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Joël DE CONINCK Université de Mons
Frédéric DEBASTE Université libre de Bruxelles
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Thierry ONDARÇUHU Institut de Mécanique des Fluides de Toulouse
David SEVENO Katholieke Universiteit Leuven
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ABSTRACT

This thesis highlights generic aspects of contact angle hysteresis and stick-slip motion,

encountered in most practical wetting situations.

First, we study the scaling relation between the heterogeneity strength and the am-

plitude of the contact angle hysteresis it induces in the model configuration of a chem-

ically heterogeneous microchannel. A key parameter which determines the qualitative

features is the heterogeneity wavelength. In particular, we identify a near-threshold

behavior where the quadratic scaling between the heterogeneity amplitude and the re-

sulting hysteresis, already known for a dilute system of wetting defects, is explained

by the closeness to the threshold, and a macroscopic limit without observable stick-slip

where this scaling is linear.

In the second part, we adapt the description to the configuration of a meniscus

around a wavy fibre. This adaptation brings the generic results of the first part in the

reach of experiments. A comparison with experiments is achieved at the level of the

individual topography-induced jumps.

In the third part, we expand the formulation to treat the quasi-steady interface shape

contact line dynamics and study how the the presence of stick-slip motion at the ob-

servable or unobservable scale modifies the scaling relation between the contact line

velocity and contact angle. We recover the known result that the scaling exponent de-

pends on the nature of the externally controlled parameter, identify the causes of this

dependency in the corresponding static limits, and predict the disappearance of this de-

pendency above a critical velocity which decreases with the heterogeneity wavelength.

Finally, we show trough examples how the modelling framework which permits

capturing contact angle hysteresis and stick-slip motion in a minimalistic way can be

adopted to treat configurations with a finite amount of contact points, or the 3D problem

of a drop with a deformed contact line. We discuss the arising configuration-specific

effects, also in configurations of biomimetic interest.

Keywords: Wetting, Spreading, Contact angle hysteresis, Stick-slip, Cox-Voinov.
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RÉSUMÉ

Cette thèse met en évidence les aspects génériques de lhystèrèse de l’angle de con-

tact et du mouvement du type stick-slip, rencontrés dans la plupart des situations pra-

tiques impliquant mouillage.

Nous étudions d’abord les lois de puissance entre la force de l’hétérogénéité et

l’amplitude de l’hystérésis de l’angle de contact qu’elle induit dans la configuration

modèle d’un microcanal chimiquement hétérogène. Un paramètre clé qui détermine

les caractéristiques qualitatives est la longueur d’onde de l’hétérogénéité. En partic-

ulier, nous identifions un comportement proche du seuil où la relation est quadratique,

comme déjà connue pour l’hystérésis induite par des défauts de mouillabilité peu es-

pacés, qui s’explique par la proximité du seuil et une limite macroscopique sans stick-

slip observable où la relation est linéaire.

Dans la deuxième partie, nous adaptons la description à la configuration d’un

ménisque autour d’une fibre ondulée. Cette adaptation amène les résultats génériques

de la première partie à la portée des expériences. Une comparaison avec les expériences

est réalisée au niveau des sauts individuels induits par la topographie.

Dans la troisième partie, nous développons une formulation pour traiter la dy-

namique de la ligne de contact en supposant une forme d’interface quasi-statique et

étudions comment la présence du mouvement de type stick-slip à l’échelle observ-

able ou non observable modifie la loi de puissance entre la vitesse de la ligne de con-

tact et l’angle de contact. Nous retrouvons le résultat connu que la loi de puissance

dépend de la nature du paramètre macroscopique qui est modifié de manière externe

pour controler le mouvement de la ligne de contact, identifions les causes de cette

dépendance dans les limites statiques correspondantes et prévoyons la disparition de

cette dépendance au-dessus d’une vitesse critique qui diminue avec la longueur d’onde

de l’hétérogénéité.

Enfin, nous montrons à travers des exemples comment le cadre de modélisation

permettant de capturer de manière minimaliste l’hystérésis de l’angle de contact et le

mouvement stick-slip peut être adapté pour traiter des configurations avec une quantité

finie de points de contact, ou le problème 3D avec une ligne de contact déformée.

Nous discutons l’apparition des effets spécifiques aux configurations, aussi dans les

configurations d’intérêt biomimétique.
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Chapter 1

Introduction

1.1 Context - contact lines in nature, industry and ev-
eryday life

Many processes in nature, industry and everyday life involve the contact between
gaseous, liquid and solid substances. These substances meet and exchange physical
quantities at interfaces. These interfaces, in their turn, meet at three phase contact
lines, or in short, contact lines. The intriguing behavior of contact lines still poses
many generic and fundamental questions, the answers to which will improve the un-
derstanding of numerous phenomena [1, 2].

A typical feature of contact lines is that they can stay pinned, causing for example
droplets to stick on inclined surfaces. In everyday life, we witness raindrops sticking
on windows and when applying a dressing to a salad, we count on the sticking of its
droplets on the salad leaves. Farmers spraying their crops with pesticides and other
agricultural sprays [3] count on the same phenomenon for the effectivity of their treat-
ment and to minimize chemical runoffs [4, 5]. For most industrial processes on the
other hand, the sticking of drops of reactants or fuel on walls [6] constitutes a loss at
best.

The pinning of contact lines, along with the fact that liquids evaporate fastest at
contact lines, leads to the so-called coffee stain effect [7]. The name stems from a
spilled coffee drop, which when left to dry, deposits its non-volatile solutes preferably
at its contact line, and thereby leaves a circular stain. A better understanding of the
contact line physics can lead to strategies to achieve the controlled self-assembly of
the solutes [8], or on the contrary to achieve a homogeneous deposition of solutes as
desired in inkjet printing of circuits, OLED displays, drying of paint and coatings [9].

On a more general note, the relative importance of contact lines and interfaces
over the bulk substances increases as systems become smaller in size. Whereas the
motion of large bodies of water is dominated by gravity, at the sub-millimeter scale,
forces which act on interfaces dictate the physics. The miniaturisation of flows for
pharmaceutical, analytical chemistry and chemical production purposes has intrinsic
benefits such as reducing reactant volumes, and reaction times, and has given birth
to the fast growing field of microfluidic technologies [10, 11, 12]. In soil science,
interfaces and contact lines dominate the penetration of water and oil into the micro-
scale pores of rocks [13, 14]. When gravity is absent, surface phenomena are dominant

1
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up to larger length scales, and can be manipulated to move liquids around, for example
to feed satellite motors with fuels [15, 1].

Nature contains numerous striking examples where the features of contact line mo-
tion are ensured to occur in such a way that it serves the needs of living beings, often
inspiring engineering applications. A long list of known instances includes the self-
cleaning property of lotus leaves [16], the water-walking ability of insects [17, 18],
the anisotropic drop motion on butterfly wings [19], the anti-fogging properties of
mosquito eyes [20], the various water collection systems present in plants and ani-
mals in dry habitats [21], and the feeding mechanism of shorebirds where they pin a
drop inside their beak, and control its motion by opening and closing it [22].

Before describing with more rigour why contact lines get pinned, how the con-
tact line motion can be modelled and understood in such systems, and which are the
generic questions mentioned in the first paragraph, let us rehearse in the next sections
the required basic concepts, starting from the deformability of liquid-gas interfaces.

2
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1.2 Basic concepts - deformable interfaces and surface
tension

At a contact line, three immiscible, or partly miscible, phases make contact with each
other. This makes an adequate description of the contact line behavior an inherently
multiphase problem. We are interested in cases where one of these phases is a rigid
solid. As gases are always miscible with each other, one of the remaining phases must
be a liquid and the other one can be a gas or another liquid.

Liquids and gases have no fixed shape and interfaces between them are deformable.
In a liquid, molecules feel mutual attraction, but can move around with greater free-
dom than in solids where they are held together by chemical bonds. In a gas, thermal
agitation dominates over these attractive forces, leaving molecules the freedom to oc-
cupy all the space available. Let us consider a liquid-gas interface (Fig. 1.1). A liquid
molecule in the bulk is surrounded by more attractive neighbors than one at the inter-
face. Therefore, an energetically favorable distribution of the liquid molecules would
be one with the least possible amount of liquid molecules at the interface. Or, these
cohesive interactions in the liquid and the lack of similar interactions with the gas will
favour the deformations of the interface in the direction of minimizing the interface
area.

Figure 1.1: Surface tension on flat liquid-gas interface. (a): Physical origin, (b): Suc-
cessful macroscopic description.

Surface tension is the manifestation of this effect at the macroscopic scale, defined
first by Gibbs [23] as a thermodynamic quantity, multiplying the additional (or excess)
internal energy term associated with an increase of the extensive parameter which is
the area of the surface separating the two phases. Then, the internal energy variation
dU of a liquid-gas system can be expressed starting from the first principle of thermo-
dynamics as,

dU = µldnl + µgdng + TdS − pdV + γdA, (1.1)

where nl, ng , S and V are respectively the number of liquid molecules, the number
of gas molecules, the entropy and the total volume, and µl, µg , T and p are respectively
the chemical potential of the liquid, the chemical potential of the gas, the temperature
and the pressure, Eq. 1.1 defines the surface tension γ

[
J/m2

]
as the increase in inter-

nal energy due to the increase of the interfacial surface area A by one unit. In figure
1.1, dA = dx per unit length in the orthogonal direction. The magnitude of γ can be
related to the cohesive energy per molecule, divided by its exposed area [1] and is for
example larger for water (0.072J/m2), where hydrogen bonds enhance cohesion, than

3
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for oils where only van der Waals interactions are present (≈ 0.02J/m2).
Defining the Helmoltz free energy F ≡ U − TS, Eq 1.1 can be rewritten as,

dF = µldnl + µgdng − SdT − pdV + γdA (1.2)

Therefore, at constant temperature T , the number of moles nl + ng ≡ n, and
volume V , surface tension is the free energy F per unit interfacial area,

γ =

(
∂F

∂A

)
T,V,n

. (1.3)

It follows from thermodynamic considerations that interfaces exert forces. The
forces arising from surface tension γ [N/m], which can also be thought of as the inter-
face version of pressure, are termed capillary forces and will be introduced in section
1.3.2. For example, the flat elementary interface drawn in Fig. 1.1 will feel a force
γ(x) per unit length in the direction orthogonal to the drawing, acting where the inter-
face is cut in the direction tangential to the interface. If the surface tension is uniform
along the interface, then this interface element can remain static. If not, the net force
will drive a Maragoni flow. In what follows, we will assume that γ (function of the
temperature and the chemical composition) is constant. Similarly, if the interface is not
flat but curved, the same forces enable it to accommodate in static conditions a pressure
difference between the two phases. The static shapes adopted by deformable interfaces
is explained by the Young-Laplace law.

4
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phase a

Φ1

Φ2

R1

R2
dA

dA

�z

phase b

Figure 1.2: Infinitesimal displacement of an infinitesimal interface element over dis-
tance δz.

1.3 Statics of deformable interfaces - the Young-Laplace
law

1.3.1 A derivation of the Young-Laplace law
The Young-Laplace law can be derived from considerations of force equilibrium or the
minimization of surface energy, a version of the latter (from [24]) is given below.

Consider the displacement of an infinitesimal surface element of an interface be-
tween immiscible phases a and b. The temperature and number of molecules in both
phases stay constant, while the area of the element changes from dA to dA′, and the
volume of phase a increases by δV (Fig. 1.2). In equilibrium,

δF = δWp + δWγ = 0, (1.4)

where δWp is the work done by pressure forces to change the volume, and δWγ is
the work done by the surface tension to change the interfacial area.

The volume variation between the initial and final surface elements is δV = δzdA.
Therefore, the pressure work of the displacement is,

δWp =

∫
(pb − pa) δzdA. (1.5)

Similarly, the work of the surface tension forces is given by

δWγ = γδA, (1.6)

with,

δA = dA′ − dA, (1.7)

5
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the increase in surface area. The right-hand side of Eq. 1.7 can be expressed in
terms of the curvature of the principal normal sections. As these sections are orthogonal
to each other, the areas dA and dA′ are given by the product of the length elements
along them, i.e. dA = ds1ds2 and dA′ = ds′1ds

′
2. These length elements can be

expressed as, {
ds1 = R1φ1

ds′1 = (R1 + δz)φ1,
(1.8)

with similar expressions for ds2 and ds′2, leading to{
ds′1
ds1

= 1 + δz
R1

ds′2
ds2

= 1 + δz
R2
.

(1.9)

Substitution of Eq. 1.9 into Eq. 1.7 gives

δA = ds′1ds
′
2 − ds1ds2 =

(
1 +

δz

R1

)(
1 +

δz

R2

)
dA− dA

=

(
δz

R1
+
δz

R2
+

δz2

R1R2

)
dA ≈

(
δz

R1
+
δz

R2

)
dA =

(
1

R1
+

1

R2

)
δzdA,

(1.10)

where the last approximation is justified as δz is small compared to R1 and R2.
Now, substitution of Eqs. 1.5 and 1.10 in the equilibrium condition (Eq. 1.4) yields

∫
(pb − pa) δzdA+

∫
γ

(
1

R1
+

1

R2

)
δzdA

=

∫ (
(pb − pa) + γ

(
1

R1
+

1

R2

))
δzdA = 0,

(1.11)

As Eq. 1.11 must hold for any δz, we conclude that the integrand must be zero,
leading to the Young-Laplace equation

pa − pb = γ

(
1

R1
+

1

R2

)
. (1.12)

The right hand side of Eq. 1.12 is called the Laplace pressure, the curvature pres-
sure or the capillary pressure, and can be rewritten in vectorial form as

pa − pb = −γ∇ · ~n, (1.13)

where ~n is the unit normal on the interface, pointing towards phase b, and −∇ · ~n
is twice the mean curvature H . For an interface specified by a surface z = h(x, y) in
Cartesian coordinates the unit normal is given by

~n =
∇ (z − h(x, y))

|∇ (z − h(x, y)) |
=
−hx~1x − hy~1y +~1z(

1 + h2
x + h2

y

) 3
2

, (1.14)

in the notation of which we have followed the convention of denoting partial deriva-
tives by subscripts, ∂A∂X = AX , and the vectors~1X are unit vectors along the coordinate
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in the subscript. With the use of Eq. 1.14, the right-hand side of Eq. 1.13 can be ex-
plicited as,

− γ∇ · ~n = γ

(
1 + h2

x

)
hyy +

(
1 + h2

y

)
hxx − 2hxhyhxy(

1 + h2
x + h2

y

) 3
2

. (1.15)

For an interface specified by surface in polar coordinates, z = h(r, φ), substituting
x = r cosφ and y = r sinφ in Eq. 1.15 and simplifying yields,

− γ∇ · ~n = γ
hr
[
r2
(
1 + h2

r

)
+ 2hφ (hφ − rhrφ)

]
+ rhrr

(
r2 + h2

φ

)
+ rhφφ

(
1 + h2

r

)[
r2 (1 + h2

r) + h2
φφ

] 3
2

.

(1.16)
If pa and pb in the left-hand side of Eq. 1.13 are constant, the static interface shape

will be one of constant mean curvature. This is however not true in cases where the
buildup of hydrostatic pressure in the fluids by gravity needs to be taken into account.
This hydrostatic pressure can be taken into account in the right-hand side of Eq. 1.13,
as a vertical variation of the pressure. This effect is neglected for typical system sizes
much smaller than the capillary length lc = (γ/∆ρg)

1/2, where g is the gravitational
acceleration and ∆ρ is the difference between the fluid densities. The square of the
ratio of the typical system size divided by the capillary length emerges naturally in
many models [25, 26, 27] incorporating both effects and is called the Bond number.

1.3.2 Static interfaces of interest and capillary forces
In the general case, as can be seen from Eq. 1.15 or Eq. 1.16, the Young-Laplace equa-
tion is a second order partial differential equation, to be posed with four appropriate
boundary conditions. A fifth condition is necessary in many cases where the value of
the accommodated pressure difference pa − pb is not known. This section contains
selected examples of solutions of the Young-Laplace equation, which we apply for dif-
ferent wetting configurations. We discuss quantities which are free to be chosen, the
amount of which is reduced by symmetries or constraints.

We will also calculate for the example geometries the capillary force, defined as
the net force acting on an interface resulting from Laplace pressure and show that this
force can be deduced directly from the geometry of the liquid-gas interface at its end
points. Considering capillary forces in the presence of substrates, as in later sections,
requires care in the proper and complete definition of a system on which the forces act
(see for example [28] for a discussion on the subtlety of this point).

1.3.2.1 Spherical interfaces

Any spherical interface is, in the absence of hydrostatic pressure, a trivial solution of
the Young-Laplace equation because all points on a spherical cap have the same radii of
curvature equal to the radius of the sphere, i.e. R1 = R2 = R. Therefore the pressure
of the phase at the inner side of the sphere is higher than the pressure of the phase on
its outer side by a quantity

∆p =
2γ

R
. (1.17)

Any liquid-gas interface which is a part of a spherical shell satisfies the Young-
Laplace law. So does an interface which has the form of a spherical shell delimited by
a plane, or in short a spherical cap. This shape is adopted by for example small sessile
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or hanging drops, and by the meniscus of a liquid column inside a thin tube. A sphere is
a shape characterized by the location of the middle point and a radius R, which makes
four parameters in the three dimensional space.

The spherical sessile drop shown in Fig. 1.3a could be for example described by a
volume, a contact radius, the angle it makes with the substrate (which is constant along
the contact perimeter), the horizontal position of the apex, the Laplace pressure, etc.
A straight-forward choice here is to characterize the drop by a contact radius Rc, the
angle θ it makes with the substrate and the two coordinates of its apex. For any choice
of these quantities, there exists a static spherical interface with a corresponding value
of the volume and Laplace pressure,

∆p =
2γ sin θ

Rc
. (1.18)

Similarly, a spherical meniscus inside a thin capillary tube (Fig. 1.3b) is determined
by four parameters, i.e. the radius Rt of the tube, the angles the meniscus makes with
the tube at two points (which differ from each other the sphere center is not on the axis
of the cylinder) and the mean height of the meniscus. If the meniscus makes a constant
angle θ with the tube, then the value of the capillary pressure is,

∆p =
2γ cos θ

Rt
. (1.19)

1.3.2.2 Cylindrical interfaces

Any cylindrical interface is, in the absence of hydrostatic pressure, a trivial solution
of the Young-Laplace equation because all points on a cylinder have the same radii of
curvature, namely R1 = R equal to the radius of the cylinder, and R2 =∞. Therefore
the pressure of the phase at the inner side of the cylinder pa is higher than the pressure
of the phase on its outer side pb by a quantity,

∆p =
γ

R
. (1.20)

A circle is characterized by the location of the middle point and a radius R, which
makes three parameters.

This shape is for example adopted by the meniscus of a liquid squeezed between
two plates. Possible quantities to describe such configuration include the angle the
meniscus makes with the upper plate, the angle that the meniscus makes with the lower
plate, the positions where the meniscus touches the two plates, the distance and angle
between the two plates, the volume of the liquid, the pressure inside the liquid, the
position of the apex of the meniscus etc. For the meniscus to be circular and thereby
static, only three of them can be chosen independently. For a meniscus between parallel
plates (Fig. 1.3c), which has the same angle at the two plates, and which is described
by the inter-plate distance b, the contact angle θ and the coordinate of the contact line,
the volume is determined and the Laplace pressure is given by,

∆p =
2γ cos θ

b
. (1.21)

Similarly, a cylindrical sessile drop, described by a contact radius Rc and an angle
θ and a lateral translation, will have a Laplace pressure of

9
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∆p =
γ sin θ

Rc
. (1.22)

1.3.2.3 Almost flat interfaces

Any flat interface is a trivial solution of the Young-Laplace equation with pa = pb.
This can be seen by choosing R1 = R2 = ∞ in Eq. 1.12, or by setting all partial
derivatives to zero in Eq. 1.15.

For almost flat interfaces, where the interface height h varies over a large typical
length scale h

ε , with smallness parameter ε� 1, Eq. 1.15 simplifies to

− γ∇ · ~n = γ (hxx + hyy) , (1.23)

at lowest order. This form of the Laplace pressure is a boundary condition con-
sistent with the lubrication approximation, a framework which gives physical insight
into intricate multi-phase problems and in particular interface instabilities[29]. In the
lubrication theory, the smallness of ε enhances the analytical tractability of flows in-
side thin films by justifying to neglect the non-linear inertial terms in the Navier-Stokes
equation, which describes the momentum conservation inside the liquid. This type of
analysis can for example tell which physical effects will dampen or amplify the initially
small perturbations of an almost flat (or almost cylindrical) interface. A well-known
surface tension driven instability is the Rayleigh-Plateau instability by which a cylin-
drical liquid jet disintegrates into droplets, leading to a decrease in the interfacial area.

In the absence of hydrostatic pressure, the 2D equivalent of Eq. 1.23, hxx = 0,
predicts a static parabolic interface shape h = ax2 + by + c with three coefficients, a,
b and c. This shape can be for example adopted by a thin drop. This drop satisfies the
Young-Laplace law and is therefore static for any arbitrary choice of (small) contact
angle θ, (large) contact radius Rc and apex position. If those quantities are chosen, the
volume and the pressure are given by the Young-Laplace equation,

∆p =
γ tan θ

Rc
≈ γθ

Rc
. (1.24)

Similarly, a thin drop which is a paraboloid of revolution, h = αr2 +βr+γ, which
has a contact angle θ and a contact radius Rc will have a Laplace pressure of

∆p =
2γ tan θ

Rc
≈ 2γθ

Rc
. (1.25)

1.3.2.4 Net force on two-dimensional interfaces

Coming back to the case of contact angles of the order of one, for 2D interface shapes
z = h(x) (Fig. 1.3d) the curvature at any point on the interface, given by Eq. 1.15,
simplifies to

− γ∇ · ~n = γ
hxx

(1 + h2
x)

3
2

. (1.26)

In the absence of hydrostatic pressure, this quantity is constant along the interface.
The interface shape can be found by solving Eq. 1.26 equal to an unknown constant
value of the capillary pressure, with two boundary conditions. One family of solutions
are the circular interfaces discussed in section 1.3.2.2, which are indeed described by
three coefficients.
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The net force ~F acting on an interface resulting from Laplace pressure is termed
the capillary force, and can be calculated as,

~F =

∫ 2

1

(pb − pa)~nds, (1.27)

where ds2 = dx2 +dz2, and 1 and 2 are two points on the interface between which
the net force is calculated (Fig. 1.3d). The force is given per unit length orthogonal to
the page. Using the Young-Laplace law (Eq. 1.13), we obtain,

~F = γ

∫ 2

1

(
~∇ · ~n

)
~nds. (1.28)

Now, using the Frenet-Serret equations, the integrand in Eq. 1.28 can be rewritten
as [30],

~F = γ

∫ 2

1

d~τ

ds
ds = γ (~τ2 − ~τ1) . (1.29)

Therefore, the net capillary force acting on an interface can simply be deduced from
the tangent vectors at the extremities of the interface as indicated on Fig. 1.3d.

For example, for a liquid squeezed between two identical plates, the Laplace pres-
sure is given by Eq. 1.21. The force in the x-direction is

~F ·~1x =
2γ cos θ

b

∫ b

0

dz = 2γ cos θ.

The same result can simply be deduced from the shape of the extremities of the
interface on Fig. 1.3c, which using Eq. 1.29 gives

~F = 2γ cos θ~1x.

Similarly, for a cylindrical drop, the Laplace pressure is given by Eq. 1.20. The
force in the z-direction is

~F ·~1z =
γ sin θ

Rc

∫ Rc

−Rc
dx = 2γ sin θ,

which can also be deduced from the shape of the extremities of the interface. For
the parabolic drop discussed in section 1.3.2.3, Eq. 1.20 yields the same force as for
the cylindrical drop in the expression above, while multiplying the Laplace pressure
with the interface area gives

~F ·~1z =
γ tan θ

Rc

∫ Rc

−Rc
dx = 2γ tan θ ≈ 2γ sin θ,

where last approximation sign is consistent with the framework of almost flat inter-
faces.
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1.3.2.5 Axisymmetric interfaces in general

For interface shapes which are invariant for changes in φ, i.e. axisymmetric around ~1z ,
the curvature at any point on the interface, given by Eq. 1.16 simplifies to,

− γ∇ · ~n = γ

(
hr

r
√

1 + h2
r

+
hrr

(1 + h2
r)

3
2

)
. (1.30)

The first term in the brackets is the inverse of the second principal radius of curva-
ture R−1

2 and the second term is R−1
1 . This equation (along with Eq. 1.13) governs the

static axisymmetric interface shapes of the form z = h(r).
In the absence of the hydrostatic pressure, this quantity is constant along the in-

terface. The interface shape can be found by solving Eq. 1.30 equal to an unknown
constant value of the capillary pressure, with two boundary conditions. One family of
solutions are the spherical interfaces discussed in section 1.3.2.1.

Other configurations where the value of the Laplace pressure is typically not known
a priori include liquid bridges between solids and (barrel-shaped) drops on fibres. In
these cases, also three parameters are free to be chosen. For a barrel-shaped drop on a
conical fibre of which the radial position of the two contact points and the volume are
given, the Young-Laplace law fixes the contact angles at both sides of the drop, as well
as the value of the Laplace pressure. Similarly, for a liquid bridge of which the two
contact radii and volume are chosen, the Young-Laplace law fixes the values of the two
contact angles.

A case where no unknown pressure terms appear, is the configuration of a fibre
which is immersed vertically in a liquid bath. The Young-Laplace equation governs
the static shape of the meniscus around a fibre. Far away from the fibre, the liquid
bath is horizontal and placing the plane z = 0 at this height of the liquid bath, we can
explicit the right hand side of Eq. 1.13 to obtain,

ρgh = γ

(
hr

r
√

1 + h2
r

+
hrr

(1 + h2
r)

3
2

)
. (1.31)

This equation can be solved with two boundary conditions; one to specify the hor-
izontal bath level far away from the bath, and one to specify the contact angle at the
fibre. The equilibrium height of the capillary rise is then determined by the Young-
Laplace equation.

For axisymmetric interfaces, the net force ~F acting the interface resulting from
Laplace pressure can be calculated as

~F =

∫ 2

1

(pb − pa)~ndA = γ

∫ 2

1

(
~∇ · ~n

)
~nds = γ

∫ 2π

0

dφ

∫ 2

1

(
~∇ · ~n

)
~nrds

(1.32)
The radial component of this force cancels out by axisymmetry (as

∫ 2π

0
~1r = 0).

We proceed to show that the z-component of the force is directly related to contact
angle and contact radius by,

~F ·~1z = 2πγ
[
r~τ ·~1z

]1
2

(1.33)

The left-hand side of Eq. 1.33 is calculated by expliciting the force given by Eq.
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1.32 using the expression of the mean curvature (Eq. 1.30), where the unit normal is
given by,

~n =
~1z − hr~1r
(1 + h2

r)
1/2

.

This leads to

~F ·~1z = −2πγ

∫ 2

1

(
hr

(1 + h2
r)

+
rhrr

(1 + h2
r)

2

)
ds (1.34)

Now, Eq. 1.33 follows by showing that the integrand on the right-hand side of Eq.
1.34 equals

d
(
r~τ ·~1z

)
ds

,

with the unit tangent vector

~τ =
hr~1z +~1r

(1 + h2
r)

1/2
.

Indeed,

d

(
rhr√
1+h2

r

)
dr

dr

ds
=

√
1 + h2

r (hr + rhrr)− rh2
rhrr

(
1 + h2

r

)−1/2

(1 + h2
r)

3
2

=
hr + rhrr + h3

r + rhrrh
2
r − rh2

rhrr

(1 + h2
r)

2 =
hrr + hr

(
1 + h2

r

)
(1 + h2

r)
2 .

For example, for a spherical drop, the Laplace pressure is given by Eq. 1.18. The
net capillary force in the z-direction is

~F ·~1z =
2γ sin θ

Rc
2π

∫ Rc

0

rdr = 2πRcγ sin θ

The same result can simply be deduced from the shape of the extremities of the
interface on Fig. 1.3a, which using Eq. 1.33 gives

~F = 2πRcγ sin θ~1z

Similarly, for a meniscus inside a thin tube, the Laplace pressure is given by Eq.
1.19. The force in the z-direction is

~F = 2πRtγ cos θ~1z (1.35)

which can also be deduced from the extremities of the interfaces using Eq. 1.33.
Note that the same force is obtained for the configuration of the meniscus around a
fibre described in Eq. 1.31.

1.3.2.5.1 Side note: Jurin’s law For the tube configuration, balancing the capillary
force given by Eq. 1.35 with the weight of the liquid inside the tube, and neglecting
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the volume of the meniscus gives the height H to which the meniscus will rise,

H =
2l2c cos θ

Rt
,

measured from a plane where the liquid makes contact with the gas horizontally. This
expression is called Jurin‘s law of capillary rise. For example, capillary forces can lift
water up about one meter in a perfectly wetting tube with an internal diameter of 10
microns.

14



Statics of contact lines - Young’s law Introduction

(a)

γsg γsl

gas
γ

(b)

nal

γ

γ

Figure 1.4: Young’s law. (a): graphical interpretation, (b): displacement of a liquid
wedge.

1.4 Statics of contact lines - Young’s law

1.4.1 Interpretation of Young’s law
We consider now the situation where a liquid-gas interface is put in contact with a
solid substrate, creating two additional interfaces, namely a solid-liquid interface and
a solid-gas one, as well as a contact line where all three phases intersect. This contact
dictates in mechanical equilibrium the angle at which the liquid-gas interface intersects
the solid by Young’s law.

Adding up the capillary forces acting on a contact line, as in Fig. 1.4a, and equating
the sum of their projections on the solid substrate to zero gives Young’s law,

cos θE =
γsg − γsl

γ
, (1.36)

where γsl and γsg are the solid-liquid and solid-gas interfacial tensions and θE is
the equilibrium contact angle, by convention measured from the liquid side. As stressed
in the reviews [31] and [2], γ, γsg and γsl adequately describe the energy content of
the interfaces at a distance longer than typically 100 Angstrom from the contact line,
i.e. outside of a core region where intermolecular forces cause further complications.
This is shown with a circle around the contact point in Fig. 1.4a and b, symbolizing
a tiny vicinity of the contact line inside of which the intermolecular forces can be felt
and break down the used description.

The scope of this work is limited to the macroscopic aspects of drops/menisci on
substrates which are rigid, i.e. balancing any normal force component γ sin θE by a
reaction force of equal magnitude. Microscopically, trough the statistical mechanics of
inhomogeneous fluids [32] and density-functional theory [33] this normal force com-
ponent is shown to be related to wall-fluid interactions in a tiny vicinity of the contact
line. On elastic substrates, Eq. 1.36 is shown [34] to hold for drops of much larger ra-
dius than the substrate thickness, while in the opposite limit the substrate deforms like
a liquid and the forces in the normal direction contribute to determining the geometry
of the lens-shaped drop.

In Eq. 1.36, only the difference γsg − γsl is of importance and not the individual
value of these interfacial tensions. For higher values of this difference, solid-liquid
contact is favoured more over solid-gas contact and the solid is called more wettable.
In the limit situation where this difference tends to γ, θE → 0 and the solid is perfectly
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wettable. In the opposite limit, where this difference tends to −γ, θE → π. Such sub-
strate is attributed the property of superhydrophobicity. In this work, we are interested
in situations of partial wetting, which fall between these two limits.

Another important question is down to which sizes the macroscopic description
provided by Young’s law works. In the last decade, concepts arising from Young’s
law have been successful at explaining phenomena at nanometric scale on atomic force
microscopy tips [35] and it has been shown with molecular-dynamics simulations [36]
that the force at the contact line on a 15 nm fibre agrees well with Young’s law.

1.4.2 A derivation of Young’s law
Young’s law (Eq. 1.36) can be obtained based on thermodynamic considerations. The
first principle of thermodynamics states that the variation of the internal energy of a
system of a closed system is given by

dU = δQ+ δW.

The second principle states that δQ = TdS − TdiS, where the second term is
absent for reversible processes. Therefore,

dU = TdS − TdiS + δW.

It is useful to define the Helmoltz free energy as,

dF = dU − TdS − SdT = −TdiS + δW − SdT,

such that at constant temperature and for reversible processes,

dF = δW.

The applicability of Young’s law can be demonstrated for all practical cases (i.e.
independently of geometry or external constraints or the presence/absence of body
forces), as done with a subtle and elegant argumentation in the review of de Gennes
[31], or with a rigorous proof, as presented by Roura et al. [37]. Both of them are
considering the free energy of a system which is a planar liquid wedge (Fig. 1.4b), of
which the equilibrium contact angle θE is defined as the dihedral angle of the wedge
for which the free energy of the system is stationary under allowed changes. Keep-
ing the angle constant, we allow for displacements of the contact line δx, and for the
elongation of the liquid-gas interface δs, with both quantities a priori unrelated to each
other.

The planar liquid wedge represents a part of any system with a contact line, near
the contact line. The superimposed curvatures (on zero for the planar wedge) of the
liquid-gas interface, as well as of the contact line, are in most practical cases weak
compared to curvatures present in the core region (which are of the order 1

100A ) [31].
We assume that the tiny core region around the contact line is unaffected but simply
translated from the initial and the final state.

By defining the system in a close enough vicinity of the contact line, the work done
by the hydrostatic pressure and the gravitational potential energy can be neglected.
These quantities are namely proportional to resp. the height and the square of the
height of the wedge (see e.g. [37]) while we will consider terms which are independent
of the height of the wedge. Furthermore, for the planar wedge, the capillary pressure
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difference between the liquid and the gas is zero. It is shown that considerations [37]
result in the cancellation of the pδV -term with the contribution coming from cutting
the liquid phase with the boundary of our system.

Then, the work associated with the changes δx and δs has two contributions,

δF = δW = δWγ + δWext. (1.37)

Here, δWγ is due the change in the interfacial areas of the three interfaces. The gas
displaces the liquid on the substrate over a distance δx and the liquid-gas interface can
get elongated by δs,

δWγ = (γsg − γsl) δx+ γδs. (1.38)

Secondly, the boundary of our system, unavoidably, cuts the liquid-gas interface
and therefore we need to consider the external work δWext done on our system by
the capillary force, δWext, given by the projection of this force on the two allowed
displacements,

δWext = −γ cos θEδx− γδs. (1.39)

Now specifying the expressions of the work (Eqs. 1.38 and 1.39) in Eq. 1.37, we
obtain

δF = (γsg − γsl − γ cos θE) δx+ (γ − γ) δs (1.40)

Thus, the free energy of our system around the contact line is stationary for arbi-
trary displacements δx and δs, only if the contact angle satisfies Young’s equation (Eq.
1.36).

Even though derivations such as the one above show the applicability of Young’s
law, independently of geometry or from external constraints or from the absence of
body forces such as gravity, this law has also been derived by minimizing the total free
energy of macroscopic systems, showing the consistency of the macroscopic formula-
tion and usually leading to new insights.

This has for example been done for an axisymmetric drop, independently of exter-
nal fields by using variational techniques [38, 39], where Young’s law results from the
transversality condition. It this context, we also note the derivation of the augmented
Young’s law [40, 41] which is derived by free energy minimization of a system con-
sisting of a 2D or axisymmetric drop whose edges fall under the influence disjoining
(Derjaguin) pressure.

1.4.3 Young’s law for a spherical drop
Let us now write the free energy of a drop of the shape of a spherical cap and check the
consistency of the energy by deriving Young’s law. The adopted formulation will be
used in further sections to include the effects of the heterogeneity of wetting properties.

The shape of a spherical cap satisfies the Young-Laplace equation in the absence of
gravity. Therefore it is consistent to neglect the gravitational potential energy. Further-
more we specify that the drop has a fixed volume V , such that no pdV term enters the
equilibrium condition. This constraint makes that, as shown in Fig. 1.4c, moving the
contact line over a distance δx requires to adapt the whole liquid-gas interface to the
new situation. In such system, the free energy is stationary for,
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dF = δWγ = (γsl − γsg) dAsl + γdAlg = 0 =⇒ γsg − γsl
γ

=

(
dAlg
dAsl

)
V

, (1.41)

where it is assumed that all of the solid is contacted by either one of the phases,

dAsg + dAsl = 0.

The liquid-gas interface area of a spherical drop is given by,

Alg(Rc, θ) =
2πR2

c

1 + cos θ
→ dAlg = 2πR2

c

sin θ

(1 + cos θ)
2 dθ +

4πRc
1 + cos θ

dRc.

The solid-liquid contact area is disc-shaped, so dAsl = 2πRcdRc. Substituting
both infinitesimal areas into Eq. 1.41 gives,

dAlg
dAsl

= Rc
sin θ

(1 + cos θ)
2

dθ

dRc
+

2

1 + cos θ
, (1.42)

where dθ
dRc

should be determined by the fact the volume of the droplet does not
change during the process. The volume of the drop is given by,

V (Rc, θ) = πR3
c

(1− cos θ)
2

(2 + cos θ)

3 sin3 θ
. (1.43)

Differentiation gives,

dV =
πR2

c (1− cos θ)
2

(2 + cos θ)

sin3 θ
dRc +

πR3
c

4 cos4( θ2 )
dθ,

and therefore, (
dθ

dRc

)
V

= −
4 (1− cos θ)

2
(2 + cos θ) cos4( θ2 )

Rc sin3 θ
. (1.44)

Substituting Eq. 1.44 into Eq. 1.42 and simplifying gives naturally Young’s law,

γsg − γsl
γ

=

(
dAlg
dAsl

)
V

= cos θ ≡ cos θE .

Fig. 1.5b and c shows numerical example for a 1 microliter drop on a substrate for
which the equilibrium angle is given by θE = π/4. These two conditions fix a unique
value of the contact radius Rc as shown in panel (b). The fixed volume constraint is
satisfied on a monotonously descending curve (black). This black curve has one single
intersection with the horizontal line, which represents the equilibrium contact angle. At
this intersection, both the volume condition and contact angle equilibrium conditions
are met.

As expected, the equilibrium is a stable. For example, if starting from this inter-
section, if Rc would be slightly increased (at constant volume), then θ would become
smaller than the equilibrium angle. This means that a net force would be acting on the
contact line, in the direction which restores the Rc back to its equilibrium position.
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Figure 1.5: Numerical example of a spherical drop on a homogeneous substrate. (a):
A drop at fixed volume for which variations of angle and contact radius are linked.
(b): Contact angle versus contact radius (c): Free energy versus contact angle, with
γ = 0.072N/m.

The stability is confirmed in panel (c) by the fact that the equilibrium configura-
tion corresponds to a minimum of the free energy. This free energy is calculated by
integrating dF Eq. 1.41, yielding up to a constant,

F (Rc, θ) = γAlg(Rc, θ)− γ cos θEAsl(Rc). (1.45)

The free energy in panel (c) is calculated at the constant volume V of 1 microliter.
More specifically, the relation between the two arguments of Eq. 1.45 are explicited
from the expression of the volume (Eq. 1.43) as,

Rc(V, θ) = sin θ

(
3V

π (1− cos θ)
2

(2 + cos θ)

) 1
3

.

1.4.4 Wenzel and Cassie-Baxter relations
Let us first consider the limit case of solid surfaces with heterogeneous wetting prop-
erties (and roughness), where the deviation of the ideal case (i.e. a homogeneous and
smooth substrate) is characterized by a single parameter which is uniform throughout
the substrate.

If the substrate displays some roughness, such that surface area of the solid is any-
where a factor r larger than its horizontal projection, then we can repeat the above
calculation, where we replace dAsl → rdAsl with r a constant larger than one. This
constant r finally appears in the final result as,

γsg − γsl
γ

=
1

r

(
dAlg
dAsl

)
V

=
1

r
cos θ =⇒ cos θE(r) = r (cos θE)r=1 , (1.46)
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with cos θE(r = 1) the equilibrium angle on a smooth substrate with the same
wetting properties. Eq. 1.46 is called Wenzel’s relation [42]. It predicts that the effect
of roughness is to enforce the hydrophilic or hydrophobic character of a bare substrate,
by bringing θE closer to 0 or π, depending on the sign of (cos θE)r=1.

A similar reasoning can be applied for a smooth but chemically heterogeneous sub-
strate. Consider a substrate which consists of alternations of infinitely small regions of
different wettability, characterized by (γsl − γsg)1 and (γsl − γsg)2, with area frac-
tions f1 and f2. Now, we replace

(γsl − γsg) =⇒ f1 (γsl − γsg)1 + f2 (γsl − γsg)2 ,

where f1 and f2 are the probabilities of sweeping wettabilities 1 and 2 when mov-
ing the contact line. Defining cos θE1 =

(γsg−γsl)1
γ and cos θE1 =

(γsg−γsl)2
γ yields,

cos θE(f1, f2) = f1 cos θE1 + f2 cos θE2. (1.47)

Eq. 1.47 is called the Cassie-Baxter relation, which states that on a substrate with
a heterogeneity at tiny a scale, cos θE can be calculated as a area-weighted average of
the cos θEs of the surface constituents.

The relevance of the Cassie-Baxter and Wenzel relations (Eqs. 1.46 and 1.47) is
still heavily debated (see e.g. the review on the debate [43]). The question is whether
contact angles are really influenced by the properties of the substrate inside the wetted
area. For example, for a drop on a substrate, it is evidenced experimentally that the
presence of a patch of different wettability inside the wetted area (with the patch not
touching the contact line), does not affect the contact angle [44, 45]. This type of sub-
strate clearly violates the hypothesis behind the derivation of the Cassie relation, where
the heterogeneity is assumed to be uniformly present all over the substrate, including
the contact line position. At the same time, it is a case where the average wettability
of the wetted area seems to have no effect at all on the contact angle. We will return to
this question in two following sections.

1.4.5 What oversimplified models fail to capture - stick-slip and
contact angle hysteresis

The assumption that the substrate is perfectly smooth and chemically homogeneous,
as well as the assumption that the effects of substrate roughness and chemical hetero-
geneity on the contact line motion would be adequately described by assigning scalar
properties to the substrate, seem to be oversimplifications of reality. The models of
previous sections, which relied on such assumptions, fail to capture the main qualita-
tive features displayed by moving contact lines, contact angle hysteresis, which include
stick-slip motion and pinning-depinning. Let us explain these features in this section.

Daily examples of a pinned drop include a liquid column stuck in vertical capillary
tube (Fig. 1.6a) and a drop on a a vertical wall or window (Fig. 1.6b). In both cases of
static equilibrium, the contact angle θ1 on the bottom side of the drop is larger than the
contact angle θ2 on the upper side of the drop, such that the resulting net capillary force
can balance the weight of the drop. A static equilibrium with θ1 > θ2 is, obviously,
not possible if both θ1 and θ2 need to be equal to the same equilibrium angle θE of the
liquid on the substrate.

A similar example is a drop pinned inside a liquid wedge which is an idealization
of the beak of a shore bird [46]. Here, the static condition where the pressure pl is
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Figure 1.6: Popular examples of the manifestation of contact angle hysteresis. (a): a
drop pinned in a capillary tube, (b): drop pinned on a vertical substrate, (c): a drop
pinned in a wedge. All these cases of pinning are ultimately explainable by the hetero-
geneity in the wetting properties (or roughness) of the substrate. (d): A drop advances
with an advancing angle θA when its volume is increased. (e): The drop recedes with a
receding angle θR when its volume is decreased. (f) and (g): Contact angle and contact
radius versus volume plots for the corresponding process typically show stick a stick-
slip behavior and a pinning of the drop when the sign of the variation of V is inverted.
These plots are produced with the same heterogeneity shown in Fig. 1.7 later.
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uniform in the liquid requires that the radii of curvature of the upper and bottom liquid-
gas interfaces should be equal. Or, assuming a circular interface, Eq. 1.21 implies
b1

cos θ1
= b2

cos θ2
. As b1 < b2, this necessitates θ1 > θ2. Such static equilibrium cannot

be achieved if θE = θ1 = θ2.
Consider the example of a drop placed on a substrate. The models of previous

sections (1.4.3 and 1.4.4) predict a single equilibrium angle θE , which is independent
of for example the drop volume. Therefore, if the volume is slowly increased, such that
the system is in equilibrium at all times, the contact angle θ = θE would stay constant
and therefore by volume conservation, Rc would increase. Similarly if the volume is
decreased externally, the contact radius Rc would decrease, following the same path.

However, in the real world this experiment would turn out completely different,
displaying the typical features shown in the panels (d-g) of Fig. 1.6. The contact line
typically advances with an angle θA which is larger than the angle θR with which it
consequently recedes. This difference is termed contact angle hysteresis and is for
most substrates of the order of tens of degrees, while it can be reduced to a few degrees
with careful precautions in substrate preparation [31, 47]. Therefore, in-between its
advancing and receding motion, or more specifically when we start to decrease the
volume, the drop stays pinned. It does not move appreciably (dRcdV ≈ 0) until the
volume is decreased enough to allow for θ → θR at the (nearly) fixed Rc. The idea
that contact lines stay pinned for the range of contact angles between θA and θR has
for example given rise to the spray retention equation of Furmidge [3]. In this equation
the effect of contact angle hysteresis -in opposing drops from sliding due to gravity-
appears as a product with the dimensions of a force per unit length of the contact line,
H ≡ γ cos θR − cos θA, commonly referred to as hysteresis force[2].

Moreover, when the contact line of the drop does move, in many cases it does
not move smoothly. Smooth motion at a roughly constant angle (θA or θR) is typically
observed for drops of larger size than any features of the substrate, but higher molecular
weight of the liquid also enhances such behaviour (for example alkanes heavier than
tetradecane as in contrast to alkanes lighter than nonane in the experiments of [48]).
In other cases, or at a finer scale, the motion can be described to be an alternation of
stick and slip stages. Panels (f) and (g) of Fig. 1.6 show a calculated example of this
case. Let us describe this motion for an advancing contact line. During the stick stage,
dRc
dV ≈ 0 and θ increases to a critical value θA. When this critical angle is reached, a

slip stage starts where the contact line jumps in the advancing direction, decreasing by
volume conservation θ, such that again a stick stage can follow.

These features are explained treating the wettability of the substrate as a property
which varies over the substrate. Namely, panels (f) and (g) of Fig. 1.6 are a numerical
example of the model explained in the next section.

1.4.6 Contact line statics on substrates with heterogeneous wetting
properties

The sensitivity of contact lines to local gradients of the substrate lies at the core of
their intriguing behavior, characterized by contact angle hysteresis, stick-slip motion
and pinning-depinning.

Let us rewrite the equilibrium condition (Eq. 1.41), but now with the properties of
the solid depending on the spatial coordinates on the solid. Continuing our example
configuration of the spherical drop, the term of the free energy related to the wetted
area is given up to a constant by,

22



Statics of contact lines - Young’s law Introduction

(a)

(b) (c)

θ [deg]

F
 [

µ
N

]

0.8 0.9 1 1.1 1.2 1.3

30

40

50

60

70

80

90

θ
 [

d
e
g
]

Rc [mm]

V0 = 1µl

0.05 mm

V0 = 1µl

γ cosθ < γsl-γ sg

γ cosθ > γsl-γ sg 35 40 45 50 55

0.135

0.136

0.137

0.138

0.139

0.14

Cassie-Baxter angle

θi(Rc)

V [µl]

θ
[d

e
g
]

0.7 0.8 0.9 1 1.1 1.2 1.3

38

40

42

44

46

48

50

52

(e)(d)

R
c
 [

m
m

]

V [µl]

0.7 0.8 0.9 1 1.1 1.2 1.3

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

V decreasing

V increasing

Figure 1.7: Same as Fig. 1.5, but for a drop on a chemically heterogeneous substrate,
with now additionally panels (d) and (e) which show how the equilibrium points (black)
shift with V , and how tracking it from left to right (green) and right to left (red) result
in stick-slip and hysteresis.
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Wsl,sg =

∫
Asl

(γsl(Rc)− γsg(Rc)) = 2π

∫ Rc

0

(γsl(Rc)− γsg(Rc)) 2πRcdRc,

or in differential form by,

dWsl,sg = (γsl(Rc)− γsg(Rc)) 2πRcdRc. = (γsl(Rc)− γsg(Rc)) dAsl.

The equilibrium condition thus now becomes,

dF = δW = (γsl(x)− γsg(x)) dAsl − γdAlg = 0. (1.48)

As in Eq. 1.41, it is possible isolate dAlg
dAsl

, leading now to

γsg(x)− γsl(x)

γ
=
dAlg
dAsl

, (1.49)

As the right-hand side of Eq. 1.49 yields for a spherical drop at the constraint of a fixed
volume cos θ, the equilibrium condition can be written as,

cos θ =
γsg(Rc)− γsl(Rc)

γ
≡ cos θi(Rc), (1.50)

where we have defined the intrinsic contact angle θi as the local equilibrium angle
[49]. This incorporation of the heterogeneous wetting properties of the substrate ex-
plains the main qualitative features of contact line motion on real substrates, as can be
appreciated by comparing the numerical example in Fig. 1.7 with its counterpart for
homogeneous substrates (Fig. 1.5).

Due to the presence of a periodic heterogeneity in θi(Rc) in Fig. 1.7, at the fixed
volume V0 there are multiple configurations (Rc, θi(Rc)) which simultaneously satisfy
Young’s law and the volume constraint. Namely, there are 5 equilibrium configurations,
which are alternately metastable and unstable.

The free energy (panel (c)) is now given in integral form up to a constant as,

F (Rc, θ) = γAlg(Rc, θ)− 2πγ

∫ Rc

0

cos θi(Rc)rdr. (1.51)

1.4.6.1 Situation at fixed volume

Shuttleworth and Bailey [50] were the first to put forward arguments why the substrate
heterogeneity induces a multistability of equilibrium states at fixed drop volume. John-
son and Dettre [51, 52] were the first to concertize and strengthen these arguments
with a numerical study. They have studied the case of a spherical drop at constant vol-
ume, sitting on a substrate with periodic grooves [51] and on a substrate consisting of
alternating circular bands of different wettability [52]. For both cases, they have cal-
culated the free energy of the equilibrium configurations (which satisfy simultaneously
Young’s law and the volume constraint). This led in both cases to the same physical
picture, which also appears in Fig. 1.7c as the 3 metastable and 2 unstable equilibrium
configurations. The highest and lowest values of the metastable equilibrium angles at
the fixed volume correspond to the highest relative minima of the free energy and also
neighbor to the lowest energy barriers (2-3 nJ in our example). This has led to the con-
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clusion [52] that the difference between the highest and lowest observable equilibrium
angles will be smaller if the drop can overcome some of the energy barriers with the
vibrational energy (the precise nature of which was unspecified [53]) it possesses.

Simulations of large drops on substrate with a small-scale heterogeneity [54, 55]
have demonstrated that the actual relevance of the Cassie-Baxter type relations (sec-
tion 1.4.4) is that they accurately predict the value of the most stable contact angle
(corresponding to the global minimum of the free energy). In such limit, a free energy
plot like Fig. 1.7c becomes nearly indistinguishable from its homogeneous counter-
part, Fig. 1.5c, but displays upon closer inspection a large amount of closely adjacent
metastable angles, separated by small energy barriers.

Several techniques to provide energy to drops have been demonstrated to lead to
a convergence of the contact angle to a value which can be reasonably assumed to be
of lower energy. These techniques include vibrating the substrate [56, 57] and the use
of sound [58]. The reduction of contact angle hysteresis is also evidenced as a direct
effect of an alternating current (AC) electrowetting setup [59], as in contrast to a DC
one. These findings however remained qualitative in the sense that no direct connection
could be made to the value of the energy barriers crossed by the agitation mechanism.

1.4.6.2 Effect of externally varying the volume

Huh and Mason [53] continued the study of the drop on a substrate with periodic
grooves, but differently from [51] investigated the effect of quasi-statically varying
the drop volume. This has led to a picture similar to the one shown in Fig. 1.7d and
consistent with typical experimental observations.

When the volume V is quasi-statically increased, its effect on panel (a) can be
thought of (more or less) as a horizontal shift of the black line to the right. This re-
sults in the shape of the static solutions drawn in black in panels (d) and (e), where
periodically metastable and unstable branches meet in limit points.

Following the static solutions in the direction of increasing volumes (green curve)
results in a periodic alternation of two modes how the system reacts to the externally
imposed volume variation. When metastable branches are followed, Rc does not vary
much, while θ increases. This is a stick stage, where the contact line is pinned. When
the system reaches a limit point, the contact line needs to perform a sudden advancing
jump, i.e. a slip stage, to reach the closest by metastable branch. Following the static
solutions in the direction of decreasing V necessitates a different path, which has the
same features and where the contact angle is smaller. This aspect is referred to as
contact angle hysteresis.

The study of Huh and Mason [53] provided a plausible theoretical explanation for
contact angle hysteresis associated with irreversible jumps of the contact line. A corre-
sponding experimental study followed [60] on drops on substrates of which the rough-
ness is characterized by scanning electron microscopy and profilometry. The exper-
imental results were explained by a combination of jumps due to grooves parallel to
the contact line, qualitatively similar to the explanation in [53], and capillary channel-
ing due to grooves orthogonal to the contact line. For advancing motion, the observed
advancing angle showed quantitative correspondence with the sum of the contact an-
gle measured on smooth substrates, plus the measured maximal angle of the substrate
grooves. For receding motion, axisymmetry was broken and such prediction yielded
too high receding angles. Soon after, the Huh’s model was adapted to the configuration
of a meniscus around a fibre and qualitatively compared to experiments on grooved
fibres [61, 62].
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Similar models have been deployed for other configurations (see table 1.1); for
cylindrical drops [49], for bubbles [63], for contact lines on vertical plates [64] etc., in
each case reproducing the qualitative features of typical experiments convincingly well
and in a natural way. However no direct comparison was previously been made with
experiments on the level of detail of the individual jump events.

More recently, a model of a cylindrical drop on a chemically heterogeneous sub-
strate, which is free to shift laterally has been successful in explaining the hysteretic
behavior and stick-slip predicted in a phase-field simulation [65]. A similar model pro-
vides a theoretical explanation of the qualitative features of the topography induced
contact line jumps observed upon evaporation on wavy smooth substrate[66].
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Figure 1.8: Graphical construction of Joanny and de Gennes [72]. (a): liquid wedge
from top view, yl is the position of the unperturbed contact line and ym is at the height
of the defect, (b): graphical force balance, (c): effect of quasi-statically varying yl, (d):
force balance for a weak defect, (e): force balance for a mesa-defect.

1.4.7 Deformed contact lines - Theory of Joanny and de Gennes
The situation is, of course, much more complicated for contact lines which are not
circular or straight.

For the situation sketched in Fig. 1.8a, Joanny and de Gennes[72] have derived
the elastic energy of a liquid wedge, owing to perturbations of its straightness by a
localized force, and shown that the associated elastic restoring force fel can in essence
be written in Hookean form,

fel (ym, yl) ≈
πγθ0

ln
(
l
d

) (ym − yl) ≡ k (ym − yl) , (1.52)

where l is a microscopic cut-ff and d is a characteristic size of the defect. In the problem
of interest, this localized force fd is exerted by a wettability defect on the contact line,
with a main contribution at y = ym,

fd (x, y) =

∫ ∞
−∞

γ (cos θi(x, y)− cos θ0) dx ≈ fd (ym) . (1.53)

The implications of the static condition fel (ym, yl) = fd (ym) can be understood
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from a graphical construction as in Fig. 1.8b. For the example of a single hydrophilic
defect, when the average position of the contact line yl is close enough to the defect,
the contact line will adopt one of the two possible metastable configurations with cor-
responding values ym at maximal distortion at the height of the defect. When yl is
varied externally (as can be seen by moving the red line of panel (b) laterally, or the
result sketched in panel (c)), stick-slip and hysteretic behavior are predicted.

The graphical force balance also enables to appreciate that not all defects will cause
stick-slip and hysteresis. If the gradients in wettability caused by the defect are too
small compared to the contact line spring constant k, the force balance will have only
one solution (Fig. 1.8d). Such defects are termed weak, or sub-threshold and their
existence is experimentally confirmed [35]. On the other hand, defects with sharp
edges (Fig. 1.8e), called mesa-defects, will always produce hysteresis.
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Figure 1.9: (a): Sketch of a liquid wedge moving at a velocity U (b): Spreading of a
drop

1.5 Dynamics of contact lines

1.5.1 Scaling arguments based on hydrodynamics
In this section, qualitative scaling arguments[73] are made on the modification of the
contact angle θ with a finite contact line velocity U , in the framework of the lubrication
(thin-film) approximation. The value of these arguments is that they yield very similar
dependencies as the more rigorous derivations, discussed in the next section.

The basic idea is to equate the energy per unit time provided by the capillary forces,
dEγ
dt , to the energy dissipated through viscosity in the flow, dEµdt , where both energies

depend on U and θ.
Consider the liquid wedge, draw in Fig. 1.9a, advancing with a steady velocity U .

The height profile of the liquid is described by h(x, t).
Let us first estimate the viscous dissipation due to the flow inside of the liquid. In

the lubrication framework, the viscous dissipation inside the film is given by,

dEµ
dt

= µ

∫ (∫ h

0

u2
zdz

)
dx, (1.54)

where µ is the liquid viscosity and u is the horizontal velocity component. This
velocity component is obtained by integrating the x-component of the Navier-Stokes
equation, where inertial effects are neglected due to the smallness of the characteristic
aspect ratio of the system (ε in section 1.3.2.3). In the absence of body forces (which
are negligible close enough to the contact line),

uzz =
px
µ
≡ A(x),

where p is the pressure field inside the liquid. Integrating once and applying the
condition ((uz)z=h = 0) as the gas viscosity is negligible and the liquid is at constant
temperature and pure, gives

uz = A(x) (z − h) (1.55)

A second integration, with a classical no-slip boundary condition gives the hori-
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zontal velocity field in the frame moving with the contact line,

u = A(x)

(
z2

2
− hz

)
,

The volumetric flux q (per unit orthogonal length) can now be calculated as,

q =

∫ h

0

udz = −A(x)
h3

3
. (1.56)

Eliminating A(x) from Eq. 1.55 using Eq. 1.56 yields,

uz = −3q

h3
(z − h) ,

and therefore the viscous dissipation (Eq. 1.54) can be rewritten as

dEµ
dt

= 3µ

∫
q2(x)

h3(x)
dx (1.57)

To have an estimation of the typical scales of this dissipation rate, let us make the
simplifying assumption that the interface is a wedge h(x) = θx and q(x) = Uh(x).
This is inconsistent in the sense that for such planar interface, the Laplace pressure hxx
and its gradient are hxxx are zero, and therefore A(x) = 0. The error made is small
assuming that most of the dissipation takes place very close to the contact line, where
the introduced error is the weakest [73]. Introducing these expressions in Eq. 1.57
yields

dEµ
dt
≈ 3µU2

∫
1

h(x)
dx ≈ 3µU2θ−1

∫
dx

x
= 3µU3θ−1 ln

(
lmac
lmic

)
, (1.58)

where lmac is an appropriate macroscopic length scale, such as the length of the
wedge, and lmic is a microscopic length scale that needed to be introduced to avoid the
dissipation going logarithmically to infinity as lmic → 0. This divergence is referred
to as the Huh and Scriven [74] paradox, and would imply the false premise that not
even Herakles could sink a solid. Another quantity of which classical hydrodynamics
predicts the divergence in the same way is the tangential stress acting on the solid
substrate,

µ (uz)z=0 = 3µ
q

h2
≈ 3µU2θ−1 ln

(
lmac
lmic

)
.

Several mechanisms have been proposed to relieve the dynamical singularity near
the contact line, which act only in the very near vicinity of the contact line, including
slip at the substrate, disjoining pressure, precursor films and diffuse interfaces (a list of
proposed mechanisms is given in [2]). More recently, it has been shown [75] that no
singularities arise in the same hydrodynamic description if the Kelvin effect is included.
This effect also only plays a role in the near vicinity of the contact line and interestingly
regularizes the singularity.

Continuing the scaling argument, the energy per unit time provided by the capillary
forces, dEγdt is estimated as the product of the contact line velocity U and the unbal-
anced Young’s force. If the substrate is assumed to be perfectly wetting, θE = 0, or
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γsg − γsl = γ. Therefore, for any finite contact angle θ, the interfacial tensions acting
on the contact line result in a net force γ (1− cosθ). The corresponding energy per
unit time is estimated for small angles θ as,

dEγ
dt
≈ Uγ (1− cos θ) ≈ Uγ θ

2

2
. (1.59)

Equating Eqs. 1.58 and 1.59 finally yields,

θ3 = 6
µU

γ
ln

(
lmac
lmic

)
= 6Ca ln

(
lmac
lmic

)
, (1.60)

This law has been verified experimentally [76] on perfectly wetting substrates, sur-
prisingly up until angles of 100 degrees, where

(
lmac
lmic

)
was found to be of order 104,

or ln
(
lmac
lmic

)
of the order of 10.

1.5.1.1 Tanner’s law

Let us apply Eq. 1.60 on the spreading of a drop on a perfectly wetting substrate
(Fig. 1.9b), where U = dRc

dt with Rc the contact radius. The drop has the shape of
a paraboloid of revolution (approximating well the shape of a spherical drop for small
contact angle), and a constant volume. The spreading rate is given by,

dRc
dt

= θ3 γ

6µ ln
(
lmac
lmic

) . (1.61)

The drop has a small contact angle θ, and a constant volume V0. Therefore θ ≈ 4V0

πR3
c

and we can rewrite Eq. 1.61 as

R9
cdRc =

γ

6µ ln
(
lmac
lmic

) (4V0

π

)3

dt, (1.62)

where
(
lmac
lmic

)
is considered to be constant as only its logarithm affects the problem.

Integrating both sides starting from an initial contact radius 0 gives Tanner’s law,

Rc =

 5γ

3µ ln
(
lmac
lmic

) (4V0

π

)3

t

 1
10

∝ t 1
10 (1.63)

1.5.2 Cox-Voinov relation
More rigorous theories have been developed which treat the partial wetting case, lead-
ing to similar expressions as Eq. 1.60, but where the factor 6 is replaced by 9. Without
entering into the many subtleties arising in these asymptotic treatments of the moving
contact line problem (discussed in [2, 77] and the references therein), we summarize
below the results of primary relevance to this work.

These more rigorous approaches divide the liquid layer into typically three spatial
regions with different orders of magnitudes of the distance x from the contact line. In
the intermediate (or overlap [78]) region, independently from the particular geometrical
details at the large scale and the microscopic details at the contact line, a stationary
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γsg γsl

apparent angle θ

quasi-steady macroscopic interface

static angle θmic

γ

U

Figure 1.10: Distinction between the apparent (dynamic) contact angle θ and the mi-
croscopic (e.g. static) contact angle θmic. This sketch is horizontally stretched for
clarity.

liquid film profile h(x) on a moving substrate requires a balance between viscous and
capillary forces, leading to the following lubrication equation, [79]

3Ca+ h2hxxx = 0. (1.64)

This third order differential equation has an exact solution [79] which reduces to
the famous relation first obtained in different ways and independently by Voinov [80]
and Cox [81] (see also e.g. [2]),

h3
x = θ3

mic + 9Ca ln

(
x

lmic

)
, (1.65)

or,

θ3 = θ3
mic + 9Ca ln

(
lmac
lmic

)
, (1.66)

where θmic and lmic (with lmic � x < lmac) come from matching with the mi-
croscopic region near the contact line where a relevant process (e.g. Navier slip or
disjoining pressure) regularizes the hydrodynamic singularity. Relation 1.66 actually
applies for θ up to 135 degrees [81] and the relaxation of the small-slope assumption
gives a compatible result [82]. However caution is required for sufficiently large re-
ceding velocities (Ca < 0) as then the result (Eq. 1.66) ceases to be valid as yielding
(non-physical) negative θ (see [83] for a more accurate treatment of what happens in
the case of large receding velocities).

In this work, we treat Eq. 1.66 as an effective boundary condition which predicts
the velocity dependence of the apparent contact angle θ measured at a macroscopic
scale (see Fig. 1.10). This apparent contact angle is defined from the extrapolation of
the interface profile at the macroscopic scale (taken to be quasi-static at leading order)
toward the substrate. The macroscopic contact line position is also an apparent one as
it differs from the true contact line position by a distance of the order of the small scale
of the problem.

Power laws arising from the Cox-Voinov law (Eq. 1.66) are tested with numerous
experiments (reviewed in [2]) and found to accurately describe the spreading of drops
of perfectly wetting non-volatile drops (θmic = 0), where hysteresis is absent. In partial
wetting cases, θmic is typically identified with the contact angle measured at vanishing
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speeds, corresponding to an advancing or a receding angle [84, 2]. In chapter 4 of
this thesis, we will study the relation between θ and Ca in the presence of stick-slip
and hysteresis. An important theoretical prediction by Raphael and de Gennes [85] is
that contact line dynamics on heterogeneous substrates results in different scaling laws
between the averages of θ and Ca.

1.5.3 Molecular-kinetic theory
Whereas in the Cox-Voinov relation, the unbalanced interfacial tension forces associ-
ated with a moving contact line are compensated by viscous dissipation in the flow
near the contact line, the molecular-kinetic theory relies on a different dissipative pro-
cess which takes place in a closer vicinity of a moving contact line. This process is
the (individually random) attachment/detachment of liquid molecules from/to the solid
substrate, described in the framework of statistical dynamics by an equilibrium fre-
quency κo and an average distance λ between the receptive sites on the substrate. A
detailed analysis [86, 87] has led to the result,

cos θ = cos θmic +
2kBT

γλ2
sinh−1

(
U

2κoλ

)
, (1.67)

where kB is the Boltzmann constant. For small angles and velocities, this result can be
linearized,

θ2 = θ2
mic +

2kBT

γλ3κo
U, (1.68)

revealing a dependency of the form U ∝ θ2 − θ2
mic, which is different than the

hydrodynamic result U ∝ θ3 − θ3
mic. This difference however generally does not

imply an experimental distinguishability between the two theories due to the fitting
parameters involved (θmic, λ and κo here and θ0 and ln

(
lmac
lmic

)
in the Cox-Voinov

relation), as shown in a detailed comparative fitting analysis [88].
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1.6 Objectives and overview of the thesis
Contact lines in nature, industry and everyday life typically display pinning-depinning
and associated hysteretic effects at the observable or macroscopic scale. The descrip-
tion of contact lines is an inherently multiphase and multiscale problem, which inter-
estingly can be greatly simplified without losing the essential physics responsible for
hysteresis and stick-slip, due to the separation of the orders of magnitudes of the time
and length scales of the physical processes involved.

Microscopic phenomena near the contact line, whatever their specific details, fix a
contact angle at the observable scale. In the statics of contact lines, whatever the spe-
cific interactions at a tiny core region, the contact angle observable at the macroscopic
scale is related to far field energies of the interfaces as given by the well-established law
of Young. But also the dynamics of contact lines, when governed by dissipation near
the contact line, is adequately described by the Cox-Voinov relation (or the molecular-
kinetic theory) leading to a velocity dependent angle at the macroscopic scale.

The liquid-gas interface shape at the observable scale and under (quasi-)static con-
ditions is given by the Young-Laplace law, which has for some practical configurations
closed-form solutions. For these cases, the contact line statics and the hysteretic be-
havior rooted in it can be fully predicted in closed form. This enables the formulation
of minimalistic models for those configurations which capture the essence of stick-slip
and contact angle hysteresis, and which can serve as a basis for straight-forward anal-
ysis, or for the calculation of many numerical examples to test scaling laws, with the
degree of configuration-dependency of the main predictions still an open question.

In chapter 2, such minimalistic static model is formulated for the configuration of
a meniscus inside a chemically heterogeneous microchannel, where the results are pri-
marily compared to results obtained in the framework of the theory of Joanny and de
Gennes [72] on the configuration of a contact line deformed by a defect. Even though
the configurations are very different, both can be interpreted with a graphical force bal-
ance, predict the existence of a threshold strength of the chemical heterogeneity below
which no hysteretic effects are induced, and lead to the same scaling laws between the
amplitudes of the heterogeneity and the induced hysteresis for the case of hysteresis
induced by sparsely spaced defects. Another interesting limit behavior is predicted
when the heterogeneity wavelength is vanishingly small compared to the microchannel
gap size, or similarly to the contact radius in the configuration of a drop. In this limit,
stick-slip is unobservable and the contact line advances/recedes at a (nearly) constant
angle, given by the maximum/minimum of the statically allowed range.

In chapter 3, a similar minimalistic static model is formulated for the configuration
of a meniscus around a wavy fibre which is immersed slowly and vertically in a liquid
bath. The predictions of this model are compared quantitatively with experiments at
the level of the individual topography-induced jumps, showing good agreement. The
interplay between the terms in the free energy during the stick-slip motion is discussed
and a scaling law is predicted between the jump length and the energy dissipated during
the jump, which is based on the closeness to the threshold. The link with the scaling
laws predicted in chapter 2 is discussed.

In chapter 4, we add a piston to the microchannel configuration (2), and show
that the stability of a contact line equilibrium (Young’s law) depends on whether (a)
the piston position or (b) the force on the piston is fixed externally. The quasi-steady
dynamics is studied using the Cox-Voinov relation and molecular-kinetic theory to treat
the two corresponding cases of a (a) constant piston velocity, and (b) a constant force on
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the piston. Interestingly, and as previously predicted by Raphael and de Gennes [85] the
two cases lead to different scaling laws between the contact angle and the velocity. With
both the Cox-Voinov relation and the molecular-kinetic theory, we recover for both
cases (a) and (b) the scaling laws that were predicted in [85] in both cases. We discuss
the disappearance of the difference between the two scaling laws, as the intermittency
of the contact line motion fades away above a critical contact line velocity, which
is lower if the heterogeneity wavelength is smaller. We adapt the formulation to the
configuration of a topographical fibre and predict similar results.

Finally, in chapter 5, we show how the minimalistic modelling approach can be
extended to treat other configurations with a single contact line, configurations with
multiple contact lines, and the 3D case of deformed contact lines on substrates hetero-
geneous in two directions. For systems with two contact lines (including configurations
of biomimetic interest such as the Phalarope beak) we illustrate a mechanism where a
jump of one contact line in the advancing/receding direction is accompanied by a jump
of the other contact line in the receding/advancing direction, with both jumps rooted in
the static solutions and present numerical examples of how this effect influences e.g.
the feeding mechanism of the Pharalope bird.
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Chapter 2

Contact angle hysteresis in a mi-
crochannel: statics

In this chapter, we study contact angle hysteresis in a chemically heterogeneous mi-
crochannel by tracking static meniscus configurations in the microchannel upon vary-
ing the volume of liquid.

We first construct a graphical force balance similar to a previous approach by
Joanny and de Gennes for this system, though here with a straight contact line. It
is shown that hysteresis is induced by wettability gradients above a finite threshold
value. This is also visualized in a phase-plane plot enabling to easily predict stick-slip
events of the contact line and the occurrence of hysteresis.

Above the threshold and for non-overlapping Gaussian defects, we find good agree-
ment with the expressions by Joanny and de Gennes for the hysteresis amplitude in-
duced by a dilute system of defects. In particular, the hysteresis amplitude is found to
be proportional to the square of the defect force and to the defect concentration.

For a model sinusoidal heterogeneity, decreasing the ratio between the heterogene-
ity wavelength and the microchannel gap size, brings the system from a sub-threshold
regime, to a stick-slip dominated regime, and finally to a regime with a quasi-constant
advancing and receding angle. In the latter case, the hysteresis amplitude is found to
be proportional to the defect force.

We also consider an unusual heterogeneity for which the gradients of increasing and
decreasing wettability are different. In such situation breaking the left/right symmetry,
whether or not hysteresis is observed will depend on the side the liquid enters the
microchannel.

2.1 Introduction
Key features of numerous technological innovations across a wide spectrum of appli-
cations and their associated industrial processes (coating of substrates is a well-known
example) are the dynamics involved with liquid spreading on a solid surface, that is
coverage of the surface by displacement, through wetting, of a gas (usually air) by a
liquid – see for example the comprehensive reviews in Refs [31, 2, 89]. Contact angle
hysteresis (CAH) is common place in wetting processes and it is characterized by a
discontinuity between the receding and advancing contact angles [90, 91].
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It is widely recognized that substrate heterogeneities are the principal source of
CAH [91, 72, 68]. Such heterogeneities are either chemical or topographical or a com-
bination of the two. Theoretical hydrodynamic analysis of contact line dynamics in the
presence of chemical-topographical heterogeneities reveals complex dynamics, such as
stick-slip motion and liquid motion due to strong heterogeneity gradients (e.g. uphill
motion of a droplet) [92, 93, 94, 95, 96, 97, 98, 65]), often in qualitative agreement
with experiments.

But despite the several developments and considerable attention that CAH has re-
ceived for several decades, a large number of issues and problems have not been re-
solved. In particular, including rationally and systematically CAH in theoretical con-
tact line models and/or numerical codes still eludes us [2, 9]. This is crucial for the
control and optimization of technological processes exploiting CAH.

Lack of fundamental understanding of CAH is due in large part to its inherently
multiscale nature, a feature that plays a central role in the rapidly growing field of mi-
crofluidics [99, 96], as the largest typical lengthscales involved are below the capillary
length, thus enabling capillary forces to dominate over body forces. For example, the
motion of a gas-liquid interface in microsystems, and how it is affected by CAH and
related issues such as pinning-depinning, still lacks fundamental understanding and
rigorous characterization.

A number of theoretical efforts have shown that CAH is rooted in the statics of the
system [52, 72]. In particular, it has been shown that CAH is related to the rugged
free-energy landscape that is induced by the chemical imperfections of the solid, as
the associated energy barriers are able to trap the system in metastable configurations
(defined as pairs of contact line position and contact angle) that depend on its his-
tory [52, 100]. This causes the moving contact line (CL) to display hysteresis, even
in systems that are either translationally invariant in one direction and can be treated
as two-dimensional (2D), in which case the CL is straight [69, 101], or in systems for
which the CL has a constant curvature by axisymmetry [100].

An intrinsically three-dimensional (3D) approach was adopted in the theory of
Joanny and de Gennes [72] which has formed the basis of many theoretical extensions
as well as experimental investigations [2]. In their work, the profile of a CL, deformed
by a single chemical defect on a substrate, is calculated such as to satisfy the balance
of two forces acting on the CL: (i) the excess of capillary force exerted by the chemical
defect, and (ii) the ‘elastic restoring force’ opposing the deformation of the CL. For
a CL close to a ‘strong’ defect (i.e. exerting an excess capillary force above a certain
threshold), this force balance is satisfied for two (meta)stable configurations, causing
the system to display hysteresis.

In the present study we analyse the advancing and receding motion of the CL in a
2D microchannel with chemically heterogeneous walls. We compare our results with
the main fundamental predictions of Joanny and de Gennes [72], including the ex-
istence of a threshold value of the heterogeneity strength, below which hysteresis is
absent, and the case of a Gaussian defect, in which the threshold value shows a loga-
rithmic dependence on the system size and heterogeneity wavelength, and vanishes in
the limit of sharp edged (mesa) defects. It is important to remark, however, that here
we are considering a completely different geometry to the 3D system studied in [72].

In particular, one of the goals of our work is to verify whether their theoretical
predictions are still valid in our case. To this end, we only consider static hysteresis,
neglecting the following effects: (i) thermal noise which can assist the system to over-
come energy barriers [102, 103, 35, 104] or external vibrations [100] which if strong
enough may mitigate hysteresis [52], and (ii) dynamic effects which can also lead to
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the occurrence of hysteresis [105].
Another important, but still unresolved issue regarding CAH is the question of

linking the properties of the substrate disorder to the hysteresis amplitude, which we
denote as H . A decisive first step on this question was was taken in Ref. [72], where
the case of a single strong defect was extended to a regime of sparsely spaced strong
defects, and the following scaling law was proposed [72, 1, 2]

H = γ (cos θR − cos θA) ∝ nF 2
max

γ
, (2.1)

where Fmax is the maximum excess of capillary force exerted by a single defect, and
n is the surface density of the defects. The quadratic dependence on Fmax and the
proportionality with n were verified experimentally and numerically [106, 107, 102,
108]. However, the extension of this expression to dense defects and to other types of
heterogeneities is a challenging question that still remains open [107, 109].

Our aim here is precisely to address these issues and provide a quantitative descrip-
tion of CAH. For this purpose we adopt a 2D meniscus in a (2D) microchannel as a
model system. To the best of our knowledge, this is the first attempt to address the
existence of threshold and scaling laws of hysteresis in 2D systems.

In Section 2.2.1 we introduce the model system, a liquid-gas meniscus in a mi-
crochannel with chemically disordered walls and we give the condition for a meniscus
in mechanical equilibrium.

Adopting the liquid volume as the control parameter, we offer an example in Sec-
tion 2.2.2 of how CAH can arise in the system. An alternative interpretation to this
phenomenon is given in Section 2.2.3, which involves a graphical force balance, simi-
lar to [72].

This similarity is also present in some of the main results. In Section 2.3.1 we
show that weak heterogeneities do not produce hysteresis, and evaluate the hysteresis
threshold for certain wettability distributions.

In Section 2.3.2 we explain the qualitatively different regimes of hysteresis upon
varying the ratio between the heterogeneity wavelength and the microchannel gap size.
We comment on the strong dependence of the threshold on the fluid configuration being
considered, and argue that it does not exist for a drop fed by a sufficiently slow (quasi-
static) liquid injection, for which all regimes of hysteresis are encountered while the
drop grows.

For heterogeneities with a strength sufficiently above the threshold, we explore in
Section 2.3.3 scaling laws between the parameters of the wettability distribution and
H .

Finally, conclusions and perspectives are offered in Section 2.4.
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Figure 2.1: Sketch of the profile geometry for a liquid confined inside a chemically
heterogeneous microchannel. γ∗sl, γ

∗
sg and γ∗ are the wall-liquid, wall-gas and liquid-

gas surface tensions, respectively. The contact angle θ is defined as the angle between
the line tangent to the liquid-gas interface at the contact point and and wetted area of
the walls.

2.2 Model formulation and theoretical framework

2.2.1 Definition of the system
We consider the 2D setup consisting of a liquid-gas meniscus moving inside a mi-
crochannel (Fig. 2.1). A gap of width b∗ separates two planar, rigid, topographically
flat, but chemically heterogeneous walls. This chemical heterogeneity is characterized
by a positional dependence of the interfacial tensions γ∗sl and γ∗sg between the walls
and the liquid and the gas, respectively. The liquid-gas surface tension γ∗ is assumed
constant. We thus impose an intrinsic contact angle θi distribution, identical on both
walls, as:

cos θi (x∗) =
γ∗sg(x

∗)− γ∗sl(x∗)
γ∗

, (2.2)

where dimensional quantities are denoted with an asterisk.
We assume gravity to be negligible so that the static interface takes a constant

curvature (circular arc). Any given pair of the contact line position and contact angle,
which we denote as (x∗, θ), fixes the volume of the liquid (per unit length of the contact
line): {

V ∗ = x∗b∗ + b∗2f (θ) ,

f (θ) = 2θ−π+sin(2θ)
8 cos2 θ .

(2.3)

The free energy F ∗ of the system, per unit length of the contact line and up to a con-
stant, consists of the three interfacial tensions, integrated along the length on which
they act:

F ∗ = γ∗l∗ +

∫ x∗

0

[γ∗sl,u(x∗)− γ∗sg,u(x∗)]dx∗

+

∫ x∗

0

[γ∗sl,b(x
∗)− γ∗sg,b(x∗)]dx∗,

(2.4)

where l∗ = (π − 2θ)/2 cos θ is the dimensional liquid-gas meniscus length, and the
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subscripts u and b represent the upper and bottom walls, respectively. As we limit our
study to identical walls, the two integrals are equal, and

F ∗ = γ∗b∗
π − 2θ

2 cos θ
− 2γ∗

∫ x∗

0

cos θi(x
∗)dx∗. (2.5)

To find the extrema of F ∗ at a fixed volume V ∗0 , we minimize the function

G∗ = F ∗ + Λ[x∗b∗ + b∗2f(θ)− V ∗0 ], (2.6)

with respect to x∗ and θ, where Λ is a Lagrange multiplier. This calculation actually
yields the natural condition

cos(θ) = cos(θi(x
∗)), (2.7)

which states that at equilibrium, the meniscus angle must be equal to the local value
of the Young’s angle, as expected. In the following, we refer to menisci satisfying
Eq. (2.7) as being at equilibrium configurations. The volume of such equilibrium
configurations is given, in dimensionless form, by:

V =
V ∗

b∗2
= x+ f(θi(x)). (2.8)

where we have used b∗ as characteristic length scale. Similarly, it is convenient to scale
the free energy as:

F =
F ∗

b∗γ∗
=
π − 2θ

2 cos θ
− 2

∫ x

0

cos θi(x)dx. (2.9)

2.2.2 Occurrence of contact angle hysteresis
For homogeneous walls (θi(x) = θ0), V increases linearly with x [Eq. 2.8]. For
non-constant θi(x), a nonlinear variation of V with x occurs, but V might still be
monotonously increasing with x if variations of θi are weak. For sufficiently dis-
ordered walls (the condition will be derived in Section 2.3.1), V (x) increases non-
monotonously, enabling the occurrence of multiple equilibrium configurations for a
given volume. In Fig. 2.2 we consider a model microchannel with periodically vary-
ing wetting properties, illustrating the latter case. Specifically, we take cos(θi(x)) =
0.2 sin( 2π

0.02x).
For V = 0.2, the contact line will adopt one out of 7 equilibrium configurations,

depending on the history of the system. This odd number of configurations corresponds
alternatingly to minima (metastable configurations) and maxima (unstable configura-
tions) of the free-energy curve, with the outermost configurations being metastable [see
Figure 2.2 (c)]. These four metastable menisci are drawn in 2.2 (d). The difference be-
tween maxima and neighboring minima can be interpreted as energy barriers which
trap the CL in a given metastable configuration [52, 110]. The magnitudes of these en-
ergy barriers are smallest for the metastable configurations with minimal and maximal
θ, in agreement with previous results on an axisymmetric drop [52, 110].

Therefore, by imposing that the volume is increasing or decreasing, we obtain the
advancing and receding trajectories of the meniscus, respectively, shown as green and
red lines in Fig. 2.2 (a). These trajectories are found with the assumption that the
system has no ability to overcome energy barriers. For certain values of V , the curve
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1

Figure 2.2: Example of how contact angle hysteresis occurs in a 2D microchannel
with a chemical pattern given by cos θi(x) = 0.2 sin

(
2π

0.02x
)
. (a) Black and gray:

metastable and unstable equilibrium configurations given by Eq. (2.8), green: pre-
sumed advancing trajectory, red: presumed receding trajectory; (b) The corresponding
contact angles; (c) Free energy as a function of the actual contact angle for V = 0.2
(indicated with a dashed line in (a) and (b) Four minima are indicated with numbers;
(d) Sketch of the four metastable configurations with V = 0.2, rescaled in the direction
orthogonal to the substrate to distinguish clearly the four menisci.

corresponding to equilibrium configurations [black and gray curve in Fig. 2.2 (a)] has
a limit (critical) point. At these values of the volume, say Vc, a saddle-node bifurca-
tion takes place, where the local minimum of the free energy F (black) collides with
a neighboring maximum (gray) and annihilate each other. At these points, the CL
suddenly jumps to the closest available metastable state giving rise to slip motion.

The corresponding trajectory followed by θ (Fig. 2.2 (b]) displays the typical ex-
perimentally observed sawtooth shapes [111, 112] associated with the stick-slip mech-
anism [69, 95, 65]. As expected, the advancing contact angle (θA) is larger than the
receding contact angle (θR).

To quantify the global differences between θR and θA we define the following
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quantities:

〈cos θR〉 =
1

∆V

∫
cos θR dV, (2.10)

〈cos θA〉 =
1

∆V

∫
cos θA dV, (2.11)

H =
H∗

γ∗
= 〈cos θR〉 − 〈cos θA〉, (2.12)

where cos θR and cos θA correspond to the solutions tracked upon respectively decreas-
ing and increasing V , and where the choice of ∆V depends on the situation considered.
For example, in the case of a periodic heterogeneity, it corresponds to an integer amount
of wavelengths. In addition, we will use the Cassie-Baxter contact angle θCB , which
is given by the average value of cos θi(x) over the whole microchannel with length Lx
(or over a period of the heterogeneity θi(x) in the periodic case).

cos θCB =
1

Lx

∫
cos θi dx (2.13)

2.2.3 Graphical force balance
The phenomenon of CAH can also be interpreted by looking at the interplay between
the two forces acting on the horizontal direction of the contact line, namely the spring-
type elastic response of the contact line and the force due to the chemical hetero-
geneities [72].

However, it is important to note that the contact line in our 2D system is straight in
the spanwise direction and so the spring-like behaviour is due to deformations of the
meniscus in the cross-stream direction, as shown below, and not to corrugations of the
contact line in the spanwise direction as as in [72].

We will see here that the occurrence of hysteresis generically is connected to the
multiplicity of solutions (x, θ) for the balance between these forces at a fixed value of
V .

The presence of the solid implies a force f∗s (per unit length of the contact line), in
the positive x-direction:

f∗s = 2
(
γ∗sg − γ∗sl

)
= 2γ∗ cos θi = γ∗fs. (2.14)

At equilibrium, this force is balanced by the restoring force f∗r due to the deformation
of the meniscus

f∗r = −2γ∗ cos θ = γ∗fr. (2.15)

Clearly, equilibrium implies f∗s +f∗r = 0, i.e. cos θ = cos θi(x) as obtained in Eq. 2.7.
Let us now define the deformation of the meniscus by

∆x = xV − x, (2.16)

where xV is the mean position of the meniscus, defined as the position of a straight
liquid/gas interface with the same liquid volume.

Hence, ∆x is geometrically related to θ by:

∆x = f(θ), (2.17)
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Figure 2.3: Spring approximation of the meniscus. (a) The restoring force in dimen-
sionless form as a response to a dimensionless deformation of the contact line, where
θ is a plotting parameter varied from 0 to π; (b) Meniscus stiffness as a function of the
actual angle.

where f(θ) is given by Eq. (2.3). The restoring force fr = −2 cos θ is an increasing
function of the deformation ∆x, and can be written as:

fr = k(θ)∆x. (2.18)

Therefore, we can interpret the meniscus as a spring with stiffness k that depends only
on θ (see Fig. 2.3), and is given by

k(θ) =
−2 cos θ

f(θ)
=

16 cos3 θ

π − 2θ − sin (2θ)
. (2.19)

Combining Eq. (2.14) and (2.18), the force balance then reads

k (θ) (x− xV ) = 2 cos θi(x). (2.20)

Fig. 2.4 illustrates this force balance for the case of a single Gaussian-shaped defect:

cos θi(x) = cos θ0 +A0 exp

(
− (x− xd)2

2σ2

)
. (2.21)

The complete qualitative agreement of Fig. 2.4 with the graphical construction pro-
posed by Joanny and de Gennes [72], despite the different nature of the spring constant,
not only shows the robustness of this view, but also that the occurrence of hysteresis is
generically associated with the existence of multiple static configurations upon varying
an experimentally controllable parameter such as the liquid volume.

We note, however, that in general, the curves representing fr are not just straight
lines as the stiffness depends on the actual contact angle (θ = θi(x) in Eq. 2.20). By as-
suming a weak heterogeneity (i.e. cos θi(x) = cos θ0+∆ cos θi(x) with |∆ cos θi(x)| �
1), the force balance may be linearized by noting that

x− xV = −f(θi(x)) ' −f(θ0) + f ′(θ0)∆ cos θi(x)/ sin(θ0), (2.22)
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advancing jump

receding jump

Figure 2.4: Example of graphical force balance with θ0 = π
2 , A0 = 0.9 and σ = 0.01.

For a range values of xV in the vicinity of the defect, up to three solutions are obtained
for x (indicated with black dots). In this range, a different path of solutions is followed
by the advancing CL (green) and receding CL (red). Both directions require a jump
which is indicated with a striped line.

which is recast as
sin (θ0)

f ′(θ0)
(x− x̃V ) = ∆ cos θi(x), (2.23)

with
x̃V = xV − f(θ0). (2.24)

Depending on the particular situation being considered, such a linearized force balance
may be sufficient to describe the hysteresis behaviour.
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2.3 Results

2.3.1 Hysteresis threshold and phase-plane plots
As is evident from Fig. 2.2, to have a multiplicity of equilibrium configurations for
a given volume, there must be at least one critical contact line position xc, where a
saddle-node bifurcation takes place.

At one of these points, the meniscus jumps either forward in an advancing path or
backwards in a receding path, as the volume varies. We note that alternatively, we can
see these critical points as maxima and minima, respectively, of V (x). Making use of
Eq. (2.3) we can hence write:

V ′(xc) = 1 +
∂f(θi)

∂θi

∂θi
∂x

∣∣∣∣
x=xc

= 0, (2.25)

where V ′(xc) = dV
dx

∣∣
x=xc

. Denoting θ̂ic ≡ θ′i(x = xc) and rearranging the above
equation, we get

θ̂ic = − 1
∂f(θi)
∂θi

=
2 cos2 θi

(π2 − θi) tan θi − 1
. (2.26)

Therefore, at critical points, the wettability gradient θ̂ic exhibits a generic behaviour
that does not depend on the particular form of θi(x) but only on the given value of θi.
The points where the curve of θ′i(x) versus θi(x) crosses the generic curve θ̂ic(θi) cor-
respond to the critical values of x at which jumps occur (either forward or backward).
Thus, for a given distribution θi(x), visualizing both curves in a phase-plane plot will
enable predicting whether and where the CL will jump.

As θi is physically limited between 0 and π, we have that θ̂ic(θi) is limited between
-2 (for θ = 0 and π) and -6 (for θ = π

2 ). Importantly, the negative sign of θ̂ic implies
that an advancing (receding) meniscus can only start jumping from a position at which
the wettability is increasing with increasing x (decreasing with decreasing x).

Another point to remark is that hysteresis occurs only if the strength of a (smooth)
heterogeneity is above a finite threshold (a similar observation was reported in [72],
albeit in a different physical system). If the condition θ′i(θi) = θ̂ic(θi) is not satisfied
for any x, then no stick-slip occurs and the same path of static solutions is followed
during advancing and receding. These behaviours are illustrated in the following.

2.3.1.1 Smooth heterogeneities

We consider two examples for θi(x), namely a single Gaussian-shaped defect with
amplitude A0, width σ, and located at xd:

θi(x) = θ0 +A0 exp

(
− (x− xd)2

2σ2

)
, (2.27)

and a periodic heterogeneity with amplitude A0 and wavelength λ:

θi(x) = θ0 +A0 sin

(
2πx

λ

)
. (2.28)

As just remarked, if condition (2.26) cannot be satisfied, a multiplicity of static
solutions and hysteresis cannot occur. This is the case when θ′i(x) is not negative
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enough, which is certainly true if min(θ′i(x)) > −2. For the Gaussian defect (2.27)
this condition leads to the relation |A0|

σ < 2
√
e, and for the sinusoidal heterogeneity to

|A0|
λ < 1/π.

On the other hand, condition (2.26) is certainly satisfied if min(θ′i(x)) < −6, which
leads to the conditions |A0|

σ > 6
√
e for the Gaussian defect, and |A0|

λ > 3/π for the si-
nusoidal heterogeneity (2.28). For values of |A0|

σ ∈ (2
√
e, 6
√
e) (or |A0|

λ ∈ (1/π, 3/π))
hysteresis may or may not occur, depending on the background contact angle θ0. In
that respect that condition 2.26 is more difficult to satisfy for a CA of π

2 , because this
is the angle around which θ̂ic is most negative.

We hence conclude that the quantity |A0|
σ (or |A0|

λ ) determines whether hysteresis
occurs or not, i.e. it is the gradient of wettability that matters. In particular, for a given
defect amplitude A0, hysteresis will always be observed at sufficiently small defect
size (compared to the microchannel gap).

Fig. 2.5 depicts a comparison between two cases that are below and above the
threshold for a single Gaussian defect [see panel (a)]. As is evident from the phase
plot [Fig. 2.5 (b)], the system starts at the origin, and moves clockwise along a closed
trajectory for an advancing CL (increasing x), or anticlockwise for a receding CL (de-
creasing x).

If the defect is weak (dashed line), the phase plot does not intersect the generic line
θ̂ic(θi). On the other hand, for the stronger defect (full line), there are two intersections
on the phase plot, which correspond to the minimum (left) and maximum (right) of
V (x) (cf. 2.5(c)). These are the points at which the receding and advancing jump
start, respectively. The ending points of the jumps are found with the assumption of
the constant volume, corresponding to a case where the externally imposed volume
variation is of negligible rate compared to the velocity of the jumps.

For values of the volume in between the values corresponding to the jumps, multi-
ple equilibrium states exist and the system will choose one depending on whether the
volume has been increasing or decreasing [Fig. 2.5 (c). More specifically, the advanc-
ing CL follows the branch corresponding to lower x, while the receding CL follows the
branch corresponding to higher x. The middle branch is unstable as it corresponds to
maxima of the free energy (as in Fig. 2.2).

The contact angles corresponding to the two branches are shown in Figure 2.5 (d),
revealing that when increasing V (green), the CL first sticks on the hydrophobic defect,
causing θ to increase progressively, and then slips, corresponding to a sudden decrease
of θ. When decreasing V (red), the CL almost directly slips over the hydrophobic
defect, corresponding to a sudden increase of θ, and then sticks, causing θ to decrease
progressively. Both for the hydrophobic case considered here, and for a hydrophilic
defect, jumps correspond to a decrease of θ when increasing V , and to an increase of θ
when decreasing V .

For the periodic heterogeneity given by Equation (2.28), we observe a similar be-
haviour in terms of the threshold-dependence of hysteresis. We will consider this case
in more detail in Section 2.3.2.

2.3.1.2 Sharp heterogeneities

We now consider sharp-edged defects, or mesa defects adopting the term coined by
Joanny and de Gennes [72]. In the limit case of symmetric mesa defects – i.e. defects
involving both a steplike increase and decrease in wettability, as shown in Fig. 2.6 –
θ′i(x) will reach both plus and minus infinity, crossing the generic curve θ̂ic in between.
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Figure 2.5: Comparison of behavior above (A0 = 0.15, full lines) and below (A0 =
0.03, dashed lines) threshold for a single defect [Eq. (2.27)] with σ = 0.01 and θ0 =
π
2 ). (a) Intrinsic contact angle distributions. (b) Phase plots of both distributions, the
thick line represents θ̂ic (it is a curve which appears straight with the relevant axes.) The
green (red) arrow and dot represent respectively the sense of circulation and the start of
the jump for an advancing (receding) CL; (c) CL position followed in advancing (green)
and receding (red) trajectory above the threshold, and below the threshold (dashed); (d)
Contact angle corresponding to these trajectories.
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Figure 2.6: Examples of sharp edged heterogeneities. (a) Symmetric, involving the
same steps of increasing and decreasing wettability; (b) Non-symmetric, having a dif-
ferent slope for increasing and decreasing wettability.

Hence such defects, featuring infinitely large wettability gradients, always generate
hysteresis, as was predicted by Joanny and de Gennes [72].

Asymmetric heterogeneities, however, of which the intrinsic CA decreases too
slowly with increasing x (min(θ′i(x)) > −2), do not generate hysteresis, even if the
increases of CA are step-like. We illustrate this with the example of a triangular het-
erogeneity with amplitude A0 and wavelength λ given by:

θi(x) = θ0 +
2A0

π
arctan

(
cot
(πx
λ

))
(2.29)

and shown in Fig. 2.7(a). Any negative value of A0 implies step-like decreases of
the intrinsic CA with increasing x, which give rise to hysteresis. For a positive value
of A0 however, no hysteresis will occur if (min(θ′i(x)) > −2) ≡ − 2A0

λ > −2, or
0 < A0 < λ. Figure 2.7 is an example of such a case. On the contrary, the same
heterogeneity with an inversed sign of A0 does generate hysteresis (Fig. 2.8). For
this heterogeneity, inverting the sign of A0 is equivalent to inverting the sign of the
coordinate x. Therefore the situation in Fig. 2.8 can be obtained in exactly the same
microchannel as in Fig. 2.7, by simply placing the liquid inlet at the right-hand side.
Hence, for a microchannel with this particular type of heterogeneity, whether or not
the system will suffer hysteresis and stick-slip, will depend on the side from which the
liquid enters.

This analysis shows that the existence and nature of the threshold does not only
depend on the wetting properties of the substrate θi(x), but also on the particular liquid
configuration. However, recall that all lengths, and hence the typical length scale of
the heterogeneity,) are normalised with the gap width separating the two plates of the
microchannel.

As a result the weak Gaussian-shaped defect corresponding to the dashed lines
in Fig. 2.5 would be a strong defect in a microchannel with a gap size that is five
times larger. This points to the importance of the overall length scales, something that
deserves more attention and was not considered in the work by Joanny and de Gennes
[72], nor was it discussed in the more recent review by Bonn et al. [2].
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Figure 2.7: Sub-threshold triangular heterogeneity (Eq. 2.29 with A0 = 0.09, θ0 =
π/2 and λ = 0.1). (a) Intrinsic contact angle distribution. (b) Phase-plane plot, the
thick line represents θ̂ic; (c) CL position as a function of volume (same for advancing
and receding); (d) Contact angle corresponding to this trajectory.
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Figure 2.8: Triangular heterogeneity which generates hysteresis (Eq. 2.29 with A0 =
−0.09 and λ = 0.1). (a) Intrinsic contact angle distribution; (b) Phase-plane plot,
the thick line represents θ̂ic; (c) CL position as a function of volume for (black: all
static solutions, green: followed during advancing, red: followed during receding); (d)
Contact angle corresponding to these paths.
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2.3.2 From large to small heterogeneity length scale: the macro-
scopic limit.

Here we discuss qualitatively the effects on hysteresis of the ratio λ between the char-
acteristic lengthscale of the heterogeneity and the gap size of the microchannel (which
is constraining the liquid-vapor interface in this configuration), by looking at a periodic
distribution of the spreading coefficient of the walls as a model prototype.

cos θi(x) = A0 sin

(
2π

λ
x

)
(2.30)

This heterogeneity is different to that given by Eq. 2.28, because we had imposed
for simplicity a distribution for θi(x), as opposed to the spreading coefficient which is
proportional to cos θi(x) and which gave simple analytical result for the value of the
threshold, whereas here we want to obtain a scaling law for the hysteresis force. The
results for this case are presented in Fig. 2.9.

For a given value ofA0 and when λ is sufficiently high (see first column of Fig. 2.9)
the system is in a sub-threshold regime (i.e. the gradient |A0|/λ is too small). Although
the contact angle varies with volume, hysteresis is absent. In particular, we observe that
for each volume we find a unique static configuration (x, θ), the phase-plane plot of the
heterogeneity does not intersect the generic curve θ̂ic, and the advancing and receding
CL follow the same path, in clockwise and anticlockwise directions, respectively. The
CA takes all possible values imposed in the distribution 2.30 in both the advancing
and receding directions. Hence in this regime, advancing CAs lower than the Cassie-
Baxter angle (here equal to 90 deg) are possible, and receding CAs higher than the
Cassie-Baxter one, are possible.

If we decrease λ by a factor three (second column of Fig. 2.9) by, e.g., increasing
the gap width by the same factor, the system is then in a regime in which hysteresis
occurs. We find that for most volumes there exists a unique static configuration (x, θ),
but in certain ranges three static solutions are found. At these points, the branch fol-
lowed by the system will depend on whether the CL advances or recedes. The contact
angle of an advancing CL is on average higher. At the intersections between the phase
plot of the heterogeneity and the generic curve θ̂ic, the contact line jumps (slips) to a
point which has the same volume if we assume that such jumps occur instantaneously
compared to the rate of volume variation. In the phase-plane plot, an advancing CL
follows a different path than a receding CL.

A further decrease in λ (third column of Fig. 2.9) increases the number of static
solutions (x, θ) for a given volume. The path followed by an advancing CL is now
totally different than the one followed by a receding CL. When λ decreases, gradually,
jumps get smaller and occur more frequently. The contact angles follow sawtooth
shapes which get further separated. The advancing CAs are at all times higher than
the Cassie-Baxter angle, while the receding CAs are lower. The bows followed in the
phase diagram are separated further.

In the limit λ→ 0, which we refer to hereafter as the macroscopic limit, the number
of static solutions (x, θ) at any given volume starts becoming arbitrarily high. This sit-
uation is represented for λ = 0.001 in the fourth column of Fig. 2.9. The CL advances
with a nearly constant contact angle, corresponding in this case to the maximum of the
imposed distribution, and recedes with a nearly constant contact angle (which is the
minimum of the imposed distribution). The sawtooth amplitude of the contact angle is
below 0.3 deg and hysteresis is maximum.
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Figure 2.10: Change of rugged energy landscape upon varying λ in Eq. 2.30 with
A0 = 0.2 with a fixed volume V = 0.2. (a) and (b): Energy landscape F = F∗

γ∗b∗ as
a function of actual contact angle for resp. λ = 0.02 and λ = 0.001. The most stable
contact angle θMS and the maximal energy barrier EBM to reach it are indicated with
arrows on (a). As the energy landscape is symmetric about 90 deg, these quantities are
measured from the right side; (c) The maximum energy barrier to reach the most stable
contact angle versus λ−1. (d): Most stable contact angle versus λ−1. The dotted line
represents the Cassie-Baxter angle.

In the above analysis, we have assumed that the system has no ability to overcome
energy barriers, which are also affected by varying λ. A lower value of this parameter
increases the amount of extrema in the energy landscape for a fixed volume (Fig. 2.10,
(a) and (b)). We define the maximum energy barrier EBM which needs to be overcome
in order to attain the most stable contact angle θMS , as indicated on Fig. 2.10(b).

EBM is found to decrease with λ−1 and reaches a value of the order 10−4 for
λ = 0.001 (Fig. 2.10(c)). The most stable angle [Figure 2.10 (d)], approaches the
Cassie-Baxter angle (90 deg). This result was previously reported in Refs [113, 55] for
a configuration of a drop much larger than the heterogeneity wavelength.
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2.3.3 Scaling laws of the hysteresis force

2.3.3.1 Near threshold behavior

LetA0c be the threshold value for the amplitude of the chemical defect. ForA0 = A0c,
at a certain contact line position, say x0, we have that the volume satisfies:

V ′(x0) = V ′′(x0) = 0. (2.31)

Consider the deviations from this point for the quantities:{
A0 = A0c + µ,

x = x0 + x̃.
(2.32)

By using (2.31), we expand the volume for µ� 1 and x̃� 1 as

V = x+ f(θi(x,A0)) ≈ V0 + c1µ+ c2µx̃+ c3x̃
3. (2.33)

The extrema of V are then given by

dV

dx
= 0 = c2µ+ 3c3x̃

2, (2.34)

the solutions of which, assuming c2c3 < 0, are

x̃± = ±
(
−c2µ

3c3

)1/2

∝ µ1/2. (2.35)

Inserting the above values into Eq. 2.33, we obtain:

Vmax − Vmin ∝ µ3/2, (2.36)

where Vmax = V (x+, A0) is the relative maximum of the volume at which the CL
jumps in an advancing path, and Vmin = V (x−, A0) is the relative minimum of the
volume, at which the CL jumps in a receding path. The magnitude of the jumps of the
force scales as

δf ∝ cos(θi(x−, A0)) − cos(θi(x+, A0))

∝ θi(x+, A0) − θi(x−, A0)

∝ x+ − x− ∝ µ1/2. (2.37)

According to definitions (2.10)-(2.12), the hysteresis H is directly related to the
area between the curves of cos(θR) and cos(θA) versus V . Combining (2.36) and
(2.37) we thus find that close enough to the threshold, the hysteresis amplitude scales
as

H ∝ µ2 ∝ (δf)4. (2.38)

In the following, we explore numerically the emergence of scaling laws. We first focus
on the case of hysteresis caused by an array of wetting defects, where we focus on the
dilute limit at which we have a minimum number of equilibrium configurations for a
given volume.
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Figure 2.11: For a single, wetting defect, logarithmic plots of the dimensionless hys-
teresis force H =< cosθR − cosθA > for θ0 = π/2 for four values of σ : 0.01 (∗),
0.005 (+), 0.002 (o), and 0.001 (.), as a function of (a) the defect amplitude, and (b)
the fluctuation δfrec of cos θR during the jump. The dashed lines with slopes two and
four are drawn to guide the eye.

2.3.3.2 Dilute system of wetting defects

Consider a single Gaussian-shaped defect:

cos θi(x) = cos θ0 +A0 exp

(
−

(x− Lx
2 )2

2σ2

)
, (2.39)

where we fix θ0 = π
2 . We assumeA0 > 0, i.e. a defect which is more wettable than the

rest of the surface, and vary the amplitude A0 over 400 values, logarithmically spaced
in the interval between 0.001 and 0.99, for four values of the defect width σ. The
computational domain Lx is fixed to a dimensionless length of unity and discretized
in sections of ∆x = 10−5. With this length the whole pinning-depinning process is
captured for all calculated defects. For each value of σ, a threshold amplitude A0c is
calculated numerically as the minimum A0 for which the phase plot of the heterogene-
ity intersects the generic line (Section 2.3.1).

Fig. 2.11(a) shows that hysteresis depends only slightly on the width of the defect.
The effect of defect amplitude A0 on the hysteresis is twofold. A larger A0 does not
only imply a larger difference between the CA on the defect and the background angle,
but also larger jumps (see the graphical force balance in Fig. 2.4), hence a larger range
of V during which the CA differs from the background angle. Near the threshold (see
Eq. 2.38) but also far from it, the hysteresis is found to scale as:

H ∝ (A0 −A0c)
2, (2.40)

where A0c is the threshold amplitude depending on σ, which is 0.04945 and 0.00495
for the broadest and sharpest defect, respectively. As the maximum excess force
F ∗s,max exerted on the contact line by the defect is proportional to γ∗A0, we may write
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for the dimensional hysteresis force H∗

H∗ = γ∗H ∝
F ∗2s,max
γ∗

, (2.41)

where A0c has been assumed negligibly small against A0, e.g. in the macroscopic
limit σ → 0. This scaling law is in agreement with previous theoretical and numerical
predictions [72, 108] and experiments [106], though in different configurations to the
one studied here.

It is important to emphasise that in fact, the hysteresis caused by the wetting defect
is mainly due to the increase of 〈cos θR〉whenA0 increases, while 〈cos θA〉 stays nearly
constant (see also the graphical force balance in Fig. 2.4). This is consistent with
experimental findings [102, 114, 112] on surfaces with controlled chemical defects
and can be understood by the fact that a wetting defect primarily affects [90] or more
specifically pins [112] the CL in the receding direction. Fig. 2.11 (b) shows that close
enough to the threshold, the hysteresis amplitude scales with the fluctuation of the force
caused by a jump to the power four, also in agreement with Section 2.3.3.1. Further
from threshold, no clear scaling behaviour can be observed.

We note that as we quantify averaged hysteresis, the absolute value of H depends
on the domain size. An increasing system size indeed enhances the dilution of the
effects of the defect by the homogeneous background. This can be avoided by con-
sidering an array of such defects. We thus impose an array of N equally spaced and
identical wetting defects.

cos θi(x) = cos θ0 +A0

N∑
i=1

exp

(
− (x− xdi)2

2σ2

)
, (2.42)

where xdi = i Lx
N+1 . Fig. 2.12 shows that for low enough N , the hysteresis force

is directly proportional to N , which is in agreement with experiments [107] and the
proposed scaling law for the hysteresis caused by a dilute system of defects [72, 1, 2]

H∗ = γ∗ (cos θR − cos θA) ∝ n(F ∗max)2

γ∗
. (2.43)

The effects of the individual defects are simply additive as long as they are independent
(non-overlapping). As the density of defectsN is increased however, this proportional-
ity no longer holds as the stick-slip of the CL on a defect is affected by the neighboring
defects. More specifically, the jumps of the CL do not end anymore on homogeneous
parts between defects, but on other defects. This shadowing effect increases with N ,
decreasing the slope on the plot. For N above 150, the defects start overlapping and
hysteresis even starts decreasing as the substrate becomes less heterogeneous, though
with a shifted background value.

2.3.3.3 Periodic heterogeneity

In our last example, we consider a periodic heterogeneity of the form:

cos(θi(x)) = A0 sin

(
2π

λ
x

)
. (2.44)
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Figure 2.12: Logarithmic plot of the dimensionless hysteresis force H =< cosθR >
− < cosθA > for an array of equally spaced, identical wetting defects with width
σ = 0.01 as a function of the amount of defects for six values of A0 : 0.075 (�), 0.1
(4), 0.125 (.), 0.15 (o), 0.175 (+) and 0.2 (∗).
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Figure 2.13: Logarithmic plot of the dimensionless hysteresis force H =< cosθR >
− < cosθA > as a function of the heterogeneity amplitude for a periodic heterogeneity
with θ0 = π/2 and 8 values of λ. Black symbols correspond to small wavelengths:
λ = 1. 10−4 (∗), 8 . 10−4 (+), 5.80. 10−3 (o), 4.44. 10−2 and (.). Gray symbols
correspond to large wavelengths: λ = 0.1 (∗), 0.178 (+), 0.316 (o) and 0.562 (.). The
black dashed line (collapsing with data) corresponds to the macroscopic limit. The
gray dashed line with slope two is drawn as visual aid.

The computational domain has a length of 20λ. We vary A0 over 100 logarithmi-
cally spaced values between the threshold value and 0.89, and λ over 8 logarithmi-
cally spaced values, between 10−4, which is indistinguishably close to the macroscopic
limit, and 0.578. The ranges of V over which the contact angles are integrated (in Eq.
2.10 and 2.11) start and end with a value at the CL jumps.

The threshold amplitude A0c is 0.302 for the highest λ and 9.56 × 10−5 for the
lowest, satisfying A0c/λ constant. We find that the scaling exponent depends on the
wavelength λ as follows. For the lowest values of λ the hysteresis force is proportional
to the defect force. For broader heterogeneities, the scaling exponent increases with λ
and reaches a value of around two when λ is of the order of one (see Fig. 2.13). We
then write:

H∗ ∝ F ∗s,max, (2.45)

for λ → 0. The linear behavior corresponds exactly to the macroscopic limit (λ =
λ∗

b∗ → 0), in which the advancing and receding angle are nearly constant and equal
to the minimum and maximum of the imposed distribution (H → 2A0), respectively.
Also, for this infinitely sharp heterogeneity, the threshold amplitude vanishes (A0c →
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0). This limit is plotted in black dashed lines and collapses with the data for sufficiently
low λ, and at sufficiently high A0 − A0c (although A0 has an upper bound A0 = 1,
see Equation 2.44. This suggests that the value of λ below which this limit is reached
depends on A0.

Away from this limit, i.e. for higher λ), the system is in a regime of observable
stick-slip (see Section 2.3.2) where the difference between the advancing and receding
angle depends on V . The exponent larger than one found for this regime is due to
the same effect as in the case of a single defect (section 2.3.3.2): an increase of the
amplitude of the heterogeneityA0 increases both the difference between the advancing
and receding angle at the value of V at which the jumps occur, and the range of V
during which these angles differ.
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2.4 Conclusions and perspectives
We have analyzed in detail stick-slip motion and CAH of a liquid-gas meniscus in
a chemically heterogeneous microchannel of fixed gap width by tracking stable and
metastable states upon varying the liquid volume and for a wide range of heterogeneity
distributions. To the best of our knowledge, this is the first time that such a study has
been undertaken. Our goal has also been to examine to what extent previous results of
wetting hysteresis hold in the present configuration.

We showed that the stick-slip mechanism can be studied using phase-plane plots of
the heterogeneity. Weak heterogeneities do not produce hysteresis, a threshold for the
heterogeneity strength is required. For values of the heterogeneity strength sufficiently
above the threshold, we find good agreement with the previously reported expressions
for the hysteresis amplitude for a diluted system of defects, even though the geometry
and approach used here are notably different.

For a model sinusoidal heterogeneity, we have found that the ratio between the
heterogeneity wavelength and the liquid-gas interface length is a key parameter deter-
mining the qualitative aspects of the hysteresis. More specifically, decreasing gradually
this ratio brings the system from a sub-threshold regime (i.e. no hysteresis), to a stick-
slip dominated regime, and ultimately to a regime with a nearly constant advancing and
receding angles. In the latter regime, which we referred to as the macroscopic limit,
the hysteresis amplitude is shown to be proportional to the defect force.

Finally there are a number of interesting questions closely related to the analysis
presented here. For example, extension of the static approach to investigate a mi-
crochannel configuration with non-identical upper and lower walls (as in chapter 5),
but also account for the influence of thermal noise, especially in the macroscopic limit,
where the energy barriers which keep the system in metastable states are relatively low
[104]. Moreover, noise can induce dynamic/state transitions in rugged energy land-
scapes and further hysteresis effects (noise-induced hysteresis) [115, 116].

Of particular interest will also be the corresponding dynamic study, addressing the
question of how the hysteresis is amplified by the absolute velocity of the CL in each
of the qualitatively differently different regimes of hysteresis. Such study is presented
in chapter 4. Extension of the present analysis to more realistic three-dimensional
configurations, though possible in principle, would require considering an infinite-
dimensional generalization of the approach, which is not expected to be treatable other
than numerically.
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Chapter 3

Contact line stick-slip motion on
micrometer-size wavy fibres

In chapter 2, by studying the statics of contact line motion in a two-dimensional chemi-
cally heterogeneous microchannel, we have gained insights on generic aspects of stick-
slip and contact angle hysteresis. Considering such highly idealized setup facilitated
the performed analysis, but came at the price of hindering a direct quantitative compar-
ison with experiments.

Fortunately, the opportunity arose to collaborate with Dr. Carlos A. Fuentes (KU
Leuven) and co-workers, who performed tensiometric and goniometric experiments to
study on the dynamic wetting behaviour of axisymmetric sinus-shaped fibres (wavy
fibres) immersed perpendicularly in a liquid bath. This setup is in terms of modeling
very analogous to the one studied in chapter 2 and therefore provided the chance to
directly test quantitative predictions of stick-slip motion and of associated scaling laws.

Immersion and retraction of the fiber resulted in the observation of a stick-slip mo-
tion of the meniscus depending on both the fibre surface curvature and its intrinsic
wettability. The model predicts that the behaviour of the seemingly pinned and then
jumping contact line, with associated changes in apparent contact angles, can be ex-
plained by the interplay between a constant local contact angle and the movement of
the bulk liquid, leading to the storage of energy which is suddenly released when the
contact line passes a given point of fibre curvature.
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3.1 Introduction
The architecture of complex-shaped fibres affects the motion of the contact line and
the evolution of its associated menisci when a fibre is immersed into a liquid. Un-
derstanding and predicting the motion of the contact line is critical in the design of
complex-shaped fibres for many engineering applications as well as for surface sci-
ence. While wetting on classic circular cylinders has been well studied, singularities
during the wetting process of complex-shaped fibres are not yet well understood.

Wetting forces and analysis of meniscus shape formed around fibres immersed per-
pendicularly into a liquid have been traditionally used to study the wettability of single
fibres, which is essential in several technological applications, such as fibre reinforced
composite design [117, 118, 119] and coating of textile fibres [120].

The measurement of the capillary force exerted by a liquid on a fibre, from which a
contact angle can be calculated, is known as the Wilhelmy method (tensiometry) [121].
This pull or push force is produced by the weight of displaced liquid above or below
the reference horizontal free surface [122]. An advancing meniscus is formed when the
fibre is immersed into a liquid, while a receding meniscus is observed when the fibre is
withdrawn from the liquid. In general, both situations correspond to different apparent
contact angles and not to a single value, as theoretically predicted by Youngs equation
for an ideal surface.

This so-called hysteresis is related to the pinning of the contact line at physical
or/and chemical heterogeneities [123, 124]. Moreover, the value of the experimentally
measured contact angle is also influenced by the velocity of the advancing and receding
fronts [119, 125, 87].

Almost all the models previously described for measuring the wettability of fibres
have been developed for the characterization of the menisci on perfect circular cylin-
ders, while fibres with more complex shapes have received less attention [126, 127].
Irregular natural fibres [128] and the recent development of complex-shaped fibres for
industrial applications, such as hollow glass [129] and expanded/ablated fibres [130]
for improving composite interfaces, call for new studies focusing on the particular fea-
tures (e.g. diameter change along the fibre length) encountered during the motion of
the contact line on fibres with non-circular and variable cross sections [126, 131, 132].
An analysis of the meniscus shape on such complex-shaped fibres needs the develop-
ment of new experimental techniques and the validation or improvement of traditional
theoretical models.

In this chapter, the dynamic wetting behaviour of an axisymmetric sinus-shaped
fibre (wavy fibre) immersed vertically in a large liquid volume has been investigated.
Fibres were computer-designed and 3D printed down to micrometre dimensions with
Nanoscribe Photonics GT equipment, and the Wilhelmy method was used in parallel
with meniscus shape analysis; these two independent techniques were being cross-
validated by direct comparison of resulting contact angles. This methodology enabled
monitoring the profile of the fibre and the liquid meniscus while the fibre was being
immersed, and to correlate the contact angle variations with the motion of the contact
line.

The immersion and withdrawal of the fibre resulted in stick-slip motion of the
meniscus [127, 110, 133, 48, 134], which is predicted by a quasi-static model di-
rectly inspired by an analysis of the impact of chemical heterogeneities on stick-slip
behaviour and hysteresis in a microchannel (cf. chapter 2). Here, static model solu-
tions are tracked upon varying the immersion depth in upward and downward direc-
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tions, explaining why two different paths for the contact line position are observed,
with pinning-depinning events occurring in both cases.
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Figure 3.1: (a): Equilibrium configuration of an axisymmetric wavy fibre, immersed
vertically into a liquid. x is the axial coordinate attached to the fibre. The level of
the liquid bath is at x = h. The contact line is at x = h + H (with H the capillary
rise) where the meniscus makes an angle θi with the fibre and θV with the vertical.
(b): Optical microscopy of a 150/100 (outer diameter/inner diameter dimensions in
microns) fibre.

3.2 Theoretical framework
Consider an axisymmetric fibre (Fig. 3.1). Its topology (waviness) is specified by a
distribution of radii r(x) and its wettability by a distribution of intrinsic contact angles,
defined [110] as

cos θi (x) =
γsg(x)− γsl(x)

γ
, (3.1)

with γ the liquid-air surface tension [N/m] and γsg(x) − γsl(x) the difference be-
tween the solid-air and solid-liquid surface tensions. In most parts of this study (more
specifically before section 3.3.3, where we specify another form) we assume in our
model that the fibre is chemically homogeneous, with a wettability characterized by
the receding angle, experimentally measured on the straight parts of the fibre.

Immersing the fibre vertically in a liquid bath leads to capillary rise (H > 0) or
depression (H < 0) of the meniscus on it. For a radius much smaller than the cap-
illary length lc

(
=
√

γ
ρg

)
of the system, the equilibium height H of the capillary

rise/depression can be calculated by adapting the formula existing for a straight fi-
bre [135] to the case of an heterogeneous fibre considered here. For each given contact
line position. At equilibrium, at each contact line position xCL, one readily obtains

H(xCL) ≈ r(xCL) cos θV (xCL

(
ln

4lc
r(xCL) (1 + sin θV (xCL))

− C
)
, (3.2)
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whereC is the Euler constant (0.57721 . . . ), r(xCL is the local radius, and θV (xCL)
is the (equilibrium) contact angle measured with respect to the vertical axis, i.e.

θV (xCL) = θi(xCL)− arctan r′(xCL). (3.3)

In the studied range of r and θV , Eq. 3.2 is found to approach the solution of the
Young-Laplace ordinary differential equation (Eq. 3.8 below), with an error below 0.15

h(xCL) = xCL −H(xCL). (3.4)

3.2.1 Occurrence of stick-slip and hysteresis
Importantly, h is actually the experimentally controlled parameter and takes the same
role that V took in the analysis of hysteresis in a microchannel (chapter 2). h is a
single-valued function of xCL and simply given by Eq. 3.4. Yet, the opposite is not
true as the functions r(xCL) and/or θi(xCL) can cause h(xCL) to be increasing non-
monotonously, thereby making xCL(h) multi-valued. In such cases, the contact line
can be at one of several equilibrium positions xCL at a given value of h.

Forcing h to increase or decrease then results in xCL following it in the same direc-
tion, but with sudden jumps which over a length which is of the order of the wavelength
of the fibre. The jumps are well-captured in the movie clips in the supplementary mate-
rial of [136]. They occur both for in the advancing (immersing) and receding (retract-
ing) directions, but at slightly different locations for the two cases.

These sudden jumps in the contact line position can be explained by the statics of
capillary rise on a sinusoidal fibre starting from a liquid reservoir level h, the exper-
imentally controlled parameter, which is increased or decreased when immersing or
withdrawing the fibre respectively. Fig. 3.2 shows a schematic representation of the
receding process (the explanation of the advancing process is analogous).

If we start an experiment with the uppermost drawn configuration of the liquid/air
interface, decreasing the liquid bath level h results in the contact line descending on
the fibre. This situation continues until the configuration of the liquid/air interface
corresponds to h = h∗ and xCl = x1 (drawn in black in Fig. 3.2 a). From this
configuration on, displacing the contact line downwards would require increasing h.
The configurations of the liquid/air interface, with xCL < x1 but h > h∗, are drawn
in dashed lines in Fig. 3.2 a. Although they start at a lower position on the fibre, their
apparent angles θV are high enough (due to the local waviness of the fibre) such that
these interfaces already become flat at an immersion height h > h∗, which is violating
the experimental constraint that h must decrease. The contact line then jumps from a
position x1 to x2 at a constant immersion depth h = h∗.

This model explains the observed jumps and hysteresis upon experimentally vary-
ing the liquid bath level h in a qualitatively similar way as the explanation of the jumps
and hysteresis for a moving liquid wedge over a chemical defect upon varying the
contact line position far from the defect [72], a drop on a chemically heterogeneous
substrate upon varying its volume [110], and a liquid in a chemically heterogeneous
microchannel upon varying its volume (chapter 2).

3.2.2 Capillary force and free energy
We calculate for each possible contact line position the force that would be measured
by a tensiometer as
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F (xCL) = 2πγr(xCL) cos θV (xCL)− πρg
∫ xCL

0

r2(x)dx, (3.5)

The free energy G of the system is given by the integration of the interfacial ten-
sions along the surfaces on which they act, as well as the gravitational potential energy
of the meniscus.

G = γAlg +

∫
γsadAsa +

∫
γsldAsl + ρg

∫
xdVmeniscus. (3.6)

The liquid-gas interface area Alg is calculated is calculated as a revolution integral.

2πγ

∫ +∞

r(xCL)

p
√

1 +

(
dp

dx

)−2
 dp (3.7)

where p(x) is the profile of the meniscus as a function of the axial coordinate as
defined in Fig. 3.1). This profile is obtained by solving the Young-Laplace equation
(Eq. 3.8 below).

x′′ = (1 + x′2)

(
l−2
c x

√
1 + x′2 − x′

p

)
, (3.8)

Here, which primes denote derivation with respect to p and all lengths are scaled
with the radius r(xCL).

This ordinary differential equation is closed by imposing an angle (relative to the
vertical) at the fibre,

x′(p = 1) = − cot θV , (3.9)

and a flat interface far away from the fibre

x′(p→∞) = 0. (3.10)

Convergence is achieved after taking a domain size of 50lc and imposing Eq. (3.10)
at the domain edge.

The second and third term of Eq. 3.6 can be rewritten by introducing the intrinsic
contact angle θi by Young’s law.

∫
γsadAsa +

∫
γsldAsl = 2πγ

∫ xCL

0

r(x)γsl(x)

√
1 +

(
dr

dx

)2
 dx+

2πγ

∫ Lfibre

xCL

r(x)γsg(x)

√
1 +

(
dr

dx

)2
 dx

= −2πγ

∫ xCL

0

r(x) cos θi(x)

√
1 +

(
dr

dx

)2
 dx

+2πγ

∫ Lfibre

0

r(x)γsg(x)

√
1 +

(
dr

dx

)2
 dx

(3.11)
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The last term of Eq. 3.11 is simply constant in the considered problem.
Finally, the volume of the meniscus in the gravitational potential energy term of

Eq. 3.6 is caluclated as ∫
dVmeniscus

∫ xCL

h

(p2 − r2(x))dx. (3.12)

Substituting Eqs. 3.7, 3.11 and 3.12 into Eq. 3.6, the free energy ∆G up to a
constant can be calculated as

∆G = 2πγ

∫ +∞

r(xCL)

p
√

1 +

(
dp

dx

)−2
 dp

−2πγ

∫ xCL

0

r(x) cos θi(x)

√
1 +

(
dr

dx

)2
 dx

+ρgπ

∫ xCL

h

(x− h)(p2 − r2(x))dx.

(3.13)

For a given fibre, which is characterized by r(x), θi(x) and lc, Eq. 3.13 depends
on xCL and θV (which enters as a boundary condition of the meniscus profile, i.e. Eq.
3.9). The first term makes the system favour configurations in for which the liquid-
air interface is minimal (i.e. θV → 90 deg). The second term only depends on xCl
and describes the energy cost/gain by wetting the fibre area, depending on whether
the fibre is wettable (sign of cos θi). The third describes the energy cost/gain due to
elevating/depressing liquid above/below the reservoir level, depending on the sign of
cos θV .

In the following, we will consider two cases where one of the two degrees of free-
dom (which are xCL and θV ) is eliminated.

• Assuming capillary equilibrium (the equality between the contact angle with re-
spect to the fibre and the intrinsic contact angle at that contact line position), we
will look at the interplay between the different terms of the free energy during
the stick-slip process described in section 3.2.1.

• Under the constraint of an imposed immersion depth h, we will look if the con-
figuration(s) at capillary equilibrium indeed correspond(s) to extrema of the free
energy, as was analytically proven in simpler, i.e. a drop on a chemically hetero-
geneous substrate [110] and a liquid in a microchannel with chemically hetero-
geneous walls (chapter 2).
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3.3 Results

3.3.1 Energy dissipation during the jump
The effect of the jump on the free energy of the system is evaluated by the analysis
of the force trace during wetting of the fibre (Eq. 3.5), as can be seen in Fig. 3.3a.
The calculated force trace shows that the work gained by dipping the fibre over one
wavelength (area under the green curve) is smaller than the work required to with-
draw the fibre over one wavelength (area under the red curve). More specifically, an
advancing-receding cycle over one wavelength dissipates 1.76 nJ of energy.

Fig. 3.3b shows a clearer picture on how this 1.76 nJ is dissipated in an advancing-
receding cycle over one wavelength, using Eq. 3.13. Starting from h = 100µm, one
random position in the single-valued range of h where the free energy value corre-
sponds to 9.30 nJ, dipping the fibre (increasing h) results in a global reduction of the
free energy of the system as the fibre is wettable. When h = 300µm is reached (i.e.
after 200 µm, one wavelength), after the in-between advancing jump at h = 243µm,
the free energy of the system is 5.38 nJ. Then, the free energy of the system was re-
duced by 3.9 nJ, of which 1.09 nJ is dissipated during the advancing jump. To go back
to h = 100µm, the system requires 4.59 nJ, of which 0.67 nJ will be dissipated during
the receding jump at h = 138µm.

As can be seen from Fig. 3.2a, in the receding process, before the jump, the liquid-
air interface area continuously increases while θV decreases. Thus, in this range of
h values, the system stores the work that is provided to decrease h in its liquid-air
interface and as gravitational potential energy. Immediately after the jump, the contact
line is at xCL = x2 with a lower liquid-air interface area and gravitational potential
energy. This means that during the jump, at h = h∗, part of the stored energy is used
to dewet the fibre from x1 to x2, while 0.67 nJ still needs to be dissipated as the system
cannot keep storing it at the equilibrium state that the system attains immediately after
the jump.

Fig. 3.3b also shows that although multiple equilibrium configurations exist in a
range of h values, still one of them has a lower free energy than the others. In this
range, the free energy as a function of xCL (drawn for an arbitrary height h = 150µm
in Fig. 3.3c) shows that both the advancing and receding solutions (presented as dots)
are local minima of the free energy, with a local maximum in between which acts as
an energy barrier to trap the system in a metastable configuration. This result, proven
analytically in the configuration of a drop on a chemically heterogeneous substrate
[110] and a liquid in a microchannel with chemically heterogeneous walls (c.f. chapter
2), is recovered here numerically for this configuration.

For the situation drawn in Fig. 3.3c, the system is trapped in the receding config-
uration (red dot). This local minimum is separated from the advancing configuration
(green dot) by a local maximum. In order to move from one metastable to the other, the
system would have to overcome the barrier of 0.04 nJ, and then the advancing jump will
take place and dissipate 0.54 nJ, reaching the minimum energy configuration indicated
with the green dot. This energy barrier can for example be overcome by vibrational
noise [57, 137]. But in absence of this situation, the system will proceed to recede
along the red track in Fig. 3.3b, until the receding jump takes place at h = 138µm.
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Figure 3.3: Energy dissipated in the jumps; (a): Force exerted on the fibre (Eq. 3.5)
versus immersion depth . Black: all static solutions, Green: subset of stable static
solutions, tracked upon increasing h (advancing), Red: stable solutions tracked upon
decreasing h (receding). (b): With the same colour code, free energy of equilibrium
configurations (contact angle θi is equal to its equilibrium value, which is a constant) as
a function of h, the vertical dotted line corresponds to an arbitrary constant immersion
height of 150µm. (c) free energy as a function of xCL at h equal to 150 µm, where the
contact angle is now a free parameter. The red and green dot correspond to the equi-
librium configurations encountered in the receding and advancing path respectively.
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3.3.2 Scaling relation between jump length and dissipated energy
As demonstrated in section 3.2.1, the jumps of the contact line are induced by the to-
pography of the fibre. Here, we characterize these jumps by the energy they dissipate
(c.f. section 3.3.1) and the vertical length over which they occur. Both these quanti-
ties obviously vanish when there are no jumps (e.g. a perfectly cylindrical fibre) and
increase as the fibre becomes more wavy. In this section we will explore the scaling
relation between these two quantities numerically, analytically and experimentally.

In order to vary these two quantities, a parameter needs to be varied in their cause,
i.e. the topography of the fibre. A sinus-shaped fibre (c.f. Fig. 3.1) is characterized
by three length scales. We fix the wavelength at 200 microns, the maximal diameter of
150 microns and vary the minimal diameter Dmin.

3.3.2.1 Near threshold behavior

A perfectly cylindrical fibre (i.e. minimal diameter Dmin also 150 microns in the
form described above), does not induce jumps (stick-slip). A slightly wavy fibre (e.g.
Dmin = 145 micron does not induce jumps either. In fact, whether a topography
induces hysteresis and jumps has a binary answer which is only positive for Dmin

below a certain threshold value. (c.f. [72] and section 2.3.1).
In section 2.3.3.1 of chapter 2, we have shown for the microchannel configuration

that near the threshold, the hysteresis force scales with the square of the defect force.
Here, we repeat the same argument to obtain an experimentally verifiable outcome,
i.e. a scaling relation between the length over which a depinning jump occurs and the
energy dissipated during the jump.

Let D∗min be the threshold value for the lowest diameter of the fibre. For Dmin =
D∗min, at a certain contact line position, say x0, we have that the immersion depth
satisfies:

h′(x0) = h′′(x0) = 0. (3.14)

Consider the deviations from this point for the quantities:{
Dmin = D∗min − µ,
xCL = x0 + x̃.

(3.15)

By using (3.14), we expand the immersion depth for µ� 1 and x̃� 1 as

h = xCL −H(xCL, Dmin) ≈ h0 + c1µ+ c2µx̃+ c3x̃
3. (3.16)

The extrema of h are then given by

dh

dx
= 0 = c2µ+ 3c3x̃

2, (3.17)

the solutions of which, assuming c2c3 < 0, are

x̃± = ±
(
−c2µ

3c3

)1/2

∝ µ1/2. (3.18)

Inserting the above values into Eq. 3.16, we obtain:

hmax − hmin ∝ µ3/2, (3.19)
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where hmax is the relative maximum of the immersion depth at which the contact line
jumps in an advancing path, and hmin is the relative minimum of the immersion depth,
at which the CL jumps in a receding path. The magnitude of the jumps of the force
scales as

δf ∝ µ1/2.

The dissipated energy H∗ is given by the area between the curves of the receding
and advancing forces versus h. Combining (3.19) and (3.20), we thus find that close
enough to the threshold, the dissipated energy scales as

H∗ ∝ µ2 ∝ (x̃±)4. (3.20)

3.3.2.2 Comparison with experiments

Experiments where performed in KU Leuven by Dr. Carlos A. Fuentes and his cowork-
ers on four 3D-printed fibres with different minimal diamter Dmin, i.e. 80, 100, 120
and 140 microns. The liquid is water and the dipping velocity is 0.5 mm/min (For more
information on the experimental aspects, please see [136]).

The experimental displacement of the contact line after the jumps increases with the
wave ratio (ratio of smallest to largest diameter of the fibre) as shown in Fig. 3.4a. The
black dots correspond to 57.5 µm, 90.9 µm, 128.0 µm and 137.0 µm of displacement
for the fibres with diameters of 140 µm, 120 µm, 100 µm, and 80 µm at the lowest
amplitude respectively. The latter three fibres correlate well with the predictions of the
model (full red line) which is based on tracking the static solutions while decreasing
(receding). We first proceed with the analysis of the wetting behaviour of these three
fibres and come back to the situation of Dmin = 140µm fibre later.

For the fibres with Dmin equal to 120, 100 and 80 µm, the energy dissipated in the
jumps is calculated from the tensiometer force trace (e.g. the trace of 150/80 is given
later in Fig. 3.5) as the area

∫
(FR − FA) dh between the receding and advancing

force. First the area is measured between the traces corresponding to the wavy portion
of the fibres, and divided by the wavelength, in order to obtain the average dissipated
energy over a wavelength. Secondly, the dissipation due to the (uncontrolled) contact
angle hysteresis is measured from the horizontal portion of the force trace, correspond-
ing to the perfectly cylindrical portion of the fibre (c.f. Fig. 3.1). The energy dissipated
in one advancing and one receding jump can be then calculated by subtracting the dis-
sipation due to the uncontrolled contact angle hysteresis (e.g. 3.03 nJ for 150/80 in Fig.
8). The experimental values of the dissipated energy increase with the wave ratio from
0.26 nJ to 1.00 nJ to 1.51 nJ for the three fibres of interest, from left to right in Fig.
3.4b (black dots).

The procedure described above relies on the assumption that the total dissipated
energy is equal to the dissipation due to contact angle hysteresis (nanoscale wetting
heterogeneity) plus the energy dissipated during the jump events. The reasonable match
between the experimental values and the model prediction (red line in Fig. 3.4), where
the latter is calculated in the absence of a small-scale heterogeneity, verifies that this
assumption can be taken here as a good approximation.

Both the experimental and numerical data suggest that the dissipated energy scales
with jump distance to the fourth power (Fig. 3.4c). This scaling is especially accurate
for low values of the jump length and dissipation, i.e. closer to the threshold of hys-
teretic behaviour, and therefore in agreement with the derivation of section 3.3.2.1. It is
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Figure 3.4: (a): Vertical receding jump distance as a function of the wave ratio (ratio
between the lowest and largest radius) from experiment (black dots), model (red line)
and corrected model data (red stars, assuming jumps when ẋ

ḣ
> 1.5. Here ẋ is the

instantaneous contact line velocity and ḣ is the constant and imposed velocity of the
liquid bath. The vertical dashed line represents the location of the threshold wave ratio
(0.88) (b): Energy dissipated over one wavelength as a function of wave ratio. (c):
Energy dissipated as a function of jump length.
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different than the quadratic scaling that Shanahan [133] has predicted when the length
scale of the pinning sites is much smaller than the system size (in that case the drop
radius). The latter condition is typically satisfied far away (c.f. section 2.3.2) from the
threshold, while here the system is rather close to its threshold.

The threshold for a jump to take place is shown as a vertical dashed line in Fig. 3.4a
and 3.4b, at a wave amplitude of 0.88, corresponding to Dmin = D∗min = 132µm.
For Dmin > D∗min only one equilibrium configuration exists at each fixed immersion
depth h and dx

dxCL
> 0 for each xCL. This is the case for fibres which are not wavy

enough, as in the case of the fibre with Dmin = 140µm. For this situation the model
predicts that the meniscus can contact the whole fibre in a continuous way without the
necessity of jumping.

The apparent inconsistency with the experimental observation of a jump (see Figs.
3.4a and 3.4b) is hypothetically caused by quasi-static acceleration/deceleration events[136].
More specifically, the slope of the static xCL versus h curve (such as plotted in Fig.
3.1b for another fibre) is equal to one in average but not equal to one everywhere.
Therefore, when a constant bath velocity dh

dt is imposed experimentally, the contact
line will still accelerate and decelerate and this can be confused with the slip jumps.

A possible way to distinguish between an acceleration/deceleration event and a
real jump would be to pause the position of the bulk liquid h during a jump. If a
jump over the same portion of the fibre is still observed, then the observed jump is
a real depinning jump, while if the jump is paused as well, then it corresponds to a
quasi-static acceleration/deceleration event. Another way is to perform experiments
with different (still sufficiently low) immersion speeds. If the results for the different
immersion speeds collapse in any plot with the immersion height h on the horizontal
axis, then again, the observed acceleration/deceleration is not a real jump. The use of
high speed cameras could also help to observe more accurately the position at which a
jump is produced.

3.3.3 Advancing-receding cycle
In this section, a full advancing-receding cycle is modelled by the incorporation of a
small-scale heterogeneity as the responsible for the observed contact angle hysteresis.
In contrast with previous sections where the angle with respect to the fibre θi was
constant, we now impose a distribution of intrinsic contact angles θi(xCL).

cos θi(xCL) =
cos θR + cos θA

2
+

cos θR − cos θA
2

sin

(
2πxCL
λ

)
(3.21)

Here, θA = 77 deg and θR = 45 deg correspond to their experimentally measured
values on the perfectly cylindrical parts of the fibre (c.f. Fig. 3.1a) and λ = 0.5µm.
As in section 2.3.2, a periodic distribution with a wavelength λ much smaller than the
length scale of the experiment (i.e. the fibre dimensions) induces a nearly continuous
range of metastable apparent angles θV at fixed h, while at the same time implying a
constant θV when h is varied continuously, namely one of the limiting values, θA or
θR, depending on whether h is increased or decreased.

The prediction of this model for the Dmin = 80µm fibre compares very well with
the measured tensiometer trace (black dots in Fig. 3.5). For the cylindrical portion of
the fibre (h < 100µm), the static solutions (gray) appear one nearly continuous range
of F per fixed h at the scales of the graph. They are however discontinuous at the
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sub-micron scale of λ. The green/red line is the subset of equilibrium solutions which
is tracked upon increasing/decreasing h. These traces display jumps with a periodicity
λ equal to the wavelength of the small-scale heterogeneity (shown in the inset). On
the experimentally captured scale, these jump lead to a force which stays constant as a
function of h.

For the wavy portion of the fibre, the static solutions appear as multiple (from one
up to three) ranges of F at fixed h. Besides the small-scale jumps which keep the angle
with respect to the fibre remains nearly constant, the tracking now also requires jumps
on the scale of the wavelength of the printed structure.
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3.4 Concluding remarks

3.4.1 Summary
The observation of liquid advancing and receding fronts on 4 different wavy fibres
highlighted a stick-slip motion of the meniscus, the contact line jumping at well-defined
positions depending on both the fibre surface topology and its intrinsic wettability.

The stick-slip motion during the immersion and withdrawal of a wavy fibre in a
liquid bath is described well by the proposed static model of capillary rise, assuming a
distribution of radii along the fibre, and tracking the static solution upon increasing or
decreasing the experimentally controlled immersion depth.

Furthermore, the relation between the geometry of the fibre and the jump length
of the contact line can be clearly established, in agreement with our theoretical predic-
tions. Deviations between experimental and model data for high wave amplitude fibres
can be explained by acceleration/deceleration events that take place during the motion
of the contact line on the curved surfaces.

In summary, the behaviour of the seemingly pinned and then jumping contact line,
with associated big changes in apparent contact angles (i.e. angles measured with
respect to a vertical reference θV ), can be understood by the interplay of a constant
local real contact angle of the material, θi, and the movement of the bulk liquid. This
leads to storage of energy which is suddenly released when the contact line passes a
given point of fibre curvature.

The analysis presented here is limited to sinusoidal wavy fibres but it can be ex-
tended to study the wetting behaviour of fibres with more complex shapes and at dif-
ferent dimensions scales, possibly helping to interpret the effect of roughness.

3.4.2 Link with scaling laws predicted in chapter 2
In chapter 2, we have explored the scaling laws between the strength of wettability
defects and the magnitude of the hysteresis they induce. Two different laws were iden-
tified.

First, near the threshold and for non-overlapping Gaussian-shaped chemical de-
fects, the hysteresis amplitude has been found to be proportional to the square of the
defect force. This numerical result is also in agreement with literature as well as a
theoretical derivation, analogous to the one done here in section 3.3.2.1 to explain the
observed scaling law between jump length and energy dissipation.

Second, for a model sinusoidal heterogeneity, in the limit of the heterogeneity
wavelength being much smaller than the microchannel gap size, the hysteresis am-
plitude has been found to be proportional to the defect force.

It may seem contradictory at first sight that in this chapter we study sinusoidal
fibres, but find agreement with the law which applies for the case of well-separated
defects.

For all fibres studied in here, there are between one and three equilibrium configu-
rations per h, which is the same number of equilibrium solutions that exist for sparsely
spaced smooth defects. This corresponds to a regime which is just above the threshold
and the nearness to the threshold explains the observed scaling laws.

On the other end of the spectrum, in the macroscopic limit (c.f. section 2.3.2),
there are an arbitrary high amount of equilibrium configurations per fixed h or V . This
regime was not explored with the fibres studied here, for which the wavelength and
maximal diameter were fixed.
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In Fig. 3.6 we show the scaling relation between the jump length and dissipated
energy for another set of sinusoidal fibres for which both regimes can be observed.
Now, we keep the maximal and minimal diameters constant at respectively 150 and
100 microns and vary the wavelength Λ. The equilibrium contact angle θ0 is taken to
be 90 deg, in order to be able to consider vanishingly small Λ while keeping θV > 0.

As in the previously discussed case (c.f. section 3.3.2), for Λ above a certain thresh-
old value, no jumps occur. For Λ slightly below the threshold, the jump length and
dissipated energy both decrease with Λ and show agreement with the near-threshold
scaling relation with power four (Dmin can be directly replaced by Λ in the derivation
of this scaling law in section 3.3.2).

Now in contrast to section 3.3.2, another regime appears far from the threshold.
More specifically, for Λ → 0, the jump length and dissipated energy over a period
vanish too. In this limit, these quantities increase with Λ and show now agreement with
the properties of the macroscopic limit, i.e. the jumps happen over a whole wavelength
and hysteresis is maximal.

3.4.3 Procedure to reconstruct fibre topography or chemical het-
erogeneity from tensiometric measurements

Can the modelling approach used in this chapter be turned around to deduce the axial
distribution of the fibre radius and the static contact angles starting from a tensiomet-
ric measurements? We start the procedure with static advancing and receding data
from tensiometric measurements, as pairs of immersion height h and capillary force F ,
where

h = xCL − r(xCL) cos θV (xCL)

(
ln

4lc
r(xCL) (1 + sin θV (xCL)

− C
)
, (3.22)

and

F = 2πγr(xCL) cos θV (xCL), (3.23)

where the angle θV (xCL) is related to the local equilibrium angle θi(xCL) and the
local inclination of the fibre r′(xCL) through Eq. 3.3. The characterisation of the fibre
requires the determination of three unknowns (xCL, r and θi) for each measurement
point.

This section contains two examples of such inverse procedure both of which involve
simplifying assumptions depending on the specific case.

3.4.3.1 Wavy fibre with small scale heterogeneity

We consider data mimicking the tensiometric measurement in the advancing and reced-
ing directions at a resolution dh = 1 µm of a fibre with sinusoidal topography (minimal
diameter 100 µm, maximal diameter 150 µm and wavelength 200 µm) and a small scale
sinusoidal heterogeneity (minimal angle 47 deg, maximal angle 77 deg and wavelength
0.1 µm). These measurements corresponds to respectively the green and red lines in
Fig. 3.7 (a). The goal of this procedure is to calculate for each measured point the
contact line position xCL and the contact radius r.

Combining Eqs. 3.22 and 3.23, the capillary force can be written in Hookean form,
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Figure 3.7: Procedure to reconstruct the topography of a wavy fibre with a small-scale
chemical heterogeneity from tensiometric measurements. The gray lines are calculated
from the a priori inaccessible fibre properties. The green and red lines correspond to
the treatment of data accessible from tensiometric measurements, measured resp. in
the advancing and receding direction.
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F = k(xCL − h), (3.24)

by defining the spring constant of the meniscus as

k ≡ 2πγ

ln 4lc
r(1+sin θV ) − C

.

In the rest of the discussion we ignore the logarithmic dependence of k on r and θv ,
treating the meniscus as a linear spring. Treated as a constant, k can be directly mea-
sured from the tensiometric graph (Fig. 3.7 (a)) at the onsets of advancing and of
receding. Because here, using Eq 3.24, the slope of equilibrium lines in this represen-
tation are given by

dF

dh
= k

(
dx

dh
− 1

)
= −k,

as the first term vanishes when the contact line is pinned by a small-scale hetero-
geneity. In the example k is evaluated to be 0.117 N/m at the advancing onset and 0.120
N/m at the receding onset. The calculation is carried on with the mean of the two. The
estimation of the spring constant (k ≡ F/(xCL − h) here) from the absolute value of
the slope |dF/dh| for a pinned contact line is most accurate for angles θv around 90
degrees. For smaller values of θv , |dF/dh| < F/H and thus we slightly underestimate
the value of our k with this procedure due to the linear spring approximation. See [138]
for the verification at the nanoscale of the meniscus spring constant, defined there from
the slope |dF/dh|. Knowing k, the implicit parameter xCL can now be calculated for
each measurement point as

xCL = h+
F

k
. (3.25)

This brings us to graphical force balance representation shown in Fig. 3.7 (b),
where for each jump the starting and ending point of that jump are connected to each
other by a straight line with slope k. Now we can proceed to calculate the contact
radius for each measurement point. Combining Eqs. 3.3 and 3.23 yields the ordinary
differential equation

r′(xCL) = tan

[
θi − arccos

(
F (xCL)

2πγr(xCL)

)]
,

where θi equals θA or θR thanks to the small scale of the chemical heterogeneity.
This ODE is solved numerically for each curve F (xCL) to obtain r(xCL). In this
example, it is treated as an initial value problem, where the initial values are found by
minimizing the discrepancy between the predicted values of r for the regions of xCL
for which there are two predictions.

Fig. 3.7 (c) finally shows reasonable visual comparison between the reconstructed
topography (green and red) and the true topography which was assumed for data gener-
ation (gray), at least for the parts of the fibre over which the contact line has not jumped
in both the advancing and receding measurement.

3.4.3.2 Chemically heterogeneous cylindrical fibre

We consider data mimicking the tensiometric measurement in the advancing and re-
ceding directions at a resolution dh = 1 µm, this time of a cylindrical fibre with the
distribution of equilibrium angles shown in Fig 3.8 (b). Now the goal is to reconstruct
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this chemical heterogeneity from the tensiometric data plotted in green and red in Fig.
3.8 (a).

In the absence of fibre topography, the procedure is straightforward without the
necessity of making any additional assumptions. The equilibrium contact angle at each
measured point can be calculated using Eq. 3.23, after which the contact line position
xCL can be explicited from Eq. 3.22. Therefore, the reconstructed parts of the fibre
wettability in Fig. 3.8 (b) equal the true values.

The completeness of the reconstruction relies on the on the completeness of the
measurement and in principle each contact line position can be measured. Each con-
tact line position for which the equilibrium is stable or metastable can be accessed by
varying the value of h starting from which h is imposed to increase or decrease while
performing the measurement. Such procedure will become lengthier with decreasing
typical wavelength of the heterogeneity, as the latter increases the amount of equilib-
rium configurations at fixed h.

Each contact line position on which the equilibrium is unstable can be accessed
as well. Because those positions will become stable/metastable when the fibre is im-
mersed upside down. In complete analogy to the chemically heterogeneous microchan-
nel configuration (chapter 2), for a chemically heterogeneous fibre it can be shown that
the capillary equilibrium is unstable on a contact line position where the wettability
gradient θ′i(xCL) is below a finite negative value (with the convention that xCL in-
creases in the advancing direction). When the fibre is immersed upside down θ′i(xCL)
flips sign, implying that those positions become stable/metastable for a static contact
line.
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Figure 3.8: Reconstruction of the wettability distribution of a cylindrical fibre from ten-
siometric measurements. The gray lines are calculated from the a priori inaccessible
fibre properties. The green and red lines correspond to the treatment of data accessi-
ble from tensiometric measurements, measured resp. in the advancing and receding
direction.
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Chapter 4

Contact angle hysteresis in a mi-
crochannel: dynamics

We study the dynamics of wetting hysteresis in a chemically heterogeneous microchan-
nel assuming a quasi-steady meniscus shape. The meniscus is pushed by a piston
either with (a) a constant force or (b) a constant piston velocity. We first show the
non-equivalency between (a) and (b) already in their static limit, where the stability
of a meniscus at capillary equilibrium for a range of contact line positions depends on
whether the force or the piston position is constrained. For the dynamic problem, as
theoretically predicted for a different configuration [85], in case (a) the resulting aver-
age velocity U of the piston does not depend on the geometric details of the studied
configuration and scales with ε1/2 where ε is the imposed deviation of the force from
its static limit, while in case (b) the imposed piston velocity U scales with ε3/2, where
ε is now the average of the resulting deviation of the force from its static limit. For
U larger than a critical value (which increases with the heterogeneity wavelength), the
scaling law of case (b) tends toward that of case (a). We contrast the corresponding θ -
U characteristics with characteristics valid for homogeneous substrates, which follow
different scaling laws.
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4.1 Introduction
The motion of liquid-gas interfaces over solids is common place in nature and in a wide
spectrum of industrial processes. However apart for highly idealized systems, numer-
ous challenges remain in the understanding and modeling of the physics involved, see
for example the comprehensive reviews in Refs [31, 2, 89].

One of the most widely adopted theoretical results for the dependence of the contact
angle θ on the contact line velocity u∗ (although others exist [87]) was obtained inde-
pendently by Voinov[80] and Cox[81]. It corresponds to the hydrodynamic balance
between the curvature gradient of the interface and the viscous force, leading to the
viscous bending of the interface in a mesoscopic region. This region generally lies be-
tween a macroscopically observable region -at a scale l∗M - and a microscopic region -at
a scale l∗µ where the interface makes an angle θµ and the viscous stress singularity [74]
is regularized e.g. by relaxing the no-slip condition. Other approaches [2, 75, 139, 89]
exist, leading to the same result.

θ3 − θ3
µ = 9 ln (l)

µ∗

γ∗
u∗, (4.1)

The asterisks denote dimensional quantities; γ∗ is the liquid-gas surface tension,
µ∗ is the viscosity of the liquid and l = l∗M/l

∗
µ , with typically ln(l) ≈ O(10). When

u∗ = 0: θ = θµ, therefore θµ is identified with the static equilibrium angle. However
on any real substrate, the equilibrium angle displays hysteresis and is typically limited
between a value θR at the onset of receding motion and a larger value θA at the onset of
advancing motion. When the Cox-Voinov relation (Eq. 4.1) is fitted with experimental
data, usually one of these two limiting angles is identified with the equilibrium angle
depending on the direction of the contact line motion.

This empirical assumption of the substrate having a spatially uniform equilibrium
angle seems to contradict the very reason of the observed hysteresis. Static models have
shown that non-uniform wetting properties (dictated by the chemical composition and
topography of the solid surface) induce a multiplicity of metastable angles at a fixed
value of a macroscopic parameter, such as the volume of a liquid [53, 68, 100, 140], the
average position of a liquid wedge [72], or the immersion depth of a partly immersed
fiber[141]. When this macroscopic parameter is then varied, the attained metastable
angle depends on the sense of the variation and the motion is characterized by abrupt
jumps (also called slip and depinning) occurring on the (in most cases unobservable)
scale at which the wetting properties vary.

Contact line dynamics on non-ideal surfaces is a subject of great interest, see for
example [142, 93, 143, 96, 65, 144]. Raphaël and de Gennes[85] have studied theoreti-
cally the relationship between the capillary force (related to θ) and u∗ when the motion
is affected by a chemical defect. Two scenarios were shown to be non-equivalent. Ap-
plying a constant force, which deviates from its statically allowed range by a quantity
ε, results in an averaged contact line velocity u∗ ∝ ε1/2. Applying the same u∗ as a
constant piston velocity does not result to in average the same ε, and even the scaling
law is different, namely u∗ ∝ ε3/2.

Experiments made by Ström et.al[145] by dipping at constant velocity a polystyrene
plate in a liquid (paraffin/silicone oils/PEG) bath have confirmed the u∗ ∝ ε3/2 power
law at low capillary numbers. Many other experiments (an overview of which is pre-
sented in [146]), where in most cases neither the force nor the reference frame velocity
were constant, have found scaling exponents varying from 1 to 5.
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Our aim here is to provide a quantitative description of the θ-u∗ relation on het-
erogeneous substrates where hysteresis is present and the contact line motion is inter-
mittent. In particular, we are interested in the non-equivalency between the cases of a
motion is driven by (a) a constant force and (b) a constant piston velocity, and in the
question if these two situations can become equivalent.

To enable a simple analysis, we adopt a 2D meniscus in a (2D) microchannel as
a model system, for which the statics of hysteresis are already well-understood [140].
We model the contact line dynamics using the Cox-Voinov relation while assuming the
liquid-gas interface to be quasi-steady, in a sense explained later.
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Figure 4.1: Sketch of the considered geometry of a liquid confined inside a chemically
heterogeneous microchannel. The contact angle θ is defined as the angle between
the line tangent to the liquid-gas interface at the contact point and the wetted area
of the walls. We consider two dynamically non-equivalent situations; one where the
piston position is controlled by imposing a constant piston velocity U∗ and one where
a constant external force F ∗ext is imposed.

4.2 Model formulation and theoretical framework

4.2.1 Statics: controlled piston position versus controlled external
force

We study the 2D setup consisting of a liquid-gas meniscus moving inside a microchan-
nel (Fig. 4.1). A gap of width b∗ separates two planar, rigid, topographically flat, but
chemically heterogeneous walls. This chemical heterogeneity is characterized by a po-
sitional dependence of the intrinsic angle θi(x∗) (identical on both walls). We consider
periodic heterogeneities of the form

cos θi(x
∗) = cos θ0 +A0 sin

(
2πx∗

λ∗

)
, (4.2)

We assume gravity to be negligible so that the static interface takes a constant curvature
(circular arc). Then, the liquid volume V ∗ (per unit length of the contact line) is given
by

V ∗ = b∗(x∗CL − x∗P ) + b∗2f(θ), (4.3)

where x∗CL and x∗P are the contact line and piston position respectively and

f(θ) =
2θ − π + sin(2θ)

8 cos2 θ
(4.4)

is an increasing function of θ coming from the circular meniscus interface. We scale
all lengths with the gap size b∗. As V ∗ and b∗ are constants in the considered config-
uration, we simplify our formulation by choosing xP =

V ∗/b∗+x∗P
b∗ . Using Eq. (4.3),

this leads to
xP = xCL + f(θ). (4.5)

The differential of the internal energy of the system, dU∗ is given by the first prin-
ciple of thermodynamics,
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dU∗ = δQ∗ + δW ∗ + µ∗l dnl, (4.6)

where the subscript l stands for liquid. The heat δQ∗ is given according to the
second principle by

δQ∗ = T ∗dS∗ − T ∗diS∗, (4.7)

where T ∗diS∗ is positive for irreversible processes and zero for reversible ones.
The differential of the Helmholtz free energy is then given by

dF ∗ = dU∗ − T ∗dS∗ − S∗dT ∗ ≤ +δW ∗ + µ∗l dn
∗
l − S∗dT ∗. (4.8)

The work δW ∗ has a contribution from the bulk and one from the interfaces,

δW ∗ = δbulkW
∗ + δW ∗int, (4.9)

with

δbulkW
∗ = (p∗l − p∗g)b∗dx∗p − p∗gdV l∗. (4.10)

The pressure difference between the liquid and the gas is given by the Laplace
pressure, which is for a circular interface, p∗l − p∗g = 2γ∗ cos θ/b∗. The interface
contribution can be written, up to a constant, as

δintW
∗ = γ∗dA∗lg − 2γ∗ cos θi(xCL)dxCL. (4.11)

where dA∗lg, is given by b∗l′(θ)dθ with l(θ) = π−2θ
2 cos θ . Combining Eqs. 4.10 and

4.11 in Eq. 4.9 gives

δW ∗ = 2γ∗ cos θdxP − pgdVl + γ∗b∗l′(θ)dθ

−2 cos θi(xCL)dxCL,
(4.12)

Substituting Eq. 4.12 into Eq. 4.8 and scaling all lengths with γ∗ gives at constant
T ∗, n∗l and V ∗l the free energy differential

dE ≤ 2 cos θdxP + l′ (θ) dθ − 2 cos θi (xCL) dxCl. (4.13)

where E = F ∗/(γ∗b∗) is the dimensionless Helmholtz free energy. In the fol-
lowing, we proceed to particularize this free energy to the two scenario’s of interest.
We show that they lead to the same equilibrium configurations, the stability of which
however depends on the nature of the constrained parameter, i.e. xP or Fext.

4.2.1.1 Constraint of fixed piston position

If the piston position xP is fixed and the system is free to adapt xCL and θ, the free
energy E of the system, scaled with b∗γ∗ and up to an additive constant, is given by

E =
π − 2θ

2 cos θ
− 2

∫ xCL

0

cos θi(x)dx. (4.14)

This determines entirely the static aspects. Note that the static formulation of the
problem where xP is controlled, is exactly the same as the formulation of a problem
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without piston (xP = 0) where the liquid volume V ∗ is controlled, which we have
studied in detail in [140]. Below is a summary of the key points. Minimizing this
free energy at fixed xP actually yields the natural condition cos θ = cos θi(xCL) (see
section 4.2.1.1.1).

This condition enables us to solve for xP as a function of xCL using Eq. 4.5 while
accounting for the substrate heterogeneity (Eq. 4.2), yielding the S-shaped curve shown
in Fig 4.2 (a).

The black vertical line (fixed xP ) intersects with three equilibrium solutions. The
xCL the system will adopt at that particular xP will depend on the history of the sys-
tem, in particular on whether xP has been increasing (advancing case) or decreasing
(receding case) to reach that value. For example, the point denoted A will only be
encountered in an advancing experiment and increasing xP further from this point on
will result in an advancing jump of the contact line when xP reaches the value corre-
sponding to the limit point.

Figure 4.2 (b) shows the process’ graphical force balance [72, 140] which addition-
ally enables to physically interpret the stability of the three equilibrium configurations.
In this representation, a line at constant xP (cos θ|xP ) represents a restoring force [140].
It increases with xCL − xP and vanishes when xCL = xP . Its intersections with the
sinusoidal curve cosθi(xCL) yield equilibrium configurations. For example, the first
intersection (denoted A) is a metastable equilibrium state. Because starting from A, a
positive perturbation of xCL yields to an excess of the restoring force, which in turn
decreases xCL back to the point A. The points on the substrate at which (at fixed xP )
the contact line attains a metastable equilibrium are colored in green and in yellow,
while on the red part, any equilibrium is unstable.

The stability of the equilibrium states, as well as the spots where the depinning
jumps occur on the substrates, are adequately represented in the phase-plane plot (Fig-
ure 4.2 (c)). For the process at controlled xP , the black-white striped line delimit-
ing the orange region from the red one, is of particular importance. It is obtained
[140] by expressing the condition of a limit point where the contact line jumps, i.e.
dxV (xCL,θi(xCL))

dxCL
= 0. It also separates the metastable equilibria from the unstable

ones (see paragraph 4.2.1.1.1). The sinusoidal heterogeneity considered is represented
by an ellipse which intersects twice with this critical line, marking the starting points
of depinning jumps as the followed branch of equilibrium states become unstable.

The free energy at the considered fixed value of xP (black curve in Fig. 4.2 (d))
displays three extrema, which correspond to the equilibrium configurations also shown
in panels (a) and (b). They are alternately metastable (dxV (xCL,θi(xCL))

dxCL
> 0) and

unstable (dxV (xCL,θi(xCL))
dxCL

< 0).

4.2.1.1.1 Stability condition for the capillary equilibrium under the constraint of
a fixed piston position If a constant piston position xP = xCL + f(θ) is externally
constrained, the free energy of the system is given by Eq. 4.14, which upon directly
substituting the constraint can be rewritten as an explicit function of θ only,

E(θ) = l(θ)− 2

∫ xP−f(θ)

0

cos θi(x)dx, (4.15)

where l(θ) = π−2θ
2 cos θ is the dimensionless liquid-gas interface length.

The extrema of this free energy make the first derivative of Eq. 4.15 vanish, i.e.
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E′(θ) = l′(θ) + 2 cos θi (xP − f(θ)) f ′(θ) = 0, (4.16)

leading to the natural condition for capillary equilibrium,

cos θi(xCL) = − l′(θ)

2f ′(θ)
= cos θ, (4.17)

where the last equality is shown through algebra. The stability of this equilibrium
depends on the sign of E′′(θ), which can be explicitly calculated as,

E′′(θ) = l′′(θ) + 2 cos θi (xCL) f ′′(θ)

+2 sin θi (xCL) f ′2(θ)θ′i(xCL),
(4.18)

At the extrema of E(θ), Eq. 4.18 is zero when

θ′i(xCL) = − l
′′(θ)− 2 cos θf ′′(θ)

2 sin θf ′2(θ)
= −f ′−1(θ), (4.19)

in which the last equality can be shown trough algebra and the condition θ′i(xCL) =

−f ′−1(θ) implies dxP (xCL,θi(xCL))
dxCL

= 0. Furthermore −f ′−1(θ) is always negative in
the physical range of θ.

Therefore we conclude that under the condition of a contrained xP , whether an
extremum of the free energy is a minimum or a maximum depends on the sign of
dxP (xCL,θi(xCL))

dxCL
, namely

dxP (xCL,θi(xCL))
dxCL

> 0→ metastable

dxP (xCL,θi(xCL))
dxCL

< 0→ unstable
(4.20)

4.2.1.2 Constraint of fixed external force

Non-equivalent is a situation where an external force F ∗ext is imposed, which we as-
sume to be directly counteracted by the capillary force, i.e. F ∗ext = 2γ∗ cos θ. With
this assumption, θ is constrained making the liquid-gas interface area constant. How-
ever now the system is free to adapt its piston position, with dxP = dxCL, and the
dimensionless free energy of the system, up to a constant, is now particularized from
Eq. 4.13 as,

E = −2

∫ xCL

0

cos θi(x)dx+ FextxCL, (4.21)

where Fext = F ∗ext/γ
∗.

Also this free energy has extrema for Young’s law, i.e. cos θ = cos θi(xCL). For
2 cos (max(θi)) 6 Fext 6 2 cos (min(θi)), the system has an infinite amount of pairs
of unstable solutions, separated from each by multiples of λ.

However now a different criterion for their stability can be obtained from the sec-
ond derivative of Eq. 4.21, of which the sign is given by the sign of

(
dθi(x)
dx

)
x=xCL

.

Therefore in this case,
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(
dθi(x)
dx

)
x=xCL

> 0→ metastable

(
dθi(x)
dx

)
x=xCL

< 0→ unstable
(4.22)

Therefore some of the equilibrium configurations which are metastable when xP
is imposed, are unstable when Fext is imposed. Such points (− 1

f ′(θ) <
dθi(xCL)
dxCL < 0)

are shown in orange in Fig. 4.2, and a particular example is point A. The stability
of the contact line in this equilibrium point depends on the nature of the constrained
parameter. It is stable if the piston position is constrained, but unstable if the external
force is unconstrained.

4.2.2 Dynamics: controlled piston velocity versus controlled exter-
nal force

When the imposed force exceeds the maximal pinning force the heterogeneity can pro-
vide, the contact line will keep on advancing. On the other hand, for a system with a
fixed piston position xP , the contact line will not keep on moving, but reach a static
equilibrium somewhere. Our goal here is to compare the steady dynamics of two cases
which in their static limit correspond to the two cases discussed in the above paragraph.
More specifically, we contrast the case of a constant Fext (out of the range for which
static solutions exist) to the case of constant piston velocity U .

In both cases, we model the dynamics of this motion with the Cox-Voinov rela-
tion (Eq. 4.1), in which the microscopic angle θµ equals the local equilibrium angle
θi(xCL) and the time is scaled with [t∗] = 9 ln (l)µ∗b∗

γ∗ .

dxCL
dt

= θ3 − θ3
i (xCL) (4.23)

In section 4.3.2.3, we show that the main results of this study are also obtained for
another dynamics relation.

4.2.2.1 Dynamics with fixed piston velocity

For imposed U , θ is calculated by numerically inverting Eq. 4.5 where xP explicitly
depends on time, leading to the non-autonomous differential equation

dxCL
dt

= (f−1(Ut− xCL))3 − θ3
i (xCL). (4.24)

As in [85], we are interested in the average of the resulting deviation from the force
from its static limit, which is quantified as

εrec =
〈cos θ(t)〉 − cos θrec,stat

cos θrec,stat
(4.25)

and

εadv =
cos θadv,stat − 〈cos θ(t)〉

cos θadv,stat
(4.26)

for the receding and advancing case respectively. The angular brackets denote av-
eraging in time of the periodic response. When U → 0, we recover the statics of
externally controlled xP , and
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cos θrec,stat =

∫ xP0+λ

xP0
cos θrec(xP )dxP

λ
. (4.27)

Here θrec(xP ) corresponds to the solution of the static problem at constrained
xP . More precisely, as shown in Fig. 4.2 (a), the statics is multi-valued for xP , and
θrec(xP ) is obtained upon decreasing xP . cos θadv,stat is defined in the same way but
with the subset of the static solutions tracked upon increasing xP .

4.2.2.2 Dynamics with fixed external force

Reversing the problem, we will also impose a constant external forceFext on the piston,
and calculate the resulting average contact line velocity. In this case, θ is a known
constant and Eq. 4.23 is ready to be numerically integrated after separation of variables.

dt =
dxCL

θ3 − θ3
i (xCL)

. (4.28)

As in [85], we quantify the deviation of the imposed Fext from the limiting range
for which static solutions exists as

εrec =
cos θR,dyn −max(cos θi(x))

max(cos θi(x))
=
Fext/2− cos θ0 −A0

cos θ0 +A0
(4.29)

and

εadv =
cos θ0 −A0 − Fext/2

cos θ0 −A0
(4.30)

for the receding and advancing cases respectively. The periodic heterogeneity of
the walls (Eq. 4.2) will make that the contact line velocity ˙xCL (also equal in this case
to the piston velocity as θ stays constant) will be periodic in time, with a period T . We
are in particular interested in calculating the average velocity U of the piston, defined
as

U =

∫ T
0
ẋCL(t)dt

T
=
λ

T
. (4.31)

with

T =

∫ λ

0

dx

θ3 − θ3
i (x)

. (4.32)

Note that U does not depend on the wavelength λ of the heterogeneity. The period
Tλ2

calculated for a wavelength λ2 equals λ2/λTλ2
yielding upon substitution into Eq.

4.31 the same U .

4.2.3 Discussion of the modeling assumptions
Our strongest assumption is that the liquid-gas interface shape is quasi-steady at the
time-scale of contact line motion. Here we compare an estimate of the typical time
[t]lg needed for the liquid-gas interface to reach its equilibrium shape to the typical
time [t]slip of the depinning motion of the contact line.
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The liquid gas interface in the vicinity of a substrate (at a typical distance b∗) relaxes
to its equilibrium shape in a time which is the geometrical average of the viscous time

[t]µ = b∗2ρ∗

µ∗ [147] and the period of capillary waves [t]γ =
(
b∗3ρ∗

πγ∗

)1/2

[147].

[t]lg = ([t]µ[t]γ)
1/2

=

(
b∗7ρ∗3

2πµ∗2γ∗

)1/4

, (4.33)

The validity of our assumption thus depends on the smallness of the ratio

[t]lg
[t]slip

=
1

9π1/4 ln (l)tslip
(Oh)

−3/2
, (4.34)

where we have defined the Ohnesorge number Oh = µ∗√
ρ∗γ∗b∗

and tslip is the
typical dimensionless time-frame where the depinning occurs. None of the parameters
in Eq. 4.34 appear in our dimensionless formulation of the dynamics, except from
tslip which comes as a simulation result, typically of the order of 10 in the considered
situations. Let us consider a millimetric system (b∗ = 1mm). Then our assumption
is less valid for water ( [t]s

[t]slip
= 3.5), and more valid for more viscous fluids such as

glycerol and ethylene glycols ( [t]s
[t]slip

≈ 10−4 − 10−2).
We also assume that the pressure losses inside the channel are negligible. The force

F ∗P associated with the pressure drop [148] ∆P ∗ in a Poiseuille flow in a microchannel
is given by

F ∗P = b∗∆P ∗ =
12µ∗U∗V ∗

b∗2
=

12V ∗γ∗(θ3 − θ3
i )

9 ln (l)b∗2
, (4.35)

in which we have substituted the Cox-Voinov relation (Eq. 4.1) for U∗. When the
volume V ∗ is low, i.e. of the order of b∗2 as drawn in Fig. 4.1, the ratio between F ∗P
and the unbalanced Young’s force F ∗Y is

F ∗P
F ∗Y
≈ θ3 − θ3

i

10(cos θi − cos θ)
≈ θ3 − θ3

i

10(θ2 − θ2
i )
≈ θ

10
� 1, (4.36)

in which we have used that the angles θ and θi are very small. This justifies neglecting
the viscous pressure drop inside the channel, at least for not too long liquid plugs.
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4.3 Results and discussion
We consider the periodic heterogeneity (Eq. 4.2) with a background intrinsic angle
θ0 = 15 degrees and an amplitude A0 = 0.01. These parameters correspond to a min-
imal and maximal intrinsic angles of around 12.5 and 17 degrees. The dimensionless
heterogeneity wavelength λ determines for the case of controlled xP the qualitative
regime of the hysteresis. We vary λ over decades, from 0.1 for which the wettability
gradients are too weak to induce hysteresis, to 5.10−4, close to the macroscopic limit
where static hysteresis is maximal.

4.3.1 Qualitative comparison between the two cases
For λ = 0.05 -producing a wettability gradient slightly above the threshold of hysteresis-
panels Fig. 4.3 shows the dynamic trajectories of the receding contact line.

When a sufficiently small piston velocity U is imposed as in panel (a), the con-
tact line stays for most of times close to its static metastable configurations (plotted in
black) hindering their visibility in the plot, except during the jumps. The slowest mo-
tion (marked with the point S) occurs over a spot where the equilibrium angle is close
to its background value θ0 and

(
dθi
dxCL

)
> 0, marked with a green color following the

color code of Fig. 4.2. From this point on, the contact line starts accelerating. Most
of the acceleration occurs over the red region and the fastest motion occurs over the
orange region, where

(
dθi
dxCL

)
< 0.

In panel (b), a sufficiently small deviation of the force ε is imposed and the tra-
jectory can be qualitatively interpreted as the receding CL staying pinned on the most
wettable spot for an amount of time T after which it jumps over a distance λ and the
process repeats itself. It is clear from Eq. 4.23 with constant θ < θi(x) ∀x that the
fastest receding motion occurs over the least wettable spot and the slowest receding
motion occurs over the most wettable spot. In contrast to case (a), here for both these
spots,

(
dθi
dxCL

)
= 0.

The constant value of ε in panel (b) is chosen such that when imposed as a constant,
it results in the same average piston velocity U as in panel (a). As the trajectories
followed by the contact line in these two cases are qualitatively different from each
other, the resulting average force deviation ε in case (a) is not the same as the one
imposed as a constant in panel (b). More specifically, in panel (a), a constant piston
velocity U = 10−4 is imposed, resulting in an averaged deviation of the force ε =
6.8 10−4. In panel (b) a constant force deviation ε = 1.2 10−6 is imposed, resulting in
an averaged piston velocity U = 10−4.

These qualitative differences and the intermittency fade away when we go away
further from the quasi-static limit, as shown in panels (c) and (d). The trajectory of the
fixed force case (d) shows (exactly as in (b)) extrema in contact line velocity on the
spots corresponding to the extrema of wettability. On the other hand, for the fixed U
case (c), these spots have moved compared to case (a) and have become closer to the
spots corresponding to the extrema of wettability (as in (b) and (d)). The quantitative
difference decreased as well, namely in (c), U = 10−2 is imposed, resulting in ε =
1.7 10−2. In (d), a constant ε = 8.6 10−3 is imposed, resulting in U = 10−2.
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4.3.2 Scaling laws between force and velocity
Here we study how the presence of wetting heterogeneity changes the scaling law of
the form U ∝ εβ .

4.3.2.1 Homogeneous case

First we consider a microchannel with homogeneous walls, characterized by an equi-
librium contact angle θi(x) = θ0. In Eq. 4.23, this implies that the cases of a constant
piston velocity and of constant force on the piston are collapsing with each and corre-
sponding to a case where the contact line velocity is constant. For small angles θ and
θ0,

ε =
cos θ0 − cos θ

cos θ0
≈ (θ − θ0)(θ + θ0)

2− θ2
0

=
δ(δ + 2θ0)

2− θ2
0

, (4.37)

where in the last equality, we have defined δ = θ − θ0. Similarly Eq. 4.23 can be
rewritten as

U = δ
(
δ2 + 3θ2

0 + 3δθ0

)
. (4.38)

Two limit cases can be identified in Eqs. (4.37) and (4.38). For a partial wetting
case and sufficiently small contact line velocities (such that 2θ0 � δ),{

U ≈ 3θ2
0δ

ε ≈ 2θ0
2−θ20

δ
→ U ∝ ε (4.39)

which is consistent with the treatment of [85] for that case. On the other hand,
for a perfectly wetting fluid or for sufficiently large contact line velocities (such that
2θ0 � δ), {

U ≈ δ3

ε ≈ δ2

2−θ20
→ U ∝ ε 3

2 . (4.40)

The transition between the two behavior occurs around the intersection, where U ≈
27
8 θ

3
0 and ε ≈ 9

4
θ20

2−θ20
.

4.3.2.2 Heterogeneous case

Fig. 4.4 reveals how these power laws are modified by the presence of a wetting het-
erogeneity, and how they now depend on the nature of the imposed parameter (fixed
Fext or fixed U ).

For the fixed Fext case, over the whole range of imposed values, corresponding to
εrec from 10−6 to 10−2, the behavior is in excellent correspondence with the power
law

|U | ∝ ε 1
2 , (4.41)

which was predicted previously by [85] and is shown in paragraph 4.3.2.2.1 below.
When U is imposed (blue lines), the ε, U characteristics do depend on λ. For low

enough imposed absolute U , we recover for all λ which cause static hysteresis the
power law
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|U | ∝ ε 3
2 , (4.42)

which was also predicted by [85]. As the imposed U increases in absolute value, how-
ever this power law no longer holds and the curves tend towards the solution of the
imposed Fext case (Eq. 4.41). This transition occurs faster for smaller λ, i.e. for het-
erogeneities closer to the macroscopic limit, which even at the static limit display a
behavior of nearly constant θ. The collapse of the curves (imposed Fext and imposed
U ) signifies that an imposed constant piston velocity U yields an average force, which
if imposed as a constant force would yield the same average velocity U of the piston
and contact line.

4.3.2.2.1 Scaling law for U ∝ ε 1
2 for a fixed force case Let us consider a periodic

heterogeneity of the wetting properties specified by

θi(xCL) = θ0 +A0 sin

(
2πxCL
λ

)
, (4.43)

with A0 << θ0, such that

θ3
i (xCL) ≈ θ3

0 + θ2
0A0 sin

(
2πxCL
λ

)
. (4.44)

We consider the case of a constant force and thus the contact angle θ, corresponding
to the advancing case (θ > θ0 + A0). The average velocity (given by Eqs. (4.31) and
(4.32)), specifies to

U = λ

(∫ λ

0

dx

θ3 − θ3
0 − θ2

0A0 sin
(

2πxCL
λ

))−1

. (4.45)

Expression (4.45) can be integrated analytically and yields(
U

θ3
0

)3

= 1 +

(
θ

θ0

)6

− 2

(
θ

θ0

)3

− 9

(
A0

θ0

)2

. (4.46)

We define δ = θ − θ0. For δ � θ0 and A0 � θ0, we use the approximation(
1 +

δ

θ0

)n
≈ 1 + n

δ

θ0
+
n(n− 1)

2

(
δ

θ0

)2

, (4.47)

yielding

U ≈ 3θ2
0

√
δ2 −A2

0, (4.48)

where the difference under the square root is always positive in the considered case
(θ > θ0 +A0). We define the positive quantity ω = δ −A0 and rewrite Eq.(4.48) as

U ≈ 3θ2
0

√
ω2 + 2ωA0 ≈ 3θ2

0

√
2ωA0, (4.49)

where the last approximation sign describes the case δ � A0 � θ0. On the other hand,
an analogous analysis as used to obtain Eq. (4.39) shows that ε ∝ ω. Therefore this
case obeys the scaling law
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U ∝ ε 1
2 . (4.50)

4.3.2.3 Predictions for the molecular-kinetic theory

In this section, we repeat the analysis of the scaling relation between between the piston
velocity U and the deviation of the static force ε for contact line dynamics governed by
the equation

dxCL
dt

= θ2 − θ2
i (xCL), (4.51)

instead of the Cox-Voinov relation (Eq. (4.23)). This dimensionless governing
equation (4.51) results from the molecular-kinetic theory [87] for small angles θ and
θi.

Fig. 4.5, obtained upon repeating the calculation behind Fig. (4.4) with the only
difference of the particular form of the θ - U relationship (i.e. using Eq. (4.51) instead
of Eq. (4.23)). It confirms that also in this case, the same scaling laws apply.

An analysis analogous to the one in section 4.3.2.2.1 can be repeated here to show
that in the constant force case, under the same conditions, U ∝ ε

1
2 . More specifically

it leads to

U ≈ 2θ0

√
ω2 + 2ωA0 ≈ 2θ0

√
2ωA0, (4.52)

where the last approximation sign describes again the case δ � A0 � θ0.
The only scenario leading to a scaling law which is different than its counterpart

obtained using the Cox-Voinov relation, is the wetting of a homogeneous, perfectly
wetting substrate. For this case, Eq. (4.51)-governed dynamics lead to U ∝ ε. Because
here for the homogeneous case, for any θ0,

U ≈ ε cos θ0 ∝ ε. (4.53)

On the other hand, for dynamics governed Eq. (4.23)- it is shown in section 4.3.2.1
that the perfectly wetting case follows U ∝ ε 3

2 .

4.3.3 Dynamic angle-contact line velocity characteristics
When the system is forced far enough from the static limit, stick-slip fades and the
cases of constant U and constant Fext become equivalent. We now compare the char-
acteristics of the dynamics obtained in this situation to the characteristics of contact
line motion when the equilibrium angle is modeled as constant which depends only on
the direction of the motion. The latter by definition yields the same jump discontinuity
at the zero velocity limit, but does it approximate the dynamics well?

Fig. 4.6 shows for all considered cases the θ-U characteristics. When Fext is
imposed (black dashed line), the curve is independent of λ and shows at the zero-
velocity limit a jump discontinuity from the lowest to the highest value of the intrinsic
angles distribution. Indeed, when Fext corresponds to a θ inside the intrinsic range, the
contact line comes to rest at a corresponding metastable equilibrium position. Moving
away from this limit, the relation between θ and U satisfies the power law |U | ∝ ε 1

2 .
The data corresponding to the conditions of imposed U (full lines) do depend on

λ. For each λ the existence and magnitude of the jump discontinuity is understood
from the statics [140]. For low enough λ, the behavior tends towards a limit where
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static hysteresis is maximal (λ = 5.10−4 and λ = 10−3). Remarkably, the correspond-
ing curves collapse in this (non-logarithmic) plot with each other and with the line of
imposed Fext and also obey |U | ∝ ε 1

2 .
We compare this behavior with the Cox-Voinov relation (Eq. 4.23) for homoge-

neous walls by taking θi as a constant, corresponding to the minimum and maximum
of its distribution (respectively red and green dotted lines) for respectively the side of
receding and advancing velocities. As shown in section 4.3.2.1, in this approximation,
U ∝ ε.

This empirical approximation strongly overestimates the effect of U on θ. Because
in this approximation, e.g. in the advancing branch, a given U corresponds to a value
of θ = (U + max(θi)

3)1/3 which is always greater than the dynamic angle θ = (U +
〈θ3
i 〉)1/3 calculated taken the heterogeneity into consideration. Physically, when the

walls are heterogeneous, the advancing contact line sees in average more wettable spots
and not only its least wettable spots (〈θi〉 < max(θi))).

Now we look at dynamics on walls with a long wavelength heterogeneity, λ = 0.1.
In the controlled xP case, this heterogeneity is unable to induce hysteresis at the static
limit (brown curve on Fig. 4.6) because its wettability gradients are too weak [140].

We compare the dynamics of this sub-threshold heterogeneity with the dynamics
on homogeneous walls characterized by the same background angle θ0 (blue dotted
line). This time, the homogeneous angle Cox-Voinov approximation underestimates
the effect of U on θ. In the latter approximation, e.g. in the advancing branch, a given
U corresponds to a value of θ = (U + θ0)3)1/3 which is smaller than the dynamic
angle θ = (U + 〈θ3

i 〉)1/3 calculated taken the heterogeneity into consideration. This
means that the advancing contact line spends more time on the less wettable parts of
walls than on its more wettable parts, which is consistent with intuition.

4.3.4 Depinning velocities
Lastly, we go deeper in the analysis of the intermittency aspect of the contact line
dynamics by quantifying the maximal velocity the contact line reaches while depinning
in Fig. 4.7.

Panels (a) and (b) show for respectively the cases of imposed Fext and U the reced-
ing contact line velocity for in both cases four different values of the imposed param-
eter. To improve visibility, the time axis is rescaled with period T which depends for
each curve on the value of the imposed parameter. The maximal velocity in all cases
is of the order 10−2, which in dimensional units corresponds to e.g. cm/s for water.
In both cases ((a) and (b)) the peak velocity increases in absolute value with the mag-
nitude of |U | and εrec, and the intermittency becomes less pronounced as the average
velocity increases faster.

In the limit of low |U | and εrec, the peak velocity has a finite value which can
be estimated analytically. For the case of imposed Fext, the absolute value of this
peak velocity is simply given by max θ3

i −min θ3
i both for the advancing case (where

θ = max θi) and the receding case (where θ = max θi). Note that this maximal
velocity is independent of λ.

When a vanishingly small U is imposed, the peak velocities for U → 0 can be
estimated using a graphical construction (panels (c) and (d) for different λ). The as-
sumption behind this construction is that the jumps happen at constant xP , which using
Eq. 4.5 gives a line on a xCL, θ3 diagram. In static conditions, the θ and xCL of the
system are at each time determined by (one of its) intersection(s) with the black line
which is the intrinsic angle distribution (Eq. 4.2) cubed.
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Figure 4.7: Analysis of depinning velocities. (a): Fext is imposed for four values of
Fext corresponding to εrec equal to 10−5, 10−4, 10−3 and 10−2 from uppermost to
lowest curve. (b): Same as (a) but for λ = 0.005 when U is imposed to be 10−5, 10−4,
10−3 and 10−2 in receding direction. (c) and (d): graphical construction to calculate the
peak depinning velocities when imposed U approaches zero for λ respectively 0.005
and 0.01. (e): peak contact line velocity ẋCL,peak as a function of average contact line
(and piston) velocity U . The lines have the same color code as Fig. 4.4. The arrows at
the jump discontinuity at the zero velocity limit correspond to the arrows in panels (c)
and (d).
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The intersection of interest depends on the history of the system. If U > 0 the line
of constant xP moves from left to right in time and the tracking of intersections shows
that xCL follows it with jumps. The green line on panel (c) is drawn for a value of xP
for which such a jump occurs.

During the jump, the instantaneous contact line velocity is given by the vertical
distance from the black to the green line. It starts and ends with zero (where these lines
touch) and reaches a maximum in between, given by

ẋCL,peak,|U |�1 = max(θ
∣∣3
xP

(x)− θ3
i (x)), (4.54)

where xP is taken at its value where the static jump occurs and x lies in the range
between the starting and ending contact line position of the jump. These quasi-static
peak velocities are indicated with arrows on panels (c) and (d) for both the advancing
and the receding case. When λ is smaller (comparing panel (d) to (c)), the constant xP
line is less steep at the scales of the heterogeneity, and the peak velocity is closer to its
maximal value allowed by the heterogeneity, i.e. max θ3

i −min θ3
i (which is the exact

value for the case of imposed Fext).
The arrows on panels (c) and (d) give a jump discontinuity at the zero average ve-

locity limit for the peak contact line velocity (panel (e)). Similarly as with the average
dynamic angle on Fig. 4.6, at the limit of large enough imposed U (depending on λ),
where the cases of constant Fext and constant U become equivalent, the peak velocities
become equal as well.
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4.4 Conclusions and perspectives

4.4.1 Summary
We have analyzed in detail the dynamics of stick-slip and wetting hysteresis of a liquid-
gas meniscus in a chemically heterogeneous microchannel of fixed gap width. We have
modeled the contact line motion with the Cox-Voinov equation where the microscopic
angle is taken to be dictated locally by Young’s law and assumed that the meniscus
shape is quasi-steady.

The meniscus is pushed by a piston under two non-equivalent conditions, either
with (a) a constant force on the piston or (b) a constant piston velocity. The statics
of case (b) is much richer than that of case (a) and studied in detail previously [140].
Some equilibrium configurations which are metastable in case (b) are unstable in case
(a). The key parameter λ which determines the qualitative regime of hysteresis in case
(b), does not play the same role in case (a).

The dynamics of stick-slip display qualitative differences as well, e.g. the locations
where the contact line is pinned/moves slowest and depins/moves fastest are not the
same for (a) and (b). An imposed constant U results in an average ε which if it would
be imposed to be constant, would not yield the same average U . More specifically, in
case (a) the resulting average velocity U of the piston scales with ε1/2 where ε is the
imposed deviation of the force from its static limit, while in case (b) the imposed piston
velocity U scales with the resulting average ε3/2.

For U larger than a critical value (which increases with the heterogeneity wave-
length), the scaling law of case (b) tends toward that of case (a).

We have obtained the same scaling relations with calculations where the contact
line dynamics is governed by the molecular kinetic theory.

These results are obtained in a simple model configuration where analysis can be
pushed far. The predictions made in this manuscript will also serve as a basis to inter-
pret the results of the extension of the present analysis to wetting on substrates which
are disordered in two dimensions.
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Figure 4.8: Drawing of a meniscus around an axisymmetric tip. The contact angle θ is
defined as the angle between the line tangent to the liquid-gas interface at the contact
line and the wetted area of the walls. θV is the angle between the line tangent to the
liquid-gas interface and the vertical at the contact line.

4.4.2 Adaptation to the configuration of an AFM-tip
Probably the experimentally achievable configuration closest to the one dimensional
system studied here is that of a meniscus around a thin cylinder (Fig.4.8), characterized
by a radius profile r(x). In dimensional form, with the contact line velocity with respect
to the tip u = ẋ

√
1 + r2

x, the Cox-Voinov relation for this case reads,

ẋ =
γ

9µ ln (l)

θ3(x, t)− θ3
i (x)√

1 + r2
x

. (4.55)

The contact angle θ(x, t) is obtained by numerically inverting at each time-step the
expression of the equilibrium capillary rise height [135],

H(r(x), θV ) = r(x) cos θV

(
ln

(
4lc

r(x)(1 + sin θV )
− 0.577 . . .

))
(4.56)

Here θV = θ− arctan rx. We impose a constant vertical velocity U of the tip with
respect to the liquid bath as

h(t) = h0 + Ut = x(t)−H(x, t), (4.57)

where h0 is an initial immersion depth (e.g. 0).
A similar analysis as in this chapter on the scaling relation of the form U ∝ εβ ,

where ε is the deviation of the force from its static limit and U is the average contact
line velocity, results as shown in, Fig. 4.9, also for this configuration in the same
scaling laws, consistent with the predictions of [85].

Namely, the cases of constant force and constant tip velocity are dynamically non-
equivalent and display exponents β respectively close to 1

2 and 3
2 .

Fig. 4.9 also shows that for large enough imposed velocities U , the curves of
constant velocities approach that of the constant force, showing a region with β close
to 1

2 . The smaller the wavelength λ of the heterogeneity, the smaller the value of U
above which this transition occurs, very similarly as in the microchannel configuration.

This conclusion brings the scaling laws and the dynamic non-equivalency of the
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Figure 4.9: Calculation for a tip of radius 100 nm, and 4-ethylene glycol, where the
measured values of the advancing and receding angles, θA and θR are modelled as
being induced by a sinusoidal chemical heterogeneity with small wavelength λ.

fixed dipping velocity and fixed force cases analyzed in this chapter in the reach ex-
perimental verifiability/falsifiability. This is an aspect we are currently working on in
a collaboration with Professor Thierry Ondarçuhu (IMF Toulouse).
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Chapter 5

Extension to other configurations
and geometry-specific effects

5.1 Introduction
The four previous chapters have demonstrated that the same modelling strategy can be
followed in different geometries. In chapter 2, we have made theoretical predictions on
the statics of stick-slip and hysteresis in the configuration of a microchannel, which in
chapter 3 are adapted to the configuration of a meniscus around a fibre and compared
with experiments. The same relation exists in chapter 4 for the dynamics.

In this chapter, we first present the general framework for this modelling strategy
and apply it on a selection of configurations. For each of these configurations a static
and a dynamic model will be constructed which focus on capturing the stick-slip mo-
tions and hysteresis of the contact line and the upon varying an externally controlled
parameter σ (such as the liquid volume).

We also highlight qualitative differences between the results of these models for
different configurations. Although the different models include the same main ingre-
dients such as the heterogeneity of the wettability, the considered geometry (which
will be described by functions Gj), can alter the qualitative features of stick-slip and
hysteresis, and even give rise to specific effects.

We will consider five examples which involve a single contact line (sketched in Fig.
5.1) and five examples which involve two contact lines (sketched in Fig. 5.4).

For the single contact line problems, we start by showing how the previously dis-
cussed configurations of the chemically heterogeneous microchannel (5.3.1) and wavy
fibre (5.3.2) fit in the framework and apply this framework to the geometry of a menis-
cus in a capillary tube (5.3.3) to get qualitatively similar results. On the other hand, a
drop on a substrate (5.3.4) does not display a threshold for hysteresis, which was a main
feature explaining scaling laws obtained for the former cases. If a voltage is applied to
the substrate to enhance its wettability in an electrowetting (5.3.4.2) configuration, the
effect of the heterogeneous wetting properties will be a delay in drop response.

A set of the examples which involve a generalization of the approach to treat two
contact lines presents a richer dynamics, where the jumps of one contact line in the
advancing/receding direction is accompanied by a jump of the other contact line in
the receding/advancing direction. We show for the case of a microchannel with non-
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identical walls (5.4.1) that both these jumps are rooted in the shape of the static solu-
tions. Qualitatively similar is the stretching of a liquid bridge between non-identical
plates (5.4.2).

We present three examples where the geometry or gravity causes one of the con-
tact angle to be systematically larger than the other, thereby favouring the directional
transport of liquid. These are a liquid column in a capillary tube with two liquid-air
interfaces (5.4.3), a drop on a cone (as a model for the drop collection on the needles
of certain species of desert plants) (5.4.4), and a drop between two non-parallel plates
(as a model for the feeding mechanism of the Phalarope bird) (5.4.5). For the capillary
tube problem (5.4.3), the model predicts a mechanism where the downward transport
of the liquid is governed by an interplay between the jumps of the two contact lines. A
similar effect is predicted for the configuration of the beak.

All the above examples involve either 2D systems with straight contact lines or
axisymmetric systems with circular contact lines.

A further generalization of the approach to treat the dynamics of deformed contact
lines on substrates which are disordered in two directions is presented in section 5.5.
We focus on the case of drops with small contact angles, a property which greatly
simplifies the treatment. The calculation is implemented in the commercial simulation
software COMSOL Multiphysics.

The implemented model is tested for three substrates: (a) the perfect wetting case,
leading to Tanner’s law (5.5.2.1), (b) an axisymmetric substrate, leading to the stick-
slip motion of the drop upon externally increasing/decreasing its volume (5.5.2.2), and
(c) a heterogeneous substrate on which the drop travels towards a more favorable spot
(5.5.2.3).
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5.2 Modelling of axisymmetric and 2D cases
We consider an axisymmetric or 2D wetting configuration with n three phase contact
lines, where the symmetry enables each of them to be characterized by a contact angle
θj and contact line position xCLj (the subscript j is an integer from 1 to n). The system
is thus described by 2n unknowns.

In this framework, we see these contact line positions and contact angles to be the
response of the system. These quantities are in most cases not suited to be controlled
externally. Typically contact lines can be made to advance or recede by varying an
auxiliary parameter which is better suited for external control, such as the volume of a
drop. We denote the externally controlled parameter σ (and consider it as a known).

The configuration is described by n geometrical relations of the form

Gj (xCL1 . . . , xCLn , θ1, . . . , θn, σ) = 0. (5.1)

This makes n equations in 2n unknowns. The remaining equations that are needed
to close the system depend on whether the statics or the dynamics are studied. For both
cases, we consider that the heterogeneous wetting properties are described by n known
distributions of the spatial coordinate x,

cos θij (x) =
γsgj (x)− γslj (x)

γj
, (5.2)

where γsgj (x) and γslj (x) are respectively the solid-gas and solid-liquid interfacial
tension distributions of the solid contacted by the jth contact line. In the examples of
this chapter, we will impose sinusoidal distribution with a maximal angle θA, a minimal
angle θR and a wavelength λ,

cos θi|σ=0 (xCL) =
cos θR + cos θA

2
+

cos θR − cos θA
2

sin

(
2πxCL
λ

)
. (5.3)

5.2.1 Statics
The static problem is closed by stating that the contact angles are dictated locally by
Young’s law, leading to n equations

cos θj = cos θij
(
xCLj

)
. (5.4)

Combining Eqs. (5.1), (5.2) and (5.4) gives a system of 3n equations in 3n variables
(θj , xCLj , θij ) that can be solved for a given σ. For most substrates (depending on the
intrinsic angle distribution - Eq. 5.2), this system will have multiple solutions, leading
to hysteretic behavior upon externally controlling σ.

We note that this calculation can be greatly simplified in some configurations with
one contact line. More specifically, if G can be rewritten to express σ as an explicit
function of xCL and θ, then all static solutions can be calculated with this explicit
function by varying xCL (as θ = θi(xCL)). The knowledge of all static solutions
enables in a next step to follow a branch of static solutions upon varying σ.
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5.2.2 Dynamics
The dynamic problem is closed by writing for each contact line the Cox-Voinov rela-
tion, for example as

dxCLj
dt

=
θ3
j − θ3

ij

(
xCLj

)
9 ln (l)µγ

. (5.5)

where µ is the dynamic viscosity and l is the ratio between a macroscopic and mi-
croscopic length scale (considered as a constant). Here xCLj increases in the advancing
direction. If a substrate with topography is considered, a space-dependent metric fac-
tor enters Eq. 5.5, which projects lengths along the substrate on the axis parallel to the
substrate.

Eq. 5.5 is an autonomous ODE as the parameter σ(t) is externally controlled. At
each time step xCLj are known and a system of n equations 5.1 are solved to determine
the n unknowns θj , using e.g. a non-linear root-finding scheme with as initial guess the
values of the previous time step. Therefore interestingly and especially for cases with
more than one contact line, the dynamic problem is computationally less demanding
than the static one.

The geometrical relations we consider in this framework are of the form of Eq.
5.1 and have no time-dependency. They typically describe an equilibrium shape of the
liquid-gas interface. Therefore to calculate the dynamics in this framework, we invoke
the assumption that the liquid-gas interface shape is quasi-steady at the time-scale of
the contact line motion.
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5.3 Systems with a single contact line

5.3.1 Liquid in a microchannel
This 2D problem, sketched in Fig. 5.1a, is studied in detail in chapters 2 and 4.

The externally controlled parameter σ is the liquid volume (divided by the square
of the inter-plate distance) and the geometrical relation relies on the assumption that
the meniscus has its circular equilibrium shape.

G (xCL, θ, σ) = xCL +
2θ − π + sin(2θ)

8 cos2 θ
− σ = 0 (5.6)

In this dimensionless equation xCL is the contact line position divided by the inter-
plate distance. Eq. 5.6 contains two unknowns, i.e. xCL and θ.

In chapter 2 it is analytically shown for this configuration that the capillary equi-
librium condition (Eq. 5.4) corresponds to extrema of the free energy at constant σ
and the statics of hysteresis is studied after closing the system with this equilibrium
condition (Eq. 5.4) and a given substrate heterogeneity (Eq. 5.2). The resulting sys-
tem enabled to express σ as an explicit function of xCL. Therefore, all static solutions
could be calculated upon varying xCL and the hysteretic behavior was studied upon
following these static solutions when σ was varied.

The dynamics of this problem is studied in chapter 4, where the system is closed
with the Cox-Voinov relation (Eq. 5.5). At each time-step, xCL is known and θ is
calculated from Eq. 5.6.

We note that in the same chapter the simpler problem was studied where θ is ex-
ternally imposed. There, no configuration-specific relation of the form of Eq. 5.1 was
needed to close the system.

5.3.2 Meniscus around a fibre
The statics of this axisymmetric problem (Fig. 5.1b) is studied in detail in chapter 3
and its dynamics is discussed in chapter 4.

Here the externally controlled parameter σ is the immersion height of fibre and the
geometrical relation now relies on the assumption that the meniscus has reached its
equilibrium capillary rise height H [135].{

G (xCL, θ, σ) = xCL −H (θ − r′(xCL), r(xCL))− σ = 0

H(θV , r) = r cos θV

(
ln 4lc

r(1+sin θV ) − 0.57721
) (5.7)

Here r(x) is the known fibre topography. Eq. 5.7 can be written as one equation in
two unknowns, i.e. xCL and θ.

In chapter 3 it is numerically shown for this configuration that the capillary equi-
librium condition (Eq. 5.4) corresponds to extrema of the free energy at constant σ
and the statics of hysteresis is studied after closing the system with this equilibrium
condition (Eq. 5.4) and a given substrate heterogeneity (Eq. 5.2).

The dynamics of this problem is studied in chapter 4, where the system is closed
with the Cox-Voinov relation (Eq. 5.5) with a metric factor. At each time-step, xCL is
known and θ is calculated from Eq. 5.7.
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5.3.3 Liquid column in a capillary tube
We now consider a liquid inside a capillary tube (Fig. 5.1c) of which the inner walls
are chemically heterogeneous but perfectly cylindrical with radius r0.

The externally controlled parameter σ is the liquid volume (scaled with πr3
0 and

the geometrical relation relies on the assumption that the meniscus has its equilibrium
shape (which is spherical).

G (xCL, θ, σ) = xCL +
3 sin θ − sin3 θ − 2

3 cos3 θ
− σ = 0 (5.8)

In this dimensionless equation xCL is the contact line position divided by r0. Eq.
5.8 contains two unknowns, i.e. xCL and θ.

It can be analytically shown for this configuration that the capillary equilibrium
condition (Eq. 5.4) corresponds to extrema of the free energy at constant σ.

The free energy F of the system, up to a constant and scaled with 2πr2
0γ, is given

by

F =
1

1 + sin θ
−
∫ xCL

0

cos θi(x)dx (5.9)

To find the extrema of F at a fixed volume σ, we minimize the function

L(xCL, θ) = F + ΛG (xCL, θ, σ) , (5.10)

with respect to xCL and θ, where Λ is a Lagrange multiplier and σ is a constant. This
calculation yields the natural condition (Eq. 5.4) which states that at equilibrium, the
meniscus angle must be equal to the local value of the Young’s angle, as expected.

Therefore, as in the previous cases, the statics of hysteresis can be modelled after
closing the system with this equilibrium condition (Eq. 5.4) and a given substrate
heterogeneity (Eq. 5.2). The dynamics of this problem can be modelled closed with
the Cox-Voinov relation (Eq. 5.5) where at each time-step, xCL is known and θ is
calculated from Eq. 5.8.

Also similarly to the two previous cases, it can be shown that hysteretic effects only
arise if the wettability gradients of the substrate are above a certain threshold.

To have a multiplicity of equilibrium configurations (satisfying the system of Eqs.
5.8, 5.2 and 5.4) for a given volume σ, there must be at least one critical contact line
position xc, where a saddle-node bifurcation takes place.

At one of these points, the meniscus jumps either forward in an advancing path or
backwards in a receding path, as the volume varies. We note that alternatively, we can
see these critical points as maxima and minima, respectively, of σ(xCL). Making use
of Eq. 5.8 we can hence write:

dσ

dxCL

∣∣∣∣
xCL=xc

= 1− ∂G

∂θ

∂θi
∂x

∣∣∣∣
x=xc

= 0, (5.11)

Denoting θ̂ic ≡ θ′i(x = xc) and rearranging the above equation, we get

θ̂ic = −
3
(
cos
(
θi
2

)
+ sin

(
θi
2

))4
4 + cos(2θi)

. (5.12)

Therefore, at critical points, the wettability gradient θ̂ic exhibits a generic behaviour
that does not depend on the particular form of θi(x) but only on the given value of θi.
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As θi is physically limited between 0 and π, we have that θ̂ic(θi) is limited between
− 3

5 (for θ = 0 and π) and -4 (for θ = π
2 ).

We conclude that in this configuration, substrate wettability distributions of the
form of Eq. 5.2, of which the gradients are less negative than the threshold value of
− 3

5 everywhere, will not induce hysteric phenomena in the static limit.

5.3.4 Drop on a substrate
We distinguish two versions of the problem of drops on chemically heterogeneous sub-
strates (Fig. 5.1d). The geometry can be 2D (with a cylindrical drop) or axisymmetric
(with a spherical drop). The volume of the drop is controlled externally and therefore
denoted σ.

For the 2D case, the geometrical relation reads

G (xCL, θ, σ) = x2
CL

θ − sin θ cos θ

sin2 θ
− σ = 0. (5.13)

Eq. 5.13 contains two unknowns, i.e. base radius xCL and contact angle θ. After
closing the system with the equilibrium condition (Eq. 5.4) and a given substrate het-
erogeneity (Eq. 5.2) the statics of this configuration can be studied. Previous works
on the statics of this configuration [68, 69, 70, 149, 100] have predicted hysteresis and
stick-slip motion upon varying the volume σ of the droplet, similarly to the work pre-
sented in chapter 2. Recently, this behavior has also been observed when the droplet is
fed trough a pore [65].

For the axisymmetric case, instead of Eq. 5.13, we write

G (xCL, θ, σ) = x3
CL

π (1− cos θ)
2

(2 + cos θ)

3 sin3 θ
− σ = 0. (5.14)

This configuration is studied in [100] and a variant of it where the substrate is
chemically homogeneous but consists of axisymmetric grooves in [53].

5.3.4.1 Qualitative difference with previous configurations: the absence of a thresh-
old

Here we highlight a qualitative difference between the three first configurations and the
configuration of a drop on a substrate.

For the cylindrical droplet configuration, the volume σ of the droplet is given by
σ = x2g(θ), with g(θ) a geometric factor (which is specified in Eq. 5.13).

A similar analysis as in section 2.3.1 (for the microchannel configuration) and sec-
tion 5.3.3 (for the capillary tube configuration) would give as a criterion for a jump to
occur the expression,

θ̂ic =
−2g(θi)

xCLg′2D(θi)
, (5.15)

where g(θi)
g′(θi)

is positive for the physical range of θi.

Thus, for this configuration (as well as for its axisymmetric variant) θ̂ic is an explicit
function of xCL, which was not the case for our microchannel and capillary tube.

Whether a defect is strong or weak, will therefore depend on how far it is from the
center of the droplet. Any defect which is far enough from the origin (θ̂ic close enough
to zero) will induce hysteresis and therefore no threshold exists for sufficiently large
droplets, just like in the macroscopic limit (section 2.3.2) for the microchannel.
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Furthermore, Fig. 5.2 shows that, for a given periodic intrinsic contact angle distri-
bution, upon increasing the volume of the droplet, the system passes through the same
qualitatively different regimes of hysteresis (introduced in Section 2.3.2) as for the mi-
crochannel. We neglect any external noise, which would enable the system to cross
energy barriers, and we assume that the droplet center does not shift during the process
(see Ref. [65] for details).

Upon increasing the volume V = σ (from left to right), the system goes from a
sub-threshold regime, through a regime with pronounced stick-slip, and finally to the
macroscopic limit, for droplets much larger than the length scale of the heterogeneity.
In both this configuration and that of the microchannel, the ratio of the gas-liquid in-
terface length to the typical length scale of the heterogeneity seems to be an important
physical parameter which determines the hysteresis behavior.

In particular, a general conclusion seems to be that the advancing and receding con-
tact angles become independent of the particular liquid configuration (drop, meniscus,
bubble, · · · ) when this ratio becomes sufficiently large. In such macroscopic limit,
the hysteresis range is fixed by the maximum and the minimum of the contact angle
distribution and stick-slip behavior is unobservable.

This general conclusion supports the use of the common basic way of introducing
contact angle hysteresis into static macroscopic models by prescribing given constant
values for the advancing and receding angles.

5.3.4.2 Electrowetting of a drop - stick stage at constant volume

As last example of systems with a single contact line, we consider an axisymmetric
drop on a chemically heterogeneous surface, of which the wetting properties are modi-
fied with an applied electric field (Fig. 5.1e). A review of this phenomenon is presented
in refs. [150, 151]. The effect of an applied voltage σ on the wettability of the substrate
is described by the Young-Lippmann equation, which is of the form

cos θi (σ) = cos θi|σ=0 + aσ2, (5.16)

where the factor a is a constant, which is of the order of 1V −2 for the case of an
electrolyte droplet placed directly on an electrode surface [150]. The first term in the
right hand side is the wettability in the absence of an applied voltage, which we identify
with Eq. 5.2.

We consider the geometry of a spherical drop and use Eq. 5.14 where we now
assume that the volume is constant throughout the process, and denote it by V0.

Interestingly, the assumption of constant volume V0 prohibits the main qualita-
tive features of the stick-slip motion, which the configurations studied in the previous
sections have in common. More specifically, during the stick stage, xCL was nearly
constant while θ was varying.

On the other hand, now Eq. 5.14 directly relates any advancing motion (increase in
xCL) to a decrease in the contact angle θ and any receding motion to an increase in the
contact angle.

For a long enough wavelength λ (top row of Fig. 5.3) the stick-slip motions are
clearly observable on the scales of the graph. During the stick stage, both xCL and
θ stay nearly constant which is a qualitative difference compared to the results of the
configurations discussed above. During the slip stages, xCL and θ display jumps of
opposite sign, like in the previously discussed configurations where the volume was
constant during the jumps.
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The bottom row of Fig. 5.3 shows the effect of the heterogeneity in the macroscopic
limit. Namely, when the sign of the variation of the voltage σ is changed (point denoted
A), xCL and θ do not respond to changes of σ until σ has moved over a certain voltage
range (reaching point denoted B).

The magnitude of this delay in response can be calculated using the property of
the macroscopic limit that advancing motion occurs with cos θi|σ=0 = cos θA and
receding motion occurs with cos θi|σ=0 = cos θR.

Thus in the macroscopic limit, the points denoted A and B have the same contact
angle, which is given by

cos θ = cos θA + aσ2
A = cos θR + aσ2

B . (5.17)

Therefore, the magnitude of the delay is directly related to the contact angle hys-
teresis by

σ2
A − σ2

B =
cos θR − cos θA

a
. (5.18)

Note that in the previously studied configurations a similar stick stage was present
at the onset of changing the sign of variation of e.g. the volume of a drop. There, the
contact line stayed pinned for a range of volumes while θ decreased from θA to θR,
with a direct relation between the range of volumes and the contact angle hysteresis
(see e.g. [152]).
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Figure 5.3: Effects of heterogeneous wetting properties for electrowetting configura-
tion, with a = 1V −2 and a sinusiudal heterogeneity, i.e. Eq. 5.3 with θA = 100 deg,
θR = 60 deg. Gray: all static solutions. Green: static advancing. Red: static receding.
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5.4 Systems with two contact lines

5.4.1 Microchannel with non-identical walls
We consider the 2D microchannel drawn in Fig. 5.4a, where now as in contrast to
section 5.3.1, the upper and lower walls are characterized by different wettability dis-
tributions. The meniscus profile p(y) is circular and therefore determined by three
parameters, i.e. a center point (xc, yc) and a radius R.

(p− xc)2
+ (y − yc)2

= R2 (5.19)

The upper contact line is at a position xCL1 , where the interface makes an angle θ1 with
the wall and the lower contact line is at a position xCL2 , where the interface makes an
angle θ2 with the wall. This leads to four conditions,

p(y = 1) = xCL1

p′(y = 1) = cot θ1

p(y = 0) = xCL2

p′(y = 0) = − cot θ2

(5.20)

where all lengths are scaled with the inter-wall distance. Combining Eqs. 5.19 and
5.20, the meniscus profile can be expressed in terms of variables of interest.

p(y, xCL2
, θ1, θ2) = xCL2

+
sin θ2 −

√
1− [(y − 1) cos θ2 + y cos θ1]

2

cos θ1 + cos θ2
(5.21)

The first condition in Eq. 5.20 leads to a geometrical relation G1 which xCL1
,

xCL2
, θ1 and θ2 need to satisfy in order for the profile to be circular.

G1(xCL1
, xCL2

, θ1, θ2) = θ1 − θ2 + 2 arctan(xCL1
− xCL2

) = 0 (5.22)

This implies that xCL1
> xCL2

→ θ1 < θ2 and vice versa. The volume σ is
externally controlled and is calculated by integrating the meniscus profile,

σ =

∫ 1

0

p(y, xCL2
, θ1, θ2)dy. (5.23)

The integral in Eq. 5.23 can be calculated analytically and leads to our second
geometrical relation,

G2(xCL2
, θ1, θ2, σ) = xCL2

+ f2 (θ1, θ2)− σ = 0 (5.24)

where

f2 (θ1, θ2) =
θ1 + θ2 − π + 2 cos θ1 sin θ2 − cos θ1 sin θ1 − cos θ2 sin θ2 + sin(2θ2)

2 (cos θ1 + cos θ2)
2 .

(5.25)
Note that when θ1 = θ2, we recover the case of the microchannel with identical

walls (section 5.3.1).
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The two geometrical relations (5.22 and 5.24) contain four unknowns, i.e. xCL1
,

xCL2
, θ1 and θ2. For given wall heterogeneities of the form of Eq. 5.2, the static

problem is closed by capillary equilibrium at both contact lines (i.e. Eq. 5.4) and the
dynamics can be studied by writing the Cox-Voinov relation (Eq. 5.5) for both contact
lines, where at each time-step xCL1 and xCL2 are known and θ1 and θ2 are calculated
by solving Eqs. 5.22 and 5.24.

5.4.1.1 Simultaneous jumps in opposite directions

A common feature of the systems with two contact lines considered in this section is
that a jump performed by one contact line, is typically associated with a smaller jump
in the opposite direction of the other contact line.

In this effect is visible in Fig. 5.5 for a microchannel where the upper wall is
homogeneous and the lower wall heterogeneous.

The stick-slip motion on the heterogeneous lower wall (middle panel) is not very
different from the stick-slip which occurs in the symmetrical microchannel case (chap-
ters 2 and 4). The statics, calculated here, as well as for the symmetric case, with
explicit formulas of xCL2 and plotted in gray, is namely multi-valued for volume σ.
And quasi-statically increasing σ necessitates jumps in xCL2 .

Interestingly now, the heterogeneity of the lower wall also induces stick-slip and
hysteresis on the homogeneous upper wall (upper panel of Fig. 5.5). The induced
jumps here occur in the opposite direction. More specifically, when σ is increased
(green), receding jumps occur, while if σ is decreased (red), advancing jumps occur.

These jumps on the homogeneous wall are not an effect caused by the dynamics,
but already rooted in the statics. Their occurrence and starting and ending points are
predicted by the gray curve. The limit points of the static curves where the jumps
start, are both for xCL1

and xCL2
(upper and middle panel) at the same values of

σ and correspond to dσ(xCL2
)

dxCL2
= 0. Using Eq. 5.24, it can be shown that at such

points dθi2
dxCL2

< 0 (i.e. where the contact line on the heterogeneous wall encounters an
increasing wettability in the advancing direction). The end points of the jumps are also
determined by the statics as they occur at constant volume σ.

On the other hand, the path that the system takes during the jumps is not captured
by the statics. A dynamic aspect visible in the representation of the bottom panel of
Fig. 5.5 is that the jump on the heterogeneous wall in a good approximation precedes
the jump on the homogeneous wall.

Dynamically, the jump on the homogeneous wall is induced by the jump on the
heterogeneous wall trough volume conservation. During e.g. an advancing jump on
the heterogeneous wall, the contact line is accelerated by the heterogeneity (decrease
of θi2 as dθi2

dxCL2
< 0). In order to satisfy volume conservation with increasing xCL2

the system responds with an interplay between decreasing θ2 (which decelerates the
advancing jump) and decreasing θ1 and xCL1

. The interplay between the decreases of
the two latter quantities is governed by the Cox-Voinov relation and manifests itself as
a receding jump on the homogeneous substrate.

Fig. 5.6 illustrates the occurrence of the same phenomenon for the more complex
case of a microchannel with two non-identical heterogeneous walls. The qualitative
features of the jumps which are discussed for the above case of Fig. 5.5 are retained.
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5.4.2 Liquid bridge between non-identical plates
We consider the axisymmetric liquid bridge drawn in Fig. 5.4b. As in the previous
microchannel example (section 5.4.1), the upper and lower walls are characterized by
different wettability distributions. The meniscus profile p(z), where z corresponds to
the axis of axisymmetry, is given by the Young-Laplace equation [1],

1

p
√

1 + p′(z)2
− p′′(z)

(1 + p′(z))
3
2

=
∆P

γ
, (5.26)

where primes denote derivation with respect to z and the right hand side of this sec-
ond order ordinary differential equation is the (a priori unknown) value of the constant
curvature of the liquid-gas interface. We consider the situation where the inter-plate
distance σ is externally controlled and solve Eq. 5.26 with the boundary conditions{

p(z = σ) = xCL1

p(z = 0) = xCL2

(5.27)

to obtain a profile p(z, xCL1
, xCL2

, ∆P
γ , σ), which thus depends additionally on

the unknown curvature ∆P
γ . Two geometrical relations are obtained by extracting the

contact angles from this profile,G1

(
xCL1

, xCL2
, θ1,

∆P
γ , σ

)
= p′(z = σ) + cot θ1 = 0

G2

(
xCL1

, xCL2
, θ2,

∆P
γ , σ

)
= p′(z = 0)− cot θ2 = 0,

(5.28)

while the third one comes from assuming a constant liquid volume V0.

G3

(
CL1

, xCL2
,

∆P

γ
, σ

)
= π

∫ σ

0

p2

(
z, xCL1

, xCL2
,

∆P

γ
, σ

)
dz−V0 = 0 (5.29)

The three geometrical relations (Eqs. 5.28 and 5.29) contain five unknowns, i.e.
xCL1 , xCL2 , θ1, θ2 and ∆P

γ . Therefore, as for the previous microchannel example
(section 5.4.1), for given wall heterogeneities of the form of Eq. 5.2, the static problem
is closed by capillary equilibrium at both contact lines (i.e. Eq. 5.4). The dynamics can
be studied by writing the Cox-Voinov relation (Eq. 5.5) for both contact lines, where at
each time-step xCL1

and xCL2
are known and θ1 and θ2 are calculated using Eq. 5.28

after solving Eq. 5.29.

5.4.3 Liquid column in a capillary tube with two liquid-air inter-
faces

In Fig. 5.4c, we now consider a variant of the liquid in a capillary tube problem (section
5.3.3), which now has a lower meniscus described by (xCL1

, θ1) and an upper meniscus
described by (xCL2

, θ2). The inner wall of the tube is chemically heterogeneous but
perfectly cylindrical with radius r0.

The externally controlled parameter σ is the liquid volume (scaled with πr3
0) and

the first geometrical relation relies on the assumption that the meniscus has a spherical
shape. Namely,
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Figure 5.7: Dynamics of a water column growing in a capillary tube at a constant rate
of 10−8. The inner walls accommodate a sinusoidal heterogeneity, i.e. Eq. 5.3 with
θA = 75 deg, θR = 25 deg and λ = 0.01 mm. The insets show the color legend and
zooms on the curves at the indicated volumes at the scale of the stick-slip.

G1 (xCL1
, xCL2

, θ1, θ2, σ) = xCL2
− xCL1

+ g(θ1) + g(θ2)− σ = 0 (5.30)

where and all lengths are scaled by r0 and

g(θ) =
3 sin θ − sin3 θ − 2

3 cos3 θ
. (5.31)

The second geometrical relation relies on the vertical force balance,

G2 (θ1, θ2, σ) = cos θ1 − cos θ2 +
σ

2l2c
= 0, (5.32)

where lc is the capillary length (i.e.
√

γ
ρg ) scaled by r0. Eq. 5.32 implies θ1 > θ2

with the difference between the angles increasing with the volume σ.
Equations (5.30 and 5.32) contain four unknowns, i.e. xCL1 , xCL2 , θ1 and θ2.

For given wall heterogeneities of the form of Eq. 5.2, the static problem is closed
by capillary equilibrium at both contact lines (i.e. Eq. 5.4) and the dynamics can be
studied by writing the Cox-Voinov relation (Eq. 5.5) for both contact lines, where at
each time-step xCL1

and xCL2
are known and θ1 and θ2 are calculated by solving Eqs.

5.30 and 5.32.
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5.4.3.1 Falling of the liquid column

The ability of contact angle hysteresis to support the weight of a liquid column in this
configuration is a classical example often used in pedagogical introductions to contact
angle hysteresis. In this paragraph, we go deeper on this example and in particular show
the emergence of a mechanism involving coupled stick-slip motions of both contact
lines, by which the liquid column falls.

As classically known, for a liquid column to be trapped in a tube as drawn in Fig.
5.4c, the tube needs to have heterogeneous wetting properties. As gravity causes the
lower contact angle θ1 to be larger than the upper contact angle θ2 (Eq. 5.32), they
cannot be both equal to the constant equilibrium angle θi. In steady conditions, the
liquid column will move downwards with at a constant dimensionless velocity θ3

1−θ3
i ,

where θ1 is given by solving a system of two equations in two unknowns, consisting of
2θ3
i = θ3

1 − θ3
2 and the force balance (Eq. 5.32). Volume conservation (Eq. 5.30) will

give the length of such liquid column.
For a heterogeneous tube, the unbalanced Young’s forces can support a liquid

volume σ∗ thanks to contact angle hysteresis, which can be calculated by equating
θ1 = θA and θ2 = θR in Eq. 5.32, yielding

σ∗ =
cos θR − cos θA

2l2c
, (5.33)

where θA and θR are respectively the highest and lowest intrinsic angle of the tube
wall. Fig. 5.7 shows the contact line dynamics upon slowly increasing σ from a value
well-below σ∗. The liquid is inside a tube with a heterogeneity of a wavelength 100
times smaller than the tube radius.

In a first stage, the upper contact line remains pinned, while the bottom contact
line advances in the downward direction. The imposed increase of volume tends to
increase both contact angles (Eq. 5.30), while keeping θ1 > θ2 due to the force balance
(Eq. 5.32). Therefore the bottom contact angle reaches the advancing angle first and
advances.

At the scale of the heterogeneity (see inset), the lower contact line advances with
jumps almost as long as the heterogeneity wavelength, which is a property of the
macroscopic limit. These jumps are accompanied by (as discussed in example 5.4.1
small jumps of the upper contact line in the receding direction, i.e. downwards as well.
In-between jumps, both contact lines are pinned. They very slowly advance at a rate
proportional to the imposed volume increase and and to slope of the nearly horizontal
shape of the static solutions. This pinned motion brings the upper contact line back to
its original position, while being negligible on the scale at which the lower contact line
moves.

After the imposed volume σ (almost) reaches its critical value σ∗, the liquid column
falls downward at a rate much faster than the imposed rate of volume increase. At this
volume, θ1 ≈ θA and θ2 ≈ θR. At the small-scale the motion is intermittent. Now with
advancing jumps of the lower contact line associated with small receding jumps of the
upper contact line, and additionally receding jumps of the upper contact line associated
with small advancing jumps of the lower contact line. All these jumps contribute to the
downwards motion of the liquid column.

Fig. 5.8 shows the same process, but now with a heterogeneity wave-length com-
parable to the tube radius. Interestingly, the liquid column already falls at a volume σ
of around 0.61σ∗.

The lower panel of Fig. 5.8 sheds light on the falling mechanism.
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Figure 5.8: Same as Fig. 5.7 but with λ = 0.5. The lower panel shows the θ (thick
lines) and θi (dashed lines) during the fall of the liquid column over one wavelength λ.
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First, an advancing jump of the bottom contact line takes place, which is induced
by the sharp decrease of the equilibrium angle θi1 (blue dashed line) in the Cox-Voinov
relation. As due this advancing jump, xCL2

has moved downwards at (nearly) constant
volume σ, the geometry of the systems (as described by Eqs. 5.30 and 5.32) respond
by a combination of decreasing θ1 (which decelerates this advancing jump), directly
linked to a decrease in θ2. Thereby, θ2 drops below its equilibrium value and the upper
contact line recedes in a small jump.

Now, this small receding motion has brought the upper contact line to a position
where the wettability of the tube will induce its receding jump. This receding jump
of the upper contact line will in its turn induce a small advancing jump of the bottom
contact line, moving the bottom contact line closer to a position where it can perform
an advancing jump.

5.4.4 Drop around a cone - model for the drop collection on the
needles of certain species of desert plants

We consider the axisymmetric configuration of drop around a conical fibre, as drawn
in Fig. 5.4d. The fibre has a profile r(z). The contact line on the side where the
fibre is thicker is described by (xCL1 , θ1) and the contact line on the thinner side by
(xCL2

, θ2). As in the previous liquid bridge example (section 5.4.2), the meniscus
profile p(z), where z corresponds to the axis of axisymmetry, is given by the Young-
Laplace equation (Eq. 5.26).

We consider the situation where the liquid volume σ is externally controlled and
solve Eq. 5.26 with the boundary conditions{

p(z = xCL1
) = r(xCL1

)

p(z = xCL2
) = r(xCL2

)
(5.34)

to obtain a profile p(z, xCL1
, xCL2

, ∆P
γ ). As for the liquid bridge problem (section

5.4.2), two geometrical relations are obtained by extracting the contact angles from this
profile.

G1

(
xCL1 , xCL2 , θ1,

∆P

γ

)
=

arctan (p′(z = xCL1))− arctan (r′(z = xCL1))− θ1 = 0

(5.35)

G2

(
xCL1

, xCL2
, θ2,

∆P

γ

)
=

arctan (p′(z = xCL2
))− arctan (r′(z = xCL2

)) + θ2 = 0

(5.36)

For a conical needle as drawn in Fig., the angle − arctan r′(z)) is a positive con-
stant. For this case, Eqs. 5.35 and 5.36 typically lead to θ1 > θ2.

The third geometrical relation is conservation of volume.
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G3

(
xCL1

, xCL2
,

∆P

γ
, σ

)
=

π

∫ xCL2

xCL1

[
p2

(
z, xCL1 , xCL2 ,

∆P

γ

)
− r2(z)

]
dz − σ = 0

(5.37)

The three geometrical relations (Eqs. 5.35, 5.36 and 5.37) contain five unknowns,
i.e. xCL1

, xCL2
, θ1, θ2 and ∆P

γ . Therefore, as for the previous liquid bridge example
(section 5.4.2), for a given cone heterogeneity of the form of Eq. 5.2, the static problem
is closed by capillary equilibrium at both contact lines (i.e. Eq. 5.4). The dynamics can
be studied by using the Cox-Voinov relation (Eq. 5.5, with now additionally a metrif
factor) for both contact lines, where at each time-step xCL1

and xCL2
are known and

θ1 and θ2 are calculated using Eqs. 5.35 and 5.36 after solving Eq. 5.37.

5.4.5 Drop between two non-parallel plates - model for the feeding
mechanism of the Pharalope bird

In the last example, we consider the 2D problem of a drop sandwiched between two
non-parallel plates which make an externally controlled angle α with one another (Fig.
5.4e). We denote σ = α/2. The meniscus at the narrow end is described by (xCL1

, θ1)
and the meniscus at the broad end described by (xCL2

, θ2). The plates are flat but
chemically heterogeneous.

The first geometrical relation relies on the assumption that the menisci are circular,
leading to

G1 (xCL1 , xCL2 , θ1, θ2, σ) = 2 sinσ cosσ
(
x2
CL2
− x2

CL1

)
+4 sin2 σ

[
x2
CL1

f (θ1 − σ) + x2
CL2

f (θ2 + σ)
]
− V0 = 0,

(5.38)

where,

f(θ) =
2θ − π + sin(2θ)

8 cos2 θ
(5.39)

is the same geometric factor as in the microchannel problem (section 5.3.1). The
second geometrical relation relies on the force balance in the absence of gravity [46].

G2 (xCL1 , xCL2 , θ1, θ2, σ) = cos (θ2 + σ)− xCL2

xCL1

cos (θ1 − σ) = 0 (5.40)

Note that eq. 5.40 implies θ1 > θ2 with the difference between the two increasing
with the ratio xCL2

xCL1
(e.g. for drops closer to the corner) and the angle between the

plates.
Equations 5.38 and 5.40 contain four unknowns, i.e. xCL1

, xCL2
, θ1 and θ2. For

given wall heterogeneities of the form of Eq. 5.2, the static problem is closed by
capillary equilibrium at both contact lines (i.e. Eq. 5.4) and the dynamics can be
studied by writing the Cox-Voinov relation (Eq. 5.5) for both contact lines, where at
each time-step xCL1

and xCL2
are known and θ1 and θ2 are calculated by solving Eqs.

5.38 and 5.40.
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5.4.5.1 Mandibular propulsion

The Phalarope shorebird feeds itself by transporting a drop - inside of which a prey is
trapped - from its beak to its mouth by cyclically opening and closing its beak. Some
of the important aspects of the mechanisms are elegantly studied in [22, 46].

Fig. 5.9 shows that the statics and dynamics of such transport contain features sim-
ilar to the ones discussed previously for the microchannel (section 5.4.1) and capillary
tube (section 5.4.3) examples.

The upper and middle panels correspond to a calculation of the dynamics where
the beak motion is quasi-static. The beak half angle σ varies sinusoidally in time with
a sufficiently long period, such that it the jumps of the contact lines happen at nearly
constant beak angle.

The process starts with a static initial condition, which happens to be an unstable
one, and a beak which is opening (red curve). The contact lines jump towards a stable
branch of solutions (which seem to satisfy dxCL1

dσ > 0 and dxCL2

dσ < 0) and stays
pinned there while the beak angle keeps increasing.

When the beak starts closing (green curves) mainly contact line 1 moves towards
the mouth, while contact line 2 does not move too much. As in the previous examples,
the stick and slip stages of the two contact lines are synchronized. In the stick stages
while decreasing the beak angle σ, following the static solutions both contact angles
increase. In those stages, contact line 1 advances towards the mouth, while contact
line 2 advances away from the mouth. As θ1 > θ2, θ1 reaches faster a spot on the beak
where its angle equals the critical angle for an advancing jump of contact line 1 to occur.
The advancing jump of contact line 1 is accompanied by a receding jump of contact
line 2 (as discussed in 5.4.1 and 5.4.3). Both these jumps are in the direction towards
the mouth. For contact line 1 this jump constitutes the main part of the mouthward
motion, while for contact line 2, this jump compensates the motion that occurred in the
direction away from the mouth.

Similarly, during closing of the beak (red curves) the opposite happens, with the
outcome that contact line 2 recedes towards the mouth, while contact line 1 does not
move too much. This process repeats for two more cycles of the beak, with a net
mouth-ward motion of the drop in each half-cycle.

In the fourth cycle, the shape of the static solutions induce a different type of trans-
port, where now both contact lines move towards the beak during the opening of the
beak. At the end of the fourth beak closing, the contact lines have performed an addi-
tional jump, taking the system to another branch of static solutions, of which the left
limit point is situated more on the left than the right limit point of the branch of static
solutions on the right bottom of it.

Therefore, in the consequent opening of the beak, both contact lines perform a
stick-slip motion, where the stick stages last for small ranges of σ and the slip stages
are towards the mouth and take the system to a branch of static solutions which enables
this process to repeat itself while the beak opens.

This example illustrates that in quasi-static conditions, the knowledge of the static
solutions (gray) enables to have a precise control over the drop position, as well as a
fast mouth-ward drop motion when desired, by simply choosing the path over which
to vary the beak angle. In this example, if σ was decreased to 1 degree in the first
cycle, the drop would already have traveled fast to the mouth during the consequent
beak opening. Also, in the range of σ between 2 and 4 degrees, the system is always in
a stick-stage, which could be avoided depending on the needs.

The bottom panel shows that additional control can be achieved trough dynamics.
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Figure 5.9: Mandibular propulsion (beak heterogeneity given by Eq. 5.3 with θA, θR
and λ resp. 40 deg, 60 deg and 0.5 mm) of a 2mm 2 drop. Gray: static solutions. Green
and red: solutions of dynamic calculation, while imposed σ is resp. decreasing and
increasing. Two upper panels: T = 100s, lower panel: T = 0.1s.
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The only difference with the upper panel is that here the imposed cyclic beak motion
occurs faster, such in the time-scale of the contact line jumps, the beak half angle σ
varies noticeably. Therefore the jumps do not appear vertical in the graph.

This enables to have control over the ending points of the jumps. For example,
when the beak starts opening (red curve) while xCL1 ≈ 18 mm, the system first follows
the same static solutions as in the upper panel. However now the subsequent jump ends
in another branch of static solutions than the one that it ended in, in the upper panel.

The above example illustrates how this type of modelling can serve as a convenient
design and optimization tool for a tweezer-like device, which offers a precise control
over the drop position, yet without compromising the speed of transport. The control is
inherent to the fact that the drop always stays immobile at constant beak angle thanks
to contact angle hysteresis. Yet the transport can be fast as the drop motion primarily
occurs as discrete and fast depinning events. Taking full advantage of both the slow
stick and fast slip aspects of such system requires the design and optimization of the
wall topography and the choice of the path σ(t) to follow. Such optimization is possible
with the model discussed in this section, which captures the (quasi-)statics of problem
-where the behavior of interest is rooted- while remaining numerically cost-effective.
As uncaptured in previous treatments of the problem which modelled hysteresis as
a constant advancing and receding angle, here in the example discussed in Fig. 5.9
we show the existence of a qualitatively different trajectory, one with many depinning
events and thus a faster drop transport.
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Figure 5.10: Definition of quantities on a figure of a drop on a hexagonal pattern, where
red spots are hydrophobic and the blue matrix is hydrophilic. The z-scale is magnified
10 times to improve visibility.

5.5 Extension to the 3D case

5.5.1 Model formulation and solution method
Consider (Fig. 5.10) a drop on a chemically heterogeneous substrate of which the
equilibrium wetting properties are described by an intrinsic angle distribution of the
form

θi(x, y) =
γsg(x, y)− γsl(x, y

γ
, (5.41)

where γsl, γsg and γ are respectively the solid-liquid, solid-gas and liquid-gas in-
terfacial tensions. The drop is described by a height profile h(x, y) inside a domain D
and enclosed by a closed curve CL (i.e. the contact line). The volume of this drop is
given by

V =

∫∫
D

h(x, y)dxdy = σ(t) (5.42)

and considered to be an externally controlled parameter in this study. The liquid-
gas interface area of the drop is given by,

Alg =

∫∫
D

√
h2
x + h2

y + 1dxdy. (5.43)

The free energy G of the drop can be calculated using the definition in Eq. 5.41 as
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G = γAlg − γ
∫∫
D

cos θi(x, y)dxdy

= γ

∫∫
D

(√
h2
x + h2

y + 1− cos θi(x, y)
)

dxdy,

(5.44)

where the first term describes the energy cost of accommodating a liquid-gas inter-
face and the second term describes the energy gained by wetting a wettable area.

We treat the shape of the liquid-gas interface as quasi-steady at the time-scale of
the contact-line motion. Under this condition, the liquid-gas interface has a constant
curvature by which it sustains a uniform capillary pressure difference between the drop
and the surrounding air, (pl − pa), given by the Young-Laplace equation,

pl − pg = −γ∇ · ~nlg. (5.45)

Here ~nlg is the outward pointing unit normal on the liquid-gas interface z = h(x, y)
in Cartesian coordinates,

~nlg =
∇ (z − h(x, y))

|∇ (z − h(x, y)) |
=
−hx~1x − hy~1y +~1z(

1 + h2
x + h2

y

) 3
2

, (5.46)

in the notation of which we have followed the convention of denoting partial deriva-
tives by subscripts, ∂A∂X = AX , and the vectors~1X are unit vectors along the coordinate
in the subscript. The right-hand side of Eq. 5.45 can be now explicited as,

− γ∇ · ~nlg = γ

(
1 + h2

x

)
hyy +

(
1 + h2

y

)
hxx − 2hxhyhxy(

1 + h2
x + h2

y

) 3
2

, (5.47)

in the notation of which we have followed the convention ∂A
∂X = AX . We limit

our treatment to the case of thin drops only (with hx, hy much smaller than one and
thus also a small contact angle) and neglect higher order terms in Eq. 5.47, leading
to the result that the Laplace pressure is simply given by the surface tension times the
Laplacian of h.

∇ · ~nlg ≈ −hxx − hyy = −∆h(x, y). (5.48)

Combining Eqs. 5.45 and 5.48, we obtain,

∆h(x, y) = C, (5.49)

where C =
pg−pl
γ is an unknown constant in our problem, to be varied in order to

satisfy the volume condition (Eq. 5.42).
The merit of the approximation of small slopes (also known as the lubrication ap-

proximation) here is that C can be determined directly by imposing a volume σ as both
Eqs. 5.42 and 5.49 are linear in h. More specifically, to have a static interface shape
enclosing a volume σ, we solve

∆u(x, y) = −1, (5.50)
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with the boundary condition that the height vanishes at the contact line,

u(x, y)|CL = 0. (5.51)

Then the sought height profile h(x, y) is given by

h(x, y) = u(x, y)
σ(t)∫∫

D

u(x, y)dxdy
(5.52)

such that h(x, y) has the right volume (Eq. 5.42), a constant Laplacian (Eq. 5.50)
and a zero height at the contact line (Eq. 5.51).

The contact angle θ across the contact line is then extracted from the calculated
profile using,

θ = − arctan (∇h · ~n) = − arctan (hxnx + hyny) , (5.53)

where ~n is the outward unit normal on the contact line (as drawn in Fig. 5.10)
with components (nx, ny). The distribution of contact angles is then used to calculate
the normal velocity of the contact line trough the Cox-Voinov relation where the mi-
croscopic angle is identified with the local equilibrium angle θi(x, y) (c.f. chapter 4),
which in dimensionless form reads,

~vCL · ~n = θ3 − θ3
i (x, y), (5.54)

where ~vCL is the dimensionless contact line velocity.
This calculation is implemented in the commercial finite-element based simulation

software COMSOL Multiphysics[153]. Eq. 5.50 is implemented trough the PDE in-
terface and Eq. 5.54 makes the boundaries of the computational domain move in time
trough the inbuilt Langrangian-Eulerian (ALE) method in the Moving Mesh interface.

More specifically Eq. 5.54 gives the normal velocity of the mesh nodes at the
edge of the calculation domain, which are connected by quartic curves to form the
contact line. At each time-step, the internal mesh nodes of the previous time-step are
conformed with the changed boundary (i.e. contact line) trough Laplacian smoothing,
where mesh points in the deforming frame (x, y) are obtained by solving the Laplace
equation

xXX + yY Y = 0, (5.55)

where theX and Y are the coordinates of the (Eulerian) reference frame. An important
limitation of this method is that the connectivity of the mesh remains unchanged during
the mesh deformations, prohibiting e.g. simulations of the splitting of drops.

5.5.1.1 A static interface shape: an axisymmetric parabolic drop

A trivial and axisymmetric solution of Eq. 5.49, which we use as an initial condition
in section 5.5.2 is of the form

h(r) = ar2 + b, (5.56)

where r =
√
x2 + y2. The constants a and b are determined by specifying a

contact angle θ and a contact radius R, leading to
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h(r) =
R tan θ

2

(
1−

( r
R

)2
)
. (5.57)

The volume of this drop is calculated by shell integration,

V (R, θ) = 2π

∫ R

0

rh(r)dr =
πR3

4
tan θ. (5.58)

Note that this volume diverges for θ → π
2 , which is an angle outside of the appli-

cability domain of our approach. The same is true for the liquid-gas interface area of
this drop, which is given by

Alg(R, θ) = 2π

∫ R

0

√
1 + h2

rrdr =
2πR2

3

(
1

sin2 θ cos θ
− cot2 θ

)
. (5.59)

The dimensionless free energy of the drop is given by

F (r, θ) = Alg(R, θ)− 2π

∫ R

0

cos θi(r)rdr. (5.60)

Minimizing this free energy with the constraint of a fixed volume (Eq. 5.58) now
yields the condition,

cos θi(R) =
1

3

(
8 cos θ

1 + cos θ
− 1

cos θ

)
= 1− θ2

2
−O

(
θ4
)

= cos θ +O
(
θ4
)
.

(5.61)

This leads to the conclusion that in the applicability domain of our approach, the
free energy at fixed volume still has its extrema given by Young’s formula (see def-
inition of θi in Eq. 5.41), which is a natural prerequisite of the analysis of the next
section.

5.5.2 Test cases

5.5.2.1 Spreading on a perfect wetting substrate- Tanner’s law

The first and most basic case against which we can test our model is that of a parabolic
drop which is placed on a perfectly wetting substrate. For this case, the simulated
equations have an analytical solution, which the numerical result should converge to.

Namely, using the Cox-Voinov relation (Eq. 5.54), the increase of the radius R is
given by,

dR

dt
= θ3. (5.62)

The drop has a small contact angle θ, and a constant volume V0. Therefore, using
Eq. 5.58, we find that θ ≈ 4V0

πR3 . We can hence rewrite Eq. 5.62 as

R9dR =

(
4V0

π

)3

dt. (5.63)
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Integrating both sides starting from an initial radius R0 gives Tanner′s law,

R =

(
R10

0 + 10

(
4V0

π

)3

t

) 1
10

∝ t 1
10 (5.64)

In Fig. 5.11 we compare this prediction to the model results. The initial condition is
a parabolic drop (Eq. 5.57) with an initial dimensionless radius of 1 and an initial angle
of 0.1 and the volume corresponding to this initial condition is kept constant during the
simulation. The calculation domain consists of 40 domain elements and 12 boundary
elements.

In panels (a) and (b) we compare the cases of four different element orders, from
linear to quartic elements. The results of this calculation do not depend on the element
order starting from element order 3 (cubic elements).

We note however that these parameters of the numerical configuration only corre-
spond to a coarse limit of the discretization which enable to achieve convergence for a
homogeneous substrate. In general, the discretization for the heterogeneous cases will,
obviously, depend on the particular heterogeneity.

5.5.2.2 Axisymmetric substrate - Stick-slip rooted in statics

In this section, we test our method against the case of a drop with increasing/decreasing
volume, initially centered on an axisymmetric substrate with a sinusoidal wettability
pattern given by,

θi(x, y) = 0.1 + 0.01 cos

(
2π
√
x2 + y2

0.1

)
. (5.65)

Because for this heterogeneity, all the axisymmetric static solutions can be calcu-
lated by varying the radius R, using Eq. 5.58, together with the capillary equilibrium
condition, for example as θ = θi(R, 0).

This statics calculation gives the black curves in panels (a) and (b) of Fig. 5.12.
They are multi-valued of some ranges of V . It is known that in the static limit (c.f.
chapters 2 and 3) the branch of solutions that the system will follow in these ranges,
will depend on the sign of the variation of V , with jumps occurring at the limit points of
the black curves for both signs. If the variation of V occurs at a finite rate (c.f. chapter
4), the hysteresis loop magnifies for increasing values of this rate.

The green curves in panels (a) and (b) correspond to the advancing case. We start
this simulation with a parabolic drop which has a dimensionless radius of 1 and a
contact angle equal to the equilibrium angle at this position, i.e. 0.11. We increase
the drop volume at a dimensionless rate Vt = 10−5 (scaled with R2

0γ
9µ ln(l) ), which in

dimensional form corresponds to the order of µl/min for a millimetric water drop. This
steady volume increase results in a stick-slip motion of the drop during which it stays
axisymmetric and follows the black curves. This increase of volume is stopped when a
volume equal to thrice the initial volume is reached, corresponding to the drop denoted
with the letter B in panel (c).

From this point on, the sign of the volume variation is reversed, resulting again in
a statics-rooted stick-slip motion (red curves) until the drop named A is reached.

We conclude that the method is able to recover the statics-induced stick-slip on
axisymmetric substrates. This test case can thus serve as a common point between
the results of well-understood axisymmetric models and this three-dimensional model,
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enabling to study how the results obtained with the former are modified by 3D effects
when e.g. the axisymmetry of the wettability pattern is broken, step by step and starting
from an understood reference case.

5.5.2.3 Drop on substrate with defects

In this last test case, we place a drop with constant volume on a heterogeneous substrate
and simulate its dynamics of moving towards a more favorable spot on this substrate.

The substrate wettability θi(x, y) is an arbitrary one which consists of a hexagonal
pattern on which Gaussian-shaped defects are superimposed with randomly selected
parameters. The resulting distribution is shown in the color code of panel (a) in Fig.
5.13. The maximal intrinsic angle is 3.7 deg (blue) and the minimal intrinsic angle is
6.8 deg (red).

The black closed curves in panel (a) are the contact line shapes at different time-
snaps corresponding to dimensionless times 0, 200, 400, 800, 1600 and 10000, where
the time-scale is of the order of ms for a millimetric water drop. The initial and final
drop profiles are shown in panel (b). The contact line deformations here are weak
compared to the case shown in Fig. 5.10 where the minimal and maximal values of θi
where 0.5 deg and 9.5 deg.

Initially a parabolic drop with θ = 0.09 is placed on a rather hydrophobic location.
The parts of the contact line which touch spots with high intrinsic angles (red) recede,
while the parts of the contact line which touch blue, advance. This makes the drop
initially move south-west and then further south reaching a final location where the
wettability gradients normal to the contact line are in the direction of increasing θi.
More specifically, from this final location, if a part of the contact line would advance,
it would encounter increasing values of θi and be prone to recede back to its original
location and vice versa.

Panel (c) shows the interplay between the two terms of the free energy (Eq. 5.44)
in this process. During its journey, the drop mainly converts energy stored in its wetted
area Gsl (orange curve) to energy stored its liquid-gas interface (blue curve) and vice
versa. Namely, the decreases of one curve correspond to increases of the other curve.
However the sum of the two curves is not constant.

This aspect is shown in panel (d). The free energy G, which is the sum of the
aforementioned terms monotonously decreases during the process. This means that
during each of the energy conversions, a fraction of the energy is dissipated. The net
balance at the end of the process is that the energy decrease achieved by contacting a
more hydrophilic part of the substrate is higher than the energy increase due to the now
higher liquid-gas interfacial area.
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5.6 Concluding remarks
The modelling framework has been extended to treat the statics and quasi-steady inter-
face shape dynamics in a large variety of 2D and axisymmetric wetting configurations.
For most configurations the framework provides models which capture the essence of
stick-slip in relatively understandable and numerically not very demanding way.

In each configuration, heterogeneous wetting properties lead to the stick-slip and
hysteresis when a parameter σ (such as the volume) is externally varied. The qualitative
features of these phenomena depend on the geometry of the configuration, described
by the same amount of functions as there are contact lines.

The cases previously treated in this framework have provided a basis to interpret
and understand the results of the configurations previously untreated. For example,
heterogeneities with wavelengths much smaller than the typical length-scale of the
configuration bring forth a limit case of hysteresis. In such macroscopic limit, stick-
slip is macroscopically unobservable, and the static advancing/receding angle is equal
to the maximum/minimum of the intrinsic angle distribution of the substrate.

But also previously undescribed features have been predicted. For example, in
systems which can be idealized to be described by two contact lines connected via vol-
ume conservation and a force balance, the contact lines typically display simultaneous
jumps. These simultaneous jumps are rooted in the statics, even if one of the contact
lines is on a homogeneous substrate.

In particular, the framework yields promising prospects in the understanding of
two mechanisms involving contact angle hysteresis utilized by living beings, which
recently have started to inspire engineering applications. Namely, the water collection
mechanism present in the needles of certain species of desert plants and the feeding
mechanism of a certain species of shorebirds.

The description of the contact line dynamics with a quasi-steady liquid-gas inter-
face shape is also generalized to treat the case of drops on substrates which are disor-
dered in two directions. The calculation is implemented in the commercial simulation
software COMSOL Multiphysics and least numerically demanding for drops with low
contact angles on substrate with not too strong gradients.

The model was tested against three cases corresponding to these conditions.
A drop of constant volume placed on a substrate which it perfectly wets, spreads

with a radius R which increases in time as R ∝ t
1
10 , and thus follows Tanner′s law.

For this case, the numerical result converges towards the analytical one if the order of
the finite elements is chosen higher than 3 (cubic elements).

If the drop of constant volume is placed on a substrate with a chemical hetero-
geneity with a length-scale comparable to the drop radius, the wettability gradient will
induce a motion of the drop and bring it to a more wettable spot. During this motion, a
back and forth energy conversion with losses happens between the liquid-gas interface
and the wetted area, while the total free energy monotonously decreases.

When the volume of a drop on an axisymmetric substrate is increased/decreased,
the drop undergoes stick-slip and hysteresis. This behavior is rooted in shape of the
static solutions, which for this case can be calculated using explicit formulas. This
case connects the studies performed in the previous chapters to a 3D equivalent, where
the contact line is allowed to deform.
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Chapter 6

General Conclusions and perspec-
tives

Table 6.1 presents an overview of the configurations modelled in this work and serves
as a basis to summarize the main results.

Even though the static contact angle on heterogeneous substrates is determined by
the contact line position, the latter quantity is not well-suited for external control and
hysteresis arises upon externally controlling a macroscopically accessible parameter
(as the ones given in the 5th column of table 6.1). This parameter is typically a volume
or an immersion height. The qualitative aspects of hysteresis do depend on the nature
of this parameter.

• This dependency is illustrated by comparing configurations (a) and (b), where for
the same geometry and same heterogeneity, the stability of a contact line equi-
librium, given by Young’s law, depends on whether the piston position (which
is equivalent to the volume in the description in chapter 2) or the force on the
piston is externally fixed. The corresponding dynamical studies have shown that
close the static limit, the two setups also lead to different scaling laws between
the contact angle and velocity.

• Similarly, configurations (e) and (f) can start from the same initial condition,
which is a drop at a constant volume on a heterogeneous substrate. If the volume
is increased, the classically known stick-slip motion will take place, where in
stick-stages the angle increases and in slip-stages the contact radius increases.
If on the other hand a voltage is applied, a different stick-slip motion will occur
where during stick-stages both quantities stay constant, and in slip-stages, the
contact radius increases and the angle decreases, showing larger contact angles
during advancing motion than during receding motion.

• The existence of multiple quantities suited for external control and the qual-
itatively different response of the system to some of them may provide extra
possibilities for e.g. prospective applications of precise and programmable ma-
nipulation of small volumes of liquids on substrates with known topography.
A complete bifurcation diagram with multiple independent variables will show
more possibilities of paths rather than only an advancing or receding path as
studied in this work.
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In configurations with a single contact point, the ratio of the typical scale of the
heterogeneity to the typical system size is of key importance for many features of the
induced hysteresis at the static limit.

• If the heterogeneity wavelength comparatively large, gradients of wettability (or
topography) will be smaller than a threshold value below which no hysteretical
effects are induced. A threshold is present for deformed contact lines [72] and
is explicitly discussed in this work for configurations with a single contact point
(a), (g) and (i). For configuration (e) the fact that the interface size increases
with the experimentally controlled parameter (the volume) no threshold exists
in the same sense as for the configurations mentioned in the previous sentence,
although the qualitative features of the sub-threshold regime are present for small
drop volumes.

• Systems which are just above this threshold, show the most pronounced stick-
slip motion. In this regime, the closeness to the threshold explains the scaling
laws between the main characteristics of the stick-slip and hysteresis. It leads
to a quadratic scaling between defect amplitude and hysteresis amplitude, as
shown for configuration (a), and to a quartic scaling between the jump length
and dissipated energy, as shown for configuration (i).

• In the regime described in the above point, the predictions of the model for
configuration (i), were successfully compared to tensiometric experiments on
3D-printed wavy fibres, at the level of individual topography-induced stick-slip
motion.

• Very small heterogeneity wavelengths lead to a limit situation, persisting in all
the configurations given in table 6.1 (also including configurations with multi-
ple contact points). In such macroscopic limit, stick-slip occurs at the scale of
the heterogeneity (over a whole wavelength for sinusoidal heterogeneities), and
contact lines advance only with an angle corresponding to the maxima of the
statically allowed values, and recede only with the minimum statically allowed
angle. Therefore, in this limit, the scaling between the heterogeneity amplitude
and hysteresis amplitude is linear instead of quadratic, as explained for configu-
ration (a).

This last point justifies the incorporation of contact angle hysteresis into models
by prescribing an advancing and a receding angle for many practical cases where no
stick-slip is observable. However such approach can only give quantitative results at
the static limit as the stick-slip at the unobservable scale does modify scaling rela-
tions between the angle and the velocity compared to the relations on homogeneous
substrates.

• The different scaling laws which apply in the presence of heterogeneities, previ-
ously predicted by [85], were recovered here with quasi-static meniscus simula-
tions for configurations (a), (b), (i) and a variant of (i) where the vertical force
on the fibre is externally controlled. The Cox-Voinov relation and the molecular-
kinetic theory have led to the same scaling laws.

• The scaling exponent near the static limit depends furthermore on the nature of
the externally controlled parameter and has different values for configurations
(a) and (b). Far from the static limit, the intermittency of the contact line motion
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fades away, and the scaling exponent of configuration (a) tends toward that of
(b). For smaller heterogeneity wavelengths, this collapse of (a) with (b) happens
at lower velocities.

• The fact that these scaling laws are also predicted for configuration (i), brings
them in the reach of experiments on AFM tips.

The minimalistic modelling approach can be extended to treat configurations with
n contact points, with a system of equations (which are the boundary conditions of
the Young-Laplace law or, more conveniently, its closed form solutions) which link
the contact angles, contact line positions and the externally controlled parameter of
interest, to be closed with n equations which are either Young’s law for each contact
point (statics), or a quasi-static mobility law such as the Cox-Voinov relation for each
contact point (quasi-steady dynamics). With this approach, we have studied several
systems with two contact points. We have also provided an extension of the minimal-
istic approach to treat the problem of substrates disordered in two directions.

• In all configurations with two contact points, (c), (d), (h), (j) and (k), the stick-
and slip-stages at both contact lines are synchronized and jumps occur simulta-
neously. The jumps of one contact line in the advancing/receding direction are
accompanied by jumps of the other contact line in the receding/advancing direc-
tion, with both jumps rooted in the static solutions. This feature is even present
for menisci inside channels (c), where one of the walls is homogeneous.

• In configurations (c) and (k), the advancing displacement of one contact point,
when accompanied by a receding displacement of the other contact line increases
the liquid-gas interface area and therefore the free energy of the system. On the
other hand, in configurations (d) and (h), such simultaneous jumps result in the
displacement of the drop as a whole, to a position which is energetically more
favorable, as it decreases the liquid-gas interface area (d), or the gravitational
potential energy (h). In both latter cases, in the appropriate conditions a cascade
of such simultaneous jumps is predicted, resulting in a fast motion of the drop as
a whole.

• A better understanding of the mechanism above can potentially help shedding
more light on the feeding mechanism of shore-birds (d), and possibly also the
fog-collection mechanism of cactus plants (k), both of which are inspiring en-
gineering applications. The modelling approach presented here furthermore en-
ables to construct bifurcation diagrams of the mandibular propulsion mechanism
(d), at least if the beak topography is known. This bifurcation diagram also re-
covers the known features of the mechanism and can enable to identify optimal
paths of opening-closing characteristics.

• The formulation is extended to minimalistically treat cases where the contact
line can deform and the heterogeneity is two-dimensional. This model recov-
ers much of the essential physics related to response of contact lines to het-
erogeneities in the quasi-steady interface shape limit, such as Tanner’s law on
perfectly wetting substrates, statics-rooted stick-slip on axisymmetric hetero-
geneities and wettability-gradient induced contact line motion on disordered sub-
strates. The model therefore permits for example to study deviations from con-
figuration (e) when the contact line is allowed to deform, and to tackle generic
problems of contact lines on disordered substrates in a minimalistic way.
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