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We report a theoretical investigation of quadratic frequency
combs in a dispersive second-harmonic generation cavity
system. We identify different dynamical regimes and dem-
onstrate that the same system can exhibit both bright and
dark localized cavity solitons in the absence of a temporal
walk-off. © 2018 Optical Society of America

https://doi.org/10.1364/OL.43.006033

The multiwave-mixing interactions that occur when a cavity-
enclosed nonlinear medium is driven near resonance can result
in efficient frequency conversion and the generation of broad-
band optical frequency combs [1,2]. While most investigations
to date have focused on Kerr frequency combs, where the non-
linearity is due to the third-order susceptibility, it has recently
been demonstrated that frequency combs also can be generated
in quadratic nonlinear media [3–5]. Quadratic combs may
operate with substantially decreased pump power compared
to Kerr combs, and may permit the direct generation of combs
in spectral regions where the generation of conventional Kerr
combs is difficult to achieve, e.g., because no suitable pump
sources are available or because the dispersion properties of
the material are not conducive to comb generation.

Here we consider the formation of quadratic combs in a
dispersive second-harmonic generation (SHG) cavity system
for which both the fundamental field (FF) at frequency ω0

and the second-harmonic (SH) field at 2ω0 are resonant [6,7].
Comb generation in this system relies on the initial frequency
doubling of the driven FF to create a second-harmonic wave.
The SH, in turn, is the source of an internally pumped optical
parametric oscillator that results in the growth of subharmonic
sidebands above a certain pump threshold [8,9]. Subsequent
cascaded three-wave mixing interactions among the different
components can then result in the formation of simultaneous
combs around both fundamental and SH wavelengths.

Cavity solitons (CSs) are considered to be one of the most
important waveforms for frequency comb applications, since
they correspond to broadband, coherent, and mode-locked
temporal pulses with a fixed repetition rate [10]. This implies
that the nonlinear frequency shift is able to compensate for the
dispersion so as to produce an ideal frequency comb with an
equidistant comb line spacing of a single free-spectral range
(FSR). For quadratic combs to become a viable alternative
to Kerr combs, it is therefore of considerable interest to find
out if, and under what circumstances, CSs and localized solu-
tions may be generated in quadratically nonlinear systems.
Building on previously developed time-domain models for
SHG combs [7,11,12], we study the existence of mode-locked
CSs and localized solutions in a dispersive SHG cavity system.
Quadratic solitons are known to be present for two-dimen-
sional (2D) diffractive SHG cavities [13,14], but the conditions
for their existence and stability may differ for one-dimensional
dispersive systems.

A distinguishing property of dispersive SHG cavities, with
respect to formally equivalent diffractive systems, is that there is
usually a large temporal walk-off present due to differences in
the group velocity between the two field envelopes [11]. Such a
walk-off is often undesirable, since it can be detrimental to the
formation of localized solutions. To find a physically realizable
configuration for which the walk-off vanishes, we consider the
nonlinear medium to be a quasi-phase-matched LiNbO3 crys-
tal [15] with the FF and SH wavelengths at 2707 and 1354 nm,
respectively, on opposite sides of the zero-dispersion wave-
length, as shown in Fig. 1. We imagine that phase matching
of the crystal is achieved through periodic poling.

The dynamics of the system, in the mean field approxima-
tion, can be modeled using two coupled equations for the
FF/SH fields which, in normalized form (see Ref. [7]), may
be written as

∂A
∂t

�
�
−�1� iΔ1� − iη1

∂2

∂τ2

�
A� iκBA� � S, (1)
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∂B
∂t

�
�
−�α� iΔ2� − d

∂
∂τ

− iη2
∂2

∂τ2

�
B � iκ�A2, (2)

where A and B are the slowly varying envelopes of the FF and
SH fields, respectively. We employ a two-timescale approach,
where t is a slow-time variable that describes the evolution of
the fields over multiple circulations, while τ is a retarded fast-
time variable that describes the periodic temporal field profiles
within a window with a duration of one roundtrip time.
Moreover, α is the ratio of roundtrip losses of the SH and FF
fields, while d is the temporal walk-off, Δ1,2 are cavity detun-
ings, η1 � sgn�k 0 01 �, η2 � k 0 02 ∕jk 0 01 j are group-velocity dispersion
(GVD) parameters, κ is a nonlinear coupling constant that de-
pends on the phase mismatch, and S is the strength of the driv-
ing field. For the particular setup under consideration, we use
dispersion values from Fig. 1 and assume η1 � −1, η2 � 0.5,
and d � 0. Here it is important that d is sufficiently small,
whereas there is no qualitative change for moderate variation
in other parameters. For definitiveness, we assume that κ � 1,
and that the FF and SH losses are equal so that α � 1, and
further that the detunings are related through the condition
for natural phase matching, i.e., Δ2 � 2Δ1 [7]. The dynamics
is then dependent only on the specific pump settings that are
experimentally accessible through changes to the driving ampli-
tude S and the frequency detuning Δ1.

Equations (1) and (2) have a set of homogeneous mixed-
mode steady-state solutions A0 � S�α� iΔ2�∕��1� iΔ1��α�
iΔ2�� I 1� and B0 � iκ�A2

0∕�α� iΔ2� that satisfy

I 1��Δ1Δ2 − α − I 1�2 � �αΔ1 � Δ2�2� � P�α2 � Δ2
2�, (3)

where we have introduced the notation I 1 � jκj2jA0j2,
I 2 � jκj2jB0j2, and P � jκj2jSj2. The solutions are stable at-
tractors for an initially empty cavity system in the presence of a
low-power driving field. The homogeneous solution can display
bistability, given that the two conditions Δ1Δ2 > α and
jΔ2j�jΔ1j −

ffiffiffi
3

p �∕� ffiffiffi
3

p jΔ1j � 1� > α are satisfied [13], which
also requires the detunings to have the same sign.

The generation of subharmonic sidebands that can seed
the formation of a frequency comb occurs when the homo-
geneous solution becomes modulationally unstable [16]. A lin-
ear stability analysis assuming a perturbation of the form
A�A0�a1eλt�iΩτ�a−1eλ

�t−iΩτ (and analogous for B) gives a
characteristic equation for the potentially growing eigenvalues:

��λ� 1�2 � f 1���λ� α�2 � f 2� � p, (4)

where f 1 � Δ2
1 � 2I 1 − I 2, f 2 � Δ2

2 � 2I 1 and p �
2I 1��1 − α�2 � �Δ1 � Δ2�2 − I 2�, and we have introduced
α � α� idΩ, Δ1 � Δ1 − η1Ω2, and Δ2 � Δ2 − η2Ω2.

In order to guide the search for soliton solutions in the
parameter space, we perform an analysis of the SHG system’s
critical points. The conditions for which a growing instability
will develop can be determined from Eq. (4) by the application
of the Routh–Hurwitz stability criteria. The homogeneous
solution, in the absence of walk-off (i.e., for d � 0), will
become unstable if either of the following inequalites is satis-
fied: (1) the condition f 1�αf 2��1�α��α��1�α�2�<0
(green region in Fig. 2), (2) α�f 1 − f 2� � �p� 2α�f 1 �
f 2���1� α�2 � α�1� α�4 < 0 (blue region), and (3) �1�
f 1��α2 � f 2� − p < 0 (orange regions). For the case under
consideration when the loss ratio is unity, we further have that
α � 1, so that the characteristic equation is biquadratic and can
be solved explicitly, to give the eigenvalues

λ � −1	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
1

2
�f 1 � f 2� 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p� 1

4
�f 1 − f 2�2

rs
: (5)

Figure 2 shows the stability phase diagram in the parameter
space �Δ1, I 1�, where the different instability regions for per-
turbations with Ω � 0 are colored. Each point on the diagram
corresponds to a comb state that can be realized by the station-
ary homogeneous solution for some particular combination of
pump power and detuning. The orange shaded regions mark
domains that correspond to the unstable middle branch of the
bistable homogeneous solution, while the system has complex
conjugated eigenvalues and may display self-pulsing [17] due to
a Hopf bifurcation within the blue shaded region. The blue and
green regions are seen to partially overlap, with the eigenvalues
ceasing to be oscillatory at the upper boundary of the blue do-
main and becoming purely real within the non-overlapping
green region. The boundaries of the domains that exhibit
modulational instability (MI) to periodic perturbations are
additionally marked in the figure with a dashed contour.
The MI domains are asymmetric, owing to the different
phase-matching contributions that come from the quantities
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Fig. 1. Wavelength dependence of dispersion and group delay for
propagation along the extraordinary axis of LiNbO3.

Fig. 2. Main panel, stability phase diagram for α � 1 and
Δ2 � 2Δ1. The homogeneous solutions are unstable to cw perturba-
tions within the shaded regions and modulationally unstable within
the dashed contour. Bottom panel, variation in FF/SH intracavity
power for the homogeneous solution with S � 12.
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Δ1,2 for positive and negative detuning. The power for the FF is
seen to have a minimum threshold for the onset of an instability
that occurs for Δ1 � Δ2 � 0 and is given by I th1 � α�1� α�.

Having established the stability properties of the homo-
geneous solution, we proceed to numerically search for local-
ized structures. We limit our search for bright CSs by
considering parameter regions near which the homogeneous
solution displays a bistability such that the lower branch is sta-
ble, whereas the upper branch is modulationally unstable to
perturbations with a finite periodicity. In general, we may ex-
pect to find CSs in parameter regions with the coexistence of
two different stable stationary states where (1) both states may
be homogeneous; or (2) one is homogeneous, while the other is
a periodic pattern. The CS solutions can then form due to the
locking of fronts connecting both states.

To find the stationary solutions, we employ a numerical
Newton–Raphson method that solves Eqs. (1) and (2) with
the slow-time (t) derivative set to zero. The localized solutions
are excited using a Gaussian writing pulse of variable amplitude
and width that is added to the pump field during the first few
iterations of the solver and later removed. We also verify the
stability of the solutions under propagation using a split-step
Fourier method that integrates Eqs. (1) and (2) with a
fourth-order Runge–Kutta scheme for evaluation of the nonlin-
ear step. All simulations are made assuming a fixed frequency
spacing withN � 2048modes and a normalized FSR of 1/250.

We first search for bright solitons beyond the bistability
threshold for positive detuning. An example of such a solution
is shown in Fig. 3. Both the FF and SH amplitudes are seen to
display a localized central peak with damped oscillations on
either side. The respective spectra also exhibit a fine structure
with a modulated envelope shape. We emphasize that the signs
for theGVD of the two fields differ, and we find that the solitons
correspond to a localized portion of a pattern embedded in the
homogeneous background. The locations of a number of these
solutions are marked by red upwards-facing triangles in the
phase diagram shown in Fig. 2, where the y-axis indicates the
power of the corresponding FF background. The CSs are found
to connect to a family of stationary Turing patterns for decreas-
ing detuning value, and a bifurcation analysis shows that the
pattern is subcritical with the CSs undergoing a homoclinic
snaking bifurcation structure [18]. We have verified that the
quadratic solitons indeed behave and have the properties that
are usually associated with CSs. The solitons are robust to per-
turbations and have a unique amplitude and width for a given set

of pump parameters. Multiple solitons are also non-interacting
for sufficiently large separation and are individually addressable,
so that they can bewritten and erased by the addition of a writing
pulse that is either in or out of phase with the pump field. We
have also estimated the power needed for the soliton formation.
The driving strength is related to the pump field amplitude as
S � ffiffiffiffiffi

θ1
p

Ainκ̂L∕α21 (see Ref. [7]). Assuming critical coupling
θ1 � α1, a cavity finesse F � π∕α1 � 160, a nonlinear coef-
ficient κ̂ � 11.14 W−1∕2 m−1, and a crystal length L � 15 mm
(see Refs. [4,11]), we find that a driving strength of S � 12
corresponds to a mere 39 mW of pump power.

An important property of SHG systems is that they are gen-
erally insensitive to the sign of the dispersion, in the sense that a
given system will display similar dynamics for normal dispersion
and positive detuning as it does for anomalous dispersion and
negative detuning [12]. Indeed, the eigenvalues of Eq. (4) are
invariant to a simultaneous sign reversal of detunings and
GVDs. In fact, the use of quadratic nonlinearities may enable
us to realize solutions that are characteristic for both anomalous
and normal dispersion in the same system. In particular, given
that we have found bright CSs for positive detuning, we may
expect to find dark (or gray) CSs for negative detuning.

A typical example of a dark localized structure is shown in
Fig. 4. The predicted locations of a number of dark solutions
have also been marked by blue downwards-facing triangles in
Fig. 2, where the y-axis now indicates the minimum power at-
tained in the dip of the FF temporal profile. The dark CSs cor-
respond to holes in the modulationally stable upper branch
homogeneous solution, where the intracavity power is locally
reduced. The dark soliton is seen to exhibit a small bump
in the center where two interlocking fronts connect the bistable
homogeneous solution with a periodic pattern on the lower
branch. The soliton in Fig. 4 is the narrowest structure that
allows for the interlocking of the two fronts, but we note that
it is also possible to find dark soliton solutions of different
widths that include multiple periods of the embedded pattern.

Although these results have been obtained for a medium
with mixed dispersion, we remark that it is also possible to find
stable bright soliton solutions when the two GVD coefficients
have equal signs. This corresponds to the same case for which
solitons have previously been studied in 2D diffractive SHG
systems [13].

It is clear that quadratic CSs display some similarities with
Kerr frequency combs. To better understand this behavior, it
can be helpful to consider a simplified model using the reduced
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Fig. 3. Normalized intracavity power (top) and spectra (bottom) of
a bright CS for driving strength S � 12 and detuning Δ1 � 4.9
(marked by a filled red upwards-facing triangle in Fig. 2).
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Fig. 4. Example of a stable localized dark soliton solution for driving
strength S � 10 and detuning Δ1 � −4.6 (marked by a filled blue
downwards-facing triangle in Fig. 2).

Letter Vol. 43, No. 24 / 15 December 2018 / Optics Letters 6035



single envelope equation for the FF that was previously derived
in Ref. [7]. Here one finds that the cascading of the three-wave
mixing process can be described by an effective cubic nonlin-
earity with a non-instantaneous nonlinear response function.
The reduced equation can, in the instantaneous (local) limit,
be shown to be formally equivalent to a Lugiato–Lefever model
with a nonlinear coefficient proportional to −α� iΔ2 that
includes nonlinear loss. Consequently, we can see that it is
the sign of the SH detuning (Δ2), in combination with the
sign of the FF GVD (η1), that determines whether the comb
dynamics corresponds to an effective normal or anomalous
dispersion. Moreover, this analysis shows that the localized
structures of Eqs. (1) and (2) may be connected with Kerr
solitons of the Lugiato–Lefever equation, and that these are able
to persist in the presence of weak nonlinear loss and a non-
instantaneous nonlinearity.

Finally, we consider the possibility of comb generation due
to the self-pulsing (Hopf ) instability [17] that occurs for low
powers and small detuning values within the blue shaded region
of Fig. 2. Here we find that the MI growth rate for perturba-
tions with a finite periodicity will generally exceed (lose to) the
growth rate of homogeneous perturbations when the detuning
is negative (positive). The nonlinear evolution of perturbations
with Ω � 0 manifests itself as a periodic oscillation, or a self-
pulsing, of the homogeneous background that occurs on
the slow timescale. Meanwhile, the simultaneous growth of per-
turbations with Ω ≠ 0 leads to the appearance of temporal
oscillations that occur on the fast timescale. Although the un-
stable eigenvalues are complex, it may be possible to generate
stationary pattern structures within this region [16]. However,
for the parameter values corresponding to the mixed dispersion
configuration, we find that the comb evolution generally dis-
plays a turbulent and chaotic behaviour without a steady state.
This can be seen in Fig. 5, which shows the long-term evolu-
tion of the intracavity power at a point (marked by a black dot
in Fig. 2) inside the instability boundary. These combs have a

very low threshold power, a relatively broad bandwidth, and a
single FSR comb line spacing. They exhibit some systematic
features, but are characterized by a lower degree of coherence
than combs of the CS type.

In conclusion, we have investigated the generation of quad-
ratic frequency combs in a doubly resonant SHG cavity system
for which the temporal walk-off can be made to vanish. We
have reported conditions for which comb generation can occur
and identified some dynamic regimes in which both bright and
dark localized CS solutions may be observed in the same sys-
tem. These are found to have analogous properties to Kerr CSs,
which suggests that quadratic frequency combs indeed may be a
viable alternative to Kerr combs, which can offer unique ben-
efits for a variety of applications.
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