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Forecasting Crowd Counts with Wi-Fi Systems:
Univariate, Non-seasonal Models

Jean-François Determe∗, Utkarsh Singh∗, François Horlin∗, and Philippe De Doncker∗

Abstract—Recently, event organizers and researchers have
advocated the development of novel technologies supporting
crowd control, notably for public events. This paper presents a
crowd monitoring system based on probe requests (PRs), which
are Wi-Fi packets smartphones send periodically. By estimating
the global rate at which nearby smartphones send PRs, Wi-
Fi sensors can estimate crowd counts. The core contribution
of this paper is a computationally tractable method that fore-
casts crowd counts up to thirty minutes in the future, with
forecasts becoming available as soon as two hours of data
are available. The forecasting method relies on autoregressive
integrated moving average (ARIMA) models. Contributions also
include two methods that compute prediction intervals associated
with the forecasts, one of which is based upon generalized
autoregressive conditional heteroskedasticity (GARCH) models.
Recent real-world data from Winter Wonders 2018/2019 (an
event that took place in Brussels, Belgium) notably demonstrate
that the proposed forecasting method outperforms its immediate
variations as well as baseline models (i.e., random walk models).

Index Terms—Crowd monitoring and control, forecast, autore-
gressive time series, ARIMA, GARCH, Box-Cox transformation
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I. INTRODUCTION

MONITORING large public events is a key challenge
with which event organizers deal. Such a monitoring

entails estimating crowd densities in real time to determine
whether they exceed acceptable limits [1]. Estimating crowd
densities allows law enforcement personnel to close roads,
redirect people to less crowded areas and detect abnormal
patterns (such as sudden influxes of people). Preventing crowd
overcrowding not only entails monitoring but also forecasting,
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for countermeasures should be executed prior to the occurrence
of crowd overcrowding.

This paper presents a crowd monitoring approach based on
data acquired by Wi-Fi sensors, which collect probe requests
(PRs)—special Wi-Fi packets that are internal to the Wi-Fi
protocol and broadcasted by user terminals (e.g., smartphones,
computers) to detect nearby access points (APs). Counting
such messages provides a proxy for the number of smart-
phones with Wi-Fi connectivity within the vicinity of the
sensor; in turn, this number is a proxy for the number of
people within the area covered by the deployed sensors (up to
an extrapolation factor).

On the basis of a real-time Wi-Fi counting system that we
developed, we present forecasting methods for crowd counts.
Often, crowd densities need not be directly measured because,
for a given available space, a maximum crowd density is easily
converted into a maximum crowd count.

We show that integrated autoregressive time series models
(such as auto regressive integrated moving average (ARIMA)
models) forecast up to 30 minutes in the future. We also dis-
cuss methods to derive prediction intervals (PIs) for forecasts
in real time, the former quantifying the reliability of the latter.

Although we applied our forecasting method on data
stemming from a Wi-Fi counting system, it should perform
properly if applied on counts obtained using different (yet
comparably precise) technologies (e.g., cameras with unob-
structed lines of sight). The reason is that crowd dynamics
are unaffected by concealed nonobstructive counting devices
and, as a result, any reliable proxy for crowd counts should
generate accurate forecasts if fed into our forecasting method.

Recent interviews have revealed event managers wish to
use modern technologies to prepare events and monitor them
in real time [2, Sec. 7]. Our line of research focuses on
these endeavors; it aims to i) help event organizers prepare
future editions of events by providing them with crowd count
estimates of past editions, ii) enable security teams to mon-
itor events in real time, iii) forecast crowd counts and thus
overcrowing. Out of all these use cases, our paper focuses
on pure forecasting, which is the foundation for forecasting
overcrowding and detecting abnormal counts.

For any event, computing short-term forecasts is of interest,
because more sophisticated forecasting models relying on
seasonality—the presence of a seasonal pattern emerging every
day—or multi-variate approaches require more measurements
to be fit than ours. Thus, to get forecasts for the first hours and
days of such events, univariate non-seasonal models remain
the best options. Moreover, for short-term forecasts, univariate
models may be more accurate than seasonal ones. Finally,
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some events last several days but do not feature a strong sea-
sonal pattern (e.g., music festivals with multiple stages, whose
attendances strongly depend on the relative popularity of all
the artists performing). As a result, the proposed forecasting
methods are the most general ones in that they apply to the
widest class of events.

The presented Wi-Fi counting system is, however, espe-
cially suited to open and free events because they feature no
controlled entrance and exit points, thereby precluding the
use of counting methods based on, e.g., barcode scanning
or turnstiles. It is also suited to events that cameras cannot
easily monitor, such as those with a complex setup that
entails line-of-sight obstructions or poor lightning conditions;
conventional cameras could also provide imprecise counts for
open-air events because of weather effects (e.g., heavy rain
and fog).

A. Detailed contributions

This work relies on Wi-Fi counts estimates derived from the
rate at which all nearby smartphones emit probe requests. Our
paper cursorily discusses this crowd estimation approach and
show that its principle makes it unaffected by media access
control (MAC) address randomization (see Section II-C).

Our main contribution is a method for computing fore-
casts (of the conditional mean) using univariate, non-seasonal
approaches; forecasts start becoming available after 2 hours
of measurements become available (typically prior to most
of the attendees reaching the event). We also present and
validate two viable ways of deriving PIs, one based upon
canonical ARIMA models with Gaussian innovations and
the other relying on generalized autoregressive conditional
heteroskedasticity (GARCH) models [3], [4]. More precisely,
our forecasts of the conditional mean are generated by a
“rolling" ARIMA(2,2,1) model whose coefficients and inno-
vation variance are reevaluated whenever a new measurement
becomes available (every five minutes).

We validate our methods using real data (collected during
Winter Wonders 2018/2019, an event in Brussels, see Sec-
tion III). We show our forecasting method to be consistently
superior (or at least comparable) to baseline forecasting mod-
els (i.e., the random walk (RW) model, see Section V-B). We
also demonstrate that it outperforms its immediate variations,
which rely on mainstream concepts in time series analysis.

B. Comparison with state of the art

Occupancy measurements have already been obtained using
Wi-Fi PRs; detecting Wi-Fi PRs enabled researchers to i)
localize Wi-Fi devices using unmanned aerial vehicles [5]; ii)
measure occupancy in indoor environments [6], [7] ( including
motor shows [8]); iii) monitor occupancy in public places, such
as festivals [9], airports [10], public transportation systems
[11], [12] and other urban environments [13]. Up to 2016, [8,
Sec. Related work] presents a good overview of measurement
campaigns similar to ours.

Let us now briefly discuss the underlying technology for
measurements. In comparison to other solutions—such as
cameras or manual counts relying on humans—Wi-Fi sensors

preserve privacy to a higher extent [14, Sec. 1] and may also
incur lower expenditures [12, Table 1] [15]. From a technical
point of view, they also do not suffer from dark lightning
conditions or line-of-sight obstruction [14, Sec. 1] [2, Fig. 1].

Other methods based on Wi-Fi rely on the physical layer.
The authors of [14] use channel state information (CSI) to
count people: their experiments, however, include low number
of people (no more than 30 people according to [14, Sec. IV-G
and Fig. 15]) and there are, to the best of our knowledge, no
experiments validating this approach for hundreds of people
around a sensor. Other works based on CSI suffer from the
same limitation (see [16, Sec. 7], [17]). The authors of [18]
present another system, which is based on the received power
between Wi-Fi devices to count people. Again, the system has
not been tested on dense crowds [18, Sec. IV]. A recent survey
on techniques used for crowd size estimation is [19].

Regarding forecasting crowd counts using Wi-Fi sensors,
we found very few works in the literature. In [20], the authors
propose a Wi-Fi localization system based on triangulation for
indoor environments, which they use to forecast queuing times
using methods similar to ours (autoregressive models). An-
other work is [21], which very succinctly shows how ARIMA
models can forecast shopper volume in malls, with counts
derived from Wi-Fi messages. The closest work to ours are
some slides from 2013 [22], which cursorily show forecasting
results for crowd counts obtained using Bluetooth sensors in
a public event in Ghent (a city in Belgium). The work [23]
reviews the different methods used in traffic forecasting as of
2014; these notably include smoothing approaches, Kalman
filters and non-parametric modeling (based on non-parametric
regression and neural networks). Future work endeavors could
compare these methods with ours

This work presents forecasting results based on real mea-
surements that do not frequently appear in the literature. Our
measurement scenario involves dense crowds. We also focus
on methods evaluating prediction intervals accurately, for
quantifying the reliability of forecasts is important for event or-
ganizers and automated overcrowding detection algorithms—
this is rarely done in works similar to ours.

C. Outline
First of all, Section II introduces Wi-Fi PRs and how to

derive crowd counts by counting them. Section III succinctly
presents Winter Wonders 2018/2019 in Brussels, the real events
on which we deployed sensors and collected data. Then,
Section IV presents—from a theoretical point of view—the
forecasting tools on which we rely. Section V describes the
metrics for evaluating forecasting and PI accuracy and details
the exact forecasting methods we test. Section VI evaluates
the accuracy of the methods proposed in Section V on the
basis of data from Winter Wonders 2018/2019. It evaluates
both the accuracy of the forecasts and that of the associated
PIs. Finally, Sections VII and VIII are the future work and
conclusion, respectively.

II. CROWD COUNTS USING WI-FI PROBE REQUESTS

We shall now briefly discuss the detection and processing
of probe requests to derive counts.
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A. Probe requests

As already stated in the introduction, the estimated crowd
counts that we use for forecasting purposes are derived from
PRs [24, Chapter 4]. PRs are management frames Wi-Fi
devices periodically send to ask nearby access points (APs)
to make their existence known. This is an active scanning
mechanism for discovering APs. Because of their purpose,
smartphones transmit PRs even if they are not connected to
a Wi-Fi network, which makes them interesting messages to
generate crowd counts.

PRs notably include a source address (SA) field [24, Fig. 4-
52], which is—in theory—the MAC address of the Wi-Fi
controller on the mobile station. Several almost identical PRs
are sent in a row, within a time frame lasting less than 10ms
[25, Sec. 2.1]; in this paper, we call a set of such PRs a probe
request burst (PRB). To make tracking smartphones difficult,
modern operating systems randomize the MAC addresses in
PRBs [25]–[27]. As discussed later on, MAC address random-
ization does not affect our counts.

B. Detection of probe requests

We developed sensors collecting and sending PRBs to a
central server. Each one of our Wi-Fi sensors consists in
• A Raspberry Pi 3 running Raspbian Stretch.
• A Wi-Fi dongle supporting monitor mode (i.e., a mode

that allows to capture all the detected Wi-Fi messages,
without being connected to a Wi-Fi network). The dongle
is an Alfa AWUS036NHA, whose chipset is an Atheros
AR9271L. We use the standard straight antennas shipped
with Alfa AWUS036NHA units. Sensors are installed with
their antennas pointing to the sky or the ground vertically.

• A 4G dongle for providing Internet connectivity, thereby
allowing sensors to transmit anonymized probe requests
to a central server.

The sniffing program running on each Raspberry Pi is written
in C++, is multi-threaded, and uses libpcap for packet capture.
For each detected PRB, sensors send to a central server i) an
anonymized MAC address of the PRB, ii) the timestamp of
detection iii) a received signal strength indicator (RSSI) value,
which is a number quantifying the received power.

In practice, when sensors are deployed, their ranges often
overlap. This is preferable because it is hard to determine
the exact range of a sensor, especially because it depends on
the density of people in the area (the human body attenuates
Wi-Fi signals). Therefore, a high density of sensors ensures
that the area of interest is fully covered. Ranges overlapping
implies that several sensors may detect identical PRBs. As a
result, the central server jointly processes the measurements
of neighboring sensors to derive counts, so that each detected
PRB is counted only once. Figure 1 depicts the classical
sensing scenario with overlapping sensor ranges.

C. Processing probe requests to compute counts

We deploy nS sensors Ss in an event. We shall generate
count time series for nA areas Aα, subsets of sensors; these
time series consist of counts every T = 5 minutes. The

Fig. 1. WiFi sensing scenario. 2 sensors (S1 and S2) on poles detect the
probe request bursts (PRBs) of 3 mobile stations (MSs). Each cone depicts
the detection range of the corresponding sensor. Wavy arrows depict sensors
detecting PRBs. The PRB of MS2 is detected by both sensors whereas those
of MS1 and MS3 are detected by the nearest sensor only.

first step consists in computing counts for disjoint, contiguous
elementary time frames of duration Te = 30 seconds.

For each elementary time frame, we extract from our
database all the MAC addresses whose timestamps belong
to it, which creates an array arr_mac of 3-tuples; the ith
3-tuple is (S(i), aMAC(i),RSSI(i))—where S(i) is a sensor
ID, aMAC(i) denotes the ith MAC address and RSSI(i) is
the ith RSSI. For privacy reasons, sensors anonymize MAC
addresses, which means aMAC(i) is not a true MAC address
but an anonymized one. Then, we count the number of distinct
PRBs within each elementary time frame per sensor. A PRB, if
detected multiple times, is uniquely associated with the sensor
having measured the highest RSSI. To get a count for any area,
it suffices to sum the counts of the sensors this area indexes.
For the final time series, we generate counts every T = 5
minutes by averaging the counts of the ten corresponding
elementary time frames.

Our method relies on the rate of PRB transmission on a
short time frame (of Te = 30 seconds). It does not try to
deanonymize probe requests to track users for a long term
(see, e.g., [24]). The number of distinct MAC addresses in an
elementary time frame does not depend on MAC randomiza-
tion because our elementary time frames are sufficiently short
in comparison to the rate at consecutive PRBs are emitted.
Whether some true MAC addresses are replaced by random
ones does not change the number of distinct MAC addresses in
an elementary time frame, which prevents MAC randomization
from affecting our crowd count estimates.

D. A simple mathematical model of counting

This section formalizes mathematically our counting pro-
cess. Let us assume nppl individuals are in a monitored
area. During an elementary time frame, each individual has
a probability pi ≤ 1 (1 ≤ i ≤ nppl) to generate a PRB. The
probability pi of PRB generation for individual i may be zero
if the individual does not carry a device with Wi-Fi enabled. If
it is non-zero, it typically depends on how often the operating
system of the smartphone requests PRBs be sent.

Thus, the probabilities pi are random variables whose
common distribution depends i) on how likely it is people
turn off Wi-Fi (or have no smartphone) ii) how frequently
an average smartphone sends PRBs. The set of all K possible
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Fig. 2. Comparison of Wi-Fi counts against those from a local cellular cell
on September 9, 2018 (for Eat! Brussels). The extrapolation factor for Wi-Fi
counts is equal to 3.

probabilities is {αk}1≤k≤K ; for all i ≤ nppl, P[pi = αk] =: rk
(1 ≤ k ≤ K) and

∑K
k=1 rk = 1. The case αk = 0 corresponds

to an individual without a Wi-Fi-active device.
The number of distinct PRBs in an elementary time frame is

X :=
∑nppl

i=1 Xi where Xi is equal to 1 if the corresponding
individual sends a PRB during an elementary time frame—
thereby, we have P[Xi = 1|pi] = pi and P[Xi = 0|pi] = 1−
pi. Thus, the marginal distribution of Xi is such that P[Xi =
1] =

∑K
k=1 P[Xi = 1|pi = αk]P[pi = αk] =

∑K
k=1 αkrk =:

E[pi] (law of total probability). As a result, E[Xi] := 1 P[Xi =
1]+0 P[Xi = 0] = E[pi]. Our final (unbiased) estimator of the
number of people in the area is Ĉ := βX where E[Ĉ] = nppl
with an extrapolation factor β := 1/E[pi].

Our main conclusions are that:

• The exact extrapolation factor β is the inverse of the
mean probability that an individual sends PRBs during
an elementary time frame.

• MAC randomization does not affect our counting method
because whether or not it occurs on an elementary time
frame does not change the value of our estimator, Ĉ.

E. Calibration of the counting system

We calibrated our system by comparing our data from a
previous event with that of a telco operator and found that
an extrapolation factor of 3 is adequate. We used data from
an event of 2018 (Eat! Brussels), which takes place in the
middle of a park in Brussels (including during a Sunday). This
particular event setup is ideal because the counts associated
with the local telco cell measures almost only people attending
our event. Figure 2 plots our Wi-Fi counts against the telco
counts and shows a good match.

Our tests also revealed that more than 95% of smartphones
anonymize their PRBs (95% of observed PRBs only appear
once). It means that the value T should have little importance,
in that modifying T can be easily compensated for by adapting
the extrapolation factor.
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III. PRESENTATION OF WINTER WONDERS 2018/2019

Let us now discuss the event on which we collected data.
Winter Wonders 2018/2019 is an event that took place from
November 30 (2018) to January 6 (2019) in Brussels, Bel-
gium. Its two most populated areas are referred to as Sainte-
Catherine (or St. Cath) and Bourse, areas on which this paper
focuses. Figures 3 and 4 detail the areas of Sainte-Catherine
and Bourse, respectively.

The area of Sainte-Catherine essentially comprises chalets
wherein vendors sell theirs goods. Although Figure 3 suggests
that some parts of the area are made of water, a wooden
structure has been set above water for this event, which
supports both pedestrians and chalets. The area also includes
entrances to the local subway station, in between S4 and S5.
The setup at Bourse is similar to that of Sainte-Catherine,
except that the geometry of the area is different.

Counts obtained for both areas are available in Figures 5
and 6; these figures also include forecast results to shorten the
paper. We report (and shall forecast) counts for the areas that
correspond to the aggregation of sensors S1 to S7 and sensors
S14 to S19. The days we chose are those for which all sensors
were continuously online.

IV. TIME SERIES MODELS: THEORETICAL BASIS

A. Definition of a time series and related concepts

Given a probability space (Ω,F ,P) and the countable set Z
of (time) indexes, a discrete stochastic process (or time series)
x is a function [28, Sec. 1.2] X : Z×Ω→ R, where, for any
t ∈ Z, Xt : Ω → R : ω → x(t, ω) is a random variable. We
use the abuse of notation {Xt}t∈Z = {Xt}. The mathematical
expectation operator is denoted by E[·] and we assume that
E[X2

t ] <∞ (for all t ∈ Z).
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B. Mean function, covariance function and stationarity

The mean function of {Xt} is µX(t) := E[Xt] and the co-
variance function is γX(r, s) := E[(Xr−µX(r))(Xs−µX(s))]
[29, Definition 1.4.1]. If, for all t ∈ Z, µX(t) = µX is constant
and γX(t + h, t) = γX(h) (for all h > 0), then {Xt} is
weakly stationary [29, Definition 1.4.2]. In this case, µX is
the mean of {Xt} and γX(h) is its autocovariance function
(ACVF). The time series with which this paper deals are not
weakly stationary. For example, in Figure 5, it is clear that the
mean and the variance of counts are lower at 8:00 AM than
they are at 10:00 PM. One of our goals will be to transform
them into stationary ones. As explained in what follows, these
transformations involve differentiation and (optionally) power
transformations (such as Box-Cox transformations).

C. Autoregressive moving average models

Autoregressive moving average (ARMA) models model
stationary time series. {Xt} is an ARMA(p, q) process if it
is stationary and if for every t, [29, Adapted from Defini-
tion 3.1.1]

Xt =

p∑
i=1

φiXt−i +

q∑
j=1

θjwt−j + wt, (1)

where wt ∼ N (0, σ2) are i.i.d. (independent and identically
distributed), and the AR and MA polynomials φ(z) := 1 −∑p
i=1 φiz

i and θ(z) := 1 +
∑q
j=1 θjz

j have no common
root. Two interesting special cases of ARMA models are pure
autoregressive (AR) models and pure moving average (MA)
models; the former are such that q = 0 whereas the latter
are such that p = 0. The quantity wt ∼ N (0, σ2) is called
the innovation at time t. It is an unpredictable quantity that is
responsible for the random nature of the time series.

D. Differentiation

When the AR polynomial φ(z) of a model like (1) contains
a unit root (i.e., φ(1) = 0), it is integrated, which means it is
not an ARMA model anymore because it is not stationary.

One of the most common approach to transform a non-
stationary time series with a unit root into a stationary one is
to use differentiating. We shall differentiate the original time
series several times until the differentiated time series looks
like an ARMA process without unit roots. We can then fit
an ARMA model on the differentiated time series and carry
out forecasting; these forecasts can be reverted back to their
non-differentiated counterparts by integration.

E. Tests for unit roots

We shall first briefly discuss two statistical tests evaluating
the number of differentiation operations required. In practice,
we keep differentiating the time series of interest until unit
root tests suggest there is no unit root left. The first test is
the Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test [30]. Its
null hypothesis, H0, is that the tested time series is stationary
or trend stationary depending on the version of the test. The
basic equations for the test are [30, Eqs. (2) and (3)] and the
associated statistic is computed for a given number of lags [30,
Eq. (6)]. The null hypothesis of KPSS tests is stationarity. We
would prefer the null hypothesis to be that of non-stationarity.
Nevertheless, state-of-the-art statistical packages use KPSS
tests to compute the differentiation order (see [31, Sec. 3.1]).

Another test is the augmented Dickey-Fuller (ADF) test,
which is an extension of the Dickey-Fuller (DF) test [32]. It
tests the null hypothesis that a time series possesses a unit
root and assumes that the time series of interest can be well
represented by an AR(p) process. ADF tests are interesting
because they can reject the null hypothesis of non-stationarity.
However, they are valid only if the order of the AR process
encompasses most of the serial correlation of the time series.
An excessive value of p prevents ADF tests from rejecting H0

and, conversely, a value that is too low makes them biased.

F. Autoregressive integrated moving average models

Autoregressive integrated moving average models (ARIMA)
models consist in ARMA models applied on differentiated
time series to generate forecasts for the non-differentiated time
series. Their order is denoted by the 3-tuple (p, d, q), where
d is the order of differentiation and (p, q) is the order of the
underlying ARMA model for the differentiated time series.
Tests in Section IV-E assist in determining d.

Formally, {Xt} is an ARIMA(p, d, q) process if the time
series differentiated d times is a causal ARMA(p, q) process
[29, Definition 6.1.1]. Using the backshift operator B defined
by BkXt := Xt−k, we can write the recurrence equation of
an ARIMA model as follows:

(1−B)dφ(B)Xt = θ(B)Xt, (2)

where φ(B) := 1−
∑p
i=1 φiB

i and θ(B) := 1 +
∑q
j=1 θjB

j

are the AR and MA polynomials of the underlying ARMA
model expressed in terms of the backshift operator B.

G. Fitting ARIMA models of fixed orders

Let us now discuss about how to practically fit ARIMA
models of a given order (p, d, q). Fitting ARIMA models is



6

theoretically equivalent to fitting an ARMA model on the
differentiated time series. Modern fitting techniques rely on a
state-space representation of the full ARIMA model, however;
we refer the reader to [29, Chapter 8] for an introduction to
the subject and to [33] for a thorough discussion of it.

This paper relies on the statistical environment R [34]. For
fitting a model of a specific order (p, d, q), we use the Arima
function from the R package forecast [31], [35].

H. Computing appropriate model orders

Fitting an ARIMA model consists in computing its model
order (p, d, q), its coefficients (whose number depends on p
and q), and the innovation variance σ2. We have just discussed
how to fit coefficients and σ2 (and previously, how to compute
d). The story is more complicated for finding an appropriate
ARMA model order (p, q).

A traditional method for finding (p, q) relies on a visual
inspection of the sample autocorrelation function and sample
partial autocorrelation function (see, e.g., [21]), which tail
off after a certain number of lags that corresponds to p and
q. Because this method entails a visual inspection from a
statistician, it cannot be automated and we shall not use it.

Another set of methods consists in fitting ARMA models
for different orders and then retaining the one that optimizes
a criterion, which typically include a penalty for the forecast
accuracy on the training set and another penalty that increases
with the number of parameters the model encompasses, which
prevents overfitting.

We assume that n observations are available for training and
define vectors φ ∈ Rp, θ ∈ Rq , which contain the AR and MA
coefficients, respectively. The main metrics used for judging
the merits of all tested models are the Akaike information
criterion with bias correction (AICC) and Bayes information
criterion (BIC). These criteria (or metrics) include the log-
likelihood function `(φ,θ, σ) (which quantifies to what extent
a given ARMA model fits the observed measurements) and a
penalty that increases with the number of parameters of the
ARMA model. For each candidate order (p, q), the procedure
first fits an ARMA(p, q) model and then computes the resulting
value of the AICC or BIC. When the AICC or BIC values
have been computed for all the tested model orders, the model
whose value is the lowest is picked.

We do not delve into the theoretical basis of the expressions
of the AICC and BIC. For a number of parameters equal to
np = p+ q + 1, the expressions are [36]–[38]

AICC(φ,θ, σ) = −2`(φ,θ, σ) + 2np + 2
n2p + np

n− np − 1
,

BIC(φ,θ, σ) = −2`(φ,θ, σ) + log(n)np.

The procedure above requires us to identify, using maximum
likelihood (ML) estimation, ARMA parameters (φML, θML,
σML) for each candidate order (p, q). The processing power of
modern computers makes it a tractable approach—especially
for univariate, non-seasonal ARMA models.

I. Forecasting with identified ARIMA models

We now discuss forecasting based on a set of observa-
tions and a fully identified ARMA model. Let us assume
that we observe realizations {xt} of a discrete stochastic
process {Xt}. Given the previous and current observations
at time t, Ωt = {xs}0≤s≤t, we would like to find the h-
step estimator of Xt+h that minimizes the mean square error
(MSE) of forecasts. For a given, arbitrary h-step estimator
X̄t(h) (using observations until time t), the forecast MSE
is MSE[X̄t(h)] := E[

(
Xt+h − X̄t(h)

)2
]. As shown in [28,

Sec. 2.2.2] and [39, Sec. 3.5], the minimum MSE predictor is
the conditional expectation at time t

Et[Xt+h] := E[Xt+h|Ωt]. (3)

We often say that we forecast the conditional mean when
forecasting Xt+h given observations of {Xt} until time t.

Standard ARIMA forecasting approaches typically imple-
ment a forecaster with theoretically optimal MSE (they assume
that the fitted ARIMA model is exactly the stochastic process
having generated the observations). We shall not thoroughly
discuss forecasting methods for ARIMA models. We only
point out that—with a known, identified ARIMA model—
forecasting is a reliable task and it can be carried out recur-
sively using, e.g., the innovations algorithm [29, Sec. 2.5.2] on
the underlying ARMA model, with low computational cost. To
the best of our knowledge, the canonical functions in R used
for forecasting rely on state-space representations, however.

J. Box-Cox transformations for variance stabilization

Let us now discuss variance stabilization, that is the trans-
formation of time series with time-varying variances into ones
with constant variances over time. Box-Cox transformations
are a class of transformations [40] that stabilize the variance
of a time series prior to fitting a model on it [41]. Once fit,
the model (e.g., an ARIMA model) operates on the trans-
formed data; forecasts are then reverted back into their non-
transformed counterparts by applying the inverse transform
and possibly a debiasing coefficient [41, Eq. (10)], which we
do not use here because it worsens forecasting accuracy.

Box-Cox transformations depend on a parameter λBC and
transform the original time series into

X
(BC)
t =

{
(XλBC

t − 1)/λBC if λBC 6= 0

log(Xt) if λBC = 0
. (4)

We can add a constant to Xt prior to computing a Box-Cox
transformation if there are zero or negative values of Xt.

Guerrero [41] proposes a computationally simple method to
estimate λBC. Essentially, the method extracts contiguous sub-
series of R samples from the available measurements. For each
sub-series (indexed by z), the empirical mean µ̄z and standard
deviation σ̄z are computed. Then, the coefficient of variation
(CV) of the set {σ̄z/µ̄1−λBC

z }z is computed for a prescribed
grid of values of λBC; the value of λBC yielding the lowest
CV is chosen.

When fitting an ARIMA model, the time series should
theoretically exhibit a constant variance, which Box-Cox
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transformations may enforce. Consequently, the fit may be
improved—which means that forecasts of the conditional mean
could be more accurate than those of a model fit on the
original time series. Nevertheless, such improvements do not
consistently appear in practice [42], [43].

K. Volatility modeling

The previous subsections of Section IV focus on forecasting
the conditional mean of a time series, that is the expectation
of Xt+h conditional on previous observations until time t,
{xs}0≤s≤t. Similarly, this section discusses how to forecast
the conditional variance σ2

t+h on the basis of observations
until time t, {xs}0≤s≤t; the variance is now a function of
time. This is an important step because it enables us to derive
prediction intervals. In the financial literature, the conditional
variance often is a measure of the volatility of, e.g., stock
prices, hence the name volatility modeling.

We describe three strategies for deriving prediction intervals
in what follows.

1) Vanilla ARIMA: The first approach is the most basic one
and consists in assuming a constant variance for the Gaussian
innovations. This approach is that implemented by default in
forecasting packages. Once an ARIMA model is fit, it is easy
to derive the variance of h-step forecast. With σt(h)2 being
the variance of the h-step forecast made with observations
until time t, we have, for t→∞, [29, Eq. (6.4.6)] σt(h)2 =
σ(h)2 :=

∑h−1
j=0 ψ

2
jσ

2, where the {ψ2
j } depend on d, φ(z) and

θ(z). The quantiles of a zero-mean Gaussian distribution with
variance σ(h)2 provide the PI of h-step forecasts.

2) ARIMA with Box-Cox transformations: The time series
in pre-transformed using Box-Cox transformations. PIs are
then derived in the transformed scale, as in Section IV-K1.
When reverting back to the original scale, the PI boundaries
are also affected by the reverse transformation, which turns
constant PIs into varying ones over time.

3) GARCH models: GARCH models, originally derived in
[3] on the basis of autoregressive conditional heteroskedastic-
ity (ARCH) models [44], model the conditional variance of a
stochastic process. With Ωt denoting the set of all information
until time t, a GARCH(p, q) model is [3, Eq. (1)–(2)]

wt|Ωt ∼ σtet, (5)

σ2
t = ω +

q∑
j=0

αjw
2
t−j +

p∑
i=1

βiσ
2
t−i, (6)

where all coefficients are equal to or higher than 0 (except
for ω, which should be strictly positive) and the {et} are
i.i.d. random variables. The most canonical choice for et is a
zero-mean normal distribution with variance 1 [3]; Student’s
t-distributions are another option. In this model, the innovation
wt is directly observed. Such models convey the idea that a
high volatility tends to persist over time. In theory, GARCH
models can be reliably estimated using quasi maximum like-
lihood estimators (QMLEs) [4, Theorem 2.1].

GARCH models typically describe time series for which
forecasting the conditional mean is impossible (the forecast is

always 0) but whose volatility can be. Such time series no-
tably include the residuals of perfectly fitted ARIMA models,
which exhibit no serial correlation. We use GARCH models
for tracking variances and we are not interested by some
of their features that made them popular in econometrics,
which include volatility clustering and the leptokurticity of
the unconditional variance. Interestingly, GARCH models can
generate PIs for other classes of forecasters that do not provide
PIs by default—such as neural networks.

V. METRICS AND FORECASTING METHODS

Now that we introduced all the main theoretical concepts,
we shall focus on practical forecasting. First of all, we describe
the two main metrics we use to evaluate forecasting accuracy
(for the conditional mean); we also present the metric to be
used for quantifying the accuracy of PIs. Then, Section V-C
presents all the practical forecasting methods that we test.

Clearly, once two or three days of data become available, a
seasonal ARIMA model would provide better forecasts than an
ARIMA model (given the stability of the daily count pattern).
In this paper, however, we decide to investigate the accuracy of
univariate forecasting for several days, whereby each day is fit
separately. Our approach allows us to determine to what extent
forecast accuracy is consistent from one day to another. As our
results show, assessing forecasting accuracy on several days
independently is necessary, in that not doing so may suggest a
forecasting method is reliable even though it fails when applied
on another day of the event (in Table II, compare, e.g., 12-01
(Sat) against 12-15 (Sat)).

A. Metrics for assessing forecasts

In our results, we always restrict the computation of
such metrics to time frames for which forecast accuracy is
critical—i.e., the ascending slope of counts before peak time.
For Sainte-Catherine, the ascending slope time frame ranges
from 16:00 to 20:00 from Monday to Thursday, from 14:00
to 21:00 on Friday, and from 14:00 to 20:00 on Saturday. For
Bourse, it ranges from 10:30 to 16:30.

1) Assessing forecasts of the conditional mean: This paper
relies on the root mean square error (RMSE) and mean
absolute percentage error (MAPE) to assess the performance
of forecasting for the conditional mean; with {xt}0≤t≤n−1
and {x̄t}0≤t≤n−1 denoting the set of observed values and the
set of forecasts respectively, we have

RMSE =

√√√√ 1

n

n−1∑
t=0

(xt − x̄t)2 (7)

and

MAPE =
100%

n

n−1∑
t=0

|xt − x̄t|
|xt|

. (8)

The RMSE does not normalize its value according to the
levels (i.e., the values of |xk|); therefore, it may be mean-
ingless to compare RMSE values of time series whose levels
are significantly different. It also means that if a time series
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has values of different magnitudes, the errors associated with
high values generally weight more than those associated with
low ones (assuming that the error variance increases with the
time series level). Typically, the RMSE is also sensitive to
outliers. Conversely, the MAPE is less sensitive to outliers
and normalizes each error term by the corresponding observed
value. To conclude, the RMSE and MAPE have contrasting
ways to account for errors, which is the reason why we chose
to use both of them to quantify forecast accuracy.

2) Assessing the accuracy of prediction intervals: Given an
α% PI (whose lower and upper boundaries over time are lt
and ut, respectively), we want to determine how accurate it is.
With n true observations {xt}0≤t≤n−1, we can compute the
empirical proportion of samples within the PI

PIemp
α :=

100%

n
card ({xt ∈ [lt, ut] : 0 ≤ t ≤ n− 1}) (9)

and then compare this number against α% (if the α% PI is
perfect, PIemp

α should be equal to α% for n→∞). Our results
report the raw value of PIemp

α for α = 90%. We choose α =
90% because our event-organizing partner suggested us that
our forecasts should roughly be accurate 90% of the time;
thus, properly evaluating the 90% PI is what is most natural.

B. A baseline point of comparison: random walk models

We shall compare the metrics of our forecasts against those
obtained using the “naïve" approach, which is often referred
to as the “random walk" (RW) or “persistence model" in the
literature [45]–[48]. It is an ARIMA(0, 1, 0) model, whose
forecasts are equal to the latest observed value, no matter the
forecasting horizon. Formally, assuming that the underlying
stochastic process generating observations exactly is a RW,
Et[Xt+h] = Xt. In practice, the underlying process rarely is a
RW process, and using a RW model for forecasting is adequate
only if the time series remains approximately constant over the
considered forecasting horizon. To be of practical interest, our
ARIMA models must outperform RW models.

C. Real-time forecasting methods

We now discuss the main forecasting methods, which can
all be implemented in an automated, real-time forecasting
system. They first gather 2 hours of data (from 6:00 AM to
8:00 AM) before fitting a first ARIMA model. Every time
a new count is available (every 5 minutes), the model is
reevaluated. We only use the counts of the current day to
build the corresponding ARIMA model; different days are
fit independently. When evaluating forecasting accuracy, our
method prevents overfitting effects because, when forecasting
the count value at time t+h, our ARIMA model has not (yet)
been trained on the count at time t+ h.

We now detail the methods for forecasting the conditional
mean. As shown in what follows, the best differentiating order
is d = 2 but our results also cover the case d = 1.

1) Rolling ARIMA models with reestimation of the model
order (p, q): This procedures reestimates the order of the
underlying ARMA model, the AR and MA coefficients, and
the innovation variance. The procedure for fitting the ARIMA

model relies on R function auto.arima, which, for a given
ARMA model order (p, q), uses R function arima (see
Section IV-G for more details). We shall use a brute force
approach to search for an optimal ARMA model order (p, q).
To limit the computational burden of this procedure, we rely on
the step-wise approach described in [31, Sec. 3.2] instead of a
true brute force procedure. The step-wise approach initially
considers starting model orders and then locally navigates
through the model order space.

2) Rolling ARIMA models without reestimation of the model
order (p, q): This method is identical to that of Section V-C1
except that the underlying ARMA model order is fixed to
(p, q) = (2, 1), a choice that yields good forecasts in practice.
A first ARI(3, d) is fitted on the basis of the data from 06:00
AM to 08:00 AM, it is used if fitting the first ARIMA
model fails. A pure ML estimator fits this integrated AR
model (reliable closed-form formulas exist [28, Sec. 3.4.2]).
Whenever we include a new count for fitting, it may fail; in
this case, we use the last successfully fitted model. In practice,
fitting issues occured for d = 1 only. Our results demonstrate
that Method V-C2 with d = 2 outperforms Method V-C1.

3) Rolling ARIMA models without reestimation of the model
order (p, q) and with Box-Cox transform: This method is
identical to Method V-C2 except that it uses a Box-Cox
transformation. To find the value of λBC for the Box-Cox
transformation, we can either make it fixed or dynamic.
The dynamic case reestimates λBC using Guerrero’s method
with R = 4 samples and with tested values of λBC being
{0.0, 0.25, 0.50, 0.75, 1.0}. We also do not use debiasing coef-
ficients because they worsen forecasting accuracy. Our results
demonstrate that Method V-C2 outperforms Method V-C3.

We now turn to the methods for generating PIs.
4) PIs from rolling ARIMA models with reestimation of the

model order (p, q): We use the PIs generated by ARIMA
processes with Gaussian innovations, see Section IV-K1.

5) PIs from GARCH models fitted on ARIMA residuals:
For each forecasting horizon h, we fit a dedicated rolling
GARCH(1,1) model on the residuals of h-step ahead forecasts,
which Method V-C2 (with d = 2) generates. The GARCH(1,1)
model is reestimated whenever a new count becomes available;
if fitting fails, the most recent PI is used. For forecasting the
variance of the h-step ahead residuals, we use h-step ahead
GARCH forecasts. In this paper, we use the fGarch package
[49] from R to fit GARCH models and forecast the conditional
variance. We consider GARCH(1,1) models with conditional
variances that are distributed as normals and Student’s t-
distribution; we denote these two cases by GARCH(1,1)norm
and GARCH(1,1)t−dist, respectively. Our results show that
Method V-C5 yields the most accurate PIs but sometimes
generates outliers.

VI. FORECASTING RESULTS AND DISCUSSIONS

A. Estimating the differentiation order d

This section relies on KPSS and ADF tests to estimate the
order of differentiation d. We run tests on each day indepen-
dently. With n denoting the number of observations, formula
lags = 4(n/100)0.25 [30, Sec. 5] provides a number of lags



9

TABLE I
RESULTS OF KPSS AND ADF TESTS FOR SAINTE-CATHERINE (SENSORS

S1 TO S7 IN FIGURE 3) AND BOURSE (SENSORS S14 TO S19 IN
FIGURE 4). THE NUMBER OF OBSERVATIONS PER DAY IS 216 SAMPLES

FOR d = 0 (COUNTS EVERY 5 MINUTES FROM 06:00 TO MIDNIGHT). THE
NUMBER OF LAGS FOR KPSS AND ADF TESTS IS EQUAL TO 5.

Date (Day) KPSS p-value ADF p-value
St.Cath ↓ d = 0 d = 1 d = 2 d = 0 d = 1 d = 2

12-10 (Mon) < 0.01 0.02 > 0.1 0.55 < 0.01 < 0.01
12-13 (Thu) < 0.01 0.02 > 0.1 0.52 0.01 < 0.01
12-17 (Mon) < 0.01 < 0.01 > 0.1 0.56 0.03 < 0.01
12-18 (Tue) < 0.01 0.02 > 0.1 0.59 < 0.01 < 0.01
12-01 (Sat) < 0.01 < 0.01 > 0.1 0.65 < 0.01 < 0.01
12-14 (Fri) < 0.01 < 0.01 > 0.1 0.58 < 0.01 < 0.01
12-15 (Sat) < 0.01 < 0.01 > 0.1 0.74 < 0.01 < 0.01
12-28 (Fri) < 0.01 < 0.01 > 0.1 0.70 0.02 < 0.01
Bourse ↓ d = 0 d = 1 d = 2 d = 0 d = 1 d = 2

12-25 (Tue) < 0.01 < 0.01 > 0.1 0.87 < 0.01 < 0.01
12-26 (Wed) < 0.01 < 0.01 > 0.1 0.81 < 0.01 < 0.01
12-27 (Thu) < 0.01 < 0.01 > 0.1 0.67 < 0.01 < 0.01
12-28 (Fri) < 0.01 < 0.01 > 0.1 0.63 < 0.01 < 0.01
12-29 (Sat) < 0.01 < 0.01 > 0.1 0.71 < 0.01 < 0.01
12-30 (Sun) < 0.01 < 0.01 > 0.1 0.65 < 0.01 < 0.01
01-04 (Fri) < 0.01 < 0.01 > 0.1 0.73 < 0.01 < 0.01
01-05 (Sat) < 0.01 < 0.01 > 0.1 0.53 < 0.01 < 0.01

for KPSS tests. All tests assume no linear trend is present.
Typically, a p-value above 0.1 makes tests inconclusive and
a p-value below 0.01 makes them conclusive; anything in
between those two critical values is to be discussed.

Table I reports the results. Both tests suggest that d = 2,
because KPSS tests then fail to reject non-stationarity and
ADF tests reject non-stationarity; nevertheless, d = 1 is also a
good candidate according to ADF tests (especially for Bourse).
Of course, the number of lags for tests may make them
biased. We shall test both differentiating orders and keep that
providing the best forecasts of the conditional mean.

A real-time system deployed in future events would typi-
cally enforce d before any measurement is available; for future
events, we recommend to keep the value d = 2 obtained for
Winter Wonders. We could also use KPSS or ADF tests online
as soon as n becomes sufficiently high.

B. Accuracy of canonical ARIMA for the conditional mean

This section demonstrates which forecasting method (Meth-
ods V-C1 to V-C3) delivers the lowest RMSEs and MAPEs
consistently; consistency is of paramount importance: a model
that occasionally severely misforecast is to be rejected.

1) Rolling canonical ARIMA models with full reestima-
tion (Method V-C1): Table II reports detailed results for
Sainte Catherine. We remind the reader that all days are fit
independently. Sometimes, ARIMA(p, 1, q) models perform
similarly to RW models; in these cases, most of the esti-
mated ARIMA(p, 1, q) models are actually RW models, i.e.,
ARIMA(0,1,0) models. This is true especially when using the
BIC, which usually generates sparser models than a fitting
based on the AICC; this explains why metrics for d = 1
and for the RW model occasionally are strikingly similar.
Rolling ARIMA(p, 2, q) models perform generally better than
RW models but not consistently. Fixing the model order will
help because it constrains how forecasting is carried out.

TABLE II
RESULTS OF ROLLING FORECASTS FOR SAINTE-CATHERINE (SENSORS S1

TO S7 IN FIGURE 3). THE FULL ARIMA MODEL (INCLUDING ITS
UNDERLYING ARMA ORDER (p, q)) IS REESTIMATED WHENEVER A NEW

COUNT BECOMES AVAILABLE, SEE METHOD V-C1. METRICS ARE
DERIVED FOR A FORECASTING HORIZON OF 30 MINUTES. METRICS ARE

EVALUATED FOR TIME FRAMES CORRESPONDING TO THE ASCENDING
SLOPE (SEE SECTION V-A FOR DETAILS). BOLD NUMBERS REPRESENT
THE BEST PERFORMANCE AND UNDERLINED NUMBERS INDICATE THEY

ARE HIGHER THAN THOSE OF THE RANDOM WALK (RW) MODEL.

Date (Day) RMSE MAPE (in %)
AICC ↓ d = 1 d = 2 RW d = 1 d = 2 RW

12-10 (Mon) 125.8 128.5 144.6 5.88 6.22 7.01
12-13 (Thu) 276.1 271.8 276.1 9.19 9.68 9.19
12-17 (Mon) 187.3 208.6 196.3 6.58 7.23 6.97
12-18 (Tue) 266.7 254.7 260.7 9.57 9.32 8.91
12-01 (Sat) 183.4 151.2 187.7 7.14 6.24 7.34
12-14 (Fri) 206.5 199.1 211.3 6.96 6.89 7.27
12-15 (Sat) 247.5 266.4 257.4 6.72 7.44 6.94
12-28 (Fri) 172.3 178.2 184.4 5.31 5.62 6.01

BIC ↓ d = 1 d = 2 RW d = 1 d = 2 RW
12-10 (Mon) 146.8 129.6 144.6 7.07 6.52 7.01
12-13 (Thu) 276.1 267.5 276.1 9.19 8.98 9.19
12-17 (Mon) 186.9 215.5 196.3 6.57 7.11 6.97
12-18 (Tue) 264.1 238.6 260.7 9.20 8.78 8.91
12-01 (Sat) 188.2 151.5 187.7 7.37 6.21 7.34
12-14 (Fri) 213.8 182.2 211.3 7.31 6.55 7.27
12-15 (Sat) 246.8 262.9 257.4 6.70 7.24 6.94
12-28 (Fri) 190.9 178.1 184.4 6.10 5.65 6.01

2) Rolling, fixed-order canonical ARIMA models
(Method V-C2): We fix the order (p, d, q) of the ARIMA
model beforehand. In practice, an adequate model order
prevents the model from relying on highly local tendencies
and prevents overfitting effects (i.e., it includes a sufficiently
low number of coefficients in comparison to the number
of available measurements). Our experiments revealed that
ARIMA(2, 1, 1) and ARIMA(2, 2, 1) models are good options.

Table III shows that Method V-C2 consistently outperforms
(or at least compares similarly to) RW models. In average, the
accuracy is worse at Bourse than it is at Sainte-Catherine; this
happens because some areas are intrinsically less predictable
than others. Comparing Table III against Table II reveals
that fixing the model order improves forecasting accuracy in
comparison to periodically reestimating the order. Figures 5
and 6 plot the rolling ARIMA(2,2,1) forecasts for Sainte-
Catherine and Bourse, respectively.

3) Rolling, fixed-order ARIMA models with Box-Cox trans-
formations (Method V-C3): Table IV reports the results for
Bourse. In Table IV, Roll. corresponds to the rolling rees-
timation of λBC for every newly available count; the table
also includes results for fixed values of λBC. Box-Cox trans-
formations have a detrimental influence on the accuracy of
rolling ARIMA(2,2,1) models. In particular, the truly self-
adjusting procedure (referred to as Roll. in Table IV) is
always less accurate than Method V-C2 (which is equivalent to
Method V-C3 with λBC = 1). The forecast accuracy improves
as λBC approaches 1, which shows that using Box-Cox
transformations to improve forecasting accuracy is pointless.

The conclusion is that, among the three methods,
Method V-C2 is the best option for forecasting the conditional
mean. Our average MAPE values range from 4.75% to 11%,
depending on the day and the area. We report these metrics
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TABLE III
RESULTS OF ROLLING FORECASTS FOR SAINTE-CATHERINE (SENSORS S1

TO S7 IN FIGURE 3) AND BOURSE (SENSORS S14 TO S19 IN FIGURE 4).
THE ARIMA MODEL (EXCLUDING ITS UNDERLYING ARMA ORDER

(p, q)) IS REESTIMATED WHENEVER A NEW COUNT BECOMES AVAILABLE,
SEE METHOD V-C2. METRICS ARE DERIVED FOR A FORECASTING

HORIZON OF 30 MINUTES. METRICS ARE EVALUATED FOR TIME FRAMES
CORRESPONDING TO THE ASCENDING SLOPE (SEE SECTION V-A FOR

DETAILS). BOLD NUMBERS REPRESENT THE BEST PERFORMANCE AND
UNDERLINED NUMBERS INDICATE THEY ARE HIGHER THAN THOSE OF

THE RANDOM WALK (RW) MODEL. FOR THE RMSE, “AVERAGE" IS THE
ROOT SQUARE OF THE MSE AVERAGE.

Date (Day) RMSE MAPE (in %)
St. Cath ↓ d = 1 d = 2 RW d = 1 d = 2 RW

12-10 (Mon) 125.0 121.1 144.6 5.97 5.78 7.01
12-13 (Thu) 278.7 261.2 276.1 9.33 9.39 9.19
12-17 (Mon) 190.5 142.0 196.3 6.57 4.75 6.97
12-18 (Tue) 237.6 239.4 260.7 8.44 8.78 8.91
12-01 (Sat) 173.6 156.5 187.7 6.87 6.48 7.34
12-14 (Fri) 204.8 177.9 211.3 7.01 6.38 7.27
12-15 (Sat) 254.0 261.0 257.4 7.03 7.17 6.94
12-28 (Fri) 166.7 177.7 184.4 5.27 5.61 6.01

Average 209.3 198.8 219.0 7.06 6.79 7.46
+ % wrt. best 5.3 0.0 10.2 4.0 0.0 9.9

Bourse ↓ d = 1 d = 2 RW d = 1 d = 2 RW
12-25 (Tue) 183.1 145.6 186.1 9.04 6.82 9.33
12-26 (Wed) 206.8 193.9 227.1 10.36 9.21 11.57
12-27 (Thu) 244.3 182.4 245.4 12.69 8.37 12.69
12-28 (Fri) 245.2 210.1 240.1 11.53 9.55 11.24
12-29 (Sat) 218.0 184.8 238.2 10.10 7.92 11.01
12-30 (Sun) 219.9 188.6 223.4 11.11 8.78 11.45
01-04 (Fri) 137.9 133.1 142.0 9.15 8.30 9.23
01-05 (Sat) 159.0 156.7 163.4 10.93 10.94 11.12

Average 205.0 176.1 211.4 10.61 8.74 10.96
+ % wrt. best 16.4 0.0 20.1 21.4 0.0 25.4

for a forecast horizon of 30 minutes. According to our partner
organizing events, however, forecast horizons ranging from
10 to 15 minutes are already of interest and the corresponding
metrics are lower than those of 6-step ahead forecasts.

C. The accuracy of prediction intervals

We consider 90% PIs generated by three different meth-
ods: i) rolling ARIMA(2,2,1) models with Gaussian inno-
vations (see Method V-C4), ii) rolling GARCH(1,1) mod-
els with a Gaussian conditional variance distribution, iii)
rolling GARCH(1,1) models with a conditional variance that
has a Student’s t-distribution. The last two methods are
particular cases of Method V-C5. We always use rolling
ARIMA(2,2,1) models for forecasting the conditional mean
(see Method V-C2).

Table V reports the final results. Method V-C4 makes com-
puting PIs computationally easy and it prevents PI boundary
outliers from occurring (see Figures 5 and 6); according
to Table V, however, the corresponding 90% PI ranges are
underestimated. Conversely, GARCH(1,1) PIs are in average
more accurate but, as shown in Figures 5 and 6, the PI
boundaries generated by GARCH(1,1) models are sensitive
to high forecast errors (see, e.g., December 25 and 26 on
Figure 6). GARCH models are also more computationally
intensive to fit and forecast with than rolling ARIMA models.

As a result, if computational resources are no issue, we rec-
ommend to use GARCH(1,1) models and to filter the outliers.

Otherwise, the PIs stemming from a rolling ARIMA(2,2,1)
model may be sufficient for reporting purposes.

VII. FUTURE WORK

Univariate, non-seasonal forecasting methods tend to over or
undershoot whenever a turning point appears (a point at which
the first derivative suddenly changes), see Figure 5 at 12:30
and around 20:00). To deal with such points, other avenues of
information could be leveraged. For events featuring a strong
seasonal pattern, seasonal models are appropriate. Jointly
forecasting count time series at different locations could also
foresee turning points based on the data from other nearby
areas through which attendees go. ARIMA models with exoge-
nous variables (the exogenous variables being counts at other
locations) could be a solution, just as multivariate AR(I)MA
models (e.g., vector error correction models). Multi-fidelity
approaches could also utilize counts from telco operators
associated with nearby cells to detect incoming people prior to
their arrival on the event. More generally, the accuracy of other
classes of forecasters could be investigated (see [23, Table 1]
for an overview of such methods).

Finally, the forecasting methods we proposed—although
already tested on several days—could be validated using data
from other venues (possibly indoor venues as well). The
value of the extrapolation factor could also be more precisely
estimated by deploying Wi-Fi sensors on events endowed with
another precise counting system (e.g., one based on cameras
or turnstiles at controlled entrances and exits).

VIII. CONCLUSION

This paper cursorily discusses a passive crowd counting
system based on the Wi-Fi probe requests that is unaffected by
MAC address randomization. We proposed a computationally
tractable forecasting method for public events; it consists in
a rolling ARIMA(2,2,1) model that is reestimated every five
minutes (see Method V-C2). Using real-world data obtained
in late 2018 and early 2019, we validated our method, which
starts forecasting after only two hours of data are available—
thereby making it a practical algorithm for forecasting counts
on one-day events. For a forecasting horizon of 30 minutes,
our method outperforms its main variations (using, e.g., Box-
Cox transformations) and random walk models. Depending on
the area, the average mean absolute percentage error ranges
from 6.79% to 8.74%. Finally, we proposed two methods for
generating viable 90% prediction intervals. The one relying
on ARIMA models generates 90% PIs within which 74.5%
to 79.1% of true counts fall, whereas, for PIs stemming
from GARCH models with Student’s t-distributions, the figure
ranges from 89.2% to 89.5% depending on the area.
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TABLE IV
RESULTS OF ROLLING ARIMA(2,2,1) FORECASTS FOR BOURSE WITH BOX-COX TRANSFORMATIONS, SEE METHOD V-C3. BOX-COX PARAMETER λBC

IS EITHER ESTIMATED ONLINE (ROLL.) OR FIXED BEFOREHAND. NO DEBIASING COEFFICIENT IS APPLIED. SEE THE CAPTION OF TABLE III FOR
ADDITIONAL DETAILS.

Date (Day) RMSE MAPE (in %)
Roll. Fixed λBC Roll. Fixed λBC

0 0.5 0.75 1 0 0.5 0.75 1
12-25 (Tue) 153.6 153.6 146.2 145.3 145.6 7.10 7.10 6.84 6.81 6.82
12-26 (Wed) 217.4 218.9 198.4 195.2 193.9 10.38 10.48 9.57 9.35 9.21
12-27 (Thu) 247.6 286.6 197.8 187.3 182.4 10.95 12.25 9.04 8.56 8.37
12-28 (Fri) 253.7 258.2 221.1 214.2 210.1 11.31 11.50 10.16 9.81 9.55
12-29 (Sat) 212.3 214.1 193.2 188.1 184.8 8.72 8.80 8.18 8.04 7.92
12-30 (Sun) 216.1 220.4 197.9 192.2 188.6 10.09 10.18 9.18 8.93 8.78
01-04 (Fri) 147.4 148.0 138.1 135.2 133.1 8.97 9.01 8.54 8.39 8.30
01-05 (Sat) 185.2 190.2 165.7 159.6 156.7 12.35 12.80 11.50 11.12 10.94

Average 207.5 215.9 184.3 179.0 176.1 9.98 10.27 9.13 8.88 8.73
+ % wrt. best 17.8 22.6 4.7 1.7 0.0 14.3 17.6 4.6 1.7 0.0

TABLE V
EMPIRICAL PERCENTAGES OF TRUE COUNTS FALLING WITHIN 90% PIS.

SECTION V-C DESCRIBES THE METHODS FOR GENERATING PIS.
METHOD V-C2 GENERATES THE FORECASTS OF THE CONDITIONAL

MEAN. METRICS ARE DERIVED FOR A FORECASTING HORIZON OF 30
MINUTES (6-STEP AHEAD). METRICS ARE EVALUATED FOR TIME FRAMES

CORRESPONDING TO THE ASCENDING SLOPE (SEE SECTION V-A).

Date (Day) PIemp
90%

(in percents)
St. Cath ↓ ARIMA GARCH(1,1)norm GARCH(1,1)t−dist

12-10 (Mon) 87.5 83.3 87.5
12-13 (Thu) 68.8 81.2 87.5
12-17 (Mon) 81.2 81.2 83.3
12-18 (Tue) 64.6 79.2 79.2
12-01 (Sat) 90.3 95.8 95.8
12-14 (Fri) 89.3 88.1 88.1
12-15 (Sat) 76.4 97.2 97.2
12-28 (Fri) 75.0 95.2 97.6

Average 79.1 87.7 89.5
Bourse ↓ ARIMA GARCH(1,1)norm GARCH(1,1)t−dist

12-25 (Tue) 70.8 79.2 72.2
12-26 (Wed) 68.1 81.9 84.7
12-27 (Thu) 86.1 87.5 87.5
12-28 (Fri) 68.1 81.9 97.2
12-29 (Sat) 66.7 88.9 90.3
12-30 (Sun) 79.2 88.9 88.9
01-04 (Fri) 79.2 83.3 93.1
01-05 (Sat) 77.8 83.3 100.0

Average 74.5 84.4 89.2

REFERENCES

[1] G. K. Still, Introduction to crowd science. CRC Press, 2014.
[2] C. Martella, J. Li, C. Conrado, and A. Vermeeren, “On current crowd

management practices and the need for increased situation awareness,
prediction, and intervention,” Safety science, vol. 91, pp. 381–393, 2017.

[3] T. Bollerslev, “Generalized autoregressive conditional heteroskedastic-
ity,” Journal of econometrics, vol. 31, no. 3, pp. 307–327, 1986.

[4] C. Francq, J.-M. Zakoian et al., “Maximum likelihood estimation of pure
GARCH and ARMA-GARCH processes,” Bernoulli, vol. 10, no. 4, pp.
605–637, 2004.

[5] V. Acuna, A. Kumbhar, E. Vattapparamban, F. Rajabli, and I. Guvenc,
“Localization of WiFi devices using probe requests captured at un-
manned aerial vehicles,” in 2017 IEEE Wireless Communications and
Networking Conference (WCNC). IEEE, 2017, pp. 1–6.

[6] B. S. Çiftler, S. Dikmese, I. Güvenç, K. Akkaya, and A. Kadri, “Occu-
pancy counting with burst and intermittent signals in smart buildings,”
IEEE Internet of Things Journal, vol. 5, no. 2, pp. 724–735, 2018.

[7] E. Vattapparamban, B. S. Çiftler, . Güvenç, K. Akkaya, and A. Kadri,
“Indoor occupancy tracking in smart buildings using passive sniffing of
probe requests,” in 2016 IEEE International Conference on Communi-
cations Workshops (ICC), May 2016, pp. 38–44.

[8] J. Weppner, B. Bischke, and P. Lukowicz, “Monitoring crowd condition
in public spaces by tracking mobile consumer devices with WiFi inter-

 0
8:

00
 1

2:
00

 1
6:

00
 2

0:
00

 0
8:

00
 1

2:
00

 1
6:

00
 2

0:
00

 0
8:

00
 1

2:
00

 1
6:

00
 2

0:
00

 0
8:

00
 1

2:
00

 1
6:

00
 2

0:
00

 0
8:

00
 1

2:
00

 1
6:

00
 2

0:
00

 0
8:

00
 1

2:
00

 1
6:

00
 2

0:
00

 0
8:

00
 1

2:
00

 1
6:

00
 2

0:
00

 0
8:

00
 1

2:
00

 1
6:

00
 2

0:
00

Datetime (time step = 5.0 minutes)

0

1000

2000

3000

4000

Co
un

ts

Dec 10 (Mon) Dec 13 (Thu) Dec 17 (Mon) Dec 18 (Tue) Dec 01 (Sat) Dec 14 (Fri) Dec 15 (Sat) Dec 28 (Fri)

Measured counts
Forecasted counts
90% PI

 0
8:

00
 1

2:
00

 1
6:

00
 2

0:
00

 0
8:

00
 1

2:
00

 1
6:

00
 2

0:
00

 0
8:

00
 1

2:
00

 1
6:

00
 2

0:
00

 0
8:

00
 1

2:
00

 1
6:

00
 2

0:
00

 0
8:

00
 1

2:
00

 1
6:

00
 2

0:
00

 0
8:

00
 1

2:
00

 1
6:

00
 2

0:
00

 0
8:

00
 1

2:
00

 1
6:

00
 2

0:
00

 0
8:

00
 1

2:
00

 1
6:

00
 2

0:
00

 0
8:

00
 1

2:
00

 1
6:

00
 2

0:
00

 0
8:

00
 1

2:
00

 1
6:

00
 2

0:
00

 0
8:

00
 1

2:
00

 1
6:

00
 2

0:
00

 0
8:

00
 1

2:
00

 1
6:

00
 2

0:
00

 0
8:

00
 1

2:
00

 1
6:

00
 2

0:
00

 0
8:

00
 1

2:
00

 1
6:

00
 2

0:
00

 0
8:

00
 1

2:
00

 1
6:

00
 2

0:
00

 0
8:

00
 1

2:
00

 1
6:

00
 2

0:
00

Datetime (time step = 5.0 minutes)

0

1000

2000

3000

4000

5000

Co
un

ts

Dec 10 (Mon) Dec 13 (Thu) Dec 17 (Mon) Dec 18 (Tue) Dec 01 (Sat) Dec 14 (Fri) Dec 15 (Sat) Dec 28 (Fri)

Measured counts
Forecasted counts
90% PI

 0
8:

00
 1

2:
00

 1
6:

00
 2

0:
00

 0
8:

00
 1

2:
00

 1
6:

00
 2

0:
00

 0
8:

00
 1

2:
00

 1
6:

00
 2

0:
00

 0
8:

00
 1

2:
00

 1
6:

00
 2

0:
00

 0
8:

00
 1

2:
00

 1
6:

00
 2

0:
00

 0
8:

00
 1

2:
00

 1
6:

00
 2

0:
00

 0
8:

00
 1

2:
00

 1
6:

00
 2

0:
00

 0
8:

00
 1

2:
00

 1
6:

00
 2

0:
00

Fig. 5. Raw counts, forecasts and PIs for area Sainte-Catherine, which
corresponds to Sensors S1 to S7 (see Figure 3). A rolling ARIMA(2,2,1)
model generates the forecasts, see Method V-C2. The forecasting horizon
is 30 minutes (6-step ahead). All days are fitted independently from one
another. Markers on the x axis without label appear at 18:00 and 22:00.
The order of the days groups them according to the similarity of their
patterns. The extrapolation factor is equal to 3. Some artificial artifacts
appear at the beginning of each day (except the first one), they are linked
to the concatenation from several days and to forecast counts reaching zero.
Top: the ARIMA model generates PIs, see Method V-C4. Bottom: a rolling
GARCH(1,1) model (with Gaussian conditional variances) generates PIs, see
Method V-C5.
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Fig. 6. Raw counts, forecasts and PIs for area Bourse, which corresponds to
Sensors S14 to S19 (see Figure 4). A rolling ARIMA(2,2,1) model generates
the forecasts, see Method V-C2. The forecasting horizon is 30 minutes (6-step
ahead). All days are fitted independently from one another. Markers on the
x axis without label appear at 18:00 and 22:00. The extrapolation factor is
equal to 3. Some artificial artifacts appear at the beginning of each day (except
the first one), they are linked to the concatenation of data from several days.
Top: the ARIMA model generates PIs, see Method V-C4. Bottom: a rolling
GARCH(1,1) model (with Gaussian conditional variances) generates PIs, see
Method V-C5.
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