+ 2τ
p+2 Wτ,

with

Wτ :=
{

diag
(
p −1,−1, . . . ,−1

)
for τ≥ 0,

diag
(−1, . . . ,−1, p −1

)
for τ< 0.

Sketch of the proof. The complete proof of this theorem can be found in Section 3.7.7.
The multivariate central limit theorem yields that under P(n)

0 ,

p
n vec

(
Sn − 1

p
Ip

)
D→Np2

(
0,

1

p2
ΓΓΓp

)
.

Theorem 3.2.1 and Le Cam’s Third Lemma imply that under P̆(n)
θθθ,κn , f

, where κn = τn p/
p

n

is such that τn → τ,
p

n vec(Sn −ΣΣΣn)
D→Np2

(
0,

1

p2
ΓΓΓp

)
, (3.20)

for a matrixΣΣΣn defined in the proof. Starting with τ≥ 0 (the proof is similar for τ< 0), the
eigenvalues ofΣΣΣn are λn1 > λn2 = . . . = λnp and ifΛΛΛn := diag

(
λn1,λn2, . . . ,λnp

)
, there exists

a p ×p orthogonal matrix Gp such thatΣΣΣn = GpΛΛΛnG′
p . Defining

ξni :=p
np(λ̂ni −λni ),

ξn1 is the largest eigenvalue of Zn +diag(0,−vτ, . . . ,−vτ), where Zn :=p
npG′

p (Sn −ΣΣΣn)Gp

and vτ := 2pτ/(p +2), and ξnp is the smallest eigenvalue of Zn +diag(vτ,0, . . . ,0).

From (3.20), vec Zn
D→ vec Z so that

(
ξn1,ξnp

)′ D→ (
ξ1,ξp

)′ with ξ1 (resp. ξp ) being the
largest (resp. smallest) eigenvalue of Z+diag(0,−vτ, . . . ,−vτ) (resp. Z+diag(vτ,0, . . . ,0)).

This implies that(p
n

(
pλ̂n1 −1

)
p

n
(
pλ̂np −1

))= (
ξn1

ξnp

)
+ 2τ

p +2

(
p −1
−1

)
D→

(
ξ1

ξp

)
+ 2τ

p +2

(
p −1
−1

)
=:

(
η1

ηp

)
,

where η1 is the largest eigenvalue of

Z+diag(0,−vτ, . . . ,−vτ)+ 2(p −1)τ

p +2
Ip = Z+ 2τ

p +2
diag

(
p −1,−1, . . . ,−1

)
.

Similarly, ηp is the smallest eigenvalue of the same matrix, Z+ 2τ
p+2 diag

(
p −1,−1, . . . ,−1

)
.
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A direct consequence of Theorem 3.4.1(i) is that simulations can be used to obtain
arbitrarily precise estimates of the asymptotic critical values needed to implement the
testsφ(n)

+ ,φ(n)− andφ(n)
± . For instance, the testφ(n)

+ will reject the null hypothesis of unifor-
mity at asymptotic level α whenever

T(n)
+ =p

n
(
pλ̂n1 −1

)> ĉ(m)
p,α,+,

where ĉ(m)
p,α,+ denotes the upper α-quantile of m independent realizations of the largest

eigenvalue of Z. Interestingly, the following corollary shows that simulations can actually
be avoided in dimensions p = 2 and p = 3, as the asymptotic null distribution of T(n)

+ , T(n)−
and T(n)

± can be explicitly determined for these values of p (the result for T(n)
+ and T(n)− in

dimension p = 3 in (3.21) below agrees with the one from [Anderson and Stephens, 1972]).

Corollary 3.4.2.

(i) Under the null hypothesis of uniformity over S1, the test statistics T(n)
+ , T(n)− , and T(n)

±
converge weakly to Lmax

2 , where Lmax
2 has cumulative distribution function

` 7→ (
1−exp

(−`2)) I{`>0};

(ii) under the null hypothesis of uniformity over S2, the test statistics T(n)
+ and T(n)− con-

verge weakly to Lmax
3 , where Lmax

3 has cumulative distribution function

` 7→
{
Φ

(p
5`

)
+Φ

(p
5`
2

)
+3Φ′′

(p
5`
2

)
−1

}
I{`>0}, (3.21)

whereas the test statistic T(n)
± converges weakly to L3 := max

(
Lmax

3 ,−Lmin
3

)
, where L3

has cumulative distribution function

` 7→
{

2Φ
(p

5`
2

)
+6Φ′′

(p
5`
2

)
−2

p
3Φ′′

(p
5`p
3

)
−1

}
I{`>0} (3.22)

(here, Φ′′ is the second derivative of the standard normal distribution function Φ).

Sketch of the proof. The complete proof of this theorem can be found in Section 3.7.8.
Define

`̀̀(p) =
(
`

(p)
1 , . . . ,`(p)

p

)′
,

where `(p)
1 ≥ . . . ≥ `

(p)
p are the eigenvalues of Z such that vecZ ∼ Np2

(
0,ΓΓΓp

)
. Since tr[Z] =

0 almost surely, vechZ does not admit a density and the sum of the eigenvalues of Z is
almost surely zero and thus they do not admit a joint density over Rp .

We consider a sequence of p×p random matrices Zδk , k = 1,2, . . ., with δk > 0 converg-
ing to zero as k goes to infinity, and such that vecZδ ∼Np2

(
0,ΓΓΓp,δ

)
, with

ΓΓΓp,δ :=ΓΓΓp + δ

p +2
Jp .

As Zδk

D→ Z when k →∞, denoting `(p)
1δ ≥ . . . ≥ `(p)

pδ the eigenvalues of Zδ,

`̀̀
(p)
δk

=
(
`

(p)
1δk

, . . . ,`(p)
pδk

)′ D→ `̀̀(p) =
(
`

(p)
1 , . . . ,`(p)

p

)′
.

We start by computing the density of vech Zδ for any δ> 0 then that of Zδ and finally that

of `̀̀(p)
δ

.
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When p = 2, marginalisation yields the density of `(2)
1δ and taking the limit, we get the

one of `(2)
1 , which is the asymptotic distribution of T(n)

+ . As λ̂n2 = 1− λ̂n1, T(n)
+ = T(n)− = T(n)

±
almost surely.

When p = 3, marginalisation yields the density of
(
`(3)

1δ ,`(3)
3δ

)
and taking the limit, we get

the one of
(
`(3)

1 ,`(3)
3

)
. Integrating again, we obtain the density of `(3)

1 , which is the asymp-

totic distribution of T(n)
+ and T(n)− (see the discussion below). Finally, the asymptotic result

for T(n)
± stems from computing the cumulative distribution function of max

(
`(3)

1 ,−`(3)
3

)
.

Writing λ` (A) for the `th largest eigenvalue of the p×p matrix A, Theorem 3.4.1 entails
that, under the null hypothesis,

T(n)
+

D→ Lmax
p = λ1 (Z)

D= λ1 (−Z) =−λp (Z) =−Lmin
p

D← T(n)
− .

This shows that, for any dimension p, the test statistics T(n)
+ and T(n)− share the same

weak limit under the null hypothesis, which is confirmed in dimensions p = 2,3 by Corol-
lary 3.4.2. Maybe surprisingly, this corollary further implies that, for p = 2, the two-sided
test statistic T(n)

± has the same asymptotic null distribution as T(n)
+ and T(n)− .

To check the validity of Theorem 3.4.1 and Corollary 3.4.2, we conducted the following
numerical exercises in dimensions p = 3 and p = 10. We generated 5000 mutually inde-
pendent random samples of size n = 2000 (for p = 3) and n = 10000 (for p = 10) from the
Watson distribution with location θθθ = (1,0, . . . ,0)′ ∈ Rp and concentration κn = τp/

p
n,

for τ = −4,−3,0,3,4. Figure 3.3 plots kernel density estimates of the resulting values
of T(n)

+ , T(n)− and T(n)
± , along with the densities of the corresponding asymptotic distri-

butions; for p = 3 and τ = 0, these densities are those associated with the distribution
functions in (3.21)–(3.22), whereas, in all other cases, they are kernel density estimates

obtained from 106 independent realizations of Lmax
p,τ , −Lmin

p,τ , and max
(
Lmax

p,τ ,−Lmin
p,τ

)
, re-

spectively; see Theorem 3.4.1. Clearly, the results support our asymptotic findings. It is
seen that the one-sided test φ(n)

+ not only shows power against the bipolar alternatives it
is designed for (those associated with τ> 0) but also against girdle-type ones (those asso-
ciated with τ< 0), which is actually desirable. The same can be said about the one-sided
test φ(n)− , but each of these tests, of course, shows higher powers against the alternatives
it was designed for. In contrast, the two-sided test φ(n)

± shows a symmetric power pattern
for positive and negative values of τ.
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Figure 3.3 – See Section 3.4 for details.
Left: Plots of the kernel density estimates (solid curves) of (top) T(n)

+ = p
n

(
pλ̂n1 −1

)
, (middle)

T(n)− =−pn
(
pλ̂np −1

)
and (bottom) T(n)

± = max
(
T(n)
+ ,T(n)−

)
, obtained from 5000 independent ran-

dom samples of size n = 2000 from the Watson distribution with location θθθ= (1,0, . . . ,0)′ ∈Rp and
concentration κ = τp/

p
n, with τ = −4,−3,0,3,4 and with p = 3; for τ = 0, histograms of the cor-

responding test statistics are shown. The densities of the corresponding asymptotic distributions
are also plotted (dashed curves).
Right: The corresponding results for p = 10 and n = 10000.
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3.5 Finite-sample comparisons

In this section, we study the finite-sample powers of the Bingham test φ(n)
Bing and of

the test φ(n)
+ (we could similarly consider the tests φ(n)− and φ(n)

± ), and we compare them

with those of the optimal specified-θθθ test φ(n)
θθθ+ . Our asymptotic results further allow us

to complement these finite-sample comparisons with comparisons of the corresponding
asymptotic powers.

We conducted the following Monte Carlo experiment. For any combination (n, p) of
sample size n ∈ {200,20000} and dimension p ∈ {3,10}, we generated collections of 2000
independent random samples of size n from the Watson distribution on Sp−1 with loca-
tion θθθ = (1,0, . . . ,0)′ ∈ Rp and concentration κn = τ`p/

p
n, with τ` = 0.8`, ` = 0,1, . . . ,5.

The value `= 0 corresponds to the null hypothesis of uniformity, whereas `= 1, . . . ,5 pro-
vide increasingly severe bipolar alternatives. In each sample, we performed three tests at
asymptotic level α = 5%, namely the specified-θθθ test φ(n)

θθθ+ in (3.6), the Bingham test φ(n)
Bing

in (3.14), and the test φ(n)
+ in (3.17); for p = 3, the asymptotic critical value for φ(n)

+ was
obtained from Corollary 3.4.2(ii), whereas, for p = 10, an approximation of the corre-
sponding critical value was obtained from 10000 independent realizations of Lmax

p in The-
orem 3.4.1.

Figure 3.4 shows the resulting empirical powers along with their theoretical asymp-
totic counterparts (for any given p and τ`, the asymptotic power of φ(n)

+ was obtained
from 10000 independent copies of the random variable Lmax

p,τ` in Theorem 3.4.1). The re-
sults show that, as expected, the optimal specified-θθθ test outperforms both unspecified-θθθ
tests. The test φ(n)

+ dominates the Bingham test φ(n)
Bing and this dominance, quite intu-

itively, increases with the dimension p. Clearly, rejection frequencies agree very well with
our asymptotic results for large sample sizes.
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Figure 3.4 – Rejection frequencies (solid curves) of three axial tests of uniformity over Sp−1 ob-
tained from 2000 mutually independent random samples of size n from the Watson distribution
with location θθθ = (1,0, . . . ,0)′ ∈ Rp and concentration κ = τ`p/

p
n, with τ0 = 0 (null hypothesis of

uniformity) and τ` = 0.8` for `= 1,2, . . . ,5 (increasingly severe bipolar alternatives). The tests con-
sidered are the test φ(n)

θθθ+ in (3.6), the Bingham test φ(n)
Bing in (3.14), and the test φ(n)

+ in (3.17). The
corresponding asymptotic powers (dashed curves) are also provided; see Section 3.5 for details.

61



3.6 Applications

3.6.1 Testing for sphericity

Since the seminal paper [Ledoit and Wolf, 2002], one of the most widely considered
testing problems in high-dimensional statistics is the problem of testing for sphericity. A
possible approach to test for sphericity about a specified centre (without loss of general-
ity, the origin ofRp ) is to perform a test of uniformity on the sphere Sp−1 on “spatial signs",
that is, on the observations projected on Sp−1; see, among others, [Cai et al., 2013], where
this is used in a possibly high-dimensional setup, and [Cuesta-Albertos et al., 2009], where
it is argued that “in most practical cases the violations of sphericity will arise from the non-
fulfillment of uniformity on the unit sphere for projected data". This is particularly true in
the high-dimensional case, since the concentration-of-measure phenomenon there im-
plies that information lies much more in the directions of the observations from the origin
than in their distances from the origin (incidentally, note that [Juan and Prieto, 2001] also
invoked the same argument to adopt a directional approach for outlier detection in high
dimensions).

As shown in Chapter 2, the Rayleigh test will show power against skewed rotationally
symmetric distributions on the sphere (skewness arises from the monotonicity of the cor-
responding nuisance f ) and it will be blind to any non-spherical distribution in Rp whose
projection on the sphere charges antipodal regions equally. In particular, it will show no
power against elliptical alternatives, hence also against spiked alternatives (that is, against
alternatives associated with scatter matrices of the formΣΣΣ=σ(Ip+λββββββ′), withσ,λ> 0 and
βββ ∈ Sp−1). On the contrary, the Bingham test is designed to detect elliptical or spiked al-
ternatives, like the Gaussian sphericity test (φ(n)

N
, say) from [John, 1972], shown to be valid

in high-dimensions in [Ledoit and Wolf, 2002].
To illustrate these antagonistic power behaviours, we performed the following simu-

lation exercise with n = p = 100 involving the low-dimensional Rayleigh, φ(n)
Ray, and Bing-

ham, φ(n)
Bing, tests; as mentioned in the introduction, they are HD-robust as defined in

Section 2 in [Paindaveine and Verdebout, 2016], meaning that their low-dimensional ver-
sions do not need be corrected to remain valid in high dimensions. They are compared to
the Gaussian sphericity test φ(n)

N
in its version to test for sphericity about the origin of Rp

and the packing/minimum angle test (φ(n)
CFJ, say) from [Cai et al., 2013]. Since n = p in this

simulation, the asymptotic regime chosen for the latter test is the sub-exponential case.
For ` = 0,1,2,3,4 and n = p = 100, we generated 5,000 p-dimensional independent

samples Z(1)
i ;` , i = 1, . . . ,n, and Z(2)

i ;` , i = 1, . . . ,n, from two different alternatives to sphericity :

(i) Z(1)
i ;` , i = 1, . . . ,n form a random sample from the p-variate skew-normal distribution

with location vector 0, scatter matrix Ip and skewness vector 1
10 (`, . . . ,`)′ ∈ Rp ; see

[Azzalini and Capitanio, 1999];

(ii) Z(2)
i ;` , i = 1, . . . ,n form a random sample from the p-variate normal distribution with

mean 0 and covariance matrix Ip +`e1e′1, with e1 = (1,0, . . . ,0)′ ∈Rp .

For both (i)-(ii), ` = 0 is associated with the null of sphericity about the origin of Rp ,
whereas `= 1,2,3,4 provide increasingly severe alternatives. Figure 3.5 plots the resulting
empirical powers of the four tests mentioned above, all performed at nominal level 5%.
Results confirm that the Rayleigh testφ(n)

Ray performs quite well under alternatives of type (i)

but shows no power against alternatives of type (ii), whereas the tests φ(n)
N

and φ(n)
Bing do

the exact opposite. The packing test φ(n)
CFJ does not detect skew-normal alternatives and
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performs poorly against elliptical/spiked alternatives. In practice, thus, by comparing
rejection decisions of several uniformity tests, practitioners are offered some insight on
what type of deviation from sphericity they are likely to be facing.
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Figure 3.5 – Left: Rejection frequencies, under the null of sphericity in Rp (` = 0) and increas-
ingly severe skew-normal alternatives (`= 1,2,3,4), of the Rayleigh test φ(n)

Ray (green), the Bingham

test φ(n)
Bing (orange), the Gaussian test φ(n)

N
(red) and the packing test φ(n)

CFJ (blue)
Right: The corresponding rejection frequencies under some p-variate spiked alternatives.
In both cases, the dimension p and the sample size n are equal to 100, the nominal level is 5%, and
the number of replications is 10,000; see Section 3.6.1 for details.

3.6.2 Comparison of three uniformity tests on the sphere

In order to compare the three high-dimensional tests of uniformity on the sphere at
hand, for n = 30,100,400 and p = n, we generated 2,500 p-dimensional independent sam-
ples Z(`)

i , i = 1, . . . ,n, `= 1, . . . ,4, from four different distributions:

(i) the components of Z(1)
i follow independently the uniform distribution on [−0.9,1].

(ii) the components of Z(2)
i follow the standard normal distribution with correlation 0.1;

(iii) the Z(3)
i ’s have an FvML distribution on Sp−1 with location θθθ = (1,0, . . . ,0)′ ∈ Rp and

concentration κ(3) = 2p3/4
n /

p
n;

(iv) the Z(4)
i ’s have a Watson distribution on Sp−1 with location θθθ= (1,0, . . . ,0)′ ∈ Rp and

concentration κ(4) = p3/2
n /(2

p
n);

We then computed {
X(`)

i = Z(`)
i /‖Z(`)

i ‖ for `= 1,2,

X(`)
i = Z(`)

i for `= 3,4,

and applied the Rayleigh, Bingham and CFJ tests to the X(`)
i ’s.
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p = n Rayleigh Bingham CFJ
30 0.215 0.053 0.108

100 0.998 0.094 0.103
400 1 1 0.122

(a) Case (i)

p = n Rayleigh Bingham CFJ
30 0.062 0.722 0.213

100 0.091 1 0.979
400 0.143 1 1

(b) Case (ii)

p = n Rayleigh Bingham CFJ
30 0.694 0.087 0.092

100 0.784 0.064 0.059
400 0.846 0.054 0.054

(c) Case (iii)

p = n Rayleigh Bingham CFJ
30 0.069 0.894 0.231

100 0.074 1 0.508
400 0.078 1 0.921

(d) Case (iv)

Figure 3.6 – Powers of three tests of uniformity in different cases described in Section 3.6.2

When the data are not axial, like in Cases (i) and (iii), the Rayleigh test has the greatest
power for all values of n = p and the Bingham and CFJ test are not very efficient (even if,
surprisingly, in Case (i), the power of the Bingham test leaps from 9.4% when n = 100 to 1
when n = 400). The Bingham test can detect FvML distributions but the rate chosen here,
κn ∼ p3/4

n /
p

n, is below its detection threshold, κn ∼ p3/4
n /n1/4). In Cases (ii) and (iv), the

data are axial and as expected, it is Bingham’s playground. The CFJ test fares also quite
well, especially as the dimension and the number of points increase. The Rayleigh test
unfortunately sees nothing.

3.6.3 Yeast data set

Finally, we apply the three tests of uniformity on the sphere to a real data example.
We consider the data set analyzed in [Eisen et al., 1998]: they conducted a cluster analysis
of 2467 genes from a yeast, based on their expression measured at different times during
several experiments (79 in total), and they identified ten clusters. We restrict to a sub-
sample of arbitrarily 100 genes from three different clusters and we want the Rayleigh and
Bingham tests to detect their presence. The data then take the form of a matrix Z = (Zi j ),
where Zi j is the j th expression value ( j = 1, . . . , p = 79) of the i th gene (i = 1, . . . ,n = 100)
(even though n > p, the present data may be considered high-dimensional since the small
value of n/p prevents relying on fixed-p asymptotic results). After imputing missing data
(by replacing any missing entry in Z with the sample average of available measurements
on the same variable), we standardize them to obtain data on Sp−2. Indeed, as explained
in Section 2 in [Dortet-Bernadet and Wicker, 2007], if n points in Rp , Z1, . . . ,Zn , are stan-
dardised to Z̃1, . . . , Z̃n so that

p∑
j=1

Z̃i j = 0 and
p∑

j=1
Z̃2

i j = 1,

for all i = 1, . . . ,n, then the Z̃i ’s lie at the intersection of a plane of dimension p −1 with
the unit sphere of Rp−1. Therefore, to each sample Z1, . . . ,Zn in Rp corresponds a sample
X1, . . . ,Xn on Sp−2. If clustering uses as a similarity index of two data points the correlation
of their coordinates, this transformation does not affect this index and identifying clusters
on Sp−2 will prove the existence of clusters in the original data in Rp . It can be seen in Fig-
ure 3.7: the data are projected along the two principal components and the three clusters
in Rp also appear in Sp−2.
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Figure 3.7

We performed the Rayleigh testφ(n)
Ray, the Bingham testφ(n)

Bing and the packing testφ(n)
CFJ

on the Xi ’s and they all reject uniformity with p-values so small that the software R con-
siders them equal to 0 (the test statistics have very large absolute values, far larger than
when the n points are randomly chosen among the 2467 genes).

As a comparison, if the Zi ’s are iid normal with mean 0 and covariance matrix Ip , the
p-values of the three tests are given in Figure 3.8. They show that no test rejects uniformity
on the sphere and that, as we knew, there is no cluster in the original data.

Rayleigh test Bingham test CFJ test
0.616 0.173 0.147

Figure 3.8 – p-values for three uniformity tests if the original data in Rp are multivariate standard
normal

3.7 Proofs

3.7.1 Preliminary lemma

Lemma 3.7.1. Let g : R→ R be twice differentiable at 0. Let
(
pn

)
be a sequence of positive

integers diverging to ∞ and (κn) be a real sequence that is o
(
pn

)
. Then,

Rn
(
g
)

:= cpn

∫ 1

−1

(
1− s2)(pn−3)/2

g
(
κn s2)d s = g (0)+ κn

pn
g ′ (0)+ 3κ2

n

2pn
(
pn +2

)g ′′ (0)+o

(
κ2

n

p2
n

)

as n →∞, where we let cp :=
(∫ 1

−1

(
1− s2

)(p−3)/2
d s

)−1
.

Proof of Lemma 3.7.1. We know from (1.5) and (1.6) that

cpn

∫ 1

−1
s2 (

1− s2)(pn−3)/2
d s = 1

pn
, (3.23)

and

cpn

∫ 1

−1
s4 (

1− s2)(pn−3)/2
d s = 3

pn
(
pn +2

) · (3.24)
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From (3.23), we can write

Rn
(
g
)− g (0)− κn

pn
g ′ (0) = cpn

∫ 1

−1

(
1− s2)(pn−3)/2 (

g
(
κn s2)− g (0)−κn s2g ′ (0)

)
d s.

Note that we can without any loss of generality assume that (κn) is a sequence inR0, which
allows us to perform the change of variables t = |κn |1/2s. Doing so and using (3.23)–(3.24)
then provides (throughout, sκn denotes the sign of κn)

Rn
(
g
)− g (0)− κn

pn
g ′ (0) = 3κ2

n

pn
(
pn +2

) ∫ ∞

−∞
hn (t )

(
g

(
sκn t 2

)− g (0)− sκn t 2g ′ (0)

t 4

)
d t ,

or, equivalently,

Rn
(
g
)− g (0)− κn

pn
g ′ (0)− 3κ2

n
2pn(pn+2) g ′′ (0)

3κ2
n

pn(pn+2)

=
∫ ∞

−∞
hn (t )

(
g

(
sκn t 2

)− g (0)− sκn t 2g ′ (0)

t 4

)
d t − 1

2
g ′′ (0) , (3.25)

where hn is defined through

t 7→ hn (t ) =
t 4

(
1− t 2

|κn |
)(pn−3)/2

I{|t |≤p|κn |}∫ ∞
−∞ t 4

(
1− t 2

|κn |
)(pn−3)/2

I{|t |≤p|κn |} d t
·

It can be checked that, since κn = o
(
pn

)
, the sequence (hn) is an approximate δ-sequence

(see (1.157) in [Arfken et al., 2013]), in the sense that
∫ ∞
−∞ hn (t ) d t = 1 for any n and∫ ε

−εhn (t ) d t → 1 for any ε> 0. Hence,

lim
n→∞

∫ ∞

−∞
hn (t )

(
g

(
sκn t 2

)− g (0)− sκn t 2g ′ (0)

t 4

)
d t = lim

t→0

g
(
sκn t 2

)− g (0)− sκn t 2g ′ (0)

t 4
,

which, by using L’Hôpital’s rule, is equal to

lim
t→0

2sκn t g ′ (sκn t 2
)−2sκn t g ′ (0)

4t 3
= 1

2
lim
t→0

g ′ (sκn t 2
)− g ′ (0)

sκn t 2
= 1

2
g ′′ (0)

Thus, (3.25) yields

Rn
(
g
)− g (0)− κn

pn
g ′ (0)− 3κ2

n

2pn
(
pn +2

)g ′′ (0) = o

(
κ2

n

p2
n

)
,

which establishes the result.

3.7.2 Proof of Theorem 3.1.1

In this proof, all expectations and variances are taken under the null of uniformity P(n)
0

and all stochastic convergences and oP’s are as n →∞ under P(n)
0 .
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Consider the local log-likelihood ratio

Λ̆ΛΛn := log
d P̆(n)

θθθn ,κn , f

dP(n)
0

=
n∑

i=1
log

c̆pn ,κn , f f
(
κn

(
X′

niθθθn
)2

)
cpn

= n

(
log

c̆pn ,κn , f

cpn

+ Ĕn1

)
+

n∑
i=1

(
log f

(
κn

(
X′

niθθθn
)2

)
− Ĕn1

)
=: Ln1 +Ln2.

Throughout, we write ` f ,k := (
log f

)k and Ĕnk := E
[
` f ,k

(
κn

(
X′

niθθθn
)2

)]
. Lemma 3.7.1

readily yields

log
c̆pn ,κn , f

cpn

=− log

(
cpn

∫ 1

−1

(
1− s2)(pn−3)/2

f
(
κn s2) d s

)
=− log

(
1+ κn

pn
+ 3κ2

n

2pn
(
pn +2

) f ′′ (0)+o

(
κ2

n

p2
n

))
=−κn

pn
− 3κ2

n

2pn
(
pn +2

) f ′′ (0)+ κ2
n

2pn
2
+o

(
κ2

n

p2
n

)
. (3.26)

Similarly,

Ĕn1 = cpn

∫ 1

−1

(
1− s2)(pn−3)/2

` f ,1
(
κn s2) d s

= κn

pn
`′f ,1 (0)+ 3κ2

n

2pn
(
pn +2

)`′′f ,1 (0)+o

(
κ2

n

p2
n

)
= κn

pn
+ 3κ2

n

2pn
(
pn +2

) (
f ′′ (0)−1

)+o

(
κ2

n

p2
n

)
. (3.27)

Combining (3.26) and (3.27) provides

Ln1 =
nκ2

n

2pn
2
− 3nκ2

n

2pn
(
pn +2

) +o

(
nκ2

n

p2
n

)
=−nκ2

n

(
pn −1

)
p2

n
(
pn +2

) +o

(
nκ2

n

p2
n

)
.

Turning to Ln2, write

Ln2 =
√

nV̆n

n∑
i=1

W̆ni :=
√

nV̆n

n∑
i=1

log f
(
κn

(
X′

niθθθn
)2

)
− Ĕn1√

nV̆n

,

where we let V̆n := Var
[

log f
(
κn

(
X′

niθθθn
)2

)]
. First note that, since

Ĕn2 = cpn

∫ 1

−1

(
1− s2)(pn−3)/2

` f ,2
(
κn s2) d s

= κn

pn
`′f ,2 (0)+ 3κ2

n

2pn
(
pn +2

)`′′f ,2 (0)+o

(
κ2

n

p2
n

)
= 3κ2

n

pn
(
pn +2

) +o

(
κ2

n

p2
n

)
, (3.28)

we have

nV̆n = n
(
Ĕn2 − Ĕ2

n1

)= 2nκ2
n

(
pn −1

)
pn

2
(
pn +2

) +o

(
nκ2

n

p2
n

)
, (3.29)
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which leads to

Λ̆ΛΛn =−nκ2
n

(
pn −1

)
pn

2
(
pn +2

) +
√√√√2nκ2

n
(
pn −1

)
pn

2
(
pn +2

) +o

(
nκ2

n

p2
n

) n∑
i=1

W̆ni +o

(
nκ2

n

p2
n

)
. (3.30)

Since the W̆ni ’s, i = 1, . . . ,n, are mutually independent with mean zero and variance 1/n,
we obtain that

E
[
Λ̆ΛΛ

2
n

]
= E

[
Λ̆ΛΛn

]2+Var
[
Λ̆ΛΛn

]= n2κ4
n

(
pn −1

)2

pn
4
(
pn +2

)2 +o

(
n2κ4

n

p4
n

)
+ 2nκ2

n

(
pn −1

)
pn

2
(
pn +2

) +o

(
nκ2

n

p2
n

)
. (3.31)

If κn = o
(
pn/

p
n

)
, then (3.31) implies that exp

(
Λ̆ΛΛn

) D→ 1, so that Le Cam’s First Lemma
(see Section 1.2.6) yields that P̆(n)

θθθn ,κn , f
and P(n)

0 are mutually contiguous.

We may therefore assume that κn = τn pn/
p

n, where (τn) is O(1) but not o (1). Then,
(3.30) rewrites

Λ̆ΛΛn =−pn −1

pn +2
τ2

n +
√

2
(
pn −1

)
pn +2

τ2
n +o (1)

n∑
i=1

W̆ni +o (1) . (3.32)

Applying the Cauchy–Schwarz inequality and the Chebychev inequality, then using
Lemma 3.7.1 and (3.29), yields that, for some positive constant C and any ε> 0,

n∑
i=1

E
[

W̆2
ni I{|W̆ni |>ε}

]
≤ n

√
E

[
W̆4

ni

]
P[|W̆ni | > ε]

≤ n

ε

√
E

[
W̆4

ni

]
Var

[
W̆ni

]= 1

ε

√
nE

[
W̆4

ni

]
≤

C
√

nĔn4

εnV̆n
=

C
(

nκn
pn
`′f ,4 (0)+ 3nκ2

n
2pn(pn+2)`

′′
f ,4 (0)+o

(
nκ2

n

p2
n

))1/2

ε
(

2nκ2
n(pn−1)

pn
2(pn+2) +o

(
nκ2

n

p2
n

))
= o (τn)

ε
(

2(pn−1)
pn+2 τ2

n +o
(
τ2

n
)) = o (1) ,

where we have used the fact that `′f ,4 (0) = `′′f ,4 (0) = 0. This shows that
∑n

i=1 W̆ni satis-
fies the classical Lévy–Lindeberg condition, hence is asymptotically standard normal (as
already mentioned, the W̆ni ’s, i = 1, . . . ,n, are mutually independent with mean zero and
variance 1/n). For any subsequence

(
exp

(
Λ̆ΛΛnm

))
converging in distribution, the weak limit

must then be exp(Y), with Y ∼N
(−η,2η

)
, where we let

η :=
{p−1

p+2 limm→∞τ2
nm

in the low-dimensional case(pn = p),

limm→∞τ2
nm

in the high-dimensional case (pn →∞).

Mutual contiguity of P̆(n)
θθθn ,κn , f

and P(n)
0 then follows from the fact that P[exp(Y) = 0] = 0 and

E
[
exp(Y)

]= 1.

�
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3.7.3 Proof of Theorems 3.2.1 and 3.2.2

As in the proof of Theorem 3.1.1, all expectations and variances in this proof are taken
under the null of uniformity P(n)

0 and all stochastic convergences and oP’s are as n →∞
under P(n)

0 .
In the low-dimensional case we will prove that Theorem 3.2.1 is actually true if the

fixed location θθθ is replaced with an n-dependent value θθθn . Define

Γp :=
{2(p−1)

p+2 in the low-dimensional case (pn = p),

2 in the high-dimensional case (pn →∞).

The central limit theorem directly establishes the second part of the result, since

E
[
∆̆(n)
θθθn

]
= 0,

Var
[
∆̆(n)
θθθn

]
= 2

(
pn −1

)
pn +2

.

To prove the first part let
(
pn

)
be a sequence in {2,3, . . .} and κn = τn pn/

p
n, where the

real sequence (τn) is O(1). If (τn) is o (1), then (3.30) implies that Λ̆ΛΛn = oP (1), which proves
the result in this case.

We may thus assume that (τn) is O(1) but not o (1). Equation (3.32) can then be written
as

Λ̆ΛΛn =−τ
2
n

2
Γp +|τn |Γ1/2

p

n∑
i=1

W̆ni +oP (1) ,

where
∑n

i=1 W̆ni is asymptotically standard normal. Since
(
τnΓ

1/2
p

)
is O(1), it is therefore

sufficient to show that

dn := E

[(
∆̆(n)
θθθn

−Γ1/2
p sτn

n∑
i=1

W̆ni

)2]
= o (1) , (3.33)

where sa is the sign of real number a. To prove (3.33), define

M̆n :=
√

nV̆n

(
∆̆θθθn −Γ1/2

p sτn

n∑
i=1

W̆ni

)

=
n∑

i=1

(
pn

√
V̆n

((
X′

niθθθn
)2 − 1

pn

)
−Γ1/2

p sτn

(
log f

(
κn

(
X′

niθθθn
)2

)
− Ĕn1

)
.

) (3.34)

Then using (1.5) and (1.6) and noting that

2
(
pn −1

)
pn +2

=
{
Γp in the low-dimensional case (pn = p),

Γp +o (1) in the high-dimensional case (pn →∞),

we obtain

E
[
M̆2

n

]= nE

[(
pn

√
V̆n

((
X′

n1θθθn
)2 − 1

pn

)
−Γ1/2

p sτn

(
log f

(
κn

(
X′

n1θθθn
)2

)
− Ĕn1

))2]
= (

2Γp +o (1)
)

nV̆n −2npn

√
V̆nΓ

1/2
p sτn E

[((
X′

n1θθθn
)2 − 1

pn

)(
log f

(
κn

(
X′

n1θθθn
)2

)
− Ĕn1

)]
= 2Γp nV̆n −2

√
Γp nV̆n sτn

(p
npn

κn
E

[
g

(
κn

(
X′

n1θθθn
)2

)]
−p

nĔn1

)
+o

(
nV̆n

)
, (3.35)
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where we let g (x) := x log f (x). Lemma 3.7.1 provides

E
[

g
(
κn

(
X′

n1θθθn
)2

)]
= cpn

∫ 1

−1

(
1− s2)(pn−3)/2

g
(
κn s2) d s = 3κ2

n

pn
(
pn +2

) +o

(
κ2

n

p2
n

)
.

Using this jointly with (3.27) and (3.29), it follows from (3.34)–(3.35) that

dn = 2Γp −
2
√
Γp sτn

(
3
p

nκn
pn+2 +o

(p
nκn
pn

)
−

(p
nκn
pn

+ 3
p

nκ2
n

2pn(pn+2)
(

f ′′ (0)−1
)+o

(p
nκ2

n

p2
n

)))
√

2nκ2
n(pn−1)

pn
2(pn+2) +o

(
nκ2

n

p2
n

) +o (1)

= 2Γp − 2
√
Γp sτn

((
Γp +o (1)

)
τn +o (1)

)√(
Γp +o (1)

)
τ2

n +o (1)
+o (1)

= o (1) ,

as was to be shown.
�

3.7.4 Proof of Theorem 3.3.1

The parameter valueϑϑϑn = (
p/

p
n

)1/2
τττn corresponds toθθθn =τττn/‖τττn‖ andκn = p‖τττn‖2/

p
n

in (3.4) (the fixed locationθθθ can be replaced with an n-dependent value θθθn — see proof in
Section 3.7.3) so that

log
d P̆(n)

ϑϑϑn , f

dP(n)
0

= log
d P̆(n)

τττn /‖τττn‖,p‖τττn‖2/
p

n, f

dP(n)
0

= ‖τττn‖2∆̆(n)
τττn /‖τττn‖−

‖τττn‖4

2
Γp +oP (1) (3.36)

under P(n)
0 . Now, since vec(ABC) = (C′⊗A)vec(B), the central sequence in Theorem 3.2.1

rewrites

∆̆(n)
θθθ

= pp
n

n∑
i=1

{(
X′

niθθθ
)2 − 1

p

}
= p

p
nθθθ′

(
Sn − 1

p
Ip

)
θθθ

= p
p

n
(
θθθ⊗θθθ)′ vec

(
Sn − 1

p
Ip

)
= (

vec
(
θθθθθθ′

))′
∆̆∆∆

(n)
(3.37)

and the log-likelihood ratio in (3.36) becomes

log
d P̆(n)

ϑϑϑn , f

dP(n)
0

= (
vec

(
τττnτττ

′
n

))′
∆̆∆∆

(n) − ‖τττn‖4

2
Γp +oP (1)

under P(n)
0 . By using the identities (vecA)′ (vecB) = tr[A′B] and Kp (vecA) = vec

(
A′), straight-

forward calculations yield ‖τττn‖4Γp = (
vec

(
τττnτττ

′
n

))′
ΓΓΓp vec

(
τττnτττ

′
n

)
, which establishes (3.13).

Since the asymptotic normality result readily follows from the multivariate central limit
theorem, the theorem is proved. �

3.7.5 Proof of Proposition 3.3.2

Denoting as E(n)
0 and Var(n)

0 expectation and variance under P(n)
0 , one has (see (3.37))

lim
n→∞E(n)

0

[
∆̆(n)
θθθ
∆̆∆∆

(n)
]
= lim

n→∞E(n)
0

[
∆̆∆∆

(n)
((

vec
(
θθθθθθ′

))′
∆̆∆∆

(n)
)′]

= lim
n→∞Var(n)

0

[
∆̆∆∆

(n)
](
θθθ⊗θθθ)=ΓΓΓp

(
θθθ⊗θθθ) .
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Therefore, Le Cam’s Third Lemma implies that, under P̆(n)
θθθ,κn , f

with κn = τp/
p

n, τ 6= 0, ∆̆∆∆
(n)

is asymptotically normal with mean vector τΓΓΓp
(
θθθ⊗θθθ) and covariance matrix ΓΓΓp , so that,

under the same sequence of hypotheses (see Theorem 1.4.2 in [Muirhead, 1982]),

Qn =
(
∆̆∆∆

(n)
)′
ΓΓΓ−p ∆̆

(n) D→ χ2
dp

(δ) ,

with

δ= τ2 (
θθθ⊗θθθ)′ΓΓΓpΓΓΓ

−
pΓΓΓp

(
θθθ⊗θθθ)= pτ2

p +2

(
2− 2

p

)
= 2

(
p −1

)
τ2

p +2
·

The asymptotic power in (3.16) readily follows. �

3.7.6 Proof of Proposition 3.3.3

The proof of Proposition 3.3.3 requires the following lemma.

Lemma 3.7.2. If X1, . . . ,Xn is a random sample from the uniform distribution over Sp−1,
then

E

[
tr

[
S2

n

](
Sn − 1

p
Ip

)]
= 0.

Proof of Lemma 3.7.2. First note that

tr
[
S2

n

](
Sn − 1

p
Ip

)
= 1

n3

n∑
i , j ,k=1

tr
[

Xi X′
i X j X′

j

](
Xk X′

k −
1

p
Ip

)
= 1

n3

n∑
i , j ,k=1

{(
X′

i X j
)2 Xk X′

k −
1

p

(
X′

i X j
)2 Ip

}
. (3.38)

For i 6= j , we have, irrespective of whether k ∈ {
i , j

}
or not,

E
[(

X′
i X j

)2 Xk X′
k

]
= E

[
E

[(
X′

i X j
)2 Xk X′

k |Xk

]]
= 1

p
E[Xk X′

k ] = 1

p2
Ip = E

[
1

p

(
X′

i X j
)2 Ip

]
,

whereas, for i = j , we trivially have

E
[(

X′
i X j

)2 Xk X′
k

]
= E

[
Xk X′

k

]= 1

p
Ip = E

[
1

p

(
X′

i X j
)2 Ip

]
.

The result thus follows from (3.38).

Proof of Proposition 3.3.3. Theorem 3.2.2 implies that, as n →∞ under P(n)
0 ,

Cov
[
QSt

n ,Λ̆ΛΛn
]= τn√

2dpn

E
[
Qn∆̆θθθn

]+o (1) = np
(
p +2

)
τn

2
√

2dpn

E
[
tr

[
S2

n

]
∆̆θθθn

]+o (1)

= n3/2p2
(
p +2

)
τn

2
√

2dpn

(
θθθn ⊗θθθn

)′ E[
tr

[
S2

n

]
vec

(
Sn − 1

p
Ip

)]
+o (1) , (3.39)

so that Lemma 3.7.2 yields that this covariance is o (1) as n →∞. Since QSt
n is asymptoti-

cally standard normal under P(n)
0 (see (3.2)), Le Cam’s Third Lemma then entails that QSt

n

remains asymptotically standard normal under P̆(n)
θθθn ,κn , f

.
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3.7.7 Proof of Theorem 3.4.1

Using (1.2) and (1.3), the multivariate central limit theorem yields that under P(n)
0 ,

p
n vec

(
Sn − 1

p
Ip

)
D→Np2

(
0,

1

p2
ΓΓΓp

)
.

Now, by using (3.37), we obtain that, under P(n)
0 ,

E

[p
n vec

(
Sn − 1

p
Ip

)
∆̆(n)
θθθ

]
= npE

[
vec

(
Sn − 1

p
Ip

)
vec′

(
Sn − 1

p
Ip

)]
vec

(
θθθθθθ′

)
= p

(
1

p2
ΓΓΓp

)
vec

(
θθθθθθ′

)= 2

p +2
vec

(
θθθθθθ′

)− 2

p
(
p +2

)vec
(
Ip

)
,

so that Le Cam’s Third Lemma shows that, under P̆(n)
θθθ,κn , f

, where κn = τn p/
p

n is based on
a sequence (τn) converging to τ,

p
n vec

(
Sn − 1

p
Ip

)
D→Np2

(
2τ

p +2
vec

(
θθθθθθ′

)− 2τ

p
(
p +2

)vec
(
Ip

)
,

1

p2
ΓΓΓp

)
,

which rewrites p
n vec(Sn −ΣΣΣn)

D→Np2

(
0,

1

p2
ΓΓΓp

)
, (3.40)

where

ΣΣΣn :=
(

1

p
− 2τp

np
(
p +2

))Ip + 2τp
n

(
p +2

)θθθθθθ′
=

(
1

p
+ 2

(
p −1

)
τp

np
(
p +2

))θθθθθθ′+(
1

p
− 2τp

np
(
p +2

))(
Ip −θθθθθθ′) .

We need to consider the cases (a) τ≥ 0 and (b) τ< 0 separately.

(a) ΣΣΣn has eigenvalues

λn1 = 1

p
+ 2

(
p −1

)
τp

np
(
p +2

) and λn2 = . . . = λnp = 1

p
− 2τp

np
(
p +2

) ·
Starting with λ̂n1, we can do the decomposition

p
n

(
pλ̂n1 −1

)=p
np

(
λ̂n1 −λn1

)+p
n

(
pλn1 −1

)=: ξn1 + 2(p −1)τ

p +2
.

LettingΛΛΛn := diag
(
λn1,λn2, . . . ,λnp

)
, there exists a p ×p orthogonal matrix Gp such

thatΣΣΣn = GpΛΛΛnG′
p . Clearly, ξn1 is the largest eigenvalue of

p
np

(
Sn −λn1Ip

)=p
np (Sn −ΣΣΣn)+p

np
(
ΣΣΣn −λn1Ip

)
and therefore of

p
npG′

p (Sn −ΣΣΣn)Gp +p
np(ΛΛΛn −λn1Ip ) =: Zn +diag(0,−vτ, . . . ,−vτ) ,

where

vτ :=p
np

[
2
(
p −1

)
τp

np
(
p +2

) + 2τp
np

(
p +2

)]= 2pτ

p +2
.
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Similarly, ξnp :=p
np

(
λ̂np −λnp

)
is the smallest eigenvalue of

Zn +diag(vτ,0, . . . ,0) .

Note that (3.40) readily implies that vec(Zn) = p
np

(
Gp ⊗Gp

)′ vec(Sn −ΣΣΣn) con-

verges weakly to vec(Z) ∼ Np2

(
0,ΓΓΓp

)
. It readily follows that

(
ξn1,ξnp

)′ D→ (
ξ1,ξp

)′,
where ξ1 is the largest eigenvalue of Z+diag(0,−vτ, . . . ,−vτ) and ξp is the smallest
eigenvalue of Z+diag(vτ,0, . . . ,0). This implies that(p

n
(
pλ̂n1 −1

)
p

n
(
pλ̂np −1

))= (
ξn1

ξnp

)
+ 2τ

p +2

(
p −1
−1

)
D→

(
ξ1

ξp

)
+ 2τ

p +2

(
p −1
−1

)
=:

(
η1

ηp

)
.

Clearly, η1 is the largest eigenvalue of

Z+diag(0,−vτ, . . . ,−vτ)+ 2(p −1)τ

p +2
Ip = Z+ 2τ

p +2
diag

(
p −1,−1, . . . ,−1

)
whereas ηp is the smallest eigenvalue of

Z+diag(vτ,0, . . . ,0)− 2τ

p +2
Ip = Z+ 2τ

p +2
diag

(
p −1,−1, . . . ,−1

)
.

This proves the result for τ≥ 0.

(b) ΣΣΣn has eigenvalues

λn1 = . . . = λn,p−1 = 1

p
− 2τp

np
(
p +2

) and λnp = 1

p
+ 2

(
p −1

)
τp

np
(
p +2

) ·
Starting with λ̂n1, we can decompose as above

p
n

(
pλ̂n1 −1

)=p
np

(
λ̂n1 −λn1

)+p
n

(
pλn1 −1

)=: ξn1 − 2τ

p +2
.

LettingΛΛΛn := diag
(
λn1,λn2, . . . ,λnp

)
, there exists a p ×p orthogonal matrix G̃p such

thatΣΣΣn = G̃pΛΛΛnG̃′
p . Clearly, ξn1 is the largest eigenvalue of

p
np

(
Sn −λn1Ip

)=p
np (Sn −ΣΣΣn)+p

np
(
ΣΣΣn −λn1Ip

)
and therefore of

p
npG̃′

p (Sn −ΣΣΣn)G̃p +p
np(ΛΛΛn −λn1Ip ) =: Z̃n +diag(0, . . . ,0, vτ) ,

where vτ remains the same as in case (a).

Similarly, ξnp :=p
np

(
λ̂np −λnp

)
is the smallest eigenvalue of

Z̃n +diag(−vτ, . . . ,−vτ,0) .

As vec
(
Z̃n

)=p
np

(
G̃p ⊗ G̃p

)′
vec(Sn −ΣΣΣn) also converges weakly to vec(Z) ∼Np2

(
0,ΓΓΓp

)
,

it implies that
(
ξn1,ξnp

)′ D→ (
ξ1,ξp

)′, where ξ1 is the largest eigenvalue of Z+diag(0, . . . ,0, vτ)
and ξp is the smallest eigenvalue of Z+diag(−vτ, . . . ,−vτ,0). Therefore(p

n
(
pλ̂n1 −1

)
p

n
(
pλ̂np −1

))= (
ξn1

ξnp

)
+ 2τ

p +2

( −1
p −1

)
D→

(
ξ1

ξp

)
+ 2τ

p +2

( −1
p −1

)
=:

(
η1

ηp

)
.
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Clearly, η1 is the largest eigenvalue of

Z+diag(0, . . . ,0, vτ)− 2τ

p +2
Ip = Z+ 2τ

p +2
diag

(−1, . . . ,−1, p −1
)

whereas ηp is the smallest eigenvalue of

Z+diag(−vτ, . . . ,−vτ,0)+ 2(p −1)τ

p +2
Ip = Z+ 2τ

p +2
diag

(−1, . . . ,−1, p −1
)

.

This proves the result for τ< 0.

3.7.8 Proof of Corollary 3.4.2

According to Theorem 3.4.1, Lmax
p is equal in distribution to the first marginal of

`̀̀(p) =
(
`

(p)
1 , . . . ,`(p)

p

)′
,

where `(p)
1 ≥ . . . ≥ `

(p)
p are the eigenvalues of Z = (

Zi j
)
, with vecZ ∼ Np2

(
0,ΓΓΓp

)
. Note that

Zi j = Z j i almost surely for any 1 ≤ i < j ≤ p, so vecZ may not have a density with re-

spect to the Lebesgue measure on Rp2
, but vechZ might in principle have a density with

respect to the Lebesgue measure on Rp(p+1)/2. If vechZ indeed has such a density, then
Theorem 13.3.1 of [Anderson, 2003] can be used to obtain the density of `̀̀(p) from that
of vechZ. However, since tr[Z] = (

vecIp
)′

(vecZ) = 0 almost surely, vechZ does not admit

a density and the sum of the eigenvalues `(p)
1 , . . . ,`(p)

p of Z is almost surely zero (and thus
they do not admit a joint density over Rp either).

We solve this issue by considering a sequence of p×p random matrices Zδk , k = 1,2, . . .,
with δk > 0 converging to zero as k goes to infinity, and such that vecZδ ∼ Np2

(
0,ΓΓΓp,δ

)
,

with

ΓΓΓp,δ := p

p +2

(
Ip2 +Kp

)
− 2−δ

p +2
Jp .

Of course, Zδk converges weakly to Z, so that the continuous mapping theorem ensures

that `̀̀(p)
δk

=
(
`

(p)
1δk

, . . . ,`(p)
pδk

)′
(here, `(p)

1δ ≥ . . . ≥ `
(p)
pδ are the eigenvalues of Zδ) also converges

weakly to `̀̀(p) =
(
`

(p)
1 , . . . ,`(p)

p

)′
. Let then Dp be the p-dimensional duplication matrix, that

is such that Dp (vechA) = vecA for any p ×p symmetric matrix A. Write

Wδ := vechZδ = D−
p (vecZδ) ,

where D−
p =

(
D′

p Dp

)−1
D′

p is the Moore–Penrose inverse of Dp . By definition of Zδ, the

random vector Wδ has density

w 7→ hδ (w) = app
δ

exp

(
−1

2
w′

(
D−

p

{
p

p+2

(
Ip2 +Kp

)
− 2−δ

p+2 Jp

}(
D−

p

)′)−1
w

)
,

where

ap :=
(
p +2

)p(p+1)/4

2(p2+3p−2)/4
(
πp

)p(p+1)/4
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is a normalizing constant. By using the identities Kp Dp = Dp and D−
p

(
vecIp

)= D′
p

(
vecIp

)=
vechIp , it is easy to check that

(
D−

p

{
p

p+2

(
Ip2 +Kp

)
− 2−δ

p+2 Jp

}(
D−

p

)′)−1
= p +2

2p
D′

p

1

2

(
Ip2 +Kp

)
+

2−δ
p+2

2p
p+2 −

p(2−δ)
p+2

Jp

Dp

= p +2

2p
D′

p

{
1

2

(
Ip2 +Kp

)
+ 2−δ

δp
Jp

}
Dp .

Using the identities (vecA)′ (vecB) = tr[A′B] and Kp (vecA) = vec
(
A′), the resulting density

for Zδ is therefore

z 7→ f (z) = hδ (vechz)

= app
δ

exp

(
−p +2

4p
(vechz)′ D′

p

{
1

2

(
Ip2 +Kp

)
+ 2−δ

δp
Jp

}
Dp vechz

)
= app

δ
exp

(
−p +2

4p
(vecz)′

{
Ip2 + 2−δ

δp
Jp

}
vecz

)
= app

δ
exp

(
−p +2

4p

{
tr

(
z2)+ 2−δ

δp
(trz)2

})
.

Theorem 13.3.1 from [Anderson, 2003] then implies that `̀̀(p)
δ

=
(
`

(p)
1δ , . . . ,`(p)

pδ

)′
has density

(
`1, . . . ,`p

)′ 7→ bpp
δ

exp

(
−p +2

4p

{(
p∑

j=1
`2

j

)
+ 2−δ

δp

(
p∑

j=1
` j

)2})( ∏
1≤k< j≤p

(
`k −` j

))
I{`1≥...≥`p },

with

bp :=
(
p +2

)p(p+1)/4

2(p2+3p−2)/4pp(p+1)/4 ∏p
j=1Γ

(
j
2

) ·
We now turn to the particular cases (i) p = 2 and (ii) p = 3 considered in the statement

of the corollary.

(i) We infer from above that `̀̀(2)
δ

=
(
`(2)

1δ ,`(2)
2δ

)′
has density (`1,`2)′ 7→I (`1,`2) I{`1≥`2}, with

I (`1,`2) := 1p
2πδ

(`1 −`2)e
− 1

2

{
(`2

1+`2
2)+ 2−δ

2δ (`1+`2)2
}
.

Direct computations allow checking that I (`1,`2) is the derivative of the function

`2 7→
p

2δp
π (2+δ)

e
− 1

2

{
(`2

1+`2
2)+ 2−δ

2δ (`1+`2)2
}
+ 25/2`1

(2+δ)3/2
e− 2`2

1
2+δΦ

(
(2−δ)`1 + (2+δ)`2p

2δ (δ+2)

)
.

It follows that `(2)
1δ has density

`1 7→
∫ `1

−∞
I (`1,`2) d`2

=
[ p

2δp
π (2+δ)

e
− 1

2

{
(`2

1+`2
2)+ 2−δ

2δ (`1+`2)2
}
+ 25/2`1

(2+δ)3/2
e− 2`2

1
2+δΦ

(
(2−δ)`1 + (2+δ)`2p

2δ (δ+2)

)]`1

−∞

=
p

2δp
π (2+δ)

e− 2`2
1
δ + 25/2`1

(2+δ)3/2
e− 2`2

1
2+δΦ

(
4`1p

2δ (δ+2)

)
.
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Taking the limit as δ→ 0, we obtain that `(2)
1

(
D= Lmax

2

)
, hence T(n)

+ asymptotically, has

density `1 7→ 2`1 exp
(−`2

1

)
I{`1>0}.

To prove that T(n)− and T(n)
± have the same asymptotic null distribution as T(n)

+ , note
that Sn has trace one almost surely (a.s.) so its eigenvalues λ̂n`, ` = 1, . . . , p sum up
to one almost surely. For p = 2, it follows that

T(n)
+ =p

n(2λ̂n1 −1)
a.s.= −pn(2λ̂np −1) = T(n)

−

so that T(n)
+ = T(n)− = T(n)

± almost surely, which of course entails that the statistics of
these three tests share the same weak limit, not only under the null hypothesis but
under any sequence of hypotheses.

(ii) For p = 3, the density of `̀̀(3)
δ

=
(
`(3)

1δ ,`(3)
2δ ,`(3)

3δ

)′
is (`1,`2,`3)′ 7→ J (`1,`2,`3) I{`1≥`2≥`3},

with

J (`1,`2,`3) := 125

216π
p
δ

(`1 −`2) (`1 −`3) (`2 −`3)e
− 5

12

{
(`2

1+`2
2+`2

3)+ 2−δ
3δ (`1+`2+`3)2

}
.

Lengthy yet straightforward computations show that J (`1,`2,`3) is the derivative
of the function `3 7→K (`1,`2,`3), with

K (`1,`2,`3) :=

−25
p
δ (`1 −`3)

48π (1+δ)2 (2(2`1 +2`3 −`2)+δ (`1 +`3 −2`2))e
− 5

12

{
(`2

1+`2
2+`2

3)+ 2−δ
3δ (`1+`2+`3)2

}

− 5
p

10(`1 −`3)

288
p
π (1+δ)5/2

{
20

(
2`1

1 +5`1`3 +2`2
3

)−2δ
(
5(`1 −`3)2 −18

)−δ2 (
5(`1 −`3)2 −36

)}
×e− 20(`2

1+`1`3+`2
3)+5δ(`1−`3)2

24(1+δ) Φ

(p
5(2(`1 +`2 +`3)−δ (`1 +`3 −2`2))

6
p
δ (1+δ)

)
.

Therefore,
(
`(3)

1δ ,`(3)
3δ

)′
has density

(`1,`3) 7→
(∫ `1

`3

J (`1,`2,`3) d`2

)
I{`1≥`3} = (K (`1,`1,`3)−K (`1,`3,`3)) I{`1≥`3},

with

K (`1,`1,`3)−K (`1,`3,`3) =

−25
p
δ (`1 −`3)

48π (1+δ)2 {2(`1 +2`3)+δ (`3 −`1)}e
− 5

12

{
(2`2

1+`2
3)+ 2−δ

3δ (2`1+`3)2
}

+25
p
δ (`1 −`3)

48π (1+δ)2 {2(2`1 +`3)+δ (`1 −`3)}e
− 5

12

{
(`2

1+2`2
3)+ 2−δ

3δ (`1+2`3)2
}

− 5
p

10(`1 −`3)

288
p
π (1+δ)5/2

e− 20(`2
1+`1`3+`2

3)+5δ(`1−`3)2

24(1+δ)

×{
20

(
2`1

1 +5`1`3 +2`2
3

)−2δ
(
5(`1 −`3)2 −18

)−δ2 (
5(`1 −`3)2 −36

)}
×

[
Φ

(p
5(2(2`1 +`3)−δ (`3 −`1))

6
p
δ (1+δ)

)
−Φ

(p
5(2(`1 +2`3)−δ (`1 −`3))

6
p
δ (1+δ)

)]
.
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Taking the limit as δ→ 0 shows that the density of
(
`(3)

1 ,`(3)
3

)′
is

M (`1,`3) :=−100
p

10

288
p
π

(`1 −`3)
(
2`2

1 +5`1`3 +2`2
3

)
e− 5(`2

1+`1`3+`2
3)

6 I{−2`1<`3≤−`1/2}.

(3.41)
From Theorem 3.4.1, the density of the asymptotic null distribution of T(n)

+ coin-

cides with the density of `(3)
1

(
D= Lmax

3

)
. After marginalization in (3.41), this last den-

sity is seen to be

`1 7→
{√

5

2π
e− 5`2

1
2 +

√
5

8π
e− 5`2

1
8 + 3

4

√
5

8π

(
5`2

1 −4
)

e− 5`2
1

8

}
I{`1≥0}

=
{

d

d`1
Φ

(p
5`1

)
+ d

d`1
Φ

(p
5`1
2

)
+3

d

d`1
Φ′′

(p
5`1
2

)}
I{`1≥0},

which proves the result for T(n)
+ , hence also for T(n)− (see the discussion below the

corollary: T(n)
+ and T(n)− share the same null weak limit in any dimension p).

Finally, T(n)
± converges weakly to max

(
`(3)

1 ,−`(3)
3

)
. Using (3.41) we get

P
[

max
(
`(3)

1 ,−`(3)
3

)
≤ z

]
= P

[
`(3)

1 ≤ z,`(3)
3 ≥−z

]
=

∫ z/2

0

(∫ −`1/2

−2`1

M (`1,`3)d`3

)
d`1 +

∫ z

z/2

(∫ −`1/2

−z
M (`1,`3)d`3

)
d`1

=
{

2Φ
(p

5`
2

)
+6Φ′′

(p
5`
2

)
−2

p
3Φ′′

(p
5`p
3

)
−1

}
I{`>0}.
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Chapter 4

High-dimensional behaviour of the
Rayleigh and Bingham tests under
general rotationally symmetric
distributions
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In this chapter we conduct a systematic investigation, relying on martingale central
limit theorems, of the high-dimensional non-null behaviour of the Rayleigh and Bingham
tests under a very broad class of rotationally symmetric alternatives. This identifies their
“detection threshold", that discriminates between alternatives to which the tests will be
blind and those under which they will be consistent. It will also reveal whether the Bing-
ham test shows power against more severe alternatives than the contiguous ones in the
axial model.

We start with the Rayleigh test in Section 4.1; then we study the Bingham test which,
unlike the Rayleigh test, shows power under both axial and monotone alternatives. We
therefore apply our general non-null results to describe thoroughly its behaviour in the
semiparametric class of axial alternatives in Section 4.2.2 on the one hand and its non-null
behaviour in the semiparametric class of monotone alternatives in Section 4.2.3 on the
other hand. Its detection threshold and asymptotic power are compared to the Rayleigh
test and Monte Carlo exercices are conducted to confirm our asymptotic findings.

4.1 Asymptotic non-null behaviour of the Rayleigh test

In this section, we derive the asymptotic distribution of the high-dimensional Rayleigh
test under rotationally symmetric distributions that encompass those considered in Chap-
ter 2. Here we do not require that the rotationally symmetric alternatives are monotone
in the sense of Section 1.1.3, nor absolutely continuous with respect to the surface area
measure on the unit sphere, nor that they involve a concentration parameter κ. Yet one
of our objectives is to interpret the results of this section in the light of those obtained in
Chapter 2.

More specifically, we consider as alternatives the sequence of hypotheses P(n)
θθθn ,Fn

(see

Section 1.1.2). Under the null of uniformity P(n)
0 , the test statistic RSt

n in (2.1),

RSt
n := npn‖X̄n‖2 −pn√

2pn
=

√
2pn

n

∑
1≤i< j≤n

X′
ni Xn j ,

has mean zero and variance (n −1)/n(→ 1). Rotationally symmetric alternatives are ex-
pected to have an impact on the asymptotic mean and variance of RSt

n . This is made pre-
cise in the following result.

Proposition 4.1.1. Under P(n)
θθθn ,Fn

,

E
[
RSt

n

]= (n −1)
p

pnp
2

e2
n1

σ2
n := pn ẽ2

n2 +2npne2
n1ẽn2 + f 2

n2 = Var
[
RSt

n

]+o(1),

as n →∞, where the expectations

en` := E
[(

X′
niθθθn

)`] ,

ẽn` := E
[(

X′
niθθθn −en1

)`] ,

fn` := E

[(
1− (

X′
niθθθn

)2
)`/2

]
,

are taken under P(n)
θθθn ,Fn

.
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Proof. See Section 4.3.2.

Under P(n)
0 , en1 = 0 and ẽn2 = en2 = 1/pn , so that Proposition 4.1.1 is compatible with

the null values of E
[
RSt

n

]
and Var

[
RSt

n

]
provided above. Now, parallel to the null case (see

(2.1)), the Rayleigh test statistic, after appropriate standardization, is also asymptotically
standard normal under a broad class of rotationally symmetric alternatives. More pre-
cisely, we have the following result.

Theorem 4.1.2. Let (pn) be a sequence of positive integers diverging to ∞ as n →∞. As-

sume that the sequence
(
P(n)
θθθn ,Fn

)
is such that, as n →∞,

(i) min
(

pn ẽ2
n2

f 2
n2

, ẽn2

ne2
n1

)
= o(1);

(ii) ẽn4

ẽ2
n2

= o(n);

(iii) fn4

f 2
n2

= o(n);

Then, under P(n)
θθθn ,Fn

and as n →∞,

RSt
n −E

[
RSt

n

]
σn

=
√

2pn

nσn

∑
1≤i< j≤n

(
X′

ni Xn j −e2
n1

) D→ N (0,1).

Sketch of the proof. The complete proof of this theorem can be found in Section 4.3.3.
Let Fn` be theσ-algebra generated by Xn1, . . . ,Xn` and En` the conditional expectation

with respect to Fn`. Define

Zn` := En`

[
RSt

n −E
[
RSt

n

]
σn

]
and Dn` := Zn`−Zn,`−1.

We prove through tedious computations that

n∑
`=1

σ2
n` = 1+oP(1) and

n∑
`=1

E
[
D2

n` I{|Dn`|>ε}
]→ 0,

where σ2
n` := En,`−1

[
D2

n`

]
so that by Theorem 1.4.1,

n∑
`=1

Dn` = Znn −Zn,0 =
RSt

n −E
[
RSt

n

]
σn

is asymptotically standard normal.

This result applies under very mild assumptions, that in particular do not impose ab-
solute continuity nor any other regularity conditions. The only structural assumptions
are the conditions (i)-(iii) above, that, in the FvML case, always hold, that is, they hold
without any constraint on the concentration κn nor on the way the dimension pn goes to
infinity with n. The proof of this statement can be found in Appendix B.

Theorem 4.1.2 allows to compute the asymptotic power of the Rayleigh test under ap-
propriate sequences of alternatives. As mentioned above, the null of uniformity H (n)

0
yields en1 = 0 and ẽn2 = 1/pn . Here, we therefore consider “local" departures from unifor-
mity of the form

H (n)
1 :

{
P(n)
θθθn ,Fn

: en1 = 0+νnτ, ẽn2 = 1

pn
+ξnη

}
.
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The following result provides the asymptotic power of the high-dimensional Rayleigh test
in (2.2) under sequences of local alternatives that, as we will show, are intimately related
to those we considered in Sections 2.2-2.3.

Theorem 4.1.3. Let (pn) be a sequence of positive integers diverging to ∞ as n →∞. Let
the sequence (P(n)

θθθn ,Fn
) satisfy the assumptions of Theorem 4.1.2 and be such that

en1 = τ

n1/2p1/4
n

+o

(
1

n1/2p1/4
n

)
and ẽn2 = 1

pn
+o

(
1

pn

)
, (4.1)

for some τ≥ 0. Then, under P(n)
θθθn ,Fn

, the asymptotic power of the high-dimensional Rayleigh

test in (2.2) is given by 1−Φ(
zα−τ2/

p
2
)

.

Proof. See Section 4.3.4.

In order to link these alternatives to those considered earlier, note that, as n → ∞,
under P(n)

θθθn ,κn , f
, with κn = ξn

√
pn/n, where the positive sequence (ξn) is o(

p
n), we have

en1 =
(

cpn

cpn ,κn , f

)−1 cpn

κn

∫ 1

−1

(
1− s2)(pn−3)/2

κn s f (κn s) d s

=
(
1+ κ2

n

2pn
f ′′(0)+o

(
κ2

n

pn

))−1 (
κn

pn
+o

(
κn

pn

))
(4.2)

and

en2 =
(

cpn

cpn ,κn , f

)−1 cpn

κ2
n

∫ 1

−1

(
1− s2)(pn−3)/2

(κn s)2 f (κn s) d s

=
(
1+ κ2

n

2pn
f ′′(0)+o

(
κ2

n

pn

))−1 (
1

pn
+o

(
1

pn

))
, (4.3)

where we used four times Lemma 2.5.1. For the contiguous alternatives in Theorem 2.2.1,
that is for P(n)

θθθn ,κn , f
, with κn = τn

√
pn/n (where (τn) is bounded), (4.2)-(4.3) provide

en1 = τnp
npn

+o

(
1p

npn

)
and ẽn2 = 1

pn
+o

(
1

pn

)
. (4.4)

Theorem 4.1.3 implies that the asymptotic power of the high-dimensional Rayleigh test
under the alternatives (4.4) is equal to α, which confirms that this test is blind to the con-
tiguous alternatives from Theorem 2.2.1 (see Section 2.2).

Now, at least if pn = o(n2) (a constraint that is actually superfluous in the FvML case,
as it can be seen by using the Amos-type bounds provided in Lemma B.0.4), the more
severe alternatives P(n)

θθθn ,κn , f
, with κn = τp3/4

n /
p

n, from Theorem 2.3.2 translate — still in

view of (4.2)-(4.3) — into those in (4.1). This shows that the asymptotic powers of the
high-dimensional Rayleigh test computed in the FvML case via Le Cam’s Third Lemma
(see (2.17)) actually also hold away from the FvML case. Clearly, this further supports the
conjecture from Section 2.3 that, under the assumption that pn = o(n2), Theorem 2.3.2
holds for an essentially arbitrary f .

Now, we conducted the same Monte Carlo study as in Section 2.4 with data from a
beta distribution to check the validity of our results for general rotationally symmetric
distributions. For any (n, p) ∈ C ×C, with C := {30,100,400}, any j ∈ {1,2}, and any ` ∈
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{0,1,2,3,4}, we generated M = 2,500 independent random samples X(`)
i ; j , i = 1, . . . ,n of the

form
X(`)

i ; j i = 1, . . . ,n, j = 1,2, `= 0,1,2,3,4.

The X(`)
i ; j ’s are rotationally symmetric with location θθθ= (1,0, . . . ,0)′ ∈ Rp and are such that,

for all i = 1, . . . ,n, 1
2 (θθθ′X(`)

i ; j +1) is beta with mean e(`)
1; j and variance ẽ2; j = 1/p, where we let

e(`)
1;1 =

0.6`p
np

and e(`)
1;2 =

0.6`

n1/2p1/4

The value `= 0 corresponds to the null hypothesis of uniformity, while `= 1,2,3,4 provide
increasingly severe alternatives. The case j = 1 relates to the contiguous alternatives from
Theorem 2.2.1 and the corresponding (more general) alternatives in (4.4), whereas j = 2 is
associated with the alternatives under which the Rayleigh test shows non-trivial asymp-
totic powers in the high-dimensional setup (see Theorem 2.3.2 and the alternatives (4.1)).

We evaluated the rejection frequencies of

(i) the specified-θθθn test φ(n)
θθθn

in (2.10),

(ii) the high-dimensional Rayleigh test φ(n)
Ray in (2.2),

both conducted at nominal level 5%. Rejection frequencies are plotted in Figure 4.1 as
well as the corresponding asymptotic powers, obtained from (2.11), (2.17), and the fact
that φ(n)

θθθn
is consistent against ( j = 2)-alternatives.

As with FvML samples, rejection frequencies match the corresponding asymptotic
powers, irrespective of the tests and types of alternatives considered.
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Figure 4.1 – Rejection frequencies (dashed) and asymptotic powers (solid), under the null of uni-
formity over the p-dimensional unit sphere (`= 0) and increasingly severe “beta" rotationally sym-
metric alternatives (` = 1,2,3,4), of the specified-θθθn test φ(n)

θθθn
in (2.10) (red/orange) and the high-

dimensional Rayleigh testφ(n)
Ray in (2.2) (light/dark green). Light colors (orange and light green) are

associated with contiguous alternatives, whereas dark colors (red and dark green) correspond to
the more severe alternatives under which the Rayleigh test shows non-trivial asymptotic powers
in high dimensions.
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4.2 Asymptotic non-null behaviour of the Bingham test

4.2.1 General rotationally symmetric alternatives

We now study the non-null asymptotic behaviour of the Bingham test under general
rotationally symmetric alternatives. The following result provides the expectation and
variance of

QSt
n = pn

n

n∑
i< j

i , j=1

{(
X′

ni Xn j
)2 − 1

pn

}

under P(n)
θθθn ,Fn

.

Proposition 4.2.1. Let (pn) be a sequence of positive integers, (θθθn) be a sequence such that
θθθn ∈ Spn−1 for any n, and (Fn) be a sequence of cumulative distribution functions on [−1,1].
Write

en` := en`(Fn) := E
[

u`
n1

]
fn` := fn`(Fn) := E

[
v`n1

]
for the `-th moments of un1 = X′

n1θθθn and vn1 =
√

1−u2
n1 under P(n)

θθθn ,Fn
. Letting gn2 := en2 −

1/pn , we have under P(n)
θθθn ,Fn

that

E
[
QSt

n

]= p2
n(n −1)

2(pn −1)
g 2

n2 (4.5)

and

Var
[
QSt

n

]= (n −1)p2
n

2n

{
e2

n4+
6

pn −1
(en2 −en4)2+ 3 f 2

n4

p2
n −1

−
(

pn

pn −1
g 2

n2+
1

pn

)2
}

+ (n −1)(n −2)p4
n

n(pn −1)2
(en4 −e2

n2)g 2
n2.

(4.6)

Proof. See Section 4.3.5.

Under the null hypothesis of uniformity P(n)
0 , the random variable un1 = X′

n1θθθn is such
that (see Section 1.1.1)

en2 = 1

pn
and en4 = 3

pn(pn +2)
·

Using these values along with the identities fn2 = 1−en2 and fn4 = 1−2en2+en4, Proposi-
tion 4.2.1 shows that E

[
QSt

n

]= 0 and Var
[
QSt

n

]= (n−1)(pn−1)/(n(pn+2)) under P(n)
0 , which

is compatible with the null asymptotic normality result in (3.2). A key step in studying the
non-null asymptotic behaviour of the Bingham test in high dimensions is to extend this
asymptotic normality result to general rotationally symmetric alternatives.

Theorem 4.2.2. Let (pn) be a sequence of positive integers diverging to ∞ and (θθθn) be a
sequence such that θθθn ∈ Spn−1 for any n. Assume that the sequence (Fn) is such that, as
n →∞,

(a) en4 = o(1/pn),

(b) en8 = o(n2/3/p2
n),
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(c) gn2 = O(1/
p

npn).

Then,
QSt

n −E
[
QSt

n

]√
Var

[
QSt

n
] D→N (0,1)

as n →∞ under P(n)
θθθn ,Fn

.

Proof. See proof in Section 4.3.6.

This general asymptotic normality result extends the null one in (3.2), since Proposi-
tion 4.2.1 implies that E

[
QSt

n

] = 0 and Var
[
QSt

n

] = 1+o(1) under P(n)
0 . It is worth pointing

out that, like the result in (3.2), Theorem 4.2.2 in principle does not impose restrictions
on the rate at which pn diverges to infinity with n (some restrictions may arise when con-
sidering some particular alternatives, though; see, e.g., Theorems 4.2.5 and 4.2.7 below).
More importantly, we can now state the main theorem of this section, that describes the
non-null behaviour of the Bingham test statistic under general rotationally symmetric al-
ternatives.

Theorem 4.2.3. Let (pn) be a sequence of positive integers diverging to ∞ and (θθθn) a se-
quence such that θθθn ∈ Spn−1 for any n. Assume that the sequence (Fn) is such that,

(a) en4 = o(1/pn),

(b) en8 = o(n2/3/p2
n).

as n →∞. Then, we have the following:

(i) if (c) gn2 = o(1/
p

npn), then, under P(n)
θθθn ,Fn

, as n →∞,

QSt
n

D→N (0,1);

(ii) if (c) gn2 = ξn/
p

npn with (ξn) → ξ( 6= 0), then, under P(n)
θθθn ,Fn

, as n →∞,

QSt
n

D→N

(
ξ2

2
,1

)
;

(iii) if (c)
p

npn |gn2|→∞, then, for any real number M,

P(n)
θθθn ,Fn

[
QSt

n > M
]→ 1 (4.7)

as n → ∞. Note that (4.7) still holds if (a)–(b) are replaced with the single condi-
tion en4 = o(ng 2

n2), which, in case (iii), is weaker than (a)–(b).

Proof. See Section 4.3.7.

Since gn2 = en2−1/pn = 0 under the null hypothesis of uniformity, |gn2| can be read as
a measure of the severity of the alternatives at hand. In this context, Theorem 4.2.3 states
that the Bingham test is blind to alternatives for which gn2 = ξn/

p
npn with ξn → 0 (Part (i)

of the result) and is consistent under alternatives for which gn2 = ξn/
p

npn with |ξn |→∞
(Part (iii) of the result). Therefore, using the terminology from [Bhattacharya, 2019], the
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“detection threshold" of the Bingham test in high dimensions is associated with alterna-
tives in gn2 = ξn/

p
npn , with ξn → ξ( 6= 0), under which the Bingham test achieves the

non-trivial asymptotic power

lim
n→∞P(n)

θθθn ,Fn

[
QSt

n > zα
]= 1−Φ

(
zα− ξ2

2

)
(4.8)

(Part (ii) of the result). We stress that the results of this section are very general: first, they
do not require that the considered rotationally symmetric distributions admit a density
of a specific form on the sphere, nor even that they admit a density at all. Second, they
do not restrict to axial distributions, that is, they do not assume that Fn is the cumulative
distribution function of a symmetric distribution over [−1,1].

We conducted the following simulation exercise to check the validity of Theorem 4.2.3.
For each n ∈ {100,400,800} and each corresponding dimension pn = bnacwith a ∈ {1

2 , 3
4 ,1, 5

4

}
(leading to 12 combinations of n and pn), we generated M = 2500 independent random
samples of size n from five rotationally symmetric distributions over Spn−1. For each ro-
tationally symmetric distribution, θθθn = (1,0, . . . ,0)′ ∈ Rpn and the cumulative distribution
function of the

(
X′

niθθθn
)2’s is a Beta(αn ,βn) distribution, where the parameters

αn = 1

2
− p2

n gn2

2pn(gn2 −1)+2
and βn = pn −1

2
(4.9)

are based on

(0) gn2 = 0

(i) gn2 = 1/(npn)

(ii)a gn2 = ξ/
p

npn , with ξ= 2

(ii)b gn2 = ξ/
p

npn , with ξ= 3

(iii) gn2 = 1/(n1/4ppn).

As the notation suggests,αn andβn are such that gn2 in (4.9) is equal to en2−1/pn , where en2

is the second moment associated with Fn , so that this quantity gn2 coincides with the one
in Theorem 4.2.3. Case (0) yields the null hypothesis of uniformity over Spn−1, whereas
cases (i)–(iii) provide increasingly severe alternatives.

For each of the 12 combinations (n, pn) and each of these five cases, Figure 4.2 then
reports kernel density estimates (obtained from the R command density with default
parameter values) of the resulting M = 2500 values of the Bingham statistic Qst

n (as well as
raw histograms in case (ii)a). The figure also provides the densities of the corresponding
asymptotic distributions in cases (0)–(ii)b , that are obtained from Theorem 4.2.3(i)–(ii).

Clearly, empirical results are in perfect agreement with the theory, not only for the
matching between finite-sample and asymptotic distributions in cases (0)–(ii)b but also
for the consistency behaviour in case (iii) (since kernel density estimates in this case shift
to infinity as expected).

4.2.2 Axial alternatives

We consider again axial alternatives to uniformity studied in Chapter 3. As Proposi-
tion 3.3.3 showed, the Bingham test is blind to alternatives of the form κn = τn pn/

p
n,
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Figure 4.2 – For any n ∈ {100,400,800} and any corresponding dimensions p = pn = bnac with a ∈{1
2 , 3

4 ,1, 5
4

}
, kernel estimates of the density of QSt

n (solid lines) obtained from M = 2500 independent
samples from the rotationally symmetric distributions associated with θθθn = (1,0, . . . ,0)′ ∈ Rp and
the cumulative distribution functions Fn associated with (0)–(iii) in page 85. In case (ii)a , raw
histograms are provided. In cases (0)–(ii)b , the corresponding asymptotic densities, obtained from
Theorem 4.2.3(i)–(ii), are also plotted (dashed line).
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with (τn) → τ. By applying the results of Section 4.2.1 we can identify the axial alterna-
tives that can be detected by the Bingham test in high dimensions. In order to do so, we
need to study the asymptotic behaviour of en2, en4 and en8 in the semiparametric model
at hand. This is the topic of the following proposition.

Proposition 4.2.4. Let (pn) be a sequence of positive integers diverging to ∞, (θθθn) a se-
quence such that θθθn ∈ Spn−1 for any n, and (κn) a real sequence that is o

(
pn

)
as n → ∞.

Fix f ∈F . Then, under P̆(n)
θθθn ,κn , f

,

en2 = 1

pn
+ 2κn

p2
n

+o

(
κn

p2
n

)
and en4 = 3

p2
n
+o

(
1

p2
n

)
as n →∞, so that en8 = O

(
1/p2

n

)
as n →∞.

Proof. See Section 4.3.8.

The following result is then a corollary of Theorem 4.2.3.

Theorem 4.2.5. Let (pn) be a sequence of positive integers diverging to ∞ and (θθθn) a se-
quence such that θθθn ∈ Spn−1 for any n. Fix f ∈F . Then, we have the following:

(i) if κn = o
(
p3/2

n /
p

n
)

and pn = O(n) (or more generally, if κn = o
(
p3/2

n /
p

n
)

and κn =
o

(
pn

)
), then, under P̆(n)

θθθn ,κn , f
, as n →∞,

QSt
n

D→N (0,1); (4.10)

(ii) if κn = τn p3/2
n /

p
n with (τn) → τ(6= 0) and pn = o(n), then, under P̆(n)

θθθn ,κn , f
, as n →∞,

QSt
n

D→N (2τ2,1); (4.11)

(iii) if
p

n|κn |/p3/2
n →∞ and κn = o

(
pn

)
, then, for any real number M, as n →∞,

P̆(n)
θθθn ,κn , f

[
QSt

n > M
]→ 1.

Proof. See Section 4.3.9.

Part (i) of this result confirms that the Bingham test is indeed blind to alternatives
in κn = o

(
pn/

p
n

)
, irrespective of the rate at which pn diverges to infinity with n. Un-

der some mild assumption on this rate, this extends to alternatives in κn = o
(
p3/2

n /
p

n
)
,

whereas Part (iii) of the result shows that the Bingham test is consistent under alterna-
tives such that

p
n|κn |/p3/2

n → ∞. For axial alternatives, the detection threshold is thus
κn ∼ p3/2

n /
p

n; the corresponding asymptotic power, under P̆(n)
θθθn ,κn , f

, with κn = τn p3/2/
p

n

and (τn) → τ, is
lim

n→∞P(n)
θθθn ,κn , f

[
QSt

n > zα
]= 1−Φ(

zα−2τ2) .

These powers are symmetric for girdle-type alternatives (τ < 0) and bipolar alternatives
(τ> 0), as it was already the case in low dimensions; see Proposition 3.3.2.

We conducted the following simulation. For any n ∈ {100,400,800}, we generated
M = 2500 independent random samples of size n from the Watson distribution with di-
mension pn = bpnc, location θθθn = (1,0, . . . ,0)′ ∈Rpn , and concentration

(i) κn = τpn/
p

n,
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(ii) κn = τp3/2
n /

p
n,

(iii) κn = τp7/4
n /

p
n,

in each case with τ= 0,0.4, . . . ,2.
Figure 4.3 reports the rejection frequencies of the Bingham test as well as the corre-

sponding asymptotic powers obtained from Theorem 4.2.5. The figure also provides the
rejection frequencies and asymptotic powers of the Rayleigh test obtained from Theorem
4.1.2. Clearly, the results are in excellent agreement with the theory. In particular, the
Bingham test is blind to the alternatives associated with (i) and is consistent under those
in (iii). Under the threshold alternatives in (ii), this test shows rejection frequencies that
are close to the corresponding asymptotic powers. The Rayleigh test is blind to all alterna-
tives considered, which is also in line with the theory: since en1 = 0 under any hypothesis
of the form P̆(n)

θθθn ,κn , f
, Theorem 4.1.2 implies that the Rayleigh test will be blind to all axial

alternatives, irrespective of their severity.

4.2.3 Monotone alternatives

As mentioned in Section 4.2.1, the general result in Theorem 4.2.3 is not restricted to
axial distributions. It can thus also be used to investigate the non-null behaviour of the
Bingham test under the monotone alternatives considered in Chapter 2.

It easily follows from Theorem 2.2.1 and Le Cam’s Third Lemma that the Bingham test
statistic QSt

n remains asymptotically standard normal under P(n)
θθθn ,κn , f

, with κn = τn
√

pn/n
and (τn) → τ. Consequently, the Bingham test is blind to such contiguous alternatives.
It is then natural to wonder whether or not this test can detect more severe monotone
alternatives. In order to apply our general result in Theorem 4.2.3, we need to study the
asymptotic behaviour of the quantities en`, `= 2,4,8, under P(n)

θθθn ,κn , f
.

Proposition 4.2.6. Let (pn) be a sequence of positive integers diverging to ∞, (θθθn) a se-
quence such thatθθθn ∈ Spn−1 for any n, and (κn) a nonnegative real sequence that is o

(p
pn

)
as n →∞. Fix f ∈F . Then, under P(n)

θθθn ,κn , f
,

en2 = 1

pn
+ κ2

n

p2
n

f ′′(0)+o

(
κ2

n

p2
n

)
and en4 = 3

p2
n
+o

(
1

p2
n

)
as n →∞, so that en8 = O

(
1/p2

n

)
as n →∞.

Proof. See Section 4.3.10.

The following theorem then results from Theorem 4.2.3.

Theorem 4.2.7. Let (pn) be a sequence of positive integers diverging to ∞ and (θθθn) a se-
quence such that θθθn ∈ Spn−1 for any n. Fix f ∈F . Then, we have the following:

(i) if κn = o
(
p3/4

n /n1/4
)

and pn = O(n) (or more generally, if κn = o
(
p3/4

n /n1/4
)

and κn =
o

(p
pn

)
), then, under P(n)

θθθn ,κn , f
, as n →∞,

QSt
n

D→N (0,1); (4.12)
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Figure 4.3 – For any n ∈ {100,400,800}, rejection frequencies of the Bingham test (solid green
curve) and of the Rayleigh test (solid red curve), obtained from a collection of M = 2500 inde-
pendent random samples of size n from the Watson distribution with dimension pn = bpnc, lo-
cation θθθn = (1,0, . . . ,0)′ ∈ Rpn , and concentration κn = τpn/

p
n (top), κn = τp3/2

n /
p

n (middle), or
κn = τp7/4

n /
p

n (bottom). The corresponding asymptotic powers are also plotted (dashed curves).
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(ii) if κn = τn p3/4
n /n1/4 with (τn) → τ(> 0) and pn = o(n), then, under P(n)

θθθn ,κn , f
, as n →∞,

QSt
n

D→N

(
τ4

2
f ′′(0)2,1

)
; (4.13)

(iii) if n1/4κn/p3/4
n →∞, κn = o

(p
pn

)
and f ′′(0) 6= 0, then, for any M ∈R, as n →∞,

P(n)
θθθn ,κn , f

[
QSt

n > M
]→ 1.

Proof. See Section 4.3.11.

Interpreting this result in the same way as Theorem 4.2.5, we learn that the detection
threshold of the Bingham test under monotone alternatives is κn ∼ p3/4

n /n1/4, with result-
ing asymptotic powers

lim
n→∞P(n)

θθθn ,κn , f

[
QSt

n > zα
]= 1−Φ

(
zα− τ4

2
( f ′′(0))2

)
with κn = τn p3/4

n /n1/4 and (τn) → τ. This should be compared to the detection threshold
of the Rayleigh test, that is κn ∼ p3/4

n /
p

n (see Section 2.3.2). This is in line with the fact
that the Bingham test is primarily designed for axial data whereas the Rayleigh one aims
at non-axial data. As mentioned in Section 4.2.2, however, the Rayleigh test will be blind
to arbitrarily severe axial alternatives, whereas the Bingham test will show power under
both monotone and axial alternatives.

In order to illustrate these results, we performed the following FvML version of the
Watson simulation exercise conducted in Section 4.2.2. For any n ∈ {100,400,800}, we
generated M = 2500 independent random samples of size n from the FvML distribution
with dimension pn = bpnc, location θθθn = (1,0, . . . ,0)′ ∈Rpn , and concentration

• (i) κn = τp3/4
n /

p
n,

• (ii) κn = τp3/4
n /n1/4,

• (iii) κn = τp5/4
n /n1/4,

still with τ = 0,0.4, . . . ,2 in each case. Figure 4.4 reports the rejection frequencies of the
Bingham test and of the Rayleigh test, as well as the corresponding asymptotic pow-
ers (obtained from Theorem 4.2.7 for the Bingham test and from Theorem 4.1.2 for the
Rayleigh test). The results fully support the comments from the previous paragraph, for
both tests. Strictly speaking, the consistency result in Theorem 4.2.7(iii) does not apply
in the concentration scheme (iii) above, as the condition κn = o

(p
pn

)
is not met there;

in Appendix C, however, we show that this condition is superfluous in the FvML case, so
that our theoretical results imply consistency in the concentration scheme (iii), too.
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Figure 4.4 – For any n ∈ {100,400,800}, rejection frequencies of the Bingham test (solid green
curve) and of the Rayleigh test (solid red curve), obtained from a collection of M = 2500 inde-
pendent random samples of size n from the FvML distribution with dimension pn = bpnc, loca-
tion θθθn = (1,0, . . . ,0)′ ∈ Rpn , and concentration κn = τp3/4

n /
p

n (top), κn = τp3/4
n /n1/4 (middle), or

κn = τp5/4
n /n1/4 (bottom). The corresponding asymptotic powers are also plotted (dashed curves).
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4.3 Proofs

4.3.1 Preliminary lemmas

Using the tangent-normal decomposition in (1.9), we can write under P(n)
θθθn ,Fn

,

Xni = uni θθθn + vni Sni

where uni := X′
niθθθn , vni :=

√
1−u2

ni and Sni := (Xni −uni θθθn)‖Xni −uni θθθn‖−1 if Xni 6= θθθn

and 0 otherwise. With this notation,

en` := E
[(

X′
niθθθn

)`]= E
[

u`
ni

]
,

fn` := E

[(
1− (

X′
niθθθn

)2
)`/2

]
= E

[
v`ni

]
,

Lemma 4.3.1. Under P(n)
θθθn ,Fn

,

(i) E
[
Sni S′

ni

]= 1
pn−1

(
Ipn −θθθnθθθ

′
n

)
for any i ;

(ii) E
[
(S′

ni Sn j )2
]= 1

pn−1 for any i 6= j ;

(iii) E
[
(S′

ni Sn j )4
]= 3

p2
n−1

for any i 6= j ;

(iv) E
[
(S′

ni Sn j )8
]= 105

(p2
n−1)(pn+3)(pn+5)

for any i 6= j .

Proof.

(i) Let O be a pn ×pn orthogonal matrix such that Oθθθn = e1, where e1 denotes the first
vector of the canonical basis ofRpn . Then the random vectors OSni , i = 1, . . . ,n form
a random sample from the uniform distribution over

{
x ∈ Spn−1 : e′1x = 0

}
. Conse-

quently, OE
[
Sni S′

ni

]
O′ = 1

pn−1

(
Ipn −e1e′1

)
, which yields the result.

(ii)-(iv) It follows from the joint distribution of the OSni ’s just derived that, for any i 6= j ,
S′

ni Sn j = (OSni )′(OSn j ) is equal in distribution to U′V, where the independent ran-
dom (pn − 1)-vectors U, V are uniformly distributed over Spn−2. The result then
follows from Lemma A.1(iii) in [Paindaveine and Verdebout, 2016].

Lemma 4.3.2. Under P(n)
θθθn ,Fn

,

(i) E
[
X′

ni Xn j
]= e2

n1 for any i 6= j ;

(ii) E
[(

X′
ni Xn j

)2
]
= e2

n2 +
f 2

n2
pn−1 = pn

pn−1 g 2
n2 + 1

pn
for any i 6= j ;

(iii) E
[(

X′
ni Xn j

)4
]
= e2

n4 + 6(en2−en4)2

pn−1 + 3 f 2
n4

p2
n−1

for any i 6= j ;

(iv) E
[(

X′
ni Xn j

)(
X′

nk Xn`
)] = en2e2

n1 for any i 6= j and k 6= ` such that {i , j ,k,`} contains
exactly three different indices;

(v) E
[(

X′
ni Xn j

)(
X′

nk Xn`
)]= e4

n1 if i , j ,k,` are distinct;

94



(vi) E
[(

X′
ni Xn j

)2 (
X′

nk Xn`
)2

]
= en4e2

n2+ 2en2(en2−en4) fn2
pn−1 + f 2

n2 fn4

(pn−1)2 for any i 6= j and k 6= ` such

that {i , j ,k,`} contains exactly three different indices;

(vii) E
[(

X′
ni Xn j

)2 (
X′

nk Xn`
)2

]
=

(
pn

pn−1 g 2
n2 + 1

pn

)2
if i , j ,k,` are distinct.

Proof.

(i) The tangent-normal decomposition provides

X′
ni Xn j = uni un j + vni vn j

(
S′

ni Sn j
)

.

As Sni and Sn j are independent and such that E [Sni ] = E
[
Sn j

]= 0, the result follows.

(ii) The previous decomposition yields(
X′

ni Xn j
)2 = u2

ni u2
n j + v2

ni v2
n j

(
S′

ni Sn j
)2 +2uni vni un j vn j

(
S′

ni Sn j
)

. (4.14)

Lemma 4.3.1(ii) then shows that

E
[(

X′
ni Xn j

)2
]
= E

[
u2

n1

]2 + E
[
v2

n1

]2

pn −1
= e2

n2 +
f 2

n2

pn −1

The second equality is proven by using successively the identities fn2 = 1− en2 and
en2 = gn2 +1/pn .

(iii) Using (4.14) and the fact that E
[(

S′
ni Sn j

)`] = 0 for any odd positive integer `, we

obtain

E
[(

X′
ni Xn j

)4
]

= E
[

u4
ni u4

n j +6u2
ni u2

n j v2
ni v2

n j

(
S′

ni Sn j
)2 + v4

ni v4
n j

(
S′

ni Sn j
)4

]
= E[u4

n1]2 + 6

pn −1
E

[
u2

n1(1−u2
n1)

]2 + 3

p2
n −1

E[v4
n1]2,

which establishes the result.

(iv)-(v) Note that, for i < j and k < `,

E
[(

X′
ni Xn j

)(
X′

nk Xn`
)]= E

[
uni un j unk un`

]+E
[
vni vn j vnk vn`

]
E

[(
S′

ni Sn j
)

(S′
nk Sn`)

]
.

There is always one of the indices i , j ,k,` that is different from the other three in-
dices, which implies that E

[(
S′

ni Sn j
)

(S′
nk Sn`)

]= 0. The result readily follows.

(vi) Without any loss of generality, assume that, in {i , j ,k,`}, only j and k are equal to
each other. Proceeding as in (iii), we then have

E
[(

X′
ni Xn j

)2 (
X′

nk Xn`
)2

]
= E

[
u2

ni u2
n j u2

nk u2
n`+u2

ni u2
n j v2

nk v2
n`

(
S′

nk Sn`
)2

+u2
nk u2

n`v2
ni v2

n j

(
S′

ni Sn j
)2 + v2

ni v2
n j v2

nk v2
n`

(
S′

ni Sn j
)2 (

S′
nk Sn`

)2
]

= E
[
u2

ni

]2
E

[
u4

nk

]+ 2

pn −1
E

[
u2

ni

]
E

[
v2

ni

]
E

[
u2

ni (1−u2
ni )

]+ 1

(pn −1)2
E

[
v2

ni

]2
E

[
v4

ni

]
,

where we used the fact that

E
[(

S′
ni Sn j

)2 (S′
n j Sn`)

2
]
= E

[
E

[(
S′

ni Sn j
)2 (S′

n j Sn`)
2
∣∣Sn j

]]
= 1

(pn −1)4

since E
[(

S′
ni Sn j

)2 ∣∣Sn j

]
= 1/(pn −1).
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(vii) Since i , j ,k,` are pairwise different, X′
ni Xn j and X′

nk Xn` are mutually independent,
so that the result directly follows from Part (ii) of the lemma.

Lemma 4.3.3. Under P(n)
θθθn ,Fn

,

(i) E
[(

Xni −en1θθθn
)(

Xni −en1θθθn
)′]= ẽn2θθθnθθθ

′
n + fn2

pn−1

(
Ipn −θθθnθθθ

′
n

)
;

(ii) Var
[(

X′
niθθθn −en1

)(
X′

n jθθθn −en1

)]
= ẽn4 − ẽ2

n2 for i = j and ẽ2
n2 for i 6= j ;

(iii) E
[
X′

ni

(
Ipn −θθθnθθθ

′
n

)
Xn j

]= fn2 for i = j and 0 for i 6= j ;

(iv) Var
[
X′

ni

(
Ipn −θθθnθθθ

′
n

)
Xn j

]= fn4 − f 2
n2 for i = j and f 2

n2/(pn −1) for i 6= j .

Proof.

(i) Using the tangent-normal decomposition and Lemma 4.3.1(i), we obtain

E
[
(Xni −en1θθθn)(Xni −en1θθθn)′

]= E
[(

(uni −en1)θθθn + vni Sni
)(

(uni −en1)θθθn + vni Sni
)′]

= E
[
(uni −en1)2]θθθnθθθ

′
n + fn2 E

[
Sni S′

ni

]
= ẽn2θθθnθθθ

′
n + fn2

pn −1

(
Ipn −θθθnθθθ

′
n

)
.

(ii)-(iv) The results readily follow from the fact that X′
niθθθn −en1 = uni −en1,

X′
ni

(
Ipn −θθθnθθθ

′
n

)
Xn j = vni vn j S′

ni Sn j ,

and from Lemma 4.3.1(ii).

Lemma 4.3.4. Consider expectations of the form ci j r s = E
[
∆i`∆ j`∆r `∆s`

]
taken under P(n)

θθθn ,Fn
,

with ∆i` := (
Xni −en1θθθn

)′ (Xn`−en1θθθn
)

and i ≤ j ≤ r ≤ s < `. Then

(i) ci j r s = ẽ2
n4 + 6

pn−1 E
[
v2

ni (uni −en1)2
]2 + 3 f 2

n4

p2
n−1

if i = j = r = s;

(ii) ci j r s = ẽ2
n2ẽn4 + 2ẽn2 fn2

pn−1 E
[
v2

ni (uni −en1)2
]+ f 2

n2 fn4

(pn−1)2 if i = j < r = s;

(iii) ci j r s = 0 otherwise.

Proof.

(i)-(ii) We use the tangent-normal decomposition again to write

∆ j` =
(
un j −en1

)
(un`−en1)+ vn j vn`

(
S′

n j Sn`

)
.

Since E

[(
S′

n j Sn`

)k
]
= 0 for any odd integer k, this leads to decomposing c j j r r into

c j j r r = E
[(

un j −en1
)2 (unr −en1)2 (un`−en1)4

]
+4E

[(
un j −en1

)
(unr −en1) (un`−en1)2 vn j vnr v2

n`

(
S′

n j Sn`

)(
S′

nr Sn`
)]

+2E

[
(unr −en1)2 (un`−en1)2 v2

n j v2
n`

(
S′

n j Sn`

)2
]
+E

[
v2

n j v2
nr v4

n`

(
S′

n j Sn`

)2 (
S′

nr Sn`
)2

]
.

The result then follows from Lemma 4.3.1(ii)-(iii).
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(iii) Assume that j = r , so that we are not in case (ii). Since case (i) is excluded, we have
i < j or r < s. In both cases, one of the four indices i , j ,r, s is different from the other
three indices. Since E[∆i`] = 0, we obtain that ci j r s = 0, which establishes (iii).

Lemma 4.3.5. Let U be uniformly distributed on Sp−1. Then,

E
[
(v′U)2(w′U)2]= 2(v′w)2 +1

p(p +2)

for any v,w ∈ Sp−1.

Proof. Let K` be the `2 × `2 commutation matrix and define J` := (vecI`) (vecI`)′, where
vecA is the vector stacking the columns of A on top of each other. Then,

E
[
(v′U)2(w′U)2]= E

[
v′UU′vw′UU′w

]= (v⊗v)′E
[
vec(UU′)vec′(UU′)

]
(w⊗w)

Lemma A.2(iii) from [Paindaveine and Verdebout, 2016] then yields

E
[
(v′U)2(w′U)2]= 1

p(p +2)
(v⊗v)′(Ip2 + Jp +Kp )(w⊗w) = 2(v′w)2 +1

p(p +2)
,

where we used (vecA)′(vecB) = tr[A′B] and Kp (w⊗w) = (w⊗w)K1 = (w⊗w) (see for exam-
ple [Magnus and Neudecker, 2007]).

Lemma 4.3.6. Under P(n)
θθθn ,Fn

,

(i) E
[(

X′
ni Xn`

)2 ∣∣Xni

]
= pn

pn−1 gn2u2
ni +

fn2
pn−1 for any i 6= `;

(ii) E

[(
X′

ni Xn`
)2

(
X′

n j Xn`

)2 ∣∣Xni ,Xn j

]
= en2−en4

pn−1 + pn en4−en2
pn−1 u2

ni u2
n j +

(
fn4

p2
n−1

− en2−en4
pn−1

)
v2

ni v2
n j

+ 2 fn4

p2
n−1

v2
ni v2

n j

(
S′

ni Sn j
)2 + 4(en2−en4)

pn−1 uni vni un j vn j
(
S′

ni Sn j
)

for any indices i , j ,` such

that ` ∉ {i , j };

(iii) E
[(

X′
ni Xn`

)2 u2
n`

∣∣Xni

]
= en2−en4

pn−1 + pn en4−en2
pn−1 u2

ni for any i 6= `.

Proof.

(i) Using (4.14) and the fact that E
[(

S′
ni Sn`

)2 ∣∣Xni

]
= 1/(pn −1) for any i 6= `,

E
[(

X′
ni Xn`

)2 ∣∣Xni

]
= E

[
u2

ni u2
n`+ v2

ni v2
n`

(
S′

ni Sn`
)2 +2uni vni un`vn`

(
S′

ni Sn`
)∣∣Xni

]
= en2u2

ni + v2
ni

fn2

pn −1
=

(
en2 − fn2

pn −1

)
u2

ni +
fn2

pn −1

= pn

pn −1
gn2u2

ni +
fn2

pn −1
,

where we used the identities v2
ni = 1−u2

ni , fn2 = 1−en2 and g2 = e2 −1/pn .
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(ii) Fix i , j ,` with ` ∉ {i , j }. Since E

[(
S′

ni Sn`
)(

S′
n j Sn`

)2 ∣∣Xni ,Xn j

]
= 0, we have

E[
(
X′

ni Xn`
)2

(
X′

n j Xn`

)2 ∣∣Xni ,Xn j ]

= E

[
u2

ni u2
n j u4

n`+u2
ni v2

n j u2
n`v2

n`

(
S′

n j Sn`

)2 + v2
ni u2

n j u2
n`v2

n`

(
S′

ni Sn`
)2

+v2
ni v2

n j v4
n`

(
S′

ni Sn`
)2

(
S′

n j Sn`

)2 +4uni vni un j vn j u2
n`v2

n`

(
S′

ni Sn`
)(

S′
n j Sn`

)∣∣Xni ,Xn j

]
.

Therefore, applying Lemma 4.3.5 (in the fourth term of the righthand side) and
Lemma 4.3.1(i) (in the fifth one) provides

E

[(
X′

ni Xn`
)2

(
X′

n j Xn`

)2 ∣∣Xni ,Xn j

]
= en4u2

ni u2
n j +

en2 −en4

pn −1

(
u2

ni v2
n j + v2

ni u2
n j

)
+ fn4

p2
n −1

v2
ni v2

n j

(
1+2

(
S′

ni Sn j
)2

)
+ 4(en2 −en4)

pn −1
uni vni un j vn j

(
S′

ni Sn j
)

.

The result then follows by using the identity u2
ni v2

n j + v2
ni u2

n j = 1−u2
ni u2

n j − v2
ni v2

n j

(which result from the fact that u2
ni + v2

ni = 1 for any i ).

(iii) Finally,

E
[(

X′
ni Xn`

)2 u2
n`

∣∣Xni

]
= E

[(
u2

ni u2
n`+ v2

ni v2
n`

(
S′

ni Sn`
)2 +2uni vni un`vn`

(
S′

ni Sn`
))

u2
n`

∣∣Xni

]
= en4u2

ni +
en2 −en4

pn −1
v2

ni =
en2 −en4

pn −1
+ pnen4 −en2

pn −1
u2

ni ,

where we used again the identity v2
ni = 1−u2

ni .

4.3.2 Proof of Proposition 4.1.1

Since the expectation readily follows from Lemma 4.3.2(i), we can focus on the vari-
ance. Using Lemma 4.3.2(i) again, we obtain

VarFn

[
RSt

n

]= 2pn

n2

∑
1≤i< j≤n

∑
1≤k<`≤n

(
E

[(
X′

ni Xn j
)(

X′
nk Xn`

)]−e4
n1

)
.

In this sum, there are
(n

2

)
terms corresponding to Lemma 4.3.2(ii) and 6

(n
4

)
terms (not

contributing to the sum) corresponding to Lemma 4.3.2(v). Therefore, there are
(n

2

)2 −(n
2

)−6
(n

4

)= n(n −1)(n −2) terms corresponding to Lemma 4.3.2(iv). Consequently,

VarFn

[
RSt

n

] = 2pn

n2

{(
n

2

)(
e2

n2 +
f 2

n2

pn −1
−e4

n1

)
+n(n −1)(n −2)

(
en2e2

n1 −e4
n1

)}

= pn(n −1)

n

{(
e2

n2 −e4
n1

)+2(n −2)e2
n1

(
en2 −e2

n1

)+ f 2
n2

pn −1

}

which, since ẽn2 = en2 −e2
n1, establishes the result. �
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4.3.3 Proof of Theorem 4.1.2

This proof is based on Theorem 1.4.1. Let Fn` the σ-algebra generated by Xn1, . . . ,Xn`

and En` the conditional expectation with respect to Fn`. Define

Zn` := En`

[
RSt

n −E
[
RSt

n

]
σn

]
=

√
2pn

nσn

{ ∑
1≤i< j≤`

(
X′

ni Xn j −e2
n1

)+ (n −`)en1
∑̀
i=1

(
X′

niθθθn −en1
)} ·

Note that
RSt

n −E
[
RSt

n

]
σn

=
n∑
`=1

Dn`,

where Dn` := Zn`−Zn,`−1 rewrites

Dn` =
√

2pn

nσn

{
`−1∑
i=1

(
Xni −en1θθθn

)+ (n −1)en1θθθn

}′ (
Xn`−en1θθθn

)
, `= 1,2, . . . (4.15)

Throughout, sums over empty set of indices are defined as being equal to zero. Conditions
(1.20) and (1.21) will be established thanks to Lemmas 4.3.7 and 4.3.8.
In the rest of the proof, C is a positive constant that may change from line to line.

Lemma 4.3.7. Let the assumptions of Theorem 4.1.2 hold. Recall that σ2
n` := En,`−1

[
D2

n`

]
.

Then, under P(n)
θθθn ,Fn

,

(i)
∑n
`=1 E

[
σ2

n`

]
converges to one as n →∞;

(ii) Var
[∑n

`=1σ
2
n`

]
converges to zero as n →∞.

Proof. (i) Note that

σ2
n` = 2pn

n2σ2
n

{
`−1∑
i=1

(
Xni −en1θθθn

)+ (n −1)en1θθθn

}′
E

[(
Xn`−en1θθθn

)(
Xn`−en1θθθn

)′]

×
{
`−1∑
j=1

(Xn j −en1θθθn)+ (n −1)en1θθθn

}
.

By using Lemma 4.3.3(i), we obtain

σ2
n` =

2pn ẽn2

n2σ2
n

{ `−1∑
i , j=1

(
X′

niθθθn −en1
)(

X′
n jθθθn −en1

)
+2(n −1)en1

`−1∑
i=1

(
X′

niθθθn −en1
)

+ (n −1)2e2
n1

}
+ 2pn fn2

(pn −1)n2σ2
n

`−1∑
i , j=1

X′
ni

(
Ipn −θθθnθθθ

′
n

)
Xn j . (4.16)

Therefore

E
[
σ2

n`

]= 2pn ẽn2

n2σ2
n

{
(`−1)ẽn2 +0+ (n −1)2e2

n1

}+ 2pn(`−1) f 2
n2

(pn −1)n2σ2
n

, (4.17)

where we have used Lemma 4.3.3(iii). This yields

s2
n :=

n∑
`=1

E
[
σ2

n`

]= (n −1)pn ẽ2
n2

nσ2
n

+ 2pn ẽn2

nσ2
n

(n −1)2e2
n1 +

(n −1)pn f 2
n2

(pn −1)nσ2
n
→ 1

as n →∞, as was to be shown.
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(ii) From (4.16), we obtain

Var

[
n∑
`=1

σ2
n`

]
≤ C (Var[An]+Var[Bn]+Var[Cn]) ,

where

An := pn ẽn2

n2σ2
n

n∑
`=1

`−1∑
i , j=1

(
X′

niθθθn −en1
)(

X′
n jθθθn −en1

)
,

Bn := pnen1ẽn2

nσ2
n

n∑
`=1

`−1∑
i=1

(
X′

niθθθn −en1
)

,

Cn := fn2

n2σ2
n

n∑
`=1

`−1∑
i , j=1

X′
ni

(
Ipn −θθθnθθθ

′
n

)
Xn j .

We establish the result by showing that, under the assumptions considered, Var[An],
Var[Bn] and Var[Cn] all are o(1) as n →∞. We start with An , which we split into

An = pn ẽn2

n2σ2
n

n∑
`=1

`−1∑
i=1

(
X′

niθθθn −en1
)2 + 2pn ẽn2

n2σ2
n

n∑
`=1

∑
1≤i< j≤`−1

(
X′

niθθθn −en1
)(

X′
n jθθθn −en1

)

= pn ẽn2

n2σ2
n

n−1∑
i=1

(n − i )
(
X′

niθθθn −en1
)2 + 2pn ẽn2

n2σ2
n

∑
1≤i< j≤n−1

(n − j )
(
X′

niθθθn −en1
)(

X′
n jθθθn −en1

)
,

that is, into A(1)
n +A(2)

n , say. Clearly,

Var
[
A(1)

n

]= p2
n ẽ2

n2

n4σ4
n

n−1∑
i=1

(n − i )2 Var
[(

X′
niθθθn −en1

)2
]
≤ C

p2
n ẽ2

n2

(
ẽn4 − ẽ2

n2

)
nσ4

n

≤ C
p2

n ẽ2
n2

(
ẽn4 − ẽ2

n2

)
n(pn ẽ2

n2)2
= C

(
ẽn4

nẽ2
n2

− 1

n

)
,

which, by assumption, is o(1) as n → ∞. Since
(
X′

niθθθn −en1
)(

X′
n jθθθn −en1

)
, i < j ,

and
(
X′

nkθθθn −en1
)(

X′
n`θθθn −en1

)
, k < `, are uncorrelated as soon as (i , j ) 6= (k,`), we

obtain

Var
[
A(2)

n

]= 4p2
n ẽ2

n2

n4σ4
n

∑
1≤i< j≤n−1

(n − j )2 Var
[(

X′
niθθθn −en1

)(
X′

n jθθθn −en1

)]
≤ C

p2
n ẽ4

n2

σ4
n

·

In view of the upper bounds

p2
n ẽ4

n2

σ4
n

≤ C
p2

n ẽ4
n2

(2npne2
n1ẽn2)2

= C

(
ẽn2

ne2
n1

)2

and
p2

n ẽ4
n2

σ4
n

≤ C

(
pn ẽ2

n2

f 2
n2

)2

,

Var
[

A(2)
n

]
, by assumption, is o(1) as n →∞. So Var[An] is indeed o(1) as n →∞.

Turning to Bn ,

Var[Bn] = p2
ne2

n1ẽ2
n2

n2σ4
n

Var

[
n−1∑
i=1

(n − i )
(
X′

niθθθn −en1
)]= p2

ne2
n1ẽ2

n2

n2σ4
n

n−1∑
i=1

(n − i )2ẽn2

≤ C
np2

ne2
n1ẽ3

n2

σ4
n

,
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which is o(1) as n →∞ since it can be bounded above by

C
np2

ne2
n1ẽ3

n2(
2npne2

n1ẽn2
)2 = C

ẽn2

ne2
n1

and by C
np2

ne2
n1ẽ3

n2

npne2
n1ẽn2 f 2

n2

= C
pn ẽ2

n2

f 2
n2

·

Finally, we consider Cn . Proceeding as for An , we split Cn into

Cn = fn2

n2σ2
n

n∑
`=1

`−1∑
i=1

X′
ni

(
Ipn −θθθnθθθ

′
n

)
Xni + 2 fn2

n2σ2
n

n∑
`=1

∑
1≤i< j≤`−1

X′
ni

(
Ipn −θθθnθθθ

′
n

)
Xn j

= fn2

n2σ2
n

n−1∑
i=1

(n − i )X′
ni

(
Ipn −θθθnθθθ

′
n

)
Xni + 2 fn2

n2σ2
n

∑
1≤i< j≤n−1

(n − j )X′
ni

(
Ipn −θθθnθθθ

′
n

)
Xn j ,

that is, into C(1)
n +C(2)

n , say. Clearly,

Var
[
C(1)

n

]= f 2
n2

n4σ4
n

n−1∑
i=1

(n−i )2 Var
[
X′

ni

(
Ipn −θθθnθθθ

′
n

)
Xni

]≤ C
f 2

n2( fn4 − f 2
n2)

nσ4
n

≤ C
fn4 − f 2

n2

n f 2
n2

,

so that Var
[

C(1)
n

]
is o(1) as n →∞. Since X′

ni

(
Ipn −θθθnθθθ

′
n

)
Xn j , i < j , and X′

nk

(
Ipn −θθθnθθθ

′
n

)
Xn`,

k < `, are uncorrelated as soon as (i , j ) 6= (k,`), we obtain

Var
[
C(2)

n

]= 4 f 2
n2

n4σ4
n

∑
1≤i< j≤n−1

(n − j )2 Var
[
X′

ni

(
Ipn −θθθnθθθ

′
n

)
Xn j

]≤ C
f 4

n2

σ4
n(pn −1)

≤ C

pn
·

Therefore, Var[Cn] is also o(1) as n →∞, which establishes the result.

Lemma 4.3.8. Let the assumptions of Theorem 4.1.2 hold and fix ε> 0. Then, under P(n)
θθθn ,Fn

,∑n
`=1 E

[
D2

n` I{|Dn`|>ε}
]→ 0 as n →∞.

Proof. The Cauchy–Schwarz and Chebychev inequalities yield
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E
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√
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√
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]
Var[Dn`]. (4.18)

Recalling that σ2
n` = E

[
D2

n`

∣∣Fn,`−1
]
, (4.17) provides
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·

Using (4.15) and the inequalities (a +b)4 ≤ 8(a4 +b4) and σ2
n ≥ 2npne2

n1ẽn2 then yields
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+ Cẽn4
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Applying Lemma 4.3.4, we have

E
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E

[
v2

ni (uni −en1)2]2 + 3 f 2
n4

p2
n −1

)

+3(`−1)(`−2)

(
ẽ2
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,

By Cauchy–Schwarz, this yields
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Plugging into (4.19), we conclude that

E
[
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(
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nẽ2
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which, by assumption, is o(1/n) as n →∞.
All majorations and o’s above being uniform in `, we finally obtain that
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√
E

[
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]
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(
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E
[
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→ 0

as n →∞, which, in view of (4.18), establishes the result.

4.3.4 Proof of Theorem 4.1.3

From Theorem 4.1.2, we have that, as n →∞,∣∣∣∣P(n)
θθθn ,Fn

[
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]−(

1−Φ
(
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2
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where we used Lemma 2.11 from [van der Vaart, 1998]. �

4.3.5 Proof of Proposition 4.2.1

Using Lemma 4.3.2(ii), we readily obtain

E
[
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]= pn

n
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i< j

i , j=1

(
E
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Turning to the variance, we have
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[
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n
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∑
1≤i< j≤n

∑
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In this last sum,
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terms correspond to Lemma 4.3.2(iii) and 6
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)
terms (all equal to zero)

correspond to Lemma 4.3.2(vii). Thus,
(n

2

)2 − (n
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(
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which establishes the result. �

4.3.6 Proof of Theorem 4.2.2

First note that under the assumptions of this theorem, we have en2 = o(1/
p

pn), which,
jointly with Assumptions (a) and (c), entails that Var

[
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]= 1+o(1). Therefore, it is suffi-
cient to prove that
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[
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where the last equality follows from Lemma 4.3.2(ii) and Lemma 4.3.6(i).
We establish Theorem 4.2.2 by proving Lemmas 4.3.9 and 4.3.10 (so that Theorem 1.4.1

applies).

Lemma 4.3.9. Under the assumptions of Theorem 4.2.2, as n →∞,
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Similarly, after some algebra, Lemma 4.3.6(i) and (iii) yield
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Therefore, we conclude that
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Splitting the double sum over i , j according to whether i = j or i 6= j , taking expec-
tation yields
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where the last equality is obtained after painful, yet straightforward, algebra.

(ii) Note that (4.21) implies that
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for some real constant Cn`. Therefore,
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Firstly, since Var[ur
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p2
n −1

− f 2
n2

(pn −1)2
+ en4 −e2

n2

pn −1

)2

f 2
n4 +

12 f 4
n4

(p2
n −1)3

+16(en2 −en4)4

(pn −1)3

}
,

which is o(1/p4
n), since

fn4

p2
n −1

− f 2
n2

(pn −1)2
= 4en2 −2+ (p −1)en4 − (p +1)e2

n2

(p2 −1)(p −1)
= o

(
1

p2
n

)
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under Assumption (a). Now,

Cov
[
wn,12, wn,13

]= p2
n(en4 −e2

n2)2

(pn −1)2
en4e2

n2 +
(

fn4
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(pn −1)2
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n2

pn −1

)2

fn4 f 2
n2

+ 4 f 3
n4 f 2
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n −1)2(pn −1)2

+ 2pn(en4 −e2
n2)

pn −1

(
fn4
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− f 2
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n2

pn −1

)
(en2 −en4)en2 fn2

+4pn(en4 −e2
n2) fn4

(pn −1)2(p2
n −1)

(en2 −en4)en2 fn2 +
4 f 2

n4 f 2
n2

(p2
n −1)(pn −1)

(
fn4

p2
n −1

− f 2
n2

(pn −1)2
+ en4 −e2

n2

pn −1

)

−
{

pn(en4 −e2
n2)

pn −1
e2

n2 +
(

fn4

p2
n −1

− f 2
n2

(pn −1)2
+ en4 −e2

n2

pn −1

)
f 2

n2 +
2 fn4 f 2

n2

(p2
n −1)(pn −1)

}2

·

Tedious computations provide

Cov
[
wn,12, wn,13

]= p4
n

(pn −1)4
(en4 −e2

n2)3g 2
n2,

which is o(n−1p−4
n ) under Assumptions (a) and (c). From (4.22), we conclude that Var

[
T(b)

1n

]
is o(1), which establishes the result.

Lemma 4.3.10. Under the assumptions of Theorem 4.2.2,
∑n
`=1 E

[
D2

n` I{|Dn`|>ε}
] → 0 for

any ε> 0.

Proof. Since Var [Dn`] ≤ E
[
D2

n`

]= E
[
σ2

n`

]
, Lemma 4.3.9(i) shows that

n∑
`=1

Var [Dn`] ≤
n∑
`=1

E
[
σ2

n`

]= 1.

Therefore, applying Cauchy–Schwarz inequality, Chebychev inequality, then Cauchy–Schwarz
inequality again, yields

n∑
`=1

E
[
D2

n` I{|Dn`|>ε}
]≤ n∑

`=1

√
E

[
D4

n`

]√
P[|Dn`| > ε] ≤ 1

ε

n∑
`=1

√
E

[
D4

n`

]√
Var [Dn`]

≤ 1

ε

√
n∑
`=1

E
[
D4

n`

]√ n∑
`=1

Var [Dn`] ≤
1

ε

√
n∑
`=1

E
[
D4

n`

]
.

(4.23)

Letting

Yni` := (
X′

ni Xn`
)2 − pn

pn −1
gn2u2

ni −
fn2

pn −1
,

(4.20) provides

E
[
D4

n`

]≤ Cp4
n

n4
E

[(
`−1∑
i=1

Yni`

)4]
+ C(n −`)4p8

n

n4(pn −1)4
g 4

n2E
[(

u2
n`−en2

)4
]

,

hence

n∑
`=1

E
[
D4

n`

] ≤ Cp4
n

n4

n∑
`=1

`−1∑
i , j ,r,s=1

E
[
Yni`Yn j`Ynr `Yns`

]+Cnp4
n g 4

n2en8

= Cp4
n

n4

n∑
`=1

`−1∑
i , j ,r,s=1

E
[
Yni`Yn j`Ynr `Yns`

]+o

(
1

n1/3

)
. (4.24)
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Now, in the sum over i , j ,r, s, there are `−1 ≤ n terms for which {i , j ,r, s} has cardinality
one; for these terms, (4.14) yields

E
[∣∣Yni`Yn j`Ynr `Yns`

∣∣]= E
[
Y4

n1`

]≤ CE

[
(X′

n1Xn`)
8 + p4

n

(pn −1)4
g 4

n2u8
n1 +

f 4
n2

(pn −1)4

]

≤ C

{
E

[
u8

n1u8
n`+ v8

n1v8
n`(S′

n1Sn`)
8 +u4

n1v4
n1u4

n`v4
n`(S′

n1Sn`)
4]+ g 4

n2en8 +
f 4

n2

p4
n

}

≤ C

{
e2

n8 +
105

(p2
n −1)(pn +3)(pn +5)

+ 3e2
n4

p2
n −1

+ g 4
n2en8 +

f 4
n2

p4
n

}
= o

(
n4/3

p4
n

)
, (4.25)

where we used Lemma 4.3.1(iv), the identities v4
n1, v4

n` ≤ 1, and Assumptions (a)–(c). In
the sum over i , j ,r, s, there are 3(`−1)(`−2) ≤ 3n2 for which {i , j ,r, s} has cardinality two
and contains two pairs of equal indices. For such terms, Lemma 4.3.2(iii) yields

E
[|Yni`Yn j`Ynr `Yns`|

]= E
[
Y2

n1`

]2≤ C

{
E

[(
X′

ni Xn`
)4

]
+ p2

n

(pn −1)2
g 2

n2en4 +
f 2

n2

(pn −1)2

}2

≤ C

{
e2

n4 +
2(en2 −en4)2

pn −1
+ 3 f 2

n4

p2
n −1

+ g 2
n2en4 +

f 2
n2

p2
n

}2

= O

(
1

p4
n

)
.

Similarly, the sum over i , j ,r, s in (4.24) contains no more than C1n2 terms (where C1 does
not depend on `) such that {i , j ,r, s} has cardinality two and contains a triple of equal
indices. For such terms, Lemma 4.3.6(i) yields

E
[
Yni`Yn j`Ynr `Yns`

]= E
[
E

[
Y3

n1`Yn2`
∣∣Xn`

]]= E
[
E

[
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∣∣Xn`
]]

]
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∣∣Xn`
](
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,

so that the Hölder inequality provides
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]∣∣≤ Cgn2E
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n8 = O
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1p

npn

)
o

(
n

p3
n

)
o

(
n1/6

p
pn

)
= o

(
n2/3

p4
n

)
,

where we used (4.25). The sum over i , j ,r, s in (4.24) contains no more than C2n3 (where C2

does not depend on `) terms such that {i , j ,r, s} has cardinality three. Proceeding as above,
the corresponding terms are seen to satisfy

E
[
Yni`Yn j`Ynr `Yns`

]= E
[
E

[
Y2

n1`

∣∣Xn`
]

E
[
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E
[
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E
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,
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which, by using the Cauchy–Schwarz inequality, yields

∣∣E [
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]∣∣≤ Cg 2
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pn

)
= o

(
1

p4
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)
.

Finally, there obviously are less than (`−1)4 ≤ n4 terms such that {i , j ,r, s} has cardinality
four, and these terms are such that∣∣E [

Yni`Yn j`Ynr `Yns`
]∣∣= |E [E [Yn1`|Xn`]E [Yn2`|Xn`]E [Yn3`|Xn`]E [Yn4`|Xn`]]|
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Altogether, (4.24) thus yields

n∑
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E
[
D4
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]= Cnp4
n
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{
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(
n4/3

p4
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From (4.23), we thus conclude that

n∑
`=1

E
[
D2

n` I{|Dn`|>ε}
]≤ 1

ε

√
n∑
`=1

E
[
D4

n`

]= o(1),

which establishes the result.

4.3.7 Proof of Theorem 4.2.3

(i)-(ii) In these cases, we have
p

npn gn2 → ξ, with ξ = 0 in case (i) and ξ 6= 0 in case (ii).
Under Assumption (a) and gn2 = O

(
1/
p

npn
)
, Proposition 4.2.1 yields
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so that Theorem 4.2.2 and Slutzky’s lemma provide
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QSt
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[
QSt
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]

+µn
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(
ξ2

2
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)
,

as was to be shown.
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(iii) Assume that
p

npn |gn2| →∞ and fix M > 0 (clearly, it is enough to prove the result
for M > 0). Proposition 4.2.1 then ensures that µn diverges to infinity, so that there
exists n0 such that µn > M for any n ≥ n0. For any such n, the Chebychev inequality
yields

P(n)
θθθn ,Fn

[
QSt

n ≤ M
]= P(n)
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Therefore,
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which implies that P(n)
θθθn ,Fn

[
QSt

n ≤ M
]→ 0, hence establishes the result.

�

4.3.8 Proof of Proposition 4.2.4

Since κn is assumed to be o
(
pn

)
as n →∞, Lemma 3.7.1 provides
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(
cpn
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=
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,

which proves the result for en2. The same lemma also yields
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The claim for en8 directly follows from the identity en8 ≤ en4. �

4.3.9 Proof of Theorem 4.2.5

First note that, in all cases, we have κn = o
(
pn

)
, so that Proposition 4.2.4 applies and

ensures that conditions (a)–(b) in Theorem 4.2.3 are fulfilled. Let us then treat cases (i)–
(iii) separately.
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(i) Since κn = o
(
p3/2

n /
p

n
)
, Proposition 4.2.4 implies that

gn2 = en2 − 1

pn
= O

(
κn

p2
n

)
= o

(
1p

npn

)
,

so that Theorem 4.2.3(i) shows that QSt
n is asymptotically standard normal.

(ii) Since
p

nκn/p3/2
n → τ( 6= 0) and pn = o(n), Proposition 4.2.4 provides

p
npn gn2 = 2

p
nκn

p3/2
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(p
nκn

p3/2
n

)
= 2τ+o(1),

Theorem 4.2.3(ii) shows that QSt
n

D→ N (ξ2/2,1), with ξ = 2τ, which establishes the
result.

(iii) The claim follows from Theorem 4.2.3(iii) since

p
npn |gn2| = 2

p
nκn
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n

+o

(p
nκn

p3/2
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)
diverges to infinity.

�

4.3.10 Proof of Proposition 4.2.6

The following result needed to prove Proposition 4.2.6 is a higher-order extension of
Lemma 2.5.1 and can be shown in a similar fashion.

Lemma 4.3.11. Let g : R→ R be four times differentiable at 0. Let (pn) be a sequence of
positive integers diverging to ∞ and (κn) be a real sequence that is o
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)
. Then,
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.

Proof of Proposition 4.2.6. Since κn is assumed to be o
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which proves the result for en2. The same lemma also yields

en4 = 1

κ4
n
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)−1
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The claim for en8 directly follows from the identity en8 ≤ en4.

4.3.11 Proof of Theorem 4.2.7

First note that, in all cases, we have κn = o
(p

pn
)
, so that Proposition 4.2.6 applies and

ensures that conditions (a)–(b) in Theorem 4.2.3 are fulfilled. Let us then treat cases (i)–
(iii) separately.

(i) Since κn = o
(
p3/4

n /n1/4
)
, Proposition 4.2.6 implies that

gn2 = en2 − 1

pn
= O

(
κ2

n

p2
n

)
= o

(
1p

npn

)
,

so that Theorem 4.2.3(i) shows that QSt
n is asymptotically standard normal.

(ii) Since n1/4κn/p3/4
n → τ(6= 0) and pn = o(n), Proposition 4.2.6 provides

p
npn gn2 =

p
nκ2

n

p3/2
n
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(p
nκ2

n

p3/2
n

)
= τ2 f ′′(0)+o(1),

Theorem 4.2.3(ii) shows that QSt
n

D→ N (ξ2/2,1), with ξ = τ2 f ′′(0), which establishes
the result.

(iii) The claim follows from Theorem 4.2.3(iii) since

p
npn |gn2| = 2

p
nκn

p3/2
n

+o

(p
nκn

p3/2
n

)
diverges to infinity.
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Conclusion

In Chapter 2 monotone rotationally symmetric alternatives with modal location θθθn ,
concentrationκn and functional parameter f were considered. We showed that if the con-
centration parameter is such that κn ∼ √

pn/n, the null of uniformity and the sequence
of alternatives are too close to be told apart, they are contiguous. For specified θθθn and at
this rate, a Local Asymptotic Normality result was established, which allowed us, both in
low and in high dimensions, to define locally asymptotically most powerful tests for the
specified-θθθn problem, and implied that the Rayleigh test shows power only in the low-
dimensional case.

In practice, however, θθθn may rarely be assumed to be known. In the corresponding
unspecified-θθθn problem, we showed that the Rayleigh test enjoys nice asymptotic opti-
mality properties, both in the low- and high-dimensional cases. In low dimensions, it is
locally asymptotically maximin and locally most powerful invariant, irrespective of f . In
high dimensions, it is locally asymptotically most powerful invariant in the FvML case,
and a conjecture — that is strongly supported by a fourth-order expansion of the relevant
f -based local log-likelihood ratio and by the computation of asymptotic powers in Sec-
tion 4.1 — states that, provided that pn = o(n2), this optimality holds for any f that is five
times differentiable at 0.

Our results fully characterize the cost of θθθn not being specified. In low dimensions,
this cost is in terms of asymptotic powers but not in terms of rate. In high-dimensions,
however, there is a cost in terms of rate, as optimal tests cannot detect the contiguous
alternatives in κn ∼√

pn/n, but only the more severe alternatives in κn ∼ p3/4
n /

p
n. Simu-

lation results are in remarkable agreement with our asymptotic results, irrespective of the
relative magnitude of n and p — which illustrates the robustness of most of our results in
the rate at which pn goes to infinity with n. A real data example illustrated the usefulness
of the high-dimensional Rayleigh test in the framework of testing for sphericity.

In Chapter 3 we undertook the same work for axial rotationally symmetric alterna-
tives. The problem turned out to be more complex than the monotone one as the higher
contiguity rate, κn ∼ pn/

p
n, suggested. A LAN result at this rate made it again possi-

ble to define locally asymptotically most powerful tests for the specified-θθθn problem; in
low dimensions and when θθθn is not specified, this result can be rewritten thanks to a
new parametrisation and the Bingham test emerges as a natural test for uniformity. It
is nonetheless not optimal and would be more suitable for multi-spiked alternatives. This
is why we considered single-spiked tests based on the extreme eigenvalues of the sign
covariance matrix and characterised their asymptotic behaviour under contiguous axial
rotationally symmetric alternatives.

In high dimensions, it is extremely challenging to derive the non-null asymptotic pow-
ers of these tests and the Bingham test under suitable local alternatives. For the single-
spiked tests, for instance, this is due to the fact that eigenvalues of sample covariance ma-
trices suffer complicated phase transition phenomena which, close to uniformity, results
in a lack of consistency.
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In Chapter 4, by relying on martingale central limit theorems, we showed that after ap-
propriate standardisation, the asymptotic distributions of the Rayleigh and Bingham tests
are normal under broad classes of rotationally symmetric distributions. We identified the
rotationally symmetric alternatives under which the Bingham test will show non-trivial
asymptotic powers. We proved that this test will be blind to less severe alternatives and
consistent under more severe ones. Our results impose only very mild assumptions on
the considered rotationally symmetric alternatives. In particular, they apply to both the
axial and non-axial cases, which allowed us to determine the detection threshold of the
Bingham test in each case. Our results reveal that although it exhibits slower consistency
rates than the Rayleigh test in the non-axial case, the Bingham test can detect both types
of alternatives, whereas the Rayleigh test will be blind to arbitrarily severe axial alterna-
tives. These results are summarized in Diagram 4.5.

116



Monotone al-
ternatives

Contiguity rate Detection threshold

Specified θθθn

Unspecified θθθ (LD)
Unspecified θθθn (HD) Rayleigh Bingham

κn ∼
√

pn
n

κn ∼ p3/4
np
n

κn ∼ p3/4
n

n1/4

(a) Contiguity rate associated with the semiparametric class of distributions considered in Chapter 2 and
Section 4.2.3, as well as the corresponding detection thresholds of the Rayleigh and Bingham tests.

Axial alternatives

Contiguity rate Detection threshold

Specified θθθn

Unspecified θθθ (LD)
Unspecified θθθn (HD) Rayleigh Bingham

κn ∼ pnp
n

? Blind
κn ∼ p3/2

np
n

(b) Contiguity rate associated with the semiparametric class of distributions considered in Chapter 3 and
Section 4.2.2, as well as the corresponding detection thresholds of the Rayleigh and Bingham tests.

Figure 4.5
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Appendix A

Asymptotic distribution under P(n)
θθθn,κn, f ,

with κn = τ√p/n, of the Rayleigh test
statistic in the fixed-p case

We focus on the fixed-p case (pn = p for any n) and derive the asymptotic distribu-
tion of the Rayleigh test statistic Rn under sequences of alternatives of the form P(n)

θθθ,κn , f
,

with κn = τn/
p

n, where the sequence (τn) converges to some τ ∈ (0,∞).
Thanks to decomposition (1.9) we can rewrite the Rayleigh test statistic Rn as

Rn = p

n

n∑
i , j=1

X′
ni Xn j = p

n

n∑
i , j=1

(uniθθθ+ vni Sni )′(un jθθθ+ vn j Sn j )

= p

n

n∑
i , j=1

(uni un j + vni vn j S′
ni Sn j ) = Y2

n + 1

p
Z′

nAZn ,

where we let

A := p
(
Ip −θθθθθθ′) ,

Yn :=
p

pp
n

n∑
i=1

uni ,

Zn :=
p

pp
n

n∑
i=1

vni Sni .

Under P(n)
0 , the multivariate CLT, along with Lemma 4.3.1(i) and identity (1.5) provide(

Yn
Zn

)
D→N

(
0,

(
1 0′
0 ΣΣΣ

))
, with ΣΣΣ := 1

p
(Ip −θθθθθθ′). (A.1)

Clearly, Y2
n is asymptotically χ2

1 under P(n)
0 . By using the identities ΣΣΣAΣΣΣAΣΣΣ =ΣΣΣAΣΣΣ and

tr[ΣΣΣA] = p−1, Theorem 9.2.1 in [Rao and Mitra, 1971] shows that (1/p)Z′
nAZn is asymptot-

ically χ2
p−1 under P(n)

0 . Since the joint asymptotic normality result in (A.1) ensures asymp-

totic independence of Y2
n and (1/p)Z′

nAZn , this confirms that Rn is asymptotically χ2
p un-

der P(n)
0 .

Let us now turn to the sequence of alternatives P(n)
θθθ,κn , f

considered above. In view of

Theorem 2.2.1, Le Cam’s Third Lemma directly shows that under P(n)
θθθ,κn , f

,(
Yn
Zn

)
D→N

((
τ
0

)
,
(

1 0′
0 ΣΣΣ

))
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as n →∞. Under the same sequence of alternatives, Y2
n is therefore asymptotically χ2

1(τ2)
(that is, non-central χ2

1 with non-centrality parameter τ2) and 1
p Z′

nAZn is still asymptot-

ically χ2
p−1. Asymptotic independence between Yn and Zn still holds under contiguous

alternatives, which shows that under P(n)
θθθ,κn , f

Rn
D→ χ2

1(τ2)+χ2
p−1,

where the χ2 terms are independent. This establishes the asymptotic result in (2.12). �
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Appendix B

Universality of the asymptotic
high-dimensional distribution of the
Rayleigh test in the FvML case

We prove in this section that conditions (i)-(iii) of Theorem 4.1.2 universally hold un-
der FvML distributions, in the sense that, if Fn is FvML for any n, then the theorem does
not require any condition on the dependence of pn and κn on n (but for the fact that pn →
∞ as n →∞). The proof requires several preliminary results.

Lemma B.0.1. Write e` := e`;p,κ := E
[
(X′θθθ)`

]
, where X follows a p-dimensional FvML dis-

tribution with concentration κ(> 0) and location θθθ(∈ Sp−1). Then

e1 = r, e2 =−p −1

κ
r +1, e3 = p(p −1)+κ2

κ2
r − p −1

κ

and

e4 =− (p −1)((p +1)p +2κ2)

κ3
r + (p −1)(p +1)+κ2

κ2
,

where we let

r := rp,κ :=
Ip

2
(κ)

Ip/2−1(κ)
,

where Iν(·) stands here for the order-ν modified Bessel function of the first kind.

Proof of Lemma B.0.1. Using integration by parts in the representation result

Iν(z) = (z/2)νp
πΓ

(
ν+ 1

2

) ∫ 1

−1
(1− s2)ν−

1
2 exp(zs)d s (B.1)

(see, e.g., (10.32.2) in [Olver et al., 2010]) provides∫ 1

−1
s(1− s2)ν−

1
2 exp(zs)d s = z

2ν+1

∫ 1

−1
(1− s2)(ν+1)− 1

2 exp(zs)d s

= z
p
πΓ(ν+ 3

2 )Iν+1(z)

(2ν+1)(z/2)ν+1
, (B.2)

which readily leads to

e1 = (κ/2)(p−2)/2

p
πΓ

(
p−1

2

)
Ip/2−1(κ)

∫ 1

−1
s(1− s2)

p−3
2 exp(κs)d s =

Γ
(

p+1
2

)
Ip

2
(κ)

p−1
2 Γ

(
p−1

2

)
Ip/2−1(κ)

=
Ip

2
(κ)

Ip/2−1(κ)
·
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Turning to e2, (B.1) above yields∫ 1

−1
s2(1− s2)ν−

1
2 exp(zs)d s =

∫ 1

−1
(1− (1− s2))(1− s2)ν−

1
2 exp(zs)d s

=
p
πΓ

(
ν+ 1

2

)
Iν(z)

(z/2)ν
−
p
πΓ(ν+ 3

2 )Iν+1(z)

(z/2)ν+1
·

Hence,

e2 = (κ/2)(p−2)/2

p
πΓ

(
p−1

2

)
Ip/2−1(κ)

∫ 1

−1
s2(1− s2)

p−3
2 exp(κs)d s

= (κ/2)(p−2)/2

p
πΓ

(
p−1

2

)
Ip/2−1(κ)

p
πΓ

(
p−1

2

)
Ip/2−1(κ)

(κ/2)
p
2 −1

−
p
πΓ

(
p+1

2

)
Ip

2
(κ)

(κ/2)p/2



= 1−
Γ

(
p+1

2

)
Ip

2
(κ)

(κ/2)Γ
(

p−1
2

)
Ip/2−1(κ)

= 1−
(p −1)Ip

2
(κ)

κIp/2−1(κ)
,

as was to be shown. The results for

e` =
(κ/2)(p−2)/2

p
πΓ

(
p−1

2

)
Ip/2−1(κ)

∫ 1

−1
s2(1− s2)

p−3
2 exp(κs)d s, `= 3,4,

follow similarly by using the expressions obtained by plugging (B.1)-(B.2) into∫ 1

−1
s3(1− s2)ν−

1
2 exp(zs)d s =

∫ 1

−1
s(1− s2)ν−

1
2 exp(zs)d s −

∫ 1

−1
s(1− s2)ν+1− 1

2 exp(zs)d s

and ∫ 1

−1
s4(1− s2)ν−

1
2 exp(zs)d s =

∫ 1

−1
(1− s2)ν+2− 1

2 exp(zs)d s

−2
∫ 1

−1
(1− s2)ν+1− 1

2 exp(zs)d s +
∫ 1

−1
(1− s2)ν−

1
2 exp(zs)d s,

along with the well-known recurrence relation

Iν+1(z) =Iν−1(z)− 2ν

z
Iν(z); (B.3)

see (10.29.1) in [Olver et al., 2010].

Note that closed form expressions for f` := f`;p,κ = E
[(

1− (X′θθθ)2
)`/2

]
, where X still fol-

lows a p-dimensional FvML distribution with concentration κ(> 0) and locationθθθ, can be
obtained much more directly than in Lemma B.0.1, as (B.1) readily yields

f` =
(κ/2)(p−2)/2

p
πΓ

(
p−1

2

)
Ip/2−1(κ)

∫ 1

−1
(1− s2)

p+`−3
2 exp(κs)d s =

Γ
(

p+`−1
2

)
Ip+`

2 −1
(κ)

(κ/2)
`
2Γ

(
p−1

2

)
Ip/2−1(κ)

· (B.4)

The following theorem implies that, under FvML distributions, Theorem 4.1.2 does
not impose any condition on the way pn should go to infinity as a function of n.
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Theorem B.0.2. Let us still write e` := e`;p,κ := E
[
(X′θθθ)`

]
and f` := f`;p,κ = E

[(
1− (X′θθθ)2

)`/2
]

,

where X follows a p-dimensional FvML distribution with concentration κ(> 0) and loca-

tion θθθ. Further let ẽ` := ẽ`;p,κ := E
[(

X′θθθ−e1
)`]. Then there exist a positive integer p0 and a

real constant C such that

(i)
pẽ2

2

f 2
2

≤ C, (ii)
ẽ4

ẽ2
2

≤ C, and (iii)
f4

f 2
2

≤ C,

for any p ≥ p0 and any κ> 0.

The proof requires both following lemmas on the modified Bessel functions ratio

Rν(z) := Iν+1(z)

Iν(z)
,

where we adopt the same notation as in [Hornik and Grün, 2013].

Lemma B.0.3. Fix ν> 0 and z > 0, and let Gα,β(t ) = t/(α+√
t 2 +β2). Then

(i) Rν(z) ≥ Gν+1,ν+1(z),

(ii) Rν(z) ≥ Gν+1/2,ν+3/2(z),

(iii) Rν(z) ≤ Gν+1/2,ν+1/2(z) ,

(iv) Rν(z) ≤ Gν,ν+2(z),

(v) Rν(z) ≤ Gν,ν(z),

(vi) Rν(z) ≤ Gν+1/2,
p

(ν+1/2)(ν+3/2)(z).

These bounds, that have been obtained in [Amos, 1974] ((i)-(v)) and [Simpson and Spec-
tor, 1984] ((vi)), are actually sufficient to establish Theorem B.0.2(i) and (iii). To prove
Theorem B.0.2(ii), however, we will need the following reinforcement of the bounds in
Lemma B.0.3(ii)-(iii) and an appropriate control of the resulting approximation error; see
[Paindaveine, 2016] for a proof.

Lemma B.0.4. Fix ν> 0 and z ≥ 0, and let

aν(z) :=
(
ν+ 3

2

)
(ν+4)+ z2(

ν+ 3
2

)(
ν+ 7

2

)+ z2
, bν(z) :=

(
ν+ 5

2

)
(ν+2)+ z2(

ν+ 3
2

)(
ν+ 7

2

)+ z2
,

cν(z) :=
(
ν+ 3

2

)(
ν+ 5

2

)+ z2(
ν+ 3

2

)(
ν+ 7

2

)+ z2
, dν(z) := (ν+1)

(
ν+ 3

2

)+ z2(
ν+ 1

2

)(
ν+ 3

2

)+ z2

and

eν(z) :=
(
ν+ 1

2

)(
ν+ 5

2

)+ z2(
ν+ 1

2

)(
ν+ 3

2

)+ z2
·

Then

(i) Lν(z) ≤ Rν(z) ≤ Uν(z), with

Lν(z) := z

aν(z)
(
ν+ 1

2

)+√(
bν(z)

(
ν+ 3

2

))2 + cν(z)z2

and
Uν(z) := z

dν(z)
(
ν+ 1

2

)+√(
dν(z)

(
ν+ 1

2

))2 +eν(z)z2
;
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(ii) there exists ν0 > 0 such that

ν7 + z7

z3 (Uν(z)−Lν(z)) ≤ 3(2ν+3)2

8
for any ν≥ ν0 and any z > 0.

Proof of Theorem B.0.2 (i). From Lemma B.0.1, we obtain

pẽ2
2

f 2
2

= pẽ2
2

(1−e2)2
=
κ2p

(
r 2 + p−1

κ r −1
)2

(p −1)2r 2
= κ2p

(
ga(r )gb(r )

)2

(p −1)2r 2
, (B.5)

where we let

ga(x) := G− p−1
2 , p−1

2
(κ)+x,

gb(x) := G p−1
2 , p−1

2
(κ)−x.

We need to control both ga(r ) and gb(r ), which can be achieved by using Lemma B.0.3.
Starting with ga(r ), Lemma B.0.3(iii) readily yields that

ga(r ) ≤ G− p−1
2 , p−1

2
(κ)+G p−1

2 , p−1
2

(κ) = 2

κ

√(
p−1

2

)2 +κ2.

As for gb(r ), Lemma B.0.3(ii) entails

gb(r ) ≤ G p−1
2 , p−1

2
(κ)−G p−1

2 , p+1
2

(κ) =
κ

(√(
p+1

2

)2 +κ2 −
√(

p−1
2

)2 +κ2

)
(

p−1
2 +

√(
p−1

2

)2 +κ2

)(
p−1

2 +
√(

p+1
2

)2 +κ2

)
= κp(

p−1
2 +

√(
p−1

2

)2 +κ2

)(
p−1

2 +
√(

p+1
2

)2 +κ2

)(√(
p+1

2

)2 +κ2 +
√(

p−1
2

)2 +κ2

)
≤ κp

2

(
p−1

2 +
√(

p−1
2

)2 +κ2

)2 √(
p−1

2

)2 +κ2

.

Plugging into (B.5) provides

pẽ2
2

f 2
2

≤ κ2p3

(p −1)2

(
p−1

2 +
√(

p−1
2

)2 +κ2

)4

r 2

·

Using Lemma B.0.3(ii) again then yields

pẽ2
2

f 2
2

≤ κ2p3

(p −1)2

(
p−1

2 +
√(

p−1
2

)2 +κ2

)4 (
G p−1

2 , p+1
2

(κ)
)2

=
p3

(
p−1

2 +
√(

p+1
2

)2 +κ2

)2

(p −1)2

(
p−1

2 +
√(

p−1
2

)2 +κ2

)4

≤ p3

(p −1)4


p−1

2 +
√(

p+1
2

)2 +κ2

p−1
2 +

√(
p−1

2

)2 +κ2


2

≤ 8

p −1


p−1

2 +
√

9
(

p−1
2

)2 +κ2

p−1
2 +

√(
p−1

2

)2 +κ2


2

≤ 24,

for any p ≥ 2 and any κ> 0, which establishes the result.
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Proof of Theorem B.0.2 (iii). From (B.4), we obtain

f4

f 2
2

= (p +1)Ip/2−1(κ)Ip/2+1(κ)

(p −1)I 2
p/2(κ)

≤ 3Ip/2−1(κ)Ip/2+1(κ)

I 2
p/2(κ)

,

for any p ≥ 2 and any κ> 0. By using (B.3), this provides

f4

3 f 2
2

≤
Ip/2−1(κ)(Ip/2−1(κ)− (p/κ)Ip

2
(κ))

I 2
p/2(κ)

= 1

r 2
− p

κr
= κ−pr

κr 2

(note that Lemma B.0.3(iv) yields r ≤ Gp/2−1,p/2+1(κ) ≤ κ/p). Lemma B.0.3(i) then entails

f4

3 f 2
2

≤
κ−pG p−1

2 , p+1
2

(κ)

κ
(
G p−1

2 , p+1
2

(κ)
)2 = 1

κ2

(
p−1

2 +
√(

p+1
2

)2 +κ2

)2

1− p

p−1
2 +

√(
p+1

2

)2 +κ2


≤ 1

κ2

(
p−1

2 +
√(

p+1
2

)2 +κ2

)(
−p+1

2 +
√(

p+1
2

)2 +κ2

)

= 1+ 1

κ2

(
p+1

2 −
√(

p+1
2

)2 +κ2

)
= 1− 1

p+1
2 +

√(
p+1

2

)2 +κ2

≤ 1,

which proves the result.

Proof of Theorem B.0.2 (ii). Plugging the expressions of e`, `= 1,2,3,4, from Lemma B.0.1
into

ẽn4

ẽ2
n2

= e4 −4e3e1 +6e2e2
1 −4e4

1 +e4
1

(e2 −e2
1)2

= e4 −4e3e1 +6e2e2
1 −3e4

1

e2
2 −2e2

1e2 +e4
1

(B.6)

yields (after tedious computations)

ẽn4

ẽ2
n2

= −(p2 +2p +4κ2 −3)x2 − p−1
κ (p2 +p +4κ2)x + (p2 +4κ2 −1)

κ2
(
x2 + p−1

κ x −1
)2 −3 =: h(r )−3,

We need to show that h(r ) is bounded in (p,κ) for p large enough, which will be done on
the basis of the factorization

h(r ) = (p2 +2p +4κ2 −3) fa(r ) fb(r )

κ2
(
ga(r )gb(r )

)2 , (B.7)

where we let

fa(x) :=
(

p −1

2κ

) p
2

(
p+1

2

)
+κ2(

p−1
2

)(
p+3

2

)
+κ2

+

√√√√√√
(

p −1

2κ

) p
2

(
p+1

2

)
+κ2(

p−1
2

)(
p+3

2

)
+κ2

2

+
(

p−1
2

)(
p+1

2

)
+κ2(

p−1
2

)(
p+3

2

)
+κ2

+x,

fb(x) :=−
(

p −1

2κ

) p
2

(
p+1

2

)
+κ2(

p−1
2

)(
p+3

2

)
+κ2

+

√√√√√√
(

p −1

2κ

) p
2

(
p+1

2

)
+κ2(

p−1
2

)(
p+3

2

)
+κ2

2

+
(

p−1
2

)(
p+1

2

)
+κ2(

p−1
2

)(
p+3

2

)
+κ2

−x,
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and where ga(x) and gb(x) are the functions already considered in the proof of Theo-
rem B.0.2(i).

We start with ga(r ), which, in view of Lemma B.0.3(i), satisfies

ga(r ) ≥ G− p−1
2 , p−1

2
(κ)+G p

2 , p
2

(κ) ≥
√

1+
(

p −1

2κ

)2

+ p−1
2κ +

√
1+ ( p

2κ

)2 − p
2κ

≥ 2

√
1+

(
p −1

2κ

)2

− 1
2κ ≥

p
2
(
1+

(
p−1
2κ

))
− 1

2κ ≥
p

2
(
1+ ( p−2

2κ )
)
≥ C(p +κ)

κ
,

where C stands for a positive real constant (that may change from line to line in the rest
of the proof). Turning to gb(r ), Lemma B.0.3(vi) yields

gb(r ) = G p−1
2 , p−1

2
(κ)−G p−1

2 ,
p

(p2−1)/4
(κ) =

κ(
√

p2−1
4 +κ2 −

√(
p−1

2

)2 +κ2)

( p−1
2 +

√(
p−1

2

)2 +κ2)( p−1
2 +

√
p2−1

4 +κ2)

= κ(p −1)

2( p−1
2 +

√(
p−1

2

)2 +κ2)( p−1
2 +

√
p2−1

4 +κ2)(
√

p2−1
4 +κ2 +

√(
p−1

2

)2 +κ2)

≥ κ(p −1)

4(p +√
p2 +κ2)3

≥ Cκp

p3 +κ3
·

Now, by applying Lemma B.0.3(v), we obtain

fa(r ) ≤ p−1
2κ +

√(
p−1
2κ

)2 +1+ r ≤ p−1
2κ +

√(
p−1
2κ

)2 +1+G p
2 −1, p

2 −1(κ)

=
p−1

2 +
√

( p−1
2 )2 +κ2

κ
+

√
( p

2 −1)2 +κ2 − ( p
2 −1)

κ

≤
1
2 +2

√
( p−1

2 )2 +κ2

κ
≤ C(p +κ)

κ
.

Finally, using the notation and results from Lemma B.0.4, we obtain

fb(r ) = −
(

p −1

2κ

) p
2

(
p+1

2

)
+κ2(

p−1
2

)(
p+3

2

)
+κ2

+

√√√√√√
(

p −1

2κ

) p
2

(
p+1

2

)
+κ2(

p−1
2

)(
p+3

2

)
+κ2

2

+
(

p−1
2

)(
p+1

2

)
+κ2(

p−1
2

)(
p+3

2

)
+κ2

− r

= U p
2 −1 − r ≤ U p

2 −1 −L p
2 −1 ≤

Cκ3( p+1
2 )2

( p
2 −1)7 +κ7

≤ Cκ3p2

p7 +κ7
,

for p large enough and any κ> 0.
Plugging in (B.7) the bounds just obtained on ga(r ), gb(r ), fa(r ) and fb(r ) entails

ẽn4

ẽ2
n2

+3 = h(r ) ≤ C
p2 +2p +4κ2 −3

κ2
× κ2

(p +κ)2
× (p3 +κ3)2

κ2p2
× p +κ

κ
× κ3p2

p7 +κ7

≤ C
(p2 +κ2)(p3 +κ3)2

(p +κ)(p7 +κ7)
≤ C,

for p large enough and any κ> 0, as was to be proved.
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Appendix C

Consistency of the Bingham test when
n1/4κn/p3/4

n →∞ in the high-dimensional
FvML case

In this appendix, we show that the constraint κn = o
(p

pn
)

in Theorem 4.2.7(iii) is
superfluous in the FvML case, which validates the concentration scheme (iii) in the simu-
lation exercise we conducted in Section 4.2.3 (recall that the condition κn = o

(p
pn

)
is not

met in this concentration scheme).

Proposition C.0.1. Let (pn) be a sequence of positive integers diverging to ∞ and (θθθn) be
a sequence such that θθθn ∈ Spn−1 for any n. Fix f (z) = exp(z). Assume that the real non-
negative sequence (κn) satisfies n1/4κn/p3/4

n →∞. Then,

(i)
p

npn gn2 →∞ as n →∞,

(ii) en4 = o(ng 2
n2) as n →∞,

so that

(iii) for any real number M, P(n)
θθθn ,κn , f

[
QSt

n > M
]→ 1 as n →∞.

Proof.

(i) As seen from (2)–(3) in [Schou, 1978] or from Lemma B.0.1,

en1 =
Ipn /2(κn)

Ipn /2−1(κn)
, en2 =−pn −1

κn
en1 +1 (C.1)

and

en4 =− (pn −1)
(
pn(pn +1)+2κ2

n

)
κ3

n
en1 +

(pn −1)(pn +1)+κ2
n

κ2
n

, (C.2)

where Iν(·) stands for the order-ν modified Bessel function of the first kind. It fol-
lows from (11) in [Amos, 1974] that

κn

pn
2 +

√
p2

n
4 +κ2

n

≤ en1 ≤ κn

pn
2 −1+

√(pn
2 +1

)2 +κ2
n

· (C.3)

Now, note that (C.1) provides (for pn ≥ 2)

gn2 = en2 − 1

pn
= 1− 1

pn
− pn −1

κn
en1 = pn −1

pn

(
1− en1

κn/pn

)
≥ 1

2

(
1− en1

κn/pn

)
.
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Since (C.3) implies in particular that

1− en1

κn/pn
≥ 1− 1

1
2 − 1

pn
+

√(
1
2 + 1

pn

)2 + κ2
n

p2
n

= κ2
n/p2

n

1
2 + 1

pn
+ κ2

n

p2
n
+

√(
1
2 + 1

pn

)2 + κ2
n

p2
n

,

we thus have

2
p

npn gn2 ≥
p

nκ2
n/p3/2

n

1
2 + 1

pn
+ κ2

n

p2
n
+

√(
1
2 + 1

pn

)2 + κ2
n

p2
n

·

Therefore, by using the identity
p

a2 +b2 ≤ |a|+ |b|, we obtain that (still for pn ≥ 2)

2
p

npn gn2 ≥
p

nκ2
n/p3/2

n

1+ 2
pn

+ κ2
n

p2
n
+ κn

pn

≥
p

nκ2
n/p3/2

n

2
(
1+ κn

pn

)2 ≥
p

nκ2
n/p3/2

n

2
(
2max

(
1, κn

pn

))2

=
p

nκ2
n

8p3/2
n

min

(
1,

p2
n

κ2
n

)
= 1

8
min

((
n1/4κn

p3/4
n

)2

,
p

npn

)
, (C.4)

which diverges to infinity by assumption. Part (i) of the result follows.

(ii) From (C.4), we have

en4

ng 2
n2

= 4pnen4(
2
p

npn gn2
)2 ≤ 256pnen4 max

(
p3

n

nκ4
n

,
1

npn

)
≤ 256max

(
p4

nen4

nκ4
n

,
1

n

)
. (C.5)

Now, by using (C.2) and (C.3), we obtain

en4 ≤− (pn −1)
(
pn(pn +1)+2κ2

n

)
κ3

n
× κn/pn

1
2 +

√
1
4 +

κ2
n

p2
n

+ (pn −1)(pn +1)+κ2
n

κ2
n

= 1+ p2
n −1

κ2
n

− p2
n −1

κ2
n

(
1
2 +

√
1
4 +

κ2
n

p2
n

) − 2(pn −1)

pn

(
1
2 +

√
1
4 +

κ2
n

p2
n

)

= 1+ p2
n −1

κ2
n

1− 1

1
2 +

√
1
4 +

κ2
n

p2
n

− 2

1
2 +

√
1
4 +

κ2
n

p2
n

+ 2

pn

(
1
2 +

√
1
4 +

κ2
n

p2
n

)
= 1+ p2

n −1

p2
n

(
1
2 +

√
1
4 +

κ2
n

p2
n

)2 − 2

1
2 +

√
1
4 +

κ2
n

p2
n

+ 2

pn

(
1
2 +

√
1
4 +

κ2
n

p2
n

) ,

which entails

en4 ≤ 1+ 1(
1
2 +

√
1
4 +

κ2
n

p2
n

)2 − 2

1
2 +

√
1
4 +

κ2
n

p2
n

+ 2

pn
=

1− 1

1
2 +

√
1
4 +

κ2
n

p2
n


2

+ 2

pn

= κ4
n/p4

n(
1
2 +

√
1
4 +

κ2
n

p2
n

)4 + 2

pn
≤ κ4

n

p4
n
+ 2

pn
·
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Therefore,
en4p4

n

nκ4
n

≤ 1

n
+ 2p3

n

nκ4
n
= o(1)

by assumption, so that Part (ii) of the result follows from (C.5).

(iii) In view of Parts (i)–(ii) of the result, the claim directly follows from Theorem 4.2.3(iii).
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