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Abstract: Goodness-of-fit tests based on the empirical Wasserstein dis-
tance are proposed for simple and composite null hypotheses involving
general multivariate distributions. This includes the important problem of
testing for multivariate multivariate normality with unspecified location
and covariance and, more generally, testing for elliptical symmetry with
given standard radial density, unspecified location and scatter parameters.
The calculation of test statistics boils down to solving the well-studied semi-
discrete optimal transport problem. Exact critical values can be computed
for some important particular cases, such as null hypotheses of ellipticity
with given standard radial density and unspecified location and scatter;
else, approximate critical values are obtained via parametric bootstrap.
Consistency is established, based on a result on the convergence to zero,
uniformly over certain families of distributions, of the empirical Wasserstein
distance—a novel result of independent interest. A simulation study estab-
lishes the practical feasibility and excellent performance of the proposed
tests.

Keywords and phrases: Copula, Elliptical distribution, Goodness-of-fit,
Multivariate normality, Optimal transport, Semi-discrete problem, Skew-t
distribution, Wasserstein distance.

1. Introduction

Wasserstein distances are metrics on spaces of probability measures with certain
finite moments. They measure the distance between two such distributions by
the minimal cost needed to move probability mass in order to transform one
distribution into the other one. Wasserstein distances have a long history and
continue to attract interest from diverse fields in statistics, machine learning and
computer science, in particular image analysis; see for instance the monographs
and reviews by Santambrogio (2015), Peyré and Cuturi (2019), and Panaretos
and Zemel (2019).

A natural application of any meaningful distance between distributions is
to the goodness-of-fit (GoF) problem—namely, the problem of testing the null
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hypothesis that a sample comes from a population with fully specified distri-
bution P0 or with unspecified distribution within some postulated parametric
modelM. GoF problems certainly are among the most fundamental and classical
ones in statistical inference. Typically, GoF tests are based on some distance be-
tween the empirical distribution P̂n and the null distribution P0 or an estimated
distribution in the model M. The most popular ones are the Cramér–von Mises
(Cramér, 1928; von Mises, 1928) and Kolmogorov–Smirnov (Kolmogorov, 1933;
Smirnov, 1939) tests, involving distances between the cumulative distribution
function of P0 and the empirical one. Originally defined for univariate distri-
butions only, they have been extended to the multivariate case, for instance in
Khmaladze (2016), who proposes a test that has nearly all properties one could
wish for, including asymptotic distribution-freeness, but whose implementation
is computationally quite heavy and quickly gets intractable.

Many other distances have been considered in this context, though. Among
them, distances between densities (after kernel smoothing) have attracted much
interest, starting with Bickel and Rosenblatt (1973) in the univariate case.
Bakshaev and Rudzkis (2015) recently proposed a multivariate extension; the
choice of a bandwidth matrix, however, dramatically affects the outcome of the
resulting testing procedure. Fan (1997) considers a distance between characteristic
functions, which accommodates arbitrary dimensions; the idea is appealing but
the estimation of the integrals involved in the distance seems tricky. McAssey
(2013) proposes a heuristic test that relies on a comparison of the empirical
Mahalanobis distance with a simulated one under the null. Still in a multivariate
setting, Ebner, Henze and Yukich (2018) define a distance based on sums of
powers of weighted volumes of kth nearest neighbour spheres.

The use of the Wasserstein distance for GoF testing has been considered
mostly for univariate distributions (Munk and Czado, 1998; del Barrio et al.,
1999; del Barrio et al., 2000; del Barrio, Giné and Utzet, 2005). For the multivari-
ate case, available methods are restricted to discrete distributions (Sommerfeld
and Munk, 2018) and Gaussian ones (Rippl, Munk and Sturm, 2016). Indeed,
serious difficulties, both computational and theoretical, hinder the development
of Wasserstein GoF tests for general multivariate continuous distributions, par-
ticularly in the case of composite null hypotheses. Composite null hypotheses
are generally more realistic than simple ones. Of particular practical importance
is the case of location–scale families: tests of multivariate Gaussianity, tests of
elliptical symmetry with given standard radial density, etc., belong to that type.
Although the asymptotic null distribution of empirical processes with estimated
parameters is well known (van der Vaart, 1998, Theorem 19.23), the actual
exploitation of that theory in GoF testing remains problematic because of the
difficulty of computing critical values.

The aim of this paper is to explore the potential of the Wasserstein distance for
GoF tests of simple (consisting of one fully specified distribution) and composite
(consisting of a parametric family of distributions) null hypotheses involving
continuous multivariate distributions. The tests we are proposing are based on
the Wasserstein distance between P̂n and the distribution P0 in the case of
a simple null hypothesis and on the Wasserstein distance between P̂n and a
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model-based distribution estimate in the case of a composite null hypothesis.
They are computationally feasible, have the correct size, and enjoy good power
properties in comparison with other tests available in the literature.

We concentrate on the continuous case, i.e., the distributions under the null
hypothesis are absolutely continuous with respect to the Lebesgue measure
on Rd. The test statistic involves the Wasserstein distance between P̂n, which
is discrete, and a distribution from the null hypothesis to be tested, which
is continuous. Calculating such a distance requires solving the so-called semi-
discrete transportation problem, an active area of research in computer science.

In case of a simple null hypothesis, the null distribution of the test statistic
does not depend on unknown parameters. Exact critical values can be calculated
with arbitrary precision via a Monte Carlo procedure, by simulating from the
null distribution and computing empirical quantiles. Exact critical values can
also be computed for Wasserstein tests for the GoF of a location–scatter family
of elliptical distributions with known radial distribution. We handle the pres-
ence of unknown nuisance parameters by using empirically standardized data.
An important and well-studied special case is that of testing for multivariate
normality. Out of the many available tests in the literature, we select the ones
of Royston (1982), Henze and Zirkler (1990) and Rizzo and Székely (2016) as
benchmark for our Wasserstein test.

For general parametric models, we rely on the bootstrap to calculate critical
values. The question whether the method has the correct size under the null
hypothesis remains open. A proof of that property would require knowledge of
non-degenerate limit distributions of the empirical Wasserstein distance—a hard
and long-standing open problem, which we briefly review in Section 1.2. Monte
Carlo experiments, however, suggest that our tests have the correct asymptotic
size.

In all cases, we show that our Wasserstein GoF tests are consistent against
fixed alternatives, that is, the null hypothesis under such alternatives is rejected
with probability tending to one. For the general parametric case, this property
relies on the uniform consistency in probability of the empirical distribution
with respect to the Wasserstein distance, uniformly over adequate classes of
probability measures. To the best of our knowledge, this result, which is of
independent interest, is new in the literature.

Measure transportation has attracted much interest in the recent statistical
literature. Carlier et al. (2016), Chernozhukov et al. (2017) and del Barrio
et al. (2018) propose measure transportation-based concepts of multivariate
ranks, signs, and quantiles. These notions have been successfully applied by
Shi, Drton and Han (2019), Deb and Sen (2019), and Ghosal and Sen (2019) in
the construction of distribution-free tests in a multivariate context, by Hallin,
La Vecchia and Liu (2019) for R-estimation of VARMA models with unspecified
innovation densities.

The outline of the paper is as follows. In the remainder of this introduction, we
introduce the Wasserstein distance (Section 1.1), review the asymptotic theory
of empirical Wasserstein distance (Section 1.2), and provide some information
on the computational methods for the semi-discrete problem underlying the
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implementation of the Wasserstein GoF tests (Section 1.3). In Section 2, we
give a formal description of the GoF test procedure for simple null hypotheses.
Section 3 addresses the composite null hypothesis that the unknown distribution
belongs to an elliptical family with unknown location and scatter (covariance)
parameters and known radial distribution; the multivariate normal family is an
important special case. Composite null hypotheses covering general parametric
models are treated in Section 4. In Section 5, we conduct a simulation study to
assess the finite-sample performance of the Wasserstein tests in comparison to
other GoF tests, both for simple and composite null hypotheses. In Appendix A,
the convergence of the empirical Wasserstein distance uniformly over certain
classes of underlying distributions is stated and proved. In Appendix B, the
algorithms we are using in the computation of critical values are listed and
explained.

1.1. Wasserstein distance

Let P(Rd) be the set of Borel probability measures on Rd and let Pp(Rd)
be the subset of such measures with a finite moment of order p ∈ [1,∞).
For P,Q ∈ P(Rd), let Γ(P,Q) be the set of probability measures γ on Rd×Rd with
marginals P and Q, i.e., such that γ(B×Rd) = P(B) and γ(Rd×B) = Q(B) for
Borel sets B ⊆ Rd. The p-Wasserstein distance Wp(P,Q) between P,Q ∈ Pp(Rd)
is

Wp(P,Q) :=

(
inf

γ∈Γ(P,Q)

∫
Rd×Rd

‖x− y‖p dγ(x, y)

)1/p

,

with ‖ · ‖ the Euclidean norm. In terms of random variables X ∼ P and Y ∼ Q,
the p-Wasserstein distance is the smallest value of {E(‖X − Y ‖p)}1/p over all
possible couplings (X,Y ) ∼ γ.

The p-Wasserstein distance Wp defines a metric on Pp(Rd) which, when
endowed with the Wasserstein distance Wp, is a complete separable metric space
(Villani, 2009, Theorem 6.18 and the bibliographical notes). Convergence in
the Wp metric is equivalent to weak convergence plus convergence of moments
of order p; see for instance Bickel and Freedman (1981, Lemmas 8.1 and 8.3)
and Villani (2009, Theorem 6.9). It is thus quite natural to consider Wp in the
construction of GoF tests for multivariate distributions.

For univariate distributions P and Q with distribution functions F and G,
the p-Wasserstein distance boils down to the Lp-distance

Wp(P,Q) =

(∫ 1

0

∣∣F−1(u)−G−1(u)
∣∣p du

)1/p

between the respective quantile functions F−1 and G−1. This representation
considerably facilitates both the computation of the distance and the asymptotic
theory of its empirical versions. Also, the optimal transport plan mapping X ∼ P
to Y ∼ Q is immediate: if F has no atoms, then Y := G−1 ◦ F (X) ∼ Q, while
monotonicity of G−1 ◦ F implies the optimality of the coupling (X,Y ).
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1.2. Asymptotic theory

Let Xn = (X1, . . . , Xn) be an independent random sample from P ∈ P(Rd). Its
distribution as a random vector in (Rd)n is the n-fold product Pn of P with
itself. Let Ln : (Rd)n → P(Rd) map xn = (x1, . . . , xn) ∈ (Rd)n to the discrete
probability measure Ln(xn) := n−1

∑n
i=1 δxi , with δx the Dirac measure at x.

The empirical distribution of the sample is P̂n := Ln(Xn) = n−1
∑n
i=1 δXi . We

study its distribution as a random element in P(Rd).
The Wasserstein distance between the empirical distribution Ln(xn) and a

probability measure P ∈ Pp(Rd) is the value at xn ∈ (Rd)n of the map

Wp(Ln,P) : xn ∈ (Rd)n 7→Wp(Ln(xn),P) ∈ [0,∞).

Consider the distribution of this map under Pn, i.e., for an independent random
sample of size n from P. In perhaps more familiar notation, the random variable
of interest is the empirical Wasserstein distance Wp(P̂n,P).

According to Bickel and Freedman (1981, Lemma 8.4), if P ∈ Pp(Rd), the
empirical distribution is strongly consistent in the Wasserstein distance: for an
i.i.d. sequence X1, X2, . . . with common distribution P, we have Wp(P̂n,P)→ 0
almost surely as n→∞. The corresponding consistency rates have been studied
intensively; see Panaretos and Zemel (2019, Section 3.3) for a review. If P is non-

degenerate, then E[Wp(P̂n,P)] is at least of the order n−1/2, and if P is absolutely
continuous, which is the case of interest here, the convergence rate cannot be
faster than n−1/d. Actually, the rate can be arbitrarily slow (Bobkov and Ledoux,
2019, Theorem 3.3). Precise rates under additional moment assumptions are
given for instance in Fournier and Guillin (2015).

Asymptotic distribution results for the empirical Wasserstein distance in
dimension d ≥ 2 are, however, surprisingly scarce. The one-dimensional case is
well-studied thanks to the link to empirical quantile processes, see for instance del
Barrio, Giné and Utzet (2005). Also for discrete distributions, non-degenerate
limit distributions are known (Sommerfeld and Munk, 2018; Tameling, Sommer-
feld and Munk, 2019). For multivariate Gaussian distributions, a central limit
theorem for the empirical Wasserstein between the true normal distribution and
the one with estimated parameters is given in Rippl, Munk and Sturm (2016).
Although interesting and useful for GoF testing (see Section 5.1 below), this

result does not cover the case of the empirical distribution P̂n.
Important steps have been taken recently by del Barrio and Loubes (2019) who,

quite remarkably, manage to obtain some asymptotic results under alternatives.
For general P,Q ∈ P4+δ(Rd) for some δ > 0, they establish a central limit
theorem for

n1/2
[
W2(P̂n,Q)− E{W2(P̂n,Q)}

]
.

Unfortunately, if Q = P, which is the case of interest here, the asymptotic
variance is zero, meaning that the random fluctuations of W2(P̂n,P) around its

mean are of order less than n−1/2. Moreover, as mentioned above, E{Wp(P̂n,P)}
may converge to zero at a slower rate than n−1/2. The crucial problem of the
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limiting distribution of the empirical Wasserstein distance under the null so far
remains an important and difficult open problem, which apparently precludes
the implementation of multivariate analogues of the existing one-dimensional
procedures. The most recent progress perhaps has been booked in Goldfeld and
Kato (2020), who obtain a central limit theorem for the empirical W1-distance
after smoothing the empirical and true distributions with a Gaussian kernel.

To construct critical values of Wasserstein GoF tests of general parametric
models, we will propose in Section 4 the use of the parametric bootstrap. In
general, proving consistency of the parametric bootstrap typically requires having
non-degenerate limit distributions under contiguous alternatives of the statistic
of interest (Beran, 1997; Capanu, 2019). As the above review shows, such results
are still beyond the horizon.

1.3. Computational issues

Important numerical developments have taken place recently in the area of
measure transportation and, more particularly, in the computation of the 2-
Wasserstein distance between a discrete and a continuous distribution, the
so-called semi-discrete optimal transportation problem; see for instance Leclaire
and Rabin (2019) and the references therein. The efficiency and high accuracy of
the algorithms developed by Mérigot (2011), Lévy (2015), or Kitagawa, Mérigot
and Thibert (2017) make it possible to simulate from the exact null distribution
of empirical Wasserstein distances. Moreover, Kitagawa, Mérigot and Thibert
(2017) establish, under certain assumptions, the convergence of their algorithm.
This opens the door for the implementation, based on simulated critical values,
of the Wasserstein distance-based GoF tests in dimension d ≥ 1 for which
asymptotic critical values remain unavailable.

Most algorithms to date rely on the dual formulation of the problem, assuming
that the source continuous probability measure P admits a density f w.r.t. the
Lebesgue measure on Rd. We follow Santambrogio (2015, Section 6.4.2) for a brief
exposition. In line with the set-up relying on the empirical measure, we work with
the quadratic cost function (p = 2) and a discrete measure Pn = n−1

∑n
i=1 δxi

over n distinct atoms x1, . . . , xn ∈ Rd, each of mass 1/n.
The semi-discrete problem requires constructing a power diagram or Laguerre–

Voronoi diagram, partitioning Rd into power cells

Vψ(i) :=
{
x ∈ Rd : 1

2‖x− xi‖
2 − ψi ≤ 1

2‖x− xj‖
2 − ψj , ∀j = 1, . . . , n

}
for i = 1, . . . , n, defined in terms of a vector ψ = (ψ1, . . . , ψn) ∈ Rn. Each
power cell Vψ(i) corresponds to a set of linear constraints and, therefore, is
a convex polyhedron. The dual to the problem of minimizing the expected
transportation cost

∫
Rd×Rd

1
2‖x− y‖

2 dγ(x, y) over the couplings γ ∈ Γ(Pn,P)
is then the maximisation, with respect to the vector ψ, of the objective function

F (ψ) :=
1

n

n∑
i=1

ψi +

n∑
i=1

∫
Vψ(i)

(
1
2‖x− xi‖

2 − ψi
)
f(x) dx.
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The function ψ 7→ F (ψ) is differentiable. Setting its partial derivatives to zero
yields the equations ∫

Vψ(i)

f(x) dx =
1

n
, i = 1, . . . , n,

specifying that each power cell Vψ(i) should receive mass Pn({xi}) = n−1 under P.
The optimal transport plan from P to Pn then consists in mapping all points in
the interior of Vψ(i) to xi.

The dual formulation above is the basis for the multi-scale algorithm developed
in Mérigot (2011) based on the method for solving constrained least-squares
assignment problems in Aurenhammer, Hoffmann and Aronov (1998). For the
Monte Carlo simulation experiments, we use the implementation of that algorithm
in the function semidiscrete provided by the R package transport (Schuhmacher
et al., 2019).

Further improvements of the multi-scale algorithm are introduced in Lévy
(2015) and Kitagawa, Mérigot and Thibert (2017). Recently, stochastic algorithms
in Genevay et al. (2016) and Leclaire and Rabin (2019) are claimed to perform
even better. To the best of our knowledge, implementations of these algorithms
are not yet available in R (R Core Team, 2018), the language in which we
programmed the simulation experiments. Our aim in this paper is to demonstrate
the feasability of goodness-of-fit tests for multivariate distributions based on
the Wasserstein distance. Advances in computational methods and software
implementations can only strengthen that case.

2. Wasserstein GoF tests for simple null hypotheses

Let Xn = (X1, . . . , Xn) be an independent random sample from some unknown
distribution P ∈ P(Rd). For some given fixed P0 ∈ Pp(Rd), consider testing the
simple null hypothesis

Hn0 : P = P0 against Hn1 : P 6= P0

based on the observations Xn. Note that P, under the alternative, is not required
to have finite moments of order p.

Consider the test statistic Tn := W p
p (P̂n,P0), the pth power of the p-Wasser-

stein distance between the empirical distribution P̂n = n−1
∑n
i=1 δXi and the

distribution P0 specified by the null hypothesis. Having bounded support, P̂n
trivially belongs to Pp(Rd), so that Tn is well-defined.

Actual computation of Tn amounts to solving the semi-discrete optimal
transport problem, as reviewed in Section 1.3 for p = 2. In the simulations of
Section 5, we therefore limit ourselves to p = 2; the theory developed in this
section, however, is developed for general p ≥ 1.

For 0 < α < 1, the test φnP0
we are proposing has the form

φnP0
=

{
1 if Tn > c(α, n,P0),

0 otherwise,
(1)
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with critical value

c(α, n,P0) := inf
{
c > 0 : Pn0 [Tn > c] ≤ α

}
(2)

where Pn0 stands for n-fold product measure of P0 on (Rd)n, that is, the distri-
bution under Hn0 of the observation Xn. By construction, the exact size of the
GoF test in (1) is

Pn0
[
Tn > c(α, n,P0)

]
≤ α,

with equality if the law of Tn under Pn0 is continuous. The risk of a false rejection
is thus bounded by the nominal size α, and often equal to it.

Although the critical level c(α, n,P0) cannot be calculated analytically, its
value can be approximated to any desired degree of precision via Monte Carlo
simulation. To this end, draw a large number N , say, of independent random
samples of size n from P0 and compute the test statistic for each such sample.
The empirical (1−α) quantile of the N simulated test statistics thus obtained is
then a consistent and asymptotically normal estimator of c(α, n,P0) as N →∞
provided that the distribution of Tn has a continuous and positive density
at c(α, n,P0). The approximation error is of the order N−1/2 and can be made
arbitrarily small by choosing N sufficiently large. The null distribution of Tn
depends on P0, so that c(α, n,P0) needs to be calculated for each P0 separately.

Under the alternative hypothesis, the following proposition establishes that
the test is rejecting the null with probability tending to one, i.e., is consistent
against any fixed alternative P 6= P0.

Proposition 1 (Consistency). For every P0 ∈ Pp(Rd), the test φnP0
is consistent

against any P ∈ P(Rd) with P 6= P0:

lim
n→∞

Pn[φnP0
= 1] = 1 for any α > 0.

Proof. Fix P0 ∈ Pp(Rd). For any α > 0, the critical value c(α, n,P0) tends
to zero as n → ∞. Indeed, by Bickel and Freedman (1981, Lemma 8.4), we
have Tn → 0 in Pn0 -probability and thus limn→∞ Pn0 [Tn > ε] = 0 for any ε > 0.
It follows that, for every α > 0 and every ε > 0, we have c(α, n,P0) ≤ ε for all
sufficiently large n.

Let P ∈ P(Rd) with P 6= P0. We consider two cases according as P has finite
moments of order p or not.

First, suppose that P ∈ Pp(Rd). Still by Bickel and Freedman (1981, Lem-

ma 8.4), we have Wp(P̂n,P) → 0 in Pn-probability as n → ∞. The triangle
inequality for the metric Wp yields∣∣∣Wp(P̂n,P0)−Wp(P,P0)

∣∣∣ ≤Wp(P̂n,P)→ 0, n→∞

in Pn-probability. Hence Tn = W p
p (P̂n,P0) → W p

p (P,P0) in Pn-probability

as n→∞. But W p
p (P,P0) > 0 since P,P0 ∈ Pp(Rd) and P 6= P0 by assumption.

It follows that limn→∞ Pn[Tn > c(α, n,P0)] = 1, as required.
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Second, suppose that P ∈ P(Rd) \ Pp(Rd). Let δ0 denote the Dirac measure
at 0 ∈ Rd. Since Wp is a metric, the triangle inequality implies

Wp(P̂n,P0) ≥Wp(P̂n, δ0)−Wp(P0, δ0).

Now, Wp(P0, δ0) is a constant and W p
p (P̂n, δ0) = n−1

∑n
i=1 ‖Xi‖p. As the

expectation of ‖X1‖2 under P is infinite, the law of large numbers implies

that W p
p (P̂n, δ0)→ ∞ in Pn-probability as n→∞. But the same then is true

for Tn and thus
lim
n→∞

Pn[Tn > c(α, n,P0)] = 1,

as required.

3. Wasserstein GoF tests for elliptical families

The distribution P ∈ P(Rd) of a d-dimensional random vector Z with den-
sity f is called spherical with radial density frad if f(z) is of the form frad(‖z‖)
for z ∈ Rd where

∫∞
0
frad(r) dr = 1. The radial density frad is called stan-

dard if
∫∞

0
r2frad(r) dr = d. The distribution P is then in P2(Rd)—denote it

by Pfrad—and Z has mean zero and covariance matrix Id.
The distribution P ∈ P(Rd) of a d-dimensional random vector X is called

elliptical with standard radial density frad if there exist µ ∈ Rd and a full-
rank d × d matrix A such that the distribution of A−1(X − µ) is spherical
with radial density frad satisfying

∫
r2frad(r)dr = d; the distribution P then

is in P2(Rd) and X has mean µ and covariance matrix Σ = AA′. We refer to
Cambanis, Huang and Simons (1981) or Fang, Kotz and Ng (1990) for details.

Let E(frad) denote the family of d-variate elliptical distributions with standard
radial density frad. Such families are indexed by a location vector µ ∈ Rd and a
positive definite d× d covariance matrix Σ; the choices µ = 0 and Σ = Id yield
the spherical Pfrad . Common examples of elliptical families are the multivariate
normal family, with frad the density of the root of a χ2

d variable, and the
multivariate Student t distribution with ν > 2 degrees of freedom, where frad is
the density of the root of a rescaled Fisher F (d, ν) variable. In general, elliptical
distributions are not subject to moment constraints (Σ := AA′ is then a scatter
rather than a covariance matrix), but here we intend to use the Wasserstein
distance of order p = 2 and therefore restrict to elliptical families with finite
second-order moments.

Given an i.i.d. sample X1, . . . , Xn from some unspecified P ∈ P2(Rd), we
wish to test the null hypothesis that P is elliptical with specified standard radial
density frad, namely,

Hn0 : P ∈ E(frad) against Hn1 : P 6∈ E(frad). (3)

The location vector µ and the covariance matrix Σ of P are unknown nuisance
parameters. In contrast to Section 2, the null hypothesis is thus a composite one.
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Our testing strategy is to compute residuals of the form

Ẑn,i := Â−1
n (Xi − µ̂n), i = 1, . . . , n, (4)

yielding an empirical distribution P̂Ẑn := n−1
∑n
i=1 δẐn,i . The test statistic we

propose is

TE(frad),n := W 2
2 (P̂Ẑn ,Pfrad).

If the null distribution of (Ẑn,1, . . . , Ẑn,n) does not depend on the unkown µ
and Σ, then we can define critical values for TE(frad),n as if µ = 0 and Σ = Id.
As in Section 2, such critical values can then be approximated with any desired
accuracy via Monte Carlo random sampling from Pfrad .

In the sequel, we let µ̂n = n−1
∑n
i=1Xi = Xn and choose for Ân the Cholesky

triangle Ln,X ∈ Rd×d of the empirical covariance matrix

Sn,X :=
1

n− 1

n∑
i=1

(Xi − µ̂n)(Xi − µ̂n)′.

Recall that for every symmetric positive definite matrix S ∈ Rd×d, there exists
a unique lower triangular matrix L ∈ Rd×d with positive diagonal elements,
called Cholesky triangle, producing the Cholesky decomposition S = LL′ (Golub
and Van Loan, 1996, Theorem 4.2.5). If Σ is invertible, then Sn,X is invertible
with probability tending to one; even more, for an i.i.d. sequence X1, X2, . . .
from P ∈ E(frad), with probability one, the matrix Sn,X is invertible for all n
large enough depending on the sample. On the event that Sn,X is invertible, the
residuals (4) are thus

Ẑn,i = L−1
n,X(Xi −Xn), i = 1, . . . , n. (5)

For completeness, on the event that Sn,X is not invertible, we set Ẑn,i = 0
for i = 1, . . . , n, although a precise definition is immaterial for the results to
follow.

Let us show that the joint distribution of the vector of residuals computed
in this way does not depend on the unknown µ or Σ. The key is the following
elementary property.

Lemma 1. Let x1, . . . , xn ∈ (Rd)n have mean vector xn = n−1
∑n
i=1 xi and

covariance matrix Sn,x = (n− 1)−1
∑n
i=1(xi− xn)(xi− xn)′ ∈ Rd×d. Let µ ∈ Rd

and let L ∈ Rd×d be lower triangular with positive diagonal elements. Put

zi := L−1(xi − µ), i = 1, . . . , n;

with obvious notation, similarly define zn and Sn,z. Then, Sn,x is invertible if
and only Sn,z is, in which case their Cholesky factors Ln,x and Ln,z are related
by Ln,x = LLn,z, which implies

L−1
n,x(xi − xn) = L−1

n,z(zi − zn), i = 1, . . . , n.
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Proof. We have xi = µ+ Lzi for all i = 1, . . . , n, whence

xn = µ+ Lzn and Sn,x = LSn,zL
′.

Since L is invertible, Sn,x is invertible if and only if Sn,z is. Suppose they both
are, and let Ln,x and Ln,z denote their Cholesky factors. The matrix LLn,z is
lower triangular, has positive diagonal elements, and satisfies

LLn,z(LLn,z)
′ = LSn,zL

′ = Sn,x.

By the uniqueness of the Cholesky decomposition, Ln,x = LLn,z. Finally,

L−1
n,x(xi−xn) = (LLn,z)

−1{(µ+Lzi)−(µ+Lzn)} = L−1
n,z(zi−zn), i = 1, . . . , n.

Proposition 2. Let X1, . . . , Xn be an i.i.d. sample from P ∈ E(frad) with mean µ
and full-rank covariance Σ. The joint distribution of Ẑn,i in (5) for i = 1, . . . , n
does not depend on µ nor Σ.

Proof. Let L be the Cholesky factor of Σ. In view of Lemma 1, it is sufficient to
show that Zi = L−1(Xi−µ), for i = 1, . . . , n, is an independent random sample of
the spherical distribution Pfrad with mean zero, covariance identity, and standard
radial density frad. By the assumption on P, there exists an invertible A ∈ Rd×d
with AA′ = Σ such that Xi = µ + Aζi for i = 1, . . . , n, where ζ1, . . . , ζn is an
independent random sample from Pfrad . Then, Zi = L−1Aζi for all i = 1, . . . , n,
where the matrix L−1A is orthogonal: indeed,

(L−1A)(L−1A)′ = L−1AA′(L′)−1 = L−1Σ(L′)−1 = L−1LL′(L′)−1 = Id.

It thus follows from sphericity that the common distribution of Z1, . . . , Zn is the
same as that of ζ1, . . . , ζn, that is, Pfrad .

For the hypothesis testing problem (3), we propose the test

φnE(frad) :=

{
1 if TE(frad),n > cE(α, n, frad),

0 otherwise,

at level α ∈ (0, 1) and with critical value

cE(α, n, frad) = inf
{
c > 0 : Pnfrad [TE(frad),n > c] ≤ α

}
. (6)

The probability in (6) is calculated under the spherical distribution with radial
density frad, which is free of nuisances. By Proposition 2, the size of the test is
at most α: for all P ∈ E(frad),

Pn[TE(frad),n > cE(α, n, frad)] = Pnfrad [TE(frad),n > cE(α, n, frad)] ≤ α.

The size of the test is equal to α if the null distribution of TE(frad),n is continuous
at the critical value. In practice, calculation of the critical value is implemented
by Monte Carlo simulation, see Algorithm 2 in Appendix B.

The consistency of the test follows from a large of law numbers in 2-Wasserstein
distance for the empirical distribution of the residuals defined in (5).
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Proposition 3. Let P ∈ P2(Rd) have mean vector µ ∈ Rd and invertible
covariance matrix Σ ∈ Rd×d with Cholesky triangle L ∈ Rd×d. Let X1, X2, . . .
be a sequence of i.i.d. random vectors with common distribution P. For Ẑn,i as
in (5), we have

W 2
2 (P̂Ẑn ,Q0)→ 0 almost surely as n→∞,

where P̂Ẑn := n−1
∑n
i=1 δẐn,i and Q0 ∈ P2(Rd) is the distribution of L−1(X1−µ).

Proof. The random vectors Zi = L−1(Xi − µ) for i = 1, 2, . . . form an i.i.d.
sequence with common distribution Q0. By the strong law of large numbers,

Xn → µ and Sn,X → Σ a.s. as n→∞. (7)

With probability one, Sn,X is invertible for n large enough (depending on the
sample) and admits a unique Cholesky factor Ln,X . The map that sends a positive
definite symmetric matrix to its Cholesky triangle is differentiable (Smith, 1995)
and thus continuous. It follows that

Ln,X → L and L−1
n,X → L−1 a.s. as n→∞. (8)

Let P̂Zn := n−1
∑n
i=1 δZi . By the triangle inequality for the Wasserstein

distance,

W2(P̂Ẑn ,Q0) ≤W2(P̂Ẑn , P̂
Z
n ) +W2(P̂Zn ,Q0).

We already know that W2(P̂Zn ,Q0) → 0 almost surely as n → ∞ (Bickel and

Freedman, 1981, Lemma 8.4). It remains to show that W2(P̂Ẑn , P̂
Z
n ) → 0 in

probability as n→∞.

Consider the coupling of P̂Ẑn and P̂Zn via the discrete uniform distribution
on the pairs (Ẑn,i, Zi) for i = 1, . . . , n. From the definition of the Wasserstein
distance, we have

W 2
2 (P̂Ẑn , P̂

Z
n ) ≤ 1

n

n∑
i=1

‖Ẑn,i − Zi‖2.

For each i = 1, . . . , n, the identity Xi = µ+ LZi yields

‖Ẑn,i − Zi‖ = ‖L−1
n,X(µ+ LZi −Xn)− Zi‖

≤ ‖L−1
n,X‖ ‖µ−Xn‖+ ‖L−1

n,XL− Id‖ ‖Zi‖

featuring the matrix norm on Rd×d associated with the Euclidean norm on Rd.
It follows that

W 2
2 (P̂Ẑn , P̂

Z
n ) ≤ 2‖L−1

n,X‖
2 ‖µ−Xn‖2 + 2‖L−1

n,XL− Id‖
2 1

n

n∑
i=1

‖Zi‖2.

The right-hand side converges to zero almost surely as n → ∞ in view of the
law of large numbers for n−1

∑n
i=1‖Zi‖2, (7), and (8). The result follows.
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Proposition 4 (Consistency). The sequence of tests φnE(frad) is consistent against

any P ∈ P2(Rd) \ E(frad) with positive definite covariance matrix:

lim
n→∞

Pn
[
φnE(frad) = 1

]
= 1 for every α > 0.

Proof. Let α > 0 and ε > 0. By Proposition 3, limn→∞ Pnfrad [TE(frad),n > ε] = 0
and thus cE(α, n, frad) ≤ ε for all sufficiently large n (depending on α and ε). It
follows that limn→∞ cE(α, n, frad) = 0.

Let P be as in the statement. It is sufficient to show that there exists ε > 0
such that limn→∞ Pn[TE(frad),n > ε] = 1.

By Proposition 3, we have

W2(P̂Ẑn ,Q0)→ 0 in Pn-probability, n→∞,

with Q0 as in the statement of that proposition. By the triangle inequality,

W2(P̂Ẑn ,Pfrad) ≥W2(Pfrad ,Q0)−W2(P̂Ẑn ,Q0).

By assumption, Q0 6= Pfrad and thusW2(Pfrad ,Q0) > 0 since otherwise P ∈ E(P0).
For ε > 0 less than W 2

2 (Pfrad ,Q0), we obtain limn→∞ Pn[TE(frad),n > ε] = 1, as
required.

4. Wasserstein GoF tests for general parametric families

Extending the scope of Section 3, consider the problem of testing whether the
unknown common distribution P of a sample of observations belongs to some
parametric familyM :=

{
Pθ : θ ∈ Θ

}
of distributions on Rd where the parameter

space Θ is some metric space and the map θ 7→ Pθ is assumed to be one-to-
one and continuous in a sense to be specified. Given an independent random
sample Xn = (X1, . . . , Xn) from some unknown P ∈ P(Rd), the goodness-of-fit
problem is about testing

Hn0 : P ∈M against Hn1 : P /∈M. (9)

Assume that every Pθ ∈ M has a finite moment of order p ∈ [1,∞), that
is, M⊆ Pp(Rd). The test statistic we propose is

TM,n := W p
p (P̂n,Pθ̂n)

where θ̂n = θn(Xn) is some consistent (under Hn0 ) estimator sequence of the true
parameter θ. The distribution of Xn under Hn0 in (9) being Pnθ for some θ ∈ Θ,
we would like to take

cM(α, n, θ) = inf{c > 0 : Pnθ [TM,n > c] ≤ α} (10)
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as the critical value of a test with nominal size α ∈ (0, 1). This choice is infeasible,
however, since the true parameter θ is unknown. Therefore, we propose to replace
it by the bootstrapped quantity cM(α, n, θ̂n), yielding the test

φnM :=

{
1 if TM,n > cM(α, n, θ̂n),

0 otherwise,
(11)

rejecting Hn0 whenever TM,n exceeds cM(α, n, θ̂n).

Given the parameter estimate θ̂n, the proposed critical value can be approxi-
mated by resampling from the estimated distribution Pθ̂n . The idea is as follows
and is given in more detail in Appendix B, in particular Algorithm 3:

1. generate a large number B of samples X∗n,b = (X∗1,b, . . . , X
∗
n,b) ∈ (Rd)n,

say, for b = 1, . . . , B, of size n from Pθ̂n ;

2. letting P̂∗n,b = n−1
∑n
i=1 δX∗i,b denote the empirical distribution of the

bootstrap sample number b, compute

(a) the parameter estimate θ̂∗n,b = θn(X∗n,b), and

(b) the test statistic T ∗M,n,b = W 2
2 (P̂∗n,b,Pθ̂∗n,b

);

3. compute the empirical quantile

cM,B(α, n, θ̂n) = inf
{
c > 0 : B−1∑B

b=1I(T ∗M,n,b > c) ≤ α
}
.

As B → ∞ and since, conditionally on the data, the Monte Carlo approxi-
mation cM,B(α, n, θ̂n) converges to the true quantile cM(α, n, θ̂n) of the dis-
tribution of TM,n under Pn

θ̂n
, provided the latter distribution has a positive

and continuous density at the stated limit point. The rate of convergence in
probability is O(1/

√
B). In what follows, we assume we can compute cM(α, n, θ̂n)

to any desired degree of accuracy.
By construction, we have

∀θ ∈ Θ, Pnθ
[
TM,n > cM(α, n, θ)

]
≤ α,

that is, if we could use the critical value at the true parameter θ, the risk of a
false rejection of the null hypothesis would be bounded by α; it would be even
equal to α if the distribution of TM,n is continuous at cM(α, n, θ). But as the

true parameter θ is unknown, we use the estimated one θ̂n instead, so that the
risk of a false rejection is

Pnθ
[
TM,n > cM(α, n, θ̂n)

]
.

The question remains open whether under the null hypothesis the actual size
of the test indeed converges to α. To prove this would require non-degenerate
limit distribution theory for W p

p (P̂n,Pθ), not only for fixed θ ∈ Θ, but even
for sequences θn converging to θ at certain rates. As discussed in Section 1.2,
such limit results are still beyond the horizon. In the simulation study, however,
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we check that the proposed bootstrap method indeed produces a test with
approximately the right size.

Nevertheless, against a fixed alternative, the consistency of the test (11)
based on the parametric bootstrap can be established theoretically. The key is
the uniform convergence in probability of the empirical Wasserstein distance
treated in Appendix A. For the parameter estimator θ̂n, we need to assume weak
consistency locally uniformly in θ: if ρ denotes the metric on Θ and if K(Θ)
denotes the collection of compact subsets of Θ, we will require that

∀ε > 0, ∀K ∈ K(Θ), lim
n→∞

sup
θ∈K

Pnθ
[
ρ(θ̂n, θ) > ε

]
= 0. (12)

As illustrated in Remark 1 below, this condition is satisfied, for instance, for
moment estimators of a Euclidean parameter under a uniform integrability
condition.

Proposition 5 (Consistency). Let M = {Pθ : θ ∈ Θ} ⊆ Pp(Rd), p ∈ [1,∞), be
a model indexed by a metric space (Θ, ρ). Assume that the following conditions
are satisfied:

(a) the map Θ→ Pp(Rd) : θ 7→ Pθ is one-to-one and Wp-continuous;

(b) θ̂n is weakly consistent locally uniformly in θ ∈ Θ, i.e., (12) holds.

Then, the following properties hold:

(i) TM,n → 0 in Pnθ -probability locally uniformly in θ ∈ Θ, i.e.,

∀ε > 0, ∀K ∈ K(Θ), lim
n→∞

sup
θ∈K

Pnθ
[
TM,n > ε

]
= 0;

(ii) the critical values cM(α, n, θ) tend to zero uniformly in θ, i.e.,

lim
n→∞

sup
θ∈K

cM(α, n, θ) = 0 ∀α > 0, ∀K ∈ K(Θ);

(iii) for every P ∈ P(Rd) \M such that there exists K ∈ K(Θ) with

Pn
[
θ̂n ∈ K

]
→ 1 as n→∞,

we have limn→∞ Pn
[
φnM = 1

]
= 1.

Proof. (i) By the triangle inequality, it follows that

T
1/p
M,n = Wp(P̂n,Pθ̂n) ≤Wp(P̂n,Pθ) +Wp(Pθ,Pθ̂n) (13)

for all θ ∈ Θ. For compact K ⊆ Θ, it is then sufficient to show that each of
the Wp-distances on the right-hand side of (13) converges to 0 in Pnθ -probability
uniformly in θ ∈ K.

First, since K is compact and θ 7→ Pθ is Wp-continuous, the set

MK := {Pθ : θ ∈ K}
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is compact in Pp(Rd) equipped with the Wp-distance. By Bickel and Freedman
(1981, Lemma 8.3(b)) or Villani (2009, Definition 6.8(b) and Theorem 6.9) and
a subsequence argument, it follows that x 7→ ‖x‖p is uniformly integrable with
respect to MK , i.e.,

lim
r→∞

sup
θ∈K

∫
‖x‖>r

‖x‖p dPθ(x) = 0.

Corollary 1 then implies that Wp(P̂n,Pθ) → 0 in Pnθ -probability as n → ∞,
uniformly in θ ∈ K.

Second, as K is compact and θ → Pθ is Wp-continuous, there exists, for every
scalar ε > 0, a scalar δ = δ(ε) > 0 such that1

∀θ ∈ K, ∀θ′ ∈ Θ, ρ(θ, θ′) ≤ δ =⇒ Wp(Pθ,Pθ′) ≤ ε.

It follows that

∀θ ∈ K, Pnθ
[
Wp(Pθ,Pθ̂n) > ε

]
≤ Pnθ

[
ρ(θ, θ̂n) > δ

]
.

By condition (b), the latter probability converges to 0 as n → ∞ uniformly
in θ ∈ K.

(ii) Fix α > 0, ε > 0, and K ∈ K(Θ). By (i), there exists an integer n(ε) ≥ 1
such that

∀n ≥ n(ε), ∀θ ∈ K, Pnθ
[
TM,n > ε

]
≤ α.

By definition of the critical values, also cM(α, n, θ) ≤ ε for all n ≥ n(ε)
and θ ∈ K.

(iii) Let P and K be as in the statement. Put cn = supθ∈K cM,n(α, n, θ). We
have

Pn
[
φnM = 1

]
≥ P

[
TM,n > cM(α, n, θ̂n), θ̂n ∈ K

]
≥ P

[
TM,n > cn, θ̂n ∈ K

]
.

In view of (ii), we have cn → 0 as n→∞, so that it is sufficient to show that
there exists ε > 0, depending on P andM, such that limn→∞ Pn

[
TM,n > ε

]
= 1.

Consider two cases, P ∈ Pp(Rd) \M and P ∈ P(Rd) \ Pp(Rd), according as P
has a finite moment of order p or not.

First, suppose that P ∈ Pp(Rd) \ M. We have Wp(P,Pθ) > 0 for ev-
ery θ ∈ Θ while the map θ 7→Wp(P,Pθ) is continuous. As K is compact, η :=

1This is a slight generalization of the well-known property that a continuous function on
a compact set is uniformly compact. As a proof, fix ε > 0 and consider for each θ ∈ K a
scalar δ(θ) > 0 such that for all θ′ ∈ Θ with ρ(θ, θ′) ≤ δ(θ) we have Wp(Pθ,Pθ′ ) ≤ ε/2. Cover K
by open balls with centers θ ∈ K and radii δ(θ)/2. By compactness, extract a finite cover with
centers θ1, . . . , θm ∈ K. Put δ = minj δ(θj)/2. For every θ ∈ K and θ′ ∈ Θ with ρ(θ, θ′) ≤ δ,
there exists j = 1, . . . ,m such that ρ(θ, θj) < δ(θj)/2 and then also ρ(θ′, θj) < δ(θj). By the
triangle inequality, Wp(Pθ,Pθ′ ) ≤Wp(Pθj ,Pθ) +Wp(Pθj ,Pθ′ ) ≤ ε.
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inf
{
Wp(P,Pθ) : θ ∈ K

}
> 0. On the event {θ̂n ∈ K}, the triangle inequality

implies

T
1/p
M,n = Wp(P̂n,Pθ̂n) ≥Wp(P,Pθ̂n)−Wp(P̂n,P)

≥ η −Wp(P̂n,P).

We obtain that

Pn
[
φnM = 1

]
≥ P

[
T

1/p
M,n > c1/pn , θ̂n ∈ K

]
≥ P

[
Wp(P̂n,P) < η − c1/pn , θ̂n ∈ K

]
.

As η > 0 and limn→∞ cn = 0, the latter probability converges to one by the
assumption made on K and the fact that Wp(P̂n,P) → 0 in Pn-probability
as n→∞.

Second, suppose that P ∈ P(Rd) \ Pp(Rd). Let δ0 be the Dirac measure
at 0 ∈ Rd. Since θ 7→Wp(Pθ, δ0) is continuous, s = supθ∈KWp(Pθ, δ0) is finite.

By the triangle inequality, on the event {θ̂n ∈ K},

T
1/p
M,n = Wp(P̂n,Pθ̂n) ≥Wp(P̂n, δ0)−Wp(Pθ̂n , δ0)

≥Wp(P̂n, δ0)− s.

Moreover, W p
p (P̂n, δ0) = n−1

∑n
i=1‖Xi‖p diverges to

∫
‖x‖p dP(x) = ∞ in Pn-

probability by the weak law of large numbers. It follows that

lim
n→∞

Pn
[
TM,n > cn, θ̂n ∈ K

]
= 1.

Remark 1 (Uniform consistency). Under a mild moment condition, the uniform
consistency condition (b) in Proposition 5 is satisfied for method of moment
estimators—call them moment estimators—of a Euclidean parameter θ ∈ Θ ⊆ Rk.
In the method of moments, an estimator θ̂n of θ is obtained by solving (with
respect to θ) the equations

1

n

n∑
i=1

fj(Xi) = Eθ[fj(X)], j = 1, . . . , k,

for some given k-tuple f := (f1, . . . , fk) of functions such that m : θ 7→ Eθ[f(X)]
is a homeomorphism between Θ and m(Θ); see, for instance, van der Vaart

(1998, Chapter 4). The consistency of θ̂n = m−1(n−1
∑n
i=1 f(Xi)) uniformly

in θ ∈ K for any compact K ⊆ Θ then follows from the uniform consistency
over K of n−1

∑n
i=1 f(Xi) as an estimator of Eθ[f(X)] for such θ. By van der

Vaart and Wellner (1996, Proposition A.5.1), a sufficient condition for the latter
is that the functions fj are Pθ-uniformly integrable for θ ∈ K, i.e.,

lim
M→∞

sup
θ∈K

Eθ
[
|fj(X)| I{|fj(X)| > M}

]
= 0, j = 1, . . . , k.

Since I{|fj(X)| > M} ≤ |fj(X)|η/Mη for η > 0, a further sufficient condition is
that there exists η > 0 such that supθ∈K Eθ[|fj(X)|1+η] <∞ for j = 1, . . . , k.
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Remark 2 (Parameter estimate under the alternative). In Proposition 5(iii), the

condition that there exists a compact K ⊆ Θ such that limn→∞ Pn[θ̂n ∈ K] = 1

holds, for instance, when Θ is locally compact and θ̂n is consistent for a pseudo-
parameter θ(P) ∈ Θ. This is the case for the moment estimators of Remark 1
when Θ ⊆ Rk is open and f is P-integrable with

∫
f(x) dP(x) ∈ m(Θ).

Remark 3 (Location–scale parameters). Let p = 2 and consider a parametric
model

M = {Qψ : ψ ∈ Ψ} ⊆ P2(Rd)
where ψ = (µ, σ, θ) ∈ Rd × (0,∞)d ×Θ,

such that, for Xi = (X11, . . . , Xid) ∼ Qψ ∈M, we have

µj = E[Xij ] and σj =
√

var(Xij) for all j = 1, . . . , d.

The range Θ of θ is supposed not to depend on the location–scale parameter
vectors µ and σ. For instance, θ could be a vector of shape parameters for the
marginal distributions and/or determine the copula of Qψ.

Then, we can simplify the procedure by employing estimated residuals of the
form Ẑn,i = (Ẑn,i1, . . . , Ẑn,id) with

Ẑn,ij = (Xij −Xn,j)/sn,j,X , i = 1, . . . , n, j = 1, . . . , d, (14)

where Xn,j and sn,j,X are the empirical means and standard deviations, re-
spectively, of X1j , . . . , Xnj . The joint distribution of these estimated residuals
depends only on θ but not on (µ, σ). Indeed, we have Xij = µj + σjZij
where the distribution of Zi = (Zi1, . . . , Zid) is Pθ, which is defined as Qψ

with ψ = ((0, . . . , 0), (1, . . . , 1), θ), that is, µj = 0 and σj = 1 for all j = 1, . . . , d.

In obvious notation, we have Ẑn,ij = (Zij − Zn,j)/sn,j,Z .

Let θ̂n denote a strongly consistent estimator of θ that depends on the data
only through Ẑn,1, . . . , Ẑn,n. Consider the empirical distributions

P̂Ẑn := n−1
n∑
i=1

δẐn,i and P̂Zn := n−1
n∑
i=1

δZi .

To test the hypothesis Hn0 : P ∈ M, we propose the location-scale adjusted
statistic

T ls
M,n := W 2

2

(
P̂Ẑn ,Pθ̂n

)
. (15)

Its distribution still depends on θ but no longer on µ or σ. Critical values can
thus be computed as if µj = 0 and σj = 1 for all j = 1, . . . , d. For a test of
size α ∈ (0, 1), we reject the null hypothesis as soon as the test statistic exceeds

the critical value clsM(α, n, θ̂n) where

clsM(α, n, θ) := inf
{
c ≥ 0 : Pnθ

[
T ls
M,n > c

]
≤ α

}
, θ ∈ Θ. (16)
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In practice, critical values are calculated by a parametric bootstrap procedure as
before. The advantage of the estimated residuals (14) is that the critical values
are a function of θ only rather than a function of ψ = (µ, σ, θ), which greatly
simplifies their computation.

Under the null hypothesis, we have T ls
M,n → 0 almost surely as n→∞ since

it is bounded by a multiple of

1

n

n∑
i=1

d∑
j=1

(Ẑn,ij − Zij)2 +W 2
2

(
P̂Zn ,Pθ

)
+W 2

2

(
Pθ,Pθ̂n

)
where each of the three terms converges to zero almost surely. Under an alterna-
tive P ∈ P2(Rd) \M such that θ̂n remains in a compact set with probability
tending to one, T ls

M,n remains bounded away from zero and the test is consistent
by an argument similar to the proof of Proposition 5.

5. Finite-sample performance of GoF tests

This section is devoted to a numerical assessment of the finite-sample performance
of the Wasserstein-based GoF tests introduced in the previous sections and we
compare them, whenever possible, with other tests. The case of a simple null
hypothesis (Section 2) is treated in Section 5.1. The performances of various
tests for multivariate normality, which is a special case of the hypothesis of
elliptical symmetry considered in Section 3, are compared in Section 5.2, along
with an illustration involving a Student t distribution with known degrees of
freedom. Section 5.3 considers, in line with Remark 3, the more general composite
null hypothesis of a parametric family indexed by marginal location and scale
along with a copula parameter θ. Numerical results support the validity of the
bootstrap-based calculation of critical values. To the best of our knowledge,
no GoF test is available in the literature for such cases except for the method
described by Khmaladze (2016), the numerical implementation of which, however,
remains unsettled.

Throughout, we consider the Wasserstein distance of order p = 2. The level α
of the tests is set to 5%, the sample size is n = 200, and the number of replicates
considered in the estimation of power curves is 1000. We rely on the R package
transport (Schuhmacher et al., 2019), which is why we restrict ourselves to
dimension d = 2. As explained in Section 1.3, stochastic algorithms have recently
been proposed to solve the semi-discrete problem in higher dimensions, but these
are not yet implemented in R.

5.1. Simple null hypotheses

The setting is as in Section 2: given an independent random sample X1, . . . , Xn

from some unknown P ∈ P(Rd), we consider testing the simple null hypothe-
sis Hn0 : P = P0, where P0 ∈ P2(Rd) is fully specified.
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5.1.1. Other GoF tests

Two other goodness-of-fit tests will be used as benchmarks.
Rippl, Munk and Sturm (2016) consider the fully specified Gaussian null

hypothesis Hn0 : P = Nd(µ0,Σ0) with given mean and covariance. Recall that the
squared 2-Wasserstein distance between two d-variate Gaussian distributions is

W 2
2

(
Nd(µ1,Σ1),Nd(µ2,Σ2)

)
= ‖µ1 − µ2‖2 + tr

{
Σ1 + Σ2 − 2(Σ

1/2
1 Σ2Σ

1/2
1 )1/2

}
.

The Rippl–Munk–Sturm test statistic isW 2
2 (Nd(Xn, Sn,X),Nd(µ0,Σ0)), withXn

and Sn,X the sample mean and sample covariance matrix, respectively. This test
is sensitive to changes in the parameters of the Gaussian distribution but not to
other types of alternatives. Calculation of the test statistic is straightforward.
To compute critical values, we relied on a Monte Carlo approximation, drawing
many samples from the Gaussian null distribution and taking the empirical
quantile of the resulting test statistics.

Khmaladze (2016) constructs empirical processes in such a way that they are
asymptotically distribution-free, which facilitates their use for hypothesis testing.
A special case of the construction is as follows. Let the d-variate cumulative
distribution function (cdf) F be absolutely continuous with joint density f ,
marginal densities f1, . . . , fd, and copula density c. Define

l(x) = {c(F1(x1), . . . , Fd(xd))}1/2, x ∈ Rd,

with F1, . . . , Fd the marginal cdfs of F . The d-variate cdf G(x) =
∏d
j=1 Fj(xj)

has the same margins as F , but coupled via the independence copula. Letting

κ(x) =

∫
(−∞,x]

l(y) f(y) dy and κ =

∫
l(y) f(y) dy,

it follows from Corollary 4 in Khmaladze (2016) that the empirical process

ṽF,n(x) =
1√
n

n∑
i=1

{
l(Xi)I(Xi ≤ x)− κ(x)

}
− G(x)− κ(x)

1− κ
1√
n

n∑
i=1

{
l(Xi)− κ

}
based on an independent random sample X1, . . . , Xn from F converges weakly to
a G-Brownian bridge, i.e., has the same weak limit as the ordinary empirical
process

vG,n(x) =
1√
n

n∑
i=1

{
I(Yi ≤ x)−G(x)

}
based on an independent random sample Y1, . . . , Yn from G. The asymptotic
distribution of a test statistic based on ṽF,n which is invariant with respect
to coordinate-wise continuous monotone increasing transformations is thus the
same as if F (or G) were the uniform distribution on [0, 1]d. This includes the
Kolmogorov–Smirnov type statistic supx∈Rd

∣∣ṽF,n(x)
∣∣, which (with F the cdf

of P0) we are considering below for comparison with our Wasserstein-based test.
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In case F has independent margins, F and G coincide and the procedure reduces
to a classical Kolmogorov–Smirnov test. To ensure that the test has the right size
at finite sample size, we calculate critical values by Monte Carlo approximation
rather than relying on the asymptotic theory.

5.1.2. Results

In Figure 1, we assess the performance of the GoF tests of Hn0 : P = P0

where P0 = N2(0, I2) is a centered bivariate Gaussian with identity covariance
matrix. The alternatives P in panels (a)–(f) are as follows:

(a) P = N2

(( µ
µ

)
, I2
)

with location shift µ along the main diagonal (rejection
frequencies plotted against µ ∈ R);

(b) P = N2

(
0,
(
σ2 0
0 σ2

))
(rejection frequencies plotted against σ2 > 0);

(c) P = N2

(
0,
( 1 ρ
ρ 1

))
with correlation ρ (rejection frequencies plotted against

ρ ∈ (−1, 1));
(d) P has standard normal margins but Gumbel copula with parameter θ (rejec-

tion frequencies plotted against θ ∈ [1,∞));
(e) P has standard Gaussian margins but a bivariate Student t copula with ν = 4

degrees of freedom and correlation parameter ρ (rejection frequencies plotted
against ρ ∈ (−1, 1));2

(f) P is the “banana-shaped” Gaussian mixture described in Appendix C (rejec-
tion frequencies plotted against the mixing weight p ∈ (−1, 1)).3

The Gumbel and Student t copula simulations in (d) and (e) were implemented
from the R package copula (Hofert et al., 2018).

Inspection of Figure 1 indicates that the Khmaladze test, as a rule, is uniformly
outperformed by the Rippl–Munk–Sturm and Wasserstein tests. The Rippl–Munk–
Sturm test, of course, does relatively well under the Gaussian alternatives of
panels (a)–(c) where, however, the Wasserstein test is almost as powerful (while
its validity, contrary to that of the Rippl–Munk–Sturm test, extends largely
beyond the Gaussian null hypothesis). Against the non-Gaussian alternatives
in panels (d)–(f), the Wasserstein test has higher power than the Rippl–Munk–
Sturm and Khmaladze tests, with the exception of the Gumbel copula alternative
in panel (d), where the Rippl–Munk–Sturm and Wasserstein tests perform equally
well. For the “banana mixture” of panel (f), the Rippl–Munk–Sturm test fails to
capture the change in distribution.

Figures 2 and 3 are dealing with non-Gaussian simple null distributions P0,
so that the Rippl–Munk–Sturm test no longer applies. In Figure 2, the null
distribution is the mixture of Gaussians P0 = 0.5N2(0, I2) + 0.5N2

((
3
0

)
, I2
)
.

The alternatives in both panels are

(a) P = 0.5N2(0, I2) + 0.5N2

((
3+δ

0

)
, I
)

(rejection frequencies plotted against
the location shift δ ∈ R);

2Note that P is not Gaussian, even for ρ = 0.
3The mixture is constructed so that the first and second moments of P remain close to

those of P0.



M. Hallin, G. Mordant and J. Segers/Wasserstein Goodness-of-Fit Tests 22

−0.4 −0.2 0.0 0.2 0.4

0
.
0

0
.
2

0
.
4

0
.
6

0
.
8

1
.
0

Location shift (both along x and y)   (a)

R
e

je
c
t
io

n
 
f
r
e

q
u

e
n

c
ie

s

0.6 0.8 1.0 1.2 1.4

0
.
0

0
.
2

0
.
4

0
.
6

0
.
8

1
.
0

Scale multiplicator   (b)

R
e

je
c
t
io

n
 
f
r
e

q
u

e
n

c
ie

s

−0.5 0.0 0.5

0
.
0

0
.
2

0
.
4

0
.
6

0
.
8

1
.
0

Correlation   (c)

R
e

je
c
t
io

n
 
f
r
e

q
u

e
n

c
ie

s

1.0 1.5 2.0 2.5

0
.
0

0
.
2

0
.
4

0
.
6

0
.
8

1
.
0

Parameter of Gumbel copula   (d)

R
e

je
c
t
io

n
 
f
r
e

q
u

e
n

c
ie

s

−0.5 0.0 0.5

0
.
0

0
.
2

0
.
4

0
.
6

0
.
8

1
.
0

Parameter of t copula (w/ 4 d.f.)   (e)

R
e

je
c
t
io

n
 
f
r
e

q
u

e
n

c
ie

s

0.0 0.2 0.4 0.6 0.8 1.0

0
.
0

0
.
2

0
.
4

0
.
6

0
.
8

1
.
0

Proportion of banana in the mixture   (f)

R
e

je
c
t
io

n
 
f
r
e

q
u

e
n

c
ie

s

Fig 1. Empirical powers of various GoF tests for the simple Gaussian null hypothe-
sis Hn0 : P = N2(0, I2). Three tests are considered: the Wasserstein-2 distance (Sec-
tion 2), the Rippl–Munk–Sturm test (Rippl, Munk and Sturm, 2016), and the Khmaladze
Kolmogorov–Smirnov type test (Khmaladze, 2016), see Section 5.1.1. The alternatives P
in panels (a)–(f) are described in Section 5.1.2 (note that in (e), P is not Gaussian
even when ρ = 0).

(b) P0 = λN2(0, I2) + (1− λ)N2

((
3
0

)
, I2
)

(rejection frequencies plotted against
the mixing weight λ ∈ [0, 1]).

The Wasserstein test uniformly outperforms the Khmaladze one.
In Figure 3, P0 has standard Gaussian margins and a Gumbel copula with

parameter θ = 1.7. The alternative P is of the same form but with another
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Fig 2. Empirical powers of the Wasserstein and Khmaladze (2016) tests for the
simple null hypothesis Hn0 : P = P0 with P0 an equal-weights mixture of N2(0, I2)
and N2

((
3
0

)
, I2

)
. In panel (a), the alternative P is an equal-weights mixture of N2(0, I2)

and N2

((
3+δ

0

)
, I2

)
; rejection frequencies are plotted against δ ∈ [−1, 1]. In panel (b),

the alternative P is a mixture of the same two components, but with weights λ ∈ (0, 1)
and (1− λ); rejection frequencies are plotted against λ ∈ [0.25, 0.75].

value θ 6= 1.7 of the copula parameter θ ∈ [1,∞). Again, the Wasserstein test
yields uniformly higher empirical power.

5.2. Elliptical families

If the radial density frad is the density of the root of a chi-square random
variable with d degrees of freedom, the elliptical family E(frad) corresponds to
the Gaussian family. The null hypothesis in (3) then is that P is multivariate
Gaussian with unknown mean vector and positive definite covariance matrix.

Testing multivariate normality is a well-studied problem for which many tests
have been put forward. As benchmarks, we will consider here the tests proposed
in Royston (1982), Henze and Zirkler (1990), and Rizzo and Székely (2016).
Royston’s test is a generalisation of the well-known Shapiro–Wilks test. The
Henze–Zirkler test statistic is an integrated weighted squared distance between
the characteristic function under the null and its empirical counterpart. Interest-
ingly, Ramdas, Garćıa Trillos and Cuturi (2017) showed that the Wasserstein
distance and the energy distance of Rizzo and Székely (2016) are connected, as
the so-called entropy-penalized Wasserstein distance interpolates between them
two. We borrowed the implementation of these tests from the R package MVN
(Korkmaz, Goksuluk and Zararsiz, 2014). The test by Rippl, Munk and Sturm
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Fig 3. Empirical powers of the Wasserstein and Khmaladze (2016) tests (see Sec-
tion 5.1.1) for the simple null hypothesis Hn0 : P = P0 with P0 a bivariate distribution
with standard Gaussian margins and Gumbel copula with parameter θ = 1.7; rejection
frequencies are plotted against the copula parameter θ.

(2016) considered in Section 5.1 does not apply here, since it only can handle
fully specified Gaussian distributions.

The alternatives in the two panels of Figure 4 are
(a) P with standard normal margins and a Gumbel copula with parameter θ

ranging over [1,∞);
(b) P with independent margins, one of which is standard normal while the

other one is Student t with ν > 0 degrees of freedom.

Inspection of Figure 4 reveals that the Wasserstein test has the highest power
against the copula alternative in panel (a), while Royston’s test has no power
at all. For the Student t alternative in panel (b), Royston’s test comes out as
most sensitive, but the Wasserstein and energy tests (Rizzo and Székely, 2016)
performe quite well too.

In Figure 5, we consider the bivariate Student (ν = 12 degrees of freedom)
elliptical family, with radial density frad the density of the root of a rescaled
Fisher F (d, 12) variable. Figure 5 provides a plot of rejection frequencies under
bivariate skew-t alternatives (Azzalini, 2014) with marginal skewness parame-
ters α1 and α2. Simulations were based on the function rmst from the R package
sn (Azzalini, 2020). In principle, the empirical process approach in Khmal-
adze (2016) leads to test statistics that are asymptotically distribution-free, but
their numerical implementation involves a number of multiple integrals, the
computation of which remains problematic.
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Fig 4. Empirical power curves of various tests of the hypothesis that P is bivariate
Gaussian with unknown mean vector and covariance matrix. The Wasserstein test
in Section 3 is compared to three other multivariate normality tests mentioned in
Section 5.2. In (a), the alternative P has a Gumbel copula with parameter θ; rejection
frequencies are plotted against θ ∈ [1,∞). In (b), one of the marginals of P is a Student t
distribution with ν degrees of freedom; rejection frequencies are plotted against ν > 0.

5.3. General parametric families

We now turn to the more general example of a non-elliptical parametric modelM
where the parametric bootstrap procedure described in Section 4 nevertheless
applies. In the notation of Remark 3, let M = {Qψ : ψ ∈ Ψ} consist of
the bivariate distributions with Gaussian marginals and an Ali–Mikhail–Haq
(AMH) copula, yielding a five-dimensional parameter vector ψ = (µ1, σ1, µ2, σ2, θ)
where µ1, µ2 ∈ R and σ1, σ2 ∈ (0,∞) are marginal location and scale parameters,
and θ ∈ Θ = [−1, 1] is the AMH copula parameter. We applied the method
involving the location-scale reduction described in Remark 3. Following Genest,
Ghoudi and Rivest (1995), the copula parameter θ was estimated via a rank-based
maximum pseudo-likelihood estimator. Obviously, the componentwise ranks of
the data and those of the residuals in (14) coincide, so that θ̂n, as required,
depends on the data only through the residuals.

We first checked the validity of the parametric bootstrap procedure of Sec-
tion 4. To do so, we simulated 1 000 independent random samples of size n = 200
from P ∈ M with θ = 0.7. For each sample, we calculated the test statis-
tic T ls

M,n in (15) and checked whether or not it exceeds the bootstrapped

critical value clsM(α, n, θ̂n) for α equal to multiples of 5%. The critical value
function θ 7→ clsM(α, n, θ) in (16) was pre-computed by Algorithm 3, or rather a
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Fig 5. Empirical power of the Wasserstein test in Section 3 for the hypothesis that P
is bivariate Student t with ν = 12 degrees and unknown mean vector and covariance
matrix. The alternatives P are bivariate skew-t with skewness parameters α1 and α2.

variation thereof taking into account the estimated residuals in Eq. (14). The
points in Figure 6(a) show the empirical type I errors as a function of α. The
diagonal line fits the points well, lending support to the validity of the parametric
bootstrap method (if not proving it).

Figure 6(b) similarly displays the rejection frequencies of the Wasserstein
test under an alternative P whose copula belongs to the Frank family with
parameter η. If η = 0, the Frank copula reduces to the independence copula,
which is a member of the AMH family too. Again, the approach in Khmaladze
(2016) in principle also applies, but its actual implementation is intricate and
remains unsettled.
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del Barrio, E., Giné, E. and Utzet, F. (2005). Asymptotics for L2 functionals
of the empirical quantile process, with applications to tests of fit based on
weighted Wasserstein distances. Bernoulli 11 131–189.

del Barrio, E. and Loubes, J. M. (2019). Central limit theorems for empirical
transportation cost in general dimension. The Annals of Probability 47 926–
951.

del Barrio, E., Cuesta-Albertos, J. A., Matrán, C. and Rodŕıguez-
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Lévy, B. (2015). A numerical algorithm for L2 semi-discrete optimal transport in
3D. ESAIM: Mathematical Modelling and Numerical Analysis 49 1693–1715.

McAssey, M. P. (2013). An empirical goodness-of-fit test for multivariate
distributions. Journal of Applied Statistics 40 1120–1131.
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Appendix A: Uniform convergence of the empirical Wasserstein
distance

The aim of this appendix is to establish the convergence to zero in probability,
uniformly in the underlying distribution P ∈M, of the empirical Wasserstein
distance Wp(P̂n,P) when M ⊆ Pp(Rd) has a compact Wp-closure. Actually,
Theorem 1 establishes the stronger result that the convergence to zero holds
uniformly in the p-th mean. The Markov inequality then implies (Corollary 1) the
desired uniform convergence in probability. The notation is that of Section 1.2,
with EP standing for expectation under an independent random sample from P.
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Theorem 1. Let M⊆ Pp(Rd) be such that

lim
r→∞

sup
P∈M

∫
‖x‖>r

‖x‖p dP(x) = 0.

Then,
lim
n→∞

sup
P∈M

EP

{
W p
p (P̂n,P)

}
= 0.

The condition onM is equivalent to the one that the closure ofM in the metric
space (Pp(Rd),Wp) is compact. This follows from Prohorov’s theorem and the
characterization of Wp-convergence in Bickel and Freedman (1981, Lemma 8.3)

or Villani (2009, Theorem 6.9). The convergence rate of EP{W p
p (P̂n,P)} has been

studied intensively; see, for instance, Fournier and Guillin (2015, Theorem 1).
However, those rates require the existence of moments of order q higher than p.

Proof of Theorem 1. The following smoothing argument is inspired by the proof
of Theorem 1.1 in Horowitz and Karandikar (1994). Let Uσ denote the Lebesgue-
uniform distribution on the ball {x ∈ Rd : ‖x‖ ≤ σ} in Rd with radius σ ∈ (0,∞)
and centered at the origin. Denoting by ∗ the convolution of probability measures,
we have, for any Q ∈ Pp(Rd),

Wp(Q ∗Uσ,Q) ≤ σ.

Indeed, if X and Y are independent random vectors with distributions Q and Uσ,
respectively, then (X + Y,X) is a coupling of Q ∗Uσ and Q, so that

W p
p (Q ∗Uσ,Q) ≤ E[‖Y ‖p] ≤ σp.

By the triangle inequality, it follows that

Wp(P̂n,P) ≤ 2σ +Wp(P̂n ∗Uσ,P ∗Uσ).

Taking expectations and using the elementary inequality

(a+ b)p ≤ 2p−1(ap + bp) for p ≥ 1, a ≥ 0, and b ≥ 0,

we obtain

EP

{
W p
p (P̂n,P)

}
≤ 2p−1

[
2pσp + E

{
W p
p (P̂n ∗Uσ,P ∗Uσ)

}]
.

If we can show that

∀σ > 0, lim
n→∞

sup
P∈M

E
{
W p
p (P̂n ∗Uσ,P ∗Uσ)

}
= 0, (17)

then it will follow that

∀σ > 0, lim sup
n→∞

sup
P∈M

EP

{
W p
p (P̂n,P)

}
≤ 22p−1σp.

But then, this latter lim sup is actually a lim and is equal to zero, as required.



M. Hallin, G. Mordant and J. Segers/Wasserstein Goodness-of-Fit Tests 32

Let us proceed to show (17). Fix σ > 0 for the remainder of the proof.

Let fσ denote the density function of Uσ. The measures P̂n ∗Uσ and P ∗Uσ are
absolutely continuous too and have density functions x 7→ n−1

∑n
i=1 fσ(x−Xi)

and x 7→
∫
Rd fσ(x − y)dP(y), respectively. The Wasserstein distance can be

controlled by weighted total variation (Villani, 2009, Theorem 6.15):

W p
p (P̂n ∗Uσ,P ∗Uσ) ≤ 2p−1

∫
Rd
‖x‖p d|P̂n ∗Uσ − P ∗Uσ|(x)

= 2p−1

∫
Rd
‖x‖p

∣∣∣∣∣ 1n
n∑
i=1

fσ(x−Xi)−
∫
Rd
fσ(x− y) dP(y)

∣∣∣∣∣ dx.

Take expectations and apply Fubini’s theorem to see that

EP

{
W p
p (P̂n ∗Uσ,P ∗Uσ)

}
≤ 2p−1

∫
Rd
‖x‖pgn(x; P) dx (18)

where

gn(x; P) = EP

[∣∣∣∣∣ 1n
n∑
i=1

fσ(x−Xi)−
∫
Rd
fσ(x− y) dP(y)

∣∣∣∣∣
]
.

Let r > σ and split the integral in (18) according to whether ‖x‖ > r
or ‖x‖ ≤ r. Note that fσ(u) = fσ(0) if ‖y‖ ≤ σ and fσ(u) = 0 otherwise. For
any P ∈ P(Rd) and any x ∈ Rd, we have, by the Cauchy–Schwarz inequality,

gn(x; P) ≤ n−1/2fσ(0).

It follows that

lim
n→∞

sup
P∈P(Rd)

∫
‖x‖≤r

‖x‖pgn;P(x) dx = 0.

But then, in view of (18), we have

lim sup
n→∞

sup
P∈M

EP

{
W p
p (P̂n∗Uσ,P∗Uσ)

}
≤ lim sup

n→∞
sup

P∈M
2p−1

∫
‖x‖>r

‖x‖pgn(x; P) dx.

By the triangle inequality, we also have, for all n,

gn(x; P) ≤ 2

∫
Rd
fσ(x− y)dP(y).

Applying Fubini’s theorem once more, we find that∫
‖x‖>r

‖x‖pgn(x; P) dx ≤ 2

∫
‖x‖>r

‖x‖p
∫
y∈Rd

fσ(x− y) dP(y) dx

= 2

∫
y∈Rd

∫
‖x‖>r

‖x‖pfσ(x− y) dxdP(y)

= 2

∫
y∈Rd

∫
‖u+y‖>r

‖u+ y‖pfσ(u) dudP(y).



M. Hallin, G. Mordant and J. Segers/Wasserstein Goodness-of-Fit Tests 33

Since fσ(u) = 0 whenever ‖u‖ > σ and since r > σ, we have∫
‖u+y‖>r

‖u+ y‖pfσ(u) du ≤

{
2p−1(σp + ‖y‖p) if ‖y‖ > r − σ,
0 otherwise.

Choosing r > 2σ, we get that ‖y‖ > σ for all y in the non-zero branch above,
and thus, for all n,∫

‖x‖>r
‖x‖pgn(x; P) dx ≤ 2p+1

∫
‖y‖>r−σ

‖y‖p dP(y).

It follows that, for every r > σ,

lim sup
n→∞

sup
P∈M

EP

{
W p
p (P̂n ∗Uσ,P ∗Uσ)

}
≤ 22p sup

P∈M

∫
‖y‖>r−σ

‖y‖p dP(y).

The left-hand side does not depend on r. The condition on M implies that
the right-hand side converges to zero as r → ∞. It follows that the left-hand
side must be equal to zero. But this is exactly (17), as required. The proof is
complete.

Corollary 1. For M as in Theorem 1, we have

∀ε > 0, lim
n→∞

sup
P∈M

Pn
[
W p
p (Ln,P) > ε

]
= 0,

i.e., W p
p (P̂n,P)→ 0 in probability as n→∞, uniformly in P ∈M.

Proof. By Markov’s inequality, for every ε > 0 and every P ∈ Pp(Rd), we have

Pn
[
Wp(Ln,P) > ε

]
≤ ε−p

∫
(Rd)n

W p
p (Ln,P) dPn.

In view of Theorem 1, the integral converges to zero uniformly in P ∈M.

Appendix B: Algorithms for the computation of critical values

Our test statistics involve the Wasserstein distance between an empirical measure
and a continuous one. Their calculation requires solving a semi-discrete optimal
transport problem (Section 1.3), for which we relied on the function semidiscrete
in the R package transport (Schuhmacher et al., 2019), which implements the
method of Mérigot (2011). The method starts from a discretization of the source
density. The quality of approximation can be set by choosing a sufficiently fine
mesh and selecting the tolerance parameter to a low value. The meshes considered
here consisted of approximately 105 cells.

Below we provide pseudo-code algorithms to sketch the main steps in the
actual computation of the critical values. We start with the case of a simple
null hypothesis (Algorithm 1), then turn to elliptical families with a given
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generator (Algorithm 2) and finally propose the bootstrap procedure for a
general parametric family (Algorithm 3). The empirical distribution associated

with a sample X = (X1, . . . , Xn) ∈ (Rd)n is denoted by P̂n(X). The largest
integer not larger than a scalar x ∈ R is denoted by bxc.

In Algorithm 3, we first compute cM(α, n, θ) for θ in a finite mesh Θ1 ⊆ Θ.
From these values, we reconstruct the function θ 7→ cM(α, n, θ) by smoothing.

It is into the resulting function that we plug in the actual estimate θ̂n. Fur-
ther, we restrict the bootstrap parameter estimates θ̂∗n,b to be in another finite
mesh Θ2 ∈ Θ, because calculation of the bootstrapped test statistics T ∗M,n,b

requires a preliminary discretization of the density associated to θ̂∗n,b in order
to solve the corresponding semi-discrete optimal transport problem. The first
loop in Algorithm 3 is discretizing the densities of Pθ for θ ∈ Θ2. The sec-
ond loop is calculating cM(α, n, θ) for θ ∈ Θ1 by drawing B samples of size n
from Pθ. The final step of the algorithm consists of reconstructing the func-
tion θ 7→ cM(α, n, θ) by smoothing. This smoothing step is illustrated in Figure 7
for the five-parameter bivariate Gaussian–AMH model in Section 5.3, applying
the location–scale reduction in Remark 3.

The quality of the approximate critical thresholds is ensured by choosing a
large enough number of Monte Carlo replications N (Algorithms 1 and 2) or
bootstrap replicates B (Algorithm 3). In the simulation experiments, we chose N
between 3 000 and 10 000 depending on the time required, while B = 1 000.

Algorithm 1: Computation of c(α, n,P0) in Eq. (2)

Input:

• A mesh that supports the source density f associated to P0

• A number of replications N

• A sample size n

• A level α

Output: An approximation of c(α, n,P0)
1 T ← [0, . . . , 0] ∈ RN // Initialization

2 for i = 1 to N do
3 X← rand(n,P0) // Generation of sample of size n from P0

4 T [i]←W 2
2 (P̂n(X),P0)

5 sort(T )
6 c(α, n,P0)← T [b(1− α)Nc] // Empirical quantile (order statistic)
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Algorithm 2: Computation of cE(α, n, frad) in Eq. (6)

Input:

• A mesh that supports the source density f associated to P0.

• A number of replications N

• A sample size n

• A level α

Output: An approximation of cE(α, n, frad)
1 T ← [0, . . . , 0] ∈ RN // Initialization

2 for i = 1 to N do
3 X← rand(n,Pfrad ) // Generation of sample of size n from Pfrad
4 Ẑ← standardize(X,method = “Cholesky”) // Residuals as in (5)

5 T [i]←W 2
2 (P̂n(Ẑ),Pfrad )

6 sort(T )
7 cE(α, n, frad)← T [b(1− α)Nc]

Algorithm 3: Computation of θ 7→ cM(α, n, θ) in (10)

Input:

• A finite set Θ1 ⊆ Θ of values of θ at which to calculate cM(α, n, θ) initially

• A larger finite set Θ2 ⊆ Θ into which to force the bootstrapped estimates θ̂∗n,b

• A number of bootstrap replications B

• A sample size n

• A level α

Output: An approximation of θ 7→ cM(α, n, θ)
1 T ← 0 ∈ RN×|Θ1| // Initialization

2 for θ in Θ2 do
3 Grid[θ] = discretization(Pθ) // Discretization of density of Pθ

4 for θ in Θ1 do
5 for b = 1 to B do
6 X← rand(n,Pθ)

7 θ̂∗n ← θn(X) // While ensuring θ̂∗n ∈ Θ2

8 T [b, θ]←W 2
2 (P̂n(X),Pθ̂∗n

) // Requires Grid[θ̂∗n]

9 ColumnSort(T ) // For each θ ∈ Θ1, sort T [ · , θ]
10 for θ in Θ1 do
11 cM(α, n, θ)← T [b(1− α)Nc, θ]
12 cM(α, n, · )← Smooth

(
(θ, cM(α, n, θ)) : θ ∈ Θ1

)
// function θ 7→ cM(α, n, θ)
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Fig 7. Illustration of the last step in Algorithm 3 for the bivariate five-parameter
Gaussian–AMH model in Section 5.3 using the location–scale reduction in Remark 3.
The function θ 7→ clsM(α, n, θ) (in red) is constructed by smoothing Monte Carlo
estimates (circles) of clsM(α, n, θ) for θ ∈ Θ1 ⊆ Θ = [−1, 1], with α = 0.05, n = 200
and B = 1 000 samples per point. The smoother is a 6th-degree polynomial fitted by
ordinary least squares.

Appendix C: A banana-shaped distribution

The “banana-shaped” distribution in Section 5.1 and Figure 1(f) is a mixture

(1− 2p)N2

((
0
−0.7

)
,

(
0.352 0

0 0.352

))
+ pN2

((
−0.9

0.3

)
,

(
0.358 −0.55
−0.55 1.02

))
+ pN2

((
0.9
0.3

)
,

(
0.358 0.55
0.55 1.02

))
.

(19)

of three Gaussian components. Figure 8 shows a scatterplot for p = 0.35 of a
random sample of size n = 500 from this distribution.
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Fig 8. Scatterplot of a sample of size 500 from the “banana-shaped” mixture (19).
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