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Presentation Overview:

• Tri-layered Quasi-Birth and Death Processes

• Computational Philosophy

• Introduction of U and G matrices

• Relationship to Censoring

• Asymptotic Forms of R and U

• Numerical Examples
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Tri-layered QBDs with Boundary Assistance

• Classical QBD structure: infinite level & fi-

nite phase

• Insufficient for systems with two unbounded

queues without sacrificing structure.

• Many queues have service resources for one

type of customer that can serve the the other

type when free. For example, bilingual servers

intended for minority language group in a Bilin-

gual Call Centre (see Stanford & Grassmann

(1993, 2000)) can serve majority language cus-

tomers. We call this capability as “Boundary

Assistance”.
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Selected Literature on Tri-layered QBDs:

Miller (1981): two-class priority M/M/1 queue

Alfa (1998): discrete-time priority queue.

Sapna-Isoptupa & Stanford (2002): non-preemptive

priority queue.

Alfa, Liu and He (2003): multi-class preemp-

tive priority queue.

• Simplifying aspects: rate matrix R has a

block-upper-triangular form

• Full R −→ substantially more complicated.
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Computational Philosophy:

For QBDs with matrices of infinite dimension

at the top layer, and the infinite number of

finite-sized blocks they contain, we determine

as many elements in that infinite collection as

are needed until desired thresholds are met,

rather than truncating the process for the sub-

level at an arbitrary point, as in the traditional

approach.
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Model Structure

Q =




0 1 2 3 · · ·

0 B′ B′01 0 0 · · ·
1 B′10 A′1 A′0 0 · · ·
2 0 A′2 A′1 A′0 . . .

... ... ... . . . . . . . . .




.

where A′0 = diag{A′01, . . .}, A′2 =diag{A∗′21, A′21, . . .}.
A′01, A∗′21 and A′21 are m×m matrices. Bound-

ary Assistance: A∗′21em ≥ A′21em.
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A′1 =




0 1 2 3 · · ·

0 A∗′11 A′10 0 0 · · ·
1 A′12 A′11 A′10 0 · · ·
2 0 A′12 A′11 A′10

. . .

3 0 0 A′12 A′11
. . .

... ... ... . . . . . . . . .




.

Equivalent Uniformized MC:

Set τ = max{|qii|}, we obtain P = τ−1Q + I.

P =




0 1 2 3 · · ·

0 B B01 0 0 · · ·
1 B10 A1 A0 0 · · ·
2 0 A2 A1 A0

. . .

... ... ... . . . . . . . . .




.
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Complete Specification of Boundary:

In a wide range of applications,

B′01 =

[
A∗′0
A′0

]
;

B′10 =
[
A∗′2 A′2

]

where the block A∗′2 is typically null. B′, like

A′1, possesses a tri-diagonal form:

B′ =




φ 0 1 2 · · ·

φ B∗′1 B∗′0 0 0 · · ·
0 B∗′2 B′1 A′10 0 · · ·
1 0 B′2 B′1 A′10

. . .

2 0 0 B′2 B′1 . . .

... ... ... . . . . . . . . .




where we set B′2 = A′12 + ∆2 and B′1 = A′11 +

∆1. Typically, ∆2 ≥ 0.
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Example: Spatial Queue, 2 areas. Level

and sub-level equal number of waiting customers

in areas 1 and 2, respectively. The phase,

is finite and represents the server allocation.

(Horn, 2004, Ph.D. Thesis). Clearly, A′01 =

{λ1I3} and A′2 =diag{A∗′21, A′21, A′21, . . .}.

A∗′21 =




0 1 2

0 2µ1 0 0

1 µ2 µ1 0

2 0 2µ2 0




A′21 =




0 1 2

0 0 0 0

1 0 µ1 0

2 0 2µ2 0




.
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A′1 is a block tri-diagonal matrix where, for

example A′10 = λ2I3, and

A′12 =




0 1 2

0 0 2µ1 0

1 0 µ2 0

2 0 0 0




.
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P =




φ 0 1 2 3 · · ·

φ B∗1
[
B∗0,0, . . .

]
0 0 0 · · ·

0



B∗2
0
...


 A1 + ∆ A0 0 0 · · ·

1 0 A2 A1 A0 0 .. .

2 0 0 A2 A1 A0
. . .

3 0 0 0 A2 A1
. . .

... ... ... ... . . . . . . . . .




.

Matrix Geometric form of the Stationary

Distribution:

π(k) = π(0)Rk, k ≥ 0.
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Relating U and G matrices to a Censored

Process

Define matrix U = [Ujk];Ujk = prob. QBD

will return to its initial level n before decreas-

ing below it, and is in phase k when it returns,

given it starts from phase j. Latouche & Ra-

maswami (1999) show

U = A1 + A0(I − U)−1A2 = A1 + RA2;

R = A0(I − U)−1.

For infinite-sized matrices, there is more than

one inverse for (I−U); we require (I−U)−1 =

∑∞
i=0 U i. Equivalently,

R = A0 + RA1 + R2A2.
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The Level-0 Censored Process

The level-0 stationary vector is obtained by

censoring, (see Grassmann & Stanford (2000),

173-180, based on Kemeny, Snell, and Knapp

(1966)). A denumerable Markov chain parti-

tioned into two sets E and E′, possessing a

transition matrix of the form

P =

(
T H
L S

)
(0.1)

yields a censored transition matrix PE for E

PE = T + HNL (0.2)

where N =
∑∞

m=0 Sm represents the matrix

containing the expected number of visits to

states in E′ starting from states in E′.
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Let P(1) (respectively, P(0)) represent the re-

sulting transition matrix when all states above

level 1 (resp. 0) are censored. Direct appli-

cation of the method for the general model

yields

P (1) =

(
B B01
B10 U

)
; (0.3)

P (0) =




φ ≥ 0

φ B∗1
[
B∗0,0, . . .

]

≥ 0



B∗2
0
...


 ∆ + U




. (0.4)
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Solution for the Level-0 Stationary Vector

Theorem 1 The level process can be positive

recurrent only if

ω0 (A∗′21−A′21) em+ω A′21 em > ω A′01 em (0.5)

Proof: Standard QBD drift requirement

Ω A′2 e∞ > Ω A′0 e∞ (see Neuts (1981), p. 32)

still holds for infinite-sized blocks. Expanding

and collecting terms, one obtains (0.5).

Remark: The term ω0 (A∗′21 − A′21) em is the

average long-term extra service effort available

to the level process. If it is not needed to keep

the level process stable, the desired asymptotic

forms will result.
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Theorem 2 Assume that the level process is

stable without resorting to Boundary Assis-

tance. Then the R matrix possesses the follow-

ing asymptotically block Toeplitz form, when

expanded at the middle layer:

R =




R00 R01 R02 · · · R0k
. . .

R10 R11 R12 · · · R1k
. . .

R20 R21 R22 · · · R00
. . .

... ... ... · · · ... . . .
Rk0 Rk1 Rk2 · · · Rkk

. . .
. . . . . . . . . . . . . . . . . .




(0.6)

where limi→∞Ri,i+k = Rk, ∀i. The U matrix

possesses a corresponding asymptotic form as

well: ∃ Uk = limi→∞Ui,i+k.

Corollary 3: The matrix P(0) as given by

(0.4) is asymptotically of block Toeplitz form.
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A one-step transition matrix P is of GI/G/1

type if one can write

P =




B0 C1 C2 C3 . . .
B1 Q0 Q1 Q2

. . .
B2 Q−1 Q0 Q1

. . .
B3 Q−2 Q−1 Q0

. . .
... . . . . . . . . . . . .




(0.7)

where the matrices Qi, i = −∞, . . . ,∞ are all

square of common finite size, the matrix B0

is finite but may be a different size, and the

matrices Ci and Bi, i = 1,2, . . . are finite ma-

trices of appropriate dimension. We choose B0

to be sufficiently large to contain those blocks

not within a suitable tolerance of their asymp-

totic forms.
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Qi = Ui (except for Q−1 = U−1 + ∆2). The

blocks Ci and Bi, i = 1,2, . . . found accordingly.

The solution proceeds by repetitive block elimi-

nation. Starting at some arbitrarily large “level”

K, set all blocks to be null. The finite, cen-

sored Markov chain retaining matrices up to

“level” (n+1) would look like

PE =




. . . . . . . . . ...

. . . Q0 Q1 Q
(n+1)
2

. . . Q−1 Q0 Q
(n+1)
1

. . . Q
(n+1)
−2 Q

(n+1)
−1 Q

(n+1)
0




.

(0.8)
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However, if one retains in a single matrix P (n+1)∗

of infinite dimension all of the matrices ob-

tained at each stage of the elimination process

down to the (n + 1)st, one would find that

P (n+1)∗ =




. . . . . . . . . . . . . . .

. . . Q0 Q1 Q
(n+1)
2

. . .
. . . Q−1 Q0 Q

(n+1)
1

. . .
. . . Q

(n+1)
−2 Q

(n+1)
−1 Q

(n+1)
0

. . .
. . . Q

(n+2)
−3 Q

(n+2)
−2 Q

(n+2)
−1

. . .
. . . . . . . . . . . . . . .




.

(0.9)

We obtain the following equations at the nth

iteration (see Grassmann & Stanford (2000)

equations (87) and (88)):
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Q
(n)
i = Qi+

∞∑

j=1

Q
(n+j)
i+j (I−Q

(n+j)
0 )−1Q

(n+j)
−j , i ≥ 0;

(0.10)

Q
(n)
i = Qi+

∞∑

j=1

Q
(n+j)
j (I−Q

(n+j)
0 )−1Q

(n+j)
i−j , i ≤ 0.

(0.11)

For a sufficiently large starting point K, as n

decreases, these sequences of matrices con-

verge to their respective limits Q∗i , given by

Q∗i = Qi +
∞∑

j=1

Q∗i+j(I −Q∗0)−1Q∗−j, i ≥ 0;

(0.12)

Q∗i = Qi+
∞∑

j=1

Q∗j(I−Q∗0)−1Q∗i−j, i ≤ 0. (0.13)
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Similarly

C∗i = Ci +
∞∑

j=1

C∗i+j(I −Q∗0)−1Q∗−j, i > 0;

(0.14)

B∗i = Bi+
∞∑

j=1

Q∗j(I−Q∗0)−1B∗i+j, i > 0. (0.15)

Lastly, one directly evaluates

B∗0 = B0 +
∞∑

i=1

C∗i (I −Q∗0)−1B∗i . (0.16)

Define non-normalized probabilities αj = txj(0)

where t is an appropriate normalizing constant,

to be determined later. Setting any compo-

nent (say the first) of α0 to one, we solve

α0 = α0B∗0. (0.17)

21



The succession of non-normalized probabilities

is given by

αn =
n−1∑

i=1

α(n−i)Q
∗
i (I −Q∗0)−1 + α0C∗n(I −Q∗0)−1

=
n−1∑

i=1

α(n−i)V
∗
i + α0C∗n(I −Q∗0)−1 (0.18)

for V ∗i defined as Q∗i (I −Q∗0)−1.

The αn’s are determined successively, and the

corresponding xn(0) = αn/t is found until an

index J is reached such that xJ(0)e < ε for

a suitably tight threshold ε. The remaining

vectors xj(0), j > J are set to zero.
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Lastly, we address the question of the inde-

pendent determination of t. Since in the cen-

sored Markov chain we require that πφ(0)e +

∑∞
j=0 xj(0)e = 1, it follows that t is given by

t =
m∑

k=1

α0k +
∞∑

n=1

αne. (0.19)

Define the matrix-based generating functions

V (z) =
∞∑

n=1

V ∗n zn; C(z) =
∞∑

n=1

C∗nzn(I−Q∗0)−1;

(0.20)

α(z) =
∞∑

n=1

αnzn. (0.21)

α(1) is determined from α0 via

α(1)(I − V (1)) = α0C(1). (0.22)

t depends on sufficient precision in the deter-

mination of
∑∞

k=0 V ∗k and
∑∞

k=0 C∗k(I −Q∗0)−1.
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Numerical Examples

Table 1: Various Six Server

Configurations with 3 Majority Language

Servers

N1 N2 M K E
(
WMaj

)
E (WMin)

3 0 3 0 5.13 5.72

3 0 3 1 4.70 7.57

3 0 3 2 3.50 13.25

3 1 2 0 7.82 4.57

3 1 2 1 6.99 6.42

3 2 1 0 21.31 3.03

3 2 1 1 17.77 5.16
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Table 2: Joint Queue Length Distribution,

λ1 = 0.5, λ2 = 0.75

Areas 1 & 2: 0 1 2 3 4 5
0 .375 .146 .064 .031 .015 .008
1 .088 .057 .032 .017 .009 .005
2 .025 .021 .014 .009 .005 .003
3 .008 .008 .006 .004 .003 .002
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