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A B S T R A C T

Studying the influence of changing environmental conditions on Antarctic marine benthic invertebrates is
strongly constrained by limited access to the region, which poses difficulties to performing long-term experi-
mental studies. Ecological modelling has been increasingly used as a potential alternative to assess the impact of
such changes on species distribution or physiological performance.

Among ecological models, the Dynamic Energy Budget (DEB) approach represents each individual through
four energetic compartments (i.e. reserve, structure, maturation and reproduction) from which energy is allo-
cated in contrasting proportions according to different life stages and to two forcing environmental factors (food
resources and temperature).

In this study, the example of an abundant coastal limpet, Nacella concinna (Strebel 1908), was studied. The
species is known to have intertidal and subtidal morphotypes, genetically similar but physiologically and
morphologically contrasting.

The objectives of this paper are (1) to evaluate the potential of the DEB approach, and assess whether a DEB
model can be separately built for the intertidal and subtidal morphotypes, based on a field experiment and data
from literature and (2) to analyse whether models are contrasting enough to reflect the known physiological and
morphological differences between the morphotypes.

We found only minor differences in temperature-corrected parameter values between both populations,
meaning that the observed differences can be only explained by differences in environmental conditions (i.e.
DEB considered variables, food resources and temperature, but also other variables not considered by DEB).
Despite the known morphological difference between the populations, the difference in shape coefficients was
small.

This study shows that even with the amount of data so far available in the literature, DEB models can already
be applied to some Southern Ocean case studies, but, more data are required to accurately model the physio-
logical and morphological differences between individuals.

1. Introduction

Antarctic regions have faced strong environmental change since the
twentieth century (recently reviewed in Henley et al. 2019), with a
strong warming in some regions, such as in the Western Antarctic Pe-
ninsula (King et al. 2003, Vaughan et al. 2003, Meredith and King
2005), leading to important shifts in sea ice regimes and seasonality,
including the duration and extent of sea ice cover

(Stammerjohn et al. 2012, Turner et al. 2016, Schofield et al. 2017).
The increase in the rate of glacier melting has been reported as a cause
of important disturbance of the physical (currents, salinities) and bio-
logical environment (phytoplankton blooms, communities)
(Meredith and King 2005, Schloss et al. 2012, Bers et al. 2013). Such
changes have a direct impact on marine communities and particularly
in coastal marine areas (both intertidal and subtidal)(Barnes and Peck
2008, Smale and Barnes 2008, Barnes and Souster 2011,
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Waller et al. 2017, Stenni et al. 2017, Gutt et al. 2018), which are places
of complex land-sea interface and ecological processes. The multiple
effects of ice retreat and meltwater on nearshore marine habitats have
contributed to the expansion of intertidal zones and habitat alteration
due to seawater freshening and stratification, shifting near-shore sedi-
mentation, changes in water properties and current dynamics.

However, studying Antarctic marine life is challenging. Not only do
the environmental conditions make the region difficult to access and
work in, but substantial financial and technical constraints make field
sampling and experiments difficult to organise (e.g. cold, ice, duration
of daylight; Kaiser et al. 2013, Kennicutt et al. 2014, 2015,
Xavier et al. 2016, Gutt et al. 2018). However, conducting physiological
studies of Antarctic marine organisms has become urgent as we aim to
assess their sensitivity and potential response (resilience, distribution
shift or local extinction) to environmental change, a key issue for the
conservation of marine life and special protected areas
(Kennicutt et al. 2014, 2015, 2019 https://www.ccamlr.org/en/
organisation/home-page).

An alternative to completing studies in these environments is the
use of modelling approaches. Data needs interpretation to test hy-
potheses, which involves assumptions, that need to be explicit. Using a
modelling approach is therefore a good strategy. Ecological modelling
is used to describe species distribution and assess their climate envel-
opes (Elith et al. 2006, Peterson et al. 2011), study species tolerances to
toxicants and to environmental change (Jager et al. 2014,
Petter et al. 2014, Baas and Kooijman 2015) and model species en-
ergetic performance (Serpa et al. 2013, Thomas et al. 2016). Among
these ecological models, the Dynamic Energy Budget (DEB) theory
(Kooijman, 2010) has become increasingly popular. DEB parameters
have been so far estimated for more than 2,000 animal species and
collected in the ‘Add-my-Pet’ (AmP) collection (http://www.bio.vu.nl/
thb/deb/deblab/add_my_pet/). It constitutes one of the most powerful
approaches to characterize individual metabolic performances
(Nisbet et al. 2012, Kearney et al. 2015, Jusup et al. 2017) and can be
calibrated for data-poor animals (Mariño et al. 2019). DEB models rely
on thermodynamic concepts (Jusup et al. 2017) and study how energy
flows are driven within individuals during their entire life cycle
(Kooijman 2010). Each individual is divided into four energetic com-
partments: reserve E, structure V, maturation EH and reproduction ER
from which the energy is allocated in contrasting proportions according
to the different life stages and two forcing environmental factors (i.e.
food resources and temperature).

DEB models can be built with data coming from experiments and/or
literature, to quantify age, length, weight of the different life stages and
provide information on reproduction, growth and metabolic rates to
calibrate the model (van der Meer 2006, Marques et al. 2014).

Application of DEB models to Antarctic species is increasing. They
can be easily extracted from the AmP collection, using the software
AmPtool. The Matlab command “select_eco(‘ecozone’, {‘MS’})” pre-
sently gives a list of 37 species, where MS stands for “Marine, Southern
Ocean”. Command “select_eco(‘ecozone’, {‘TS’})” gives another 3 spe-
cies for the terrestrial Antarctic environment, among which the mite
Alaskozetes antarcticus. Among the most common and well studied
Southern Ocean benthic invertebrates are the sea star Odontaster validus
(Agüera et al. 2015), the bivalve Laternula elliptica (Agüera et al. 2017),
the bivalve Adamussium colbecki (Guillaumot 2019a) and the sea
urchins Sterechinus neumayeri (Stainthorp and Kooijman 2017) and
Abatus cordatus (Arnould-Pétré et al. this issue). DEB models have also
been developed for some pelagic species such as the Antarctic krill
Euphausia superba, the salp Salpa thompsoni (Jager and Ravagnan 2015,
Henschke et al. 2018) and are under development for marine mammals
such as the elephant seal Mirounga leonina (Goedegebuure et al. 2018).
Antarctic species have a range of notable physiological traits when
compared to their temperate counterparts. Among others, they are
physiologically adapted to constant cold temperatures
(Peck et al. 2009, Morley et al. 2009, 2014), shifting day length also

imposes a marked seasonal feeding behaviour (McClintock 1994,
Clarke et al. 2008, Halanych and Mahon 2018), and they exhibit slow
metabolic and growth rates, explaining their longer lifespans and
higher longevities compared to species in other regions (Peck and Brey
1996, Peck 2002).

The limpet Nacella concinna (Strebel, 1908) (Mollusca: Patellogas-
tropoda) is a common and abundant gastropod of shallow marine
benthic communities. Distributed all along the Western Antarctic Pe-
ninsula (González-Wevar et al. 2011, phylogeny recently reviewed in
González-Wevar et al. 2018), it has widely been studied for decades
(Shabica 1971, 1976, Walker 1972, Hargens and Shabica 1973,
Houlihan and Allan 1982, Peck 1989, Clarke 1989, Cadée 1999,
Ansaldo et al. 2007, Fraser et al. 2007, Markowska and Kidawa 2007,
Morley et al. 2011, 2014, Suda et al. 2015, Souster et al. 2018). The
limpet is found from intertidal rocky shores down to over 100 meters
depth (Powell 1951, Walker 1972). It has a 2-5 cm long shell (Fig. 1),
that grows only a few millimeters a year with a seasonal pattern. It is
sexually mature after four to six years and has a life span of up to 10
years (Shabica 1976, Picken 1980, Brêthes et al. 1994). The limpet
mainly feeds on microphytobenthos and microalgae (Shabica 1976,
Brêthes et al. 1994). It spawns free-swimming planktonic larvae once a
year, when water temperature rises in the austral summer
(Shabica 1971, Picken 1980, Picken and Allan 1983). Larvae drift in the
water column and metamorphose after more than two months
(Stanwell-Smith and Clarke 1998).

N. concinna does not have a homing behaviour (Stanwell-Smith and
Clarke 1998, Weihe and Abele 2008, Suda et al. 2015) and intertidal
individuals can either migrate to subtidal areas in winter to escape
freezing air temperatures that may drop below -20°C (Walker 1972,
Branch 1981, Brêthes et al. 1994) or shelter in rock cracks and crevices
in the intertidal area. In the latter case, they do not become dormant
but have a limited access to microphytobenthos, as recently observed
around Adelaide Island (Obermüller et al. 2011).

Two morphotypes of N. concinna have been distinguished, an in-
tertidal and a subtidal type, with the intertidal type having a taller,
heavier and thicker shell compared to the subtidal one that is char-
acterized by a lighter and flatter shell (Beaumont and Wei 1991,
Hoffman et al. 2010). Initially, Strebel (1908) and Powell (1951) re-
ferred to these two morphotypes as the ‘polaris’ (intertidal) and ‘con-
cinna’ types (below 4m depth). From that point, the potential genetic
differentiation between the two morphotypes has been investigated,
some of the studies concluding an absence of genetic distinction
(Wei 1988, Beaumont and Wei 1991, Nolan 1991) while contrarily, de
Aranzamendi et al. (2008) reported significant differences based on
inter-simple sequence repeat (ISSR) markers. More recently, this last
method was questioned (Hoffman et al. 2010) and several studies using
different markers and populations (Chwedorzewska et al. 2010,
Hoffman et al. 2010, González-Wevar et al. 2011) have concluded an
absence of genetic differentiation between the two morphotypes.

Apart from the absence of genetic differences, intertidal and

Figure 1. Nacella concinna in apical view (a) and lateral view (b). Scale bar: 1
cm. Source: Q. Jossart, B121 expedition.
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subtidal populations strongly contrast in morphology and physiology,
which has been explained by the prevalence of habitat heterogeneity
and strong environmental gradients along rocky shore habitats, a
common feature also observed in other gastropods (Johannesson 2003,
Butlin et al. 2008, Hoffman et al. 2010). For instance, in N. concinna,
the higher shell thickness observed in the shallow morphotype was
hypothesised to play a role in resistance against crushing pack ice
(Shabica 1971, Morley et al. 2010). Intertidal morphotypes are further
resistant to air exposure thanks to higher shells, bigger inner volumes
relative to their shell circumference, a combination that makes them
more efficient than subtidal individuals, able to store more water and
oxygen, reducing desiccation risks and delaying the metabolic switch to
anaerobic fermentation (Nolan 1991, Weihe and Abele 2008). The
subtidal morphotype has also proved to be less resistant to cold than the
intertidal population (Waller et al. 2006), due to extra production of
mucus and stress proteins in intertidal morphotypes (Clark et al. 2008,
Clark and Peck 2009, Obermüller et al. 2011) and due to diverse me-
tabolic processes that contrast between both populations (reviewed in
Suda et al. 2015).

The development of ecological models enables precise models to be
built, that highlight subtle differences in parameters between ecologi-
cally similar or closely related species (Freitas et al. 2010,
Holsman et al. 2016, Marn et al. 2019, Lika et al. 2020). The idea of
building individual-specific models for understanding of physiological
processes is not new (Bevelhimer et al. 1985, DeAngelis et al. 1994) and
grew from the development of computational ecology that resulted in
the possibility of generating “individual-oriented” models (IOM's)
(Hogeweg and Hesper 1990, DeAngelis et al. 1994). The IOM theory
relies on the principle that “no two biological organisms are exactly
alike, even when they have identical genes”. A group of organisms
within a population can have contrasting size or physiological perfor-
mances according to, for example, food conditions or competition.
Modelling each individual, separately, therefore constitutes a powerful
approach to enhance the understanding of the entire community
(DeAngelis et al. 1994).

In this study, due to the known morphological and physiological
differences between the morphotypes, we first separately built in-
dependent DEB models for the intertidal and subtidal morphotypes of
the limpet N. concinna, based on field experiment and literature data, to
assess the potential differences between the models. Secondly, we
analyse whether the two model outputs suggest contrasting physiolo-
gies between the morphotypes, using a method recently developed in
DEB theory, that tries to reduce differences in parameter values that are
still consistent with the data (Lika et al. 2020). Using this method -the
augmented loss function- we try to merge the information of the two
species models into a single one. If DEB parameters of the two species
can be merged, it means that the physiological differences between
these two species are not strongly different.

These results finally help assess DEB model accuracy giving the
amount of data available to build the models in the context of Antarctic
case studies and help evaluate which type of information is necessary to
gather in order to fill model gaps. Finally, the study evaluates if such
models are valuable for studying Southern Ocean organisms in the
context of altered environments.

2. Material and methods

2.1. DEB Model description

DEB models are based on an ensemble of rules that allocate energy
flows to four main compartments (reserve E, structure V, maturity EH,
reproduction ER) according to a set of priorities and the level of com-
plexity (i.e. maturity) gained by the organism through time (Fig. 2,
Kooijman 2010). Maturity is treated as information, having mass nor
energy. Food is first of all ingested and assimilated (pA) and en-
ergetically stored into a reserve compartment (E). A fraction of the

energy that is mobilised from reserve, pC, is divided into two branches
according to the ‘kappa-rule’: a part of the energy contained in the
reserve compartment (κ. pC) is allocated to somatic maintenance and
structure growth, whereas the second part (1- κ). pC contributes to
maturity (before the ‘puberty’ threshold) or reproduction (after the
‘puberty’ threshold).

The energy is allocated within and in between these branches by the
establishment of some priorities, where somatic maintenance (pM) has
priority over growth and maturity maintenance (pJ) has priority over
maturity and reproduction. During its lifetime, the organism allocates
energy to maturity which symbolizes its complexity and reaches some
life stages at some defined thresholds (, birth, when the organism is
capable to feed; EH

j , metamorphosis; EH
p , puberty, when it can re-

produce). After reaching sexual maturity, the energy that was formerly
allocated to maturity is attributed to the reproduction buffer and the
available energy is allocated to the development of gametes.

Different types of DEB models have been developed and coded for
parameter estimation, see frequently updated https://github.com/add-
my-pet/DEBtool_M page (Marques et al. 2018, 2019). Here, the abj
model was used for N. concinna. This model considers that growth ac-
celeration occurs between birth and metamorphosis (Kooijman 2010,
Mariño et al. 2019).

The DEB model is forced by food availability and temperature.
Temperature acts on metabolic rates following the Arrhenius principle
(see Kooijman 2010, Jusup et al. 2017 for details). A temperature
correction factor is applied to each rate that takes into account the
lower and higher optimal boundaries of the individual tolerance range.

Food available for ingestion is represented by the functional re-
sponse f comprised between [0,1], where 0 is starvation condition and 1
very abundant food.

The parameters of the DEB model can be estimated from multiple
data on the eco-physiology of a species. The ones studied in this work
are presented in Table 1.

2.2. Data collection and DEB calibration

DEB models were calibrated using zero-variate data (single data
points at defined life stages, such as length or weight at sexual maturity,
number of eggs produced per female) and uni-variate data (relation-
ships between two variables such as oxygen consumption and tem-
perature, length~weight , weight or size~time relationships)(van der
Meer 2006, Guillaumot 2019b). Data that were collected from the lit-
erature (Table 2), paying attention to the different taxonomic names
adopted for the species through time (see http://www.marinespecies.
org/aphia.php?p=taxdetails&id=197296, accessed December 2018);
to the sampling area to enable the two morphotypes to be distinguished
(intertidal/subtidal) and to the environmental conditions under which
each dataset was recorded (available food resources and temperature).

Data from the literature were supplemented by experiments led by
S. Morley at Rothera Station (Adelaïde Island, Western Antarctic
Peninsula) in January-February 2018 (details in Appendix A).
Individual shells were brought back to Europe and processed with
imagery to collect growth ring data (Appendix B).

Some data are shared between the intertidal and subtidal morpho-
types due to a lack of information on the morphotypes physiology in the
literature (Table 2). The characteristics of the first developmental life
stage, when the larvae become able to feed (i.e. age, length and weight
at birth) and the pace of development (i.e. age at puberty, maximal
observed age) are assumed to be identical.

Each data set was characterised by the corresponding temperature
and food resources present in the field. Food resources were re-
presented in the model by a scaled functional response f constrained
between 0 and 1, with 0 meaning no food availability and 1 maximal
food abundance. f parameters were differentiated between the different
stations along with temperatures. Food is very abundant in the field for
the limpet and f parameters were therefore kept fixed with values ≥
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0.9. Food availability from the Rothera Station was described by pic-
tures taken in the field and was estimated at f ==1. Signy and Anvers
Islands f was set at 0.9 because physiological traits (growth rate,
maximal size) are very close (but slightly lower) than Rothera's ob-
servations, but no precise information is available for food conditions in
the different publications for these stations.

2.3. DEB parameter estimation and goodness of fit

Sets of zero and uni-variate data, supplemented by pseudo-data

were used to estimate the DEB primary parameters. Pseudo-data are
extra data coming from different taxa that help calibrate the model
estimation similarly to a prior element (Lika et al. 2011a). This pro-
cedure has similarities with Bayesian estimation, but are not embedded
in a maximum likelihood context, since the stochastic component is not
modelled. Before parameter estimation, each data set can be sub-
jectively linked by a weight coefficient to quantify the realism of re-
ducing variation in parameter values. Selected weight coefficients are
always selected small enough in order to hardly affect parameter esti-
mation if the information contained in the real data set is sufficient.

The DEB parameters estimation is done by simultaneously esti-
mating each parameter using these empirical and pseudo-data by
minimizing a loss function (eq. 1), using the Nelder-Mead simplex
method, updated and explained in Marques et al. (2018, 2019). The loss
function that is minimized is
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d p
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where i scans datasets and j points in this dataset. dij and pij are re-
spectively the data and the predictions and d̄i and p̄i their average
values in set i. wij are the attributed coefficients, n is the number of data
sets, ni denotes the data in a dataset, nj the data in data-points.

The value of the loss function is evaluated for each parameter trial.
The goodness of fit of each prediction was quantified by the relative
error (RE). The mean relative error (MRE) quantifies the overall model
performance. RE corresponds to the sum of the absolute differences
between observed and predicted values, divided by the predicted va-
lues. Contrarily to the loss function, the MRE does not take into con-
sideration the weights of the different data (Marques et al. 2018). MRE
values can have values from 0 to infinity, with 0 value meaning that
predictions match data exactly.

2.4. Merging parameters

The augmented loss function approach developed by Lika et al.

Figure 2. Schematic representation of the standard DEB model, with energy fluxes (arrows, in J.d−1) that connect the four compartments (boxes). Energy enters the
organism as food (X), is assimilated at a rate of pA into the reserve compartment (E). The mobilization rate (pC), regulates the energy leaving the reserve to cover
somatic maintenance (pM), structural growth (pG), maturity maintenance (pJ), maturity (pR) (sexually immature individuals) and reproduction (pR) (mature in-
dividuals). κ. pC is the proportion of the mobilized energy diverted to pM and pG, while the remaining part (1- κ). pC is used for pJ and pR.

Table 1
List of the main DEB parameters, definition and units

Parameter Description Unit

Primary DEB parameters
p{ }Am surface-area-specific maximum assimilation rate J.cm−2d−1

v energy conductance (velocity) cm.d−1

Κ fraction of mobilised reserve allocated to soma -
p[ ]M specific volume-linked somatic maintenance rate: pM /

V
J.cm−3d−1

[EG] volume-specic costs of structure; better replaced by
[EV]= κG, where κG is the fraction of growth energy
fixed in structure: [EV]=[EG]

J.cm−3

EH
b maturity at birth J

EH
j maturity at metamorphosis J

EH
p maturity at puberty J

ḧa Weibull ageing acceleration for animals d−2

sG Gompertz stress coefficient -
δM shape (morph) coefficient: L=Lw -
δM_larvae shape (morph) coefficient of the larvae -
Other parameters
Z zoom factor to compare body sizes inter-specifically;

z = 1 for Lm = 1 cm
-

sM Acceleration factor at f =1, it is equal to the ratio of
structural length at metamorphosis and birth.

-

[Em] [Em]= p v{ }/Am ; ratio of specific assimilation over
energy conductance

J.cm−3
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2020 is a new extension that enables to compare small variations in
parameter values between (close) species. The second term (in bold) of
the following equation (eq. 2) is the new extension of the ‘symmetric
bounded (sb)’ loss function:
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where w's are weights, d's data, p's predictions, θ's parameters, j scans
data-points with a data-set of ni points (ni = 1 is allowed), i scans the
data-sets and k the parameters.

In this second term, when wk=0, the parameter θk between species
are different, but when increasing wk, the parameter θk tends to be
similar between species. Therefore, the augmented loss function
method uses this mathematical principle to spot potential differences
between parameters of different species. First, the set of DEB para-
meters are separately estimated for each species and weight coefficients
are set to zero. Then, for each parameter, the weight coefficient will be
step-wise increased, making the loss function shift as a result. If a
maximal weight value is reached without sharp changes in the loss
function value along the weight increase, it means that the parameter
value has a minimum variance between species. Contrarily, if the loss
function value presents a sharp increase due to the change in weight
coefficient, it means that the studied parameter should present con-
trasting values between the related species.

By applying this method to the case study of an intertidal and
subtidal morphotype of the limpet N. concinna, we aim to evaluate
whether there are any differences between both morphotypes caused by
differences in parameters, or whether these differences are explained
only by differences in environmental conditions (i.e. food resources and

temperature). Initially, the sets of parameters have been estimated se-
parately for both morphotypes and all weight coefficients are set to
zero. By step-wise increasing the weight coefficient for a particular
shared parameter, the overall loss function may increase and a common
merged DEB parameter is reached. If a common value of the DEB
parameter can be found without important increase in MRE or loss
function values, it means that the intertidal and subtidal morphotypes
do not significantly differ for this parameter. A similar procedure is
applied for each DEB parameter separately and iteratively. In order to
have a quick idea of replicability in the results, the procedure was re-
plicated five times, contrasting in different orders of DEB parameters
merging (Appendix C). The order of permutation of merged parameters
of these five replicates was chosen randomly among the 11! possible
solutions. Changes in MRE and loss function values at each weight
modification were reported and the predictions of the intertidal, sub-
tidal and merged models were compared.

3. RESULTS

3.1. Parameters of DEB models

DEB predictions for the separate intertidal and subtidal models are
accurate, with MRE values lower than 0.2 (Table 3). Average MRE
value of the AmP collection is close to 0.06. Relative Errors are quite
low, with the highest values obtained for length~GSI data (RE=
0.6089 and 0.8702 for intertidal and subtidal models respectively) and
time~length relationships, obtained from the sclerochronology mea-
surements, that are highly variable between each measured shell (re-
spectively RE= 0.3645 and 0.5924 for intertidal and subtidal models)

Table 2
Zero and uni-variate data used to build the intertidal and subtidal models.

INTERTIDAL GROUP SUBTIDAL GROUP
Zero-variate data, (unit) Value Reference Value Reference

Age at birth
ab (days)

10 Peck et al. (2016) Same as intertidal

Age at puberty
ap (years)

4 Shabica (1976) Same as intertidal

Maximal observed age
am (years)

14 Shabica (1976) Same as intertidal

Length at birth
Lb (cm)

0.0228 Peck et al. 2016 Same as intertidal

Length at puberty
Lp (cm)

1.54 S. Morley experiment (2018) 1.59 Picken (1980)

Maximal observed shell length
Li (cm)

5.8* Shabica (1976) 5.52** S. Morley experiment (2018)

Wet weight of the egg
Ww0 (g)

5.8.10−6*** Peck et al. (2016) Same as intertidal

AFDW at puberty
Wdp (g)

0.0236 Shabica (1976) 0.057 S. Morley experiment (2018)

Uni-variate data, (unit) Reference Reference

Length ~ AFDW
LWd_signy (cm, g)

Nolan (1991), Signy Island Nolan (1991), Signy Island

Length ~ AFDW
LWd (cm, g)

S. Morley experiment (2018) S. Morley experiment (2018)

Length ~ Gonado somatic index
LGSI(cm, -)

S. Morley experiment (2018) S. Morley experiment (2018)

Length ~ Oxygen consumption
LJO (cm, μmol/h)

S. Morley experiment (2018) S. Morley experiment (2018)

Temperature ~ Oxygen consumption
TJO (K, μL/h)

Peck (1989) Peck (1989)

Time ~ Length
tL (d, cm)

S. Morley experiment (2018)**** S. Morley experiment (2018)****

*Max sized collected individual on the field during Belgica121 expedition (Danis et al. 2019)
⁎⁎Shabica 1976 indicates an observed value of 5.8cm and S. Morley measurements indicate a ratio between intertidal/subtidal lengths of the morphotypes of 1.05.
The unknown subtidal Li value was calculated as 5.8/1.05= 5.52cm.
⁎⁎⁎based on egg diameter of 221μm
⁎⁎⁎⁎imagery and growth ring measurements, see Appendix B
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(Fig. 3, Table 3, Appendix B).
In view of the substantial morphological difference between the

populations, we expected to see a clear difference in the shape coeffi-
cient δM. We found a slightly larger value of δM for the intertidal
morphotype, meaning that for the same shell length, it has slightly
more structure, compared to the subtidal one.

Subtidal morphs have a lower energy conductance v as well as
double the value of maximum surface area specific assimilation rate
p{ }Am with respect to the intertidal morphs. The ratio of specific as-
similation over energy conductance [Em] = p{ }Am /v, determines the
maximum reserve capacity of a species.

The fraction of mobilised reserve allocated to soma κ is also bigger
(0.9368 for subtidal vs. 0.9084 for intertidal type), and the intertidal
individuals also present a lower value for somatic maintenance rate
[pM] compared to the subtidal ones. This highlights contrasts between
the morphotypes in energy allocated to maturation along the first life
stages (EH

b , EH
j ) and more available energy for growth for the intertidal

morphotype that has lower values of somatic maintenance. Intertidal
morphotypes seem to accelerate metabolism with a two-fold difference
in acceleration factor sM between intertidal and subtidal types (re-
spectively 7.862 and 4.049). The maturity threshold to reach puberty,
EH

p is also lower for the intertidal morphotype than the subtidal.
The MRE values of the merged models stay below 0.25 and the

value of the loss function for the merged situation is only a little larger
than the sum of both populations, reflecting that a substantial reduction

in the total number of parameters by almost a factor 2 hardly affects the
goodness of fit (Table 3, Appendix C).

DEB parameters of the merged models are quite close to the values
of the intertidal and subtidal models, with [pM], δM, EH

p , EH
b , [EG] and v

merged values being almost exactly in between the values of the in-
tertidal and the subtidal morphotypes. Parameters κ, z, EH

j , {pAM} and
ḧa are closer to the intertidal predictions.

Univariate predictions are also extremely close between the two
models and the merged model (Fig. 3), with only a small difference for
the subtidal model for which the GSI~length predictions are higher
than the intertidal and merged predictions, mainly due to errors in
predictions and scatter in the data. This higher potential of energy al-
location to reproduction can, however, be linked to the higher EH

p va-
lues estimated for the subtidal type (Table 3).

3.2. Merging process

Along the merging procedure, the loss function and MRE values of
the model at each step of the merging procedure are observed, one
‘step’ corresponding to the interative increase of the weight coefficient
of the studied parameter (i.e. merging step, Fig. 4) . Changes in loss
function and MRE values are not that important between the initial step
and the final step of the merging procedure (Fig. 4, Appendix D) (re-
spectively from 0.170 to 0.196 and from 0.192 to 0.227 for the MRE
intertidal and MRE subtidal values), meaning that merging parameters

Table 3
Summary of goodness of fit, DEB model estimates at a reference temperature of Tref= 20°C. RE: Observed and predicted values for zero-variate data, relative error
(RE) for the uni-variate data. See Fig. 3 for comparisons for uni-variate predictions between models. MRE= Mean Relative Error. For the merged model, the MRE
values respectively correspond to the mean relative error of model prediction for data of both intertidal and subtidal populations. All DEB parameters indicated were
allowed to vary during covariance estimation. The abj parameters that are not mentioned in that table were kept constant with the standard initial values.

INTERTIDAL SUBTIDAL MERGED

MRE 0.166 0.192 0.196 0.227
Loss function 0.2441 0.2345 0.7936
z (-) 0.3055 0.4317 0.2579
{pAm} (J/d. cm

−2) 8.361 19.07 8.859
v (cm/d) 0.0501 0.0426 0.0499
Κ (-) 0.9084 0.9368 0.9256
[pM] (J/d. cm−3) 19.62 31.68 24.62
[EG] (J. cm−3) 3956 3949 3952
EH

b (J) 0.00174 0.00115 0.0014

EH
j (J) 0.8749 0.0779 0.9206

EH
p (J) 75.23 121.4 94.66

ḧa (1/d−2) 5.003.10−8 8.335.10−8 4.24.10−8

sG (-) 10−4 10−4 10−4

δM (-) 0.4517 0.3866 0.4247
δM_larvae (-) 0.7167 0.7125 0.7215
sM (-) 7.862 4.0491 8.5372

Zero-variate

Data // prediction// RE Data // prediction// RE prediction// RE
ab (d) 10 10.62 0.0619 10 10.59 0.0586 10.61 0.0609
ap (y) 4 3.54 0.1141 4 3.75 0.0607 3.66 0.0845
am (y) 14 14 9.4.10−5 14 13.99 4.8.10−4 14 1.6.10−4

Lb (cm) 0.0228 0.02279 2.4.10−4 0.0228 0.0228 6.05.10−4 0.0228 1.424.10−6

Lp (cm) 1.54 1.225 0.2045 1.59 1.81 0.1384 1.49 0.0323
Li (cm) 6.5 5.319 0.1816 5.52 4.515 0.1827 5.184 0.2024
Ww0 (g) 5.8.10−6 5.8.10−6 0.0181 5.8.10−6 5.7.10−6 0.0157 5.72.10−6 0.0138
Wdp (g) 0.0236 0.0263 0.1181 0.057 0.05649 0.0089 0.0396 0.6762

Uni-variate

RE RE RE
LWd_signy (cm, g) 0.1443 0.1698 0.1274
LWd (cm, g) 0.1469 0.1834 0.216
LGSI (cm, -) 0.6089 0.8702 0.5835
LJO (cm, μmol/h) 0.2567 0.2831 0.2487
TJO (K, μL/h) 0.1034 0.1216 0.0876
tL (d, cm) 0.3645 0.5924 0.4097
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is possible. EH
p and δM seem to be the parameters that are the most

influencing the model during the merging procedure for both the in-
tertidal and subtidal models and p[ ]

.
M seems to further influence the

intertidal model.

4. DISCUSSION

4.1. DEB models relevance

DEB models are powerful tools enabling predictions of the in-
dividuals energetic scope for survival, growth and reproduction, given
the considered environmental conditions (Kooijman 2010,
Jusup et al. 2017). These mechanistic approaches have been of interest
for several years to the marine Antarctic community (Gutt et al. 2012,

Figure 3. Comparison of model predictions (uni-variate data). Blue dots joined by lines: subtidal model predictions, blue stars: subtidal data (observations); orange
dots joined by lines: intertidal model predictions, orange stars: intertidal data (observations); black triangle joined by lines: merged model predictions. Prediction
points may overlap (D).
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Constable et al. 2014, Gutt et al. 2018), and have been increasingly
developed during recent years (e.g. Agüera et al. 2015, Agë 2017,
Goedegebuure et al. 2018, Henschke et al. 2018).

This study is based on the example of the limpet Nacella concinna
and uses data from literature supplemented by experiments conducted
in Antarctica in February 2018, to build the DEB models of the inter-
tidal and subtidal morphotypes of the species. The separately produced
models were accurate, with a reduced error between observations and
model predictions, except for some scatter among data such as
Length~GSI relationship. Such accuracy was mainly possible thanks to
the important amount of uni-variate data that were provided by the
complementary experiments conducted in Rothera, which filled
knowledge gaps about reproduction, collected more precise length
weight relationships to observe the morphological contrasts between
intertidal and subtidal individuals and collected more precise in-
formation on the limpet's metabolic performance through its develop-
ment.

Rates (and ages) depend on temperature. Here we correct for dif-
ferences in temperature using an Arrhenius relationship. However, in
order to meaningfully compare differences in parameters between
species living in different habitats, it is useful to standardize all para-
meters to a common reference temperature: Tref= 20°C. This is the
standard for presenting and comparing DEB parameters across the
2,000 different species in AmP. When comparing DEB parameters es-
timations of N. concinna to those of their temperate counterpart Patella
vulgata (Kooijman et al. 2017) at Tref= 20°C, we notice clear differences
between the species in term of metabolic strategies, although the lim-
pets morphology and therefore size and volume are close between the
two species (close length and predicted shape coefficient δM). For N.
concinna, predicted κ is much higher and close to 1 (0.9256 vs 0.617 for
P. vulgata), meaning that almost all the energy available in the reserve
compartment is allocated to somatic maintenance and growth, and only
a small amount is available for reproduction. This is clearly visible with
the ultimate rate of reproduction more than 40 times lower for the
Antarctic limpet compared to the temperate one. The capacity to as-
similate resources p{ }Am was estimated to be 10 times higher for P.
vulgata, explaining the 2.5-fold lower growth rate for N. concinna. The
two metabolisms also contrast by the fact that P. vulgata is predicted to
store more reserves than N. concinna in similarly abundant food con-
ditions. These results are consistent with published experiments, where

it was shown that rasping rates (i.e. feeding potential) were higher for
temperate and tropical species than for N. concinna (Morley et al. 2014)
and that development rates of Antarctic marine molluscs are much
slower than at higher temperatures (Peck et al. 2007, 2016), which
could be partially due to the increased costs of protein production in the
cold (Marsh et al. 2001, Robertson et al. 2001, Pörtner et al. 2007).

Such examples of comparison of energetic performance between
these two species highlight the performance of DEB models to be effi-
ciently applied for Antarctic case studies and powerful and accurate
enough to enhance physiological contrasts even between closely related
species; as previously discussed in other works (van der Veer
et al. 2006, Gatti et al. 2017, Marques et al. 2018, Marn et al. 2019).

4.2. Comparison between morphotypes

In a second step, we evaluated if known contrasts in physiological
traits between the morphotypes could be highlighted by the modelling
approach. By simply comparing the two single models, we observed
minimal energetic contrasts between the intertidal and subtidal mor-
photypes (small differences in assimilation rate and ability to store
reserves, Table 3, Fig. 3). By using the augmented-loss-function
method, we tried to merge the models into a single one, parameter by
parameter, to evaluate the contrasts in parameters between the types
(Lika et al. 2020). Results show that models were merged without
generating significant changes in MRE and loss function values (Fig. 4,
Appendix D). Predictions of the uni-variate data are really similar be-
tween the three models (Fig. 3), with only minor differences in tem-
perature-corrected parameter values between both populations,
meaning that the observed differences are best explained by differences
in environmental conditions (temperature and food availability).

Despite the known physiological contrasts in the field, the available
data did not allow the models to capture these physiological differences
between the morphotypes, using only the available data. Scatter dis-
tribution of the data used to calibrate the model (Fig. 3) can hide me-
tabolic differences, which calls for more experiments to describe the
physiology of the different morphotypes. Using more complete datasets,
for which all parameters are independent between intertidal and sub-
tidal morphotypes, may also help to further constrain the differences. In
our case study, several zero-variate data are shared between the in-
tertidal and subtidal models, among which age, length and weight at

Figure 4. Evolution of Mean Relative Error (MRE) values along the merging of the different parameters. MRE intertidal in solid blue line, MRE subtidal in dashed
purple line. Example of Trial #5 (merging of z, p[ ]M , δM_larvae, κ, ḧa, v, EHb, [EG], EHj, EHp, δM).
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birth, that control the very beginning of the development. The observed
results of a two-fold difference in metabolism acceleration of intertidal
morphotypes compared to subtidal ones (sM ≈ 8 and 4 for intertidal
and subtidal) is in fact an artefact caused by common parameters re-
lated to birth and puberty stages (age, length, weight). Indeed, specific
assimilation at birth for the subtidal is two times larger than that for the
intertidal, which indicates that subtidal individuals develop faster.
However, according to available data provided in the model, puberty is
reached at the same time for both types. EH

p consequently needs to be
smaller for the intertidal type to reach puberty at the same age ap and
length Lp, explaining the observed contrasts between the intertidal and
subtidal groups.

Improving the completeness of these models would therefore be
necessary to enable further detailed conclusions.

A common approach in biology is to focus on differences between
individuals, populations and species. Here we adopt a contrasting
strategy in which we force models to determine in what manner the
populations are similar in order to quantify in what manner they differ.
This work is a first step to compare the energetics of both populations,
and we discovered how (given the data) they seem more metabolically
similar than what their appearance would suggest as first. We also
highlight some artefacts that come from the quality of the data and the
scatter therein. New data (so new knowledge) that fill current knowl-
edge gaps will yield further insight into how the metabolisms of these
populations have diverged to adapt to differences in environment. The
current work is a contribution to understanding the relationship be-
tween observations (data) and metabolism for these two populations.

4.3. Models drawbacks and improvements

Apart from data availability, a drawback of our model construction
is the lack of information about environmental properties that makes
comparisons between estimations of the two morphotypes quite diffi-
cult to perform. In the models, we just considered an average tem-
perature for intertidal or subtidal habitats from where the limpets come
from, but do not add any supplementary detail on environmental con-
trasts between these habitats nor in the difference of food availability
between the morphotypes. However, contrasting environmental pres-
sures (desiccation, salinity, hydrodynamism) and habitat characteristics
(immersion time, substratum type, and surrounding physico-chemical
factors) contribute to contrasting adaptative strategies among which
morphological adaptation is really important for limpets, but have not
been integrated into our DEB models (because it requires more data we
do not have) (Vermeij 1973, Branch 1981, Denny & Blanchette 2000,
Sa Pinto et al. 2008, Bouzaza & Mezali 2013, Grandfils 1982, Gray &
Hodgson 2003, Espinosa et al. 2009). Desiccation is one of the strongest
hypothesis to explain the morphological differences between the in-
tertidal and subtidal morphotypes (Mauro et al. 2003, Bouzaza &
Mezali 2018). The presence of high upstream shifted apex form for the
intertidal morphotypes, more exposed to desiccation, could help to
store more water and absorb more oxygen, as described for Patella
ferruginea (Branch 1985, Paracuellos et al. 2003). Similarly, shell vo-
lumes are bigger for the intertidal type and help reduce water loss
(Vermeij 1973, Wolcott 1973, Branch 1975, Branch 1981) but also infer
resistance to the effects of ice damage (Morley et al. 2010). Differences
in the energetic responses of the two morphotypes of N. concinna to the
difference in mean intertidal (0.45°C) and subtidal (-0.1°C), or the much
greater difference in maximum (12.3 versus 1.7°C respectively;
Morley et al. 2012), could be a proximate cause of the morphological
differences. Taking into consideration differences between environ-
ments is therefore important but strongly lacking in the analysis pre-
sented here.

In our study, field data show a slight difference in shell length of
+5% and a small difference also in the predicted shape coefficient of
0.45 against 0.39 (Table 3) for respectively the intertidal and subtidal
individuals. This indicates very small differences in inner volumes

between the studied populations as calculated by the DEB, meaning
that the DEB model does not adequately reflect the difference in mor-
phology between the intertidal and subtidal morphotypes. In the raw
data, shell heights present a 33% difference between intertidal and
subtidal individuals (Appendix A) but shell length was used, rather than
shell height, in the model to characterize the growth structure of the
species. Fine tuning the models with extra shape information could
have helped to bring further contrasts between the two models, but also
requires much more information on shell growth.

Moreover, the difference in food availability and quality was hy-
pothetized between the morphotypes when calibrating the model, de-
spite food abundance and quality knowledge being responsible for
strong contrasts in DEB model outputs (Kooijman 2010,
Thomas et al. 2011, Saraiva et al. 2012, Sarà et al. 2013). During winter
time, the intertidal type seems to have supplementary access to ice-
algae and microphytobenthos in rock crevices, whereas the subtidal
type mainly grazes on diatomsfilms growing on encrusing red algae
(Appendix A, Obermüller et al. 2011). But food abundance and quality
were assumed for the construction of the models, as no data accurate
enough were available to characterize the feeding behaviour of the
limpets. Moreover, in the case of intertidal type, no clear hypothesis is
available for their behaviour during winter period, as several authors
hypothesize either a migration into the subtidal or a dormance period
hidden into crevices during the period when ice is covering their ha-
bitat (Brêthes et al. 1994, Obermüller et al. 2011). However, this in-
formation would be essential to explain how these individuals en-
ergetically behave during this period.

4.4. Potential of the approach

This study showed that it is feasible to build a DEB model for a
marine Antarctic species, with few available data. Adding extra in-
formation from sampling and experiments during a single expedition in
the field considerably increased the accuracy of the model and high-
lighted some small differences in energy allocation priorities, main-
tenance costs and reproductive potential between the intertidal and
subtidal morphotypes. But the method is then limited by model cali-
bration and data availability since it could not prove that these con-
trasts are explained by anything else but environmental conditions.

Such DEB models would already be sufficient to (1) describe the
performance of the species physiological traits in spatially or tempo-
rally contrasting environmental conditions (Kearney et al. 2012,
Teal et al. 2012), (2) to be upscaled to the population level to assess
population structure and density dynamics (Klanjscek et al. 2006, Ar-
nould-Pétré et al. this issue), or (3) to be integrated into a dynamic
network by adding knowledge about interaction with other species
(Ren et al. 2010, Ren et al. 2012). Adding some data from extra ex-
periments would easily enable further development of these models for
ecophysiological or ecotoxicological applications (Muller and Nisbet
1997, Pouvreau et al. 2006, Peeters et al. 2010, Sarà et al. 2011), or to
improve knowledge about development stages, behaviour or re-
production (Pecquerie et al. 2009, Rico-Villa et al. 2010,
Kooijman et al. 2011).

In this study, we wanted to explore whether the amount of data that
was available to build these models were sufficient to see the known
physiological and morphological differences between the two mor-
photypes, and results show that more data are necessary.

To conclude, we advise the use of DEB approach for ecological
modelling for Antarctic case studies but modellers should be aware of
the necessity to calibrate models with accurate data to fine tune results.
Among these data, the description of the species habitat is complex
information to be integrated into a model and most of the time only
partial information is available. Working in narrow scale areas where
habitat is known and described and where experiments can be run
might be a good option.

Our study also hightlights the interest of DEB models to reuse data
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from experiments from historical published works from Antarctic
campaigns and highlights the importance of precisely documenting the
associated metadata (notably the description of the environment and
the conditions in which the limpets are living), data that is not always
available.
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