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Entrainment effects in neutron-proton mixtures within the nuclear energy-density functional
theory: Low-temperature limit
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Mutual entrainment effects in cold neutron-proton mixtures are studied in the framework of the self-consistent
nuclear energy-density functional theory. Exact expressions for the mass currents, valid for both homogeneous
and inhomogeneous systems, are directly derived from the time-dependent Hartree-Fock equations with no
further approximation. The equivalence with the Fermi-liquid expression is also demonstrated. Focusing on
neutron-star cores, a convenient and simple analytical formulation of the entrainment matrix in terms of the
isovector effective mass is found, thus allowing one to relate entrainment phenomena in neutron stars to isovector
giant dipole resonances in finite nuclei. Results obtained with different functionals are presented. These include
the Brussels-Montreal functionals, for which unified equations of state of neutron stars have been recently
calculated.
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I. INTRODUCTION

Neutron stars are unique celestial bodies in that their core is
expected to contain neutron and proton superfluids, the former
permeating also the inner part of the crust [1–7] (see, e.g.,
Refs. [8–11] for reviews). Predicted before the actual dis-
covery of these compact stars [12], nuclear superfluidity has
found strong support from observations of pulsar frequency
glitches [13,14], and more recently from the rapid cooling of
the young neutron star in Cassiopeia A supernova remnant
[15–17] (but see also Ref. [18]). Superfluidity in neutron stars
may leave its imprints on other astrophysical phenomena (see,
e.g., Refs. [19,20]).

Although superfluid neutrons and protons in a cold mature
neutron star can flow with different velocities, their dynamics
are not completely independent from each other. Despite the
absence of viscous drag, the neutron superfluid in the crust
does not flow freely because of scattering by inhomogeneities.
The neutron superfluid is thus effectively entrained by the
crust (see, e.g., Ref. [21] for a recent review). Likewise,
neutrons and protons in the core are mutually coupled by
nondissipative entrainment effects of the kind originally dis-
cussed by Andreev and Bashkin in the context of super-
fluid 4He-3He mixtures [22]: The mass current ρqρqρq of one
nucleon species (q = n, p for neutron, proton, respectively)
is found to depend on the superfluid velocities VqVqVq of both
species, i.e.,

ρqρqρq =
∑

q′
ρqq′Vq′Vq′Vq′ . (1)

These effects may have important consequences for the global
dynamics of a neutron star. For instance, electron scattering
off the magnetic field induced by the circulation of entrained
protons around individual neutron superfluid vortices leads
to a very strong frictional coupling between the neutron

superfluid in the core and the electrically charged particles
[23]. The (symmetric) entrainment matrix ρqq′ in neutron-
proton mixtures was previously calculated in the framework
of the Fermi-liquid theory [24–30]. An alternative approach
based on relativistic mean-field models was followed in
Refs. [31–33].

In this paper, entrainment effects are studied within the
self-consistent nuclear energy-density functional theory. In
Sec. II, we derive the microscopic expressions for the neu-
tron and proton mass currents in the framework of the
time-dependent Hartree-Fock (TDHF) method (see, e.g.,
Refs. [34,35] for recent reviews). Applications to neutron-star
cores are discussed in Sec. III, where the entrainment matrix is
calculated. The equivalence with the Fermi-liquid expression
obtained earlier is explicitly demonstrated. Numerical results
are presented for extended Skyrme functionals, for which
unified equations of state of neutron stars have been recently
calculated [36,37]. Other functionals are also considered for
comparison.

II. MICROSCOPIC EXPRESSIONS
OF THE MASS CURRENTS

In the following, we will consider cold neutron-proton
mixtures at temperatures T much lower than the critical tem-
peratures of nuclear superfluidity. We shall further suppose
that currents are small compared to the critical currents for the
breakdown of nuclear superfluidity. With these assumptions,
the influence of nuclear pairing on the entrainment matrix can
be safely ignored (see, e.g., Ref. [29]).

A. Time-dependent Hartree-Fock equations

The total energy E of a nucleon-matter element of volume
V is supposed to be a functional of the following local
densities and currents.
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(1) The nucleon number density at position rrr and time t ,

nq(rrr, t ) =
∑

σ=±1

nq(rrr, σ ; rrr, σ ; t ). (2)

(2) The kinetic density at position rrr and time t ,

τq(rrr, t ) =
∑

σ=±1

∫
d3r′r′r′ δ(rrr − r′r′r′)∇∇∇ · ∇′∇′∇′nq(rrr, σ ; r′r′r′, σ ; t ).

(3)

(3) The momentum density (in units of h̄) at position rrr and
time t ,

jqjqjq(rrr, t ) = − i

2

∑
σ=±1

∫
d3r′r′r′ δ(rrr − r′r′r′)

× (∇∇∇ − ∇′∇′∇′)nq(rrr, σ ; r′r′r′, σ ; t ) , (4)

where nq(rrr, σ ; r′r′r′, σ ′; t ) is the density matrix in coordi-
nate space (denoting the spin states by σ, σ ′; allowed
values are 1,−1 for spin up, spin down, respectively).
We consider here pure nucleon states as in most exist-
ing functionals. The more general formalism involving
isospin mixing was developed in Ref. [38].

The dynamics of the system is governed by the TDHF
equations, which are generally written in a basis of discrete
single-particle states (labeled i, j, etc.) as [39]

ih̄
∂ni j

q

∂t
=

∑
k

(
hik

q nk j
q − nik

q hk j
q

)
, (5)

where the (Hermitian) Hamiltonian matrix hi j
q is defined by

hi j
q = ∂E

∂n ji
q

= (
h ji

q

)∗
(6)

(the symbol ∗ denoting complex conjugation).
As shown in Appendix A, the TDHF equations can be

equivalently expressed in coordinate space as

ih̄
∂nq(rrr, σ ; r′r′r′, σ ′; t )

∂t
= hq(rrr, t )nq(rrr, σ ; r′r′r′, σ ′; t )

− hq(r′r′r′, t )∗ nq(rrr, σ ; r′r′r′, σ ′; t ), (7)

in which the single-particle Hamiltonian hq is given by

hq(rrr, t ) = −∇∇∇ · h̄2

2m⊕
q (rrr, t )

∇∇∇ + Uq(rrr, t )

− i

2

[
IqIqIq(rrr, t ) · ∇∇∇ + ∇∇∇ · IqIqIq(rrr, t )

]
, (8)

with the various fields defined by the functional derivatives of
the energy,

h̄2

2m⊕
q (rrr, t )

= δE

δτq(rrr, t )
, Uq(rrr, t ) = δE

δnq(rrr, t )
,

IqIqIq(rrr, t ) = δE

δ jqjqjq(rrr, t )
. (9)

B. Mass currents, velocities, and momenta

Because of neutron-proton interactions, the nucleon mass
current ρqρqρq is not simply given by the momentum density h̄ jqjqjq.
The mass current can be rigorously calculated from the TDHF
matrix equations (7), whose diagonal part can be rearranged
in the form of continuity equations for nucleons of type q after
summing over spins following the seminal work of Ref. [40],

∂ρq(rrr, t )

∂t
+ ∇∇∇ · ρqρqρq(rrr, t ) = 0. (10)

Using the Hamiltonian (8) and the definitions (2)–(4), we thus
find

ρqρqρq(rrr, t ) = m

m⊕
q (rrr, t )

h̄ jqjqjq(rrr, t ) + ρq(rrr, t )
IqIqIq(rrr, t )

h̄
, (11)

where m denotes the nucleon mass, ignoring the small differ-
ence between the neutron and proton masses.

The energy E of a nucleon matter element can be decom-
posed into a kinetic term,

Ekin =
∫

d3rrr
h̄2

2m
τ (rrr, t ), (12)

where τ = τn + τp, a Coulomb term ECoul, and a nuclear term
Enuc, i.e.,

E = Ekin + ECoul + Enuc. (13)

Assuming nuclear isospin symmetry, Enuc remains unaffected
if neutron and proton densities and currents are interchanged.
It is convenient to introduce an isospin index equal to 0
for isoscalar quantities and 1 for isovector quantities. The
former (also written without any subscript) are sums over
neutrons and protons (e.g., n0 ≡ n = nn + np) while the latter
are differences between neutrons and protons (e.g., n1 =
nn − np). Because of Galilean invariance, the nuclear-energy
terms contributing to the mass currents, denoted by E j

nuc, can
only depend on the combinations X0(rrr, t ) = n0(rrr, t )τ0(rrr, t ) −
j0(rrr, t )2 and X1(rrr, t ) = n1(rrr, t )τ1(rrr, t ) − j1(rrr, t )2, as shown,
e.g., Ref. [41]. Therefore, the functional derivatives of E j

nuc

with respect to τq(rrr, t ) and jq(rrr, t ) can be written as

δE j
nuc

δτq(rrr, t )
= h̄2

2m⊕
q (rrr, t )

− h̄2

2m

=
[

δE j
nuc

δX0(rrr, t )
− δE j

nuc

δX1(rrr, t )

]
n + 2nq

δE j
nuc

δX1(rrr, t )
, (14)

δE j
nuc

δ jqjqjq(rrr, t )
= IqIqIq(rrr, t ) = −2 jjj

[
δE j

nuc

δX0(rrr, t )
− δE j

nuc

δX1(rrr, t )

]

− 4 jqjqjq
δE j

nuc

δX1(rrr, t )
. (15)

Using Eqs. (14) and (15), the mass current (11) can be
expressed in terms of the momentum densities only as

ρqρqρq(rrr, t ) = h̄ jqjqjq(rrr, t )

{
1 + 2

h̄2

[
δE j

nuc

δX0(rrr, t )
− δE j

nuc

δX1(rrr, t )

]
ρ(rrr, t )

}
−h̄ jjj(rrr, t )

2

h̄2

[
δE j

nuc

δX0(rrr, t )
− δE j

nuc

δX1(rrr, t )

]
ρq(rrr, t ). (16)
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While neutron and proton mass currents are not separately
aligned with their corresponding momenta, it can be easily
seen that the total mass current coincides with the total
momentum density,

ρρρ(rrr, t ) = ρnρnρn(rrr, t ) + ρpρpρp(rrr, t ) = h̄ jjj(rrr, t ). (17)

The mean mass current ρqρqρq(t ) in the volume V is obtained
by integrating the corresponding local current ρqρqρq(rrr, t ). De-
composing the density matrix in a single-particle basis (A2)
using Eqs. (2), (4), and (11), the mean mass current can thus
be written as

ρqρqρq(t ) = 1

V

∫
d3rrr ρqρqρq(rrr, t ) = m

V

∑
i, j

ni j
q v

(q)
jiv
(q)
jiv
(q)
ji , (18)

where

v
(q)
jiv
(q)
jiv
(q)
ji =

∑
σ

∫
d3rrr ϕ

(q)
j (rrr, σ )∗v(q)v(q)v(q)(rrr, t )ϕ(q)

i (rrr, σ ), (19)

are the matrix elements of the velocity operator,

v(q)v(q)v(q)(rrr, t ) = −ih̄

2

[
1

m⊕
q (rrr, t )

∇∇∇ + ∇∇∇ 1

m⊕
q (rrr, t )

]
+ 1

h̄
IqIqIq(rrr, t ).

(20)

That v(q)v(q)v(q)(rrr, t ) is a velocity operator is confirmed by the
application of the Ehrenfest theorem (see, e.g., Ref. [42]),

v
(q)
jiv
(q)
jiv
(q)
ji =

∑
σ

∫
d3rrr ϕ

(q)
j (rrr, σ )∗

1

ih̄

[
rrrhq(rrr, t )−hq(rrr, t )rrr

]
ϕ

(q)
i (rrr, σ ).

(21)

In the canonical basis for which the density matrix is diagonal,
i.e., ni j

q = ñ(q)
i δi j where ñ(q)

i represents the occupation number
of the single-particle state i (δi j being the Kronecker symbol),
the mean mass current takes a particularly simple form,

ρqρqρq = m

V

∑
i

ñ(q)
i v

(q)
iv
(q)
iv
(q)
i , (22)

with v
(q)
iv
(q)
iv
(q)
i ≡ v

(q)
iiv
(q)
iiv
(q)
ii denoting the mean velocity of the state i.

The equations derived so far for the mass currents are very
general since we only made use of the TDHF equations (7)
with no further approximation. In particular, Eqs. (11), (16),
and (22) are applicable to both homogeneous and inhomoge-
neous systems such as the core and the crust of a neutron star,
respectively.

C. Relation to the Fermi-liquid theory

In systems that have some translational symmetry (but
not necessarily homogeneous), any single-particle state can
be labeled by a wave vector kkk. Assuming further that
the system is stationary, the TDHF equation (5) shows that
the Hamiltonian and density matrices commute, and therefore
share the same eigenstates. In other words, the single-particle
Hamiltonian is diagonal in the canonical basis,

hq(rrr)ϕ(q)
kkk (rrr, σ ) = ε

(q)
kkk ϕ

(q)
kkk (rrr, σ ). (23)

As shown in Appendix C, the mean velocity v
(q)
kv
(q)
kv
(q)
k of a state kkk

can be expressed as

v
(q)
kv
(q)
kv
(q)
k = 1

h̄
∇k∇k∇kε

(q)
kkk . (24)

The mean current is thus given by the familiar expression,

ρqρqρq = m

V

∑
kkk

ñ(q)
kkk v

(q)
kv
(q)
kv
(q)
k . (25)

This demonstrates the equivalence between the definition of
the mass currents in the Fermi-liquid theory, namely Eqs. (24)
and (25), and the expression (18) derived from the TDHF
equations (7).

III. ENTRAINMENT EFFECTS IN NEUTRON-STAR CORES

We focus here on homogeneous nucleon matter with sta-
tionary currents. All fields are therefore spatially uniform and
independent of time.

A. Andreev-Bashkin matrix in the Fermi-liquid theory

The entrainment matrix was previously calculated in the
framework of the Fermi-liquid theory by considering small
perturbations of the static ground-state configuration [24].
In the presence of currents, the neutron and proton Fermi
surfaces are shifted by a vector QnQnQn and QpQpQp, respectively, which
are related to the “superfluid velocities” by

VqVqVq = h̄QqQqQq

m
. (26)

To first order in Qq/k(q)
F , where k(q)

F = (3π2nq)1/3 denotes the
Fermi wave number, the induced mass current,

ρqρqρq ≈ δρqρqρq = m

V

∑
kkk

(
δñ(q)

kkk v
(q)
kv
(q)
kv
(q)
k + ñ(q)

kkk δv
(q)
kv
(q)
kv
(q)
k

)
, (27)

can be written in the form of Eq. (1) with the entrainment
matrix [24],

ρqq′ = √
ρqρq′

m√
m⊕

q m⊕
q′

(
δqq′ + Fqq′

1

3

)
, (28)

where m⊕
q is the (Landau) effective mass and Fqq′

1 are dimen-
sionless 
 = 1 Landau parameters.

B. Andreev-Bashkin matrix in the TDHF theory

As we will now show the entrainment matrix can be calcu-
lated exactly in the TDHF theory. Introducing the “superfluid
velocity,”

VqVqVq = h̄

ρq
jqjqjq, (29)

and using Eq. (16), the entrainment matrix is found to be given
by

ρqq′ = ρq

[
δqq′ + 2

h̄2

(
δE j

nuc

δX0
− δE j

nuc

δX1

)
ρq′ (2δqq′ − 1)

]
. (30)
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Let us stress that the functional derivatives of E j
nuc may

generally depend on the nucleon densities and currents unless
E j

nuc is a linear combination of X0 and X1 or the functional
derivatives of E j

nuc with respect to X0 and X1 cancel exactly.
Unlike the Fermi-liquid expression (28), the mass currents
obtained from the TDHF expression (30) may thus depend
nonlinearly on the superfluid velocities.

The Fermi-liquid expression (28) is recovered by
evaluating the functional derivatives of E j

nuc with respect to X0

and X1 in the static configuration, i.e., by setting jqjqjq = 000 after
derivation. To verify that Eq. (30) reduces to (28), we need to
calculate the Landau effective mass and the 
 = 1 Landau
parameters in the TDHF theory. It follows immediately from
Eq. (C9) that the Landau effective mass defined as (the
subscript “0” indicating that the derivative is evaluated in the
absence of currents with kkk lying on the corresponding Fermi
surface)

1

m⊕
q

= 1

h̄2k(q)
F

dε
(q)
kkk

dk

∣∣∣∣
0

(31)

coincides with the effective mass appearing in the TDHF
theory. We have thus used the same symbol. The Landau
parameters are obtained from the spin-averaged quasiparticle
interaction defined by

f qq′
(kkk,kkk′) = δ2E

δñ(q)
kkk δñ(q′ )

k′k′k′

∣∣∣∣
0

= δε
(q)
kkk

δñ(q′ )
k′k′k′

∣∣∣∣
0

. (32)

The quasiparticle interaction is further expanded into
Legendre polynomials,

f qq′
(kkk,kkk′) =

∑



f qq′

 P
(cos θ ), (33)

where θ is the angle between the wave vectors kkk and kkk′
lying on the corresponding Fermi surface. The dimensionless
Landau parameters Fqq′

1 appearing in Eq. (28) are defined by

Fqq′
1 = √NqNq′ f qq′


 , (34)

in which Nq is the density of quasiparticle states at the Fermi
surface,

Nq = m⊕
q k(q)

F

h̄2π2
. (35)

In the TDHF theory for homogeneous matter (see
Appendix C), the quasiparticle energies are given by Eq. (C9).
From the general definition (32), it follows that only the term
kkk · IqIqIq contributes to the 
 = 1 Landau parameters. Using
Eq. (15) and remarking from Eq. (4) that the momentum
density (in the canonical basis) reduces to

jqjqjq =
∑

kkk

kkk ñ(q)
kkk , (36)

the term kkk · IqIqIq can be explicitly written as

kkk · IqIqIq = −2
∑

k′k′k′
kkk · k′k′k′ ñ(q)

k′k′k′

[
δE j

nuc

δX0
+ δE j

nuc

δX1

]

− 2
∑

k′k′k′
kkk · k′k′k′ ñ(q′ )

k′k′k′

[
δE j

nuc

δX0
− δE j

nuc

δX1

]
. (37)

The 
 = 1 Landau parameters can be readily obtained by
taking the derivatives of the above expression with respect to
ñ(q)

k′k′k′ and ñ(q′ )
k′k′k′ :

f qq
1 = −2

[
δE j

nuc

δX0

∣∣∣∣
0

+ δE j
nuc

δX1

∣∣∣∣
0

](
k(q)

F

)2
, (38)

f qq′
1 = −2

[
δE j

nuc

δX0

∣∣∣∣
0

− δE j
nuc

δX1

∣∣∣∣
0

]
k(q)

F k(q′ )
F . (39)

Inserting the corresponding dimensionless parameters in
Eq. (28) leads to an expression similar to Eq. (30) except that
the derivatives are now evaluated for vanishing currents.

C. Entrainment and isovector effective mass

Because of Galilean invariance, as embedded in Eq. (17),
it can be easily seen from Eq. (30) that the entrainment
matrix elements are not all independent but are related by the
following identities,

ρnn + ρnp = ρn, ρpp + ρpn = ρp. (40)

This means that entrainment effects can be completely char-
acterized by only one independent parameter, such as the
dimensionless determinant of the entrainment matrix,

ϒ = ρnnρpp − ρ2
np

ρnρp
. (41)

This parameter directly appears in the perturbed hydrody-
namical equations and is therefore important for the study
of oscillation modes (see, e.g., Refs. [43–45]). Introducing
the asymmetry parameter η = (nn − np)/n, the entrainment
matrix elements can thus be equivalently expressed as

ρnn = 1
2ρ(1 + η) − 1

4ρ(1 − η2)(1 − ϒ), (42)

ρpp = 1
2ρ(1 − η) − 1

4ρ(1 − η2)(1 − ϒ), (43)

ρnp = 1
4ρ(1 − η2)(1 − ϒ) = ρpn. (44)

The deviation of ϒ from unity is a measure of the importance
of entrainment effects. This parameter appears to have a
simple physical meaning: It coincides with the inverse of the
isovector effective mass defined by

m

m⊕
v

=
(

m

m⊕
n

− nn

np

m

m⊕
p

)(
1 − nn

np

)−1

. (45)

Introducing the isoscalar effective mass,

m

m⊕
s

= 1

2

(
m

m⊕
n

+ m

m⊕
p

)
, (46)

the nucleon effective masses can be equivalently written as

m

m⊕
q

= 2nq

n

m

m⊕
s

+
(

1 − 2nq

n

)
m

m⊕
v

. (47)

The identity ϒ = m/m⊕
v can be directly demonstrated from

Eq. (14) and the definition (45). This identity also holds in
the Fermi-liquid theory if the Landau parameters are express-
ible as f qq

1 = f1(n, η2)(k(q)
F )2 (the function f1 being invariant
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under the interchange of neutrons and protons). In the TDHF
theory, the parameter ϒ is explicitly given by

ϒ = m

m⊕
v

= 1 + 2

h̄2

(
δE j

nuc

δX0
− δE j

nuc

δX1

)
ρ. (48)

This result is quite general and is applicable to any nuclear
energy-density functional that depends on the nucleon densi-
ties nq(rrr, t ), kinetic densities τq(rrr, t ), and momentum densi-
ties jqjqjq(rrr, t ). The fact that the determinant ϒ of the entrain-
ment matrix is related to the isovector effective mass is not
unexpected since both quantities characterize similar phenom-
ena, namely relative motions between neutrons and protons.

In principle, the isovector effective mass can be extracted
from measurements of isovector giant dipole resonances in
finite nuclei (the isovector effective mass being closely related
to the enhancement factor κ of the energy-weighted sum
rule m1). However, the values inferred from such analyses
are model dependent (see, e.g., Refs. [46,47]). Alternatively,
the isovector effective mass can be indirectly estimated from
functionals fitted to various nuclear data, as in Ref. [48].
In particular, the fit to essentially all nuclear masses seems
to favor values between m⊕

v /m ∼ 0.6 and m⊕
v /m ∼ 0.8 at

saturation density [49]. Considering different analyses, cur-
rent estimates of isovector effective mass at saturation lie in
the range m⊕

v /m ∼ 0.6–0.9. These values are consistent with
those found in microscopic calculations (see, e.g., Ref. [50]
for a recent review). Applications to neutron stars require
the knowledge of the isovector effective mass at densities
ranging from about ∼0.08 fm−3 (crust-core transition) up
to several times saturation density. The variations of the
isovector effective mass with density as predicted by func-
tionals LNS [51] and Skχm∗ [52] are shown in Fig. 1.
These two functionals were directly fitted to microscopic
calculations based on the extended Brueckner-Hartree-Fock
approach for the former and on chiral effective field theory for
the latter. These results are compared to those obtained using
the Brussels-Montreal functionals [49,53]. These functionals
have been employed to calculate a series of equations of state
of dense matter in all regions of a neutron star in a unified
and thermodynamically consistent way [36,37]. These func-
tionals, which were derived from extended Skyrme effective
interactions containing terms that are both momentum and
density dependent (see Appendix B), were precision fitted to
all measured masses of nuclei with Z, N � 8 from the Atomic
Mass Evaluation with root-mean square deviations ∼0.5–
0.6 MeV. These functionals were simultaneously adjusted to
other experimental and theoretical nuclear data including the
neutron-matter equations of state, as obtained from many-
body calculations using realistic nucleon-nucleon potentials.
The isovector effective masses obtained with BSk19 and
BSk26 are found to be significantly smaller than the micro-
scopic results of Refs. [51,52]. Interestingly, these functionals
are also disfavored by astrophysical observations [37,54]. On
the other hand, the functionals BSk21, BSk24, and BSk25
are consistent with microscopic predictions. For comparison,
results from other extended and standard Skyrme function-
als, developed for astrophysical applications, are shown in
Fig. 2. The eMSL functionals [55] lead to predictions that are
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FIG. 1. Variation of the isovector effective mass m⊕
v /m with

density n in nucleon matter for the extended Skyrme functionals
BSk19, BSk20, BSk21, BSk24, BSk25, and BSk26 [49,53]. The
upper and lower black solid lines are results from the LNS [51] and
Skχm∗ [52] functionals, which were fitted to calculations based on
the extended Brueckner-Hartree-Fock approach and chiral effective
field theory, respectively.

similar to those of the BSk series. The eMSL08 and eMSL09
parametrizations appear to yield more realistic isovector ef-
fective masses than eMSL07. The isovector effective masses
obtained with the standard Skyrme functionals SLy4 [56,57]
and UNEDF [58] are substantially higher than the microscop-
ically calculated ones.

The parametrization (42)–(44) of the entrainment matrix is
particularly well suited for practical applications because ϒ is
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FIG. 2. Same as Fig. 1 for the extended Skyrme functionals
eSML07, eSML08, and eSML09 [55]. For comparison, predictions
from the standard Skyrme functionals SLy4 [56,57] and UNEDF [58]
are also shown.
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independent of the composition for Skyrme-like functionals
and is merely given by (see Appendix B)

ϒ = 1 + 2

h̄2

(
Cτ

0 − Cτ
1

)
ρ, (49)

where Cτ
0 and Cτ

1 are constant parameters for standard Skyrme
functionals, and are functions of the density n for the extended
Skyrme functionals discussed above [49,55,59–61]. Explicit
formulas for these coefficients are given in Appendix B.

The entrainment matrix calculated from standard Skyrme
effective interactions is found to coincide with that obtained
earlier using the Fermi-liquid expression (28) with corre-
sponding Landau parameters Fqq′

1 and effective masses m⊕
q

[26]. This stems from the fact that the mass currents ρqρqρq depend
linearly on the superfluid velocitiesVqVqVq (the entrainment matrix
is independent of VqVqVq). However, this may not be necessarily
the case for more complicated nuclear energy-density func-
tionals. In particular, the exact expression (30) will differ from
the Fermi-liquid approximation whenever the nuclear energy
functional contains terms that are not simply proportional to
the fields X0 and X1. Examples of such functionals have been
proposed in Ref. [62].

IV. CONCLUSIONS

We have derived exact expressions for the local nucleon
mass currents ρqρqρq(rrr, t ) at any position rrr and time t in a cold
neutron-proton mixture directly from the TDHF equations
without any further approximation. We have also shown how
to relate the spatially averaged mass currents to the group
velocities of single-particle quantum states, demonstrating in
this way the equivalence between TDHF theory and previous
analyses based on the Fermi-liquid approximation. Our ex-
pressions are very general and are applicable to both homoge-
neous and inhomogeneous nuclear systems.

Focusing on the core of a neutron star, we have shown that
the neutron-proton entrainment matrix can be conveniently
expressed in terms of its dimensionless determinant ϒ , whose
deviation from unity measures the importance of entrainment
effects. This quantity depends solely on the nucleon number
density n and is found to coincide with the inverse of the
isovector effective mass. This formulation thus allows one to
relate entrainment phenomena in neutron stars to isovector
giant dipole resonances in finite nuclei. We have calculated
the isovector effective mass for various semilocal nuclear
energy-density functionals. These include the precision-fitted
Brussels-Montreal functionals, for which unified equations of
state of neutron stars have been already calculated [36,37].
Comparing results to those obtained from microscopic calcu-
lations, the functionals BSk24 and BSk25 appear to be par-
ticularly well suited for dynamical simulations of superfluid
neutron stars.
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APPENDIX A: COORDINATE-SPACE
FORMULATION OF TDHF

Following the general definition of the density matrix,

nq(rrr, σ ; r′r′r′, σ ′; t ) = 〈�(t )|cq(r′r′r′, σ ′)†cq(rrr, σ )|�(t )〉, (A1)

where |�(t )〉 is the many-nucleon wave function at time t ,
cq(rrr, σ )† and cq(rrr, σ ) are the creation and destruction oper-
ators for nucleons of charge type q at position rrr with spin
σ , the coordinate-space and discrete-basis representations are
related by

nq(rrr, σ ; r′r′r′, σ ′; t ) =
∑
i, j

ni j
q (t ) ϕ

(q)
i (rrr, σ )ϕ(q)

j (r′r′r′, σ ′)∗, (A2)

ni j
q (t ) =

∑
σ,σ ′

∫
d3rrrd3r′r′r′ nq(rrr, σ ; r′r′r′, σ ′; t )ϕ(q)

i (rrr, σ )∗ϕ(q)
j (r′r′r′, σ ′), (A3)

denoting by ϕ
(q)
i (rrr, σ ) the single-particle basis wave functions. Making use of the completeness relations,∑

i

ϕ
(q)
i (rrr, σ )∗ϕ(q)

i (r′r′r′, σ ′) = δ(rrr − r′r′r′)δσσ ′, (A4)

the TDHF equations (5) can thus be alternatively written as

ih̄
∂nq(rrr, σ ; r′r′r′, σ ′; t )

∂t
=

∑
σ ′′

∫
d3r′′r′′r′′ [hq(rrr, σ ; r′′r′′r′′, σ ′′; t )nq(r′′r′′r′′, σ ′′; r′r′r′, σ ′; t ) − nq(rrr, σ ; r′′r′′r′′, σ ′′; t )hq(r′′r′′r′′, σ ′′; r′r′r′, σ ′; t )], (A5)

with the Hamiltonian matrix defined by

hq(rrr, σ ; r′r′r′, σ ′; t ) =
∑
i, j

hi j
q (t ) ϕ

(q)
i (rrr, σ )ϕ(q)

j (r′r′r′, σ ′)∗. (A6)
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In cases for which the energy E is a functional of local densities and currents, the Hamiltonian matrix can be calculated as

hi j
q (t ) =

∫
d3rrr

[
δE

δnq(rrr, t )

∂nq(rrr, t )

∂n ji
q (t )

+ δE

δτq(rrr, t )

∂τq(rrr, t )

∂n ji
q (t )

+ δE

δ jqjqjq(rrr, t )

∂ jqjqjq(rrr, t )

∂n ji
q (t )

]
. (A7)

Using Eqs. (2), (3), (4), and (A2) in (A7), and integrating by parts, the Hamiltonian matrix can be written in the form,

hi j
q (t ) =

∑
σ,σ ′

∫
d3rrrd3r′r′r′ hq(rrr, σ ; r′r′r′, σ ′; t )ϕ(q)

i (rrr, σ )∗ϕ(q)
j (r′r′r′, σ ′), (A8)

hq(rrr, σ ; r′r′r′, σ ′; t ) = hq(rrr, t )δ(rrr − r′r′r′)δσσ ′, (A9)

with the Hamiltonian operator hq(rrr, t ) defined by Eq. (8).
From the Hermiticity property hi j

q = (h ji
q )∗, we have

hq(rrr, σ ; r′r′r′, σ ′; t ) = hq(r′r′r′, t )∗ δ(rrr − r′r′r′)δσσ ′ . (A10)

Note that the order of the factors in Eqs. (A9) and (A10)
matters: The Hamiltonian operates on the Dirac distribution.
Inserting Eqs. (A9) and (A10) in (A5) leads to Eq. (7).

APPENDIX B: NUCLEAR ENERGY-DENSITY
FUNCTIONALS AND SKYRME EFFECTIVE

INTERACTIONS

Nuclear energy-density functionals can be obtained from
the HF method using extended Skyrme effective interactions
of the form,

v(rrri, rrr j ) = t0(1 + x0Pσ )δ(rrri j ) + 1

2
t1(1 + x1Pσ )

1

h̄2

[
p2

i j δ(rrri j ) + δ(rrri j ) p2
i j

] + t2(1 + x2Pσ )
1

h̄2 pppi j · δ(rrri j ) pppi j

+ 1

6
t3(1 + x3Pσ )n(rrr)α δ(rrri j ) + 1

2
t4(1 + x4Pσ )

1

h̄2

[
p2

i j n(rrr)β δ(rrri j ) + δ(rrri j ) n(rrr)β p2
i j

]
+ t5(1 + x5Pσ )

1

h̄2 pppi j · n(rrr)γ δ(rrri j ) pppi j + i

h̄2 W0(σ̂iσ̂iσ̂i + σ̂ jσ̂ jσ̂ j ) · pppi j × δ(rrri j ) pppi j, (B1)

where rrri j = rrri − rrr j , rrr = (rrri + rrr j )/2, pppi j = −ih̄(∇∇∇ i − ∇∇∇ j )/2
is the relative momentum, σ̂iσ̂iσ̂i and σ̂ jσ̂ jσ̂ j are Pauli spin matrices, Pσ

is the two-body spin-exchange operator, and n(rrr) denotes the
average nucleon number density. The terms proportional to t4
and t5 are absent in standard Skyrme functionals. Although the
use of effective interactions imposes some restrictions on the
form of the functional, it guarantees the cancellation of self-
interaction errors [63] (nonetheless, the functional may still
be contaminated by many-body self-interaction errors; see,
e.g., Ref. [64] and references therein). Parameters are usually
determined by fitting various experimental and theoretical
nuclear data.

The nuclear energy is expressible as Enuc = ∫
d3rrr ESky(rrr).

The nuclear terms contributing to the mass currents take a very
simple form,

E j
Sky = Cτ

0 X0 + Cτ
1 X1, (B2)

where the coefficients Cτ
0 and Cτ

1 are given by [61]

Cτ
0 (n) = 3

16
t1 + 1

4
t2

(
5

4
+ x2

)
+ 3

16
t4nβ + 1

4
t5

(
5

4
+ x5

)
nγ ,

(B3)

Cτ
1 (n) = −1

8
t1

(
1

2
+ x1

)
+ 1

8
t2

(
1

2
+ x2

)
− 1

8
t4

(
1

2
+ x4

)
nβ + 1

8
t5

(
1

2
+ x5

)
nγ . (B4)

The coefficients Cτ
0 and Cτ

1 coincide with the functional
derivatives of the E j

nuc with respect to X0 and X1, respectively,
i.e.,

δE j
nuc

δX0
= Cτ

0 ,
δE j

nuc

δX0
= Cτ

1 . (B5)

APPENDIX C: GROUP VELOCITY IN
TRANSLATIONALLY INVARIANT SYSTEMS

In nuclear systems with some translational symmetry (this
includes the crystalline crust and the homogeneous core of a
neutron star), the single-particle wave functions are given by
Bloch waves [65],

ϕ
(q)
kkk (rrr, σ ) = 1√

V
exp(i kkk · rrr)χ (σ )

∑
GGG

ϕ̃
(q)
kkk (GGG) exp(i GGG · rrr),

(C1)

where GGG are reciprocal lattice vectors and χ (σ ) denotes the
Pauli spinor. The HF equations (23) can thus be written as∑

G′G′G′
h̃(q)

kkk (GGG,G′G′G′ )̃ϕ(q)
kkk (G′G′G′) = ε

(q)
kkk ϕ̃

(q)
kkk (GGG), (C2)

h̃(q)
kkk (GGG,G′G′G′) = 1

V

∫
d3rrr e−i(kkk+GGG)·rrrhq(rrr)ei(kkk+G′G′G′ )·rrr .

(C3)
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Making use of the normalization of the wave functions,∑
GGG

∣∣̃ϕ(q)
kkk (GGG)

∣∣2 = 1, (C4)

the single-particle energy is given by

ε
(q)
kkk =

∑
GGG,G′G′G′

ϕ̃
(q)
kkk (GGG)∗h̃(q)

kkk (GGG,G′G′G′ )̃ϕ(q)
kkk (G′G′G′). (C5)

According to the Hellmann-Feynman theorem [66], we have

1

h̄
∇k∇k∇kε

(q)
kkk = 1

h̄

∑
GGG,G′G′G′

ϕ̃
(q)
kkk (GGG)∗

[∇k∇k∇kh̃(q)
kkk (GGG,G′G′G′)

]̃
ϕ

(q)
kkk (G′G′G′). (C6)

Using Eq. (C3), it can be easily seen that Eq. (C6) coincides
with the general definition (21), thus demonstrating

1

h̄
∇k∇k∇kε

(q)
kkk = v

(q)
kv
(q)
kv
(q)
k . (C7)

In the limit of homogeneous nucleon matter as in the core
of a neutron star, ϕ̃

(q)
kkk (GGG) = 1 for G = 0 and ϕ̃

(q)
kkk (GGG) = 0

otherwise, i.e., the single-particle wave functions reduce to
plane waves,

ϕ
(q)
kkk (rrr, σ ) = 1√

V
exp(i kkk · rrr)χ (σ ). (C8)

In this case, the single-particle energy and the velocity can be
readily calculated. Substituting Eq. (C8) in Eq. (23) yields

ε
(q)
kkk = h̄2k2

2m⊕
q

+ Uq + kkk · IqIqIq. (C9)

Differentiating leads to

v
(q)
kv
(q)
kv
(q)
k = 1

h̄
∇k∇k∇kε

(q)
kkk = h̄kkk

m⊕
q

+ IqIqIq

h̄
. (C10)
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