
1Department of
Gastroenterology,
Hepatopancreatology and
Digestive Oncology, C.U.B.
Hôpital Erasme, Université Libre
de Bruxelles, Brussels, Belgium;
2Laboratory of Experimental
Gastroenterology, Université
Libre de Bruxelles, Brussels,
Belgium;
3Department of Pathophysiology
and Transplantation, Università
degli Studi di Milano, Milan,
Italy;
4Translational Medicine –

Department of Transfusion
Medicine and Hematology,
Fondazione IRCCS Ca’ Granda
Ospedale Maggiore Policlinico,
Milan, Italy

* Corresponding authors. Ad-
dresses: Department of Patho-
physiology and
Transplantation, Università
degli Studi di Milano, Trans-
lational Medicine – Depart-
ment of Transfusion Medicine
and Hematology, Fondazione
IRCCS Ca' Granda Ospedale
Maggiore Policlinico, Milan,
Italy or Padiglione Marangoni,
Ospedale Policlinico via F
Sforza 35, 20122 Milano (MI),
Italy; Tel.: +39-02-50320278 (L.
Valenti), or Department of
Gastroenterology, Hep-
atopancreatology and Digestive
Oncology, C.U.B. Hôpital
Erasme, Universite Libre de
Bruxelles, Brussels, Belgium.
Tel: +32-2-5556160 (E. Trépo).

E-mail addresses: luca.valenti@
unimi.it (L. Valenti), etrepo@
ulb.ac.be (E. Trépo).

https://doi.org/10.1016/
j.jhep.2020.02.020

Update on NAFLD genetics: From new variants to the clinic

Eric Trépo1,2,*, Luca Valenti3,4,*

Keywords: Non-alcoholic fatty
liver disease; Steatohepatitis;
Risk stratification; Treatment.

Received 23 December 2019;
received in revised form 4
February 2020; accepted 13
February 2020; available online
4 March 2020

Review
Abstract

Non-alcoholic fatty liver disease (NAFLD) is the leading cause of liver diseases in high-income
countries and the burden of NAFLD is increasing at an alarming rate. The risk of developing
NAFLD and related complications is highly variable among individuals and is determined by envi-
ronmental and genetic factors. Genome-wide association studies have uncovered robust and
reproducible associations between variations in genes such as PNPLA3, TM6SF2, MBOAT7, GCKR,
HSD17B13 and the natural history of NAFLD. These findings have provided compelling new insights
into the biology of NAFLD and highlighted potentially attractive pharmaceutical targets. More
recently the development of polygenic risk scores, which have shown promising results for the
clinical risk prediction of other complex traits (such as cardiovascular disease and breast cancer),
have provided new impetus for the clinical validation of genetic variants in NAFLD risk stratification.
Herein, we review current knowledge on the genetic architecture of NAFLD, including gene-
environment interactions, and discuss the implications for disease pathobiology, drug discovery
and risk prediction. We particularly focus on the potential clinical translation of recent genetic
advances, discussing methodological hurdles that must be overcome before these discoveries can be
implemented in everyday practice.
© 2020 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Introduction

Non-alcoholic fatty liver disease (NAFLD) is the
leading cause of liver disease in high-income
countries, affecting more than 25% of the popula-
tion.1 The inflammatory form of this condition,
namely non-alcoholic steatohepatitis (NASH), is
responsible for an increasing proportion of cases of
cirrhosis and hepatocellular carcinoma (HCC).2,3 As
for other complex traits (e.g. circulating lipids or
cardiovascular diseases), the risk of developing
NAFLD and NASH varies among individuals; it is
ultimately determined by the combination of
environmental factors, such as adiposity or the
presence of type 2 diabetes (T2D), and inherited
genetic variations.

Historically, genetic susceptibility to NAFLD has
been evaluated using candidate gene studies – a
study design evaluating the association of variants
in a given gene and a phenotype of interest.
However, most candidate gene studies have only
identified and validated a handful of loci associ-
ated with the risk of NAFLD prevalence or pro-
gression. This can be explained by the limited
number of genes selected a priori based on their
plausible biological relevance, but also by various
methodological drawbacks (e.g. limited statistical
power).4 Conversely, genome-wide association
studies (GWAS) test the association of millions of
variants throughout the genome in an unbiased
fashion. GWAS can be performed using various
technologies, like single nucleotide polymorphism
Journal of Hepatology 2020 vol. 72 j 119
(SNP) arrays followed by imputation, a statistical
method for inferring genotypes that are not
directly measured using large reference panels
(e.g. 1000G or the Haplotype Reference Con-
sortium).5,6 More recently, next-generation
sequencing approaches have been implemented,
including whole-exome sequencing (WES), tar-
geting the fraction of the genome that encodes
proteins, or whole-genome sequencing (WGS).
GWAS have identified robust and reproducible
associations linked with the natural history of
NAFLD, including variants in the patatin-like
phospholipase domain-containing 3 (PNPLA3),
the transmembrane 6 superfamily member 2
(TM6SF2) and more recently in the 17-beta
hydroxysteroid dehydrogenase 13 (HSD17B13)
genes.7 GWAS have uncovered novel NAFLD sus-
ceptibility genes and biological pathways and
fostered improved understanding of NAFLD
pathophysiology.

Herein, we provide an update on our current
knowledge of NAFLD genetics and discuss the
benefits and limitations of recent GWAS findings
including biological understanding, risk prediction
and drug development. Based on the available ev-
idence, we propose suggestions for interpretation,
and design of new studies in the field. We will
frequently use the more general term fatty liver
disease (FLD), as at risk alcohol intake was not an
exclusion criterium in most studies, and it is always
6–1209
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Key point

Growing evidence has
shown that the risk of
NAFLD occurrence and
progression varies among
individuals and has high-
lighted the role of inherited
genetic variants.

Key point

GWAS in the field of NAFLD
have identified robust and
reproducible associations
for variants in PNPLA3,
TM6SF2, MBOAT7, GCKR and
HSD17B13, all contributing
to a better understanding
of NAFLD biology.
difficult to differentiate the role of alcohol and
metabolic risk factors.8 Furthermore, genetic
studies have highlighted shared inherited de-
terminants of metabolic and alcohol-related FLD.9

Current knowledge on the genetics of
NAFLD
Heritability of NAFLD
Heritability is defined as the proportion of pheno-
typic variation in a trait that is due to genetic
variation.10 Unlike monogenic diseases, such as
hereditary haemochromatosis and Wilson's dis-
ease, the heritability of complex traits involves
thousands of common genetic variants (minor-
allele frequency [MAF] >−5%) distributed throughout
the genome, which are usually characterised by
small effect sizes (e.g. relative risks or odds ratios
[ORs]).11

A large fraction of hepatic fat and FLD variability
in the population, ranging from 25% to 75%, is
accounted for by inherited factors.9 This evidence
is supported by studies in twins, showing 50%
heritability of FLD, as estimated by aminotransfer-
ases and more recently by direct evaluation of
hepatic fat content.12,13 The implementation of
nuclear magnetic resonance approaches to mea-
sure liver fat and fibrosis by elastometry revealed
that these traits are co-inherited in the popula-
tion.13 These results are in line with the hypothesis
that quantitative/qualitative alterations of hepatic
fat cause progressive liver disease.14,15 Multi-ethnic
cohorts have also highlighted a major inter-ethnic
variability in FLD susceptibility: higher in His-
panics, intermediate in Europeans and lower in
individuals of African descent, independently of
confounders.16 In family studies, the risk of severe
liver fibrosis was 12.5-fold higher in first-degree
relatives of patients with NAFLD-related cirrhosis
(18%) compared to the general population (1%),
independently of dysmetabolism.17 A family his-
tory of NAFLD is associated with a higher risk of
this condition, in particular when both parents are
affected.18 Therefore, the first practical message is
that ethnicity and family history should be recor-
ded, because they have a clinically relevant impact
on both FLD development and progression.

Genetic loci associated with NAFLD
Findings from GWAS conducted in large cohorts of
well-phenotyped individuals enabled the identifi-
cation of the first and main FLD risk variants that
are common in the population.19–22 The list of
common variants associated with NAFLD and
NASH, which were independently validated in
large multicentre cohort, and whose impact on
liver disease was supported by functional studies
are presented in Table 1.

The rs738409 C>G SNP, encoding the I148M
variant of PNPLA3, accounts for the largest fraction
of genetic predisposition to NAFLD.19 Carriage of
Journal of
the I148M variant facilitates hepatic fat accumula-
tion, without a major direct impact on adiposity
and insulin resistance.19 Major findings were that
the PNPLA3 I148M variant increases susceptibility
to the whole spectrum of liver damage related to
NAFLD, from steatosis, to NASH, fibrosis, and
HCC,23–27 and is a common modifier of liver disease
risk.28–32 Carriage of the I148M variant has been
associated with an increased risk of liver-related
mortality in patients with NAFLD and in the gen-
eral population.33,34

The rs58542926 C>T that codes for the E167K
variant of TM6SF2 favours hepatic fat accumulation
in intracellular lipid droplets by decreasing lipid
secretion, thereby leading to increased suscepti-
bility to liver damage, including NASH and severe
fibrosis. At the same time, the E167K variant pro-
tects against cardiovascular disease by reducing
circulating lipids.21,35,36 However, it predisposes
individuals to HCC development.37 The rs641738
C>T variant close to the membrane bound O-acyl-
transferase domain-containing 7 (MBOAT7) locus
was identified as a risk factor for alcohol-related
cirrhosis,28 and is associated with the predisposi-
tion to accumulate fat in the liver and to develop
NAFLD, inflammation, fibrosis, and HCC, due to
reduced protein expression.27,38

Variationat theglucokinase regulator (GCKR) gene
locus has also been associated with NAFLD.14,20,39 A
common missense variant (rs1260326), encoding
P446L, ismost likely the causal variant underlying the
association.40 The protein phosphatase 1 regulatory
subunit 3B (PPP1R3B) rs4841132variant has also been
suggested to protect against hepatic fat accumula-
tion20,41,42 by modulating lipid synthesis.41 However,
the overall impact on the risk of liver-related events
remains controversial.42

Activation of innate immunity and fibrogenesis
modulate disease progression in patients with
NAFLD. The rs368234815 dG>TT and linked variants
encoding for interferon-k4 (IFNL4) instead of the
IFNL3 protein, have been associated with decreased
expression of interferon-stimulated genes, but
more severe inflammation and fibrosis.43,44 Varia-
tion in Mer T kinase (MERTK) affect inflammation
and fibrosis, as the protein, a membrane tyrosine
kinase receptor, regulates the activation of phago-
cytes and hepatic stellate cells.43 The MERTK
rs4374383 variant protects against fibrosis devel-
opment by reducing hepaticMERTKexpression.43,45

Another variant possibly associated with liver
damage and inflammation is rs236918 in proprotein
convertase subtilisin/kexin type 7 (PCSK7), which
modulates multiple pathways, including lipid and
iron metabolism as well as fibrogenesis.46

The HFE C282Y variant of hereditary hemo-
chromatosis, encoded by the rs1800562 poly-
morphism, is a major determinant of liver damage
and cirrhosis risk in Europeans.47,48 Its impact on
liver damage in patients with NAFLD/NASH is still
Hepatology 2020 vol. 72 j 1196–1209 1197
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debated and probably depends on its impact on iron
accumulation.49,50 This variant causes liver damage
by promoting oxidative stress, which can also be
modulated by variants in the nuclear genome-
encoded mitochondrial proteins SOD2, UCP2, and
MARC1,47,51,52 whose impact on liver disease risk
needs further confirmation.

Recently, loss-of-function variants in HSD17B13,
which encodes an enzyme that localises to lipid
droplets in hepatocytes, have been linked to robust
protection against liver inflammation, cirrhosis,
and HCC due to both dysmetabolism and
alcohol.53,54 The mechanism linking HSD17B13
variants with liver disease is not related to hepatic
fat accumulation, but involves direct modulation of
inflammation and fibrogenesis.22,55,56

Breakthroughs in NAFLD pathobiology
GWAS have highlighted the role of lipid droplet
biology, intracellular lipid synthesis and degrada-
tion, and secretion of very low-density lipoproteins
(VLDLs) in the pathogenesis of NAFLD, and have
identified new players involved in these processes
(Fig. 1). These discoveries have provided a solid
foundation from which to improve our under-
standing of the pathogenesis of liver disease, and
have been validated by functional studies and by
wide replication in clinical cohorts.57

The discovery of PNPLA3 has transformed our
understanding of fatty liver, shifting the attention
to lipid remodelling in intracellular droplets as the
common pathway underlying disease progression
irrespective of the environmental trigger. PNPLA3 is
induced by insulin in hepatocytes, hepatic stellate
cells, and adipocytes during insulin resistance.58,59

The wild-type PNPLA3 is involved in the remodel-
ling of triglycerides, phospholipids, and in the
release of retinyl-esters, by acting as a lipase on
lipid droplets.59,60 While the wild-type protein is
rapidly degraded, the variant protein has no lipase
activity and accumulates, impairing lipid remod-
elling and turnover.60–63 These alterations require
the sequestration of ABHD5/CGI-58, an essential
cofactor for ATGL/PNPLA2, the major lipid droplet
lipase in hepatocytes,64,65 and may involve the
impairment of lipo-autophagy.66 Enlargement and
altered qualitative composition of lipid droplets
then trigger lipotoxicity. This gain-of-function
model involving the trans-repression of ATGL as
an explanation for the impact of the I148M
variant60,61,64,67 is supported by human genetics, in
that variation at the PNPLA3 locus associated with
lower PNPLA3 expression curbed the phenotype of
the I148M variant,60–62 while loss-of-function
PNPLA3 variants were not associated with severe
liver disease.37 However, the I148M variant also
leads to altered lipid remodelling, with accumula-
tion of polyunsaturated fatty acids in diacylglycerol
and triglycerides, and a parallel depletion in
phospholipids, which depends on altered enzy-
matic activity.61,63 The detrimental impact on
6–1209
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Fig. 1. Genetic pathophysiology of NAFLD. Genetic determinants of FLD, classified according to the biological processes by which the encoded proteins are
thought to contribute in the pathogenesis of the disease in the liver. Red arrows indicate pathological processes/lipid fluxes, while green arrows beneficial
pathways. Pathophysiological processes are indicated in red uppercase, gene names in Italics, cellular and liver compartments in lowercase. APOB, apolipopo-
protein B; FLD, fatty liver disease; GCKR, Glucokinase regulator; HFE, haemochromatosis gene; HSD17B13, 17-beta hydroxysteroid dehydrogenase 13; IFNL4,
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tase; TM6SF2, transmembrane 6 superfamily member 2; UCP2, uncoupling protein 2; VLDL, very low-density lipoproteins.
adipocyte function and the secretion of adipo-
nectin may contribute to the liver phenotype
associated with the I148M variant.65,68

A key role of impaired lipid droplet degradation
in NAFLD is supported by the phenotype or rare
variants identified through classic family-based
genetic studies and the application of next-
generation sequencing to the diagnosis of unex-
plained NAFLD or cryptogenic liver disease. Indeed,
heterozygous carriage of mutations that cause
impaired protein activity of abhydrolase-contain-
ing domain 5 (ABHD5) – a direct binding partner of
PNPLA3 and ATGL – result in severe NAFLD.69

Furthermore, lysosomal acid lipase deficiency,
caused by mutations of the LIPA gene, causes a
severe genetic form of NAFLD. The mechanism is
related to the accumulation of cholesteryl esters
and triglycerides in hepatocytes due to defective
lysosomal hydrolysis and lipo-autophagy.70

The importance of phospholipid remodelling in
NAFLD is independently supported by the role of
MBOAT7 in disease predisposition. Indeed,MBOAT7 is
involved in the remodelling of phosphatidylinositol
andotherphospholipidsby incorporating arachidonic
acid and other unsaturated fatty acids into lyso-
phospholipids. The common rs641738 C>T variant
that predisposes to liver disease leads to MBOAT7
downregulation,27 and reduced levels of arachidonic
acid bound to phophatidyl-inositol.38,71 Saturated
Journal of
lyso-phosphatidyl-inositol accumulates and is diver-
ted to the synthesis of triglycerides. Downregulation
of hepatic MBOAT7 is implicated in NAFLD develop-
ment during obesity and insulin resistance.72,73 A role
for qualitative alterations in lipid droplet remodelling
is also supported by the fact that HSD17B13 is pre-
dicted to metabolise several lipid species.55

Regulation of the flux of lipids from intracellular
droplets to the synthesis and secretion of VLDL are
also involved in hepatic fat accumulation and
consequent liver disease. This concept is high-
lighted by the mechanism underlying NAFLD
development in carriers of the TM6SF2 E167K
variant. In humans, TM6SF2 regulates qualitative
triglyceride enrichment in VLDL, but also lipid
synthesis and the number of secreted lipoprotein
particles, while E167K is a loss-of-function variant
favouring lipid compartmentalisation into the
liver.74,75 Mendelian disorders again support this
interpretation. Homozygous familial hypo-
betalipoproteinemia, caused by rare mutations in
apolipoprotein B (APOB), predisposes individuals to
severe progressive liver disease due to the inability
of hepatocytes to secrete VLDL.76 Furthermore,
carriage of APOB mutations in heterozygosity has
recently been associated with increased risk of
developing HCC related to NAFLD.37 Unlike abeta-
lipoproteinemia, which is caused by bi-allelic loss-
of-function mutations in microsomal triglyceride
Hepatology 2020 vol. 72 j 1196–1209 1199



Key point

The number of loci
currently associated with
NAFLD is still limited and
the identification of new
variants will require larger
collaborative efforts to
perform powerful GWAS.

Key point

Gene-environment and
gene-gene interactions in-
fluence NAFLD prevalence
and progression. The inter-
action between PNPLA3
and body mass index
seems particularly robust.

1200
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transfer protein (MTTP) and is also associated with
liver damage, this condition was less frequently
associated with severe malabsorption and more
frequently with development of obesity in adult-
hood.37 It has also recently emerged that part of the
impact of carriage of the SERPINA1 PiZ (but not PiS)
variant responsible for alpha-1 antitrypsin defi-
ciency (rs28929474) on liver damage may be
related to altered lipid secretion and fatty liver due
to endoplasmic reticulum stress.77 Modulation of
the rate of lipid synthesis may also have a role.
Indeed, the P446L GCRK variant acts by hampering
the negative feedback inhibition of fructose-6-
phosphate on glucokinase, thereby removing the
brakes on malonyl-CoA synthesis and consequently
de novo lipogenesis in response to circulating
glucose.40

Recent findings also point to a possible role of
the impairment of retinol release from lipid drop-
lets of hepatic stellate cells, with subsequent con-
version to retinoic acid acting on inflammation,
fibrogenesis, and carcinogenesis, in mediating FLD
predisposition in carriers of the PNPLA3 I148M
variant.78–80 This process may be dependent on the
direct induction of a pro-inflammatory and pro-
fibrogenic phenotype in hepatic stellate cells.80,81

Furthermore, HSD17B13 variants which protect
against NAFLD determine a reduced activity or mis-
localisation of the enzyme, which is involved in the
conversion of retinol to retinoic acid in lipid drop-
lets in hepatocytes.55 Finally, retinoic acid supresses
fibrogenesis in NAFLD due to its ability to induce
the cleavage and inactivation of MERTK in Kupffer
cells, thereby reducing TGF-b1 release, activation of
hepatic stellate cells and fibrogenesis.45 As MERTK
variation protects against fibrogenesis by reducing
protein expression in Kupffer cells,45 modulation of
retinoic acid availability may represent another
common genetic pathway of NAFLD.

Therefore, quantitative and qualitative alter-
ations to lipid content in hepatocytes drive NAFLD/
NASH development and progression. As the meta-
bolism of several lipid species and retinol are very
different between humans and rodents, and mouse
models have so far failed to fully recapitulate the
phenotype of FLD risk variants, these findings
highlight the necessity to find complementary ap-
proaches to study FLD pathophysiology. These may
include 3D multilineage culture models of human
cells and organoids.82

Considering the genetic architecture of
NAFLD: practical implications
Genetic association findings in NAFLD are
dependent on the study sample size
Recognition of the validity of GWAS for providing
new insights into complex traits, as recently
demonstrated for NAFLD, relies on the high repro-
ducibility and robustness of their findings. Howev-
er, this success comes at the cost of a stringent
statistical significance threshold (p <5×10−8) used in
Journal of Hepatology 2020 vol. 72 j 119
most GWAS to correct for the burden of multiple
testing, as millions of SNPs throughout the genome
are assessed.83 The sample size required to detect a
given genetic variant with suitable statistical power
increases in inverse proportion to the effect size,
and the frequency of the disease-causing allele.84

The available evidence suggests that the heri-
tability of complex traits is mostly explained by
numerous common variants (MAF >−5%), the vast
majority of them having small effect size.11 Even
after accounting for all known genetic factors, the
inherited fraction of FLD susceptibility remains
unexplained for >65%.14 However, rare variants
(MAF <1%) with large effect sizes are still expected
to contribute,85 as recently reported for NAFLD-
related HCC,37 but we must suppose that a large
number of common genetic risk variants remain to
be identified. The most straightforward strategy to
overcome the current limitation in statistical po-
wer is to increase the sample size of study co-
horts,86 and this approach has proven successful in
other complex liver diseases (Fig. 2). For each
phenotype, the number of identified loci markedly
increases above a certain threshold and this num-
ber has currently not reached a plateau in any
complex disease.87,88 The sample size in NAFLD
GWAS published to date is relatively modest;19–21

for instance, variants in PNPLA3 or TM6SF2 were
captured because their effect size per risk allele is
much larger than those usually reported in other
complex traits (OR typically <1.3).83 The growing
availability of large publicly available databases
linked to GWAS data, such as the UK Biobank,88

will hopefully empower variant discovery.47,48

Nevertheless, more large-scale collaborative ef-
forts that systematically assess FLD in well-
characterised cohorts are warranted, as increasing
the sample size will inevitably result in the dis-
covery of additional risk loci.

To date, the overwhelming proportion of GWAS
have been published in individuals of European
descent.83 However, genetic architecture varies
between populations of different ethnic back-
ground and current published GWAS findings may
not be generalisable to other populations, as
highlighted in a recent well-powered multi-ethnic
GWAS of 26 clinical and behavioural phenotypes.89

A strength of currently available FLD-GWAS has
been the evaluation of multi-ethnic cohorts
including individuals of African ancestry.19,21 This
led to the demonstration that PNPLA3 I148M ac-
counts for more than half of the inter-ethnic vari-
ability in the predisposition to develop FLD.19 Of
note, PNPLA3 rs6006460[T] (S453I protein variant)
was found to be associated with lower hepatic fat
content and was common in African Americans
(MAF = 0.104), but rare in European Americans
(MAF = 0.003) and Hispanics (MAF = 0.008).19

Similarly, a variant in HSD17B13 (rs143404524,
A192fs) which may confer loss-of-function, had a
higher frequency in individuals of African ancestry
6–1209
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(MAF = 0.187) than in those of Hispanic (MAF =
0.024) or European (MAF = 0.002) descent.90 The
allelic frequency of the major common risk variants
for NAFLD in different populations is reported in
Table 1. These findings imply that future GWAS will
have to include diverse populations to increase the
likelihood of capturing new risk variants for FLD.

Another approach to discover new genetic de-
terminants of FLD may be represented by the valida-
tionof theassociationof this conditionwithcandidate
variants that have been robustly demonstrated to
influence FLD-related traits. For example, MBOAT7
variation was identified as a determinant of alcohol-
related cirrhosis, while GCKR variation was a modu-
lator of circulating glucose and triglycerides.28,91

Gene-environment and gene-gene interactions
As in other complex traits, NAFLD results from the
interplay between environmental determinants
(e.g. adiposity, type 2 diabetes) and genetic varia-
tions. The impact of a given variant may be
modulated by the magnitude of an environmental
factor of the studied trait (i.e. gene-environment
interactions) or by the number of alleles of
another genetic variant (i.e. gene-gene in-
teractions).92 This phenomenon may also account
for a fraction of the missing heritability of NAFLD.
However, the lack of robustly replicated gene-
environment or gene-gene interactions, to date,
did not point to a predominant influence on the
risk of most complex traits.93

Gene-environment interactions in NAFLD have
been reported in mouse models, where genetically
modified mice expressing PNPLA3 I148M did not
develop steatosis when fed with a low-fat chow
diet but experienced an increase in hepatic fat
compared to wild-type mice when on a high-
sucrose diet.94 In humans, the interaction be-
tween adiposity and PNPLA3 I148M has been
demonstrated in two large cohorts from the gen-
eral population.95 The impact of the I148M variant
on steatosis accumulation, inflammation (using
alanine aminotransferase levels as a surrogate)
and the risk of cirrhosis was modulated by body
mass index (BMI) (Fig. 3). Most of the effect was
observed for individuals who were obese (BMI of
30–35 kg/m2) or very obese (BMI >35 kg/m2),
indicating that the impact of PNPLA3 variation on
the natural history of NAFLD is strongly dependent
on BMI levels.95 The authors also observed an
interaction between BMI and TM6SF2 E167K and
GCKR P446L on steatosis accumulation. However,
no interactions were detected for other BMI-
associated phenotypes (e.g. circulating tri-
glycerides), suggesting a robust and specific gene-
environment interaction between FLD risk vari-
ants and adiposity.95 The mechanism underlying
FLD development in obese individuals at high ge-
netic risk may be related to the development of
insulin resistance and hyper-insulinemia.96
Journal of
In addition, 30 SNPs previously linked to BMI
were incorporated into a risk score that was also
associated with hepatic fat, indicating that the ge-
netic susceptibility to NAFLD goes beyond PNPLA3,
TM6SF2 and GCKR loci and also involves gene-gene
interactions.95 Overall, gene-environment and
gene-gene (genetic epistasis) interactions modu-
late NAFLD promotion and progression and may
therefore account for some of the unexplained
heritability of NAFLD. Therefore, to increase the
power to identify new genetic determinants of FLD,
future studies should consider the interaction with
environmental and genetic triggers or consider
studying individuals at higher environmental or
genetic risk. For example, one would expect that
conducting GWAS in well-phenotyped insulin
resistant patients not selected for liver damage –

rather than individuals from the general popula-
tion – would increase the statistical power to
detect new variants, especially protective ones,
that modulate FLD risk.
Hepatology 2020 vol. 72 j 1196–1209 1201
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Key point

No single genetic variant is
capable of adequate risk
stratification in NAFLD.
However, combining
numerous variants in poly-
genic risk scores is an
attractive approach that
has shown promising re-
sults in other complex
traits.
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A roadmap to clinical translation
Based on the evidence reviewed in this manuscript,
we propose a checklist for genetic studies aimed at
further advancing the field of NAFLD, to ensure
methodological robustness, reproducibility, and
clinical relevance (Table S1). This is not an alter-
native to the STrengthening the REporting of Ge-
netic Association Studies (STREGA) reporting
guidelines,97 which should be taken into consid-
eration, but provides specific suggestions relevant
for NAFLD.

Disease prediction
Results of variant associations in GWAS are usually
reported with their effect sizes (e.g. ORs) and p
values.83 These metrics assess the strength of an
association but do not reflect the ability of the
variant to classify individuals between cases and
control.98 Thus, modest to large ORs and extreme
statistical significance do not necessarily ensure
clinical relevance and other measures like sensi-
tivity, specificity, and especially positive and
negative predictive values might be more appro-
priate for risk prediction.99 Although the most
appropriate method to evaluate the utility of ge-
netic variant risk estimates is still under debate,100

their performance is frequently assessed by the
area under the ROC curve (AUC), which summa-
rises the true-positive rate (sensitivity) and false-
positive rate (1 – specificity) for a binary
outcome, the AUC values range from 0.5 to 1 cor-
responding to a null and perfect predictive ability,
respectively.101 The proportion of explained heri-
tability impacts the specificity and sensitivity of the
Journal of Hepatology 2020 vol. 72 j 119
genetic classifier tested, thus as more heritability in
a phenotype is explained, the AUC will increase.102

In the field of FLD, the predictive value of
PNPLA3 I148M has been frequently discussed. This
was justified by the robust and reproducible asso-
ciation with ORs often greater than 2 for various
outcomes, independently of classical risk fac-
tors.9,103 The contribution of PNPLA3 I148M to
NAFLD heritability may range from mild,13 to as
much as 5–10% of the total variation in liver fat.95

Although remarkable, this proportion remains
modest for a relevant clinical predictor, and
accordingly, EASL guidelines do not yet recom-
mend the use of this variant in routine clinical
practice to assess the risk of liver damage and HCC
in NAFLD.104 Indeed, carriage of the variant had a
high specificity for NAFLD-related HCC at the
population level, but the accuracy was lower in a
subsequent study.26,37,105

Since no single SNP is capable of adequate risk
stratification in complex diseases, the predictive
ability of gathering numerous variants in polygenic
risk scores (PRSs) is a sensible approach.100 PRSs
reflect the risk aggregation of multiple variants and
might be calculated as a weighted sum of disease-
risk alleles carried by an individual.106 This method
has been shown to successfully pinpoint in-
dividuals at an increased risk of developing coro-
nary heart disease (3–5-fold greater risk than the
rest of the studied population),107 and outperform
existing clinical models for the prediction of breast
cancer with personalised recommendations for
screening.108 Unsurprisingly, the incorporation of
other risk factors into an integrative model
6–1209
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significantly improves the overall risk prediction of
PRS alone.109

Development of PRSs is emerging in the field of
FLD where common and rare variants have been
robustly associated with the risk of progressive
NAFLD independently of clinical risk factors
including the severity of liver fibrosis,14,22,38 but
there are very fewdata on their clinical usefulness so
far. Accordingly, a comprehensive PRS was superior
to evaluation of PNPLA3 I148M and TM6SF2 E167K
alone, and led to an improvement of risk prediction
in about20%ofpatientswithNAFLDnot identifiedby
classical risk factors in a cross-sectional study.37

These initial figures may underestimate the utility
of PRSs in disease risk stratification, as their full
relevance in predicting long-term outcomes inde-
pendently of the baseline severity of the disease, as
determined by clinical, biochemical and imaging
data, will only be appreciated when data from long-
term prospective studies become available. Of note,
as PRSs are derived from GWAS that have mostly
been performed in individuals from European
descent they may not be meaningful to populations
of other ancestry.110 Failure to include individuals
from diverse ancestry will increase heath disparities
andhamper theutilityof geneticfindings likePRSs in
the multi-ethnic populations seen in clinical
practice.89

PRSs in combination with environmental factors
have the potential to improve disease screening for
Journal of
NAFLD-related cirrhosis and HCC and to help target
lifestyle interventions to high-risk individuals
(Fig. 4). Nevertheless, the utility of this integrative
risk approach will be even more beneficial to
clinical decision-making when more effective
therapeutic interventions become available in
NAFLD. However, before PRSs can be effectively
translated into daily clinical practice they will need
to be extensively validated in studies assessing a)
clinical utility – preferably in large-scale prospec-
tive cohorts which are less prone to bias than case-
control studies and where positive and negative
predictive values can be directly estimated111 – b)
cost-effectiveness, and c) communication strategy
to provide meaningful risk information to patients
but also to hepatologists and other physicians un-
familiar with these risk metrics and important
caveats.100,110,112

Optimisation of medical therapy and drug
discovery
In keeping with the role of adiposity in triggering
the phenotypic expression of the PNPLA3 I148M
variant, homozygotes have a greater reduction in
liver fat following rapid weight loss than wild-type
individuals.113 The genetic background may also
affect the mechanism underlying NAFLD develop-
ment; for example in PNPLA3 I148M carriers, fat
accumulation seems more dependent on reduced
remodelling than on increased de novo
Hepatology 2020 vol. 72 j 1196–1209 1203
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lipogenesis.114 This concept may help explain in-
dependent observations that PNPLA3 I148M car-
riers do not show improvement of liver damage
from approaches that target hepatic lipogenesis,
including supplementation with x3 fatty acids and
statin therapy, which on the other hand may be
beneficial in non-carriers.115–117

FLD risk variants can also predict the likelihood
of liver-related adverse events in response to hor-
mones. Carriage of the PNPLA3 I148M variant
modifies the impact of basal insulin peglispro on
hepatic fat accumulation, leading to a higher
probability of developing liver damage in homo-
zygous patients with type 2 diabetes shifted to this
treatment.118 These data suggest that it will be key
to evaluate the influence of the genetic background
on new therapeutic approaches for NASH.119 In
addition, evaluation of FLD risk variants could be
implemented in clinical studies for stratification of
progression risk and sub-phenotyping of NAFLD.

The available evidence shows that the selection
of genetically supported drug targets doubles the
likelihood of successful clinical development and
may therefore improve the cost-effectiveness of
the drug development pipeline.120 Interestingly, a
variant with a small effect size on protein level and
disease risk does not imply that the related protein
will not be a relevant drug candidate.93 As an
illustration, common SNPs near PCSK9 – encoding a
serine protease binding to low-density lipoprotein
(LDL) receptors – have mild influence on LDL-
cholesterol levels which contrast with the strong
impact of the inhibition of PCSK9 mediated by a
monoclonal antibody.91,121
Journal of Hepatology 2020 vol. 72 j 119
Genetic variants are inherited at conception
independently of confounding factors for NAFLD.
When FLD risk variants have a robust impact on
biological pathways or on the expression/activity of
specific proteins, under some assumptions these
can be used as lifelong proxies to gain insight into
the impact of therapeutic manipulation of these
specific targets. This “Mendelian randomisation”
approach – a genetic epidemiology method that
uses genetic variants to determine whether an
observational association between a risk factor and
a given phenotype is consistent with a causal ef-
fect122 – has already led to the development of
innovative therapies against cardiovascular dis-
eases.123 Therefore, identification of new FLD risk
variants can lead to the selection of the most
promising pharmacological targets to treat this
condition (as recently reviewed by Romeo et al.
in124). For example, when the detrimental effect of
a variant is due to a new activity of the protein
allele associated with FLD risk, as in the case of
PNPLA3 I148M, silencing of the expression in the
liver may represent a promising approach.125 In a
proof-of-principle study, antisense oligonucleo-
tides against Pnpla3 were injected into mice fed
steatogenic diets. These were able to reduce he-
patic fat, inflammation, and fibrogenesis in mice
engineered to express the Pnpla3 I148M protein
more markedly than in wild-type littermates.126

These data support the feasibility of a precision
medicine approach to eliminate the cause of liver
damage in carriers of specific genetic determinants
(Fig. 5). Whether the utility of this personalised
approach will be confirmed in clinical studies and
for rarer genetic determinants of severe
NAFLD37,127 remains to be determined.

Conclusions and practical
recommendations
Specific genetic risk variants have now been
robustly confirmed to exert a large impact on
NAFLD, with an effect size comparable and synergic
to that of the main metabolic risk factors, namely
obesity and type 2 diabetes. This risk increase ex-
tends to the development and progression of the
full spectrum of NAFLD, extending to liver-related
and overall mortality. Furthermore, genetic risk
variants may be able to profile subsets of patients
with different pathophysiology and response to
treatment. We therefore surmise that the time has
come to evaluate the efficacy and cost-
effectiveness of genotyping FLD variants in clin-
ical practice and research.

As single genetic variants are incapable of in-
dividual risk profiling, the most attractive approach
to date is the development and validation of PRSs.
However, the number of loci currently associated
with NAFLD prevalence and outcomes remains
limited compared to other complex diseases
(Fig. 1). Since sample size remains the main
6–1209



Table 2. Settings of application of genetic testing in NAFLD/NASH for research and clinical purposes.

Research

Application Goal Instrument Stage of
development

Future perspectives

Identification of
new genetic
determinants

Discovery new causes of disease and
the underlying mechanism

GWAS using SNP arrays
followed by imputation,
WES, WGS and
candidate gene studies

Ongoing Gain a more complete picture by
identifying variant with a smaller
effect and less frequent;
Identification of new therapeutic
targets

Development of
PRS

Improve risk stratification Genetic scores or
algorithms

Ongoing Develop new predictive tools based on
artificial intelligence algorithms

Mendelian
randomisation studies

Examine the causal relationship
between NAFLD or alteration in spe-
cific pathways and clinical outcomes

Single variants and PRS Ongoing Identify the role of liver fat in extra-
hepatic complications of the disease;
predict the impact of therapeutic
approaches on liver damage

Clinical trials - Recruit patients at higher risk of
progression to increase power

- Stratification for genetic risk
- Evaluation of outcomes in genetic
subgroups

Single genetic variant
relevant to the drug
mechanism, PRS

Early stage,
scant results
reported

Wider implementation, results presen-
tation for major subgroups (based
on PNPLA3 I148M and PRS levels
status)

Clinic

Setting Goal Instrument Stage of development Future perspectives

Liver damage screening
in the population or
high-risk groups

Identify patients
with severe
NAFLD/NASH

PRS combined with
classical risk factors

Scant data available
for single variants

Collect data in large
cross-sectional cohorts
and combine algorithms
with classical risk factors,
non-invasive biomarkers
and imaging studies

Stratification of the risk
of liver-related events

Identify patients with
progressive NAFLD/NASH

PRS combined with
classical risk factors

Scant data available
for single variants

Collect data on prospective
cohorts; utility for indication
for therapy at early stage to
maximize the beneficial impact?

HCC surveillance Identify patients for
whom surveillance
is cost-effective

PRS combined with
classical risk factors

Initial data from
cross-sectional studies

Validation in multicentre
perspective cohorts

Prediction of response
side/effects of therapies

Personalise therapeutic
managements

Single variants and PRS Initial data for single
variants for drugs for
cardiometabolic risk
prevention

Collect data on therapies
indicated for NAFLD/NASH

GWAS, genome-wide association studies; HCC, hepatocellular carcinoma; NAFLD, non-alcoholic fatty liver disease; NASH, non-alcoholic steatohepatitis; PRSs, polygenic risk
scores; WES, whole-exome sequencing; WGS, whole-genome sequencing.
limitation, performing additional powerful GWAS
using SNP arrays and next-generation sequencing
methods (WES, WGS) will result in the discovery of
additional common and rare variants and inevi-
tably enhance our comprehension of NAFLD
biology and individual risk stratification, aiding
drug development. Therefore, we strongly advo-
cate for the reinforcement and the creation of
novel large-scale collaborative initiatives to gather
and/or build extensively phenotyped cohorts with
prospective follow-up in Europe and worldwide.
These new GWAS will also have to include in-
dividuals regardless of ethnic background if genetic
discovery and precision medicine are to benefit all
patients with FLD. Although we are not ready for
the translation of PRSs into daily clinical practice,
the time may have come to evaluate the efficacy
and cost-effectiveness of genotyping FLD variants
in combination with other risk factors in (pro-
spective) population-based cohorts.

Finally, the possible scenarios for application of
genetic testing for both clinical research and
Journal of
practice in NAFLD/NASH in the near future are
presented in Table 2.
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