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Abstract 10 

The Southern Ocean, including the seasonal ice zone (SIZ), is a source of large sea-air fluxes of 11 

dimethylsulfide (DMS), a climate active gas involved in Earth cooling processes. In this area, the 12 

prymnesiophyte Phaeocystis antarctica (P.antarctica) is one of the main producers of 13 

dimethylsulfoniopropionate (DMSP) and dimethylsulfoxide (DMSO), two metabolites that are 14 

precursors of DMS. These algae are also present in sea ice and could contribute substantially to the 15 

high DMSP and DMSO concentrations observed in this habitat. DMSP and DMSO production in sea ice 16 

by P.antarctica could be promoted by it living in extreme environmental conditions. We designed cell 17 

culture experiments to test that hypothesis, focusing on the impact of shifts of temperature and 18 

salinity on the DMSP and DMSO cell quotas. Our experiments show an increase in DMSP,O cell quotas 19 

following shifts in salinity (34 to 75, at 4°C), suggesting a potential osmoregulator function for both 20 

DMSP and DMSO. Stronger salinity shifts (up to 100) directly impact cell growth and induce a crash of 21 

the cultures. Combining salinity (34 to 75) and temperature (4°C to -2.3°C) shifts induces higher 22 

increases of DMSP and DMSO cell quotas also suggesting an implication of both metabolites in a 23 

cryoprotectant system. Experimental cell quotas (including diatom Fragilariopsis cylindrus quotas from 24 

a previous study) are then used to reconstruct DMSP and DMSO profiles in sea ice based on the 25 

biomass and taxonomy. Finally, the complexity of the transposition of rates obtained in the 26 

experimental domain to the real world is discussed. 27 
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Introduction 32 

The prymnesiophyceae Phaeocystis antarctica is considered a major contributor (36-45%) to annual 33 

primary production in the coastal Antarctic waters (Schoemann et al. 2005; Smith et al. 2006). 34 

P.antarctica is particularly dominant during phytoplankton blooms occurring during and after the sea-35 

ice seasonal melt in the late-spring and summer (Rousseau et al. 2007; Smith et al. 2003). P.antarctica 36 

influences the biochemical cycles in the Southern Ocean (Verity et al. 2007), in particular, the carbon 37 

(DiTullio et al. 2000; Schoemann et al. 2005) and sulfur (Stefels 2000; Stefels et al. 2007) cycles. In the 38 

sulfur cycle, P.antarctica is involved in the production of two dimethylated sulfur compounds (DSC), 39 

dimethylsulfoniopropionate (DMSP) and dimethylsulfoxide (DMSO) (Kinsey and Kieber 2016), which 40 

are the biogenic precursors of the climate active gas dimethylsulfide (DMS) (Liss et al. 1997; Stefels et 41 

al. 2007). In the mid-1980s, it was determined that high concentrations of DMSP and DMS measured 42 

in and over the cold and temperate ocean waters could be linked to blooms of Phaeocystis sp. (Barnard 43 

et al. 1984; Baumann et al. 1994; Stefels et al. 1995; Crocker et al. 1995 and references therein). The 44 

importance of DMS was put forward by Charlson et al. (1987), who suggested a key role for DMS in 45 

climate-cooling feedback (the CLAW hypothesis). In the atmosphere, DMS is the biogenic precursor of 46 

sulfur aerosols which could counteract the effect of anthropic greenhouse gases on the Earth radiative 47 

balance. Their observations have since been challenged by modelling studies (see Quinn and Bates 48 

(2011) for an overview) which suggest a minor impact of DMS fluxes in the global loop proposed by 49 

the CLAW hypothesis. However, the atmospheric role of DMS (i.e. precursor of sulphate aerosols) 50 

remains relevant, especially over the polar regions (Levasseur 2013) which are far from anthropogenic 51 

aerosol emissions.  52 

There is no consensus about the intracellular function of DMSP and DMSO in organisms producing or 53 

assimilating these demethylated sulfur compounds. DMSP was assumed to act as an osmoregulator 54 

(Dickson and Kirst 1986), a cryoprotectant (Karsten et al. 1996), an antioxidant (Sunda et al. 2002), 55 

grazers deterrent (Strom et al. 2003) and a ‘‘trash- can’’ for reduced compounds and excess energy 56 

(Stefels 2000). Similarly, Lee and De Mora (1999) highlighted the role of cryoprotectant and 57 

osmoregulator for DMSO but also the role of intracellular electrolyte modifier and antioxidant. Further, 58 

DMSO appears to be involved in an antioxidant cascade in the cell (Sunda et al. 2002). DMSP ends up 59 

in the surrounding aquatic environment after cell grazing, viral lysis, senescence or exudation episodes 60 

(Stefels et al. 2007). DMSO, for its part, easily diffuses through the cell membranes (Jacob and Wood 61 

1967).  62 

If a large part of the DMSP pool is degraded by bacterial demethylation and demethiolation processes, 63 

a small part (at most 17%) is converted into DMS by algal and bacterial processes (Archer et al. 2002; 64 

Kiene and Linn 2000; Yoch 2002). In particular, P.antarctica synthesizes enzymes DMSP-lyases that 65 

cleave the DMSP into DMS and acrylate (Del Valle et al. 2011). These lyases are linked to the cell 66 



4 
 

membrane and could be excreted from the cell through secretory vesicles as suggested by Orellana et 67 

al. (2011) and accumulate in the gelatinous matrix of P.antarctica colonies. The DMSO pool is also 68 

controlled by algal and bacterial processes and, through these, can be reduced to DMS (Stefels et al. 69 

2007; Spiese et al. 2009). The fate of the DMS in the marine environment varied. A large portion is 70 

involved in bacterial processes while photooxidation and emissions to the atmosphere also occur (see 71 

Stefels et al. (2007) for a review).  72 

Sea ice is a permeable layer that plays a role in the exchanges of many gases (CO2, O2, CH4, DMS, …) 73 

between the ocean and the atmosphere (Loose et al. 2011; Zhou et al. 2013, 2014 a, b; Crabeck et al. 74 

2014). Measurements of DSC were conducted in Antarctic sea ice for at least three decades (Carnat et 75 

al. 2014; 2016 for an overview). In the beginning, only DMS and DMSP were recorded but with the 76 

improvement of sulfur analytical techniques, DMSO has also been measured in sea ice samples (Hatton 77 

et al. 1994; Simó et al. 1996; Simó et al. 1998; Lee et al. 2001). These measurements revealed that DSC 78 

can be much higher than the concentration measured in oceanic waters and vary with time and space. 79 

Maximum concentrations of a few thousand nanomoles of DMSP (up to 5349 nM) and DMSO (up to 80 

2097 nM) were recorded both in pack and fast ice (Carnat et al. 2016, 2014; Kirst et al. 1991; Tison et 81 

al. 2010). In polar oceanic regions, the DMS cycle is highly influenced by the presence of this annual 82 

sea ice cover which impacts the concentration, the production and the exchanges of DSC with the 83 

ocean and the atmosphere (Tison et al. 2010).  84 

Also, sea ice is the host of high biomass which produces a large number of molecules including DMSP, 85 

DMSO and DMS (Tison et al. 2010). As part of this biomass, P.antarctica has been regularly observed 86 

in sea ice and could initiate the oceanic spring bloom when sea ice melt (Gibson et al. 1990; Garrison 87 

et al. 2003; Kennedy et al.  2012). In addition, sea ice is characterized by brine salinities that can exceed 88 

200, temperatures that can drop below -18°C, light levels that can be extremely low (<5 µmol photon 89 

m-2 s-1) and by the occurrence of nutrient gradients which are extreme for living organisms (Thomas 90 

and Dieckmann 2010). These extreme conditions strongly impact vital cellular processes such as 91 

photosynthesis, respiration, enzymatic activity or membrane permeability (Sudhir and Murthy 2004; 92 

Ralph et al. 2005, 2007; Petrou et al. 2011). Nevertheless, polar microalgae (such as P.antarctica or 93 

F.cylindrus, among others) are able to react to these stress conditions by producing numerous 94 

molecules which help to maintain the integrity of the cell. Among these, osmolytes such as glycine 95 

betaine, DMSP, DMSO; thermo-tolerants (antifreeze proteins, extracellular polymeric substances 96 

(EPS), DMSP, DMSO) or antioxidants (carotenoids, ascorbates, tocopherols, reduced glutathione, 97 

DMSP, DMSO and various antioxidant enzymes) were all detected in sea ice brine conditions (Kirst 98 

1996; Zhang et al. 2005; Janech et al. 2006; Janknegt et al. 2008; Krell et al. 2008). For these reasons, 99 

the cycle of DSC and sea ice growth and decay are closely linked. 100 
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After decades of research, processes driving the DMS cycle are still not well constrained (Carnat et al. 101 

2016, 2014; Kirst et al. 1991; Levasseur et al. 1994; Tison et al. 2010; Trevena and Jones 2006). Also, 102 

although the extreme environmental conditions in sea ice and the related metabolic functions of both 103 

DMSP and DMSO are established, the pathways of DSC production are only partly understood.  104 

In the polar area, the cycle of DSC is strongly influenced by the diversity in physiology and biomass of 105 

the different phytoplankton groups. As an example, diatoms are known to be lower DSC producers 106 

than prymnesiophyceae (Keller 1989). Hence, it is important to test how variations of abiotic factors 107 

(salinity, temperature, light) impact the DSC pool for a large panel of species. Up to now, most of the 108 

research focusing on the impact of salinity on the DSC were conducted on diatoms. Yang et al. (2011), 109 

Kettles et al. (2014) and Lyon et al. (2016) have all observed a positive impact of an increase of salinity 110 

on the intracellular DMSP, respectively on the benthic diatom Skeletonema costatum, Thalasiosiria 111 

pseudonana and the polar diatom F.cylindrus. Diatoms are more easily studied in laboratory than 112 

prymnesiophyceae which present a more complex life cycle including free-living single cells and a 113 

colonial stage (Rousseau et al. 2007). Some experimental studies were however conducted on the 114 

prymnesiophyceae (Vairavamurthy et al. 1985; Stefels and Dijkhuizen 1996; Van Rijssel and Gieskes 115 

2002) but were not focused on the extreme temperature and salinity occurring in the polar area. 116 

In this study, we propose a cell culture approach based on P.antarctica. This approach is relatively new 117 

for the prymnesiophyceae. In controlled laboratory conditions, we address the impact of variations of 118 

temperature and salinity on the DMSP and DMSO cell quotas to test their supposed cryoprotectant 119 

and osmoregulator functions. The used range of temperature (4°C to -7.4°C) and salinity (20 to 150) is 120 

chosen to cover a large part of the seasonal variations experimented by the microalgae in their real 121 

environment (brines in sea ice). 122 

Experimental 123 

Culture conditions 124 

Cultures of P.antarctica (CCMP1374) from the Roscoff Culture Collection (France) were maintained in 125 

exponential growth at 4°C under a salinity of 34 (S34) and a 16:8 light:dark cycle (100 µE m-2 s-1) in a 126 

cooling incubator (FITOCLIMA S600, ARALAB®). The growth medium for algae was prepared using 127 

filtered (0.2µm Whatman® cellulose acetate filter) and sterilized Antarctic seawater at S34 from the 128 

Ross Sea enriched with F/2 medium and vitamins (B1, B12 and H) (Guillard and Ryther 1962) to create 129 

an excess in nutrients. The total concentrations of nitrogen, silica and phosphorus in the growth 130 

medium before algal inoculation were 883 µM, 107 µM and 36 µM, respectively. These were calculated 131 

from the F/2 medium protocol. A complex of antibiotics (Penicillin-G and Streptomycin) was also added 132 

to prevent bacterial development. Considering that F/2 medium contains iron (10 µM before algal 133 

inoculation), our experiments are not iron-depleted.  134 
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We tested four salinity levels on P.antarctica at constant temperature (4°C): 20 (S20), 75 (S75), 100 135 

(S100) and 150 (S150). The three increases of salinity were also tested with a decrease of temperature 136 

(-2.3°C, -3.9°C and -7.4°C respectively for S75, S100 and S150). For each salinity experimented, we 137 

started by dividing a 1L culture of P.antarctica at exponential growth (S34 and 4°C) in three sub-138 

cultures (Supplementary material 1). The first one, called control culture, remained at 4°C and S34. 139 

The second was diluted stepwise at 4°C with ultrapure water or with a high salinity solution to decrease 140 

(S20) or increase (S75, S100 and S150) the salinity. The third underwent the same shift of salinity (S75, 141 

S100 and S150) and was placed in a cooling alcohol bath to change the temperature (to -2.3°C, -3.9°C 142 

or -7.4°C). 143 

Changes of salinity were obtained by means of three successive dilutions over 8 hours. The salinity was 144 

incrementally decreased by addition of ultrapure water (three salinity increments of 4.6). Conversely, 145 

a subculture was mixed three times with a salty solution (100, 120 or 210) to achieve S75, S100 and 146 

S150, respectively (salinity increment of +14, +22 and +39, respectively) (Supplementary material 2). 147 

The S34 control solution was also diluted with seawater of salinity S34 to mimic the dilution of the 148 

other treatments and related decrease of cell concentration. Thereby, we simulated an identic dilution 149 

of biomass during the same period between the three sub-cultures. Note also that fresh F/2 medium 150 

was added in all cultures to avoid a limitation of nutrients during the tests.  151 

The 11 cultures obtained by this protocol (i.e. four replicates at S34 and 4°C and seven experiments of 152 

environmental variations with only one replicate for each) were studied over 9 days with sampling at 153 

T0 and after 24h, 48h, 72h and 9 days. Cultures were sampled to follow up the concentration in 154 

Chlorophyll-a, DMSP and DMSO. 155 

Analyses 156 

Chlorophyll-a 157 

Chl-a concentrations were obtained by filtering a volume between 15 mL and 25 mL of algal culture 158 

(glass microfibers GF/F filters 25 mm, Whatman®). Extraction of Chl-a was performed with acetone 159 

(90%) and Chl-a was measured with a Kontrom® SFM25 fluorimeter (Holm-Hansen et al. 1965). 160 

Standards used for the calibration were prepared from a solution of spinach Chlorophyll (1000 µg L-1).  161 

DMSP and DMSO analysis 162 

The intracellular fractions of DMSP and DMSO, referred as particulate DMSP and DMSO (DMSPp and 163 

DMSOp respectively), were analysed for all the studied conditions. Preliminary experiments showed 164 

that P.antarctica produced an amount of DMSPp and DMSOp largely superior to the upper limit of 165 

detection (0.5 – 0.6 nmol per mL) of our gas chromatograph (GC, Agilent®7890A). Sampling consisted 166 

to filtrate 0.15 mL of culture mixed with 4.85 mL of water at the same salinity (factor 1:20), through a 167 

muffled filter (Glass microfibers GF/F filter 25 mm, Whatman®). This step was replicated three times 168 

for both DMSPp and DMSOp (i.e. technical replicates). Then, filters were stored in muffled vials in 3 mL 169 
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of ultrapure water. Directly after the sampling, the samples were bubbled in a microwave oven until 170 

boiling to prevent the activity of DMSP-lyases who are able to convert DMSP in DMS, especially in 171 

Phaeocystis sp. (Kinsey and Kieber 2016). After a last step of acidification with H2SO4 50% to prevent 172 

biological development, the samples were closed with a cap with a butyl/PTFE septum and stored at 173 

4°C in the dark. Before analysis, samples were purged for 20 min to remove residual DMS in vials. 174 

Analysis of DMSPp and DMSOp were performed by gas chromatography after respectively an alkaline 175 

hydrolysis to DMS (addition of NaOH pellets at 4°C in the dark for 24h (Dacey and Blough 1987)) and 176 

conversion to DMS with TiCl3 (Deschaseaux et al. 2014; Kiene and Gerard 1994). After chemical 177 

reaction, each sample was connected to a purge-and-trap system (P&T) coupled with a GC (Carnat et 178 

al. 2014). The P&T consisted, first, in bubbling the sample with pure helium (99.999%) to purge the 179 

DMS (flow rate = 25 mL min-1). Second, the purged DMS was going through a water vapour trap and 180 

was finally trapped in a PTFE loop (1/8” OD) immersed in liquid nitrogen (-196°C). After a purge of 20 181 

minutes, the PTFE loop was transferred in boiling water and desorbed DMS was injected in the GC. We 182 

used an Agilent®7890A GC equipped with a dual FPD (sulfur and phosphorus filter) and a sulfur-specific 183 

capillary column (Agilent J&W®DB-A, 30m x 0.32 mm ID). The temperature of the FPD was maintained 184 

at 250°C and the flows of H2, dry air and makeup gas (N2) were at 50 mL min-1, 60 mL min-1 and 60 mL 185 

min-1 respectively. Carrier gas was He. In the GC oven, the applied cycle of temperature started at 60°C 186 

and increased to 150°C with a rate of 30°C min-1. The temperature was maintained at 150°C for 3 min 187 

before returned to 60°C. GC calibration was performed with DMS standards (pure DMS >99%, Merck) 188 

from 0.015 to 3 nmol in 3 mL. Number of nanomols of DMS in our samples were determined from the 189 

linear regression created from the square root of areas of standards peaks.  190 

Statistical analysis and data treatment 191 

The four sub-cultures conducted at S34 and at 4°C were grouped to obtain only one data set in these 192 

conditions called control culture. In this case, we averaged the biological parameters (Chl-a, DMSPp 193 

and DMSOp) at each day of the sampling period. In each sub-culture, these parameters were 194 

themselves issued from an averaging of 2 to 5 measurements. Therefore, we use a weighed relation 195 

to calculate the standard deviation of the control culture: 196 

Standard deviation =  ට∑ ୬౟.ୗ୘ୈ୚౟
మర

೔సభ
୬౪౥౪

, 197 

where ni and STDVi are respectively the number of observations (Chl-a, DMSPp or DMSOp) for each sub-198 

culture and the standard deviation of these observations for each sub-culture. ntot is the total number 199 

of observations from the four sub-cultures. 200 

No statistical analysis was conducted to compare the response of P.antarctica to salinity and/or 201 

temperature treatments due to a lack of biological replicates.  202 
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Estimation of natural DSC brines contents 203 

In order to link experimental data to field observations, we attempted estimation reconstruction of 204 

the brines DSC concentrations using the specific DMSP and DMSO cell rates measured in this laboratory 205 

study (P.antarctica) and in Wittek et al. (2020) (F.cylindrus). We chose field locations where the biotic 206 

(taxonomy, biomass) and physico-chemical (temperature, salinity) data sets were available from sea 207 

ice layers where DSC were also recorded: the YROSIAE and ISPOL field campaigns. YROSIAE stations (3) 208 

sourced from Antarctic fast ice (McMurdo Sound) sampled in late spring 2011 (YRS1) and in early spring 209 

2012 (YRS5 & 7) (Carnat et al. 2014). ISPOL stations (7) were sampled in Antarctic pack ice (western 210 

Weddell Sea) in summer 2004 (Tison et al. 2008, 2010). 211 

In this simplistic approach, we postulated that the taxonomic composition in sea ice was restricted to 212 

two major groups: diatoms and flagellates (including Phaeocystis sp., dinoflagellates and other 213 

flagellates). Hence, for our calculation, we considered that the production of DMSP and DMSO by the 214 

group of diatoms could be estimated through the empirical relations from our experiment on 215 

F.cylindrus (Wittek et al. 2020) and the DSC production of flagellates by the P.antarctica empirical 216 

relations (this study).  217 

In practice, Chl-a and taxonomic composition were first used to reconstruct the cell abundance in each 218 

group. Then brine salinity was used with our empirical DSC cell quotas to calculate DMSP and DMSO 219 

concentration that could be attributed to each group. Finally, calculated DMSP and DMSO 220 

concentrations from each group were combined and compared to measured DMSP and DMSO in sea 221 

ice. It should be noted that calculated DMSP and DMSO were particulate DSC (DMSPp and DMSOp) 222 

while measured DSC were total DMSP and total DMSO (DMSPt and DMSOt). 223 

Results 224 

P.antarctica cultures 225 

Control culture (S34 at T = 4°C) 226 

Chl-a, DMSPp and DMSOp measurements made on the four biological replicates at S34 and 4°C are 227 

shown in Fig. 1a (colored symbols). Globally, the mean of these parameters increased over the 9 days 228 

experiment, but we noted some contrast between the four replicates. In particular, the 4th replicate 229 

showed the higher increases in Chl-a, DMSPp and DMSOp concentration which mainly occurred 230 

between day 3 and day 9. For this replicate, we measured DMSPp and DMSOp concentrations up to 231 

12073 nM and 12192 nM, respectively. 232 

We also computed the DMSPp:Chl-a and DMSOp:Chl-a ratios for these four biological replicates (Fig. 233 

1b). These ratios showed no increase over the 9 days except for the DMSPp:Chl-a ratio of the 3rd 234 

replicate which increases from 74.0 to 169.2 mmolS gChl-a-1. 235 
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A mean evolution of Chl-a, DMSPp, DMSOp and of the two ratios was then calculated (solid black lines 236 

in Fig. 1) and used as the control S34 and 4°C curves for our experiments shown in Fig.2 and Fig.3 237 

(green lines)Erreur ! Source du renvoi introuvable.. Over the 9 days experiment, Chl-a (Fig.2Erreur ! 238 

Source du renvoi introuvable.a to c), DMSPp (Fig.2Erreur ! Source du renvoi introuvable.d to f) and 239 

DMSOp (Fig.2Erreur ! Source du renvoi introuvable.g to i) increased near-linearly. During the 240 

experiment, the Chl-a, DMSP and DMSO concentration increased by 3 to 4-fold (from 21.0 ± 10.2 to 241 

68.6 ± 36.9 µg L-1 for Chl-a, from 1498.4 ± 746.9 to 6446.0 ± 2793.1 nM for DMSP and from 1697.1 ± 242 

823.3 to 5303.4 ± 3348.4 nM for DMSO). 243 

DMSPp:Chl-a increased from day 0 to day 9 (from 75.7 ± 33.3 to 106.7 ± 45.0 mmolS gChl-a-1, 244 

Fig.3Erreur ! Source du renvoi introuvable.a to c) while DMSOp:Chl-a remained constant (mean = 80.6 245 

mmolS gChl-a-1, Fig.3Erreur ! Source du renvoi introuvable.d to f) during the whole experiment. The 246 

DMSPp:DMSOp ratio (not shown in Fig. 1) slightly increased during 9 days and reached 1.4 (Fig.3Erreur ! 247 

Source du renvoi introuvable.g to i) 248 

Salinity increase (S75, S100 and S150 at T = 4°C) 249 

Results from the experiments conducted at S75, S100 and S150 at constant temperature are also 250 

presented in Fig.2Erreur ! Source du renvoi introuvable. and Fig.3Erreur ! Source du renvoi 251 

introuvable. (a, d and g for both graphs). Note that we have not plotted the DMSPp:Chl-a, DMSOp:Chl-252 

a and DMSPp:DMSOp ratios for the experiment at S150 (Fig.3Erreur ! Source du renvoi introuvable.a, 253 

d and g) due to the crash of the culture (i.e. Chl-a dropped to 0 after 9 days, Fig.2Erreur ! Source du 254 

renvoi introuvable.a).  255 

At S75, Chl-a decreased with days to reach a value 7-fold lower than the control after 9 days (10.0 µg 256 

L-1, Fig.2Erreur ! Source du renvoi introuvable.a). During the same period, DMSPp and DMSOp quickly 257 

reached a plateau around 1550 nM and 1150 nM respectively (Fig.2Erreur ! Source du renvoi 258 

introuvable.d and g). DMSPp:Chl-a and DMSOp:Chl-a ratios both increased up to 3-fold over the study 259 

period (from 47.3 mmolS gChl-a-1 to 162.3 mmolS gChl-a-1 and from 34.7 mmolS gChl-a-1 to 112.9 260 

mmolS gChl-a-1, Fig.3Erreur ! Source du renvoi introuvable.a and d). The DMSPp:DMSOp ratio tended 261 

to stabilize around 1.4 after 9 days (Fig.3Erreur ! Source du renvoi introuvable.g).   262 

When salinity increased to S100, Chl-a directly decreased after the shift of salinity to reach 0 at day 9 263 

(Fig.2Erreur ! Source du renvoi introuvable.a). As Chl-a, DMSPp and DMSOp concentrations decreased 264 

over days. At day 9, measured values for DMSPp and DMSOp were under the limit of detection of the 265 

GC (Fig.2Erreur ! Source du renvoi introuvable.d and g). The DMSPp:Chl-a ratio was lower than S34 266 

and S75 for 3 days and decreased down to 0 at day 9 (Fig.3Erreur ! Source du renvoi introuvable.a). 267 

For the DMSOp:Chl-a ratio, values were similar than S34 and S75 during the first 3 days and then fell 268 
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to 0 at day 9 (Fig.3Erreur ! Source du renvoi introuvable.d). The DMSPp:DMSOp ratio decreased during 269 

3 days and no data was available on day 9 (Fig.3Erreur ! Source du renvoi introuvable.g).   270 

Lower values were observed at S150. The Chl-a also directly decreased after the salinity shift and 271 

already reached 0 after 3 days (Fig.2Erreur ! Source du renvoi introuvable.a). DMSPp concentrations 272 

measured were much lower than the control values and the other experiments values. Two values 273 

were available for DMSPp, the others were under the limit of detection (0.03 nM) of the GC and were 274 

considered as 0 nM (Fig.2Erreur ! Source du renvoi introuvable.d). DMSOp concentrations were 275 

not plotted because they were at the limit of detection where the uncertainty is high.  276 

Salinity increase and temperature decrease (S75, S100 and S150 at T = -2.3°C, -3.8°C and -7.4°C, 277 
respectively) 278 

Data from experiments combining an increase of salinity with a decrease of temperature are shown in 279 

Fig.2Erreur ! Source du renvoi introuvable. and Fig.3Erreur ! Source du renvoi introuvable. (b, e and 280 

h). As in the previous section, we have not plotted the ratios for the experiment at S150 and a 281 

temperature of -7.4°C due to the collapse of the culture (Fig.3Erreur ! Source du renvoi introuvable.b, 282 

e and h).  283 

At S75 and a temperature of -2.3°C, Chl-a slightly decreased after the shift of conditions and tended to 284 

stabilize between day 2 and day 9 with a Chl-a value 7-fold lower than the control at the end of the 285 

experiment (13.4 µg L-1, Fig.2Erreur ! Source du renvoi introuvable.b). The DMSPp concentration 286 

increased less than the control experiment but nevertheless tripled over the 9-days experiment to 287 

reach 3140.6 nM at day 9 (Fig.2Erreur ! Source du renvoi introuvable.e). During the same period, the 288 

DMSOp concentration increased the first 2 days and, as observed for Chl-a concentration, reached a 289 

plateau around 1800 nM lower than the control (Fig.2Erreur ! Source du renvoi introuvable.h). 290 

Consequently, we observed an increase by 5-fold of the DMSPp:Chl-a ratio which reached 234.1 mmolS 291 

gChl-a-1 at day 9 (Fig.3Erreur ! Source du renvoi introuvable.b) and an increase by 5-fold of the 292 

DMSOp:Chl-a ratio the first 3 days followed by a decrease to 138.1 mmolS gChl-a-1 at day 9 293 

(Fig.3Erreur ! Source du renvoi introuvable.e). Both ratios were higher than the control value after 9 294 

days. The DMSPp:DMSOp ratio showed a minimum after 2 days (0.4), due to a small decrease of DMSPp 295 

while the value was around 1.5 during the rest of the experiment, which was not far from the control 296 

at day 9 (Fig.3Erreur ! Source du renvoi introuvable.h). 297 

Stronger conditions such as S100 and a temperature of -3.9°C showed a quick decrease of Chl-a to 3.3 298 

µg L-1 which was lower than the control after 9 days (Fig.2Erreur ! Source du renvoi introuvable.b). In 299 

these conditions, DMSPp and DMSOp concentrations stayed constant during the 9 days experiment at 300 

lower values than the control (averages = 456.1 nM and 545.3 nM respectively, Fig.2Erreur ! Source 301 

du renvoi introuvable.e and h). The DMSPp:Chl-a ratio increased the first 2 days and then maintains 302 

around 120 mmolS gChl-a-1 for the rest of the experiment (Fig.3Erreur ! Source du renvoi 303 
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introuvable.b). The DMSOp:Chl-a ratio showed similar evolution and values than observed at S75 and 304 

a temperature of -2.3°C (Fig.3Erreur ! Source du renvoi introuvable.e). The DMSPp:DMSOp ratio slowly 305 

decreased over the 9 days (Fig.3Erreur ! Source du renvoi introuvable.h).  306 

Observations made for the experiment conducted at S150 were similar at a temperature of 4°C and -307 

7.4°C. Indeed, the Chl-a concentration quickly fell down to low value (1 µg L-1, Fig.2Erreur ! Source du 308 

renvoi introuvable.b). Also, besides the measure at T0, the DMSPp data were all lower than the limit 309 

of detection of the GC (Fig.2Erreur ! Source du renvoi introuvable.e). As previously mentioned, DMSOp 310 

measured at S150 were at the limit of detection and therefore not shown (see above).  311 

Salinity decrease (S20 at 4°C) 312 

At S20, Chl-a slightly decreased after the shift of salinity, and the concentration was almost 3-fold 313 

lower than the control after 9 days (Fig.2Erreur ! Source du renvoi introuvable.c). DMSPp and DMSOp 314 

slowly varied over the 9 days experiment and both stabilized around 3000 nM which was 2-fold lower 315 

than the control (Fig.2Erreur ! Source du renvoi introuvable.f and i). The DMSPp:Chl-a ratio at S20 was 316 

similar to the control (average = 90.6 mmolS gChl-a-1) while the DMSOp:Chl-a ratio increased higher 317 

but remains in the standard deviation of the control with a value of 127.8 mmolS gChl-a-1 after 9 days 318 

(Fig.3Erreur ! Source du renvoi introuvable.c and f). The DMSPp:DMSOp ratio stayed around 1 (value 319 

inferior to the control at 1.4) along the experiment (Fig.3Erreur ! Source du renvoi introuvable.i).  320 

Estimation of natural DSC brines contents 321 

Empirical relations 322 

From this study (Fig.3) and (Wittek et al. 2020), we computed empiric relations between DMSPp and 323 

DMSOp cell quotas and brine salinity for P.antarctica and F.cylindrus (Fig.4) using data from 324 

experiments conducted at S20 and 4°C, S34 and 4°C and S75 and -2.4°C. Experiments at S100 and S150 325 

are not considered because of the growth limitation observed for both algae under these conditions. 326 

Also, we preferred the experiment at S75 and -2.4°C to the one at S75 and 4°C to obtain the conditions 327 

closest to those encountered by algae in situ. Whatever the temperature, results obtained at S75 were 328 

similar for both algae (Fig.3 and Wittek et al. (2020)).  329 

The DMSP and DMSO cell contents were much higher in P.antarctica than in F.cylindrus (Fig.4). 330 

Typically, for the same concentration of Chl-a in our experiments, DMSPp and DMSOp were 1 to 2 order 331 

of magnitude higher in the prymnesiophyceae. However, when salinity increased from S34 to S75, both 332 

DMSP and DMSO cell quotas showed a higher increase for F.cylindrus (multiplied by 4.0 and 2.3, 333 

respectively) than for P.antarctica (multiplied by 2.2 and 1.7, respectively). This could support the idea 334 

that a higher concentration in DSC provides an advantage to P.antarctica when surrounding conditions 335 

suddenly vary, while in order to deal with the stress, F.cylindrus needs to quickly increase its DSC 336 

content. Impact of the decrease of salinity to S20 is less clear for both species and both DSCs.   337 
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Reconstructed profiles 338 

DMSP and DMSO profiles reconstructed as described in the previous section are plotted in Fig. 5 339 

(YROSIAE)Erreur ! Source du renvoi introuvable. and Fig. 6 (ISPOL). Two alternative calculations are 340 

presented: one only based on the diatom fraction (squares) and the other combining diatoms and 341 

flagellates (inverted triangles). Field data (i.e. brine salinity, Chl-a, taxonomic fraction and measured 342 

DMSP and DMSO) are also shown in these figures. Considering that field data were previously 343 

described (Tison et al. 2010; Carnat et al. 2014), we will only highlight their major trends and focus on 344 

the comparison of the reconstructed versus measured DSC concentrations.  345 

Summer stations from ISPOL suggested a transition from potentially active gravity drainage (with brine 346 

salinities higher than underlying water value) to brine stratification with snow melt contribution at the 347 

later stages (Tison et al. 2008). Spring YROSIAE stations showed potentially active gravity drainage 348 

throughout the depth, with a clear slow down for station YRS1 (end of November) (Carnat et al. 2014). 349 

Chl-a from both campaigns was mainly recorded at the bottom and rarely exceeded 1 µg L-1 in interior 350 

and surface ice. Diatoms dominated the bottom ice in YROSIAE and ISPOL stations and surface of YRS1. 351 

Flagellates were developed at the surface ice of YRS5 and YRS7 and at all ISPOL stations as well in 352 

interior ice for the whole data set. DMSP and DMSO profiles were largely dominated by bottom layers. 353 

Carnat et al. (2014) observed a local DMSP maximum in interior ice correlated to a shift of texture 354 

between columnar and platelet ice (Fig. 5).  355 

In the following, unless mentioned otherwise, calculated DMSP and DMSO are described with both 356 

diatoms and flagellates considered. Clear contrast exists between the two sampling campaigns. In 357 

YROSIAE, calculated DSC were higher than measured DSC in all bottom layers, but also for the whole 358 

profile of YRS5 and the surface layer of YRS7 (Fig. 5Erreur ! Source du renvoi introuvable.). If only 359 

diatoms were considered, bottom calculated DSC concentrations from YROSIAE were of the same 360 

order of magnitude than measured DSC. By contrast, calculated bottom DSC were always lower than 361 

measured DSC in ISPOL stations, whichever calculation was considered (Fig. 6). For ISPOL stations, 362 

calculated and measured DMSP were close together at surface layers, especially from ISP3 to ISP7. 363 

Calculated DMSO was similar to measured DMSO at the surface of ISP1 and ISP2 but was higher from 364 

ISP3 to ISP7.  365 

Discussion 366 

Growth and DSC cell quotas in polar oceanic conditions (control culture) 367 

P.antarctica appears to be well adapted to the polar oceanic conditions tested in this study (S34, 4°C). 368 

These conditions are also observed in the Southern Ocean where P.antarctica dominates the spring 369 

and early summer blooms (Smith et al. 1998; Garcia et al. 2009). Despite a predominance of the 370 

colonial stage of P.antarctica in polar blooms, this stage is not observed in our controlled cultures. This 371 
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might suggest that all the conditions required for colonial development are not satisfied. These 372 

conditions are not clear for P.antarctica although, following some authors, the presence of grazers 373 

could have induced the switch to the colonial form in the field (Verschoor et al. 2004; Van Donk et al. 374 

2011). Nevertheless, the single cells successfully grew in our culture bottles with a quasi-linear increase 375 

of Chl-a over the 9-days and a final cell density reaching almost 109 cells L-1 (Supplementary material 376 

3). The growth rate of P.antarctica in this study is 0.18 d-1 which is lower than the maximum growth 377 

rate of 0.35 d-1 at 4°C recorded by Wang et al. (2010). We also observe a quasi-linear increase with 378 

time of DMSPp and DMSOp to reach concentrations around 6000 nM. Measured concentrations in 379 

DMSPp are of the same order of magnitude than previous measurements obtained on Phaeocystis sp. 380 

with similar cell density (Stefels and van Boekel 1993; Stefels and van Leeuwe 1998; Tang et al. 2009). 381 

In terms of cell quotas, the DMSP cell quota reaches a constant value after two days while the DMSO 382 

cell quota remains constant from day 0 to day 9. These constant values suggest that the evolution of 383 

DMSP and DMSO cell contents in P.antarctica are mainly linked to the increase of biomass in non-384 

stressed conditions.  385 

Impact of salinity on growth and DSC cell quotas at a constant temperature 386 

Increasing salinity decreases the P.antarctica growth in our experiments. At S75, Chl-a show a 2-time 387 

decrease but the population still maintains over the 9 days, while above S100 the population crashes. 388 

Despite it survives, we make the assumption that the growth of P.antarctica is already challenged at 389 

S75. Indeed, we observe that both DMSP and DMSO cell quotas increase up to 3-fold over the 390 

experiment. Thus, it appears that the surviving part of the algal population increases its intracellular 391 

DSC which could improve its abilities to resist to the increased osmotic constraint at S75. This supports 392 

the potential role of osmoregulator attributed to DMSP and DMSO when phytoplankton cells are 393 

exposed to osmotic stress. The osmotic function in the cell is handled by ions and organics molecules. 394 

The latter, such as proline, betaine or DMSP, also act as compatible solutes for proteins under osmotic 395 

shock and, contrary to ions, they do not impact the enzyme activities at high concentration (Kirst 1990). 396 

It was also assumed that algal species could accumulate various osmolytes (Dickson and Kirst 1986; 397 

Hellebust 1985; Karsten and Kirst 1989). Therefore, we could consider that DMSP and DMSO are 398 

synthesized together since they are chemically related. Also, the solubility of the compatible molecules 399 

is essential in case of high osmotic stress (Hellebust 1985). DMSO could, therefore, be an excellent 400 

osmoregulator candidate because the molecule is dipolar and thus soluble in water (Zumdahl and 401 

DeCoste 2013). However, the synthesis of both DMSP and DMSO is highly “energy-consuming” which 402 

could be an obstacle to their production. Nevertheless, under stress such as an increase of salinity, we 403 

might assume that the energy is fully dedicated to the prevention of damages. A longer experiment 404 

might have helped us to capture a long-term beneficial effect of DMSP and DMSO production. 405 
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At S100 and S150, Chl-a, DMSPp and DMSOp decrease to negligible values. Despite DMSP and DMSO 406 

cell quotas similar to the control for two days at S100, the presence of DMSP and DMSO as 407 

osmoregulator products in P.antarctica appears not to be efficient enough to counteract the damage 408 

from the extreme salinities and to prevent the death of the algal population. 409 

In this study, the growth of P.antarctica is radically different when the salinity decreases to 20 410 

compared to the growth at S34. Indeed, we observe a decrease in Chl-a over the experiment. In 411 

comparison to the control culture, the DMSO cell content slightly increases (1.6 times at day 9) while 412 

the DMSP cell content is similar. This suggests that P.antarctica and its growth are impacted by the 413 

decrease of salinity. In reaction to the stress generated by the salinity, P.antarctica could have 414 

increased its DSC cell contents. These results are similar to those observed for P.globosa by Speeckaert 415 

et al. (2019) and could suggest oxidative stress in the cell. Indeed, as suggested by Liu et al. (2012) in 416 

the halophile green algae Dunaliella salina, hypo-osmotic stress at S20 could induce the accumulation 417 

in the chloroplast of reactive oxygen species (ROS) such as H2O2 or the hydroxyl radical •OH. ROS are 418 

naturally produced as by-products of the respiration and the photosynthesis in chloroplasts and 419 

mitochondria (Lesser 2006). ROS act in the cell as signalling molecules but can cause cell damages, in 420 

particular at the molecular level, on proteins, lipids and DNA (Lesser 2006; Mittler et al. 2011). 421 

Organisms are able to eliminate these ROS but in case of an unbalance between production and 422 

elimination, oxidative stress occurs (Van Alstyne 2008). In this context, the ROS production could be 423 

enhanced during osmotic stress (Tanou et al. 2009). It is, indeed, assumed in various organisms that 424 

the main metabolic processes (Calvin cycle, CO2 assimilation, respiration…) can be impacted by stress 425 

and induce production of ROS (Ahmad 2014; Apel and Hirt 2004; Lesser 2006). DSC are known to be 426 

involved in an antioxidant system to scavenge the ROS in the cell with DMSO as final product (Sunda 427 

et al. 2002). Since DMSP has been located in the chloroplast (Raina et al. 2017), we could hypothesize 428 

from our experiment at S20 that DSC variations sustain an antioxidant system when the salinity 429 

decreases. The decrease of the DMSPp:DMSOp ratio also supports this antioxidant hypothesis where 430 

DMSPp could be oxidised in DMSOp. 431 

Impact of covariation of temperature and salinity on growth and DSC cell quotas 432 

Kennedy et al. (2012) show that P.antarctica can tolerate and grow down to a temperature of -3°C. 433 

Therefore, the conditions tested in this study (-2.3°C to -7.4°C) are quite extreme for the growth of 434 

P.antarctica. At S75 and a temperature of -2.3°C, Chl-a decreases for two days before slightly increases 435 

until day 9. A similar increase is also observed in the density measurements (Supplementary material 436 

3). At the same time, we observe an increase of the DMSP cellular content with a 5-fold increase in 9 437 

days while the DMSO cellular content increases by 5-fold for 3 days followed by a slight decrease on 438 

day 9. The ratio reached on day 9 is higher than the one observed for the experiment at S75 only. This 439 
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demonstrates that the covariation of salinity and temperature has a higher impact on the specific 440 

production of DMSP by P.antarctica than salinity alone, and therefore suggests an intracellular 441 

function of osmoregulator as well as cryoprotectant. This increased production of DMSP could 442 

efficiently help the algae to resist to the extreme conditions, resulting in the observed increase of Chl-443 

a on day 9. The evolution of the DMSO cell content is quite different in timing and intensity. We 444 

observe that after 3 days the DMSOp:Chl-a reaches a plateau which could suggest that the amount of 445 

intracellular DSC required to handle the stress is achieved. Also, the DMSOp:Chl-a ratio increases faster 446 

and reaches higher levels than measured at S75 with a constant temperature of +4°C. It appears that 447 

DMSOp also plays a role of osmoregulator and/or cryoprotectant supporting the survival of the algal 448 

population during the experiment. Note that the temperature values used here are higher than the 449 

minimal temperature potentially observable in sea ice at brine salinities S75 (-4°C). At even lower 450 

temperatures, closer to the in-situ temperature, a higher impact on algal growth and DSC cell quotas 451 

could be observed or, alternatively, induce higher mortality rates.  452 

The two others experiments of covariations (S100/temperature of -3.9°C and S150/temperature of -453 

7.4°C) show extremely low Chl-a values after 9 days meaning that the algal population collapses in 454 

those conditions, as it was already suggested for other polar microalgae (Søgaard et al. 2011). The 455 

evolution of the DMSP and DMSO cell contents from the experiment at S100 and a temperature of -456 

3.9°C could suggest that production of both DSC still occurs in P.antarctica. At S150 and a temperature 457 

of -7.4°C, measurements of DSC were extremely low or even non-existent due to the fast decline of 458 

the algal population in these conditions. 459 

Estimation of natural DSC brines contents from laboratory culture experiments 460 

In the Southern Ocean, the autumn and winter surface waters are often dominated by dinoflagellates 461 

and nanoflagellates such as P.antarctica (Krell et al. 2005; Niemi et al. 2011). At that moment, surface 462 

waters algal communities can be embedded in the sea ice matrix during its formation through various 463 

processes such as the scavenging by frazil, wave pumping, or the growth of the skeletal layer at the 464 

ice-water interface (reviewed in Horner et al. (1992) and Arrigo (2016)). Incorporation in sea ice tends 465 

to mainly select species who develop mechanisms to survive in the sea ice extreme living conditions. 466 

As the ice grows, the structure of algal communities in sea ice becomes contrasted between the 467 

bottom and the upper sea ice layers. It appears that diatoms such as F.cylindrus survive at the bottom 468 

part of sea ice by producing, among other molecules, extracellular polymeric substances (EPS) (Aslam 469 

et al. 2018, 2012; Günther and Dieckmann 2001; Horner et al. 1992; Niemi et al. 2011). In the upper 470 

ice layer, the extreme evolution of environmental conditions (S increases to over 200 and temperature 471 

decreases as low as -18°C) cause the decline of diatoms, and it has been assumed that some flagellates 472 

could survive by developing a cyst stage (Günther and Dieckmann 1999; Stoecker et al. 2002). In spring, 473 
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improvement of the light conditions initiates the algal development in the ice matrix. The bottom 474 

diatoms assemblage increases to reach up to 97% of the autotroph (Garrison et al. 2005) and sea ice 475 

becomes colonized by diatoms blooms often dominated by F.cylindrus (Gleitz et al. 1998; Günther and 476 

Dieckmann 2001; Krell et al. 2005). Flagellates as P.antarctica appear to grow in conditions similar to 477 

the water column (i.e. a salinity around 34 and a temperature higher than the freezing point (-1.8 °C)) 478 

such as the surface slush layer (Garrison et al. 2005), the late spring melt ponds (Horner et al. 1992), 479 

the open polynyas (Arrigo et al. 1999; DiTullio and Smith 1996) or when the sea ice surface is flooded 480 

by sea water (Lizotte 2001). Also, blooms of P.antarctica have been observed in surface water diluted 481 

by meltwater. This leads to a stratification of the surface waters which promotes the development of 482 

P.antarctica at the expense of diatoms, especially when the mixed layer is deep because this species 483 

is adapted to low irradiance (Alderkamp et al. 2012; Arrigo et al. 2010; Fonda Umani et al. 2005). 484 

In this study and in Wittek et al. (2020) we observed a link between DMSP and DMSO cell quotas and 485 

temperature and salinity variation for the two sympagic algae. This link also appears to be taxonomic 486 

dependent. Therefore, DMSP and DMSO profiles measured in sea ice could be driven by the 487 

environmental conditions in the brine habitat and by the taxonomic diversity which is also controlled 488 

by the living conditions in sea ice. This leads us to compare our experimental data set to field 489 

observations through the reconstruction of brines DSC profiles. 490 

Our primary hypothesis assumed that the flagellates observed in sea ice have all the same DSC cell 491 

quotas as P.antarctica. However, inside this group, there is a broad diversity of DMSP and DMSO 492 

production from no-DSC producers to “high” DSC producers as the dinoflagellates (Stefels et al. 2007). 493 

Hence, this disparity of production, the lack of detailed taxonomy based on DSC and our approach 494 

could explain the difference between calculated and measured DSC. 495 

At the YROSIAE bottom layers, larger calculated DSC concentrations compared to measured DSC could 496 

be due to a flagellate population which produces less DSC than P.antarctica. If we consider only the 497 

fraction of diatoms, we observe that calculated and measured DSC are closer and that calculated is 498 

now lower than measured, suggesting poor DSC-producers in the flagellate fraction. Similarly, 499 

overestimations observed in interior and surface ice (YRS5 and YRS7) occur in layers highly dominated 500 

by flagellates where the part of lower producers than P.antarctica could be important. DMSO 501 

calculated at the surface from ISP3 to ISP7 is also larger than the measured DMSO Erreur ! Source du 502 

renvoi introuvable.but not observed for DMSP. These stations are subject to a decrease of salinity by 503 

flooding and snow meltwater percolation which could challenge our approach (Tison et al. 2010, 2008) 504 

and explain part of observed differences between measured and estimated values. Some layers 505 

(YROSIAE) in the data set experimented higher salinities than the range of salinity chosen to establish 506 

the empiric relation (S20 to S75)Erreur ! Source du renvoi introuvable.. Therefore, overestimation 507 
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could be due to the assumption that DSC cell quotas increase over S75 while mortality is already 508 

observed at S100 and decreases the DSC cell quotas.  509 

In contrast, lower calculated than measured DSC in YROSIAE and ISPOL could be explained by higher 510 

DSC producers such as the dinoflagellates. However, at the ISPOL bottom layers, flagellates are almost 511 

absentErreur ! Source du renvoi introuvable. and the variability in diatom DSC production cannot 512 

explain the difference (Stefels et al. 2007). We suggest that these layers show a high concentration of 513 

dissolved DSC because we calculate a particulate DSC production while total DSC were measured on 514 

the field. This is nevertheless challenged by the high DSC turnover controlled by bacteria in sea ice 515 

which could quickly transform dissolved DSC (Asher et al. 2011). Movements of DMSP and DMSO in 516 

the brine channels could also explain higher measured concentrations in those bottom layers. 517 

Convective movements and diffusion in the largely porous bottom ice might indeed bring DSC from 518 

the upper sea ice layers.  519 

These results show that the reconstruction of DSC profiles is challenging in high taxonomic diversity 520 

ecosystems such as sea ice. Indeed, DSC cell quotas vary between microalgae groups and species 521 

(Stefels et al. 2007). In particular, estimating the DSC from the fraction of flagellates is complex. 522 

Therefore, our hypothesis based on F.cylindrus and P.antarctica is too restrictive to correctly estimates 523 

the DSC profiles. Also, the empiric relations between salinity and DSC cell quotas are only based on 524 

temperature and salinity experiments while these quotas could also be influenced by others external 525 

factors such as light conditions, nutrient concentration or the presence of grazers (Lee and De Mora 526 

1999; Strom et al. 2003; Sunda et al. 2002). Hence, a more complex experimental setup and the study 527 

of DSC cell quotas for a larger taxonomic diversity could improve the estimation of DSC profiles in sea 528 

ice.  529 

Conclusion 530 

In this study, we propose a cell approach to study the DMSP and DMSO cell quotas from P.antarctica. 531 

Even if the applied temperatures do not represent the real thermal conditions in sea ice, we observe 532 

that both DMSP and DMSO could play the function of osmoregulator as well as cryoprotectant in the 533 

cell. We put forward that the DMSP and DMSO cell quotas allow to resist to variations of salinity and 534 

temperature to S75 and -2.3°C as suggested by the survival of the Chl-a under exposition to these 535 

conditions for 9 days. We also report a maximal DMSO cell quotas reaching 175.9 mmolS gChl-a-1. We 536 

observe that P.antarctica is more impacted by salinity over 75 compared to diatoms which could 537 

explain its lower occurrence in winter sea ice and its ability to form cysts.  538 

In addition, we suppose that DMSP and DMSO could be involved in an antioxidant system induced by 539 

a decrease of salinity to 20. This assumes that some reactive oxygen species could be produced at S20 540 

and react with DMSP to produce DMSO as suggested by the increase of the DMSO cell quotas in our 541 

experiment.  542 
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Also, we try to estimate the DMSP and DMSO profiles in real sea ice using the DSC cell quotas measured 543 

in laboratory for P.antarctica but also for another species previously studied in a similar way, 544 

F.cylindrus. This approach is based on the hypothesis that diatoms and flagellates are only represented 545 

in sea ice by F.cylindrus and P.antarctica. The exercise remains challenging in reproducing DMSP and 546 

DMSO production in flagellate dominated layers. DMSP and DMSO cell quotas from other emblematic 547 

species of the sea ice habitat would clearly improve this approach. It is also clear that other factors 548 

than salinity and temperature will impact the DSC cell content such as light, nutrient composition or 549 

oxygen concentration. A similar approach to this study, modulating these other factors would improve 550 

our understanding of the DSC cycle for the sea ice phytoplanktonic groups. A longer experiment would 551 

also be considered to cover the entire life cycle of P.antarctica in a DSC-cycle perspective. 552 
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Figure captions 924 

Fig. 1 Biological replicates conducted at S34 and 4°C used as the control run. a. Chl-a, DMSPp and 925 
DMSOp measured in each biological replicate at S34 and 4°C. Technical replicates of Chl-a, DMSPp and 926 
DMSOp are shown by symbols (red dots, green squares, yellow triangles and blue stars, respectively 927 
for the biological replicate n°1, 2, 3 and 4). Means of the technical replicates for each biological 928 
replicate are shown by dashed lines (red, green, yellow and blue dashed lines for the biological 929 
replicate n°1, 2, 3 and 4 respectively). The global mean with its standard deviation is shown as a solid 930 
black line. b. DMSPp:Chl-a and DMSOp:Chl-a obtained in each biological replicates (red dots, green 931 
squares, yellow triangles and blue stars, respectively for the biological replicates n°1, 2, 3 and 4). The 932 
global mean with its standard deviation is shown as a solid black line 933 

Fig.2 Changes of Chlorophyll-a (Chl-a) and particulate DMSP (DMSPp) and DMSO (DMSOp) 934 
concentrations for three sets of 9-days experiments conducted on P.antarctica: increase of salinity (S) 935 
at constant temperature (T) (a, d, g), increase of salinity associated with a decrease of temperature (b, 936 
e, h) and decrease of salinity at constant temperature (c, f, i). For all group of experiments, the control 937 
culture is the green line at S = 34, T = 4°C. Shifts of salinity to S20, S75, S100 and S150 are represented 938 
by purple triangles, red squares, yellow diamond and blue dots respectively. The control culture is the 939 
mean of 4 biological replicates, and the global standard deviation is based on the standard deviations 940 
calculated in each replicate. Note that the standard deviation can be smaller than the symbol thickness 941 

Fig.3 Changes of ratios DMSPp:Chl-a, DMSOp:Chl-a and DMSPp:DMSOp for three sets of 9-days 942 
experiments conducted on P.antarctica: increase of salinity (S) at constant temperature (T) (a, d, g), 943 
increase of salinity associated with a decrease of temperature (b, e, h) and decrease of salinity at 944 
constant temperature (c, f, i). For each experiment, the control culture is the green line at S = 34, T = 945 
4°C and is the mean of four biological replicates. Shifts of salinity to S20, S75 and S100 are represented 946 
by purple triangles, red squares and yellow diamonds respectively. 947 

Fig.4 Evolution of DMSPp:Chl-a and DMSOp:Chl-a ratio as a function of salinity (20 to 75) from 948 
experiments of covariation conducted on F.cylindrus (a, Wittek et al. (2020)) and P.antarctica (b, this 949 
study). Dashed lines show the polynomial regressions which are used as empirical relation. Standard 950 
deviations are obtained from the standard deviation on measurements of DMSP,O and Chl-a and using 951 
the appropriate error propagation for a ratio. 952 

Fig. 5 Measured field profiles of DMSP (blue dots), DMSO (yellow dots), brine salinity (orange dots) 953 
and Chl-a (green dots) for three YROSIAE stations. Taxonomic fractions are also plotted with diatoms 954 
(yellow) and flagellates (dark green). Reconstructed DMSP and DMSO using combined diatoms and 955 
flagellates (D+F, blue and yellow inverse triangle) are compared to the measured DMSP and DMSO 956 
profiles (dots). Reconstructed DMSP and DMSO using diatoms only (D, blue and yellow squares) are 957 
also shown. 958 

Fig. 6 Measured field profiles of DMSP (blue dots), DMSO (yellow dots), brine salinity (orange dots) 959 
and Chl-a (green dots) for six ISPOL stations. Taxonomic fractions are also plotted with diatoms (yellow) 960 
and flagellates (dark). Reconstructed DMSP and DMSO using combined diatoms and flagellates (D+F, 961 
blue and yellow inverse triangle) are compared to the measured DMSP and DMSO profiles (dots). 962 
reconstructed DMSP and DMSO using diatoms only (D, blue and yellow squares) are also shown. 963 
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