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Abstract

In this paper the invertibility condition of the asymptotic Fisher information matrix of
a controlled vector autoregressive moving average stationary process, VARMAX, is dis-
played in a theorem. It is shown that the Fisher information matrix of a VARMAX process
becomes invertible if the VARMAX matrix polynomials have no common eigenvalue. Con-
trarily to what was mentioned previously in a VARMA framework, the reciprocal property
is untrue. We make use of tensor Sylvester matrices since checking equality of the eigen-
values of matrix polynomials is most easily done in that way. A tensor Sylvester matrix
is a block Sylvester matrix with blocks obtained by Kronecker products of the polynomial
coefficients by an identity matrix, on the left for one polynomial and on the right for the
other one. The results are illustrated by numerical computations.
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1 Introduction

This paper investigates the invertibility condition of the Fisher information matrix of a Gaus-
sian vector ARMAX or VARMAX process. Controlled vector autoregressive moving average
stationary processes, VARMAX processes are general-purpose representations in order to de-
scribe dynamic systems in engineering and in econometrics. At first, in order to set forth an
invertibility condition of the Fisher information matrix, we worked on a factorization of the
information matrix as derived in [13], like we did for VARMA models in [12], making use of
tensor Sylvester resultant matrices. Such a tensor Sylvester matrix is associated to two monic
matrix polynomials and it becomes singular if and only if the two matrix polynomials have at
least one common eigenvalue, see [6]. In [12], it is said that the Fisher information matrix of
a VARMA process, a VARMAX process without the control or exogenous variable, becomes
invertible if and only if the tensor Sylvester matrix is invertible, in other words, if and only
if the autoregressive and moving average matrix polynomials of the VARMA process have no
common eigenvalue. This is called the Sylvester resultant property. As will be shown, the
”‘only if”’ part of that result is, however, wrong when the dimension of the process is larger
than 1. In [11], the Sylvester resultant property is shown for a scalar ARMAX process but it is
no longer true, in general, for other than scalar ARMA or ARMAX processes. In the present
paper, we correct the assertion stated in [12] for VARMA processes, and we extend the ”‘if”’
part to a class of VARMAX processes. Although the results are less powerful, they are what
is needed in practice: a necessary condition of invertibility of the Fisher information matrix,
indicating a possible lack of identifiability so that parameter estimation is risky. A sufficient
condition that should involve more information about the matrix polynomials is not as useful.

Consider the vector stochastic difference equation representation of a linear system of order
(p, r, q) of the Gaussian process {yt, t ∈ Z}, Z is the set of integers. To be more specific, consider
the equation representation of a dynamic linear system,

p
∑

j=0

Ajyt−j =
r−1
∑

j=0

Cjxt−j +

q
∑

j=0

Bjεt−j, t ∈ Z (1)

where yt, xt and εt are respectively, the n-dimensional stochastic observed output, the n-
dimensional observed input, and the n-dimensional unobserved errors, and where Aj ∈ R

n×n,
j = 1, ..., p, Cj ∈ R

n×n, j = 0, ..., r − 1, and Bj ∈ R
n×n, j = 1, ..., q, are associated parameter

matrices. We additionally assume A0 = B0 = In, the n × n identity matrix. We suppose that
C0 is an invertible matrix. In the examples we will take C0 = In fixed instead of being a matrix
of parameters so that the maximum lag r− 1 is replaced by r. Note that the absence of lag in-
duced by (1) is purely conventional. For example, a lagged effect of x′

t on yt can be produced by
defining xt = x′

t−1. The error {εt, t ∈ Z} is a sequence of independent zero mean n-dimensional
Gaussian random variables with a strictly positive definite covariance matrix Σ. We denote
this by Σ ≻ 0. We shall denote transposition by T and the mathematical expectation by E.
We assume E{xtε

T
t′} = 0, for all t, t′. We denote z the backward shift operator, for example
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zxt = xt−1. Then (1) can be written as

A(z)yt = C(z)xt + B(z)εt, (2)

where

A(z) =

p
∑

j=0

Ajz
j , C(z) =

r−1
∑

j=0

Cjz
j, B(z) =

q
∑

j=0

Bjz
j (3)

are the associated matrix polynomials, where z ∈ C (the duplicate use of z as an operator and
as a complex variable is usual in the signal and time series literature, e.g., [4], [2] and [10]).
The assumptions det(A(z)) 6= 0 far all |z| ≤ 1 (causality) and det(B(z)) 6= 0 for all |z| ≤ 1
(invertibility) are imposed so that the eigenvalues of the matrix polynomials A(z) and B(z)
will be outside the unit circle. Remind that the eigenvalues of a square matrix polynomial A(z)
are the roots of the equation det(A(z)) = 0.

Remark 1.1. Note that there are restrictions in the VARMAX model being considered. First,
the dimensions of the unobserved errors ǫt and of the observed output yt are the same. This is
often the case in the literature, although [3], for example, consider a VARMA model where the
dimension of the unobserved errors is smaller than that of the observed output. Second, the
dimensions of the observed input xt and of the observed output yt are the same. This is more
restrictive. For example, it prevents to have a one-dimension input, which is a frequent case,
or an input with a higher dimension than the output. The paper [14] that will be mentioned
later does not require this. At this time it does not seem possible to avoid these constraints.

We store the VARMAX (p, r, q) coefficients in an l = n2(p+ q + r)× 1 vector ϑ defined as
follows

ϑ = vec{A1, A2, . . . , Ap, C0, . . . , Cr−1, B1, B2, . . . Bq}.
The vec operator transforms a matrix into a vector by stacking the columns of the matrix one
underneath the other, according to vec X = col(col(Xij)

n
i=1)

n
j=1, see e.g. [7], [16].

The observed input variable xt is assumed to be a stationary n-dimensional Gaussian VARMA
process with white noise process ηt satisfying E{ηtηTt } = Ω and

a(z)xt = b(z)ηt,

where a(z) and b(z) are respectively the autoregressive and moving average matrix polynomials
such that a(0) = b(0) = In and det(a(z)) 6= 0 far all |z| ≤ 1 and det(b(z)) 6= 0 for all |z| ≤ 1.
The spectral density of process xt is defined as, see e.g. [4]

Rx(e
iω) = a−1(eiω)b(eiω)Ω b∗(eiω)a∗−1(eiω)/(2π), ω ∈ [−π, π], (4)

where i is the standard imaginary unit, ω is the frequency, the spectral density matrix Rx(e
iω)

is Hermitian, and we further have, Rx(e
iω) ≻ 0 and

∫ π

−π
Rx(e

iω)dω < ∞. X∗ is the complex
conjugate transpose of matrix X. Therefore there is at least one solution of (1) which is
stationary.

Before we display the Fisher information matrix we present the tensor Sylvester matrix.
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2 The Tensor Sylvester Matrix

Consider the matrix polynomials A(z) =

p
∑

i=0

Aiz
i and B(z) =

q
∑

j=0

Bjz
j , where Ap and Bq are

invertible matrices, the n(p+ q)× n(p+ q) Sylvester matrix is defined as

Spq(B,A) =:































B0 B1 . . . Bq On×n . . . On×n

On×n
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . On×n

On×n . . . On×n B0 B1 . . . Bq

A0 A1 . . . Ap On×n . . . On×n

On×n
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . On×n

On×n . . . On×n A0 A1 . . . Ap































. (5)

Let us partition Spq(B,A) in two blocks with n(p+ q) columns and of numbers of rows respec-
tively np and nq, and define Sp(B) the upper matrix and Sq(A) the lower matrix. Hence

Spq(B,A) =

(

Sp(B)
Sq(A)

)

.

If n = 1, then it is well known (e.g. [5]) that two monic scalar polynomials A(z) and B(z)
have at least a common root if and only if detS(−B,A) = 0 or when the matrix S(−B,A)
is singular. In [6], Gohberg and Lerer show that that property is no longer true if n > 1, i.e.
for matrix polynomials. Let the operator ⊗ which represents the Kronecker product of two
matrices. Following [6], we introduce the so-called tensor Sylvester matrix on the basis of (5)

S⊗
pq(B,A) =

(

Sp(B ⊗ In)
Sq(In ⊗ A)

)

,

where ⊗ is Kronecker’s product. Similarly, for two matrix polynomials A(z) =
∑p

i=0 Aiz
i and

C(z) =
∑r

j=0 Cjz
j, with Cr invertible, we will need the n(p + r) × n(p + r) Sylvester matrix

defined as

Spr(C,A) =

(

Sp(C)
Sq(A)

)

,

and

S⊗
pr(C,A) =

(

Sp(C ⊗ In)
Sr(In ⊗ A)

)

.

It is said in [6] with a sketch of proof that the resultant property holds for tensor Sylvester
matrices, i.e. the two matrix polynomials A(z) and B(z) have at least a common eigenvalue
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if and only if detS⊗(−B,A) = 0 or when the matrix S⊗(−B,A) is singular. Similarly, to
assess if the two matrix polynomials A(z) and C(z) have at least a common eigenvalue, we will
investigate singularity of the matrix S⊗(−C,A).

Example 2.1. We will treat in Section 5 three examples with n = 2 and p = r − 1 = q = 1.
Let Aik, Cik, Bik, i, k = 1, 2 denote the respective first degree coefficients A1, C1, and B1, and
C0 = I2 instead of being a matrix of parameters, in addition to A0 = B0 = I2, so that r − 1 is
replaced by r. Then S⊗

pq(−B,A) and S⊗
pr(−C,A) take the form of 8× 8 matrices

S⊗
pq(−B,A) =

(

Sp(−B ⊗ In)
Sq(In ⊗ A)

)

=

(

−I4 −B1 ⊗ I2
I4 I2 ⊗ A1

)

=

























−1 0 0 0 −B11 0 −B12 0
0 −1 0 0 0 −B11 0 −B12

0 0 −1 0 −B21 0 −B22 0
0 0 0 −1 0 −B21 0 −B22

1 0 0 0 A11 A12 0 0
0 1 0 0 A21 A22 0 0
0 0 1 0 0 0 A11 A12

0 0 0 1 0 0 A21 A22

























. (6)

and

S⊗
pr(−C,A) =

(

Sp(−C ⊗ In)
Sr(In ⊗ A)

)

=

(

−I4 −C1 ⊗ I2
I4 I2 ⊗ A1

)

,

and a detailed expression similar to (6) with Bik replaced by Cik, i, k = 1, 2.

In [12] it is said incorrectly that the Fisher information matrix of a VARMA process (i.e. the
case without xt) fulfills the resultant property. This is done by inserting the tensor Sylvester
matrix in an appropriate factorized form of the Fisher information matrix. Then, another
matrix M is introduced and it is shown in [12, Lemma 2.3] that it is singular if and only if the
matrix polynomials have at least one common eigenvalue. This is correct. The mistake appears
in the ”‘if”’ part of [12, Proposition 2.4] when it is said that the Fisher information matrix is
singular if and only if M is singular. Indeed, using the notations for the matrices J (eiω) and
Λ(eiω) introduced, respectively, in [12, bottom of p. 303] and [12, top of p. 304], and y in the
kernel of M, the claim that the circular integral of y∗Λ(eiω)J (eiω)Λ∗(eiω)y in [12, bottom of
p. 305] equals zero implies that Λ(eiω)J (eiω)Λ∗(eiω)y is identically zero is wrong, breaking the
remaining of the ”proof”. See Remark 2.2 for a counterexample. This mistake was pinpointed
by [17] with the help of the other co-authors of [12].

Remark 2.2. That the implication mentioned above is wrong can be checked on a simple
univariate ARMA(1,1) model with A(z) = 1 + ϑ1z and B(z) = 1 + ϑ2z, and a common root
ϑ1 = ϑ2, and assume causality and invertibility so that −1 < ϑ1 < 1. Then the matrix M(ϑ∞)
defined in [12, Equation (18)] is a singular matrix and its kernel has rows (−1−ϑ1) and (1 ϑ1).
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Take y = (y1, y2)
T as a vector of the kernel with, e.g. y2 = 1. Then y1 = −ϑ1. We follow the

proof in [12, Proposition 2.4 p. 305, lines -7 and -6], we need to study Λ(z)J (z)Λ∗(z)y which
is a vector with 2 components. Straightforward calculation for ϑ1 = ϑ2 leads to the following
two components: y1 − y2 and y2 − y1. Replacing y1 and y2 yields respectively −ϑ1 − 1 < 0
and 1 + ϑ1 > 0. The strict inequalities come from the causality condition. Clearly these two
integrands are not identically 0, breaking down the conclusion of [12, p. 305, lines -6] that
Λ(eiω)J (eiω)Λ∗(eiω)y ≡ 0. Hence the determinant of Λ(eiω)J (eiω)Λ∗(eiω) is not equal to 0 and
the remaining is false.

For that reason, we will use the results in [13], where tensor Sylvester matrices are part of a
factorized form of the Fisher information matrix of a VARMAX process only for the description
that it provides. We will rather use identifiability conditions stated in [8] and [9], see also [10].
Like in [11] for the case n = 1, the presence of the third polynomial C(z) has to be taken into
account in the resultant property and this appears not at all trivial, as will be shown.

In the next section the Fisher information matrix F(ϑ) of the VARMAX process is displayed
according to [13].

3 The Fisher Information Matrix of VARMAX Processes

The Fisher information is an ingredient of the Cramér-Rao inequality. Some structured matrix
properties of the Fisher information matrix of Gaussian stationary processes have been inves-
tigated, see e.g. [15].
When time series models are the subject, using (2) for all t ∈ Z to determine the residual εt(ϑ),
to emphasize the dependency on the parameter vector, ϑ, and assuming that xt is stochastic
and that (yt, xt) is a Gaussian stationary process, the asymptotic Fisher information matrix,
F(ϑ), is defined by the following (l × l) matrix, which does not depend on t:

F(ϑ) = E

{

(

∂εt(ϑ)

∂ϑT

)T

Σ−1

(

∂εt(ϑ)

∂ϑT

)

}

(7)

where the (v × l) matrix ∂(·)/∂ϑT , the derivative with respect to ϑT , for any (v × 1) column
vector (·) and l is the total number of parameters and ϑ is defined in (1). Equality (7) is used
for computing the Fisher information matrix of the various time series processes, see [13] for

6



more details. The derivative, ∂εt/∂ϑ
T , of size n× n2(p+ q + r), is computed in [13], to obtain

∂εt
∂ϑT

= {(A−1(z)C(z)xt)
T ⊗B−1(z)}∂ vecA(z)

∂ϑT

+{(A−1(z)B(z)εt)
T ⊗ B−1(z)}∂ vecA(z)

∂ϑT

−{xT
t ⊗B−1(z)}∂vecC(z)

∂ϑT

−(εTt ⊗B−1(z))
∂ vecB(z)

∂ϑT
.

(8)

By substituting ∂εt/∂ϑ
T under form (8) in (7) yields the representation of the Fisher information

matrix of a VARMAX process. For each positive integer k, denote uk(z) = (1, z, z2, . . . , zk−1)T .
Let

L(A(z)) =





Ip ⊗ A(z)⊗ In Opn2×rn2 Opn2×qn2

Orn2×pn2 Orn2×rn2 Orn2×qn2

Oqn2×pn2 Oqn2×rn2 Iq ⊗ In ⊗ A(z)



 ,

W(A(z)) =





Ip ⊗ A(z)⊗ In Opn2×rn2 Opn2×qn2

Orn2×pn2 Ir ⊗ In ⊗ A(z) Orn2×qn2

Oqn2×pn2 Oqn2×rn2 Oqn2×qn2



 ,

Φ(z) = L(A−1(z))





S⊗
p (−B)

Orn2×n2(p+q)

S⊗
q (A)



 (up+q(z)⊗ In2),

Λ(z) = W(A−1(z))





S⊗
p (−C)
S⊗
r (A)

Oqn2×n2(p+r)



 (up+r(z)⊗ In2),

S⊗
p,q(−B,A) =

(

S⊗
p (−B)
S⊗
q (A)

)

, S⊗
p,r(−C,A) =

(

S⊗
p (−C)
S⊗
r (A)

)

,

Ψ(z) = Rx(z)⊗ B−T (z)Σ−1B−1(z−1) and Θ(z) = Σ⊗ B−T (z)Σ−1B−1(z−1),

where the Hermitian spectral density matrix, Rx(z), is defined in (4) . Let

A(z) := Φ(z)Θ(z)Φ∗(z), B(z) := Λ(z)Ψ(z)Λ∗(z).

Then, as shown in [13], the Fisher information matrix is given by

F(ϑ) =
1

2πi

∮

|z|=1

A(z)
dz

z
+

1

2πi

∮

|z|=1

B(z)dz
z
.

The integrals are counterclockwise.
There are other ways to write the information matrix but the way that was selected makes

use of tensor Sylvester matrices.
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4 Main Result

First, we need to remind a few concepts, those of monic polynomials, reciprocal polynomials,
eigenvalues of matrix polynomials, unimodular polynomial matrix, and common left divisor of
matrix polynomials.

A monic square matrix polynomial A(z) of dimension n and degree p is such that the
coefficient of degree p is In.

The reciprocal polynomials of the polynomials A(z), B(z) and C(z) of respective degrees
p, q and r− 1 are, respectively, A∗(z) = zpA(z−1), B∗(z) = zqB(z−1) and C∗(z) = zr−1C(z−1).
A∗(z) and B∗(z) are monic polynomials since A(0) = B(0) = In. C∗(z) is not necessarily a
monic polynomial but, since C0 is invertible, C−1

0 C∗(z) is a monic polynomial and it is easy to
see that [11] is applicable.

The eigenvalues of a n×n matrix polynomial D(z) of degree s are the roots of the equation
det(D(z)) = 0 which is a polynomial equation of degree less or equal to ns. If the degree of
det(D(z)) is smaller than ns, the number sn, say, of roots of the equation det(D(z)) = 0 is
smaller than ns. We can speak of missing roots for det(D(z)) = 0 or missing eigenvalues for
D(z). Note however that the degree of det(D∗(z)) is equal to ns and that the number of roots
of the equation det(D∗(z)) = 0 is equal to ns. The sn roots of det(D(z)) = 0 are the inverse
of the roots of det(D∗(z)) = 0 that are strictly different from zero, and, on the other hand, the
missing roots of det(D(z)) = 0 correspond to the roots of det(D∗(z)) = 0 equal to 0. We will
convene for the sequel of this paper that the possible missing roots of det(D(z)) = 0 or missing
eigenvalues of D(z) are equal to infinity, so that all the eigenvalues of D∗(z) are the inverse of
those of D(z). We have supposed that the eigenvalues of A(z) and B(z) in (3) are all strictly
larger than one in modulus. The eigenvalues of the reciprocal polynomials A∗(z) and B∗(z) are
therefore all strictly smaller than one in modulus.

A unimodular polynomial matrix U(z) is a polynomial square matrix such that its deter-
minant is a non-zero constant, instead of being a polynomial in z. Consequently U−1(z) is also
a polynomial matrix. In general, the inverse of a square polynomial matrix is a matrix with
rational elements, not polynomial elements.

Three n× n matrix polynomials A(z), B(z), and C(z) have a common left divisor if there
exist n × n polynomial matrices F (z), A′(z), B′(z) and C ′(z) such that A(z) = F (z)A′(z),
B(z) = F (z)B′(z), and C(z) = F (z)C ′(z). In matrix form we can write (A(z) B(z) C(z)) =
F (z)(A′(z) B′(z) C ′(z)). Then (A(z) B(z) C(z)) is called a right multiple of F (z). A left divisor
F (z) is called the greatest common left divisor of (A(z) B(z) C(z)) if it is a right multiple of
all left divisors. Multiplying a greatest common left divisor to the right by any unimodular
polynomial matrix yields another greatest common left divisor. As shown by [10], a greatest
common left divisor can be constructed by elementary column operations: interchange any two
columns, multiply any column by a real number different from 0, add a polynomial multiple of
any column to any column. Also, it corresponds to right multiplication of (A(z) B(z) C(z)) by
an appropriate unimodular matrix. The concept can also be defined for rectangular matrices
with the same number of rows although we will not consider that generalization.
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Lemma 4.1. Assume that A(z), B(z) and C(z) have the prescribed degrees, respectively p,
q and r − 1, with det(A(z)) 6= 0 and det(B(z)) 6= 0, for z in the unit circle of C, and Σ is
non-singular. Assume also that xt has an absolutely continuous spectrum with spectral-density
non-zero on a set of positive measure on (−π, π]. Then a necessary and sufficient condition of
identifiability of a stationary VARMAX process satisfying (1) is (i) A(z), B(z) and C(z) have
In as greatest common left divisor, (ii) the matrix (Ap Bq Cr−1) has rank n.

Proof. Since Σ is non-singular, and given the assumptions on A(z) and B(z), the conditions
(8a), (8b) and (8c) of [9] are satisfied for A−1(z)B(z), and the lemma is a special case of [9,
Theorem 2] in the case (iii)2.

Since identifiability is equivalent to the inversibility of the Fisher information matrix, we
are interested in finding a sufficient condition for identifiability. Equivalently, we are looking
for a simple necessary condition for the lack of identifiability or the singularity of the Fisher
information matrix.

If the lack of identifiability occurs because (i) in Lemma 4.1 is not satisfied, that means that
there exists a non-unimodular polynomial matrix F (z), i.e. with det(F (z)) different from a con-
stant and matricesA′(z), B′(z) and C ′(z) such that (A(z) B(z) C(z)) = F (z)(A′(z) B′(z) C ′(z)).
We have

(det(A(z)) det(B(z)) det(C(z))) = det(F (z))(det(A′(z)) det(B′(z)) det(C ′(z))),

where det(F (z)) is a polynomial different from a constant. Hence, the equations det(A(z)) = 0,
det(B(z)) = 0 and det(C(z)) = 0 have at least one common root. Consequently, the matrix
polynomials A(z), B(z) and C(z) have at least one common eigenvalue. The same is also
true for the reciprocal matrix polynomials A∗(z), B∗(z) and C∗(z). Therefore the two tensor
Sylvester matrices S⊗

pq(−B,A) and S⊗
pr(−C,A) introduced in Section 2 do not have full rank.

Now, if the lack of identifiability occurs because (ii) in Lamma 4.1 is not satisfied, that
means that the matrix (Ap Bq Cr−1) has rank strictly smaller than n. Consequently, row n,
say, of that matrix is a linear combination of the other n − 1 rows and the matrices Ap, Bq,
and Cr−1 do not have full rank. Hence the determinants det(A(z)), det(B(z)) and det(C(z))
are polynomials of degree strictly smaller than, respectively, np, nq, and n(r − 1). Hence the
reciprocal matrix polynomials A∗(z), B∗(z) and C∗(z) have at least one zero eigenvalue, hence
at least one common eigenvalue. Therefore the two tensor Sylvester matrices S⊗

pq(−B,A) and
S⊗
pr(−C,A) introduced in Section 2 do not have full rank. Note that [12] has assumed that the

determinants of det(A(z)) and det(B(z)) have their maximum degrees.
We can conclude the following theorem.

Theorem 4.2. Under the assumptions of Lemma 4.1 a necessary condition of invertibility of the
Fisher information matrix, F(ϑ), associated to the VARMAX model with the matrix polynomials
A(z), C(z) and B(z) of degree p, r − 1, q respectively, is that the reciprocal matrix polynomials
A∗(z), B∗(z) and C∗(z) have no common eigenvalue, and thus the two tensor Sylvester matrices
S⊗
pq(−B,A) and S⊗

pr(−C,A) introduced in Section 2 have full rank.

For a discussion of identifiability without coprimeness, see [18].
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5 Numerical experiments

To save space, we will use examples based on the simplest case, i.e. n = 2 and p = r = q = 1.
For all our examples we will have

Rx =

(

2.0 0.0
0.0 3.0

)

, Σ = I2.

Example 5.1. Let A, B and C be defined by

A =

(

−0.8 0.0
−0.5 −a

)

, B =

(

−b 0.0
−0.5 −0.6

)

, C =

(

−a 0.0
−0.5 −0.7

)

,

where a and b are constants. The eigenvalues of A(z), B(z) and C(z) are, respectively the
pairs (0.8, a), (0.6, b) and (0.7, a) so that, whatever a and b, there is a common eigenvalue for
A(z) and C(z). Clearly the model is identifiable except if a = b = 0.8 because then the factor
1−0.8z can be simplified on the first row of the system equation. The tensor Sylvester matrices
are respectively

S⊗
pq(−B,A) =

























−1 0 0 0 b 0 0 0
0 −1 0 0 0 b 0 0
0 0 −1 0 0.5 0 0.6 0
0 0 0 −1 0 0.5 0 0.6
1 0 0 0 −0.8 0 0 0
0 1 0 0 −0.5 −a 0 0
0 0 1 0 0 0 −0.8 0
0 0 0 1 0 0 −0.5 −a

























,

S⊗
pr(−C,A) =

























−1 0 0 0 a 0 0 0
0 −1 0 0 0 a 0 0
0 0 −1 0 0.5 0 0.7 0
0 0 0 −1 0 0.5 0 0.7
1 0 0 0 −0.8 0 0 0
0 1 0 0 −0.5 −a 0 0
0 0 1 0 0 0 −0.8 0
0 0 0 1 0 0 −0.5 −a

























.

The first one has rank 8 except if b = 0.8 whereas the second one has always a determinant
equal to zero, as expected given the eigenvalues.

Take b = 0.8 to simplify the discussion. Then, using Mathematica, it can be seen that the
Fisher information matrix has a determinant proportional to (4 − 5a) with a strictly positive
factor and indeed it is 0 if and only if a = 0.8. If a = 0.8, the 2nd, 6th and 10th rows of the
Fisher information matrix contain the fractions

Row2 =

(

1125

416
,
75

16
, 0, 0,−375

208
,−25

8
, 0, 0,−375

416
,−25

16
, 0, 0

)

,
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Row6 =

(

−375

208
,−25

8
, 0, 0,

375

208
,
25

8
, 0, 0, 0, 0, 0, 0

)

,

Row10 =

(

−375

416
,−25

16
, 0, 0, 0, 0, 0, 0,

375

416
,
25

16
, 0, 0

)

,

and it is easy to check that −ow2 = −Row6 − Row10.

Example 5.2. Let A, B and C be defined by

A =

(

0.6 0.2
0.0 0.0

)

, B =

(

0.5 0.76
0.0 0.0

)

, C =

(

0.8 0.0
0.0 0.0

)

.

This example is a generalization of a VARMA model considered by [17] based on an example
in [1]. The determinants of A(z), B(z) and C(z) have degree 1 so that we need to consider the
reciprocal matrix polynomials A∗(z), B∗(z) and C∗(z) which have respective roots (−0.6, 0),
(−0.5, 0), and (−0.8, 0). According to the common eigenvalue 0, the two 8× 8 tensor Sylvester
matrices S⊗(−B,A) and S⊗(−C,A) have rank 7 < 8. Hence, we can consider singularity of the
Fisher information matrix. This is confirmed by computation with Mathematica which shows
that the matrix has rank 10. Moreover, rows 3, 4, 7, 8, 11 and 12 of the Fisher information
matrix contain the fractions

Row3 =

(

4

105
,

38

2625
,
16

3
,
152

75
, 0, 0,−4,−38

25
, 0, 0,−4

3
,−38

75

)

Row4 =

(

152

2625
,
1444

6
5625,

152

75
,
13276

1875
, 0, 0,−38

25
,−3319

625
, 0, 0,−38

75
,−3319

1875

)

Row7 =

(

−4

7
,− 38

175
,−4,−38

25
, 0, 0, 4,

38

25
, 0, 0, 0, 0

)

Row8 =

(

−152

175
,−1444

4375
,−38

25
,−3319

625
, 0, 0,

38

25
,
3319

625
, 0, 0, 0, 0

)

Row11 =

(

8

15
,
76

375
,−4

3
,−38

75
, 0, 0, 0, 0, 0, 0,

4

3
,
38

75

)

Row12 =

(

304

375
,
2888

9375
,−38

75
,−3319

1875
, 0, 0, 0, 0, 0, 0,

38

75
,
3319

1875

)

and it appears that Row3 = − Row11 − Row7 and Row4 = − Row8 − Row12.

Example 5.3. Let A, B and C be defined by

A =

(

0.6 0.2
0.4 -0.6

)

, B =

(

0.5 0.76
0.25 −0.5

)

, C =

(

0.7 0.1
−0.5 −0.7

)

. (9)
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This example is a generalization of Example 1 of the bivariate VARMA(1,1) model in [12].
There, the two matrix polynomials had exactly the same two eigenvalues. As a consequence,
the 8 × 8 tensor Sylvester matrix S⊗(−B,A) is singular. In [12], it was concluded, wrongly,
that the Fisher information matrix should be singular although the numerical computations
in Matlab lead to a smallest eigenvalue equal to 0.0067. This incoherency was explained by
numerical inaccuracy. In [17] Mélard gave a second view to that example and discovered that
the necessary and sufficiency of invertibility of the Fisher information matrix is only a necessary
condition. For the VARMAX model related to (9), the third matrix polynomial is such that
the three matrix polynomials of degree 1 have the same eigenvalues ±5/

√
11. Hence, the two

8×8 tensor Sylvester matrices S⊗(−B,A) and S⊗(−C,A) are singular and more precisely have
rank 6 < 8. Exact computations with Mathematica indicates, however, that the determinant
of the 12× 12 Fisher information matrix is strictly positive and that the smallest eigenvalue is
0.0919. This confirms that a sufficient condition for invertibility of that matrix is that the two
tensor Sylvester matrices have maximum rank but it is not a necessary condition.

Acknowledgments

We thank Peter Spreij for his comments on the errors in [12].

References

[1] G. Athanasopoulos and F. Vahid, VARMA versus VAR for macroeconomic forecasting,
Journal of Business and Economic Statistics 26:237–252, 2008.

[2] P. J. Brockwell and R. A. Davis, Time Series: Theory and Methods, 2nd ed. Springer
Verlag, Berlin, New York, NY, USA, 1991.

[3] P. J. Brockwell, A. Lindner, and B. Vollenbröker, Strictly stationary solutions of mul-
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