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We present a numerical model for uniformly rotating superfluid neutron stars in a fully general relativistic
framework with, for the first time, realistic microphysics including entrainment. We compute stationary and
axisymmetric configurations of neutron stars composed of two fluids, namely superfluid neutrons and
charged particles (protons and electrons), rotating with different rates around a common axis. Both fluids are
coupled by entrainment, a nondissipative interaction which in the case of a nonvanishing relative velocity
between the fluids causes the fluid momenta to be not aligned with the respective fluid velocities. We extend
the formalism put forth by Comer and Joynt in order to calculate the equation of state (EOS) and entrainment
parameters for an arbitrary relative velocity as far as superfluidity is maintained. The resulting entrainment
matrix fulfills all necessary sum rules, and in the limit of small relative velocity our results agree with Fermi
liquid theory ones derived to lowest order in the velocity. This formalism is applied to two new nuclear
equations of state which are implemented in the numerical model, which enables us to obtain precise
equilibrium configurations. The resulting density profiles and moments of inertia are discussed employing
both EOSs, showing the impact of entrainment and the dependence on the EOS.
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I. INTRODUCTION

Spanning over fifteen orders of magnitude in density, the
composition of a neutron star is quite complex [1]. Migdal
[2] first suggested the possibility that superfluidity could
appear in neutron star matter at sufficiently low temper-
ature, through the formation of neutron Cooper pairs. From
detailed microscopic calculations (e.g. [3]), the superfluid
critical temperature has been estimated to be of the order of
∼109–1010 K. As a neutron star typically drops below this
temperature within a few years after its birth [4], it is
supposed that neutrons form a superfluid in the core and in
the inner crust of the star. Protons are likely to form a
superconducting fluid in the core, too.
The presence of superfluid matter in the interior of

neutron stars is strongly supported by the qualitative
success of superfluid models [5–7] to explain the observed
features of pulsar glitches and, especially, the very long
relaxation time scales [8,9] (see [10] for a review on models
for pulsar glitches). The recent direct observations of the
fast cooling of the young neutron star in the Cassiopeia A
supernova remnant [11,12] also provide important evidence
for nucleon superfluidity in the core of neutron stars
[12,13]. Moreover, the quasiperiodic oscillations detected
in the X-ray flux of giant flares from some soft gamma-ray
repeaters (see, for instance, [14]) have been interpreted as
the signature of superfluid magnetoelastic oscillations [15],

bringing thus a new, albeit less convincing, observational
support for superfluidity.
Due to superfluidity, the matter inside the star has to be

described as a mixture of several species with different
dynamics. A first fluid is hypothesized to be made of
superfluid neutrons in the crust and the outer core, which
can “freely” flow through the other components.On the other
hand, protons, nuclei in the crust, electrons and possibly
muons are locked together onvery short time scales by short-
range electromagnetic interactions, forming a fluid of
charged particles, called here simply “protons.” Being
coupled to the magnetosphere through magnetic effects, this
fluid is rotating at the observed angular velocity of the star.
The above statements correspond to the so-called two-fluid
model for the interior of neutron stars [16]. Although rotating
around a common axis with (possibly) different angular
velocities, neutron and proton fluids do not strictly flow
independently, but rather are coupled through entrainment.
While in the core this nondissipative phenomenon arises
from the strong interactions between neutrons and protons
[17,18], entrainment in the inner crust comes from Bragg
scattering of dripped neutrons by nuclei [19,20], leading to
much more important effects. Entrainment is an important
ingredient in the understanding of oscillations of superfluid
neutron stars (acting on both frequency and damping rate
[21,22]) and pulsar glitches [23,24].
Based on the elegant formalism developed by Carter

et al. [25–27], much progress has been made in the past few
years to obtain realistic equilibrium configurations of two-
fluid neutron stars in a fully relativistic framework. These
models are not only interesting for the study of stationary
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properties of superfluid neutron stars, but can also be useful
as unperturbed initial states for dynamical simulations of
neutron star oscillations or collapse to black holes. In [28],
Andersson and Comer computed for the first time sta-
tionary configurations in the slow-rotation approximation,
using an analytic equation of state (EOS). This work was
then extended by Comer and Joynt [29,30] who considered
a simplified nuclear EOS model, including entrainment
effects. More recently, several improvements were made to
obtain more realistic EOSs [31–33], including in particular
the correct interaction for isospin asymmetric neutron star
matter. Meanwhile, Prix et al. [34] have built the first
complete numerical solutions of stationary rotating super-
fluid neutron stars, for any rotation rates. Going beyond the
slow-rotation approximation is particularly interesting as
several pulsars are observed to be rapidly rotating, with
angular frequencies up to 716 Hz [35], corresponding to a
surface velocity at the equator of the order of ∼c=6
(assuming R ∼ 12 km). However, only polytropic EOSs
were considered in Prix et al. [34], for better numerical
convergence.
Here, we present realistic stationary and axisymmetric

configurations of rotating superfluid neutron stars, in a full
general relativistic framework, extending the work by Prix
et al. [34] by implementing two new realistic EOSs. These
are density-dependent relativistic mean-field models
[36,37] that we adapted to a system of two fluids coupled
by entrainment. Our derivation of the EOS with entrain-
ment follows the spirit of [29], with the difference that we
choose the neutron rest frame instead of the neutron zero-
momentum frame for our calculations. This allows us to
compute, in a very convenient way, the EOS to any order in
the spatial velocity of the proton current, i.e. the relative
velocity between the two fluids. In contrast to the results of
[29,32], the resulting entrainment matrix fulfills all rela-
tions required by spacetime symmetries, and the slow-
velocity approximation is in agreement with the result of
[31] derived from relativistic Fermi liquid theory to lowest
order in the relative velocity.
The paper is organized as follows. InSec. II,wepresent the

major assumptions employed in our model and we recall the
main features of two-fluid hydrodynamics. In Sec. III, we
explain our formalism to calculate the EOSwith entrainment
and describe the two new EOSs we use to compute
equilibrium configurations. These configurations are then
presented in Sec. IV. Finally, a discussion of this work is
given in Sec. V. Throughout this paper, gravitational units,
G ¼ c ¼ ℏ ¼ 1, are adopted. The signature of the spacetime
metric is given by ð−;þ;þ;þÞ. Greek indices α; β;…;
μ; ν;… are used to refer to space and time components
f0; 1; 2; 3gof a tensor,whereasLatin indices i; j;… stand for
spatial terms f1; 2; 3g only. Einstein summation convention
is used on repeated indices, except when the capital lettersX
and Y referring to the two fluids are employed. Isospin

vectors are denoted by an arrow, e.g. ~δ.

II. TWO-FLUID MODEL

A. Global framework

As a simplified composition, we only consider a uni-
form mixture of neutrons, protons and electrons. Such a
composition is likely to be found in the outer core of
neutron stars, corresponding to densities ranging from
∼ρ0=2 to ∼2ρ0 − 3ρ0, where ρ0 ≃ 2.8 × 104 g cm−3

denotes the saturation density of infinite symmetric
nuclear matter. Here, we simply assume that it remains
the same at all densities. Note that muons could be
included straightforwardly in our model, but are not
expected to strongly affect the global properties of the
star. The composition of the inner core being still poorly
known, we do not consider the possible appearance of any
additional particle. Furthermore, the presence of the solid
crust is also neglected. Even though a relativistic descrip-
tion unifying the core and the inner crust within a two-fluid
context exists [38–40], computing realistic configurations
would require a suited EOS, which is beyond the scope of
the present work.
Even soon after their birth, typical temperatures of

neutron stars are much smaller than the Fermi energy of
the interior, which can be assumed to be greater than
∼60 MeV (i.e. T ∼ 7 × 1011 K) for a density exceeding the
nuclear one (e.g. [41]), indicating that finite temperature
effects can be neglected on the EOS. In this sense, neutron
stars are cold and can be reasonably well described by a
zero-temperature EOS. Assuming null temperature, all the
neutrons will therefore be in a superfluid state. We assume
in addition that the temperature lies well below the critical
temperature of (neutron) superfluidity, such that temper-
ature effects on entrainment can be neglected, too; see [42]
for a discussion.
In our model, the magnetic field of the star is only

considered by requiring that the electromagnetically charged
particles are comoving (see Sec. I).1 Consequently, our
system shall be described by two fluids: superfluid neutrons,
labeled by “n,” and “normal” matter in form of protons and
electrons, labeled by “p.” The effect of magnetic field on the
EOS is, in any case, expected to be negligible and its
influence on the global structure very small, except perhaps
for some extreme magnetars [45]. Including the magnetic
field in our model, which would require a better under-
standing of proton superconductivity, is thus left for future
work.
In our study of equilibrium configurations, we neglect

any kind of dissipating mechanisms, which would prevent
the star from being in a stationary state. Consequently, we
do not consider any departure from pressure isotropy due to
crustal and magnetic stresses or from heat flow (see above).

1Strictly speaking, this assumption is only valid on time scales
larger than a few seconds [43]. This question has been recently
discussed by Glampedakis and Lasky [44].
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Possible transfer of matter between the fluids, correspond-
ing to the so-called transfusive process (see [27] and Sec. II
C), is not taken into account. We assume the viscosity of
charged particles to be very small, so that we can
reasonably neglect it. Moreover, being superfluid, the
vorticity of the neutrons is confined to vortex lines, whose
interactions with the surrounding medium leads to dis-
sipative processes, such as pinning or mutual friction
forces, which are not considered here. We thus make the
assumption that the stationary configurations of a super-
fluid neutron star can accurately be described by two
perfect fluids [41]. Doing so, we do not take the presence
of the superfluid vortices into account in our model. This
assumption only makes sense on scales much larger than
the intervortex spacing—typically, that of a few centimeters
—on which the presence of this array of vortices mimics
rigid-body rotation.
We consider a general relativistic framework, following

Bonazzola et al. [46], and we assume the neutron star
spacetime ðM; gμνÞ to be stationary, axisymmetric and
asymptotically flat. The two symmetries, stationarity and
axisymmetry, are respectively associated with the Killing
vector fields ξμ, timelike at spatial infinity, and χμ, space-
like everywhere and vanishing on the rotation axis of the
star. We choose a spherical-type coordinate system (x0 ¼ t,
x1 ¼ r, x2 ¼ θ, x3 ¼ φ), such that ξμ ¼ ∂μ

t and χμ ¼ ∂μ
φ.

Furthermore, we also assume that the spacetime is circular.
This implies that the energy-momentum tensor Tμν has to
verify conditions given by the generalized Papapetrou
theorem [46]. As long as the interior of neutron stars is
described by perfect fluids, these conditions imply only
purely circular motion around the rotation axis, with
angular velocities Ωn and Ωp. Thus, no convection is
allowed. Choosing quasi-isotropic coordinates, the line
element of a rotating neutron star at equilibrium under
the previous assumptions reads

ds2 ¼ gμνdxμdxν

¼ −N2dt2 þ A2ðdr2 þ r2dθ2Þ
þ B2r2sin2θðdφ − ωdtÞ2 ð1Þ

where gμν denotes the spacetime metric whose components
N, A, B andω are four functions depending only on r and θ.
Finally, we assume both fluids to be rigidly rotating.

Although neutron stars are likely to present differential
rotation at birth, several mechanisms are said to enforce
rigid rotation: magnetic braking suppresses differential
rotation on a time scale of tens of seconds [47]; viscous
dissipation, caused by kinematic shear viscosity, enforces
uniform rotation on a much longer time scale of the order
of years [48]; and turbulence mixing may also suppress
any amount of differential rotation within a few days [49].
So, it seems reasonable to consider Ωp to be uniform.
Nevertheless, one must notice that some amount of

differential rotation is likely to be present when dynamical
time scales are shorter than typical damping time scales, for
instance during glitches or oscillations. For the sake of
simplicity, we also consider that Ωn is uniform, although
the damping mechanisms presented above do not play any
role in a superfluid.

B. Two-fluid hydrodynamics

Our model is based on the covariant formalism devel-
oped by Carter et al. [25–27], who described a systemmade
of two perfect fluids coupled by entrainment in a general
relativistic framework. Here, we recall briefly the main
features of this model; more details can be found in Prix
et al. [34].
Following this approach, the two fluids are described, at

macroscopic scales, with mean 4-velocity fields unμ and
upμ or equivalently with average particle 4-currents nnμ and
npμ. Since dissipative effects are neglected, this system can
be studied in terms of a variational principle based on a
Lagrangian density Λ which depends on the two quantities
nμn and nμp. Λ is commonly referred to as the master
function, because it contains all the information relative
to the local thermodynamic state of the system. From the
covariance requirement, Λ only depends on the three
scalars that can be formed from the particle 4-currents

n2n ¼ −nnμnn μ; n2p ¼ −npμnpμ and x2 ¼ −nnμnpμ:

ð2Þ

Thus, the Lagrangian density can be written as

Λðnnμ; npμÞ ¼ −Eðn2n; n2p; x2Þ; ð3Þ

where E refers to the total energy density of the two-fluid
system, to which we will refer as the “equation of state”
in the following. Using the normalization conditions of
the 4-velocities

gμνunμunν ¼ −1 and gμνupμupν ¼ −1; ð4Þ

the components of the 4-currents read

nnμ ¼ nnunμ and npμ ¼ npupμ; ð5Þ

from which we interpret the quantity nX as the particle
density of the fluid X, as measured in its proper rest frame.
From variations of the Lagrangian density (keeping the

metric fixed), one defines the conjugate momenta pn
μ and

pp
μ as follows:

dΛ ¼ pn
μdnnμ þ pp

μdnpμ: ð6Þ

Using (3), these momenta are given in terms of the
4-currents by
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�
pμ

n

pp
μ

�
¼

�
Knn Knp

Kpn Kpp

��
nnμ
npμ

�
ð7Þ

where KXY is the entrainment matrix [50], whose compo-
nents are defined from the EOS by

Knn ¼ 2

� ∂E
∂n2n

�
np;x

; Kpp ¼ 2

� ∂E
∂n2p

�
nn;x

; ð8Þ

Knp ¼ Kpn ¼
� ∂E
∂x2

�
nn;np

: ð9Þ

Because of the presence of the nonzero off-diagonal term
Knp, the conjugate momentum of a fluid is not simply
proportional to its 4-velocity, but also depends on the
4-velocity of the second fluid. This corresponds to the so-
called entrainment effect.
To describe the difference in the fluid velocities, one

introduces the relative Lorentz factor ΓΔ

ΓΔ ¼ −gμνunμupν ¼
x2

nnnp
; ð10Þ

to which we associate the relative speed Δ via

ΓΔ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Δ2

p : ð11Þ

Δ2 stands for the square of the physical speed of the protons
in the frame of neutrons (25), or the inverse. The EOS (3)
can be seen as a function of both densities and the relative
speed: Eðnn; np;Δ2Þ. The first law of thermodynamics then
reads as

dE ¼ μndnn þ μpdnp þ αdΔ2; ð12Þ

where μn and μp denote neutron and proton chemical
potentials and α is the entrainment. The KXY elements
are expressed as functions of these three conjugate varia-
bles by

Knn ¼ μn

nn
−

2α

n2nΓ2
Δ
; Kpp ¼ μp

np
−

2α

n2pΓ2
Δ
; ð13Þ

Knp ¼ 2α

nnnpΓ3
Δ
: ð14Þ

The energy-momentum tensor Tμν governing a mixture
of two perfect fluids is given by [27]

Tμν ¼ nnμpn
ν þ npμpp

ν þΨgμν; ð15Þ

whereΨ is the generalized pressure of the system, linked to
the EOS through the Gibbs-Duhem relation

Ψðμn; μp;Δ2Þ ¼ −E þ nnμn þ npμp; ð16Þ

from which we get

nn ¼
�∂Ψ
∂μn

�
μp;Δ2

; np ¼
�∂Ψ
∂μp

�
μn;Δ2

; ð17Þ

α ¼ −
� ∂Ψ
∂Δ2

�
μn;μp

: ð18Þ

C. Structure equations

In our study, we take the point of view of the 3þ 1
formalism [51], in which the spacetime M is foliated by a
family ðΣtÞt∈R of spacelike hypersurfaces. Let nμ be the
unit (future-oriented) vector normal to Σt

nμ ¼ −N∇μt ¼
�
1

N
; 0; 0;

ω

N

�
: ð19Þ

As nμ is a unit timelike vector, it can be seen as the
4-velocity of a given observer On, called a Eulerian or
locally nonrotating observer.
In our choice of gauge (1), Einstein equations form a set

of four coupled elliptic partial differential equations for the
metric potentials [46]. Matter source terms involved in
these equations are the energy density E, the momentum
density πμ and the shear tensor Sμν measured by On. These
quantities, which naturally appear in the 3þ 1 decom-
position of the energy-momentum tensor, are defined by

8>><
>>:

E ¼ Tμνnμnν

πμ ¼ −Tρσnργσμ

Sμν ¼ Tρσγ
ρ
μγ

σ
ν

ð20Þ

where γμν is the metric induced by gμν on the spacelike
hypersurface Σt. The matter source terms (20) are functions
of the entrainment matrix coefficients (7), the pressure Ψ,
both densities and the physical velocities measured by
On (23).
The spacetime being circular (see Sec. II A), unμ and upμ

belong to the vector plane generated by the two Killing
vectors ξμ and χμ [46]. The angular velocities of the fluids
as seen by a static observer located at spatial infinity are
defined as follows:

Ωn ¼
unφ

unt
and Ωp ¼

upφ

upt
: ð21Þ

From these relations one defines Γn and Γp, the Lorentz
factors of both fluids with respect to On,
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Γn ¼ −nμunμ ¼ Nunt and Γp ¼ −nμupμ ¼ Nupt: ð22Þ

We define Un and Up as the norms of the physical
3-velocities of the fluids measured by the Eulerian observer
On, i.e.

Un ¼
B
N
ðΩn − ωÞr sin θ and Up ¼

B
N
ðΩp − ωÞr sin θ:

ð23Þ

The normalization conditions on nμ, unμ and upμ lead to the
standard expressions

Γn ¼ ð1 −U2
nÞ−1=2 and Γp ¼ ð1 − U2

pÞ−1=2: ð24Þ

Moreover, the relative speed Δ (11) can be expressed in
terms of Un and Up by

Δ2 ¼ ðUn −UpÞ2
ð1 −UnUpÞ2

: ð25Þ

The equations governing the fluid equilibrium are
derived from the conservation of both particle 4-currents

∇μnnμ ¼ 0 and ∇μnpμ ¼ 0; ð26Þ

which are trivially satisfied given the symmetries of the
spacetime, and from ∇μTμν ¼ 0, the energy-momentum
conservation law. In the case of rigid rotation that we are
considering here (see Sec. II A), it leads to the two
following first integrals of motion:

μn

Γn
N ¼ ~Cn and

μp

Γp
N ¼ ~Cp; ð27Þ

where ~Cn and ~Cp denote constants over the whole star.
Introducing the log-enthalpies

Hn ¼ ln

�
μn

mn

�
and Hp ¼ ln

�
μp

mp

�
; ð28Þ

with mn¼ 939.6MeV and mp¼ 938.3þ0.5¼ 938.8MeV
the masses of particles composing the fluids, one can
rewrite (27) as

Hn þ lnN − lnΓn ¼ Cn and Hp þ lnN − lnΓp ¼ Cp;

ð29Þ

Cn and Cp being constant over the star.
In Sec. IV, we will only present configurations verifying

chemical equilibrium at the center of the star, i.e.

μpc ¼ μnc; ð30Þ

or equivalently,

Hn
c ¼ Hp

c þ ln

�
mp

mn

�
: ð31Þ

Putting (30) in (27), one gets ~Cn ¼ ~Cp. Inside the star, the
chemical potentials are thus linked through

μn

Γn
¼ μp

Γp
: ð32Þ

As shown by Andersson and Comer [28], global
β-equilibrium is only possible if the two fluids are
corotating. In this case, imposing chemical equilibrium
at the center of the star is enough for the chemical
equilibrium to be verified in the whole star, as can be seen
from (32). In the opposite case, where Ωn ≠ Ωp, some
conversion reactions between neutrons and protons should
be included in our model, which would dissipate some
energy until the star reaches β-equilibrium with Δ2 ¼ 0
[52]. However, as we are dealing with stationary configu-
rations, this transfusive process is neglected [see Sec. II A
and (26)]. This assumption makes sense because of the
slowness of the electroweak reactions responsible for the
chemical equilibrium [53], added to the fact that the two
fluids are likely to be always very close to corotation.2

Examples of configurations with μpc ≠ μnc are shown in
Prix et al. [34].

D. Global quantities

We give here some definitions that we use in Sec. IV;
more details are given in Prix et al. [34]. The gravitational
mass (MG) is the mass felt by a test particle orbiting around
the star. It is defined as the (negative) coefficient of the term
1=r in an asymptotic expansion of the logN gravitational
potential. Following Bonazzola et al. [46], it can be
expressed as

MG ¼
Z
Σt

½NðEþ SiiÞ þ 2B2r2sin2θωπφ�d3Σ; ð33Þ

where d3Σ ¼ A2Br2 sin θdrdθdφ is the element volume on
the hypersurface Σt. The baryon mass (MB) is nothing but
the counting of the total number of baryons in the star. In
our case, it splits into two parts: the neutron baryon mass
(MB

n ) and the proton baryon mass (MB
p ).

Relying on the axisymmetry of the spacetime, associated
with the Killing vector χμ (cf. Sec. II A), the total angular

2Assuming the total angular momentum to be constant during
a glitch, the maximum lag between the fluids, which corresponds
to the lag when the glitch is triggered, is roughly given by
ΔΩmax≃ I=In ×ΔΩp=Ωp ×Ω≃ΔΩp=Ωp ×Ω, where ΔΩp=Ωp ∼
10−11–10−5 is the glitch amplitude and Ω is the pulsar angular
velocity (e.g. [54]).
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momentum of the star is given by the gauge-invariant
Komar formula [55]

JK ¼ −
Z
Σt

nμTμνχ
ν ffiffiffi

γ
p

d3x; ð34Þ

where γ is the determinant of the 3-metric γij defined as
the restriction of the metric γμν to the hypersurface Σt

(see Sec. II C), such that γij ¼ gij [cf. Eq. (1)]. From (20),
we deduce that nμTμνχ

ν ¼ −πφ, so that (34) is simply given
by [51]

JK ¼
Z
Σt

πφd3Σ: ð35Þ

For a two-fluid system (15), we can write

πφ ¼ Γnnnpn
φ þ Γpnpp

p
φ; ð36Þ

see Eqs. (6) and (22). Note that there is no term involving
the pressure Ψ. This canonical decomposition leads us to
define the angular momentum density of each fluid as
in [27],

jnφ ≡ Γnnnpn
φ and jpφ ≡ Γpnpp

p
φ: ð37Þ

One can thus interpret pn
φ (pp

φ) as the angular momentum
per neutron (proton) and Γnnn (Γpnp) as the density of
neutrons (protons) measured by On, nn (np) being the
density of neutrons (protons) in the frame of this fluid.
These angular momentum densities are expressible as
functions of the two physical velocities measured by
On (23),

�
jnφ ¼ Br sin θðΓ2

nn2nKnnUn þ ΓnnnΓpnpKnpUpÞ;
jpφ ¼ Br sin θðΓ2

pn2pKppUp þ ΓnnnΓpnpKnpUnÞ:
ð38Þ

Using Eqs. (35) and (36), we deduce that the angular
momentum of each fluid is given by

Jn ¼
Z
Σt

jnφd3Σ and Jp ¼
Z
Σt

jpφd3Σ: ð39Þ

The Newtonian limit of the angular momenta is studied in
Appendix A and is compared to results from Sidery
et al. [54].
Assuming rigid rotation, it is possible to define corre-

sponding moments of inertia from the fluid angular
momenta. The total moment of inertia of the star is

I ¼ J
Ωp

; ð40Þ

Ωp corresponding to the rotation rate of the pulsar.
The moment of inertia of fluid X can be defined through
the equation

IX ¼ JX
ΩX

; ð41Þ

which makes sense if the two fluids are corotating.3

E. Numerical procedure

The numerical resolution of the stationary axisymmetric
configurations described in the previous sections was
implemented in the LORENE library by Prix et al. [34]. It
is based on an iterative scheme, called the self-consistent-
field method, which consists of making an initial guess on
the quantities to be determined, starting from a flat
spacetime with both fluids at rest and parabolic profiles
for Hnðr; θÞ and Hpðr; θÞ, and progressively improving
these estimates at each step of the resolution procedure
until a convergence criterion is satisfied. For a given EOS,
the free parameters are the central values Hn

c and Hp
c of the

log-enthalpies and the (constant) angular velocities Ωn and
Ωp; thus every set of such parameters gives a model of
rotating two-fluid neutron star.
Numerical techniques are based on multidomain spectral

methods [56], which make it possible to reach a high
accuracy with a small number of coefficients. In the cold
single-fluid case [46], the surface of the star is defined as
the location where the pressure, or equivalently the log-
enthalpy, of the fluid is vanishing. For a two-fluid system, it
is no longer possible to define the surface of the inner fluid
with a vanishing log-enthalpy, because of the coupling
between both fluids (see Appendix B). Instead, both
surfaces are taken to be the location where the correspond-
ing density vanishes, i.e. nX ¼ 0 [34]. Consequently, our
models assume that both fluids are present at the center of
the star; then, one of them vanishes (its density reaching
zero), and there is a region with only one fluid left until this
one disappears as well, defining the surface of the star.
In realistic configurations, for which Ωn ≃Ωp and μn ≃ μp

[cf. (32)], the surfaces of the two fluids are very close to
each other, leading the region between both surfaces, with
one fluid, to be poorly represented by the grid covering the
star. To cope with this problem, we take one additional
domain with many grid points to represent the thin shell
where the transition from two fluids to one fluid and
vacuum occurs. This solution happens to lead to a signifi-
cant improvement of the determination of the surfaces and
on the accuracy of the results [34]. Consequently, four
different domains are used to cover the entire space in
general: the innermost domain covers the core of the star,
the second one represents the outer part of the star, the third
one is used outside the star, expanding up to a few stellar
radii, and the last one describes the remaining part, up to

3In the general relativistic framework, there is no natural
decomposition of JX in the form of Eq. (A8). By assuming
Δ2 ¼ 0, we ensure that In þ Ip ¼ I.
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infinity with the help of a change in coordinates of the type
r ¼ 1

Að1−ζÞ with ζ ∈ ½−1; 1�.

III. EQUATIONS OF STATE

A. Presentation

Although nonrelativistic models are sufficient to
describe the cores of low-mass neutron stars [18], a
(special) relativistic formulation, besides being self-
consistent, is necessary to deal with massive neutron stars.
On the scales relevant for the thermodynamic averaging
leading to the equation of state, the metric can be
considered as (locally) flat [57]. Therefore, within this
section we will work with a Minkowski metric, ημν. For the
γ-matrices, we will use the anticommutation relation
fγμ; γνg ¼ 2ημν. The effect of superfluidity/superconduc-
tivity on the EOS itself has been neglected since pairing and
superfluidity/superconductivity is a Fermi surface effect
with only a marginal influence on the EOS.
We will employ here two equations of state based on a

phenomenological relativistic mean-field (RMF) model.

This type of model can be considered as realistic in the
sense that it aims to describe as well as possible known
properties of finite nuclei and nuclear matter. The basic idea
is that the interaction between baryons is mediated by
meson fields inspired by the meson-exchange models of the
nucleon-nucleon interaction. Within RMF models, these
are, however, not real mesons, but are introduced on a
phenomenological basis with their quantum numbers in
different interaction channels. The coupling constants are
adjusted to a chosen set of nuclear observables. Earlier
models introduce nonlinear self-couplings of the meson
fields in order to correctly reproduce nuclear matter
saturation properties, whereas more recently density-
dependent couplings between baryons and the meson fields
have been widely used. The literature on those models is
large and many different parametrizations exist (see
e.g. [58]).
In the present paper, we will use models with density-

dependent couplings. The microscopic Lagrangian density
of this type of model can be written in the following
form:

L ¼
X

X¼ðn;pÞ
− ψXðγμ∂μ þmX − gσσ−gδ~δ · ~IX − igωγμωμ − igργμ~ρμ · ~IXÞψX −

1

2
ð∂μσ∂μσ þm2

σσ
2Þ

−
1

2
ð∂μ

~δ∂μ~δþm2
δ
~δ2Þ − 1

4
W†

μνWμν −
1

2
m2

ωωμω
μ −

1

4
~R†
μν · ~R

μν −
1

2
m2

ρ~ρμ · ~ρμ: ð42Þ

Here, ψX denotes the field of baryon4 X with rest mass

mX. The corresponding isospin operator is ~IX.Wμν and ~Rμν

are the vector meson field tensors of the form

Vμν ¼ ∂μVν − ∂νVμ; ð43Þ

associated with ωμ and ~ρμ respectively. σ is a scalar-

isoscalar meson field and ~δ induces a scalar-isovector
coupling to differentiate proton and neutron effective
masses (51). For M spanning over all meson types
ðσ; ρ; δ;ωÞ, the quantity gM stands for the coupling between
nucleons and meson M, whose mass is mM.
We will show results within two density-dependent

models, DDH [36] and DDHδ [37,59,60]. The δ-field is
absent in DDH. The couplings are density dependent,

gMðnBÞ ¼ gMðn0ÞhMðxÞ;
x ¼ nB=n0: ð44Þ

n0 thereby denotes a normalization constant; in most cases,
it is chosen as the saturation density of symmetric nuclear

matter. The baryon number density nB is a scalar quantity
defined as nB ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−nBμnBμ
p

, where nBμ ¼ npμ þ nnμ is the
total baryon current.
Within both parametrizations employed in this paper,

the following forms [37] are assumed for the isoscalar
couplings (M ¼ σ, ω):

hMðxÞ ¼ aM
1þ bMðxþ dMÞ2
1þ cMðxþ dMÞ2

ð45Þ

and

hMðxÞ ¼ aM exp½−bMðx − 1Þ� − cMðx − dMÞ ð46Þ

for the isovector ones (M ¼ ρ, δ).

1. Single-fluid case

In mean-field approximation, the meson fields are
replaced by their respective mean-field expectation values
[1,57]. Assuming that all particles move at the same speed,
i.e. for the single-fluid case, in uniformmatter the following
(Euler-Lagrange) relations emerge:

m2
σσ ¼ gσðnsp þ nsnÞ ð47aÞ

4Here “ðn; pÞ” refers to particles (neutrons, protons), not
fluids. Electrons shall be considered later in this section.
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m2
δδ ¼ gδðnsp − nsnÞ ð47bÞ

m2
ωω ¼ gωðnp þ nnÞ ð47cÞ

m2
ρρ ¼ gρðnp − nnÞ; ð47dÞ

where σ ¼ hσi, δ ¼ hδ3i, ρ ¼ hρ03i and ω ¼ hω0i. Note that
only the isospin 3-components of the isovector meson
fields contribute and, since the fluid rest frame is chosen for
convenience, only the 0-components of the vector meson
fields are nonvanishing [57]. The scalar density of baryon X
is given by

nsX ¼ hψXψXi ¼ 2

Z
fðeXðkνÞÞ

d3k
ð2πÞ3

m�
X

eXðkνÞ
; ð48Þ

and the number density by

nX ¼ n0X ¼ ihψXγ
0ψXi

¼ 2

Z
fðeXðkνÞÞ

d3k
ð2πÞ3 ¼

ðkF;XÞ3
3π2

; ð49Þ

where kF;X is the Fermi momentum of fluid X. f represents
here the fermionic distribution function with single-particle
energies eX. Note that the distribution function is a scalar
quantity. At zero temperature, this is a Heaviside step
function equal to 1 for occupied states (corresponding to
k ≤ kF;X) and 0 for nonoccupied ones. The argument can be
written in a covariant way as μX þ kνuν, where kν repre-
sents the (on-shell) momentum of a single-particle state and
uν the four-velocity of the actual reference frame. For the
single-fluid case, where the fluid rest frame can be chosen
as reference frame, this reduces to the well-known form
fðeXÞ ¼ θðμX� − eXÞ with

eXðkνÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kiki þ ðm�

XÞ2
q

: ð50Þ

The Dirac effective masses m�
X depend on the scalar mean

fields as

m�
X ¼ mX − gσσ − gδt3Xδ; ð51Þ

where t3X indicates the third component of isospin, with the
convention t3p ¼ 1 and t3n ¼ −1. The effective chemical

potentials μX� , also called Landau effective masses [31,61],
are defined as

μX� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm�

XÞ2 þ ðkF;XÞ2
q

: ð52Þ

In the single-fluid case, these quantities are related to the
chemical potentials via [37]

μn ¼ μn� þ aþnn þ a−np þ ΣR ð53aÞ

μp ¼ μp� þ aþnp þ a−nn þ ΣR ð53bÞ

with a� ¼ g2ω=m2
ω � g2ρ=m2

ρ. The rearrangement term

ΣR ¼ ∂gω
∂nB

gω
m2

ω
n2B þ ∂gρ

∂nB
gρ
m2

ρ
n2I

−
∂gσ
∂nB σðn

s
p þ nsnÞ −

∂gδ
∂nB δðn

s
p − nsnÞ ð54Þ

is present in density-dependent models to ensure thermo-
dynamic consistency. We have used here the definition of
the baryon number density nB ¼ np þ nn and have intro-
duced the isospin density nI ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−nIμnIμ

p
, where nIμ ¼

npμ − nnμ.
The wealth of nuclear data allows us to reasonably

constrain the parameter values of the interaction between
nucleons. The corresponding parameter values of both
models can be found in Refs. [36,37] and the resulting
nuclear matter properties are listed in Table I. The two
models differ only in the isovector channels; thus, the
properties of symmetric nuclear matter are similar. For the
EOS of compact stars, the isospin dependence of the EOS
is extremely important since very asymmetric matter close
to pure neutron matter is encountered. The two quantities
containing information about the isospin dependence of the
EOS are the symmetry energy J and its slope L at saturation
density. Another interesting quantity in this respect is the
EOS of pure neutron matter at low densities, where recent
progress in microscopic calculations has allowed us to
obtain valuable constraints. In [62], a range

14.1≲ E=Aðn0Þ ≲ 21.0 MeV ð55Þ
has been derived for the energy per baryon of pure nuclear
matter (neutron mass subtracted) from microscopic

TABLE I. Nuclear matter properties at saturation density of the two models considered in this study. n0 denotes the saturation density,
Bsat the binding energy, K the incompressibility, J the symmetry energy, and L the slope of the symmetry energy, and E=Aðn0Þ is
the energy per baryon of pure neutron matter with the neutron mass subtracted; see e.g. [63] for a definition of the different quantities.
The maximum gravitational masses of neutron stars assuming corotation and β-equilibrium, see Sec. IV, are given as well.

n0 (fm−3) Bsat (MeV) K (MeV) J (MeV) L (MeV) E=Aðn0Þ (MeV) Mmax
G ð0 HzÞ (M⊙) Mmax

G ð716 HzÞ (M⊙)
DDH 0.153 16.3 240 33.4 55 18.4 2.08 2.12
DDHδ 0.153 16.3 240 25.1 44 10.6 2.16 2.21
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calculations within chiral nuclear forces. The correspond-
ing value within the two models used here is given in
Table I.
Saturation properties of symmetric nuclear matter are in

reasonable agreement with nuclear data [64,65]. As can be
seen within the DDHδ model, the symmetry energy and its
slope lie at the lower end of reasonable values (cf. [66–68]
for a compilation and discussion of constraints obtained
from nuclear experiments) and the energy per baryon of
pure nuclear matter is probably too low, as well. Within
DDH the values are much larger, indicating a much stiffer
EOS in strongly asymmetric matter. The choice of these
two models therefore allows us to explore different inter-
actions in the equilibrium configurations presented here.

2. Two-fluid case

In a two-fluid system, no common rest frame for both
fluids can be defined, and the system’s equation of state
becomes a function of the relative speed Δ between both
fluids. In nonrelativistic models, the Fermi liquid theory is
commonly employed to calculate the (Andreev-Bashkin)
entrainment matrix, see e.g. [18,69]. For relativistic two-
fluid systems, two different approaches can be found in the
literature. On the one hand, Gusakov et al. [31,70] have
used a relativistic generalization of Fermi liquid theory to
calculate the entrainment matrix of homogeneous matter
containing, in addition to electrons, nucleons or more
generally the whole baryon octet. Results from this
approach within a density-dependent model can be found
in [61]. On the other hand, Comer and Joynt [29] have
presented a formalism to evaluate the master function Λ
from the thermodynamic average (at mesoscopic scales) of
the energy-momentum tensor and applied it to a simple
RMF model containing only isoscalar interactions. The
entrainment matrix can then be evaluated from the deriv-
atives, following the definitions in Sec. II B. The same
formalism has been applied to a more advanced and more
realistic RMF model with isovector interaction by Kheto
and Bandyopadhyay [32].
Here, we will follow the strategy of [29] and show that

the resulting entrainment matrix is in agreement with that
obtained from relativistic Fermi liquid theory in the limit of
small relative speed, as it should be. Our aim is to calculate
the master function Λ, which is a scalar quantity depending
on the three scalars nn, np, Δ2. For convenience, we choose
the zero-velocity frame of the neutron fluid (see Sec. III B)
in which the proton fluid acquires a nonzero three-velocity,
vi. Without loss of generality we can choose vi to be
oriented in the z direction in order to simplify the
computations, i.e. vi ¼ ð0; 0; vÞ.
Following [29], the master function reads as

Λ ¼ −hτ00i − hτxxi þ hτzzi; ð56Þ
where hτμνi ¼ Tμν (15) corresponds to the thermal expect-
ation value of the elements of the energy-momentum

tensor. Neglecting gradients of the mesonic mean fields,
the microscopic energy-momentum tensor can be written as

τμν ¼
X
X

1

2
ðψXγ

μ∂νψX þ ð∂μψXÞγνψXÞ þ gμνL: ð57Þ

The particle currents are given by nXν ¼ nXuXν ¼
ihψXγ

νψXi. Since we have chosen the zero-velocity frame
of the neutron fluid, only the proton current has nonzero
spatial components with

npν ¼
npffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p ð1; 0; 0; vÞ: ð58Þ

Due to the nonzero proton velocity, the mean fields of the
vector mesons also acquire nonzero spatial components,
following the relations

m2
ωhωii ¼ gωðnpi þ nniÞ ¼ gωnBi ð59aÞ

m2
ρhρii ¼ gρðnpi − nniÞ ¼ gρnIi; ð59bÞ

where hρii≡ hρi3i. For better readability we will suppress
the brackets for the mean-field expectation values of the
meson fields in the following equations. In addition, since
we have chosen the fluid velocity in the z direction, only the
z components become nonzero.
Let us now check that the resulting proton and neutron

currents indeed have the assumed form, with nX given by
the respective rest frame expressions, k3F;X=ð3π2Þ. The
following derivations differ slightly from those exposed
in [29,32]. In [29,32], in order to account for the moving
proton fluid, the Fermi momentum of protons was shifted
by a momentum K, whereas that of the neutrons was kept
the same with the argument that the reference frame is the
neutron zero spatial momentum frame. However, following
this strategy, the relativistic deformation of the Fermi
sphere, which shows up at second order in the velocities,
is not taken into account. In our opinion, this is the reason
why the final result for the entrainment matrix in [29,32]
does not agree with the Fermi liquid theory result [31].
Therefore, we will use a different method [71]; namely, we
will use the Lorentz transformation properties of the
different quantities involved to calculate the master func-
tion in the neutron rest frame, but where the proton fluid has
nonzero spatial velocity. An advantage of this method is
that it allows us to calculate the master function to any order
in the velocity, and the deformation of the Fermi sphere is
automatically included. Note, however, that we do not
include any velocity-dependent modification of the super-
fluid energy gap; thus, our results can be applied only for
relative velocities below the superfluid critical velocity,
which should be of the order of 107 cm s−1 in neutron
stars [72].
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Let us start with the zero components, n0X ¼ ihψXγ
0ψXi.

Due to the nonzero value of the spatial components of the
mesonic mean fields, the single-particle kinetic energies are
modified and become

eXðkνÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkz − gωωz − gρt3XρzÞ2 þ ðm�

XÞ2
q

≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k0ik

0i þ ðm�
XÞ2

q
: ð60Þ

For the neutrons, since we are in the zero-velocity frame, a
simple shift in the integration variable ki → k0i shows that
nn0 ¼ nn, as it should be. For the protons, since the proton
fluid has a nonzero velocity, all momenta are Lorentz
boosted, i.e.

np0 ¼ 2

Z
d3 ~k
ð2πÞ3 fð~epð

~kνÞÞ; ð61Þ

where the quantities in the moving frame have been
denoted by a tilde. Using the fact that the distribution
function is a scalar with a scalar argument, and that kα

transforms as a vector under Lorentz transformations, we
can express the integrand with quantities in the zero-
velocity frame of the protons (see e.g. [71])

np0 ¼ 2

Z
d3k
ð2πÞ3 Jðk;

~kÞθðμp� − epðkνÞÞ: ð62Þ

Jðk; ~kÞ denotes here the Jacobian for the change in
integration variable from d3 ~k → d3k, which is given by

Jðk; ~kÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
�
1þ v

∂epðkνÞ
∂kz

�
: ð63Þ

Evaluating the integration leads to the desired result,
n0p ¼ np=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
¼ npu0p.

Similarly, the z components of the currents can be
evaluated, with

nzn ¼
Z

d3kθðμn� − enðkνÞÞ
kz − gωωz − gρρz

enðkνÞ
¼ 0 ð64Þ

nzp ¼
Z

d3kθðμp� − epðkνÞÞJðk; ~kÞ

×
epðkνÞvþ kz − gωωz þ gρρz

epðkνÞ þ vðkz − gωωz þ gρρzÞ
¼ np

vffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p : ð65Þ

This is indeed the expected result (58).
Let us now turn to the evaluation of the master function.

After some algebraic manipulations and using the equation
of motion for the fermion fields, the baryonic contribution
to the master function reads as

EB ¼ 6

Z
d3k
ð2πÞ3 θðμ

n� − enðkνÞÞ
ðkxÞ2 þ ðm�

nÞ2=3
enðkνÞ

þ 6

Z
d3k
ð2πÞ3 θðμ

p
� − epðkνÞÞJðk; ~kÞ

×
ðkxÞ2 þ ðm�

pÞ2=3
1ffiffiffiffiffiffiffiffi
1−v2

p ðepðkνÞ þ vðkz − gωωz þ gρρzÞÞ

þ 1

2
m2

σσ
2 þ 1

2
m2

δδ
2 −

1

2
m2

ωωμω
μ −

1

2
m2

ρρμρ
μ: ð66Þ

Using the same technique as before, we finally obtain

EB ¼ ϵnðnnÞ þ ϵpðnpÞ

þ 1

2
m2

σσ
2 þ 1

2
m2

δδ
2 −

1

2
m2

ωωμω
μ −

1

2
m2

ρρμρ
μ; ð67Þ

where ϵXðnXÞ has the form of the energy density of a free
Fermi gas, here computed for the Dirac effective mass of
protons and neutrons, respectively,

ϵXðnXÞ ¼
1

8π2

�
kF;XμX� ððm�

XÞ2 þ 2k2F;XÞ:

−ðm�
XÞ4 ln

�
kF;X þ μX�

m�
X

��
: ð68Þ

The quantities kF;X are the Fermi momenta in the respective
rest frames, related to the scalar densities nX as kF;X ¼
ð3π2nXÞ1=3, see (49). Electrons can be added trivially at this
point. They are considered as a noninteracting Fermi gas,
coupled to the baryons only via global charge neutrality
condition (ne ¼ np) such that, finally,

E ¼ EB þ ϵeðnpÞ; ð69Þ

with kF;e ¼ kF;p, m�
e ¼ me and μe ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

e þ k2F;e
q

.

The entrainment matrix is now readily evaluated from
the derivatives of E. To that end, let us first observe that

m2
ωωαω

α ¼ g2ω
m2

ω
nBαnB α

¼ −
g2ω
m2

ω
ðn2n þ n2p þ 2nnnpΓΔÞ ¼ −

g2ω
m2

ω
n2B; ð70Þ

m2
ρραρ

α ¼ g2ρ
m2

ρ
nIαnI α

¼ −
g2ρ
m2

ρ
ðn2n þ n2p − 2nnnpΓΔÞ ¼ −

g2ρ
m2

ρ
n2I : ð71Þ

Second, the derivatives of E with respect to the scalar
meson fields, σ and δ, are vanishing by construction; they
only contribute to the Dirac effective masses (51).
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As mentioned earlier, within the density-dependent
models, the coupling constants depend on the baryon
number density nB, and upon deriving the entrainment
matrix we have to take this dependence into account; see
the definition of the rearrangement term, Eq. (54). For the
derivatives of the master function we obtain

μn ¼ ∂E
∂nn ¼ μn� þ nnaþ þ npa−ΓΔ þ ΣR ∂nB

∂nn ð72aÞ

μp ¼ ∂E
∂np ¼ μp� þ npaþ þ nna−ΓΔ þ ΣR ∂nB

∂np þ μe ð72bÞ

α ¼ ∂E
∂Δ2

¼ 1

2
nnnpa−Γ3

Δ þ ΣR ∂nB
∂Δ2

; ð72cÞ

In the two-fluid case, nB ¼ nBðnn; np;Δ2Þ, and for its
derivatives the following relations hold:

∂nB
∂nn ¼ 1

nB
ðnn þ npΓΔÞ ð73aÞ

∂nB
∂np ¼ 1

nB
ðnp þ nnΓΔÞ ð73bÞ

∂nB
∂Δ2

¼ 1

2nB
nnnpΓ3

Δ: ð73cÞ

Using Eqs. (13) and (14) we finally arrive at the following
expressions for the entrainment matrix:

Knn ¼ μn�
nn

þ aþ þ ΣR

nB
ð74aÞ

Kpp ¼ μp�
np

þ aþ þ ΣR

nB
þ μe

np
ð74bÞ

Knp ¼ a− þ ΣR

nB
: ð74cÞ

Various remarks are in order here. First, as can easily be
seen, in the limit of small relative speed, the entrainment
matrix elements are in agreement with the expressions in
[61] derived from Fermi liquid theory to first order in the
velocities.5 Second, Eqs. (72a)–(72b) reduce to the chemi-
cal potentials in the single-fluid case, see Eqs. (53a)–(53b),
in the limit of vanishing relative speed between both fluids.
Finally, the condition on the entrainment matrix element
cited by [31], Eq. (8), expressed here as uXαpX

α ¼ −μX, is
fulfilled (for any Δ2), in contrast to the results in [29,32].

In the numerical implementation, we use the EOS in a
tabulated form; see Appendix B for more details.

B. Entrainment effects

Entrainment effects are depicted by the scalar α (18),
which vanishes in the limit where there is no entrainment.
As we do not take the presence of the crust into account in
our model, entrainment is assumed to be only due to the
strong interactions between nucleons. Two different
approaches are commonly followed in the literature to
quantify entrainment within the EOS: by means of the
entrainment matrix coefficients [31] or by introducing
dynamical effective masses [69].
The elements of the entrainment matrix, KXY , and of its

inverse, YXY , are functions of three quantities, i.e. nn; np
and Δ2. In order to compare entrainment effects within
different EOSs, it is therefore convenient to study the
limiting case of corotation (i.e. Δ2 ¼ 0) with β-equilibrium
(see Sec. II C). We therefore introduce the entrainment
coefficients [31]

YXY ≡ YXY jΔ2¼0;μn¼μp ; ð75Þ

which depend on a single parameter, e.g. the total baryon
density nB ¼ nn þ np. These coefficients are plotted as
functions of nB in Fig. 1 for both EOSs.
In order to study the importance of entrainment effects,

we can also introduce dynamical effective masses. The idea
is to describe the dynamics of each species as if it were
alone. Interactions with the other fluid are included through
the effective mass ~mX defined as

-0.4

0.0

0.4

0.8

1.2

1.6

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Y
X

Y
 / 

Y

nB (fm-3)

nn

pp

np

DDH
DDHδ

FIG. 1. Entrainment coefficients YXY as functions of total
baryon density nB. Solid (dashed) lines refer to the DDHðδÞ
EOS. Following the prescription given by Gusakov et al. [31],
these coefficients are normalized to the constant Y ¼
3n0=μnð3n0Þ, where n0 ¼ 0.16 fm−3 stands for the saturation
density. For DDHðδÞ, Y ¼ 2.55 × 1041 erg−1 cm−3 (Y ¼
2.47 × 1041 erg−1 cm−3).

5The elements of the matrix M in [61] correspond to the Kab

multiplied by the density of the second index, Mab ¼ Kabnb
(no summation over repeated index).
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px
i ¼ ~mXuXi; ð76Þ

where pX
i and uXi stand for the spatial parts of the

conjugate momentum and the 4-velocity of fluid X,
respectively. Such a definition is formulated in the rest
frame of the background, i.e. the second fluid Y.
As already noticed by Prix et al. [52], it is not possible to

define the rest frame for fluid Y in a unique way. In the
zero-velocity frame of the fluid Y, where uYi ¼ ð0; 0; 0Þ,
Eq. (7) becomes

pX
i ¼ KXXnXuXi; ð77Þ

such that, using (13), we obtain

~mX ¼ KXXnX ¼ μXð1 − εXÞ; ð78Þ

where we have introduced the quantity

εX ¼ 2α

nXμXΓ2
Δ
: ð79Þ

Assuming again corotation6 and β-equilibrium, the follow-
ing effective mass can be introduced [52,69]:

m0
X ≡KXXjΔ2¼0;μn¼μpnX ¼ μXð1 − ε0XÞ; ð80Þ

where ε0X ¼ εXjΔ2¼0;μn¼μp . In the zero-momentum frame of
the fluid Y, where pY

i ¼ ð0; 0; 0Þ, Eq. (7) leads to

pX
i ¼ nX

YXX
uXi; ð81Þ

from which we obtain

~mX ¼ nX
YXX

¼ μX
�
1 − εX

1 − εYΔ2

1 − εY

�
: ð82Þ

This leads us to introduce another effective mass for fluid
X [52,69],

m#
X ≡ nX

YXX
¼ μXð1 − ε#XÞ; ð83Þ

where

ε#X ¼ ε0X
1 − ε0Y

: ð84Þ

The quantities m0
n and m#

n introduced so far are linked to
the quantities εmom and εvel studied by [29] through

m0
n ¼ εvelmn and m#

n ¼
1

εmom
mn: ð85Þ

The entrainment parameters ε0X are shown in Fig. 2 (left),
for the two different EOSs, as functions of the total baryon
density. We do not show the dynamical masses since they
contain not only entrainment effects, but also (special)
relativistic corrections. In fact, for vanishing entrainment,
i.e. α ¼ 0, the effective masses (80) and (83) reduce to the
chemical potentials (since all forms of energy contribute to
the mass), not the bare masses. The parameters εX are, on
the contrary, a good measure of the importance of entrain-
ment effects.
As can be seen in Fig. 2, entrainment effects become

more and more important as the baryon density increases,
where the interaction between particles gets stronger.
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FIG. 2. Left: Influence of the interaction on the entrainment parameters ε0X. Solid (dashed) lines refer to DDHðδÞ EOS. For better
clarity, only quantities defined in the zero-velocity frames are plotted. Right: Comparison between entrainment parameters defined in the
zero-velocity frames (ε0X , solid lines) and in the zero-momentum frames (ε#X, dashed lines), for the DDH EOS.

6In the corotating limit, one should notice that uYi ¼ uXi ¼ 0,
so that it is not possible to define an effective mass from (76).
Strictly speaking, the quantity m0

X has no real physical meaning,
but is convenient to compare different EOSs. Note that, the
relative speed in neutron stars being very small, ~mX ≃m0

X.
Similar remarks apply to m#

X.
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Entrainment effects are quite important on the proton fluid
beyond saturation density, whereas the neutron fluid is
much less affected. This is simply a consequence of the
relative proportion of the two fluids, εn ¼ np

nn
εp, when

β-equilibrium is enforced. Note that we checked that the
stability conditions derived by [69], i.e.

0 ≤ ε0n < xp and 0 ≤ ε0p < 1 − xp; ð86Þ

where xp ¼ np=nB, are verified. Results in the zero-
momentum frame are very similar [see Fig. 2 (right)],
except at very high densities. The neutron fluid, in any case,
is much less affected by entrainment and both parameters
remain small with neutron effective masses close to μn.
Comparing both EOSs, the general behavior is very similar.
The discrepancy on the proton entrainment within the two
EOSs, which is visible at high nB, is due to the very
different proton ratios (at β-equilibrium) predicted by these
EOSs at a given nB, as a consequence of the different values
of symmetry energies and slopes at saturation density (see
Table I). As the neutrons are much more numerous, the
influence of the different proton ratios on the neutron
entrainment is smaller.

IV. EQUILIBRIUM CONFIGURATIONS

We now use the model described in the previous sections
to obtain some realistic equilibrium configurations describ-
ing superfluid neutron stars. Some general results were
previously discussed in Prix et al. [34]. Here, we mainly
focus on the consequences of taking realistic EOSs into
account.
For the different configurations studied in this section, the

virial identity violations [73,74], which are useful checks of
the accuracy of numerical solutions of Einstein equations, are
of the order of ∼10−8–10−5 depending on the mass of the

neutron star, the rotation rates and the choice of the grid used
to describe the star. This means that the numerical errors in
our models should be below this value and gives us
confidence in the accuracy of our results.

A. Density profiles

Assuming corotation and β-equilibrium, the external
fluid appears to be always the proton fluid, because
mp ≲mn. A more realistic model would consider the
presence of an elastic crust below the surface of the star.
For the DDHδ EOS, the maximum mass predicted is
2.16M⊙ in the static case and increases up to 2.21M⊙
for 716 Hz, the highest rotation frequency observed today
[35]. The maximum masses obtained with the DDH EOS
are a bit smaller: 2.08M⊙ for static configurations and
2.12M⊙ at 716 Hz. These values are consistent with the
accurate measurements of 2M⊙ neutron stars in binary
pulsars [75,76]. We refrain from giving radius values here,
since our model does not contain any elastic crust; this
induces an error of the order of 500 m in the radius
determination.
Keeping β-equilibrium at the center of the star, and

allowing for a relative lag of up to ðΩn −ΩpÞ=Ωp∼
1.4 × 10−3, the relative increase of the maximum mass is
∼6 × 10−5. Such a lag is well beyond the maximum lag
expected in neutron stars from the glitch amplitude (see
footnote in Sec. II C). We thus conclude that the maximum
mass is very precisely determined in the corotation
approximation.
Assuming again corotation and β-equilibrium, we plot

the density profiles obtained from the two EOSs as
functions of the radial coordinate r in Fig. 3 for a star
whose gravitational mass is 1.4M⊙, with a rotation rate
Ωn=2π ¼ Ωp=2π ¼ 716 Hz. Profiles in the equatorial
(polar) planes are shown in solid (dashed) lines. It can
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be nicely seen in the inset (right panel) that the proton fluid
is the external fluid. As expected, protons are much less
abundant than neutrons. At the center of the star (r ¼ 0),
the proton ratio is xp ¼ np=nB ≃ 0.08 for the DDH EOS,
whereas xpðr ¼ 0Þ≃ 0.06 for the DDHδ EOS. Using the
DDH EOS, the central baryon density is equal to
nBðr ¼ 0Þ≃ 0.44 fm−3, which is close to three times the
saturation density. With the DDHδ EOS, it is smaller,
nBðr ¼ 0Þ≃ 0.36 fm−3. The difference comes from the
fact that for β-equilibrated matter at a given nB relevant for
neutron stars, as can be inferred from symmetry energy and
slope, the pressure is systematically higher in DDHδ than in
DDH. Therefore, for the same gravitational mass of the star,
nB is lower. Here we do not study the influence of a
difference in rotation rates between both fluids because
from the astrophysical side it is expected to be so small that
the results would be very similar to those presented in Fig. 3
and, on the other hand, many results concerning models
with arbitrarily different rotation rates were presented in
Prix et al. [34].

B. Angular momenta

We give here some results on the angular momenta, as
well as for moments of inertia defined in Sec. II D.
The moments of inertia I, In and Ip are plotted as functions
of the angular velocity of the star in Fig. 4, assuming
Ωn ¼ Ωp. Here we consider a sequence with constant total
baryon mass, corresponding to neutron stars whose gravi-
tational masses are around 1.4M⊙. At low angular veloc-
ities, the moments of inertia are nearly constant, such that
the angular momenta depend linearly on ΩX. Approaching
Keplerian velocity, this is no longer the case, and momenta
of inertia and angular momenta are steeply increasing.

As expected, the total angular momentum of the star is
dominated by the neutron angular momentum.
Note that in the present two-fluid case the angular

momentum of a fluid can be nonzero even if its angular
velocity vanishes. Two different effects can be identified at
the origin of this phenomenon. The first one is the general
relativistic frame-dragging effect, which can be seen
through the presence of the metric term ω in the definition
of the physical velocities [cf. Eq. (23)]. Although Ωp ¼ 0,
the rotation of the neutron fluid (Ωn ≠ 0) thus leads to
Up < 0 and to a nonvanishing proton angular momentum
[see (38) and (39)]. The second contribution refers to the
dependence of the proton angular momentum on the
physical velocity of the neutron fluid as a consequence
of entrainment [see e.g. (A1)], which is clearly visible on
Eq. (A8) in the Newtonian limit. To illustrate this phe-
nomenon, in Fig. 5 two sequences of stars (corresponding
to the two EOSs) are plotted as a function of Ωn, assuming
Ωp ¼ 0 Hz, for a fixed baryon mass. Although the proton
angular velocity vanishes, its angular momentum is non-
zero, rising roughly linearly with Ωn. Entrainment gives
thereby the dominant contribution, since Jp is positive, but
the frame-dragging effect (which acts on the proton angular
momentum in an opposite way to entrainment) contributes
almost as much as entrainment.

V. CONCLUSION

Both microscopic calculations and observations give
strong indications that the interior of neutron stars contains
superfluid matter. Superfluidity is thus an important ingre-
dient that needs to be taken into account in order to build
realistic models for neutron stars, which could be very
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useful for the study of oscillations, glitches and cooling
phenomena.
As a first step towards this objective, we have extended the

numerical model of stationary rotating superfluid neutron
stars proposed by Prix et al. [34] to the use of realistic EOSs.
These models consider the neutron star to be composed of
two fluids, neutrons and charged particles (protons and
electrons), which are free to rotate uniformly around a
common axis with different angular velocities. Obviously,
these models can be applied for any rotation frequency and
go therefore beyond the slow-rotation approximation
models of Refs. [28,30,33]. To reach high numerical accu-
racy, tabulated two-fluid EOSs were interpolated with a
high-order thermodynamically consistent scheme, which we
tested on analytic EOSs. An overall precision of 10−7–10−8,
measured via violations of the virial theorem, could be
reached. This is of the same order as typical one-fluidmodels
employing realistic EOSs. These are the first numerical
models of rapidly rotating neutron stars in full general
relativity and with realistic EOSs.
For these numericalmodelswe need theEOS to dependon

the two densities and the relative velocity, i.e. Eðnn; np;Δ2Þ.
To this end, following the spirit of Comer and Joynt [29], we
have presented a formalism to calculate the EOS at an
arbitrary value of Δ2. Entrainment parameters have been
derived from this EOS. We have shown that in the limit of
small Δ2 our entrainment parameters are in agreement with
those derived from Fermi liquid theory to lowest order in the
relative velocities. This means that the large numerical
differences between the entrainment parameters calculated
on the one hand in Refs. [29,32,33] from the EOS and on the
other hand in Refs. [31,70] from Fermi liquid theory simply
stem from the fact that the relativistic deformation of the
Fermi spheres was not taken into account in the calculations
of Refs. [29,32,33]. We have applied our new formalism to
two density-dependent RMF parametrizations, DDH and
DDHδ, consistent with standard nuclear matter and neutron
star properties. The entrainment parameters are qualitatively
very similar in both models. If β-equilibrium is imposed,
entrainment has a stronger effect on the proton fluid due to
the low proton fraction. Quantitatively, the difference
between both models is non-negligible only for the proton
fluid, the higher proton fraction in DDH leading to more
pronounced entrainment effects than in DDHδ.
As a first application, we have computed several rela-

tivistic equilibrium configurations. As expected, maximum
masses are only marginally influenced by entrainment and
a small lag in rotation frequencies of the two fluids. We did
not discuss radii since our models do not contain any
crust, and the extracted radii would thus not be reliable.
Entrainment is more important for the determination of
angular momenta and moment of inertia. In particular,
the angular momentum of one fluid can be nonzero even if
its angular velocity is vanishing. The entrainment thereby
induces an opposite effect to relativistic frame dragging.

We have shown that with our EOS, entrainment is slightly
more important than frame-dragging, which leads to a
positive angular momentum for the nonrotating fluid.
In this paper, we mainly focused on the properties of

neutron star cores assuming homogeneous matter. As pre-
viously mentioned, entrainment effects are expected to be
much stronger in the solid crust due to Bragg scattering of
dripped neutrons by the nuclei [19,20]. An interesting
extension of this work would thus be to include the presence
of a solid crust. We also plan to use the models discussed
here for the study of quasistationary evolution of neutron
stars, as that could be found during glitches.
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APPENDIX A: NEWTONIAN LIMIT OF THE
ANGULAR MOMENTA

Here, we study the Newtonian limit of Eqs. (38) and
(39). To do so, we rewrite the two angular momentum
densities as
8>>><
>>>:

jnφ ¼
�
nnΓ2

nμ
nUn þ 2α Γ2

n
Γ2
Δ

�
Γp

ΓΔΓn
Up −Un

��
r sin θ;

jpφ ¼
�
npΓ2

pμ
pUp þ 2α

Γ2
p

Γ2
Δ

�
Γn

ΓΔΓp
Un −Up

��
r sin θ:

ðA1Þ
In the Newtonian limit, the different quantities appearing

in Eq. (A1) simplify as Γn ≃ Γp ≃ ΓΔ ≃ 1, μn ≃mn and
μp ≃mp. Thus, Eq. (A1) becomes

� jnφ ¼ ½nnmnUn þ 2αðUp −UnÞ�r sin θ;
jpφ ¼ ½npmpUp þ 2αðUn −UpÞ�r sin θ;

ðA2Þ

where the physical velocities verify

Un ≃ Ωnr sin θ and Up ≃Ωpr sin θ: ðA3Þ
Considering that A → 1 and B → 1, the element volume

d3Σ tends towards d3Σf ¼ r2 sin θdrdθdφ, which is the
element volume of the flat spacetime. Replacing Eq. (A2)
in Eq. (39), the nonrelativistic limit of the angular momen-
tum of the two fluids reads as
8<
:

Jn ¼
R
Σt
nnmnðΩn þ εnðΩp −ΩnÞÞr2sin2θd3Σf ;

Jp ¼
R
Σt
npmpðΩp þ εpðΩn −ΩpÞÞr2sin2θd3Σf ;

ðA4Þ
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where the entrainment parameters εn and εp are defined as

εnnnmn ¼ 2α ¼ εpnpmp; ðA5Þ

see Eq. (79). Assuming the two angular velocities to be
uniform and introducing the moment of inertia of fluid X

IX ¼
Z
Σt

nXmXr2 sin2 θd3Σf ; ðA6Þ

and its corresponding mean coupling term

~εX ¼
R
Σt
εXnXmXr2 sin2 θd3ΣfR

Σt
nXmXr2 sin2 θd3Σf

; ðA7Þ

the two Newtonian angular momenta read as

�
Jn ¼ InΩn þ In ~εnðΩp −ΩnÞ;
Jp ¼ IpΩp þ Ip ~εpðΩn −ΩpÞ;

ðA8Þ

in agreement with the results of Sidery et al. [54].

APPENDIX B: NUMERICAL IMPLEMENTATION
OF THE TABULATED EOS

Considering a tabulated EOS leads to two additional
kinds of numerical errors, linked to the accuracy with
which the table is computed and the precision of the
interpolation scheme.
For each iteration step in the numerical procedure, the

matter sources involved in the Einstein equations are
computed from the values of Hn, Hp and Δ2 at every grid
point (see [34]). We then use the EOS in the form of the
pressure Ψðμn; μp;Δ2Þ [cf. Eq. (16)], instead of the energy
density E. For each EOS, we build a table using a grid made
of parallelepipeds in the relative speed Δ2 and the chemical
potentials μn and μp (see Fig. 6), which contains, for a given
value of this triplet, the set of variables required to the
interpolation. As the different thermodynamic quantities
can be expressed as functions of the interpolated values of
Ψ, nn, np and α [cf. Eqs. (13) and (14)], we need a scheme
able to interpolate, with high precision, a function and its
first derivatives [cf. Eqs. (17) and (18)].
To do so, we use the thermodynamically consistent

interpolation based on Hermite polynomials presented by
[77]. Unfortunately, one cannot directly employ this high-
order method on the triplet ðμn; μp;Δ2Þ, because it would
require the presence of 3-order derivatives in the table,
which are extremely difficult to compute with sufficient

FIG. 6. 3D interpolation scheme on a parallelepipedic grid (red
crosses), in a point corresponding to a given value of ðΔ2; μn; μpÞ
(green cross). On each plan where Δ2 is constant, quantities are
interpolated with a 2D thermodynamically consistent method on
the chemical potentials (blue crosses). From these two values, a
linear interpolation is used in Δ2 in order to obtain the values of
the quantities needed at the interesting point.
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precision. Instead, the 3D interpolation scheme we imple-
mented is the following (see Fig. 6):
(1) One starts by locating in the table the triplet

ðΔ2; μn; μpÞ in which the interpolation is required.
(2) On the two planes with constant Δ2 surrounding this

point, we carry out a 2D thermodynamically con-
sistent interpolation in the chemical potentials on Ψ
(which also gives the values of nn and np) and on α.

(3) We use a linear interpolation in the Δ2 dimension on
Ψ, nn, np and α.

To use the2D interpolationmethod in step2, it is necessary
to provide somevalues of the function, its twoderivatives and
the cross-derivative in the table. In the case of α, this cross-
derivativewould be a third-order derivative inΨ, that can not
be provided with a good precision. Thus, for simplicity, we
employ the same interpolation scheme for Ψ and α, without
considering the cross-derivative in the second case. The
precision on the global interpolation scheme remains

sufficiently good. Note that we simply used a linear inter-
polation in the relative speed because the data provided in the
table are computed with a first-order method. No derivatives
with respect to Δ2 are thus required in the table.
We studied the consistency of this interpolation scheme

by comparing the results given by the code directly using
an analytic EOS, as was studied in [34], and by the same
code interpolating a table based on the same EOS (com-
puted with machine precision). The relative difference in
the numerical results obtained within these two methods
was found to be very small.
A part of the DDHδ table, corresponding to the Δ2 ¼ 0

plane, is shown in Fig. 7. The different areas in which
protons and/or neutrons are present are displayed. As can
be seen in Fig. 7, neutrons (and protons) can appear in the
system for values of the chemical potential below the
corresponding rest mass, as a consequence of the strong
interactions between nucleons (see Sec. III).
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