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Abstract

Between 2015 and 2050, half of the net increase in the world’s urban population
is expected to take place in Sub-Saharan Africa (SSA), driving drastic land cover
changes and challenging the spatial organization of human societies. Understand-
ing past and present dynamics of this urbanization process is critical to achieve
a sustainable pattern of urban development, yet is limited by the lack of accurate
and multi-temporal spatial data on urban expansion. Since the 2000s, the rise of
satellite-based Earth Observation (EO) enabled the production of several global
urban maps, thereby mitigating the issue of data scarcity. But SSA is still charac-
terized by lower accuracies in satellite-based maps because of various issues, such
as: a lower satellite imagery availability, a lack of reference datasets, and a high
heterogeneity across the urban areas of the region.

In this thesis, I propose to leverage open-access satellite catalogs along with
volunteered geographic information to improve large-scaled and automated
mapping of the built environment in SSA. The proposed approach makes use of
OpenStreetMap to support model training and calibration, thereby bypassing the
need for reference datasets or manual digitization campaigns. This method was
assessed in 10 urban areas of SSA, reaching classification performances similar to
manual approaches.

Moreover, the combined use of multispectral and synthetic-aperture radar (SAR)
imagery was explored. In 11 out of 12 case studies in SSA, multi-sensor classifi-
cation schemes outperformed single-sensor approaches. More specifically, multi-
sensor classification dramatically increased built-up detection rates in arid and semi-
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arid regions—where bare soil and buildings may share a similar spectral signature.

These findings were implemented to map the built environment of 46 urban areas
at five different dates from 1995 to 2015, with an average F1-score of 0.93. The
statistical interpretation of the produced dataset revealed the high heterogeneity
that characterizes urban areas in SSA, and confirmed that the spatial patterns of
urbanization highly depends on demographic and economic factors.

Overall, the present thesis provides promising insights for large-scaled and auto-
mated mapping of the built environment in data-scarce regions. Several issues
are still affecting the mapping accuracies, such as: multi-temporal inconsistencies
caused by the use of imagery from 7 different sensors, low availability of histori-
cal imagery in SSA, or missing data in OpenStreetMap. Still, with the growing
availability of open-access EO catalogs and the increasingly completeness of Open-
StreetMap, the proposed approach is expected to become even more relevant in the
near future.
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Chapter 1

Introduction

The world’s population is expected to increase from 7.4 billion in 2015 to 9.8 billion
in 2050 (United Nations, 2017), driving an urbanization process that transforms
the Earth’s surface and the spatial organization of human societies. Cities emerge
and grow everywhere across the globe, eroding natural habitats at their borders,
and reaching far beyond for food, material and energy inputs (Seto, Guneralp and
Hutyra, 2012). In low-income countries, public services struggle to keep up with
the expansion rates. The resulting lack of infrastructure threatens human health
and well-being: unsafe housing, air pollution, water contamination, vulnerability
to climate change and extreme weather events (McGranahan et al., 2009; United
Nations, 2015). “Inclusive, safe, resilient and sustainable cities” are the 11 sustain-
able development goal of the United Nations. But how to tackle urbanization issues
when we know so little about it?

Traditionally, urbanization was thought as a byproduct of the capitalist develop-
ment, thereby correlated with industrialization and economic growth. Yet, Sub-
Saharan Africa (SSA) experienced the highest urbanization rates in the world since
the 1980s, while its economies were stagnating. For a long time, policy makers
view the “urbanization without growth” occurring in poor countries as a dangerous
anomaly that should be restrained—for instance by discouraging rural-to-urban
migrations ( Jedwab and Vollrath, 2015). But as low- and middle-income countries
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achieve their urban transitions, the anomaly is becoming the norm. This switch
led to a redefinition of urbanization as a global historical process driven by food
availability and mortality decline, with or without economic development (Fox,
2012). In other words, the expansion of urban areas cannot be restrained. Moreover,
the social and environmental issues associated with urbanization cannot always be
thought as a direct consequence of urban expansion. Above all, urban poverty and
pressure on natural resources in SSA result from decades of region-wide economic
crisis and structural adjustment programs (Becker and Morrison, 1997).

Still, in the near future, the welfare of millions of people will depend on the social
ability to achieve a beneficial pattern of urban development. Tackling urbanization
problems requires a sound understanding of the urbanization process and, to that
end, spatially accurate and up-to-date data are needed to better understand, antic-
ipate and predict those urban dynamics. Just a decade ago, we had little idea of
the total surface covered by built-up areas: somewhere between 0.3 and 3.5 mil-
lion km2 (Seto et al., 2011). Today, the growing availability of Earth Observation
(EO) imagery is an opportunity to improve our understanding of the urbanization
dynamics.

The following chapter focuses on the specifics of urbanization in SSA, on the need
for a spatial analysis of the process and how EO can support urban mapping. More
specifically, starting from the observation that SSA is characterized by lower ac-
curacies in global urban maps, I identify three main challenges: data availability,
spectral confusion and urban heterogeneity. To address these issues, I investigate
the opportunities brought by open-access EO data and Volunteered Geographic
Information (VGI), and integrate them into a proposed mapping approach.

1.1 Urbanization in Sub-Saharan Africa
1.1.1 Past, current and future trends
Urban settlements in SSA have existed for thousands of years. Yet, they were rela-
tively small and dispersed before the 20th century. The early independence period
marks the real beginning of the urban transition. The development of better health
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facilities and the successive vaccination campaigns enabled a steady decline of mor-
tality rates. Rural-to-urban migrations were driven by the increasing employment
opportunities (the Africanization of the civil administrations) and the elimination
of the residence restrictions established by the colonial powers (Fox, 2012). Those
factors led to exceptionally high rates of urbanization between 1960 and 1975. Af-
ter the region-wide economic crisis in the late 1970s, the 1980s and the 1990s were
characterized by a decline of the urbanization rates. Trade liberalization and struc-
tural adjustment programs caused a rollback of public services, lower wages and
high unemployment rates (Bocquier, 2003). From this period, the poor living con-
ditions in urban areas held back the rural-to-urban migrations. In the 2000s, two
thirds of the urban population growth was caused by simple natural increase (Mar-
tine et al., 2008) and the share of rural-to-urban migrations in the growth of the
urban population became minor in most of the Sub-Saharan African countries.

As a result, the urbanization process—defined as the increase in the proportion of
people living in urban areas—is not particularly rapid in SSA. According to the data
provided by the World Urbanization Prospects (United Nations, 2017), the share
of the urban population increased from 28% to 39% between 1990 and 2015, that is
a compound annual growth rate of 1.4%. In fact, today’s urbanization growth rate
of SSA is comparable to the ones observed in South America or Eastern Europe
in the 1960s (1.5%), while their urbanization levels were considerably higher (more
than 50%).

SSA is not urbanizing at particularly high rates. What is true, however, is that
the absolute numbers are massive. By 2050, the global population is expected to
increase by 2.4 billion, and more than half of that increase would take place in SSA
(United Nations, 2017). Driven by the population growth rates, the urban popu-
lation of SSA will increase by 235% over the same period. This means that urban
areas in SSA will have to absorb a net increase of 0.9 billion of new dwellers by
2050. As shown in Figure 1.1, most of this growth will occur in Western and East-
ern Africa—Southern Africa being more advanced in its urban transition. Many
have concluded that SSA’s urban dwellers will soon be living in mega-cities. If by
2020, Africa will host 11 mega-cities with more than 10 million people (Mundia
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Figure 1.1: Annual urban population growth rates in SSA between 1970 and 2050
according to the World Urbanization Prospects (United Nations, 2017).

and Murayama, 2010), the majority of the growth will actually occur in smaller
urban areas with less than 500,000 people (Cohen, 2004).

1.1.2 Social and environmental impacts
Such a rapid growth—especially in a context of urban poverty—has consequences
on human health and the environment. Thanks to a better access to health services,
urban areas are characterized by lower childhood mortality rates and, on average, a
better health than in rural areas (Hay et al., 2005). Likewise, the risks associated
with malaria exposure appear to be reduced in urban settings (Tatem, 2004). How-
ever, high inequalities are observed depending on the income level (Dye, 2008). In
2015, 64% of urban dwellers in SSA did not have access to a safely managed drink-
ing water service accessible on premises and free from contamination (WHO, 2017).
According to the WHO, urban poor are also affected by a large range of environ-
mental factors, including outdoor air pollution, indoor smoke from solid fuels, or
physical hazards (car accidents, flooding, fire). Urban areas in SSA are also among
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the most affected by the global environmental changes. Sea-level rise increases the
risk of flooding for the 60 million people that live in low-elevated coastal lands
across Africa (Martine et al., 2008). Salt intrusion into bodies of fresh water and
ecosystems degradation threatens the supply of critical resources (water, food, en-
ergy, building materials) to the surrounding urban areas. Likewise, the degradation
of the agro-climatic conditions in the region may increase the rural-to-urban mi-
grations (Henderson, Storeygard and Deichmann, 2017)—thereby accelerating the
growth of the nearby urban areas.

The urbanization process is not directly responsible for all the aforementioned issues.
Since the 1960s, urban areas in SSA had to absorb a tenfold increase of the region’s
urban population in a context of (1) inefficient and exclusionary structures inherited
from the racist and capitalist-oriented colonial economies (Mabogunje, 1990), and
(2) a region-wide economic crisis along with unfavorable terms on trade on the inter-
national market and structural adjustment programs (Becker and Morrison, 1997).
During this period, the urban population developed its own resilience through the
creation of informal economies and settlements, and many have stated their legal
integration as a requirement for urban sustainability (Anyamba, 2005; Mutisya and
Yarime, 2011; UN-Habitat, 2015). In parallel, local and regional policy making are
limited by the poor knowledge of urban dynamics.

1.2 Mapping urbanization from space
1.2.1 From census- to EO-based urbanmonitoring
To study the urbanization process, scientists and policy-makers mainly rely on census-
based data provided by the territorial administrations. As a matter of fact, the esti-
mates provided by the United Nations (UN) in their “World Urbanization Prospects”
are a compilation of data from various national authorities that do not share the
same definitions of urban and rural populations. Criteria to distinguish between
urban and rural areas include administrative designations, population sizes and den-
sities, or socio-economic variables (United Nations, 2018b). The number of people
above which a settlement is considered to be urban ranges from 200 to 50,000 inhab-
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itants. In SSA, those thresholds are generally low—2,000 in Ethiopia and Liberia,
5,000 in Zambia and Sudan—thereby potentially leading to an over-estimation of
the urbanization levels. These significant temporal and spatial variations of what
“urban” means are a major obstacle for local and regional urban planning, as they
limit comparative analyses spanning multiple countries. Furthermore, the reliabil-
ity of census-based data depends on the quality of the censuses and their frequency
over time, which can be lower in SSA than in other parts of the world.

In short, demographic data in low-income countries is not detailed enough to sup-
port the monitoring of urban dynamics. In that context, EO satellites can provide a
monitoring system that is consistent both in space and time. Compared to census-
based statistics, urban data extracted from satellite images provide standardized and
spatially accurate information on the urban extents. Satellite imagery cannot replace
socio-economic and highly detailed census data, but it allows the measurement of
one of the most important change caused by urbanization: the expansion of the
urban land.

1.2.2 Global urbanmaps
In the 2000s, the launch of second-generation coarse-resolution EO satellites—
such as MODIS, Medium Resolution Imaging Spectrometer (MERIS) and
Système pour l’Observation de la Terre (SPOT)—allowed the production of the
first global urban maps. As shown in Table 1.1, the open-access policy adopted by
the Landsat mission in 2008 led to the release of several medium-resolution global
urban—or land cover—maps: the Global Human Settlement Layer (GHSL), the
Global Human Built-up And Settlement Extent (HBASE) and GlobeLand30.
More recently, the Global Urban Footprint (GUF) made use of high-resolution
radar satellites to map the world’s built environment at an unprecedented spatial
resolution of 12 m, thereby enabling a new range of intra-urban studies (Esch et
al., 2018).
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Table 1.1: Global maps of human settlements.

Product name Data source Resolution
Global Rural-Urban Mapping Project
(CIESIN, 2011)

NOAA’s
Nighttime Lights

1 km

MODIS Urban Land Cover 500m
(Schneider, Friedl and Potere, 2009)

MODIS 500 m

GlobCover v2 (Arino et al., 2007) MERIS 300 m
Global Human Settlement Layer
(Martino Pesaresi and Daniele Ehrlich et
al., 2016)

Landsat 30 m

Global Human Built-up & Settlement
Extent (Wang et al., 2017)

Landsat 30 m

GlobeLand30 (Chen et al., 2015) Landsat, HJ-1 30 m
Global Urban Footprint (Esch et al., 2017) TanDEM-X,

TerraSAR-X
12 m

Compared to census-based statistics, urban data extracted from satellite images pro-
vide consistent and spatially accurate information on the urban extents. Still, the
definition problem was not solved at all. What are the objective conditions for a
given surface (a pixel) to be considered as urban, or even as built ? If the condition
refers to the presence of built structures, how much of the surface must be covered ?
What kind of structures are considered (elevated buildings, roads) ? In early global
maps, divergences on the urban definition caused massive differences regarding the
world’s total urban extent: 3,727,000 km2 in Global Rural-Urban Mapping Project
(GRUMP), 727,000 km2 in MODIS-500, and 308,000 km2 in GlobCover (Potere
and Schneider, 2007). Thanks to an increasing accuracy, the difference is lower be-
tween newer products but still significant: 774,000 km2 in the GHSL (Pesaresi et
al., 2017), and 834,000 km2 in the GUF (Esch et al., 2018).

Furthermore, the urbanization process is fundamentally dynamic. This means that,
to be fully understood, accurate and consistent multi-temporal maps are required.
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However, most of the global products provide urban extents for only one or two
dates. As of today, the GHSL is the only initiative providing maps for four differ-
ent dates between 1990 and 2015. Still, going back in time implies relying more
on lower-quality sensors and reference data sets. As a result, the accuracy is gener-
ally lower for earlier dates, thereby limiting multi-temporal analyses of the urban
dynamics. As stated by Singh (1989), the minimum accuracy of a multi-temporal
change detection based on multiple classified images is equal to the product of the
accuracies of each individual classification. For instance, four classified images with
85% accuracy might have a joint accuracy of only 0.854 ≈ 0.52. In other words, the
accuracies of today’s global products is not high enough to compute reliable urban-
ization statistics in the temporal dimension.

1.2.3 Urban and built-up definitions
A major source of confusion is the distinction between urban as a land use and ur-
ban as a land cover. Land use refers to the function of a given surface for the human
societies, whereas land cover is about the bio-physical coverage of the land. In prac-
tice, urban land use may include a wide range of elements such as parks, private
gardens, residential roads, cemeteries, industrial dumps or golf courses. Urban land
cover is more difficult to characterize and no consensus has been reached to this day
(Potere and Schneider, 2007)—mainly due to the various geographic objects from
which urban areas are made up. That is why most remote sensing studies focus in-
stead on the built environment or built-up areas. For instance, Potere et al. (2009)
and Mertes et al. (2015) defined urban areas as places dominated by the built envi-
ronment, where the “built environment” includes all human-constructed elements
(roads, buildings, industrial facilities, etc.) and excludes vegetated urban surfaces
such as parks or green spaces. In the GHSL, the term of “built-up” is preferred and
is expressed as a continuous value that corresponds to the proportion of building
footprints in a given area—thereby excluding roads from the definition (Pesaresi et
al., 2017).

In the present thesis, we refer to urban and rural areas as geographic objects iden-
tified by various demographical and socio-economical variables such as population
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densities, economic activities or public infrastructure. However, we focus on the
detection of built-up areas—as opposed to not built-up areas—which can be found
in both urban and rural areas. As stated previously, built-up pixels have been de-
fined as a surface covered by at least 50% of human-constructed elements (Potere et
al., 2009; Mertes et al., 2015). In this thesis, we extend the definition by lowering
the threshold to 25% to better account for mixed land cover in urban areas (gar-
dens, bare soil, non-asphalted roads, isolated buildings, etc.). Validation metrics
are computed according to the aforementioned definition, as well as the compara-
tive assessments with other available urban maps.

Likewise, we refer to urbanization as the increasing share of the urban population,
and to built-up growth as the increasing surface covered by buildings—regardless of
the demographics.

1.3 Urban remote sensing in SSA

Figure 1.2: Average cloud cover of Landsat 5, Landsat 7 and Landsat 8 scenes.

As previously stated, SSA concentrates most of the stakes associated with urbaniza-
tion and land cover changes. Yet, the reliability of global maps is generally lower
than in other regions. Potere et al. (2009) compared the accuracy of eight global ur-
ban maps in different world regions and found that misclassifications were more fre-

9



Figure 1.3: Number of available scenes in the Landsat catalog for a) Landsat 5 TM,
b) Landsat 7 ETM+, and c) Landsat 8 OLI/TIRS.10



quent in Africa (average Kappa value of 0.46) than in industrialized countries (0.57).
Likewise, Esch et al. (2017) assessed four global products (GUF, GHSL, Glo-
beLand30 and MODIS-500) in twelve urban areas. In the four products, the aver-
age accuracy of the six urban areas located in SSA (Addis Ababa, Dar Es Salaam,
Kampala, Kigali, Lagos and Nairobi) was significantly lower than in the other cities
(Athens, Beijing, Mexico City, Milan, New York and Perth). The regional gaps in
map accuracies may be explained by two main factors: (1) low data availability, and
(2) the heterogeneous nature of the urban environment.

1.3.1 Data availability
The accuracy of any land cover classification based on satellite remote sensing de-
pends on the quality and quantity of the input data at three different levels: the
image level, the training level and the testing level. The image level refers to the im-
ages acquired by the satellite sensors. It is mainly sensitive to the quality of the
satellite acquisition—the atmospheric conditions at the time of acquisition—, the
quality of the pre-processing routines that has been applied—orthorecitification,
atmospheric correction, cloud detection—, and the spatial resolution of the sensor.
Figure 1.2 shows the average cloud cover of Landsat scenes across the globe. If the
African continent is not particularly cloudy, some of the most populated regions of
SSA are susceptible to poor atmospheric conditions, such as the West African lit-
toral and the African Great Lakes region. In practice, this implies a lower quantity
of data to work with, or the inability to take advantage of the seasonal information
to discriminate the built environment. For instance, only five Landsat scenes with
less than 10% of cloud cover are available over Kinshasa, D.R. Congo—and none
between 1995 and 2005. Furthermore, until recently, many satellite acquisitions
over SSA have not been held in the Landsat archive. As shown in Figure 1.3, SSA
suffers from a very low availability of Landsat 5 TM scenes compared to the rest
of the world—comparable to Siberia, Antarctica or Alaska. This is significantly
prejudicial to map urbanization dynamics in SSA since the satellite covers a period
of 28 years from 1984 to 2012. However, there is a greater proportion of African
acquisitions in the Landsat 7 catalog and, thanks to a more systematic approach for
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global acquisition (Roy et al., 2010), the situation is much better with Landsat 8.

The training and testing levels depend on the availability of ground truth data, that
is used (1) to support the training of the classification models in machine learning
approaches, and (2) to validate the classification outputs. In satellite remote sens-
ing, ground truth data is traditionally collected through on-site measurements, but
authors tend to rely more on external datasets when working on large study areas.
In the field of urban mapping, these datasets are mainly provided by governmental
services, cartographic centers or commercial agencies. The scarcity of such datasets
in poor countries affects the classification accuracies in multiple ways. First, less
training data implies a decreased representativeness of the target geographic ob-
ject. Urban areas are fundamentally heterogeneous and made up of a wide range of
elements (roofs, asphalt, trees, green spaces, pools, bare soil, etc.) composed of dif-
ferent materials and laid out in varying proportions and shapes (Herold et al., 2004).
Classification models must be able to learn all those possible forms of the built envi-
ronment from the training data, failing which entire human settlements could stay
undetected. The lower availability of reference datasets to validate the classification
models may lead to miss such misclassifications and, more importantly, commu-
nicate erroneous metrics to the end-users. Overall, this means that classification
models are either (1) trained with less data, thereby leading to higher rates of mis-
classification, or (2) calibrated in other data-rich regions and suffering from lower
accuracies when applied in SSA.

1.3.2 Urban heterogeneity and spectral confusion
“The most consistent characteristic of the urban mosaic is spectral heterogene-
ity.” (Small, 2005)

The other issues that may be encountered when mapping urban areas in SSA
through satellite remote sensing are caused by the heterogeneity that characterizes
both the natural and the urban environment of the region. Some of the most
populated urban areas in SSA are located in arid and tropical regions, where
built-up areas may be harder to detect. Mapping built-up areas in arid regions
is a notorious issue in urban remote sensing (Zhang, Chen and Lu, 2015; Rasul
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et al., 2018). From a remote sensing point of view, there is no clear boundary
between bare soil and built-up areas in arid regions when using optical sensors.
The spectral signatures of both land cover types are similar, leading to spectral
confusion and misclassifications. In urban areas where buildings are made up of
materials that belong to the surrounding natural environment, the problem may
even be worse—as shown in Figure 1.4 for Gao, Mali. Likewise, the urban mosaics
located in tropical regions may be so densely vegetated that their spectral signature
becomes similar to the ones of other vegetated land cover types.

Figure 1.4: Spectral confusion between bare soil and built-up areas in Gao, Mali.
a) Satellite image of the area of interest, courtesy of Google, and b) Near-infrared
Landsat band.

Figure 1.5: Inter-urban heterogeneity in a) Gao, Mali, b) Johannesburg, South
Africa, and c) Katsina, Nigeria. Satellite imagery courtesy of Google.

More generally, the spectral confusion caused by the combination of different spec-
tral objects in a given pixel is called the “mixed pixel” effect. The issue is predomi-
nant in urban remote sensing, since medium-resolution (from 15 to 50 m) urban pix-
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Figure 1.6: Intra-urban heterogeneity in Windhoek, Namibia. Each red square
has a surface of 900 m, which corresponds to a Landsat pixel. Satellite imagery
courtesy of Google.

els will always be made up of multiple objects with various spectral properties (roofs
of various materials, asphalted surfaces of different age, trees, gardens, patches of
bare soil, etc.). That is why Small (2005) states that “the most consistent characteristic
of the urban mosaic is its spectral heterogeneity”. The spectral variations of the urban
mosaic are both inter-urban and intra-urban. Inter-urban heterogeneity (among dif-
ferent cities) is the result of socio-economic, cultural, historical or environmental
differences among the cities of the world, as illustrated in Figure 1.5. In the context
of urban remote sensing, this means that a model built for a given urban area cannot
be applied on another: the targeted spectral object has changed. As illustrated in
Figure 1.6, variations may also be intra-urban—among different parts of a given
city. In an approach based on machine learning, this means that the representa-
tiveness of the training data will be determinant in a model’s ability to detect the
heterogeneous set of built-up areas in a given city.

1.4 Open data opportunities
1.4.1 Open-access satellite imagery
Coarse-resolution satellite imagery (250–1,500 m) has been free and open for many
years—the most famous examples being the Advanced Very-High-Resolution
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Radiometer (AVHRR) and the Moderate Resolution Imaging Spectroradiometer
(MODIS). But, traditionally, medium-resolution satellite imagery (10–40 m) had
to be paid for. The open-access policy adopted by the Landsat program in 2008 has
changed that and enabled a dramatic increase in the use of satellite remote sensing
for a wide range of applications (Woodcock et al., 2008; Turner et al., 2015), by
making freely available more than 25 years of medium-resolution imagery. This
positive impact has been illustrated by the significant increase in the distribution
of images by the USGS: 25,000 Landsat images were provided to users in 2001
when each individual scene was charged $600, against 2.5 million in 2010 (Wulder
et al., 2012). As shown in Table 1.2, many space agencies followed the lead, such
as the European Space Agency with the launch of the Sentinel program in 2014,
or the China-Brazil Earth Resources Satellite (CBERS) program. As of today, the
archives of more than ten medium-resolution satellite imagery datasets have been
made freely available. This era of “Big Earth Data” provides opportunities as well
as challenges for the EO community (Guo, Wang and Liang, 2016). Provided
the computing capacity, open “Big Earth Data” enables land cover mapping at
regional- and global-scales at relatively low costs (see, for instance, section 1.2 on
global urban maps), and allows a new range of methods that make use of dense
timeseries.

Table 1.2: Main open-access satellite imagery datasets.

Sensor Type Period Resolution
Landsat 4/5 MSS Optical 1982–2013 60 m
Landsat 4/5 TM Optical 1982–2012 30 m
ERS-1 SAR 1991–2000 25 m
JERS-1 Both 1992–1998 12.5 m
ERS-2 SAR 1995– 25 m
MODIS Optical 1999– 250 m
Landsat 7 ETM+ Optical 1999– 30 m
CBERS-1/2/3/4 Optical 1999– 20 m
Envisat MERIS Optical 2002–2012 300 m
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Sensor Type Period Resolution
Envisat ASAR SAR 2002–2012 30 m
Landsat 8 OLI/TIRS Optical 2013– 30 m
Sentinel-1 SAR 2014– 10 m
Sentinel-2 Optical 2015– 10 m

Another opportunity lies in the availability of multiple sensors with different char-
acteristics. In the context of urban mapping, the theoretical complementarity of
multispectral and SAR sensors has been stated many times (Dell’Acqua, 2009).
Furthermore, the use of sensors which are not sensitive to clouds—such as SAR—
becomes essential in tropical and cloudy regions (see section 1.3.1). Still, combining
image data acquired with different sensors and in varying atmospheric conditions
remains a challenge.

1.4.2 Volunteered Geographic Information
The increasing availability of spatial data is not limited to satellite imagery. EO
satellites provide a systematic and continuous spatial information on the Earth’s
surface. On the contrary, geographic information databases provide a labeled and
discrete information—for instance a road network. For centuries, this function has
been reserved to commercial or governmental agencies. But since the 2000s, user-
generated mapping has been enabled by the availability of low-cost GPS receivers
along with the rise of Internet and home computing. This collaborative web-based
effort to collect and share spatial data is called “Volunteered Geographic Informa-
tion” (VGI) (Goodchild, 2007). The leading example of VGI is OSM, that follows
the collaborative model of Wikipedia to create a map of the world whose data is free
to use or edit (Haklay and Weber, 2008). Funded in 2004, OpenStreetMap (OSM)
reached 50,000 registered users by 2008. In addition to the users contributions, lo-
cal authorities and commercial navigation information providers started to donate
geographic information to the project, thereby making it more and more complete.
Today, OSM data cover the entire world and a wide range of spatial data—from
road networks to building footprints, parks, points of interest, water bodies, etc.
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Figure 1.7: Gigabytes of information in the OSM database for each continent be-
tween 2014 and 2018 on a logarithmic scale.
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Still, the reliability of VGI can be low depending on the region of interest. As a
matter of fact, Europe and North America were the main focus of the project until
recently. Figure 1.7 shows the gigabytes of information available in the OSM
database for each continent between 2014 and 2018. Because of what Goodchild
(2007) called the “Digital Divide”, OSM data has always been more scarce in the
African, South-American and Asian continents. Before 2014, data located in
Africa accounted for only 2% of the OSM database 440 MB. But since then, the
uneven spatial distribution of OSM data has been partially mitigated: between
2014 and 2018, 11% of the contributed data was located in Africa, for a total
increase of 380%. The evolution of the share of Europe and North America in the
database reveals the same trend: 81% in 2014, against 73% in 2018. This increasing
amount of geographic data available for free is an opportunity for scientists and
policy-makers working on developing regions, for which geographic information
databases were relatively scarce.

1.4.3 Thesis input data
The open-access datasets supporting this thesis can be divided into two categories:
(1) satellite imagery, and (2) volunteered geographic information. Table 1.3 lists
these datasets together with the period they cover in the context of the study. Satel-
lite imagery catalogs have been selected according to three criteria: access policies,
spatial resolution (at least 30 m), and automation opportunities. Furthermore, be-
cause of the multi-temporal dimension of urbanization, consistency between sen-
sors must be taken into account. This is why Sentinel-2 multispectral imagery have
been excluded from the study, despite its higher spatial resolution.

Table 1.3: Main datasets used in this thesis and the period they cover.

Dataset Type Period Covered
OpenStreetMap Volunteered Geographic Information 2015–
Landsat 5 Multispectral Satellite Imagery 1995–2010
Landsat 7 Multispectral Satellite Imagery 2000
Landsat 8 Multispectral Satellite Imagery 2015
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Dataset Type Period Covered
ERS-1 SAR Satellite Imagery 1995–2000
ERS-2 SAR Satellite Imagery 1995–2010
Sentinel-1 SAR Satellite Imagery 2015

1.5 Thesis organization
1.5.1 Objectives and research hypotheses
The objectives of the present thesis are two-fold. First, we aim to provide insights
regarding the improvement of regional- and global-scale maps of the built envi-
ronment in the context of SSA. To that end, we present a novel approach to map
built-up areas at medium-resolution (30 m) that is based on multi-sensor satellite
data and VGI. The second objective is to create a dataset of urban expansion in
46 urban areas of SSA for the 1995–2015 period, in order to produce knowledge
regarding the relationship between the population dynamics and the expansion of
the built environment.

From a methodological point of view, the present work relies on two main research
hypotheses.

1.5.1.1 1st hypothesis

In the data-scarce context of SSA, VGI can enable large-scale mapping of
built-up areas by supporting the training of the classificationmodels without
reducing their performances.

In supervised learning, the main factor that determines the performance of a clas-
sification model is the quality of the input training data. Traditionally, training
samples are collected by conducting in situ measurements or digitization of very
high resolution imagery. Both processes are manual and time-consuming, espe-
cially when working on regional or global scales. In that case, many rely on external
geographic databases maintained by governmental or commercial agencies. As pre-
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viously stated in section 1.3.1, the data-scarce context of SSA makes it difficult to
rely on such datasets. One of the solution is to invest more time is samples collec-
tion ; another is to train the classification models in other data-rich regions. In the
end, this implies sacrificing either classification performance or time. In the present
thesis, an alternative approach based on VGI (see section 1.4.2) is proposed. More
specifically, the use of OSM to collect training data is investigated. Several chal-
lenges are expected. First, OSM is the result of a collaborative effort, and thereby
may lack completeness and reliability. In some regions, this could lead to a lack of
representativeness in the training data—thereby causing lower classification perfor-
mances. Secondly, the OSM database is primarily focused on the urban environ-
ment. This means that samples corresponding to the built environment could be
easier to collect than information related to the surrounding natural environment.
Chapter 2 proposes an implementation of this approach and discusses its limita-
tions. The proposed approach is assessed in the context of ten different urban areas
located in SSA.

1.5.1.2 2nd hypothesis

Using SAR sensors (ERS, Envisat, Sentinel-1) in combination with mul-
tispectral data (Landsat) can lead to a more consistent detection of the built
environment, especially in arid regions.

Across the world, urban mosaics are always characterized by a high spectral het-
erogeneity. At medium-resolution (10–40 m), a built-up pixel may contain a wide
range of geographic objects such as buildings, roads, bare soil, gardens or pools. As
stated in section 1.3.2, the issue is exacerbated when a given built-up pixel is par-
tially made up of elements similar to the surrounding natural environment, such as
dense urban vegetation in a tropical environment. Spectral confusion is particularly
severe in arid regions, where built-up and bare land may share a similar spectral sig-
nature. Contrary to optical sensors, SAR is mainly sensitive to the ground texture,
and thereby consistently able to discriminate between flat bare land and elevated
built-up structures. In that sense, optical and SAR sensors complement one an-
other. Still, data fusion is not straightforward. For instance, SAR images are char-
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acterized by the presence of a granular “speckle noise”—making them less suited to
pixel-level classifications. Moreover, because of the sensitivity of SAR to ground
texture, densely vegetated areas can be confused with elevated built-up structures.
In chapter 3, an implementation based on both Landsat 8 and Sentinel-1 imagery
is proposed. The approach is assessed and discussed in the context of 12 urban areas
of SSA.

Finally, the methodological contributions presented in chapter 2 and 3 are leveraged
to create an urban expansion dataset for 46 case studies located in SSA for the
1995–2015 period. Chapter 4 presents an implementation based on seven open-
access EO datasets: Landsat 5 TM, Landsat 7 ETM+, Landsat 8, ERS-1, ERS-2,
Envisat and Sentinel-1. Here, spatio-temporal consistency is expected to be the
main challenge. Given that OSM may lack spatial homogeneity, is the approach
equally suited in all urban areas, regardless of population size and data availability ?
Considering the use of seven sensors, are the results sufficiently consistent in time to
compute urbanization statistics ? In this chapter, the proposed approach is assessed
and discussed. Furthermore, the results obtained are compared to existing global
urban maps, and are used to analyze the relationship between built-up expansion
and population growth.

1.5.2 A note on reproducibility
“An article about computational results is advertising, not scholarship. The
actual scholarship is the full software environment, code and data, that pro-
duced the result.” (Buckheit and Donoho, 1995)

Reproducibility refers to an ensemble of practices that enable reuse, redistribution
and reproduction of the research outputs of a study (Sandve et al., 2013; Stodden
and Miguez, 2014). In practice, this implies sharing the code that supports a given
analysis along with the full software environment and the input data. In the field of
EO, two main challenges can be identified. First, a wide range of software solutions
are used—for instance for image preprocessing and classification. These software
packages can be written in various programming languages (Python, R, C/C++,
FORTRAN) and are not always available on all operating systems. This can make
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the reproduction of the software environment difficult, thereby limiting the ability
of the reader to actually run the shared code. Second, EO data can be huge—
especially when working on regional and global scales. This makes it impossible
to share the raw input data in conventional data repositories. In that case, two
different approaches can be adopted: sharing only the output data, or sharing the
scripts that have been used for data acquisition. Overall, a reproducible approach
in EO studies may includes up to five dimensions:

1. Allowing the reproductionof the software environment. This means providing
a way to easily recreate a full software environment, that can be made up of various
software packages in specific versions and from different programming languages.
Package management systems such as Conda1 or container-based technologies such
as Docker2 can be used to solve the problem.

2. Enabling the reproduction of the research outputs. This includes sharing the
code that generates any intermediary result supporting methodological decisions
and output data. It also implies providing a way to easily run the code without hav-
ing to manually modify the source—for instance by providing Python modules and
scripts instead of isolated chunks of code. More importantly, code must be shared
along with its documentation and, optionally, with its version control history—for
instance through online code sharing platforms such as Gitlab3 or Github4.

3. Sharing interactive analyses. This includes sharing exploratory analyses, un-
published figures or failed experiments—in other words, anything that supported
decision making. It can also refers to in-depth data stories that are not suited to
the format of a journal article or a thesis dissertation. Interactive notebook environ-
ments such as RMarkdown5 or Jupyter6 are perfectly suited for that type of task.

4. Data sharing. This means making available any input data required by the pro-
vided code. It also includes providing output data to make it accessible without

1https://conda.io
2https://docker.com
3https://gitlab.com
4https://github.com
5https://rmarkdown.rstudio.com
6https://jupyter.org
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having to run the code again. To that end, one can rely on research data repositories
such as Dataverse7 or Zenodo8. In EO, raw data may be too large to be uploaded
on the aforementioned platforms. In that case, an alternative is to provide the code
for data acquisition.

The present thesis follows the proposed approach and uses Conda, Github, Jupyter
and Zenodo to ensure its reproducibility. Code and data are provided on a per-
chapter basis:

Chapter 2
Data: https://zenodo.org/record/1291961
Code: https://github.com/yannforget/builtup-classification-osm

Chapter 3
Data: https://zenodo.org/record/1450932
Code: https://github.com/yannforget/landsat-sentinel-fusion

Chapter 4
Data: https://zenodo.org/record/3234908
Code: https://github.com/yannforget/maupp

Additionally, the dataset produced in the fourth chapter can be downloaded or vi-
sualized in interactive maps on the website of the project (https://maupp.ulb.ac.b
e/page/wp1results/).
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Chapter 2

Automated supervised learning
based onOpenStreetMap

This chapter is based on the following publication:

Forget Y., Linard C., & Gilbert M. (2018). “Supervised Classification of Built-Up
Areas in Sub-Saharan African Cities Using Landsat Imagery and OpenStreetMap”.
Remote Sensing, 10 (7). 10.3390/rs10071145

Abstract. The Landsat archives have been made freely available in 2008, allow-
ing the production of high resolution built-up maps at the regional or global scale.
In this context, most of the classification algorithms rely on supervised learning
to tackle the heterogeneity of the urban environments. However, at a large scale,
the process of collecting training samples becomes a huge project in itself. This
leads to a growing interest from the remote sensing community toward Volunteered
Geographic Information (VGI) projects such as OpenStreetMap (OSM). Despite
the spatial heterogeneity of its contribution patterns, OSM provides an increasing
amount of information on the earth’s surface. More interestingly, the community
has moved beyond street mapping to collect a wider range of spatial data such as
building footprints, land use, or points of interest. In this paper, we propose a clas-
sification method that makes use of OSM to automatically collect training samples
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for supervised learning of built-up areas. To take into account a wide range of po-
tential issues, the approach is assessed in ten Sub-Saharan African urban areas from
various demographic profiles and climates. The obtained results are compared with:
(1) existing high resolution global urban maps such as the Global Human Settle-
ment Layer (GHSL) or the Human Built-up and Settlements Extent (HBASE);
and (2) a supervised classification based on manually digitized training samples.
The results suggest that automated supervised classifications based on OSM can
provide performances similar to manual approaches, provided that OSM training
samples are sufficiently available and correctly pre-processed. Moreover, the pro-
posed method could reach better results in the near future, given the increasing
amount and variety of information in the OSM database.

2.1 Introduction
The population of Africa is predicted to double by 2050 (UN-Habitat, 2014), along-
side a rapidly growing urbanization. In this context, reliable information on the dis-
tribution and the spatial extent of human settlements is crucial to understand and
monitor a large set of associated issues, such as the impacts on both environmental
systems and human health (Grimm et al., 2008; Dye, 2008; Wentz et al., 2014).
In the 2000s, the remote sensing community took advantage of the availability of
coarse-resolution satellite imagery based on the MERIS or the MODIS programs
to produce global land cover maps such as GlobCover (Arino et al., 2007) or the
MODIS 500m Map of Global Urban Extent (MOD-500) (Schneider, Friedl and
Potere, 2009). Subsequently, Landsat data have been made freely available in 2008
and dramatically reduced the operative cost of high resolution satellite imagery ac-
quisition and processing (Wulder et al., 2008). This enabled the production of high
resolution global land cover maps based on the Landsat catalog, such as the GHSL
(Martino Pesaresi and Daniele Ehrlich et al., 2016), Global Land Cover (GLC)
(Chen et al., 2015) or the HBASE (Wang et al., 2017).

However, land cover classification in urban areas remains a challenge because of the
inherent complexity of the urban environment which is characterized by both in-
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traurban and interurban heterogeneity (Herold et al., 2004; Small, 2005). Because
of the complexity associated with the urban mosaic at high resolution, supervised
classification methods have been shown to provide the best results (Gamba and
Herold, 2009; Li, 2014; Belgiu and Drăguţ, 2016). However, such an approach
requires a large amount of training samples to grasp the heterogeneity of the urban
environment. As a result, the process of collecting training samples for large-scale
supervised classification becomes an unaffordable task. Additionally, studies have
shown that global urban maps suffer from higher rates of misclassifications in de-
veloping regions such as Sub-Saharan Africa or South Asia (Potere et al., 2009)
because of the lack of reference data in both quantity and quality.

The training samples collection step can be automated by using existing land cover
information in ancillary datasets. Coarser resolution global maps such as Glob-
Cover or MOD-500 have been widely used to identify training sites (Potere et al.,
2009; Trianni et al., 2015). However, integrating such datasets leads to the intro-
duction of noisy samples which have been shown to decrease the performance of the
classifiers. In this context, the increasing availability of VGI brings new opportuni-
ties. Defined as the spatial dimension of the web phenomenon of user-generated
content (Goodchild, 2007), VGI drives a new way of collecting geographic infor-
mation that relies on the crowd rather than official or commercial organizations.
Founded in 2004, OSM is the most famous of the VGI projects. Initially, the ob-
jective was to provide free user-generated street maps (Haklay and Weber, 2008).
In the following years, OSM became a collaborative effort to create a free and ed-
itable map of the whole world which is not limited to the road network (Mooney
and Minghini, 2017). OSM uses a data model based on three object types: nodes
(points), ways (polylines or polygons), and relations (logical connections of ways,
e.g., a closed way that forms a polygon). Each object is described by at least one
key/value pair (a “tag”) (Haklay and Weber, 2008; Mooney and Minghini, 2017).
This simple data model allows the mapping of a large range of spatial features such
as building footprints, points of interest, natural elements, or land use. As a re-
sult, and as the database grows, OSM is increasingly used for Land Use and Land
Cover (LULC) classification (Estima and Painho, 2013, 2015; Jokar Arsanjani et
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al., 2013; Fonte et al., 2017). Furthermore, the increasing data availability and qual-
ity enable the use of OSM data to support automated supervised classifications of
remote sensing imagery. Schultz et al. (2017) successively used OSM objects to fill
the data gaps in the global Open Land Cover product based on Landsat imagery.
Similarly, Yang et al. (2017) used Landsat imagery and training points from OSM
to map land use in Southeastern United States with an overall accuracy of 75%.
This demonstrates that OSM becomes increasingly relevant to support the training
of large-scale LULC classifications.

However, the use of OSM data also brings new issues to consider, including: (1) its
non-exhaustive nature; and (2) the spatial heterogeneity of the contribution patterns
across the regions. Indeed, users are more likely to contribute information where
they live. According to Coleman, Georgiadou and Labonte (2009), economical
interest and the “Pride of Place” are among the main factors that encourage people
to contribute. Additionally, Juhász and Hochmair (2018) demonstrated that users
are more likely to contribute in specific places such as natural areas and city cen-
ters. Furthermore, because of the “Digital Divide” (Goodchild, 2007) caused by
inequalities in access to education and Internet, developing and developed coun-
tries does not benefit from the same amount of contributions. As of March 2018,
the amount of information (in bytes) in the OSM database was ten times bigger for
the European continent than for Africa.1 Another example of such heterogeneity
is that Germany contained two times more bytes of information than Sub-Saharan
Africa. However,OSM data availability in developing regions is rapidly increasing
over the last few years, thanks to local contributors and initiatives such as Human-
itarian OpenStreetMap Team2 or Missing Maps.3 In fact, Africa is the continent
where contributions are increasing at the highest rate since 2014. This makes OSM
increasingly relevant in developing regions such as Sub-Saharan Africa.

This paper focuses on the use of OSM to collect training samples for the classifi-
cation of built-up and non-built-up areas in Landsat scenes of ten Sub-Saharan

1 http://download.geofabrik.de
2 https://www.hotosm.org
3 https://www.missingmaps.org
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African urban agglomerations. To support global urban mapping, our research
aimed to answer the following questions: What information can be extracted
from the OSM database to collect built-up and non-built-up training samples?
What post-processing must be applied? What performance loss can we expect
compared to a strategy based on a manually digitized dataset? Finally, what is
the practicability of this approach in the context of a developing region such as
Sub-Saharan Africa?

2.2 Materials andmethods
2.2.1 Case studies
As stated previously, the spectral profiles of urban areas are characterized by high
interurban variations caused by environmental, historical, or socioeconomic differ-
ences (Small, 2005). This makes the selection of case studies a crucial step when
seeking to ensure the generalization abilities of a method. Our set of case studies
is comprised of ten Sub-Saharan African cities described in Table 2.1. Climate is
one of the most important sources of variation among the urban areas of the world
because it determines the abundance and the nature of the vegetation in the urban
mosaic and at its borders. Urban areas located in tropical or subtropical climates
(Antananarivo, Johannesburg, Chimoio, and Kampala) can be spectrally confused
with vegetated areas because of the presence of dense vegetation in the urban mo-
saic. This can lead to a mixed-pixel problem and result in misclassifications. On the
contrary, cities located in arid or semi-arid climates (Dakar, Gao, Katsina, Saint-
Louis, and Windhoek) are characterized by a low amount of vegetation. Bare soil
being spectrally similar to built-up, the separation between built-up and non-built-
up classes can be more difficult in such areas (Zhang, Chen and Lu, 2015; Li et
al., 2017), especially when construction materials are made up from nearby natural
resources. Population of an urban area impacts both the distribution of built-up
and the data availability. In the context of our study, the population is mainly used
as a proxy of the spatial contribution patterns of OSM. Highly populated urban ar-
eas (Dakar, Johannesburg, Nairobi, and Kampala) are more likely to benefit from a
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high density of information in OSM. On the other hand, smaller cities (Chimoio,
Gao, Saint-Louis, and Windhoek) can suffer from a lack of OSM contributions
(Coleman, Georgiadou and Labonte, 2009).

Table 2.1: Environmental and demographic characteristics of the case studies. Cli-
mate zones are identified according to the Köppen–Geiger classification (Kottek et
al., 2006). Population numbers are estimated according to the AfriPop/WorldPop
dataset (Linard et al., 2012) for the AOI of each case study.

City Country Climate Population
Antananarivo Madagascar Subtropical highland 2,452,000
Chimoio Mozambique Humid subtropical 462,000
Dakar Senegal Hot semi-arid 3,348,000
Gao Mali Hot desert 163,000
Johannesburg South Africa Subtropical highland 4,728,000
Kampala Uganda Tropical rainforest 3,511,000
Katsina Nigeria Hot semi-arid 1,032,000
Nairobi Kenya Temperate oceanic 5,080,000
Saint-Louis Senegal Hot desert 305,000
Windhoek Namibia Hot semi-arid 384,000

2.2.2 Satellite imagery
The Landsat 8 imagery is provided by the U.S. Geological Survey (USGS) through
the Earth Explorer portal. The scenes are acquired as Level-1 data products, there-
fore radiometrically calibrated and orthorectified. The product identifiers and the
acquisition dates of each scene are shown in Table 2.2. Calibrated digital numbers
are converted to surface reflectance values using the Landsat Surface Reflectance
Code (LaSRC) (Vermote et al., 2016) made available by the USGS. Clouds, cloud
shadows and water bodies are detected using the Function of Mask (FMASK) algo-
rithm (Zhu and Woodcock, 2012; Zhu, Wang and Woodcock, 2015). The acquisi-
tion dates range from August 2015 to October 2016, because of availability issues
caused by cloud cover. To reduce the processing cost of the analysis, the satellite
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images are masked according to an area of interest (AOI), which is defined as a 20
km rectangular buffer around the city center (as provided by OSM). As a result, all
AOI have a surface of 40×40 km2, regardless of the actual city footprints.

Table 2.2: Product identifiers and acquisition dates of each Landsat scene.

City Landsat Product Identifier AcquisitionDate
Antananarivo LC08_L1TP_159073_20150919_20170404_01_T1 2015–09–19
Chimoio LC08_L1TP_168073_20150529_20170408_01_T1 2015–05–29
Dakar LC08_L1TP_206050_20151217_20170331_01_T1 2015–12–07
Gao LC08_L1TP_194049_20160114_20170405_01_T1 2016–01–14
Johannesburg LC08_L1TP_170078_20150831_20170404_01_T1 2015–08–31
Kampala LC08_L1TP_171060_20160129_20170330_01_T1 2016–01–29
Katsina LC08_L1TP_189051_20160111_20170405_01_T1 2016–01–11
Nairobi LC08_L1TP_168061_20160124_20170330_01_T1 2016–01–24
Saint-Louis LC08_L1TP_205049_20161009_20170320_01_T1 2016–10–09
Windhoek LC08_L1TP_178076_20160114_20170405_01_T1 2016–01–14

2.2.3 Reference dataset
Reference samples for four land cover classes are collected using very high spatial
resolution (VHSR) imagery from Google Earth (GE): built-up, bare soil, low vege-
tation (sparse vegetation, farms) and high vegetation (forests). The history slider of
the GE interface has been used to ensure that the acquisition dates of the images are
in a one-year range of the corresponding Landsat scenes. Even if our classification
problem is binary (built-up vs. non-built-up), the collection of reference samples
for specific land covers was preferred to ensure the spectral representativeness of the
non-built-up landscape. As shown in Figure 2.1, samples were collected as poly-
gons to include the inherent spectral heterogeneity of urban land covers. Reference
built-up areas deliberately included mixed pixels provided that they contain at least
20% of built-up.

In total, over all the case studies, more than 2,400 polygons were digitized, cor-
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responding to more than 180,000 pixels after rasterization. In the context of our
case study, reference samples were used for: (1) assessing the quality of the training
samples extracted from OSM; (2) assessing the performance of the built-up classi-
fications; and (3) producing a reference classification for comparison purposes.

Figure 2.1: Examples of digitized samples in Dakar, Senegal: (a) Built-up; (b) Bare
soil; (c) Low vegetation; and (d) High vegetation. The grid corresponds to the 30
meters Landsat pixels. Satellite imagery courtesy of Google Earth.

2.2.4 OpenStreetMap
OSM data were acquired in January 2018 using the Overpass API.4 Four different
objects were collected from the database: (1) highway polylines (the road network);
(2) building polygons (the building footprints); (3) the landuse, leisure, and nat-
ural polygons (potentially non-built-up objects); and (4) natural=water polygons
(the water bodies). Complex geometries such as polygons with holes were not con-
sidered to simplify the processing.

As previously stated, spatial contribution patterns of OSM are not homogeneous.
The evolution of OSM data availability for each type of object for each case study
is shown in Figure 2.2. The trends observed at the continental scale are confirmed
in the context of our case studies. As suggested by its name, OSM was initially
focused on street mapping. Street mapping appears as a continuous effort that leads
to a regular increase of the number of roads in the database. Later, contributors
started to integrate building footprints, points of interest, or land use and land
cover features. As a result, the number of building footprints, natural and land use
polygons more than doubled between 2016 and 2018. These trends suggest that

4 http://overpass-api.de
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OSM can now support large-scale supervised classification in developing regions.
They also reveal that an increasing amount of data will be available in the near future.

Figure 2.2: Evolution of OSM data availability in our case studies between 2011
and 2018.

2.2.5 Training samples
2.2.5.1 Built-up training samples

In the OSM database, the building key is used to mark an area as a building. When
they are available, the building footprints are the perfect candidates for built-up
training samples collection thanks to their unambiguous spatial definition. How-
ever, as shown in Figure 2.3, they are not consistently available among the cities.
Highly populated urban areas such as Nairobi, Dakar or Johannesburg contain more
than 1,000 ha of building footprints, whereas smaller cities such as Katsina and Gao
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only contain a few hectares, thus reducing the representativeness of the full built-
up spectral signature. Such data availability issue implies that additional samples
must be collected from another data source. Figure 2.3 also reveals that the typical
building footprint does not cover more than 15% of the surface of a Landsat pixel.
It means that, when going from the vector space to the 30 m raster space of our
analysis, the geographic object is not the building footprint anymore but the per-
centage of the pixel which is effectively covered by any footprint. As a result, the
decision to include or exclude a pixel from the built-up training samples relies on
a binary threshold, under the assumption that, the higher the threshold, the lower
the risk is to include mixed pixels.

Figure 2.3: Availability and median surface of building footprints in each case study.

As previously stated, OSM building footprints are not a sufficient data source to col-
lect built-up training samples because of inconsistencies in data availability among
cities. The road network remains the most exhaustive feature in OSM: even the
smallest cities among our case studies contain hundreds of kilometers of roads, and
new streets are being mapped each month. As illustrated in Figure 2.4, built-up
information can be derived from these road networks using the concept of urban
blocks, under the assumption that the smallest areas surrounded by streets are likely
to contain buildings. Here, urban blocks are defined as the polygons shaped by the
intersection of the roads. To focus on residential blocks, only roads tagged as resi-
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dential, tertiary, living_street, unclassified or with the generalist road value
were used. Major roads such as highways, express ways or national roads were
avoided, as well as service roads, tracks, and paths. In the case of Katsina and Gao,
for which the building footprints did not provide a sufficient amount of built-up
training samples, the process resulted in the availability of more than 1,000 blocks.
One assumption can be made regarding the reliability of such geographic objects
to collect more built-up training samples: large blocks have a higher probability of
containing mixed pixels or non-built-up areas.

Figure 2.4: Urban blocks extracted from the OSM road network in Windhoek,
Namibia (transparent: surface greater than 10 ha; red: surface greater than 1 ha;
green: surface lower than 1 ha). Satellite imagery courtesy of Google.

2.2.5.2 Non-built-up training samples

Because of the focus of the OSM database on the urban objects, the extraction of
non-built-up samples was less straightforward than the extraction of built-up sam-
ples. The OSM database includes information on the physical materials at the sur-
face of the earth according to: (1) the description of various bio-physical landscape
features such as grasslands or forests with the natural key; (2) the primary usage for
an area of land such as farms, or managed forests and grasslands with the landuse
key; and (3) the mapping of specific leisure features such as parks or nature reserves
with the leisure key. Such objects are not ensured to be non-built-up and must
be filtered according to their assigned value. From the 105 available values in our
case studies, the following 20 values were selected: sand, farmland, wetland, wood,
park, forest, nature_reserve, golf_course, cemetery, sand, quarry, pitch, scree,
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meadow, orchard, grass, recreation_ground, grassland, garden, heath, bare_rock,
beach and greenfield.

However, the availability of non-built objects was not consistent among the case
studies. Antananarivo, Johannesburg, Kampala, or Nairobi contained more than
1,000 non-built-up objects according to the previously stated definition. On the
contrary, smaller cities such as Chimoio or Katsina benefited from less than 50 ob-
jects. Given the spectral and spatial heterogeneity of the non-built landscape which
may consist of different types of soil and vegetation, a low amount of non-built-up
objects may induce a lack of representativeness in the training dataset. However, a
large amount of urban information is available through the road network or the digi-
tized building footprints. In the case of low OSM data availability, this information
allows for the discrimination of areas with a low probability of being built-up. The
underlying assumption is that the areas which are distant from any urban object,
such as roads or buildings, have a low probability of being built-up, thereby making
potential candidates for being used as non-built-up training samples. Under the
previous assumptions, we define the urban distance as the distance from any road
or building:

𝑑𝑢𝑟𝑏𝑎𝑛 = min(𝑑𝑟𝑜𝑎𝑑𝑠, 𝑑𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠) (2.1)

2.2.5.3 Quality assessment of training samples

To assess the quality of the training samples extracted from the OSM database,
we measured the distance between their spectral signatures and those of the refer-
ence land cover polygons. The spectral signature of an object is the variation of
its reflectance values according to the wavelength. In the six non-thermal Landsat
bands, the spectral signature 𝑆 of an object can be defined as:

𝑆 = ( ̄𝑥1, … , ̄𝑥𝑛 , … , ̄𝑥6) (2.2)

with ̄𝑥𝑛 being the mean pixel value of the object for the band 𝑛. Therefore, the
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euclidean spectral distance 𝑑 between two objects 𝑥 and 𝑦 can be defined as:

𝑑(𝑥, 𝑦) = √√√⎷𝑛=6∑𝑖=1( ̄𝑥𝑖 − ̄𝑦𝑖)2 (2.3)

More specifically, the optimal value of four parameters was investigated:

1. The minimum coverage threshold for the building footprints, i.e. the mini-
mum share of the building footprints inside a given pixel, under the assump-
tion that a lower surface implies more mixed pixels;

2. The maximum surface threshold for the urban blocks, under the assumption
that larger blocks are more likely to contain non-built-up and mixed pixels;

3. The OSM tags for the extraction of non-built-up objects;
4. The minimum distance threshold for the random selection of supplementary

non-built-up samples from the urban distance raster, under the assumption
that the probability to encounter buildings decreases as the urban distance
increases.

2.2.6 Classification
Relying on crowd-sourced geographic information to automatically generate a train-
ing dataset implies that the resulting sample will be more noisy compared to a man-
ual sampling strategy. Therefore, a larger amount of samples may be required to
compensate the mislabeled points and the lack of representativeness. Consequently,
the binary classification task (built-up vs. non-built) was performed using the Ran-
dom Forest (RF) classifier, which has been shown to be computationally efficient
and relatively robust to outliers and noisy training data (Rodriguez-Galiano et al.,
2012; Mellor et al., 2015). A different classification model was trained for each
case study. The implementation was based on a set of Python libraries, including:
NumPy (Oliphant, 2015) and SciPy ( Jones et al., 2001) for scientific computing,
Rasterio (Gillies, 2013) for raster processing, Shapely (Gillies, 2007) and Geopan-
das for vector analysis, and Scikit-learn (Pedregosa et al., 2011) for machine learn-
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ing. The code used to support the study is available on Github.5

To remove errors and ambiguities caused by variations in acquisition conditions,
eight Landsat bands (blue, green, red, NIR, SWIR1, SWIR2, TIR1, and TIR2)
were transformed to a Normalized Difference Spectral Vector (NDSV) (Angiuli
and Trianni, 2014) before the classification. The NDSV is a combination of all
normalized spectral indices, as defined in Equation 2.4 and Equation 2.5. In the
case of Landsat, this leads to a vector of 28 normalized spectral indices.

𝑓(𝑏𝑖, 𝑏𝑗) = 𝑏𝑖 − 𝑏𝑗𝑏𝑖 + 𝑏𝑗 (2.4)

𝑁𝐷𝑆𝑉 = ⎡⎢⎢⎢⎢⎢⎣
𝑓(𝑏1, 𝑏2)…𝑓(𝑏𝑖, 𝑏𝑗)…𝑓(𝑏7, 𝑏8)

⎤⎥⎥⎥⎥⎥⎦
(2.5)

To assess the ability of OSM for training supervised built-up classification, a com-
parative approach was adopted. Three distinct classifications were carried out us-
ing different training datasets, as described in Table 2.3. A reference classification
(𝑅𝐸𝐹 ) was performed using the reference land cover polygons as training samples
to assess the relative performance of OSM-based approaches. In this case, refer-
ence polygons were randomly split between a training and a testing dataset of equal
sizes. The procedure was repeated twenty times and the validation metrics were av-
eraged. Training samples of the two other classifications (𝑂𝑆𝑀𝑎 and 𝑂𝑆𝑀𝑏) were
exclusively extracted from OSM. The first one used first-order features from OSM:
building footprints as built-up samples, and land use, natural and leisure polygons
as non-built-up samples. The second one was designed to tackle the OSM data
availability issue which may be encountered in less populated urban areas. It used
second-order features derived from first-order objects such as urban blocks and ur-

5 https://github.com/yannforget/builtup-classification-osm
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ban distance.

Table 2.3: Training samples data sources for each classification scheme.

Built-Up Non-Built-Up𝑅𝐸𝐹 Reference built-up polygons Reference non-built polygons𝑂𝑆𝑀𝑎 Building footprints Non-built features𝑂𝑆𝑀𝑏 Building footprints & urban blocks Non-built features & urban distance

In all three cases, RF parameters were set according to the recommendations of
the literature (Rodriguez-Galiano et al., 2012; Mellor et al., 2015). RF decision
tree ensembles were constructed with 100 trees, and the maximum number of fea-
tures per split was set to the square root of the total number of features. Imbalance
issues between built-up and non-built-up training datasets sizes were tackled by
over-sampling the minority class (Lemaître, Nogueira and Aridas, 2017). Addi-
tionally, fixed random seeds were set to ensure the reproducibility of the analysis.

2.2.7 Validation
Classification performances were assessed using the manually digitized reference
land cover polygons as a testing dataset. Three validation metrics were computed:
F1-score, precision and recall. The metrics were computed for the three classifica-
tions, as well as for two existing Landsat-based urban maps: the GHSL and the
HBASE datasets.

2.3 Results and discussion
2.3.1 Built-up training samples
The extraction of built-up training samples from the OSM building footprints re-
quired the selection of a minimum coverage threshold. The impact of this threshold
has been assessed by measuring the spectral distance of the resulting samples to the
reference built-up samples. As shown in Figure 2.5, the assumption that increas-
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ing the threshold would minimize the spectral distance to the reference built-up
is not verified. Indeed, the highest spectral distances are reached when only fully
covered pixels are selected. As shown in Figure 2.5, the optimal threshold appears
to be reached when a minimum of 20,000 samples are available. This reveals the
importance of maximizing the representativeness of the sample by ensuring that a
sufficient amount of samples is available. Furthermore, given the non-exhaustive
nature of the OSM database, a pixel that contains a building footprint of any size
have a high probability to contain additional unmapped built-up structures. How-
ever, low threshold values (between 0 and 0.2) appear to effectively increase the
spectral similarity with the reference built-up samples by eliminating pixels cov-
ered by small and isolated buildings. Overall, a minimum coverage threshold of 0.2
appears to maximize both samples quality and quantity.

Figure 2.5: Quality and quantity of built-up training samples extracted from OSM
building footprints according to the minimum coverage threshold in the 10 case
studies: (a) mean spectral distance to the reference built-up samples; and (b) mean
number of samples (in pixels).

Urban blocks enabled the collection of built-up training samples where buildings
footprints were lacking. Figure 2.6 shows the impact of the maximum surface
threshold on both samples quality and quantity. As expected, excluding large blocks
increases the spectral similarity with the reference built-up samples by avoiding
highly mixed pixels and bare lands. The highest similarity is reached when only
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including the blocks with a surface lower than 1 ha. However, this conservative
threshold dramatically reduces the sample size in small urban agglomerations such
as Katsina, Gao, or Saint-Louis. Therefore, a maximum surface threshold of 3 ha
was selected to ensure a sufficient amount of samples while minimizing the spectral
distance to the reference built-up samples.

Figure 2.6: Quality and quantity of built-up training samples extracted from OSM
urban blocks according to maximum surface threshold in the 10 case studies: (a)
mean spectral distance to the reference built-up samples; and (b) number of samples
(in pixels) in the five case studies with the lowest data availability.

2.3.2 Non-built-up training samples
The non-built-up landscape is spectrally complex due to its irregular spatial patterns
and the variations of soils and vegetation types. Figure 2.7 shows the most simi-
lar land cover of each OSM non-built-up tag in terms of spectral distance. The
analysis reveals the spectral variability of OSM non-built-up objects across the case
studies. Urban features such as garden, recreation_ground, pitch or park can have
a spectral signature closer to built-up than to bare soil or lowly vegetated areas. The
small surface covered by these features can lead to a high proportion of mixed pix-
els. Additionally, their urban nature makes highly probable the presence of human-
constructed elements. On the contrary, natural features such as orchard, meadow,
forest or wood are more consistently close to the spectral signature of vegetated
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areas. Generally, most of the features providing bare soil samples may be confused
with built-up areas because of their urban nature (pitch) or their spectral similarity
(beach). However, the decision boundary between built-up and bare soil pixels be-
ing the most prone to errors in urban areas, we choose to not exclude them in order
to maximize the representativeness. Overall, these inconsistencies also highlight
the fact that a supervised multi-class land cover classification based on OSM would
be difficult to set up as of today.

Figure 2.7: Most similar land cover of each OSM non-built-up object according to
its tag. Circles are logarithmically proportional to the number of pixels available.

In case studies where OSM non-built-up objects were not sufficiently available, an
urban distance raster was used to randomly collect supplementary training samples
in remote areas. Figure 2.8 shows the relationship between the remoteness and
the spectral distance to the reference built-up samples. As expected, the spectral
distance increases with the urban distance. However, the spectral variations be-
come inconsistent and are mainly caused by changes in the non-built-up landscape
(e.g., forests, mountains, or bare lands). In highly urbanized agglomerations such
as Johannesburg or Dakar, the road network covers the whole area of interest, lead-
ing to a very low amount of remote pixels. Consequently, a minimum distance
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threshold of 250 m was used.

Figure 2.8: Quality and quantity of non-built-up training samples extracted from
the OSM-based urban distance raster: (a) mean spectral distance to the reference
built-up samples according to the urban distance; and (b) number of samples (in
pixels) in the five case studies with the lowest sample availability.

2.3.3 GHSL andHBASE assessment
The assessment metrics for the GHSL and HBASE datasets in the context of our
case studies are shown in Table 2.4. They are provided as an indication of their rel-
evance in the context of our case studies and our definition of a built-up area, since
they use validation samples manually digitized according to the built-up definitions
of the present study. They also reveal which case studies may be problematic for an
automated built-up mapping method. For example, the arid urban area of Gao
suffers from low recall scores because of the spectral confusion that occurs between
the buildings materials and the bare surroundings areas. This leads to the misclassi-
fication of large built-up areas as bare lands. To a lesser extent, the semi-arid urban
areas of Saint-Louis, Windhoek, and Katsina present the same issue. On the con-
trary, subtropical urban areas such as Antananarivo or Chimoio are characterized by
an abundant vegetation in the urban mosaic. Thus, high rates of misclassifications
are observed in the peripheral areas where built-up is less dense. A similar phe-
nomenon is also noticed in the richest residential districts of Johannesburg. Overall,
both datasets reach a mean F1-score of 0.82 when excluding Gao.
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Table 2.4: Assessment metrics of the GHSL and HBASE datasets.

Case study . GHSL . . HBASE .
F1-Score Precision Recall F1-Score Precision Recall

Antananarivo 0.83 0.82 0.83 0.79 0.67 0.96
Chimoio 0.47 0.98 0.31 0.82 0.94 0.73
Dakar 0.85 0.74 0.99 0.81 0.69 0.98
Gao 0.35 0.98 0.21 0.72 0.94 0.59
Johannesburg 0.92 0.86 0.99 0.90 0.82 0.99
Kampala 0.96 0.95 0.96 0.95 0.93 0.97
Katsina 0.90 0.92 0.88 0.64 0.76 0.56
Nairobi 0.84 0.96 0.75 0.88 0.81 0.97
Saint Louis 0.76 0.95 0.63 0.81 0.97 0.70
Windhoek 0.81 0.92 0.73 0.78 0.65 0.99
Mean 0.77 0.91 0.73 0.81 0.82 0.85
Standard dev. 0.20 0.08 0.28 0.09 0.12 0.18

2.3.4 Classification results
Assessment metrics of the three classification schemes are presented in Table 2.5.
The reference classification, which has been trained with manually digitized sam-
ples, reached a mean F1-score of 0.92 and a minimum of 0.84 in Gao. Such results
suggest that high classification performances can be achieved in most of the case
studies provided that the training dataset is sufficiently large and representative. The
first OSM-based classification scheme (𝑂𝑆𝑀𝑎) made use of first-order OSM ob-
jects: buildings footprints and objects associated with a non-built up tag. Therefore,
a limited availability in either of the aforementioned objects was highly detrimental
to the classification performance. Katsina, Windhoek, and Johannesburg suffered
from a low availability in building footprints with, respectively, 110, 2,636, and
6,724 objects. This led to an unrepresentative built-up training sample consisting
mainly of large administrative structures or isolated settlements. In Chimoio, more
than 150,000 building footprints were available. However, only 12 non-built-up
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polygons have been extracted from the OSM database, all related to forested areas.
As a result, the lack of information regarding the spectral characteristics of the het-
erogeneous non-built-up landscape did not enable the separation between built-up
and bare areas. A similar issue was also encountered in Antananarivo, where most
of the non-built-up training samples were located in natural reserves and forests.

The second OSM-based classification scheme (𝑂𝑆𝑀𝑏) was designed to tackle the
aforementioned issues by deriving second-order features from the road network.
The addition of built-up and non-built-up training samples collected from urban
blocks and remote areas solved the data availability and representativeness issues
in all the case studies, leading to better scores in nine out of ten cases. Overall,𝑂𝑆𝑀𝑏 reached scores that were comparable to those of the reference classification.
More specifically, 𝑂𝑆𝑀𝑏 had the highest recall scores, suggesting that the model
was more successful in the detection of isolated, informal or peripheral settlements.
Additionally, the use of larger training datasets (from 30,000 to 500,000 samples
per case study) led to higher consistencies in the classification performance with a
standard deviation of 0.02.

Table 2.5: Assessment metrics (F1-score, precision, and recall) for the three classi-
fication schemes.

OSMa OSMb REF
F1 Pre. Rec. F1 Pre. Rec. F1 Pre. Rec.

Antananarivo 0.78 0.99 0.65 0.93 0.91 0.96 0.92 0.97 0.87
Chimoio 0.77 0.63 0.97 0.92 0.90 0.95 0.85 0.93 0.79
Dakar 0.95 0.98 0.92 0.96 0.94 0.98 0.94 0.98 0.90
Gao 0.81 0.96 0.69 0.90 0.94 0.86 0.84 0.84 0.86
Johannesburg 0.60 0.98 0.43 0.92 0.99 0.86 0.96 0.98 0.94
Kampala 0.98 1.00 0.97 0.98 0.99 0.96 0.98 0.99 0.96
Katsina 0.20 0.84 0.11 0.91 0.95 0.87 0.94 0.99 0.90
Nairobi 0.91 0.94 0.89 0.94 0.97 0.92 0.93 0.97 0.89
Saint-Louis 0.95 0.98 0.93 0.94 0.92 0.96 0.92 0.98 0.88
Windhoek 0.68 0.98 0.52 0.95 0.93 0.98 0.93 0.96 0.90
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OSMa OSMb REF
Mean 0.76 0.93 0.71 0.94 0.95 0.93 0.92 0.96 0.89
Standard dev. 0.23 0.11 0.29 0.02 0.03 0.05 0.04 0.05 0.05

With 𝑂𝑆𝑀𝑏, three case studies still had recall scores lower than 0.9: Gao, Johannes-
burg and Katsina. This suggests that the model did not effectively detect built-up
in some areas. Figure 2.9 shows some examples of such areas. In Katsina, higher
rates of misclassifications were observed in the northeast part of the city, where ur-
ban vegetation was denser that in other parts of the agglomeration. Furthermore,
because of a less dense road network and the unavailability of building footprints,
no training samples were available in this area. Likewise, the richest neighborhoods
in Johannesburg are characterized by isolated buildings in a denser urban vegetation,
leading to a higher rate of misclassification. In Gao, errors were mainly caused by
the spectral confusion which occurred between built-up and bare soil areas. The
phenomenon was exacerbated by the arid climate and the buildings materials made
off nearby natural resources.

Figure 2.9: Areas with high rates of misclassifications in: (a) Katsina; (b) Johan-
nesburg; (c) Gao; and (d) Dakar. Satellite imagery courtesy of Google Earth

Generally, as shown in Figure 2.10, the classification scores increased with the
number of training samples. Because of the introduction of noise and mislabeled
samples inherent to automated approaches, large training datasets were required to
make sense of the heterogeneous spectral characteristics of the urban environment.
Figure 2.10 suggests that between 10,000 and 20,000 samples are necessary to fit
the classification model depending on the spectral complexity of the urban mosaic.
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Figure 2.10: Relationship between the number of training samples and the classifi-
cation F1-score (the outlier Johannesburg is excluded from the graph).

2.4 Conclusion
This study provided important insights regarding the automatic collection of train-
ing samples to support large-scale or rapid supervised classification of built-up ar-
eas. The proposed method made use of the growing amount of information in the
OSM database to automatically extract both built-up and non-built-up training
samples. This automated approach can reach classification performances similar to
manual sampling strategies, provided that a relevant set of pre-processing routines
are applied. In some less populated urban areas, first-order urban features—such
as building footprints—can be too scarce. The issue of data scarcity can be tackled
by a spatial analysis of the road network to derive second-order features such as ur-
ban blocks or urban distance. The proposed approach reached a mean F1-score of
0.93 across our case studies, while the manual approach reached 0.92. Case stud-
ies located in arid climates suffer from higher misclassification rates because of the
spectral confusion that occurs between the building materials and the bare soil. The
issue could be addressed by using a higher resolution imagery such as Sentinel-2.
Likewise, the use of Synthetic Aperture Radar (SAR) to extract textural features
should lead to a better separation between built-up and bare soil.
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Automatically generated training datasets contain more noise than manually col-
lected samples. Additionally, the reliance on crowd-sourced geographic informa-
tion introduces its own share of errors and inconsistencies. Previous studies have
shown that the RF classifier can handle up to 20% noise in the training dataset,
provided that the sample size is large enough (Mellor et al., 2015). Overall, these
previous findings are confirmed by our results. In our case studies, maximizing the
size of the training dataset was more advantageous than minimizing the noise.

Land use and land cover mapping in the OSM community is a relatively new phe-
nomenon, especially in developing regions. In fact, 77% of the building footprints
and 50% of the land use polygons used in this study have been mapped after January
2016. The growing amount of available data suggests that the proposed approach
will provide better results in following years. More importantly, the mapping of
land use and natural elements could enable multi-class supervised land cover classi-
fications in the near future.
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Chapter 3

Complementarity between optical
and SAR sensors

This chapter is based on the following publication:

Forget Y., Shimoni M., Gilbert M. & Linard C. (2018). “Complementarity Be-
tween Sentinel-1 and Landsat 8 Imagery to Map Built-Up Areas in Sub-Saharan
Africa”. Preprints. 10.20944/preprints201810.0695.v1

Abstract. The rapid urbanization that takes place in developing regions such as Sub-
Saharan Africa is associated with a large range of environmental and social issues.
In this context, remote sensing is essential to provide accurate and up-to-date spatial
information to support risk assessment and decision making. However, mapping
urban areas remains a challenge because of their heterogeneity, especially in develop-
ing regions where the highest rates of misclassification are observed. Nevertheless,
urban areas located in arid climates—which are among the most vulnerable to an-
thropogenic impacts, suffer from the spectral confusion occurring between built-up
and bare soil areas when using optical imagery. Today, the increasing availability
of satellite imagery from multiple sensors allow to tackle the aforementioned issues
by combining optical data with Synthetic Aperture Radar (SAR). In this paper, we
assess the complementarity of the Landsat 8 and Sentinel-1 sensors to map built-
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up areas in twelve Sub-Saharan African urban areas, using a pixel-level supervised
classification based on the Random Forest classifier. We make use of textural in-
formation extracted from SAR backscattering data in order to reduce the speckle
noise and to introduce contextual information at the pixel level. Results suggest
that combining both optical and SAR features consistently improves classification
performances, mainly by enhancing the differentiation between built-up and bare
lands. However, the fusion was less beneficial in mountainous case studies, suggest-
ing that including features derived from a Digital Elevation Model (DEM) could
improve the reliability of the proposed approach. As suggested by previous studies,
combining features computed from both VV and VH polarizations consistently led
to better classification performances. On the contrary, introducing textures com-
puted from different spatial scales did not improve the classification performances.

3.1 Introduction
Urbanization is a worldwide process associated with a wide range of environmental
and human health issues (Grimm et al., 2008; Dye, 2008). In Africa, the urban pop-
ulation is predicted to triple between 2010 and 2050, threatening both social and
environmental sustainability (UN-Habitat, 2015). Monitoring built-up areas in de-
veloping regions such as Sub-Saharan Africa is therefore crucial to understand, pre-
dict, and mitigate the risks associated with such a rapid urbanization (Linard, Tatem
and Gilbert, 2013). In this context, remote sensing plays a major role by providing
accurate spatial information on built-up areas at a relatively low cost (Gamba and
Herold, 2009; Wentz et al., 2014). However, because of the heterogeneity of urban
areas in terms of spatial structure and materials, mapping built-up with medium
resolution optical imagery remains challenging. In medium spatial resolution im-
agery (10–50 m), urban pixels are made of a combination of several elements—such
as buildings, roads, trees or bare soil. Those mixed pixels can make spectral-based
classifications difficult. Furthermore, the spectral characteristics and the spatial dis-
tribution of these objects differ across a given urban area. High differences are also
observed among the cities of the world because of socioeconomic, cultural, histor-
ical and environmental variations (Forster, 1993; Small, 2001, 2005). Developing
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regions are the most concerned with the risks associated with urbanization: urban
poverty, air and water pollution, lack of sanitation structures, vector-borne diseases,
floods and fires (Moore, Gould and Keary, 2003; McGranahan et al., 2009; Bai et
al., 2012; Brockmann and Helbing, 2013). Still, previous studies have shown that
they also suffer from lower accuracies in global built-up maps (Potere et al., 2009),
because of a high urban heterogeneity coupled with a lack of reference datasets to
support the training and the validation of the classification models.

Likewise, despite the fact that about one third of the global land surface is character-
ized by an arid or semi-arid climate according to the Köppen-Geiger classification
(Kottek et al., 2006; Rubel et al., 2017), they also suffer from low accuracies when
it comes to built-up mapping. Due to their overlapping spectral signatures, the
differentiation between bare land and built-up in arid and semi-arid environments
has proven to be one of the main challenges associated with optical sensors in urban
remote sensing. Previous studies have shown that conventional spectral indices—
such as the normalized difference built-up index (NDBI), the normalized difference
bareness index (NDBal), or the urban index (UI), are not reliable to differentiate
built-up areas from bare land in arid regions (Qian, Zhou and Hou, 2007; Rasul
et al., 2018). As a result, new approaches based on object-oriented classification or
linear spectral mixture analysis have been proposed (Qian, Zhou and Hou, 2007;
Zhang, Chen and Lu, 2015). New spectral indices have also been specifically de-
veloped to tackle the issue, such as the normalized bare land index (NBLI) (Li et al.,
2017). Likewise, the dry built-up index (DBI) and the dry bare-soil index (DBSI)
provide a better separation between bare soil and built-up in arid regions by making
use of the blue and thermal bands of Landsat 8 (Rasul et al., 2018). Approaches
based on the thresholding of spectral indices do not require any training dataset and
benefit from a low computational cost. However, as stated by their authors, their
reliability highly depends on the landscape and the climate of the study area. For
instance, the DBSI is not considered suitable in humid regions or in urban areas
surrounded by vegetation (Rasul et al., 2018).

Because of the aforementioned issues, the idea of combining optical data with com-
plementary sensors such as Synthetic Aperture Radar (SAR) recently gained mo-
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mentum. SAR has the advantages of providing high resolution imagery indepen-
dently from daylight, clouds, or weather conditions. The C-band of the European
Remote-Sensing Satellite 1 and 2 (ERS-1/2) has been widely used to monitor ur-
ban areas (Weng, 2014). In contrast to optical sensors, SAR is sensitive to the
roughness of the terrain—and thus is able to better differentiate between bare soil
and built-up (Soergel, 2010). Previous studies have shown that the combined use
of optical and SAR data can significantly improve the accuracy of a land cover clas-
sification (Waske and van der Linden, 2008; Zhang, Zhang and Lin, 2012; Joshi et
al., 2016). However, classifying data provided by different sensors is not straightfor-
ward and there is no consensus among the remote sensing community regarding the
best fusion approach. Conventional parametric classifiers which concatenate signals
from different sensors into one vector have been shown to be inefficient in model-
ing multi-sensor data distributions, therefore most of the methods rely on machine
learning classifiers that do not make any assumption regarding the data distribution
(Tupin, 2010). Fusion can occur at four different levels: (1) at the pixel level—by
concatenating data from multiple sensors into one stacked vector (Griffiths et al.,
2010; Zhu et al., 2012; Zhang, Zhang and Lin, 2014; Braun and Hochschild, 2015),
(2) at the feature level in the context of an object-based classification that makes use
of image segmentation techniques (Clerici, Valbuena Calderón and Posada, 2017),
or (3) at the decision level, for instance by merging several single-source classifiers
using neural networks or support vector machines (Benediktsson and Kanellopou-
los, 1999; Fauvel, Chanussot and Benediktsson, 2006; Waske and van der Linden,
2008; Shao et al., 2016).

Previous studies have reported that pixel-level fusion approaches are inappropri-
ate at high spatial resolutions because of the lack of information about the spatial
context of a given pixel and the speckle noise inherent to SAR data (Tupin, 2010;
Gamba, 2014; Zhang, Zhang and Lin, 2014). The extraction of textural features
from SAR backscattering partially solves the aforementioned issues (Zhang, Zhang
and Lin, 2014; Braun and Hochschild, 2015), for instance by computing the grey
level co-occurrence matrix (GLCM) texture features (Haralick, Shanmugam and
Dinstein, 1973; Gotlieb and Kreyszig, 1990). However, there is no consensus on
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which features are the most relevant in the context of a combined use with optical
data, or on the optimal size of the moving window used to compute the GLCM.

In this paper, we investigate the combined use of Landsat 8 and Sentinel-1 imagery
to detect built-up in twelve Sub-Saharan African case studies characterized by var-
ious climates, landscapes and population patterns ; including both medium-sized
and large urban areas. We assess the complementarity of optical and SAR data in
the context of a pixel-level supervised classification based on the extraction of 18
GLCM texture features, with several window sizes and from the two polarizations
available with Sentinel-1—VV and VH.

3.2 Materials andmethods
3.2.1 Case studies
Compared to natural land covers, built-up areas are highly heterogeneous at both
the interurban and the intraurban scales. As a result, a method developed in the
context of an European urban area has no guarantee to be reliable in an urban ag-
glomeration of Sub-Saharan Africa. This is why a diverse set of case studies is
crucial when seeking to maximize the generalization potential of a method. In the
context of built-up mapping using both optical and SAR data, the reliability of each
sensor is expected to be highly dependent on landscape and climate variables. The
selected case studies for the present analysis are presented in Table 3.1. The area of
interest for each case study corresponds to the rectangular 20 km buffer around the
city center.

The set contains urban areas with various climates, landscapes and population char-
acteristics. In the context of built-up mapping from both optical and SAR data,
optical sensors are expected to perform well in tropical, subtropical and temperate
climates (Antananarivo, Bukavu, Chimoio, Kampala or Johannesburg) because of
their ability to differentiate between the spectral signatures of built-up and vegeta-
tion. However, densely vegetated urban mosaics could cause some confusion. On
the contrary, SAR sensor is expected to perform better in dry climates (Dakar, Gao,
Katsina, Saint-Louis, Ouagadougou, Windhoek), and lower in mountainous urban
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areas surrounded with dense vegetation and steep slopes (Antananarivo, Bukavu).
More generally, the various climates and population sizes ensure that multiple ur-
ban morphologies will be encountered.

Table 3.1: Climate, topography and population for each case study. Values are
aggregated for the area of interest. Climate data is derived from the Koppen-Geiger
classification (Kottek et al., 2006; Rubel et al., 2017). Mean slope and elevation
are computed from the Shuttle Radar Topographic Mission (SRTM) 30 m ( JPL,
2013). Population is estimated using the AfriPop/WorldPop dataset (Linard et al.,
2012; Worldpop, 2016).

City (Country) Climate Slope Elevation Population
Antananarivo (MDG) Subtropical highland 8° 1,319 m 2,436,196
Bukavu (COD) Subtropical highland 13° 1,836 m 1,041,703
Chimoio (MOZ) Humid subtropical 4° 612 m 455,612
Dakar (SEN) Hot semi-arid 2° 14 m 3,332,985
Gao (MLI) Hot desert 3° 273 m 161,172
Johannesburg (ZAF) Subtropical highland 4° 1,608 m 4,668,844
Kampala (UGA) Tropical rainforest 5° 1,177 m 3,498,376
Katsina (NGA) Hot semi-arid 2° 495 m 1,027,729
Nairobi (KEN) Temperate oceanic 4° 1,692 m 5,064,548
Ouagadougou (BFA) Hot semi-arid 2° 308 m 2,256,479
Saint-Louis (SEN) Hot desert 2° 7 m 300,518
Windhoek (NAM) Hot desert 9° 1,811 m 383,503

3.2.2 Data acquisition and preprocessing
Sentinel-1 and Landsat 8 product types and acquisition dates are presented in Ta-
ble 3.2. Landsat 8 imagery was acquired through the Earth Explorer portal of the
U.S. Geological Survey (USGS) with the landsatxplore software (Forget, 2018b),
using cloud cover as the main criterion. Additionally, monthly NDVI values from
the MODIS-based MOD13C2 dataset (Didan, 2015) were used to favor the most
vegetated periods, which are different depending on the case study. Scenes were ac-
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quired as Level-1 data products, thus radiometrically calibrated and orthorectified.
Calibrated digital numbers were converted to surface reflectance values using the
Landsat Surface Reflectance Code (LaSRC) (Vermote et al., 2016) made available
by the USGS. Cloudy pixels were masked using the Function of Mask (FMASK)
algorithm (Zhu and Woodcock, 2012; Zhu, Wang and Woodcock, 2015).

Sentinel-1A images were acquired through the Copernicus Open Access Hub using
the sentinelsat software (Clauss et al., 2018). Scenes belonging to the dry season
were favored based on the monthly NDVI values provided by the MODIS-based
MOD13C2 dataset. Additionally, the CPC Global Unified Precipitation dataset
(Chen et al., 2008), provided by the NOAA Climate Prediction Center, was used
to require at least two days without any precipitation before the acquisition date.
The last criterion for the final scene selection was the temporal proximity to the
selected Landsat 8 scene. The scenes were acquired as Ground Range Detected
(GRD) Level-1 products in the Interferometric Wide (IW) swath mode, therefore
multi-looked and projected to ground range using an Earth ellipsoid model. Pre-
processing was performed using the Sentinel Application Platform (SNAP) (ESA,
2018). Firstly, orbit state vectors were refined with precise orbit files and GRD data
was calibrated to 𝛽 nought.

SAR images are also characterized by the presence of a granular noise, known as
speckle noise, which can reduce the effectiveness of image classification. Simple lo-
cal mean or median filters can be applied to reduce the noise. However, filters
specifically developed for speckle noise reduction (Frost, Lee, or Sigma) are better
at preserving details, edges and linear features (Lee et al., 1994; Kupidura, 2016).
Therefore, a 3x3 Refined Lee filter (Lee et al., 1994) was applied to the SAR images
in order to maximize the preservation of the textural information. Finally, terrain
flattening (Small, 2011) and Range-Doppler terrain correction (Small and Shubert,
2008) were applied based on the SRTM 1-sec Digital Elevation Model (DEM).
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Table 3.2: Sentinel-1 and Landsat 8 product types and acquisition dates.

Sentinel-1 Landsat 8
Antananarivo S1A_IW_GRDH 2015-10-07 LC08_L1TP 2015-06-15
Bukavu S1A_IW_GRDH 2016-06-10 LC08_L1TP 2015-09-21
Chimoio S1A_IW_GRDH 2015-04-27 LC08_L1TP 2016-03-28
Dakar S1A_IW_GRDH 2016-05-12 LC08_L1TP 2015-12-17
Gao S1A_IW_GRDH 2016-06-13 LC08_L1TP 2016-07-08
Johannesburg S1A_IW_GRDH 2015-10-20 LC08_L1TP 2015-12-21
Kampala S1A_IW_GRDH 2016-07-04 LC08_L1TP 2016-01-29
Katsina S1A_IW_GRDH 2016-05-12 LC08_L1TP 2015-10-23
Nairobi S1A_IW_GRDH 2016-10-27 LC08_L1TP 2016-01-24
Ouagadougou S1A_IW_GRDH 2015-04-13 LC08_L1TP 2016-12-22
Saint-Louis S1A_IW_GRDH 2016-06-05 LC08_L1TP 2016-10-09
Windhoek S1B_IW_GRDH 2016-10-09 LC08_L1TP 2016-01-14

3.2.3 Feature extraction
Grey Level Co-Occurence Matrix (GLCM) textures were computed with an inter-
pixel distance of 1 and 32 levels of quantization using the Orfeo Toolbox (Grizonnet
et al., 2017), after a 2% histogram cutting on the source SAR data. GLCMs were
constructed for the direction angles 0, 45, 90, and 135 degrees ; but only the average
value was considered. The GLCMs were computed independently for each polar-
ization (VV and VH) and with four different window sizes (5×5, 7×7, 9×9, and
11×11) commonly used for land cover classification in urban environments (Braun
and Hochschild, 2015). A set of 18 textures was extracted: energy, entropy, corre-
lation, inertia, cluster shade, cluster prominence, Harralick correlation, mean, vari-
ance, dissimilarity, sum average, sum variance, sum entropy, difference of entropies,
difference of variances, and two information measures of correlation (IC1 and IC2).
This resulted in the extraction of 72 texture features for each polarization, that is,
144 in total.
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Several GLCMs texture features can be highly correlated, such as energy and en-
tropy, or inertia and the inverse different moment. In order to reduce the dimen-
sionality of the dataset, a Principal Component Analysis (PCA) was performed on
each combination of polarization and window size. Only the first six components
of each PCA—which consistently explained more than 95% of the variance, were
retained. This reduced the number of features from 144 to 48.

SAR features were reprojected to Universal Transverse Mercator (UTM) coordi-
nate system only after the computation of GLCM textures in order to minimize
the destruction of textural information. All Landsat 8 bands—including thermal
bands, were retained without further processing except of co-registration to the
spatial resolution of SAR products (i.e. about 10 m).

3.2.4 Classification
The binary classification task—built-up vs. non-built-up, was performed using the
Random Forest (RF) classifier, which has been shown to be relatively effective in
the context of multisource and multimodal data classification (Pal, 2005; Gislason,
Benediktsson and Sveinsson, 2006; Belgiu and Drăguţ, 2016). The implementation
was based on Python and a set of libraries, including: NumPy (Oliphant, 2007),
SciPy (Oliphant, 2007), and Rasterio (Gillies, 2013) for raster processing, Shapely
(Gillies, 2007) and Geopandas for vector processing and Scikit-learn (Pedregosa
et al., 2011) for machine learning. The Python code that supported the present
study is available on Github1, and the associated datasets can be acquired through
Zenodo2.

In order to assess the optimal combination of features in the context of a pixel-based
supervised classification, 12 different classifications were performed using different
input features. Table 3.3 lists the features used for each classification scheme. The
schemes #1 to #9 were single-source classifications, based either on optical or SAR
data. Previous studies suggested that combining several window sizes could im-
prove classification accuracies by including spatial information from multiple scales

1https://github.com/yannforget/landsat-sentinel-fusion
2https://zenodo.org/record/1450932
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(Puissant, Hirsch and Weber, 2005). The schemes #2 to #9 were designed to iden-
tify the optimal window size and polarization combination to classify built-up areas
using Sentinel-1. Finally, the schemes #10 to #12 included both optical and SAR
data with different window sizes for the computation of the GLCMs.

In the 12 classification schemes, the RF ensemble was constructed with 50 trees
and a maximum number of features per tree equal to the square root of the total
number of features—as suggested by previous studies (Gislason, Benediktsson and
Sveinsson, 2006). Imbalance issues in the training dataset between the built-up and
the non-built-up classes were overcome by a random over-sampling of the minority
class (Lemaître, Nogueira and Aridas, 2017). Additionally, in order to ensure the
reproducibility of the results, fixed random seeds were used.

Table 3.3: Label, input features and number of dimensions of the 12 classification
schemes.

## Scheme label SAR features Optical features Dims.

1 optical None Landsat bands 8
2 vv_5×5 PCA GLCM 5×5 VV None 6
3 vh_5×5 PCA GLCM 5×5 VH None 6
4 vv_vh_5×5 PCA GLCM 5×5 [VV, VH] None 12
5 vv_vh_7×7 PCA GLCM 7×7 [VV, VH] None 12
6 vv_vh_9×9 PCA GLCM 9×9 [VV, VH] None 12
7 vv_vh_11×11 PCA GLCM 11×11 [VV, VH] None 12
8 vv_vh_5×5_9×9 PCA GLCM [5×5, 9×9] [VV, VH] None 24
9 vv_vh_5×5_11×11 PCA GLCM [5×5, 11×11] [VV, VH] None 24
10 fusion_5×5 PCA GLCM 5×5 [VV, VH] Landsat bands 18
11 fusion_9×9 PCA GLCM 9×9 [VV, VH] Landsat bands 18
12 fusion_11×11 PCA GLCM 11×11 [VV, VH] Landsat bands 18

3.2.5 Validation
Reference polygons were digitized from very high spatial resolution imagery
through Google Earth to support both the training and the validation of the
classification models. Four land cover classes were collected: built-up, bare soil,
low vegetation (sparse or small vegetation), and high vegetation (dense and tall
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vegetation). As stated in previous studies (Potere and Schneider, 2007; Mertes et
al., 2015), no consensus has been reached regarding the definition of a built-up
area. In the context of this study, a pixel is considered a built-up area if its surface
is covered by at least 25% of elevated constructions. Reference polygons were digi-
tized according to this definition through visual interpretation. All non-built-up
samples (bare soil, low vegetation and high vegetation) were concatenated to build
the binary (built-up vs. non-built-up) training and validation datasets. However,
specific land cover samples were also used to assess the performance of the models
in specific areas. Table 3.4 shows the number of polygons collected for each land
cover and each case study, together with the amount of resulting samples (in pixels)
after rasterization.
Table 3.4: Number of reference pixels for each case study and land cover. Enclosed
in brackets: the number of polygons before rasterization.

Built-up Bare Soil Low Vegetation High Vegetation

Antananarivo 42,596 (110) 31,769 (67) 60,423 (53) 22,338 (50)
Bukavu 30,762 (54) 5,956 (20) 19,196 (21) 7,308 (22)
Chimoio 29,040 (79) 17,405 (59) 11,891 (63) 11,347 (50)
Dakar 123,386 (76) 14,367 (41) 60,993 (53) 29,739 (33)
Gao 18,998 (74) 46,834 (45) 805 (25) 1,348 (25)
Johannesburg 570,282 (260) 69,106 (91) 97,100 (112) 26,315 (37)
Kampala 41,528 (89) 5,049 (34) 21,033 (44) 9,376 (22)
Katsina 37,507 (95) 11,710 (55) 4,411 (31) 2,107 (28)
Nairobi 60,371 (103) 15,030 (46) 18,947 (41) 12,666 (23)
Ouagadougou 83,540 (62) 22,477 (24) 66,624 (15) 26,078 (7)
Saint-Louis 13,154 (64) 24,162 (47) 25,701 (40) 10,388 (22)
Windhoek 62,464 (60) 50,247 (79) 26,032 (48) 14,655 (28)

In order to ensure the independence of the training and validation datasets, the ref-
erence samples were randomly split at the polygon level—the samples inside a given
polygon being characterized by a high spatial autocorrelation. Each classification
is performed ten times with different random splits, then assessment metrics (F1-
score (Equation 3.1), land cover accuracies) and classifier characteristics (feature
importances, probabilities) were averaged for statistical and visual interpretation.
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𝐹1 = 2 ⋅ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑟𝑒𝑐𝑎𝑙𝑙𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙 (3.1)

3.3 Results and discussion
Table 3.5 presents the F1-score obtained with each classification scheme in each
case study. In 10 case studies out of 12, optical-based schemes reached a higher F1-
score than SAR-based schemes. The two case studies where SAR-based schemes
appear more accurate are Gao (+7.6 points) and Katsina (+3.4 points): two small ur-
ban areas located in an arid climate characterized by a domination of bare land in the
landscape. However, the observation is not confirmed by the low scores obtained
by SAR-based schemes in cities such as Ouagadougou and Saint-Louis, which
present similar characteristics. These results suggest that optical-based schemes are
superior to SAR-based schemes in the context of pixel-based classifications from
a single sensor. This can be explained by the speckle noise inherent to SAR data
and by the loss of spatial resolution that occurred during the computation of the
GLCM textures. However, in 11 case studies out of 12, the multi-sensor classifica-
tion schemes reached the highest F1-scores—the only exception being Gao, where
the SAR-based scheme performed better. In most of the case studies, comple-
menting optical data with SAR features improved the classification performances,
sometimes dramatically (+6.7 points in Chimoio, +6.6 in Saint-Louis, +5.8 in Gao,
+4 in Bukavu and Katsina). This suggests that combining optical and SAR-based
GLCM textures in the context of a pixel-based classification can be a reliable and
robust strategy.
Table 3.5: F1-score obtained by each classification scheme in each case study (see
Table 3.3 for the characteristics of each scheme).

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12

Antananarivo 0.92 0.77 0.61 0.79 0.83 0.86 0.88 0.86 0.88 0.93 0.93 0.93
Bukavu 0.92 0.83 0.74 0.85 0.89 0.91 0.93 0.91 0.93 0.94 0.96 0.96
Chimoio 0.83 0.32 0.10 0.37 0.45 0.54 0.58 0.50 0.55 0.90 0.90 0.90
Dakar 0.95 0.68 0.65 0.74 0.76 0.78 0.80 0.78 0.80 0.95 0.96 0.95
Gao 0.76 0.83 0.71 0.81 0.82 0.83 0.82 0.83 0.83 0.81 0.81 0.80
Johannesburg 0.96 0.88 0.88 0.90 0.91 0.92 0.93 0.92 0.93 0.97 0.98 0.98
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#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12

Kampala 0.98 0.92 0.77 0.93 0.95 0.96 0.97 0.96 0.97 0.98 0.98 0.98
Katsina 0.93 0.94 0.92 0.94 0.95 0.96 0.96 0.96 0.96 0.96 0.97 0.97
Nairobi 0.94 0.79 0.76 0.83 0.86 0.88 0.90 0.87 0.90 0.96 0.96 0.96
Ouagadougou 0.98 0.65 0.43 0.67 0.70 0.72 0.74 0.71 0.73 0.98 0.99 0.99
Saint-Louis 0.89 0.56 0.06 0.55 0.61 0.64 0.67 0.63 0.66 0.96 0.95 0.94
Windhoek 0.97 0.69 0.64 0.76 0.81 0.85 0.88 0.85 0.87 0.97 0.97 0.97

Figure 3.1 summarizes the F1-scores obtained by each classification scheme across
all the case studies. The box plot confirms the previously observed trends. The differ-
ences between the various SAR-based classification schemes are also highlighted.
Classifications based on the VV polarization reached higher scores compared to
the ones based on the VH polarization. However, combining texture features de-
rived from both polarizations appears to increase the reliability of the classification
models, leading to higher scores and a lower standard deviation. Likewise, the win-
dow size used for the computation of the GLCM did influence the classification
scores. In our case studies, larger window sizes led to higher scores and reduced
the variability across the case studies. We previously stated the hypothesis that
combining several window sizes could increase the classification performance by
including spatial information from multiple scales. The results obtained tend to re-
fute this hypothesis, as the schemes combining textures from two window sizes did
not perform better. Generally, the fusion schemes consistently obtained the high-
est scores. However, contrary to the trend observed in single-sensor SAR-based
schemes, combining optical data with larger window sizes textures does not seem
to increase the classification performance. Fusion schemes that include textures
computed with smaller window sizes (5×5 and 9×9) benefited from slightly less
variability across the case studies.

In classifiers based on a forest of decision trees such as RF, the relative contribution
of each feature can be evaluated through the feature importance measure. The value
ranges from 0.0 to 1.0, where 0.0 would indicate a feature that does not contribute
to the classification, and 1.0 a feature that alone classifies all samples. Figure 3.2
shows the distribution of the importance measure across the input features used in
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Figure 3.1: Box plot of the F1-score obtained with each classification scheme for
each case study.

the fusion classification scheme, grouped by data source: VV or VH polarization for
SAR data, and multispectral or thermal for optical data. Generally, texture features
derived from the VV polarization and multispectral bands from Landsat 8 were the
features contributing the most to the construction of the decision trees. Consider-
ing the lower scores obtained in single-sensor classification schemes with SAR data,
lower importances for SAR features could be expected. However, the grouped im-
portance of SAR features was superior to the importance of optical features in 5
case studies, and exceeded 40% of the contribution in 10 case studies. Furthermore,
the relative importance of optical and SAR features did not appear correlated with
their respective scores in the context of a single-sensor classification. For instance,
in Antananarivo and Nairobi, the best SAR-based classification scheme reached a
F1-score lower than the optical-based scheme by, respectively, 4.2 and 3.9 points.
However, in the context of the fusion scheme, the contribution of SAR features was
superior to the contribution of optical features. This suggests that the combination
of both optical and SAR features adds information to the classifier that cannot be
modeled in the context of a single-sensor classification.

As previously stated, combining SAR-based textural information and optical im-
agery is expected to improve the classification performance in bare lands. Figure 3.3
shows the mean accuracy of each classification scheme in three non-built-up land
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Figure 3.2: Grouped Random Forest feature importances for the fusion scheme in
each case study. VV and VH groups correspond to the SAR features derived from
a given polarization. Multispectral and thermal groups correspond to the Landsat
8 features.
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covers: bare soil, low vegetation and high vegetation. As expected, the performance
of the classification model in bare soil areas was superior in SAR-based schemes
than in optical-based schemes. On the contrary, SAR-based classification schemes,
especially the ones based on the VH polarization, suffered from low accuracies in
densely vegetated areas. Finally, fusion schemes based on both SAR and optical
data benefited from the complementarity between both sensors and present high
accuracies in the three land covers.

Figure 3.3: Classification accuracy in specific land covers for each scheme.

Figure 3.4 shows the probabilistic output of three different classifiers in Katsina,
Nigeria: one based only on optical data, and two based on both optical and SAR
data with different GLCM window sizes. Visually, the fusion classifiers appears to
better distinguish between the built-up areas and the surrounding bare lands. This
leads to lower rates of misclassification after thresholding of the probabilities, as
previously shown by the assessment metrics. A side effect of the data fusion is the
disappearance of the road network from the built-up class. Indeed, the classifier
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highly relies on the textural information from the SAR features to discriminate
between built-up and bare land, and roads are therefore excluded from the built-up
class.

Figure 3.4: Random Forest class probabilities in Katsina, Nigeria. a) Aerial view of
the case study; b) optical scheme probabilities; c) fusion_5×5 scheme probabilities;
d) fusion_11×11 scheme probabilities. Satellite imagery courtesy of Google.

There is some cases where data fusion is less beneficial. Figure 3.5 shows the prob-
abilistic output of the optical, SAR, and fusion schemes in Bukavu, D.R. Congo.
This case study, located in a mountainous area, presents two major obstacles for
SAR data: dense vegetation in the north-west and steep slopes in the south-east.
Mapping the probabilistic output of the SAR-based classifier reveals the confusion
occurring in these areas. As a result, the probabilistic output of the fusion-based
classifier appears nearly as a copy of the optical-based one.

Figure 3.5: Random Forest class probabilities in Bukavu, D. R. Congo. a) Aerial
view of the case study; b) optical scheme probabilities; c) sar_vv_vh_5×5_11×11
scheme probabilities; d) fusion_11×11 scheme probabilities. Satellite imagery cour-
tesy of Google.
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3.4 Conclusion
With the increasing availability of free imagery from multiple sensors such as
Sentinel-1 and Landsat 8, data fusion is one of the main challenges in remote
sensing. The objective of this paper was to assess the combined use of both Landsat
8 and Sentinel-1 imagery with a fusion scheme that relies on a simple pixel-based
classifier. The main expectation was a better discrimination between built-up
and bare soil areas in the context of urban mapping in Sub-Saharan Africa. The
presented results suggest that the complementarity between medium resolution
optical and SAR sensors can be exploited in the context of a supervised pixel-based
classification. However, to make the pixel-based approach effective, textural
information must be extracted from SAR backscattering in order to reduce the
speckle noise and to provide contextual information at the pixel level.

Classification schemes including both optical and SAR features reached the highest
scores in 11 case studies out of 12. Single-sensor classifiers making use of GLCM
textures derived from the VV polarization outperformed the ones based on the VH
polarization. Nevertheless, combining both polarizations consistently increased the
classification performance. Likewise, large GLCM window sizes (9×9 or 11×11)
provided a slight improvement of the classification performance both in the con-
text of single-sensor classification and in fusion schemes. However, contrary to an
hypothesis that we formulated, combining textures derived from multiple GLCM
window sizes—in order to include spatial information from multiple scales at the
pixel level, did not lead to a better classification performance. The visual interpre-
tation of the results obtained suggests that small GLCM window sizes favor the
detection of isolated settlements and buildings, whereas larger window sizes lead
to a better differentiation between built-up areas and bare lands. In the context of
this study, the RF classifier was not able to take advantage of both.

The assessment of the classifiers performances in specific land covers confirmed
the high level of complementarity between the two sensors. Single-sensor SAR-
based classifications presented high accuracies in bare soil areas, but suffered from a
confusion between dense vegetation and buildings. On the contrary, optical-based
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classifiers showed a high ability to discriminate between vegetation and built-up,
but a low differentiation between bare soil and built-up—especially in the most arid
landscapes such as in Gao or Katsina. This complementarity was correctly modeled
by the RF classifier and, as a result, the fusion schemes presented high accuracies
in both bare lands and vegetated areas.

Nevertheless, the fusion was less beneficial in case studies characterized by the pres-
ence of dense vegetation and steep slopes—for instance in a mountainous and sub-
tropical urban area such as Bukavu. However, in this case, the RF classifier was
able to learn from the training dataset that SAR data were not reliable. This sug-
gests that including features derived from a DEM—for instance slope and aspect,
could improve the model ability to quantify the reliability of SAR data at the pixel
level. Such a strategy could also take place at the decision level. Further work is also
required to assess the reliability of the presented approach in the context of similar
sensors such as Sentinel-2, ERS-1 and ERS-2.
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Chapter 4

A dataset of urban expansion in 46
urban areas of SSA

This chapter is based on the following publication:

Forget, Y., Shimoni, M., Gilbert, M., & Linard, C. (2019). “Mapping 20 years of
urban expansion in 46 urban areas of Sub-Saharan Africa”. Forthcoming.

Abstract. By 2050, half of the net increase in the world’s population is expected to
take place in Sub-Saharan Africa (SSA), driving high urbanization rates and drastic
land cover changes. But the data-scarce environment of SSA limits our understand-
ing of the urban dynamics in the region. In this context, Earth Observation (EO)
is an opportunity to gather accurate and up-to-date spatial information on urban
extents. During the last decade, the adoption of open-access policies by major EO
programs (CBERS, Landsat, Sentinel) allowed the production of several global
high resolution (10–30 m) maps of human settlements. However, mapping accu-
racies in SSA are usually lower, limited by the lack of reference datasets to support
training and validation of the classification models. Here we propose a mapping ap-
proach based on multi-sensor satellite imagery (Landsat, Sentinel-1, Envisat, ERS)
and volunteered geographic information (OpenStreetMap) to solve the challenges
of urban remote sensing in SSA. The proposed mapping approach is assessed in 17
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case studies for an average F1-score of 0.93, and applied in 45 urban areas of SSA
to produce a dataset of urban expansion from 1995 to 2015. Across the case studies,
built-up areas averaged a compound annual growth rate of 5.5% between 1995 and
2015. The comparison with local population dynamics reveals the heterogeneity of
urban dynamics in SSA. Overall, population densities in built-up areas are decreas-
ing. But the impact of population growth on urban expansion differs depending on
the size of the urban area and its income class.

4.1 Introduction
According to the latest predictions of the United Nations, the world population
will increase from 7.4 billions in 2015 to 9.8 billions in 2050. More than half
of this global increase is expected to take place in Africa (United Nations, 2017),
driving high urbanization rates. Over the same period, the urban population of
Sub-Saharan Africa (SSA) is expected to increase by 235% (United Nations, 2015).
Such a rapid urbanization has already been experienced in the past by other coun-
tries during the first half of the 20th century (Cohen, 2004). However, the scale
of change in SSA is unprecedented: by 2050, the urban areas will have to absorb
nearly 900 millions of new dwellers (United Nations, 2018a), transforming the
continent’s surface. Another major difference from the experience of Europe or
the United States is that the urbanization of SSA is occurring at low levels of per
capita income, and in countries which are vulnerable to the global economy (Cohen,
2004). Since the beginning of the 1980s, trade liberalization, high unemployment
rates and structural adjustment programs led to the deterioration of the living condi-
tions in the urban areas of SSA, a lack of public infrastructures and services and the
rise of the informal sector (Bocquier, 2003; McGranahan et al., 2009; Andersson
Djurfeldt, 2015). Although urban environments have been associated with a lower
disease burden at the global or regional scales (Hay et al., 2005; Tatem et al., 2008;
Dye, 2008), rapid and unplanned urban growth in a context of urban poverty is the
source of many health hazards: indoor and outdoor air pollution, unsafe water, lack
of sanitation structures, vector-borne diseases or physical hazards (traffic, acciden-
tal fires, floods) (Moore, Gould and Keary, 2003; McGranahan et al., 2009; Bai et
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al., 2012; Brockmann and Helbing, 2013). Additionally, urbanization is still one of
the primary driver of habitat and biodiversity loss (Seto et al., 2011). Environment
degradation can occur far beyond the local scale through sewage contamination,
rivers pollution, unregulated burning emissions, or industrial pollution (McGrana-
han et al., 2009). Up-to-date and accurate geographic information on the urban-
ization dynamics is a prerequisite for understanding the phenomenon, modeling its
causes and anticipating its consequences.

Traditionally, urbanization studies have been based on census data published by each
country (United Nations, 2017). Beyond data availability issues, the definition of
what constitutes and urban area is not consistent over both spaces and time. In
Angola, a locality with at least 2,000 inhabitants is classified as urban, whereas the
threshold would be 10,000 in Benin (Cohen, 2004). When, in the 1980s, China
lowered the threshold to qualify a locality as urban, a massive increase in the urban-
ization has been observed—although only caused by administrative changes (Lin,
2002; Cohen, 2004). In this context, satellite remote sensing enables the study of
the urbanization process in its physical dimension through the detection of built-up
areas at different periods (Wentz et al., 2014). The increasing availability of open
satellite imagery datasets (Wulder et al., 2012)—together with the reduction of the
computing costs, allowed the production of several global built-up maps: Glob-
Cover (Arino et al., 2007) or MOD-500 (Schneider, Friedl and Potere, 2009) in
the 2000s, and, more recently, the Global Human Settlement Layer (M. Pesaresi
et al., 2016), the Global Land Cover (Chen et al., 2015), or the Human Built-up
and Settlements Extent (Wang et al., 2017). Those datasets have supported studies
in a wide range of fields such as population mapping, urban planning, disease bur-
den estimation, resource allocation, disaster management or environmental impact
assessment (Hay et al., 2005; Tatem et al., 2007; Linard, Tatem and Gilbert, 2013;
Pesaresi, Ehrlich and Freire, 2014). In parallel, numerous studies made use of satel-
lite imagery to analyze urbanization dynamics at the local scale (Schneider, 2012;
Li, Gong and Liang, 2015; Patel et al., 2015; Rahman, 2016). For instance, (Angel
et al., 2016) mapped and analyzed the evolution of the urban extent of 200 cities be-
tween 1990 and 2014, and Schneider and Mertes (2014) identified multi-temporal
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urban land extents in 142 Chinese cities between 1978 and 2010.

Still, despite decades of scientific progress, the detection of built-up areas remains a
challenge because of the intraurban and interurban heterogeneity that characterizes
the urban environment (Herold et al., 2004; Small, 2005). Classifications based on
optical sensors are characterized by lower accuracies in urban areas located in arid
or semi-arid climates because of the spectral confusion occurring between bare soil
and built-up elements (Zhang, Chen and Lu, 2015; Li et al., 2017; Rasul et al.,
2018). Low-income countries also suffer from a lack of reference datasets in both
quantity and quality, inducing higher rates of misclassifications (Potere et al., 2009)
or omissions of rural and suburban settlements. Today, the growing availability
of geographic data brings new opportunities to tackle the aforementioned issues.
Combining optical imagery with Synthetic Aperture Radar (SAR) backscattering
can lead to a better separation between bare soil and built-up (Tupin, 2010; Zhang,
Zhang and Lin, 2014; Gamba, 2014; Braun and Hochschild, 2015; Forget et al.,
2018). Likewise, the lack of reference datasets from government or commercial
agencies can be compensated by the use of crowd-sourced geographic databases
(Goodchild, 2007), such as its most prominent project OpenStreetMap (OSM)
(Haklay and Weber, 2008; Mooney and Minghini, 2017), in order to support the
training of the classification models (Schultz et al., 2017; Yang et al., 2017; Forget,
Linard and Gilbert, 2018).

The purpose of this study is twofold. The first objective is to produce a reliable
multi-temporal dataset of built-up maps for a sample of 45 urban areas in Sub-
Saharan Africa at 5 different dates: circa 1995, 2000, 2005, 2010 and 2015. By
leveraging both multi-sensor data fusion to improve built-up detection and the
integration of OSM data to support the training of the classification models, we
propose an automated and low-cost approach which may be appropriate at larger
scales. In this paper, we present and assess the proposed methodology and discuss
its limitations. The final aim is to provide a preliminary interpretation of the re-
sults obtained, through the analysis of built-up expansion and its relationship with
population growth.
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4.2 Material andmethods
4.2.1 Case studies
The most consistent spectral characteristic of all urban areas in the world is their
heterogeneity (Small, 2005). Because of environmental, historical, or cultural vari-
ations across Sub-Saharan Africa, a method developed for a given urban area is not
guaranteed to be effective in another. As a matter of fact, a built-up area in the
periphery of Kampala (Uganda, tropical rainforest) is a completely different spec-
tral object than a settlement in the city center of Gao (Mali, hot desert). Likewise,
urbanization rates and history differ according to the demographic, economic, and
political dynamics of a given urban area.

Table 4.1: Climate, topography and population estimates of each case study. Values
are aggregated for the area of interest of each case study, i.e. the 20 km rectangular
buffer around the city centers. Climate data are derived from the Koppen-Geiger
classification (Kottek et al., 2006). Mean slope and elevation are computed from
the Shuttle Radar Topographic Mission (SRTM) 30 m ( JPL, 2013). Population
is estimated using the AfriPop/WorldPop dataset (Linard et al., 2012; Worldpop,
2016).

City (Country) Population Climate Elevation Slope
Antananarivo (MDG) 2,454,009 Subtropical highland 1319.6 14.8
Bouake (CIV) 836,441 Tropical savanna 290.7 6.1
Brazzaville (COG) 7,858,583 Tropical savanna 327.3 9.8
Bukavu (COD) 1,068,012 Tropical savanna 1756.1 22.8
Chimoio (MOZ) 457,422 Humid subtropical 612.6 8.3
Dakar (SEN) 3,308,199 Hot semi-arid 12.5 2.3
Dodoma (TZA) 481,263 Hot semi-arid 1139.9 6.6
Freetown (SLE) 1,196,714 Tropical monsoon 121.0 5.4
Gao (MLI) 161,019 Hot desert 272.1 4.5
Ikirun (NGA) 1,323,133 Tropical savanna 394.7 8.1
Iringa (TZA) 252,164 Humid subtropical 1576.9 10.3
Johannesburg (ZAF) 4,816,594 Subtropical highland 1611.0 7.5
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City (Country) Population Climate Elevation Slope
Kabwe (ZMB) 255,667 Humid subtropical 1168.7 3.7
Kampala (UGA) 3,477,053 Tropical rainforest 1171.0 7.5
Kaolack (SEN) 447,639 Hot semi-arid 14.2 3.9
Katsina (NGA) 1,019,434 Hot semi-arid 495.5 4.2
Kayamandi (ZAF) 1291104 Warm-summer med. 281.2 16.8
Kinshasa (COD) 8265198 Tropical savanna 319.6 9.1
Kisumu (KEN) 1183345 Tropical rainforest 1292.6 6.9
Libreville (GAB) 744131 Tropical monsoon 18.2 4.8
Lusaka (ZMB) 2557066 Humid subtropical 1216.4 4.4
Mbeya (TZA) 665390 Subtropical highland 1791.6 20.0
Mekele (ETH) 452457 Hot semi-arid 2143.1 15.5
Monrovia (LBR) 1381459 Tropical monsoon 16.8 2.9
Nairobi (KEN) 5175740 Temperate oceanic 1738.6 7.9
Ndola (ZMB) 637717 Humid subtropical 1289.0 5.1
Nelspruit (ZAF) 164982 Humid subtropical 853.9 16.4
Nzerekore (GIN) 339140 Tropical savanna 468.3 11.2
Obuasi (GHA) 375931 Tropical savanna 196.4 12.0
Okene (NGA) 983744 Tropical savanna 298.9 9.5
Onitsha (NGA) 2593562 Tropical savanna 74.6 5.9
Ouagadougou (BFA) 2239604 Hot semi-arid 306.5 3.8
Owo (NGA) 427986 Tropical savanna 271.7 7.7
Pietermaritzburg (ZAF) 617133 Temperate oceanic 867.6 15.2
Pietersburg (ZAF) 205025 Hot semi-arid 1303.5 5.1
Saint-Louis (SEN) 297477 Hot desert 5.9 2.0
San Pedro (CIV) 113641 Tropical savanna 31.1 7.3
Shaki (NGA) 395163 Tropical savanna 393.3 5.6
Tamale (GHA) 498597 Tropical savanna 148.4 5.3
Toamasina (MDG) 333439 Tropical rainforest 45.4 7.6
Tulear (MDG) 305710 Hot desert 82.7 9.1
Umuahia (NGA) 1450588 Tropical monsoon 104.2 7.9
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City (Country) Population Climate Elevation Slope
Windhoek (NAM) 383456 Hot desert 1819.4 16.5
Yamoussoukro (CIV) 358063 Tropical savanna 196.7 6.1
Ziguinchor (SEN) 293083 Tropical savanna 14.9 3.9

The objective of the selection step was to ensure that various types of urban areas
were represented for both the validation of the built-up classification method and
the multi-temporal analysis of the urbanization dynamics. The sample of 45 case
studies, shown in Table 4.1, has been selected to maximize the diversity in terms of
climate, population size, topography, and economy.

4.2.2 Data acquisition and preprocessing
In order to cover the entire 1995–2015 period with both optical and SAR images,
data have been acquired from 7 different sensors: Landsat 5 TM (125 products),
Landsat 7 ETM+ (66), Landsat 8 (60), ERS-1&2 (127), Envisat (54) and Sentinel-
1 (49), that is, 481 scenes in total. However, as shown in Figure 4.1, the coverage
was far from being complete. Both optical and SAR were only available in 71% of
cases. Overall, the coverage is lower as we go back in time. Thanks to the system-
atic global acquisition approach of today’s satellites such as Landsat 8 or Sentinel-1,
coverage was complete in 2015. In the past, global acquisitions were not systematic.
For instance, only 6% of the scenes in the Landsat 5 TM catalog are over Africa,
against 12% for Landsat 7 ETM+ (Roy et al., 2010). This left many of African loca-
tions without any Landsat acquisition before 1998, and a similar issue is observed
with the catalogues of ERS-1&2 or Envisat. Cloud cover above tropical areas was
also a major issue. As a matter of fact, the average cloud cover of the Landsat ac-
quisitions over Kinshasa was 76%. Across the entire catalog, only 5 scenes with a
cloud cover less than 10% were available over Kinshasa, and none before 2000. The
issue was partially mitigated by the use of SAR acquisitions, which are not sensitive
to cloud cover or weather variations.

The partial availability of historical satellite imagery over Africa requires a thorough
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Figure 4.1: Availability of optical and SAR imagery for each case study.

imagery selection process. Three main criteria were taken into account: (1) the
image quality, especially in terms of cloud cover, (2) the temporal distance between
the optical and the SAR acquisitions, and (3) the seasonal distance between the
acquisitions of a given case study for multi-temporal comparability. The automation
of the imagery selection and acquisition were allowed by open-source software such
as sentinelsat to access the Copernicus Open Access Hub (Clauss et al., 2018),
pylandsat to access the Google Cloud Landsat Public Dataset (Forget, 2019), and
asarapi to access the ESA Online Catalog (Forget, 2018a).

Landsat scenes were acquired as Level-1 data products, thus radiometrically cali-
brated and orthorectified. SAR products were acquired as Ground Range Detected
(GRD) Level-1 products, therefore multi-looked and projected to ground range us-
ing an Earth ellipsoid model. SAR imagery preprocessing was performed using the
Sentinel Application Platform (SNAP) (ESA, 2018), including the following steps:
(1) orbit files updating, (2) calibration to 𝜎 nought, (3) Range-Doppler terrain cor-
rection (Small and Shubert, 2008), (4) spatial subset over the area of interest, and
(5) 2% histogram cutting.

Geographic extracts of the OSM database were acquired from the Geofabrik web-
site1 and imported into a local PostGIS database. Four categories of OSM objects
were then extracted for each case study: (1) highway polylines (the road network), (2)
landuse, leisure, and natural polygons (potential non-built-up training samples),

1http://www.geofabrik.de
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Figure 4.2: Availability of OSM building footprints (total surface in hectares) and
roads (total length in kilometers) for each case study.

(3) building polygons (built-up training samples), and (4) natural=water polygons
to allow the creation of a land mask. Once again, as shown in Figure 4.2, some
urban areas of Sub-Saharan Africa suffer from low data availability. No buildings
footprints were available in Okene, Shaki, or Owo. Likewise, only a few building
footprints were available for several urban areas with more than 1 million inhabi-
tants such as Umuahia, Katsina, Ikirun or Onitsha. On the contrary, road segments
were available for all the case studies. For instance, at least 70 km of roads were ex-
tracted for small urban areas such as Toamasina, Tulear, San Pedro or Gao.

4.2.3 Definitions
Potere and Schneider (2007) stated the need for an uniform definition of what
constitutes a built-up area. However, since then, no consensus has been reached
in the field of urban mapping. This leads to high variations in the global measure
of built-up areas. For instance, the global extent of built-up areas is estimated to
be 3,524,109 km2 according to the Global Rural Urban Urban Mapping Project
(GRUMP), 308,007 km2 in the Global Landcover 2000 (GLC00), and 774,000
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km2 in the Global Human Settlement Layer (GHSL) (Potere and Schneider, 2007;
Pesaresi et al., 2017).

Figure 4.3: Percentage of Built-Up Areas per 30 m pixel in a suburban area of
Lusaka, Zambia.

Schneider, Friedl and Potere (2010) and Mertes et al. (2015) defined a built-up area
as a location dominated by constructed surfaces—in other words, surfaces that are
covered by at least 50% of constructions, including asphalted roads. However, such
a definition may lead to the omission of a large amount of built-up areas. shows the
percentage of buildings in a grid of 30×30 m2 cells, which is the spatial resolution
of a Landsat image. According to the aforementioned definition, only 4 pixels
out of 100 would be classified as built-up, that is 4% of the area of interest. Such
a high threshold can only imply the omission of most of the suburban and rural
settlements. To overcome the issue, the GHSL defined built-up as a continuous
measure corresponding to the proportion of building footprint area within the total
size of a cell (Pesaresi et al., 2017). That would correspond to a built-up value equal
to 18% over the area of interest. However, because of the complexity of the urban
environment, quantifying the proportion of buildings in a given pixel is not a solved
problem in urban remote sensing.

In the end, in the context of a supervised classification based on satellite imagery,
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the definition of a built-up area is limited by (1) the abilities of the sensor, and (2)
the training and validation samples that can be collected. In this study, the use of
binary training samples from OSM (built-up or non-built-up) required a binary
definition. However, to allow the detection of suburban and rural settlements, the
threshold was set to 25% instead of 50%. Furthermore, because of the combined use
of optical and SAR data, built-up elements only included elevated constructions—
thereby excluding roads and other paved surfaces.

4.2.4 Classification of built-up and non-built-up areas
The classification of built-up areas for each case study and each data consists of :
(1) the collection of both built-up and non-built-up training samples from OSM,
(2) the filtering of the samples extracted from OSM for historical periods, (3) the
extraction of features from both optical and SAR imagery, and (4) a pixel-based su-
pervised classification based on the Random Forest (RF) algorithm. The implemen-
tation of the processing chain was based on Python and various scientific libraries
such as NumPy (Oliphant, 2015), SciPy (Oliphant, 2007), Rasterio (Gillies, 2013),
Shapely (Gillies, 2007), Scikit-Learn (Pedregosa et al., 2011), or Pandas (McKin-
ney, 2010).

Figure 4.4: Training samples collected from OSM in Nairobi, Kenya. a)Aerial view
of the area of interest, courtesy of Goole Earth; b) built-up (red) and non-built-up
(green) training samples over the same area of interest.
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Both built-up and non-built-up training samples were extracted from the OSM
database, as proposed and detailed in a previous publication (Forget, Linard and
Gilbert, 2018). Built-up training samples consisted of building footprints and ur-
ban blocks derived from the road network. Non-built-up training samples com-
prised a variety of natural, landuse or leisure features satisfying one of the follow-
ing value: sand, farmland, wetland, wood, park, forest, nature reserve, golf course,
greenfield, quarry, pitch, scree, meadow, orchard, grass, grassland, garden, heath,
bare rock or beach. Since the availability of these features were not consistent across
the case studies, additional non-built-up samples were randomly selected in areas
without any building footprint or road segment in a 250 m buffer. Overall, the wide
availability of roads in the OSM database allowed the collection of both built-up
and non-built-up training samples in the entire set of case studies. Figure 4.4 shows
a sample of the training dataset used for the classification of Nairobi, Kenya.

GLCM textures were computed with a 7×7 window size, an interpixel distance of
1 and 32 levels of quantization using the Orfeo Toolbox (Grizonnet et al., 2017),
according to the recommendations of previous studies (Zhang, Li and Wang, 2014;
Braun and Hochschild, 2015) and results from Chapter 3. GLCMs were con-
structed in four direction angles (0°, 45°, 90°, and 135°) and averaged. In the case of
Sentinel-1 imagery, for which two polarizations were available (VV and VH), tex-
tures were computed independently for each polarization. For each polarization, 18
textures were extracted: energy, entropy, correlation, inertia, cluster shade, cluster
prominence, Harralick correlation, mean, variance, dissimilarity, sum average, sum
variance, sum entropy, difference of entropies, difference of variances, information
measures of correlation 1&2. That is, 36 features in the case of Sentinel-1, or 18
features in the case of ERS-1&2 or Envisat for which only one polarization was
available. In order to reduce the high dimensionality of the SAR feature space, a
Principal Component Analysis (PCA) was performed for each polarization. Since
only the first six PCA components were retained, this reduced the feature space
from 36 to 12 dimensions in the case of Sentinel-1, or from 18 to 6 dimensions in
the case of ERS1&2 and Envisat.

The feature space of the classification depended on the year and the availability of
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Figure 4.5: Subset of three features over the same area of interest in Ouagadougou,
Burkina Faso: a) aerial view of the area of interest, courtesy of Google Earth, b)
Near Infrared Landsat band, c) Sentinel-1 VH 7×7 GLCM Mean, d) Sentinel-1
VV 7×7 GLCM Dissimilarity.

satellite imagery. In 2015, the availability of Sentinel-1 allows the use of GLCM
textures computed for two different polarizations, which led to a feature space of 20
dimensions (12 PCA components and 8 Landsat bands). For earlier periods, the
number of dimensions was lower: 14 (6 PCA components, 8 Landsat bands), 6 in
cases where only SAR imagery was available, or 8 if only Landsat was available. A
subset of those features is shown in Figure 4.5 for Ouagadougou, Burkina Faso.

The classification task was performed using the RF classifier which has been shown
to be effective in the classification of multisource and multimodal data (Pal, 2005;
Gislason, Benediktsson and Sveinsson, 2006; Belgiu and Drăguţ, 2016). The RF
ensemble was constructed with 100 trees and a maximum number of features per
tree equal to the square root of the total number of features—as suggested in pre-
vious studies (Gislason, Benediktsson and Sveinsson, 2006). Additionally, imbal-
ances in the training dataset were mitigated by performing a random over-sampling
of the minority class (Lemaître, Nogueira and Aridas, 2017).

In earlier periods (circa 2010, 2005, 2000, and 1995), built-up training samples ex-
tracted from the OSM database require further analysis. The OSM database does
not include any information on the construction date of a building or a road seg-
ment. In a context of high urban growth, a significant amount of the extracted
built-up samples are not guaranteed to be valid for earlier periods. Therefore, a
filtering step was applied, by making use of a classification model fitted on the
satellite imagery of 2015. This intermediary model was fitted with a simplified
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feature space composed of features available in both cases. In order to reduce the
influence of atmospheric and illuminations variations (Angiuli and Trianni, 2014),
four spectral indices were used in place of the raw Landsat bands: the Normal-
ized Difference Vegetation Index (NDVI), the Normalized Difference Bareness
Index (NDBal) (Zhao and Chen, 2005), the Normalized Difference Built-Up In-
dex (NDBI) (Zha, Gao and Ni, 2003), and the Modified Normalized Difference
Water Index (MNDWI) (Xu, 2006). Additionally, a set of four GLCM textures
with high significance but low correlation were selected: energy, mean, dissimilar-
ity, and cluster shade. OSM training samples and the 8 aforementioned features
from 2015 were used to fit the classification model. In earlier periods, built-up
training samples were filtered based on this intermediate prediction.

4.2.5 Post-processing
Three successive post-processing routines were applied on the probabilistic output
of the RF classifier: (1) spatial filtering based on a mean filter, (2) scaling of the
RF class probabilities to ensure multi-temporal comparability, and (3) temporal
filtering.

At medium and higher spatial resolutions, pixel-based image classifications tend to
produce noise—also known as the “salt and pepper” effect. This can be overcome by
integrating spatial features such as GLCM textures at the classification step, or by a
refinement of the classified image. Filtering-based approaches are the most widely
used classification post-processing methods (Huang et al., 2014). They are based on
a moving window where the value of the central pixel is determined by considering
the values of all pixels within it. For this study, RF class probabilities were post-
processed using a simple mean filter with a 3×3 window size. This allowed a partial
removal of noise, illumination artifacts, and roads.

To obtain binary built-up maps, RF class probabilities must also be thresholded. In
most of the implementations, the RF classifier defaults to a value of 0.5. However,
it is also dependent on the precision vs. recall trade-off required by the analysis.
In the context of this study, the initial threshold was set to 0.75 in order to max-
imize the precision of the binary classification. Still, depending on the input sen-
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sor, training data or atmospheric conditions, the optimal threshold value can vary
among single-date classifications of a given case study. To overcome the issue, the
optimal threshold for a given year 𝑦 was defined as the threshold that maximizes
the agreement with the binary classification of the year 𝑦 + 1. In order to take into
account class imbalance, the agreement was measured using the F1-Score. Then, to
allow for comparability, RF class probabilities were transformed accordingly using
a linear transformation.

Figure 4.6: Post-processing of Ndola, Zambia. a) Raw RF built-up probabilities;
b) Built-up probabilities after post-processing; c) Binary map (thresholded proba-
bilities).

Moreover, single-date classifications may be characterized by high uncertainties due
to sensor-specific issues, acquisition conditions, or spectral confusions. This can
lead to unreasonable land cover changes that can be easily identified using a tempo-
ral consistency check (Li, Gong and Liang, 2015). Therefore, under the assumption
that the transition from built-up to non-built-up is not likely in a context of urban
expansion (Schneider and Mertes, 2014; Li, Gong and Liang, 2015), a temporal
filtering was also applied on the RF class probabilities. In our case, we focused on
two unreasonable trajectories: (1) pixels classified as built-up in a given year and as
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non-built-up in the future, and (2) pixels classified as non-built-up and as built-up
in the past. For the pixels concerned by one of the aforementioned state, the orig-
inal value was replaced by the average probability between (1) the year of interest
and the last year, or (2) the first year and the year of interest. Equation 4.1 and
Equation 4.2 summarize the procedure applied in both cases:

𝑃 𝑟𝑜𝑏𝑡 = 𝑡𝑚𝑎𝑥∑𝑖=𝑡 𝑃𝑟𝑜𝑏𝑖 1(𝑡𝑚𝑎𝑥 − 𝑡) (4.1)

𝑃 𝑟𝑜𝑏𝑡 = 𝑡∑𝑖=𝑡𝑚𝑖𝑛 𝑃𝑟𝑜𝑏𝑖 1(𝑡 − 𝑡𝑚𝑖𝑛) (4.2)

where 𝑃 𝑟𝑜𝑏𝑡 is the modified probability, 𝑡 the time step of interest, 𝑡𝑚𝑖𝑛 the earliest
time step, and 𝑡𝑚𝑎𝑥 the latest. In practice, this allowed for a conservative filtering
of the most obvious inconsistencies without over-estimating the built-up expansion
dynamics.

4.2.6 Validation
The performance of the classification models was assessed using two different ap-
proaches: (1) an assessment based on independent validation samples collected
from Google Earth, and (2) a K-fold cross-validation (CV) based on the train-
ing dataset extracted from OSM. Manual digitizing of samples from very high
resolution imagery is work-consuming, therefore the first approach was carried
out for a representative subset of the 44 case studies: Antananarivo, Bukavu, Chi-
moio, Dakar, Dodoma, Gao, Johannesburg, Kampala, Katsina, Kinshasa, Nairobi,
Okene, Onitsha, Ouagadougou, Saint-Louis, Umuahia and Windhoek. Further-
more, samples were only collected for the periods available in the Google Earth’s
historical imagery catalog. To assess the accuracy of the binary built-up maps pro-
duced by the method, three metrics were computed: F1-score, precision and recall.

In parallel, K-fold CV was used to estimate the performance of all the classification
models. The training dataset extracted from OSM was divided into 𝑘 = 10 folds
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of approximately equal size, with each fold being used as a validation set against
the remaining 𝑘 − 1 folds. In a spatial context, spatial autocorrelation must be ac-
counted for in order to not over-estimate the performance of the model (Brenning,
2012). Therefore, folds were not randomly produced but originated from the spatial
clustering of the training samples using the K-Means algorithm. Two metrics were
computed in each case: the average F1-score over the ten iterations of the CV, and
its standard deviation.

4.2.7 Measuring and characterizing urban expansion
To measure the growth of built-up areas, compound annual growth rates (CAGR)
were calculated according to the following equation:

𝐶𝐴𝐺𝑅(𝑡0, 𝑡1) = (𝐵𝑢𝑖𝑙𝑡𝑢𝑝𝑡1𝐵𝑢𝑖𝑙𝑡𝑢𝑝𝑡0 ) 1𝑡1−𝑡0 − 1 (4.3)

with 𝑡0 and 𝑡1 being the initial and final years, and 𝐵𝑢𝑖𝑙𝑡𝑢𝑝𝑦 the total surface covered
by built-up areas in a given year 𝑦.

Figure 4.7: Schematic example of characterizing newly built-up areas in 200 m grid
cells: a) built-up areas (in black) and initial urban clusters boundaries (in purple) at𝑡𝑖𝑛𝑖𝑡𝑖𝑎𝑙, b) built-up areas at 𝑡𝑓𝑖𝑛𝑎𝑙, and c) characterized newly built-up areas (existing
in black, infill in blue, extension in green, leapfrog in red).

The expansion of built-up areas is a complex phenomenon that cannot be under-
stood without analyzing it in its spatial dimension. In other words, depending on
where the expansion occurs, the environmental, social, or economic consequences
differ. Based on the approach proposed in the Atlas of Urban Expansion (Angel et
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al., 2016), newly built-up areas for each period were divided into three categories:
(1) infill, i.e. areas already included in an existing urban cluster, (2) extension, i.e.
areas extending an existing urban cluster in a contiguous way, and (3) leapfrog, i.e.
areas unattached to any existing urban cluster—an urban cluster being defined as
the contiguous space that contains built-up areas less than 200 m apart. Figure 4.7
provides a schematic example of the procedure. Compound annual sprawl rates
(CASR) were calculated by ignoring infill change, as shown in Equation 4.4.

𝐶𝐴𝑆𝑅(𝑡0, 𝑡1) = (𝐿𝑒𝑎𝑝𝑓𝑟𝑜𝑔(𝑡0,𝑡1) + 𝐸𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛(𝑡0,𝑡1)𝐵𝑢𝑖𝑙𝑡𝑢𝑝𝑡0 ) 1𝑡1−𝑡0 − 1 (4.4)

Another fundamental aspect of built-up expansion is its relationship with popula-
tion growth. Per-pixel population estimates for circa 2015, c. 2010, c. 2005 and
c. 2000 were acquired from the Worldpop project (Worldpop, 2016). The built-up
areas density for a given area of interest was defined as the ratio between the total
surface of the built-up areas and the population estimates over the same area of in-
terest. Additionally, sprawl per new dweller (SD, Equation 4.5) was computed to
measure the urban extent’s extension for each new dweller.

𝑆𝐷(𝑡0, 𝑡1) = 𝐿𝑒𝑎𝑝𝑓𝑟𝑜𝑔(𝑡0,𝑡1) + 𝐸𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛(𝑡0,𝑡1)𝑃𝑜𝑝𝑡1 − 𝑃 𝑜𝑝𝑡0 (4.5)

4.3 Results and discussion
4.3.1 Assessment of the classification models
Table 4.2 presents the F1-scores obtained in the 17 case studies for which an inde-
pendent validation dataset was collected. Across the 32 classifications, the average
F1-score reaches 0.93 and ranges from 0.81 (Kinshasa) to 0.98 (Saint-Louis). From
the entire set, Bukavu and Kinshasa reached the lowest scores. In Bukavu, the clas-
sification model appears to have been affected by the landscape—highly mountain-
ous and densely vegetated. Most of the misclassifications occurred in high slope
areas that SAR sensors confused with built-up areas. Overall, the average F1-score
decreases as we go back in time: 0.94 in 2015, 0.93 in 2010, 0.92 in 2005 and 2010.
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This suggests that the classification method is less efficient for past periods, due to
missing satellite imagery, lower quality sensors, or less training samples. This obser-
vation is also attested by the results of the CV, with a mean score of 0.95 in 2015,
0.92 in 2005, and 0.90 in 1995. Likewise, CV standard deviation was, in average,
higher in 1995 (4.8 points) than in 2015 (3.3 points).

Table 4.2: F1-scores obtained by a sample of case studies based on an independent
validation dataset.

Case study 2000 2005 2010 2015
Antananarivo . 0.88 . 0.93
Bukavu . 0.87 0.87 0.87
Chimoio . 0.91 . 0.95
Dakar . 0.91 . 0.96
Dodoma . . . 0.95
Gao 0.90 . . 0.93
Johannesburg . 0.95 . 0.95
Kampala . 0.92 . 0.94
Katsina 0.92 . . 0.97
Kinshasa . 0.90 . 0.81
Nairobi . . 0.97 0.95
Okene . . . 0.97
Onitsha . . . 0.96
Ouagadougou 0.94 . 0.94 0.95
Saint-Louis . 0.97 . 0.98
Umuahia . . . 0.94
Windhoek . 0.95 . 0.91

The comparison of the classification results with the GHSL reveals that both
datasets reach a similar estimate of the total surface occupied by built-up areas
across all the case studies: 6,295 km2 against 6,662 km2 according to the GHSL.
The two datasets reach a mean agreement of 0.95. However, large differences are

95



observed in some case studies. Figure 4.8 shows the built-up areas maps from both
datasets in Chimoio and Obuasi, where the highest variations occur. In Chimoio,
the GHSL predicts 13.3 km2 of built-up areas against 101.5 km2. Most of the
disagreement occurs in the periurban area, where the GHSL classifies low density
residential areas as non-built-up. On the contrary, the GHSL estimates the
built-up areas of Obuasi to reach 113.6 km2, compared to 62.9 km2 in MAUPP.
Here, most of the disagreement occur in bare lands, which the optical sensor used
by the GHSL confuses with built-up areas. Thanks to the combined use of both
optical and SAR sensors, the proposed methodology appears as less sensitive to
the issue.

Figure 4.8: Comparison with the GHSL in Chimoio, Mozambique and Obuasi,
Ghana: a) Aerial view of Chimoio, courtesy of Google Earth; b) GHSL built-up
areas (in red); c)MAUPP built-up areas (in red); d)Aerial view of Obuasi, courtesy
of Google Earth; e) GHSL built-up areas (in red); f ) MAUPP built-up areas (in
red).
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4.3.2 Growth rates of built-up areas
Over all the case studies, the average compound annual growth rate (CAGR) of
built-up areas between 1995 and 2015 was 5.5%. This is a significant increase com-
pared to the estimate of 2.3% reported by the GHSL over the sames areas of interest.
As previously stated, most of the disagreement between the two datasets occurs in
periurban and rural areas, leading to high variations in terms of growth rates. How-
ever, the result is consistent with the one obtained in the Atlas of Urban Expansion
which estimated an average CAGR of 5.1% for urban areas in Sub-Saharan Africa.
Considering the population growth rates of Sub-Saharan Africa, the number ap-
pears as lower than expected. For instance, according to the Atlas of Urban Expan-
sion, the urban areas of the United States averaged a similar CAGR (5%) between
1990 and 2000.

Figure 4.9: Total surface of built-up areas in 2000 and annual built-up areas growth
rates between 2000 and 2015 for each case study. Johannesburg (725 km2 of built-
up areas, annual growth rate of 1.1%) and Onitsha (missing data) are excluded from
the graph.
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As shown in Figure 4.9, there is a relationship between the size of an urban area
and its growth rates. In terms of built-up areas, the ten largest case studies were: Jo-
hannesburg, Kinshasa, Nairobi, Ouagadougou, Kampala, Dakar, Monrovia, Kaya-
mandi, Libreville, and Pietermaritzburg—all of them have a CAGR lower than
4%. On the contrary, smaller urban areas appear to grow faster. The categoriza-
tion of the case studies based on the size of their population leads to a similar con-
clusion: the average CAGR of built-up areas is 3.2% in large urban areas (more
than 1,000,000 inh. in 2000), 4.6% in medium urban areas (between 500,000 and
1,000,000 inh.) and 5.4% in the small ones (less than 500,000 inh.). In large ur-
ban areas, the CAGRs are affected by the lack of available space, displacing the
growth towards nearby peri-urban or rural areas uncovered by our areas of inter-
est. Likewise, lower CAGRs are observed in urban areas constrained by the natural
environment (Dakar, Libreville, Monrovia, Freetown).

Figure 4.10: Share of each type of newly built-up area between 2000 and 2015 for
each case study.

Analyzing the newly built-up areas with respect to their spatial context delivers
another dimension of urban expansion. Figure 4.10 shows, for each case study, the
share of each expansion type: infill, extension or leapfrog. Overall, infill expansion
reaches an average share of 41%. However, large variations are observed across the
case studies. In some large urban areas such as Dakar, Monrovia, Johannesburg
or Nairobi, more than 60% of the growth actually occurs inside the existing urban
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extent. On the contrary, in small urban areas such as Saint-Louis, Owo, or Kaolack,
infill expansion makes up for less than 20% of the total growth. Data aggregation
based on the size of the urban area confirms the trend: on average, the share of infill
expansion reaches 54% in large urban areas, 44% in medium-sized urban areas, and
35% in the small ones. In other words, the sprawl’s share (infill and extension) is
higher in smaller urban areas. Defining sprawl as the combination of extension and
leapfrog—or, in other words, as the newly built-up areas that increase the urban
extent—allows the calculation of annual sprawl rates. In small and medium-sized
urban areas, the average annual sprawl rate reaches respectively 4.1% and 3.4%,
whereas it is only 2.1% in large urban areas.

4.3.3 Population densities of built-up areas
Over the case studies, the population density reaches an average of 11,031 people
per km2 of built-up area in 2015. This is consistent with the results from the Atlas
of Urban Expansion, which estimated the average density of Sub-Saharan African
urban areas to be 12,000 people per km2. As expected, the population density of
built-up areas is decreasing: from 16,113 people per km2 in 2000 to 11,030 in
2015, for a CAGR of -2.5%. However, as shown in Figure 4.11, the dynamics
of population density differ depending on the size of the urban area. The density
of small and medium-sized urban areas is decreasing at a higher rate than in large
urban areas, where density is more stable. Furthermore, the observed densities
are still considerably higher than in Europe (5,000 people per km2) or in North
America (2,200 people per km2).

At the world’s scale, the built-up areas’ density in a country is dependent on its in-
come class (Angel et al., 2016). Figure 4.12 shows that a similar relationship is ob-
served across our case studies. The density of urban areas located in higher income
countries—such as Johannesburg, Pietersburg, Nelspruit, Libreville, or Windhoek,
do not exceed 6,000 people per km2. On the contrary, higher densities are observed
in lower income countries, especially in urban areas constrained by their natural en-
vironment (Dakar, Antananarivo, Bukavu, Kinshasa). On average, the density in
low and lower-middle income urban areas is 12,295 people per km2, whereas it is
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Figure 4.11: Evolution of built-up areas density (people per km2) between 2000
and 2015 for small (less than 500,000 people in 2000), medium (between 500,000
and 1,000,000 people) and large (more than 1,000,000 people) urban areas.

only 4,348 people per km2 in upper-middle income countries. Likewise, popula-
tion size seems to affect the observed densities: large and medium-sized urban areas
are, on average, 64% more dense than small urban areas.

Table 4.3 summarizes the previous observations by aggregating the sprawl per new
dweller—that is, how much the urban extent is increased for each new inhabitant,
with respect to population size and income class. Those numbers reveal the high
heterogeneity that characterizes the dynamics of urban expansion in Sub-Saharan
Africa. According to our results, the amount of sprawl for one new dweller in small
urban areas of upper-middle income countries (Nelspruit, Pietersburg) is 14 times
higher than in low-income large urban areas (Kinshasa, Ouagadougou, Kampala,
Dakar, Antananarivo).
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Figure 4.12: Relationship between built-up areas density (people per km2) and
GDP per capita ($ per people) of the country in 2015.
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Table 4.3: Sprawl per new dweller (m2 per people) between 2000 and 2015 de-
pending on the size of the urban area and the country’s income class (in brackets
the number of case studies). Income classes are from the WorldBank’s classification.
Population size classes: small (less than 500,000 inh.), medium (between 500,000
and 1,000,000 inh.) and large (more than 1,000,000 inh).

Income class
Small-sized Medium-sized Large-sized Mean

Low 141.62 (12) 33.62 (3) 37.04 (5) 99.28 (20)
Lower-Middle 157.70 (8) 92.80 (6) 89.04 (2) 124.78 (16)
Upper-Middle 522.90 (3) 153.03 (2) 107.19 (2) 298.45 (7)
Mean 196.95 (23) 87.61 (11) 64.19 (9)

4.4 Discussion
Studying urbanization dynamics in their spatial dimension requires reliable, accu-
rate and consistent multi-temporal maps of built-up areas. To provide insights for
large-scale mapping of urban expansion, we leveraged the increasing availability of
(1) open-access satellite imagery datasets from both optical and SAR sensors, and
(2) crowd-sourced geographic information databases. Those decisions imply their
own set of strengths and weaknesses.

Multi-sensor data fusion allowed better classification performances in arid and
semi-arid regions, where moderate resolution optical sensors suffer from the
spectral confusion between bare soil and built-up areas. In case studies located in
an arid climate (Gao, Saint-Louis, Windhoek, and Tulear), the total surface of
the detected built-up areas was 50% higher than in the GHSL. Additionally, SAR
imagery allowed better data availability in tropical areas where a very low amount
of optical products is available due to cloud cover. However, the use of data
produced by seven different sensors (Landsat OLI, Landsat ETM+, Landsat TM,
ERS-1&2, Envisat and Sentinel-1) also means varying spatial resolutions, spectral
ranges, polarizations and incidence angles. Those variations are translated into
inconsistencies regarding the physical objects that are detected as built-up areas.
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For instance, roads were not included in our definition of a built-up area. However,
the largest asphalted roads were occasionally classified as such when SAR data was
not available to discriminate them based on ground texture. Moreover, previous
studies have shown that the delineation of built-up areas with SAR largely depends
on its spatial resolution, polarizations and incidence angles (Corbane et al., 2009).
To tackle the issue, the proposed methodology relies on single-date supervised
classifications—in other words, one classification model for each combination of
date and location. Post-processing of the resulting classifications also participates
in harmonizing the multi-temporal stack of maps. Still, those inconsistencies
propagates to the final results. For instance, higher annual growth rates have been
observed between 2010 and 2015 than between 2000 and 2010, which suggests
that built-up areas could have been either over-estimated or better detected because
of the use of Sentinel-1.

Relying on OSM to collect both built-up and non-built training samples enabled
the complete automation of the methodology. Thanks to the efforts of many con-
tributors across the world, more and more building footprints are available. This
allowed higher rates of detection in peri-urban areas. However, for historical peri-
ods, training samples extracted from OSM must be filtered in order to drop areas
that were not constructed at the time. In the process, learning information is lost
compared to circa 2015. Furthermore, ambiguous samples corresponding to rural or
peri-urban settlements may be erroneously dropped in the process. Consequently,
classification performances are lower as we go back in time, and low density built-
up areas may suffer from higher rates of omission. Apart from the aforementioned
issues, data available in OSM is not exhaustive, thereby training samples are not
guaranteed to be representative of the complex urban mosaic in a given city. For
instance, most of the built-up area samples in Katsina, Lusaka and Johannesburg
were located in the city center and in the densest neighborhoods. This led to an
under-representation of low density and vegetated suburban areas, and therefore
higher rates of omissions in these areas. In the end, those issues may have induced
an over-estimation of urban growth.

Despite the reported uncertainties, the results of the present study are consistent
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with the findings of the Atlas of Urban Expansion (Angel et al., 2016). Urban-
ization is not uniform across Sub-Saharan Africa, and urbanization rates reported
at the regional or national scale can have little meaning at the local scale. Across
the case studies, built-up areas averaged a CAGR of 4.8% between 2000 and 2015,
with high variations depending on the size of the urban area: from an average of
3.2% in large urban areas to 5.4% in the smaller ones. Despite the common as-
sumption that built-up areas grow at higher rates than the urban population (An-
gel et al., 2016), the average CAGRs of built-up areas were not that far from the
urban population annual growth rate of 4.1% reported by the UN for the region
(United Nations, 2017). This suggests that the common assumption that cities are
expanding their territories faster than their populations (Angel et al., 2016) is not
ubiquitous in Sub-Saharan Africa. In fact, in the context of this study, population
densities in built-up areas did not decrease between 2000 and 2015 in urban areas
such as Dakar, Freetown, Monrovia, Johannesburg, Libreville, Ouagadougou, Kin-
shasa, Nairobi or Kampala. Nevertheless, this is without taking into account that
the ecological footprint of an urban area can be hundreds of times larger that the
extent of its built-up areas (Grimm et al., 2008). Likewise, the 1,600 km2 areas of
interest used in this study did not cover the whole urban areas of large cities such as
Dakar, Johannesburg or Nairobi. Since most of the growth may occur in peri-urban
and surrounding localities due to a lack of space, the actual growth of built-up areas
may have been under-estimated in that case.

The measure of the amount of sprawl for each new dweller depending on popula-
tion size and income classes revealed interesting trends. In average, the surface of
sprawl per new dweller was three times higher in small urban areas (197 m2 per new
dweller) than in large ones (64 m2). Similarly, it was three times higher in urban
areas located in upper-middle income countries (299 m2) than in low income coun-
tries (99 m2). Nevertheless, drawing any general conclusion at the regional scale
would require a larger sample size.
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Chapter 5

Conclusion

In the future, urbanization will primarily take place in data-scarce regions. In other
words, accurate and up-to-date data are the least available where they matter the
most, thereby limiting our understanding of the urbanization process and impairing
decision making. In this context, EO offers the unique opportunity of observing
urban growth from space at a relatively low cost. Yet, EO-based urban maps also
suffer from lower accuracies in low- and middle-income countries. In SSA, the
lower quality of EO-based products may be explained by multiple factors, such as:
the lack of reference datasets to support model training and calibration, the lower
availability of historical satellite imagery, the high cloud cover over tropical regions,
or the spectral confusion between built-up and bare soil areas in arid regions.

On the other hand, the growth of open data is starting to mitigate the issue of data
scarcity. In the past, EO catalogs were biased toward the coverage of high-income
countries. Now, they proceed to a systematic and global acquisition strategy (Roy
et al., 2010). Likewise, VGI was scarce in low- and middle-income countries, be-
cause contributors focused on where they lived (Coleman, Georgiadou and Labonte,
2009). Today, the digital divide is reducing, and humanitarian mapathons help clos-
ing the gap (Mooney and Minghini, 2017). As a result, spatial data are increasingly
accessible and accurate. In this thesis, we leveraged this opportunity to improve ur-
ban mapping in SSA. To that end, we developed, implemented and assessed a map-
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ping approach that integrates multi-source open-access satellite imagery (Landsat,
Sentinel-1, Envisat, ERS) and VGI (OpenStreetMap). The proposed approach
has been applied in 46 urban areas of SSA to produce a dataset of urban expan-
sion covering the 1995–2015 period. In the following sections, we summarize the
main findings of the thesis, discuss their limitations and draw perspectives for future
work.

5.1 Main findings
5.1.1 Mining training labels fromOSM
In supervised learning, the quality and representativeness of the training samples
are crucial to reach high classification performances. Local studies generally rely
on in situ measurements to collect ground truth data, or on the manual digitization
of very high resolution imagery—for instance from Google Earth. But manual
digitization is time consuming and becomes unsustainable when producing global
or regional maps. In order to automate the process, global mapping methods usu-
ally extract training samples from external databases provided by institutional or
commercial agencies. In SSA, the lack of reference datasets prevents this type of
approach. Today, thanks to a growing collaborative effort, VGI databases are in-
creasingly reliable—including in low- and middle-income countries. In this thesis,
we proposed to take advantage of the OSM database to collect training data, as
formulated by the 1st hypothesis:

In the data-scarce context of SSA, VGI can enable large-scale mapping of
built-up areas by supporting the training of the classificationmodels without
reducing their performances.

Our results suggest that such approach is reliable. In Chapter 2, we compared two
strategies for training data collection: by digitizing samples from Google Earth, and
by extracting information from OSM. Built-up (positive) training samples were de-
rived from the building footprints available in the OSM database. Likewise, non-
built-up (negative) training samples were obtained by rasterization of various land
use, leisure, and natural objects—such as parks, gardens, forests, or farmland. How-
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ever, the objects were not available in all case studies. If the OSM database is in-
creasingly complete, small urban areas suffered from a lower data availability. To
complete the training dataset, we made use of the road network, which is the most
exhaustive feature in the OSM database. Additional positive samples were col-
lected by extracting urban blocks, i.e. the polygons formed by the intersections of
the road network. Likewise, supplementary negative samples were randomly picked
from the most remote areas. Across the 10 case studies, the OSM-based classifi-
cation models averaged a F1-score of 0.93, whereas the manual approach reached
0.92. These results suggest that OSM can be a reliable data source for training data
collection, especially in the data-scarce context of SSA where few alternatives are
available. More importantly, the quality of OSM-based training data will improve
as the database grows.

5.1.2 Optical-SAR synergies
Relying on optical imagery to detect built-up areas may suffer from several flaws.
First, optical sensors are highly sensitive to atmospheric conditions; this can be
problematic in regions characterized by high cloud cover such as Middle Africa.
Second, distinct objects may share a similar spectral signature at medium resolution
(10–40 m). For instance, spectral confusion may occur between a densely vegetated
urban block and a forest, or between built-up and bare soil areas. In contrast, SAR
sensors are independent from illumination and atmospheric variations. Moreover,
they are sensitive to surface roughness, and can easily distinguish between plane land
covers (bare soil) and elevated constructions (built-up)—regardless of the spectral
characteristics of the construction materials. In this thesis, we implemented and
assessed an approach that takes advantage of both optical and SAR imagery in or-
der to better discriminate built-up areas from their surrounding environment, as
proposed by the 2nd hypothesis:

Using SAR sensors (ERS, Envisat, Sentinel-1) in combination with mul-
tispectral data (Landsat) can lead to a more consistent detection of the built
environment, especially in arid regions.

In Chapter 3, we assessed the complementarity of two specific sensors: Landsat 8
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and Sentinel-1. The results obtained confirmed the high level of complementarity
between optical and SAR imagery. Still, the “speckle noise” inherent to SAR im-
ages was an obstacle for pixel-level classification. The extraction of textural features
from SAR backscattering mitigated the issue and preserved most of the information
related to the roughness of the terrain. Several classification schemes with varying
input features (optical only, SAR only, different polarizations) were assessed in
12 urban areas of SSA. In 11 case studies out of 12, multi-source classifiers out-
performed the single-source ones. Overall, single-source optical-based classifiers
underperformed in distinguishing built-up from bare soil areas. On the contrary,
single-source SAR-based classifications suffered from a confusion between dense
vegetation and elevated constructions. But combining both data sources led to high
accuracies in both land covers. These results suggest that complementing optical
data with SAR increases the performance of the classification models when it comes
to the detection of built-up areas. Interestingly, this complementarity can even be
leveraged with a simple pixel-level classification approach—provided that GLCM
textures are computed beforehand.

5.1.3 Scaling up and going back in time
The two aforementioned methodological contributions were integrated to produce
a multi-temporal dataset of urban expansion. In Chapter 2 and 3, implementations
were limited in space (~10 case studies) and in time (circa 2015). In Chapter 4, we
scaled up the analysis to 46 urban areas and applied it for five distinct years: 1995,
2000, 2005, 2010 and 2015. In doing so, the objective was twofold: (1) assessing the
scalability of the proposed mapping approach, and (2) analyzing urban dynamics in
SSA based on a representative sample of cities.

Scaling up raised issues related to data availability. First, historical periods (before
2015) lacked coverage by EO catalogs. Full coverage (availability of both SAR and
optical data) was reached in only 64% of the cases. This caused fallbacks to single-
source classification schemes which have been shown to be less effective. Second,
OSM-based training labels are not guaranteed to be valid in the past—especially in
the rapidly growing cities of SSA. To mitigate the issue, labels were filtered based
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on satellite data, leading to reductions of the training dataset and, thereby, lower
classification performances.

Independent validation samples were collected for 17 distinct case studies. Overall,
the average F1-score reached 0.93 with a standard deviation of 0.04. But variations
where observed depending on the year. In the earliest years, the lower availability of
both satellite and training data decreased the classification performances. Further-
more, in post-classification change detection, the accuracy of the observation may
be as low as the product of each map accuracy (Singh, 1989). That is, considering
an average F1-score of 0.93, 0.932 ≃ 0.87 with two data points, 0.933 ≃ 0.80 with
three, or 0.934 ≃ 0.75 with four. Consequently, despite the availability of five data
points in most case studies (i.e. 1995, 2000, 2005, 2010 and 2015), urban dynamics
were mainly analyzed using two data points in order to minimize uncertainty.

In total, we relied on satellite imagery acquired from seven different sensors: Land-
sat 5, Landsat 7, Landsat 8, ERS-1, ERS-2, Envisat and Sentinel-1, each of them
with various spatial resolutions, spectral characteristics, polarizations, and incidence
angles. In other words, depending on data availability, built-up areas were char-
acterized by different spectral properties. In the proposed approach, the issue was
mitigated by fitting a distinct classification model for each year and case study. Still,
inconsistencies were observed in the temporal dimension. For instance, the avail-
ability of Sentinel-1 data led to a better detection of small isolated settlements,
along with an increase in the misclassification rate. In the end, sensor differences
propagate and influence the statistics derived from the multi-temporal maps. In
the context of this study, this translated to an over-estimation of urban expansion
between 2010 (without Sentinel-1) and 2015 (with Sentinel-1).

5.1.4 The heterogeneous dynamics of urban expansion in SSA
Across the 46 case studies, the CAGR of built-up areas was 5.5%. This is consis-
tent with the estimates of the Atlas of Urban Expansion (5.1%). However, this is
significantly higher than what the GHSL estimated: 2.3% over the same areas of
interest. Most of the disagreement between both datasets occurred in peri-urban
areas, where the GHSL was less tolerant on what constitutes a built-up area. Re-
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gardless of accuracy differences, this suggests that definitions can have a significant
impact on the interpretation of urban growth. On the other hand, such growth
rates are consistent with the estimations provided by the Atlas of Urban Expansion
for the urban areas of SSA (5.1%). Nevertheless, aggregated averages makes little
sense in the context of SSA, where urban areas are highly heterogeneous. High
variations were observed across the case studies depending on population sizes. For
instance, the CAGR of built-up areas between 2000 and 2015 was significantly
higher in small urban areas (less than 500,000 people; 5.4% on average) than in the
large ones (more than 1,000,000 people; 3.2%).

Even more heterogeneity was observed when interpreting the growth of built-up
areas with respect to population dynamics. Across the case studies, population den-
sities decreased between 2000 and 2015: from ~16,000 to ~11,000 people per km2

of built-up area. But the variations were high depending on population sizes and
income classes. On average, large and medium urban areas were 64% more dense
than small urban areas. Likewise, a lower income was associated with higher popula-
tion densities. In 2015, the population densities in upper-middle income countries
averaged ~4,300 people per km2 of built-up area, against ~12,300 in low and lower-
middle income countries. These observations confirmed the findings of previous
studies, according to which the population densities in built-up areas are highly
influenced by the income class (Angel et al., 2016).

Measuring the sprawl per new dweller—that is, the expansion of the urban extent
for one new inhabitant—summarizes the previous findings. Indeed, over the 2000–
2015 period, sprawl per new dweller largely depends on population sizes and income
classes. On average, the extents of small urban areas increased by 197 m2 per new
dweller, against 64 m2 in the large ones. Likewise, sprawl per new dweller was
three times higher in urban areas located in upper-middle income countries (298
m2) than in low income countries (99 m2). In other words, population increase
is not a sufficient predictor of how much a city may grow, as the relationship be-
tween population growth and urban expansion differ according to demographic and
economic variables.

115



5.2 Perspectives
Altogether, the proposed approach can be generalized into an EO-based, open and
automated mapping framework, as illustrated in Figure 5.1. This framework makes
use of two types of input data: (1) open-access satellite imagery, multi-sensor or
not, and (2) crowd-sourced geographic information—for instance OSM. The ob-
jective is to extrapolate discrete human knowledge (2) to a continuous space based
on sensor-based measurements (1).

Figure 5.1: A framework for the classification of built-up areas from EO data and
crowd-sourced geographic information.

Satellite imagery provides unlabeled, continuous, exhaustive, and sensor-based mea-
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surements of the Earth’s surface, radiance, reflectance, or backscattered intensity.
The process of transforming raw input data into features that maximize the perfor-
mance of machine learning algorithms is called feature engineering. In the proposed
framework, it may refer to preprocessing routines (orthorectification, atmospheric
correction, cloud detection, speckle noise removal), feature extraction (spectral in-
dices, GLCM textures), and coregistration (spatial alignment of multi-temporal or
multi-sensor images).

Contrary to satellite imagery, crowd-sourced geographic databases offer labeled, dis-
crete, incomplete, and human-based land cover information, roads, buildings, parks,
forests, etc. Most of the times, volunteered geographic information is distributed
as vector data; the process of transforming vector objects into a raster grid is called
rasterization. Depending on the mapping objectives, input data may require addi-
tional spatial analyses, for instance to extract urban blocks from the road network or
to filter objects based on their properties (e.g. their OSM tags, their sizes).

Finally, the statistical relationships between sensor-based measurements (satellite
imagery) and the target geographic objects (built-up and non-built-up areas) are
determined through supervised learning in order to produce a classification map.
Various machine learning algorithms may be used to that end; but the choice of
algorithm must take into account the low signal-to-noise ratio caused by the use of
crowd-sourced geographic databases to fetch the training labels.

Improvements to the proposed framework can refer to (1) extracting features from
multi-source EO data, (2) mining training labels from crowd-sourced geographic
databases, or (3) classifying input data through supervised learning. In the follow-
ing subsections, related perspectives are explored and discussed.

5.2.1 Feature engineering and data fusion
At the end of the day, some machine learning projects succeed and some fail.
What makes the difference? Easily the most important factor is the features
used. (Domingos, 2012)

The growing availability of satellite imagery from various sensors makes data fusion
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increasingly crucial in urban remote sensing. But mixing optical and SAR data
at the pixel level generates a large range of issues. First, coregistration errors (i.e.
misaligned pixels) may reduce the performance of the classification models. Novel
methods for automatic coregistration of multi-sensor images are still being devel-
oped (Costantini et al., 2018), and should increase the accuracies of multi-sensor
land cover classifications. Second, SAR backscattering is less suited than optical
reflectance to pixel-level classification, namely because of speckle noise. The issue
can be alleviated by computing texture features, which integrate statistical informa-
tion of the neighboring pixels. In this thesis, GLCM textures were used to that
end. Alternative methods are still being developed and may be more suited to the
detection of human settlements (Cheng and Li, 2005; Pesaresi, Gerhardinger and
Kayitakire, 2008; Zhang, Li and Wang, 2014; Safia and He, 2015). Finally, switch-
ing from a pixel-level to a feature-level fusion scheme could mitigate most of the
aforementioned issues (Gamba, 2014), provided that progresses are made regarding
automatic image segmentation and object-based image analysis at moderate spatial
resolution.

EO studies are data-driven; regardless of the methodological advances, they primar-
ily depend on the availability of satellite imagery. In other words, progresses in the
field are driven by the improvements of satellite sensors—mainly in terms of spa-
tial, spectral and temporal resolution. Compared to Landsat, the Sentinel program
provides higher resolution optical imagery: 10 m for the visible and near-infrared
bands, against 30 m with Landsat. This is a nine-fold increase in the amount
of information. In urban areas, where objects of interest may be relatively small
(buildings, road segments, gardens, pools), the increase in spatial resolutions leads
to a lower amount of mixed pixels. Recent studies already showed the benefits of
Sentinel-2 imagery to map built-up areas, such as a lower omission rate for iso-
lated settlements and a better separation from artificial open spaces, gravel or sand
(Martino Pesaresi and Christina Corbane et al., 2016).

Still, no satellite will be able to go back in time. To map the historical dynamics of
land cover changes, we will continue to rely on past EO programs. In this case, we
cannot expect spatial and spectral resolutions to increase. In other words, the only
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way to improve the mapping of historical changes is to develop better classification
methods. Today, the main advantages at our disposal are the lower computation and
acquisition costs, along with a set of algorithms taking advantage of it—machine
learning. However, applications are limited by the uneven availability of historical
satellite data across the globe. For instance, novel methods based on dense time-
series (Schneider, 2012) cannot always be applied in low-income regions because of
lower data availability. Likewise, in multi-sensor classification, data scarcity forces
a higher temporal gap between image pairs, which can confuse classification models
in rapidly changing environments. In this regard, initiatives such as the Landsat
Global Archive Consolidation (Wulder et al., 2016), which recovered more than 4
million historical images, are crucial.

5.2.2 The growth of crowd-sourced geographic information
More data beats clever algorithms. (Halevy, Norvig and Pereira, 2009)

[…] but better data beats more data. (Rogati, 2012)

The proposed mapping framework heavily relies on the availability of crowd-
sourced geographic data, both in terms of quantity and quality. Numerous studies
showed the benefits of a larger training dataset with machine learning algorithms,
especially in low signal-to-noise contexts (Mellor et al., 2015). In this thesis, OSM
was used to collect both built-up and non-built-up training samples. A large range
of geographic objects were extracted to that end (building footprints, road network,
land use, land cover); and their availability largely influenced the performance of
the classification models. Today, the database is growing fast. In 2017, the road
network in OSM was estimated to be more than 80% complete at the global scale
(Barrington-Leigh and Millard-Ball, 2017), which is more than any authoritative
or commercial dataset. Between 2014—the beginning of this thesis—and 2019,
the size of the database for Africa increased by a factor of six. The increase in
contributions along with mapping campaigns focusing on low-income countries
make OSM increasingly reliable for the collection of training samples, and the
performance of the proposed approach should improve with the growth of the
database.
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What is even more interesting in the growth of OSM is the increasing semantic
completeness. In other words, the range of geographic objects which are mapped
is increasingly large. Their attributes—or tags—are also more accurate, thanks to
initiatives that harmonize the classification system (Ali et al., 2016). Spatial infor-
mation related to natural land covers (forests, grasslands, soils) and farmlands is
more and more available, including in low-income regions. In the context of the
proposed framework, this could enable a switch from a binary (built-up vs. non-
built-up) to a multi-class land cover classification. Likewise, spatial analysis of
social and mobile data can provide additional information on land use and pop-
ulation dynamics (Deville et al., 2014), which could be leveraged to collect training
or testing samples.

5.2.3 Novel methods in machine learning
In machine learning, it is commonly assumed that “more and better data beat clev-
erer algorithms”. Provided that they are properly parametrized and that the training
dataset is representative enough, most supervised algorithms are able to produce
accurate predictions (Li et al., 2014; Maxwell, Warner and Fang, 2018). In this
thesis, the Random Forest algorithm was selected because of its computing effi-
ciency and its resistance to training data noise. Still, as most of machine learning
algorithms, it is sensitive to class imbalance in the training dataset. To alleviate
the issue, random under-sampling and over-sampling strategies were adopted. But
more sophisticated methods are being developed to limit the loss of information or
the introduction of biases (Lemaître, Nogueira and Aridas, 2017).

Progress could also be made regarding the classification products. More and more
applications could benefit from continuous outputs, i.e. built-up proportion or den-
sity at the pixel scale. For instance, population mapping could make use of building
height and density metrics. In the GHSL, a built-up area is expressed as “a continu-
ous value representing the proportion of building footprint area within a cell” (Pesaresi et
al., 2017), but output products only provide categorical values. The GUF alleviates
the issue thanks to a higher spatial resolution—from 30 to 12 m. The high resolu-
tion binary product is then derived into secondary, coarser products of density and
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settlement patterns (Esch et al., 2018). However, the lower spatial resolution of his-
torical satellite imagery limits the application of such approach. Physical modeling
approaches, such as spectral mixture analysis (Adams and Gillespie, 2006), provide
insights to quantify the proportion of land covers at the subpixel scale. But their
integration into multi-sensor classification schemes has not been investigated as of
now. Once again, another limit is the availability of training and validation data;
binary labels are scarce, continuous labels are even more so.

Finally, the potential contribution of deep learning to large-scaled land cover map-
ping is still to be determined. In the deep learning terminology, the process of as-
signing a label to each pixel of an image is called semantic segmentation. In the recent
years, deep learning have been widely applied to remotely-sensed data, mainly on
the basis of commercial high resolution imagery (Zhang, Zhang and Du, 2016; Zhu
et al., 2017; Ma et al., 2019). However, the fine structural information found in high
resolution images is lacking in open-access medium resolution imagery (Sentinel,
Landsat), thereby limiting semantic segmentation approaches. At the classification
level, country-scale applications did not show any gain over more traditional ma-
chine learning algorithms such as Random Forest (Inglada, Vincent and Thierion,
2019), while computing costs are dramatically increased. Moreover, deep learning
models are less interpretable than more traditional methods such as tree-based ma-
chine learning or generalized linear models. As of now, in regards to land cover
classification from medium-resolution imagery, deep learning appears to mostly
benefit image preprocessing and feature engineering. For instance, promising re-
sults were obtained in cloud detection (Li et al., 2019), image fusion (Liu et al.,
2018), image registration (Wang et al., 2018), or resolution enhancement (Lanaras
et al., 2018).

5.2.4 Last words: towards more inclusive urbanmaps
By nature, satistical learning tends to highlight the norm and dismiss the outliers.
In urban remote sensing, densely populated city centers and traditionnal building
blocks have always been characterized by high accuracies. The availability of quality
reference datasets and the lower occurence of complex mixed pixels make them
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easier to detect with supervised learning classification models. However, today, the
main challenges towards urban sustainability are urban sprawl and urban poverty
(United Nations, 2018b)–two phenomena taking place in the marginal spaces of our
cities: peri-urban areas and informal settlements. They are also the areas suffering
from the lowest accuracies in built-up maps. Sparsed and isolated settlements are
even harder to detect from space—especially when going back in time because of the
lower spatial resolution of older sensors. But they are potential nodes of future urban
networks. In other words, despite the high accuracies in existing global products or
in the maps produced in the present thesis, reliable data are still lacking for a better
understanding of long-term temporal dynamics of urbanization.

The main objective of this thesis was to provide insights and propose novel
methods towards more inclusive urban maps, in order to better integrate these
marginal spaces in the analyses of the recent urbanization dynamics. The use
of OpenStreetMap is central to this approach: thanks to initiatives such as
HOTOSM1 which focus on undermapped communities, informal and isolated
settlements are included as training samples and cease to appear as outliers in
classification models.

The lower computing costs and the opening of historical satellite imagery catalogs
are an opportunity for the remote sensing community: we can go back in time
and map the past again, with better reference data, higher computing power and
modern tools. This thesis does not solve the aforementioned issues, but I hope the
proposed methods will support further research in this direction.
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