Isotopic evidence for changing mobility and landscape use patterns between the Neolithic and Early Bronze Age in western Ireland

Christophe Snoeck a,b,c,d,*, Carleton Jones e, John Pouncett a, Steven Goderis b, PhilippeClaeys b, Nadine Mattielli c, Antoine Zazzo f, Paula J. Reimer g, Julia A. Lee-Thorp a, Rick J. Schulting a

a Research Laboratory for Archaeology and the History of Art, School of Archaeology, University of Oxford, Dyson Perrins Building, South Parks Rd, Oxford, OX1 3TG, UK
b Research Unit: Analytical, Environmental & Geo-Chemistry, Dept. of Chemistry, Vrije Universiteit Brussel, AMGC-WE-VUB, Pleinlaan 2, 1050 Brussels, Belgium
c G-Time Laboratory, Université Libre de Bruxelles, CP 160/02, 50, Avenue F.D. Roosevelt, B-1050 Brussels, Belgium
d Maritime Cultures Research Institute, Dept. of Art Sciences & Archaeology, Vrije Universiteit Brussel, MARI-LW-VUB, Pleinlaan 2, 1050 Brussels, Belgium
e School of Geography and Archaeology, Arts/Science Building, National University of Ireland Galway, University Road, Galway, Ireland
f Archéologie, Archéobotanique: sociétés, pratiques et environnements (AASPE), Muséum national d’histoire naturelle, CNRS, Sorbonne université, CP 56, 55 rue Buffon 75005 Paris, France
g CHRONO Centre for Climate, the Environment, and Chronology, Queen’s University of Belfast, Belfast BT7 1NN, Northern Ireland, UK

A B S T R A C T

This paper presents the results of a study using strontium, oxygen and carbon isotopes, strontium concentrations, infrared analyses and radiocarbon dating to investigate human mobility and landscape use as seen in individuals from the Neolithic court tomb of Parknabinnia, Co. Clare, Ireland. Taking advantage of the recent demonstration that it is possible to obtain reliable in vivo strontium isotope signals from calcined bone, we compare measurements on cremated bone (n = 4) and uncremated tooth enamel (n = 4). The results suggest that two out of four uncremated enamel samples can be considered ‘local’ while the other two, and all four cremated bone samples, represent ‘non-local’ individuals. New radiocarbon dates obtained on two of the cremated bone fragments place them in the Chalcolithic/Early Bronze Age, rather than the Neolithic dates previously obtained on the uncremated remains, demonstrating re-use of the monument. Assuming that our small sample is representative, it seems that the court tomb was used for burial by both ‘locals’ and ‘non-locals’ during the Neolithic and predominantly by ‘non-locals’ in the Chalcolithic/Early Bronze Age. This stands in contrast to the nearby Early Neolithic portal tomb of Poul nabrone where only one individual (of 17 analysed) appears to be an ‘outsider’. Our results suggest that, even within a small region, mobility and landscape use may have differed significantly within the Neolithic and also between the Neolithic and the Chalcolithic/Early Bronze Age.

1. Introduction

Funerary practices in the Irish Neolithic included the placement of both uncremated and cremated human remains in mortuary monuments, including court tombs. These monuments were constructed in the earlier Neolithic (from c. 3750 cal. BC), but use could have continued for centuries during the Neolithic and they were also sometimes re-used in the Chalcolithic (c. 2450–2150 BCE) and the Early Bronze Age (c. 2150–1500 BCE). Use and re-use involved both cremation and inhumation (Jones et al., 2015; Schulting et al., 2012). The reasons behind the choice of one funerary rite over the other are poorly understood. One possibility is that the cremated human bone represents only token deposits brought to the site from cremations that took place elsewhere, while non-cremated human remains represent the local dead. Given the long use-histories of some court tombs, might the occurrence of both practices within a single tomb reflect a diachronic shift in funerary rites?

In this paper, carbon, oxygen and strontium isotope ratios, strontium concentrations, radiocarbon dating, and infrared analyses are applied to address these questions of human mobility and landscape use, funerary practice and tomb re-use at the earlier Neolithic court tomb at Parknabinnia, Co. Clare. We analysed both cremated bone and unburnt tooth enamel to investigate the possibility whether the former were part of token deposits brought to the monument from other locations. If so, we might expect their strontium isotope results to reflect a wider variety of lithologies than seen in the unburnt enamel, which could represent the deceased of the local community. Our results are compared to those previously published on enamel from the nearby Early Neolithic portal tomb at Poul nabrone, Co. Clare (Ditchfield, 2014; Kador, 2010; Kador et al., 2014).

* Corresponding author.
E-mail address: christophe.snoeck@vub.be (C. Snoeck)

https://doi.org/10.1016/j.jasrep.2020.102214
Received 30 August 2019; Received in revised form 21 December 2019; Accepted 11 January 2020
Available online xxx
The skeletal tissue of choice in C, O and Sr isotope studies is dental enamel, since this has been shown to be far more resistant to diagenesis than either dentine or bone (Tuross et al., 1989; Budd et al., 2000; Hoppe et al., 2003; Lee-Thorp & Sponheimer, 2003). Recent experimental work, however, has demonstrated that calcined bone, because of its substantially greater crystallinity and thus resistance to external exchanges, also provides a reliable substrate for strontium isotope analyses (Harwig et al., 2014; Snoeck et al., 2015). Carbon and oxygen isotopes, however, are heavily altered by the high temperatures reached during cremation, as discussed further below, but can still be used to investigate aspects of the cremation ritual. These observations open up new possibilities not only for Irish prehistoric archaeology (Snoeck et al., 2016a), but for other periods and places as well (e.g. Snoeck et al., 2018).

1.1. Strontium isotope and concentration analyses

Two isotopes of strontium, ⁸⁶Sr and ⁸⁷Sr, are widely used in mobility studies of humans and fauna. Their ratio (⁸⁷Sr/⁸⁶Sr) varies between different types of bedrock because of the radioactive decay of ⁸⁷Rb, with values ranging from about 0.7 to more than 4.0 due to different geological age, original Rb/Sr content and initial ⁸⁷Sr/⁸⁶Sr (Faure, 1986). After being incorporated into the body through drinking water and the consumption of plants and animals, ⁸⁷Sr/⁸⁶Sr can be measured in bone and teeth to reflect the consumer’s location at the time the tissue in question formed. Measurements on tooth enamel relate to the time during which the tooth crown formed, and so reflect values taken up during infancy through to early adolescence, depending on the tooth measured, from c. 4 months to 2–3 years in the case of the first molar (M1) and from c. 3 to 7 years in the case of the second molar (M2), etc. Bone on the other hand continues to remodel, and so provides information relating to the last decade or more of adult life prior to death (Hedges et al., 2007; Robin & New, 1997).

To study the strontium isotope variations observed in human remains, it is necessary to construct a baseline for the biologically available strontium (BASr) around the site of interest (Bentley, 2006; Evans et al., 2009; 2010). The map of the BASr for Ireland (Snoeck et al., in press) includes a number of samples coming from the Burren and surroundings and can thus be used here to contextualize the strontium isotope results obtained on the human remains. With this map, it is possible to compare the local BASr values to those measured on uncremated enamel and cremated bone and identify individuals who consumed the majority of their food close to or far from the site, following the method described in Snoeck et al. (2016a). In short, individuals having strontium isotope ratios compatible with the BASr values of catchments with a radius up to 5 km will be considered to be ‘locals’. Farmers are likely to grow most of their crops and keep their animals within this range most of the time (Chisholm, 1968; Jones et al., 1999). Individuals are defined as ‘regional’ if they exhibit a strontium isotope ratio consistent with catchments with a radius of 5–20 km and as ‘outliers’ if their strontium isotope ratio is more than two standard deviations from the average BASr value measured for the 20 km radius catchment.

The concentration of elemental strontium [Sr] can provide additional information on origins, as the amount of Sr will vary by geological formation. Once that is controlled for, [Sr] can also inform on the relative importance of plant and animal foods in an individual’s diet (Burton et al., 1999; Sillen and Kavanagh, 1982). This is because of a process of biopurification that results in a reduction in the amount of strontium in animal flesh versus that in plants. Most of the strontium taken up by animals enters the skeleton and so generally does not contribute to the next link in the food chain.

1.2. Carbon and oxygen isotope analyses and infrared measurements

In tooth enamel, carbon isotopes reflect overall sources of dietary carbon (Ambrose and Norr, 1993), while oxygen isotopes primarily reflect drinking water. Following the expected rainfall gradient, oxygen isotopes in groundwaters are more depleted in δ¹⁸O in the east than in the west of Ireland (Darling et al., 2003; Diefendorf and Patterson, 2005). However, because of the high pyre temperatures reached during cremation (ca. 600–900 °C), carbon and oxygen in bone exchange with the surrounding combustion atmosphere and in particular with carbon dioxide released from the fuel. The final isotope composition represents a complex mixture of carbon and oxygen from the endogenous bone mineral and collagen fractions and that contributed by the fuel used for the cremation (e.g. Zazzo et al., 2011; 2013; Snoeck et al., 2014a; 2016b). It is therefore not possible to directly compare carbon and oxygen isotopes from cremated bone and tooth enamel. Nevertheless, in the case of uncremated enamel, it is possible to observe variations in diet and place of origin, and in the case of cremated bone, together with FTIR (Fourier Transform Infrared) spectroscopy, to assess pyre characteristics such as temperature and ventilation (Lebon et al., 2010; Snoeck et al., 2014b; 2016b). Infrared analyses allow, among other things, for the detection of cyanamide, which has been suggested to appear in bone burned under reducing conditions (Zazzo et al., 2013; Snoeck et al., 2014b; 2016b).

1.3. Radiocarbon dating of calcined bone

Twenty years ago, radiocarbon dating of calcined bone (completely white bone burned at temperatures above 650 °C) provided reliable results (Lanting and Brindley, 1998; Lanting et al., 2001). This has been put to good use in a wide range of archaeological contexts, including Neolithic Ireland (Kador et al., 2018; Schulting et al., 2012; 2017). While it is important to keep in mind that the old wood effect might impact on the radiocarbon dates of calcined bone (see Hüls et al., 2010; Zazzo et al., 2011; 2012; Snoeck et al., 2014a), reliable results can still be obtained if one can assume that in most cases the wood used in the pyre will be of approximately contemporary age with the deceased, i.e., on the order of some decades.

1.4. Parknabinnia court tomb and its context

The Parknabinnia court tomb (Cl 153 – Fig. 1) is located on Roughan Hill within an upland limestone region known as the Burren in north-west County Clare on the west coast of Ireland (Fig. 2), an area that seems to have been a particular focus for Neolithic farmers (Jones 2003). The tomb is atypical in that it has a narrow, straight-sided ‘court’ rather than the more usual open court with curving sides, and a short heel-shaped cairn rather than a long, trapezoidal cairn (Jones & Walsh, 1996). These features, however, are shared with other court tombs both in the immediate and wider region and they seem to form a morphologically distinct north Munster type (Jones, 2019). Radiocarbon dates from an initial sample of twelve uncremated human bones suggest that, like many other court tombs across the country, Parknabinnia was probably initially used c. 3700–3570 BC (the earliest date is 3690–3375 cal. BC 95.4% probability; GU–10578; 4785 ± 60 BP), but unusually, it continued to be used, if intermittently, up into the first half of the third millennium (GU–10575; 4195 ± 55 BP; 2905–2620 cal. BC) (Schulting et al., 2012). As part of the current project, another two radiocarbon dates were obtained for two of the four cremated bone fragments on which isotope analyses were carried out (see below).

The skeletal remains from Parknabinnia were recovered from the tomb’s two chambers, both of which were partially filled with a ma-
1.5. Geology, palaeoenvironment, and archaeology of the Burren and surrounding region

In order to interpret the strontium isotope results from Parknabinnia, it is important to understand the region’s geological, landscape, and human histories. The site is situated on Carboniferous limestone, while Carboniferous shale and sandstone occurs less than 5 km to the west, with older Silurian and Upper-Devonian formations to the east and south-east in the Slieve Aughty Mountains (Geological Survey of Ireland). The soils on Roughan Hill today are thin rendzinas (Finch, 1971) with bare bedrock exposed in places, but they are nevertheless more developed than in many parts of the Burren. Micromorphological analysis of the sediments underlying the Parknabinnia court tomb indicated the pre-tomb presence of rendzinas and a clay-rich soil that was probably developed, in part, from glacial drift (Lewis, 2003).

There is of course the possibility of soil change since the Neolithic on the Burren, which is now a karstic landscape with limited and fragmentary pockets of soil development (Drew, 1982, 1983, 2001; Drew & Treacy, 2014). In the past these may have been more extensive, and would have included shale and granite-bearing soils deriving from Co. Galway to the north, via glacial movement (Moles & Moles, 2002). These materials would be expected to have higher $^{87}\text{Sr}/^{86}\text{Sr}$ signatures than the Carboniferous limestone. Analyses of pollen cores from the Burren and its immediate surrounds indicate changes in the vegetation that are probably related to changes in soil cover, beginning with initial clearances of the original pine and hazel forest by Neolithic farmers in the earlier 4th millennium BC (Crabtree, 1982; Jelicic & O’Connell, 1992; Lamb & Thompson, 2005; O’Connell & Molloy, 2001; Watts, 1984).

The palaeoenvironmental evidence, together with the distribution of known Neolithic monuments, suggests a marked preference for well-drained limestone substrates. A core area of Neolithic settlement is present in the south-east Burren with other, possibly less dense, occupation to the west on the Atlantic coast, to the north around the inner shores of Galway Bay, and to the east across the lower-lying limestone of east Clare and west Tipperary (De Valera & Ó Nualláin, 1961; 1972; 1982). In contrast, only limited archaeological evidence of Neolithic settlement exists on the poorly drained sandstone and shale south-west of the Burren, although there is a possible court tomb (CI 50) located in this area, where the small Moy River meets the Atlantic (De Valera and Ó Nualláin, 1961). While the preference for siting Neolithic monuments on limestone is clear, there also appears to be a preference for geological/environmental boundaries. This may reflect economies that utilized ecotonal environments and can be seen in the concentration of Neolithic monuments near the southern edge of the Burren where it borders sandstone and shale-derived soils and also in the siting of the east Clare monuments which are within 3–5 km of the contrasting geological formations of the Slieve Bernagh and Slieve Aughty mountains (De Valera and Ó Nualláin, 1961).

Although not particularly abundant, evidence for the spatial distribution of Neolithic settlement other than megalithic tombs does seem to be consistent with the monument distributions, which show a particular focus on the southern Burren and lower levels of activity elsewhere (Hull & Comber, 2011; Jones, 2003). This is important in terms of linking mortuary and settlement locations, such that the former can be used as a reasonable proxy for the latter (cf. Cooney, 1988; 1983). This impression is reinforced by pre-development work in advance of pipelines and roads passing through the region but avoiding the Burren. Although there are likely sampling biases in these studies, the low number of sites and features pre-dating the Chalcolithic encountered on these projects is striking (Delaney et al., 2012; Grogan et al., 2007; Hull & Taylor, 2010).

In the subsequent Chalcolithic and Early Bronze Age periods, areas which had previously witnessed Neolithic activity seem to become par-
2. Materials and methods

2.1. Samples

Only a small number of calcined bone fragments (c. 50 identifiable as human, with a larger number of small unidentified fragments; Beckett, 2005a: 227) were encountered in the excavations, and are insufficient in weight to represent even a single individual. The assumption is, then, that these are token deposits from an unknown number of cremations carried out elsewhere. Uncremated teeth, all isolated specimens, were also limited in number. Here, four enamel (T) and four cremated bone samples (B) were selected for infrared, strontium, carbon and oxygen isotope analyses (Table 1). Two cremated bone samples (B1 and B2) were selected for radiocarbon dating.

Three cremated bone and two enamel samples came from Chamber 1, while the other two enamel samples and one cremated bone sample came from Chamber 2 (Fig. 1). One of the cremated bone samples was analysed in triplicate (B3a-c). Based on the stratigraphic evidence and their state of attrition, T3 and T4 (slightly worn, exposing dentine) could be from the same individual, as could T1 and T2 (minimally worn, with no dentine exposure). The calcined bone fragments are assumed to belong to different individuals than those represented by the teeth, since cremation would not leave these unaffected. While B1 and B2 were found in the same context, radiocarbon dating shows that they represent two distinct individuals, both post-dating the Neolithic. The demonstrable problems with stratigraphic integrity make it difficult to determine the number of individuals represented. At minimum, there must be four individuals: two uncremated and two cremated. We return to this below.

2.2. Analytical procedures and definition of ‘local’

Details on the various analytical procedures and the geographic assignment of each individual can be found in Supplementary Information.

Table 1

<table>
<thead>
<tr>
<th>Find</th>
<th>Chamber</th>
<th>Context</th>
<th>Element</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1_986.01</td>
<td>1</td>
<td>443</td>
<td>skull</td>
<td>/</td>
</tr>
<tr>
<td>B2_1018.01</td>
<td>1</td>
<td>443</td>
<td>skull</td>
<td>/</td>
</tr>
<tr>
<td>B3_1959.02</td>
<td>1</td>
<td>582</td>
<td>skull</td>
<td>/</td>
</tr>
<tr>
<td>T1_1728.04</td>
<td>565</td>
<td>skull</td>
<td>lower MI</td>
<td>M2, minimal wear; root fully formed</td>
</tr>
<tr>
<td>T2_1908.11</td>
<td>582</td>
<td>skull</td>
<td>upper MI</td>
<td>M1, minimal wear; root fully formed</td>
</tr>
<tr>
<td>B4_1433.01</td>
<td>2</td>
<td>533</td>
<td>skull incisor</td>
<td>/</td>
</tr>
<tr>
<td>T3_1952.01</td>
<td>584</td>
<td>skull</td>
<td>incisor</td>
<td>lightly worn, dentine exposed</td>
</tr>
<tr>
<td>T4_2099.01</td>
<td>586</td>
<td>lower M1</td>
<td>/</td>
<td>lightly worn, exposing dentine</td>
</tr>
</tbody>
</table>

Fig. 2. BASr isoscape of the region around Parknahinia and Poul nabrone (a = median; and b = median absolute deviation) based on Snoeck et al., (in press). A thin coastal strip (of ca. 50 m width) is expected to exhibit values near 0.7092 due to the sea-spray effect (Snoeck, 2014).
3. Results

3.1. Biologically available strontium (BASr) in the Burren and surroundings

The isoscape of the biologically available strontium for Ireland (Snoeck et al., in press) shows that only one geological area within 75 km of Parknabinnia presents lower strontium isotope values relative to the local BASr range (0.7086 ± 0.0004 – Table 2): Carboniferous volcanics and minor intrusions to the south-east (Fig. 2). However, several geological formations present higher 87Sr/86Sr values: Upper Devonian to Lower Carboniferous Old Red Sandstone of the Slieve Bearnagh mountains east of Parknabinnia; the Ordovician granite formation in Connemara to the north; and the Carboniferous sandstone and shales of west Clare, etc. To evaluate their possible contribution to the strontium isotope values of the studied individuals, average BASr values for 1, 5, 10 and 20 km catchments were calculated for both Parknabinnia and Poulnabrone (Table 2).

3.2. Radiocarbon dating results

Two cremated bone fragments were radiocarbon dated (B1 and B2). Stratigraphically, these were incorporated into Neolithic deposits, but the results demonstrate that they are much later intrusions. B1 returned an early Chalcolithic date (U/BA-31468: 2456 – 2415 cal. BC) while B2 is more recent, falling within the Early Bronze Age (U/BA-32467: cal. 1971 – 1687 BCE) (Table 3). Both dates are several centuries younger than the latest dates on uncremated bone from the court tomb and indicate a previously unknown re-use of the tomb on at least two occasions (Fig. 3).

3.3. Infrared, elemental and isotope results

The infrared and carbon isotope results (Table 4) show that cremated bone samples B1 and B4 differ substantially from B2 and B3, having lower carbonate content (BPI – Type B Carbonate to Phosphate Index) and higher cyanamide content (CN/P). Furthermore, B1 and B4 are more enriched in 13C than B2 and B3. B2 also has higher δ18O values compared to the other samples (Fig. 4a). The variability observed in the δ13C and δ18O values of the three B3 samples is not altogether surprising, as this depends mainly on the composition of the combustion atmosphere during cremation, which will be highly variable (Snoeck et al., 2014a; Snoeck et al., 2016b). Even taking into account the large variability observed in B3, the δ13C values of B1 and B4 are still distinguished from B2 and B3.

The tooth enamel samples have similar carbon and oxygen isotope ratios (Fig. 4b). The δ13C values are typical of a terrestrial C3 plant-based diet (Zazzo et al., 2010). As would be expected, the oxygen isotope values are all enriched in 18O compared to those observed for human and faunal remains from Dublin in Ireland’s east coast (Knudson et al., 2012).

The 87Sr/86Sr results clearly fall into three groups: one (B1 and B4 – Chamber 1 and 2 respectively) with ratios higher than 0.7112; a second (B2, B3, T1 and T2 – all Chamber 1) with intermediate ratios from 0.7096 to 0.7102; and a final group (T3 and T4 – both Chamber 2) with lower ratios of 0.7086/7 (Fig. 5). As would be expected, the results obtained for the three sub-samples (B3a, B3b and B3c) of the same calcined bone fragment exhibit limited variation in 87Sr/86Sr values (0.0004). Once again, B1 and B4 differ from B2 and B3.

Combining the strontium isotope ratios with strontium concentrations further highlights the differences between B1/B4 and B2/B3 as well as between T1/T2 and T3/T4. Two sub-samples of B3 (a and c) returned identical concentrations. The similar isotope ratios and concentrations measured for B1/B4, B2/B3 and T3/T4 suggest that each group originated from a similar place and had a similar dietary plant/meat ratio. T1 and T2, however, present different strontium isotope ratios and concentrations. Strong positive linear correlations are observed for both the tooth enamel (r² = 0.99, p = 0.003) and calcined bone samples (r² = 0.78, p = 0.116). While the correlation for the enamel is statistically significant, both results should be taken as provisional given the small sample sizes, especially as it is difficult to be certain of the number of individuals represented by these samples.

4. Discussion

The present project sought to compare 87Sr/86Sr values for uncremated dental enamel and cremated bone from Parknabinnia, testing the hypothesis that the former would be more likely to represent individuals from the immediate locality, while the latter might represent the token remains of individuals from further afield, since cremation would facilitate their transportation. The results suggest that the situation is more complex than this, particularly since radiocarbon dates reveal that at least some, and perhaps all, of the cremated bone post-dates the Neolithic use of the tomb. This highlights the need for caution when material from combed deposits is being analysed. Without the dates, the interpretation of the 87Sr/86Sr results would have been very different, offering some support for the hypothesised difference between the subsistence catchments represented by uncremated and cremated human remains.

Two enamel samples (T3 and T4) from Chamber 2 have 87Sr/86Sr values consistent with the BASr range for the immediate vicinity of the site, as well as its 1 and 5 km catchments (together defined as ‘local’). The two other enamel and two cremated bone samples (defined as ‘regional individuals’ and all from Chamber 1) have strontium isotope ratios intermediate between the local BASr value and the adjacent Carboniferous sandstone and shale BASr value located 2–3 km to the west. This falls outside of the ‘local’ range because of the small proportion of the more radiogenic lithological formations contained within the 0–5 km catchment. The last two samples (B1 and B4) can be clearly characterised as ‘outliers’ (see SI), having values above 0.7110, consistent with the Slieve Aughty uplands to the east and south-east (Fig. 7). The strontium isotope ratios of T3 and T4 (0.7087–0.7088) suggest that the limestone 87Sr/86Sr signal of the Burren was only minimally affected by surficial glacial soils with significantly different values, and hence, at least some of the individuals represented by the calcined bone are likely to be ‘outliers’. While it is relatively straightforward to evaluate the possible place of origin of T3 and T4 (‘locals’), and the later lives of B1 and B4 (‘outliers’ probably from the Slieve Aughty uplands), the situation with the remaining four samples (T1, T2, B2 and B3) requires further discussion. Indeed, their 87Sr/86Sr values could be the result of

Table 2

BASr for the outcrop on which each site lies (‘local BASr’) and the average BASr values calculated for 1, 5, 10 and 20 km catchments (±2SD); the values between brackets represent the number of different geological formations included in the calculation of the average BASr.

<table>
<thead>
<tr>
<th>Site</th>
<th>BASr</th>
<th>1 km BASr</th>
<th>5 km BASr</th>
<th>10 km BASr</th>
<th>20 km BASr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poulnabrone</td>
<td>0.7086 ± 0.0004 (1)</td>
<td></td>
<td>0.7089 ± 0.0004 (2)</td>
<td>0.7090 ± 0.0005 (2)</td>
<td>0.7091 ± 0.0006 (2)</td>
</tr>
<tr>
<td>Parknabinnia</td>
<td></td>
<td></td>
<td>0.7089 ± 0.0004 (2)</td>
<td>0.7091 ± 0.0006 (2)</td>
<td>0.7093 ± 0.0006 (3)</td>
</tr>
</tbody>
</table>
of consuming a combination of local resources and resources originating from the Slieve Audny mountains (mudstone/sandstone), and/or those of the adjacent shale and sandstone region of west Clare.

The provisional linear correlation observed in the strontium concentration versus strontium isotope ratios of the tooth enamel fragments (Fig. 6) suggests two main sources of strontium, with different strontium-to-calcium ratios. The individual or individuals represented by T3 and T4 clearly consumed foods locally, while T1 and T2 moved between a region with higher Sr/Ca ratios and \(^{87}\mathrm{Sr}/^{86}\mathrm{Sr} \) values reflecting the local limestone. The difference in strontium isotope ratio and concentration for T1 and T2 suggests that these represent two distinct individuals, and that T2 either consumed more food with a higher Sr/Ca ratio than T1, or, those resources were obtained from a geological context with a higher Sr/Ca ratio.

The fact that B1 and B4 differ in infrared and in \(\delta^{13}\mathrm{C} \) and \(^{87}\mathrm{Sr}/^{86}\mathrm{Sr} \) values compared to B2 and B3 suggests that the former two derive from a different region. Incidentally, this, together with non-overlapping radiocarbon dates, also indicates that B1 and B2 are distinct individuals as both are cranial fragments in which we would expect to see similar turnover rates. Furthermore, the low \(\delta^{13}\mathrm{C} \) values and the presence of cyanamide in B1 and B4 could indicate that these bones were cremated in different conditions compared to B2 and B3 (Zazzo et al., 2013; Snoeck et al., 2014b), possibly on smaller and/or less well ventilated pyres, where low \(O_2 \) facilitates the incorporation of cyanamide (Snoeck et al., 2016b). Considering all of the above, we argue that at least five individuals are represented: T1, T2, T3/T4, B1/B4 and B2/B3. Fig. 7

4.1. Parknabinnia and Poulnabrone

While there are limited strontium isotope data available to compare with Parknabinnia, the nearby portal tomb of Poulnabrone, Co. Clare, situated on the same geological formations, provides a \(^{87}\mathrm{Sr}/^{86}\mathrm{Sr} \) dataset on cremated enamel (Ditchfield, 2014; Kador, 2010; Kador et al., 2014). The onset of burial activity begins earlier here than at Parknabinnia by one to two centuries, but the two sites overlap in use (Schulting, 2014). All but one individual at Poulnabrone exhibit values between 0.7082 and 0.7092, consistent with the local BASr value (0.7086 ± 0.0004; \(n = 17 \)) as well as with those calculated for 1, 5, 10 and 20 km catchments, suggesting that most individuals interred at the site originated in this part of north-west Clare. The single ‘non-local’ (‘regional’ in the present framework) individual at Poulnabrone has a value of 0.7102, similar to those from chamber 1 at Parknabinnia.

Table 3

<table>
<thead>
<tr>
<th>Find no.</th>
<th>Lab code</th>
<th>Element</th>
<th>(^{14}\mathrm{C}) yr BP</th>
<th>cal BC (95%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1_986.01</td>
<td>UBA-31468</td>
<td>skull frag</td>
<td>3824 ± 34</td>
<td>2456 – 2415 BCE</td>
</tr>
<tr>
<td>B2_1018.01</td>
<td>UBA-32467</td>
<td>skull frag</td>
<td>3502 ± 55</td>
<td>1971 – 1687 BCE</td>
</tr>
</tbody>
</table>

Table 4

<table>
<thead>
<tr>
<th>BPI</th>
<th>IRSF</th>
<th>CN/P</th>
<th>(^{87}\mathrm{Sr}/^{86}\mathrm{Sr}) (± 2σ)</th>
<th>[Sr] (ppm)</th>
<th>(\delta^{13}\mathrm{C}_{\text{VPDB}}) (%)</th>
<th>(\delta^{18}\mathrm{O}_{\text{VPDB}}) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>0.21</td>
<td>4.17</td>
<td>0.71166 ± 10</td>
<td>47</td>
<td>–20.8</td>
<td>–15.3</td>
</tr>
<tr>
<td>B2</td>
<td>0.49</td>
<td>3.76</td>
<td>0.709881 ± 08</td>
<td>39</td>
<td>–28.4</td>
<td>–13.6</td>
</tr>
<tr>
<td>B3a</td>
<td>0.40</td>
<td>4.62</td>
<td>0.710134 ± 07</td>
<td>37</td>
<td>–25.3</td>
<td>–16.3</td>
</tr>
<tr>
<td>B3b</td>
<td>0.45</td>
<td>4.69</td>
<td>0.709818 ± 07</td>
<td>*</td>
<td>–26.1</td>
<td>–15.2</td>
</tr>
<tr>
<td>B3c</td>
<td>0.48</td>
<td>4.36</td>
<td>0.710212 ± 10</td>
<td>36</td>
<td>–28.0</td>
<td>–15.0</td>
</tr>
<tr>
<td>B4</td>
<td>0.18</td>
<td>4.29</td>
<td>0.711371 ± 08</td>
<td>44</td>
<td>–18.0</td>
<td>–14.9</td>
</tr>
<tr>
<td>T1</td>
<td>0.53</td>
<td>3.52</td>
<td>0.709612 ± 11</td>
<td>81</td>
<td>–16.2</td>
<td>–2.9</td>
</tr>
<tr>
<td>T2</td>
<td>0.50</td>
<td>3.47</td>
<td>0.710142 ± 07</td>
<td>98</td>
<td>–16.7</td>
<td>–3.2</td>
</tr>
<tr>
<td>T3</td>
<td>0.60</td>
<td>3.40</td>
<td>0.708883 ± 07</td>
<td>50</td>
<td>–16.7</td>
<td>–2.8</td>
</tr>
<tr>
<td>T4</td>
<td>0.56</td>
<td>3.37</td>
<td>0.708728 ± 08</td>
<td>48</td>
<td>–16.9</td>
<td>–2.2</td>
</tr>
</tbody>
</table>

*Insufficient material remaining from B3b for strontium concentration measurement.
(T1, T2, B2, B3), and could have consumed foods from the limestone/shale geological divide to the west or from the Slieve Aughtry mountains. This individual has been directly dated to the earlier Neolithic (Ditchfield, 2014: Table 4.38). The evidence for only one ‘non-local’ in 17 individuals analysed (6%) at Poulnabrone (Fig. 8), contrasts with Parknabinnia where only T3/T4 is consistent with the local BASr.

The calcined remains at Parknabinnia could have been brought to the site as token deposits after cremation at a more distant location during the Chalcolithic and Early Bronze Age re-use of the tomb, which is in line with the observation that the cyanamide content and carbon isotope ratios are highly variable, and also with the small amount of material recovered. In contrast, it appears that inhumation of local and regional individuals characterized the Neolithic deposits. It is also possible that the differing local and regional 87Sr/86Sr values obtained from the tooth samples indicate that different subsets of the local population at Parknabinnia and Poulnabrone used different areas of the landscape as their fields and pastures in the Neolithic (e.g., Bogaard et al., 2011).

Given that the strontium isotope analysis of cremated bone is relatively new, few data are available for comparison; nevertheless, cremated bone from northern Ireland dating to the Neolithic and Bronze Age also showed a majority of ‘non-local’ individuals with nine out of fifteen samples (60%) showing a ‘regional’ or ‘outsider’ signal (Snoeck et al., 2016a) which is consistent with the results obtained for Parknabinnia where all four calcined samples can be classified as ‘non-local’ (‘regional’ or ‘outsider’).

5. Conclusion

Taking advantage of the recent demonstration that cremated bone provides a reliable substrate for strontium isotope mobility studies, we investigated human mobility represented by calcined and uncremated human remains at the earlier Neolithic court tomb of Parknabinnia on the Burren of Co. Clare, western Ireland. At both Parknabinnia and Poulnabrone, uncremated tooth samples belong to local or regional individuals, while calcined bone from Parknabinnia belongs to regional individuals or to individuals from other parts of Ireland or further afield. The CN/P and the δ^{13}C values obtained on the cremated bone also highlight the possibility that different pyre settings were used, suggesting that these remains may have been brought to Parknabinnia after cremation elsewhere. Both calcined bone samples that were radiocarbon dated in this study (two out of the four samples subjected to strontium isotope analysis) dated to the Chalcolithic and the Early Bronze Age, whether that all the cremated material post-dates the Neolithic use of the tomb is possible but cannot be assumed. However, leaving the calcined bones aside, there is still a contrast with Poulnabrone in that two out of three (or four) individuals represented by the uncremated tooth samples from Parknabinnia belong to regional individuals.

Many excavated court and portal tombs have been found to contain both cremated and uncremated human remains; some, such as Creggan-devesky, Co. Tyrone, held only cremated remains, though this may be because of differential survival. Further studies incorporating this material will no doubt provide new data for the investigation of mobility not only in the Irish Neolithic, but also in the Chalcolithic and Early Bronze Age (periods that saw the re-use of both monument types and the continued use of both funerary rites), as well as new insights into the reasons underlying the two funerary rites. In this regard, the finding that the cremated remains at Parknabinnia appear to represent Chalcolithic and Early Bronze Age individuals spending most of their final years away from the site is of particular interest. The extent to which it can be extended to other sites remains to be determined.

The results of this study clearly show that, by combining a wide range of analytical methods, it is possible to better evaluate the minimum number of individuals, ascertain the re-use of a Neolithic monu-
CRediT authorship contribution statement

Christophe Snoeck: Conceptualization, Formal analysis, Funding acquisition, Methodology, Writing - original draft, Writing - review & editing. Carleton Jones: Conceptualization, Writing - original draft, Writing - review & editing. John Pouncett: Methodology, Software, Visualization, Writing - original draft, Writing - review & editing. Steven Goderis: Formal analysis, Methodology, Writing - review & editing. Philippe Claeyts: Formal analysis, Funding acquisition, Writing - review & editing. Nadine Mattielli: Formal analysis, Funding acquisition, Writing - review & editing. Antoine Zasso: Formal analysis, Methodology, Writing - review & editing. Paula J. Reimer: Formal analysis, Methodology, Writing - review & editing. Julia A. Lee-Thorp: Conceptualization, Funding acquisition, Writing - original draft, Writing - review & editing. Rick J. Schulting: Conceptualization, Funding acquisition, Writing - review & editing.

Uncited references

Acknowledgments

This research was made possible by the financial support of the British Academy (British Academy grant SG130690). ‘Coming to Knowth’, the Quaternary Research Association, and the generous support of the Philippe Wiener-Maurice Anspach Foundation (http://fwa.ulg.ac.be) towards the DPhil of C.S. The VUB and VUB Strategic Research fund are thanked for their financial support for analyses; the Research Foundation – Flanders (FWO) is thanked for C.S.’s and S.G.’s postdoctoral fellowships. We thank D. Fiorillo and J. Ughetto (SSMIM) for their help with the isotope measurements at the Muséum national d’Histoire naturelle, Paris. W. Debourg and J. de Jong from the G-Time Laboratory (Géochimie: Traçage isotopique, minéral et élémentaire) of the Université Libre de Bruxelles (Belgium) are acknowledged for their help with the strontium isotope analyses by MC-ICP-MS. We are grateful to the National Museum of Ireland for permitting the analysis of the Parkabbinnia material. We would like to thank the two anonymous reviewers for their time and useful comments.

Appendix A. Supplementary data

 Supplementary data to this article can be found online at https://doi.org/10.1016/j.jasrep.2020.102214.
Fig. 7. Geographic assignments of ‘non-local’ samples B1 (a) and B4 (b), showing the probability distribution for their likely origins, using a 5 km local mean for the BaSr. Probability distributions were calculated using a uniform distribution as a non-informative prior and a normal distribution for the sampling probability distribution (after Pouncett, in press). The parameters of the normal distribution were estimated using the sample value (μ), and the sum of the sampling and measurement errors (σ).

Fig. 8. (a) Strontium isotope results of uncremated enamel samples from Poulnabrone (Kador, 2010; Kador, 2014; Ditchfield, 2014); the grey shaded areas correspond to (b) the average BaSr values calculated for different catchments (± 2SD).

References

