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Abstract

Our initial result states that, in a certain class of Banach algebras which includes C∗-algebras
and group algebras of locally compact groups, every commutator lies in the closed linear span of
square-zero elements. The proof relies on the theory of Banach algebras with property B. We then
study several variations and extensions of this result. For instance, we show that in a von Neumann
algebra every commutator is actually a finite sum of square-zero elements. We also consider the
commutator ideal and the existence of some special square-zero elements.

1. Introduction

A complex Banach algebra A is said to have property B if, for every continuous bilinear map
f : A × A → X where X is an arbitrary Banach space, the condition that for all x, y ∈ A,

xy = 0 =⇒ f (x, y) = 0, (1)

implies that
f (xy, z) = f (x, yz) for all x, y, z ∈ A. (2)

This concept was introduced in [1] and has since turned out to be applicable to a variety of prob-
lems; see, for example, [1–3, 27] and references therein. The main message of [1] is that the class
of Banach algebras with property B is quite large, in particular it includes C∗-algebras and group
algebras of arbitrary locally compact groups.
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2 J. ALAMINOS et al.

The starting point of this paper is the observation that every commutator in a Banach alge-
bra A with property B which also satisfies Ā2 = A (this is fulfilled in C∗-algebras and group
algebras of locally compact groups), is contained in the closed linear span of square-zero elements
(Theorem 2.1). The proof is fairly easy, but the result itself is perhaps a bit surprising. In particular, it
generalizes and unifies two classical results: the one by Kaplansky stating that a C∗-algebra A has a
non-zero nilpotent element if and only if A is non-commutative (see, for example, [19, p. 292]), and
the one by Behncke stating that the group algebra L1(G) of a locally compact group G has a non-zero
nilpotent element if and only if G is not abelian [5]. On the other hand, there are several results in the
literature stating that, in certain algebras, every commutator lies in the (non-closed) linear span of
square-zero elements, i.e. it can be written as a finite sum of such elements. For example, this is true
in the algebra B(H) of all bounded linear operators on an infinite-dimensional Hilbert space [14, 25];
in fact, an element in B(H) is a commutator if and only if it can be written as the sum of four square-
zero elements [29]. Pearcy and Topping showed that commutators are sums of (a certain number
of) square-zero elements in some classes of von Neumann algebras [25, 26], Kataoka established
this for stable and properly infinite C∗-algebras [21], and Marcoux for C∗-algebras containing some
special projections [23, 24]. There has also been some interest in this topic in pure algebra. Recently,
Chebotar et al. [10] showed that every commutator in a simple ring with a non-trivial idempotent is
the sum of square-zero elements, but, on the other hand, there exists a simple ring with zero-divisors
in which this is not the case; the latter gave the answer to a long-standing problem by Herstein [16].

The question that now presents itself is whether every commutator in an arbitrary C∗-algebra A
is a finite sum of square-zero elements in A. In Section 3, we show that (1) does not always imply
(2) if f is a discontinuous bilinear map on a C∗-algebra, and thereby rule out the possibility to
get a positive answer to this question by using the same approach as in the proof of Theorem 2.1.
However, by using an algebraic approach based on idempotents, we prove, in Section 4, that the
answer is positive at least for von Neumann algebras. For general C∗-algebras, the question remains
open. In Section 5, we prove that, in a certain class of Banach algebras with property B, in particular
in C∗-algebras and some Banach algebras associated with a compact group, the commutator ideal
coincides with the closed subalgebra generated by square-zero elements. Finally, in Section 6 we
study the existence of some special square-zero elements in Banach algebras with property B. It
follows almost immediately from the definition that a non-commutative unital Banach algebra with
property B contains a pair of elements a, b such that ab = 0 and ba �= 0 (and so ba is a non-zero
square-zero element). We will establish somewhat deeper results of a similar type.

2. Commutators and square-zero elements in Banach algebras with property B

Let A be an algebra. As usual, the commutator xy − yx of elements x, y ∈ A will be denoted by [x, y].
We write [A, A] for the linear span of all commutators in A. By a square-zero element, we mean any
element x ∈ A such that x2 = 0. The centre of A will be denoted by Z(A).

A Banach algebra A is said to be essential if Ā2 = A (i.e. every element in A is the limit of
sums of elements of the form xy with x, y ∈ A). For example, every Banach algebra with a (left,
right) approximate identity is essential. C∗-algebras and group algebras of locally compact groups
therefore have property B and are essential; for further examples of such Banach algebras we refer
the reader to [1].

Theorem 2.1 Let A be an essential Banach algebra with property B. Then every commutator in A
lies in the closed linear span of square-zero elements.
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COMMUTATORS AND SQUARE-ZERO ELEMENTS 3

Proof . Denote the closed linear span of all square-zero elements in A by V , and consider the map
f : A × A → A/V given by f (x, y) = yx + V . Note that f is bilinear, continuous and satisfies condi-
tion (1). Consequently, f satisfies (2), meaning that [zx, y] ∈ V . Since A is essential, this implies that
V contains all commutators in A. �

We now show that, for any C∗-algebra and some Banach algebras associated with a compact
group, the square-zero elements lie in the closure of the linear span of the commutators.

Proposition 2.2 Let A be a C∗-algebra. Then the closed linear span of all square-zero elements
in A coincides with the closure of [A, A].

Proof . As observed by Kataoka, every square-zero element x in a C∗-algebra A is a commutator
[21, Proposition 6]. The proof is as follows. We consider the polar decomposition x = u|x| of x in
the enveloping von Neumann algebra of A. Since |x|1/2 lies in the C∗-subalgebra of A generated by
|x|, it follows that there exists a sequence (fn) of polynomials such that |x|1/2 is the limit in norm of
the sequence (|x|fn(|x|)). Consequently,

u|x|1/2 = lim u|x|fn(|x|) = lim xfn(|x|) ∈ A.

Since u∗x = |x|, we see that |x|u|x| = u∗x2 = 0, and therefore we have

|x|1/2u|x|1/2 = lim fn(|x|)|x|u|x|fn(|x|) = 0.

Consequently, we have x = [u|x|1/2, |x|1/2], which is a commutator in A. This of course implies that
the closed linear span of square-zero elements is contained in the closed linear span of commutators,
while the converse inclusion follows from Theorem 2.1. �

In the remainder of this section, we are concerned with a compact group G. The Haar measure λ

on G is normalized, so that λ(G) = 1, and λ is both left and right invariant. We write
∫

G f (t) dt for
the integral of f ∈ L1(G) with respect to λ. The Banach spaces Lp(G), with 1 ≤ p ≤ ∞, and C(G)

are Banach algebras under convolution.
Let π be an irreducible continuous unitary representation of G on a Hilbert space Hπ . Then

dπ = dim(Hπ ) < ∞ and the character χπ of π is the continuous function on G defined by

χπ(t) = trace(π(t)) (t ∈ G).

By [17, Theorem 27.24(i)], χπ ∈ Z(L1(G)). We write Tπ (G) for the linear span of the set of
continuous functions on G of the form t 
→ 〈π(t)u|v〉 as u, v vary over Hπ . On account of
[17, Theorems 27.21 and 27.24], it follows that Tπ (G) is a minimal ideal of L1(G) isomorphic to
the full matrix algebra Mdπ

(C), dπχπ is the unit of Tπ (G), and

trace(f ∗ dπχπ) =
∫

G
f (t)χπ(t) dt

for each f ∈ L1(G). We write T(G) for the linear span of the functions in Tπ (G) as π varies over
the irreducible continuous unitary representations of G. Functions in T(G) are called trigonometric
polynomials on G. By [15, Theorem 5.11], T(G) is dense in Lp(G) for 1 ≤ p < ∞ and C(G). Further
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4 J. ALAMINOS et al.

T(G) ∗ T(G) = T(G). These facts entail that any of the Banach algebras Lp(G) for 1 ≤ p < ∞ and
C(G) is essential and has property B (see [1, Example 1.3.3(4)]). We will denote by X (G) the set of
the characters of the irreducible continuous unitary representations of G.

Proposition 2.3 Let G be a compact group, and let A be any of the Banach algebras Lp(G), with
1 ≤ p < ∞, or C(G). Then the following conditions on f ∈ A are equivalent:

(i) f lies in the closure of [A, A];
(ii) f lies in the closed linear span of all square-zero elements of A;

(iii)
∫

G f (t)χ(t) dt = 0 for each χ ∈ X (G).

Proof . Theorem 2.1 shows that (i) implies (ii).
We now assume that (ii) holds. Let π be an irreducible continuous unitary representation of G.

Then f ∗ dπχπ ∈ Tπ (G) can be thought of as a square-zero dπ × dπ matrix, and hence

0 = trace(f ∗ dπχπ) =
∫

G
f (t)χπ(t) dt,

which shows that f satisfies (iii).
Finally, we assume that f satisfies (iii). Let ε > 0. Let U denote the family of all compact, sym-

metric neighbourhoods of the identity e of G that are invariant under the inner automorphisms of
G. On account of [18, Theorem 4.9], U is a neighbourhoods base at e. For every U ∈ U , let �U be
λ(U)−1 times the characteristic function of U . By [15, Proposition 2.42], the net (f ∗ �U )U∈U (where
U is ordered by reverse inclusion) converges to f in A. Let U ∈ U be such that ‖f ∗ �U − f ‖ < 2−1ε.
Since U is invariant, [17, Theorem 28.49] shows that �U ∈ Z(L1(G)) and [15, Proposition 5.25] now
shows that there exist finitely many irreducible continuous unitary representations π1, . . . , πn of G
and α1, . . . , αn ∈ C such that∥∥∥∥∥�U −

n∑
k=1

αkχπk

∥∥∥∥∥
1

< 2−1 (1 + ‖f ‖)−1 ε.

Then we have ∥∥∥∥∥f −
n∑

k=1

αkf ∗ χπk

∥∥∥∥∥ ≤ ‖f − f ∗ �U‖ +
∥∥∥∥∥f ∗

(
�U −

n∑
k=1

αkχπk

)∥∥∥∥∥
< 2−1ε + ‖f ‖

∥∥∥∥∥�U −
n∑

k=1

αkχπk

∥∥∥∥∥
1

< ε.

Since f ∗ χπk ∈ Tπk (G) and

trace(f ∗ χπk ) = d−1
πk

∫
G

f (t)χπk (t) dt = 0,

it follows that f ∗ χπk = [gk , hk] for some gk , hk ∈ Tπk (G) for k ∈ {1, . . . , n}. Therefore,
∑n

k=1
αkf ∗ χπk ∈ [A, A]. �
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COMMUTATORS AND SQUARE-ZERO ELEMENTS 5

3. The algebraic property B

Is the closure unnecessary in both Propositions 2.2 and 2.3, i.e. is every commutator in A a finite sum
of square-zero elements? A rather obvious way to attack this question is to consider the algebraic
version of property B. Unfortunately, as we will see in Theorem 3.3 below, this cannot lead to a
definitive conclusion.

Let us be precise what we mean by the ‘algebraic property B’. We will say that an algebra A over a
commutative unital ring C has property Balg if, for every bilinear map f from A × A into an arbitrary
C-module X , condition (1) implies condition (2). This notion is in fact just a small modification of
the notion of a zero product determined algebra, introduced in [9] and later discussed in a series
of papers—yet mostly in the context of non-associative algebras. The difference in the definition is
that condition (2) is replaced by the condition that there exists a C-linear map T : A2 → X such that
f (x, y) = T(xy) for all x, y ∈ A. It is clear that every (associative) zero product determined algebra
has property Balg, and, conversely, a unital algebra with property Balg is zero product determined
(just set z = 1 in (2)). An example of such an algebra is Mn(B), the algebra of n × n matrices (with
n ≥ 2) over a unital algebra B [9, Theorem 2.1]. Further, every unital algebra which is generated by
its idempotents has property Balg [6, Theorem 4.1]. The algebra Mn(B) is in fact generated by its
idempotents (see Proposition 4.2), so this second result is more general.

The following result is an algebraic analogue of Theorem 2.1.

Theorem 3.1 Let A be an algebra with property Balg and such that A2 = A. Then every commuta-
tor in A is the sum of square-zero elements.

Proof . Define V as the C-module generated by all square-zero elements in A, and proceed as in the
proof of Theorem 2.1. �

Corollary 3.2 Let A be a unital algebra generated by its idempotents. Then every commutator
in A is the sum of square-zero elements.

Theorem 3.1 covers various examples of C∗-algebras. However, we will now show that this
approach has limitations.

Theorem 3.3 Let A be an infinite-dimensional, semisimple, commutative Banach algebra. Then A
does not have property Balg.

Proof . Let � denote the character space of A. If x ∈ A, then we write x̂ for the Gelfand transform
of x and h(x) = {s ∈ � : x̂(s) = 0}. We think of the algebraic tensor product A ⊗ A as a subalgebra
of C0(� × �) through the usual identification given by (x ⊗ y)(s, t) = x̂(s)ŷ(t) for all s, t ∈ � and
x, y ∈ A.

Since dim(A) = ∞, it follows that � is infinite. Let 	 be a countable infinite subset
of �. By [11, Corollary 2.2.26], there exists u ∈ A such that û(s) �= 0 (s ∈ 	) and û(s) �= û(t)
(s, t ∈ 	, s �= t).

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

ath/article-abstract/67/1/1/2362506 by U
niversite Libre de Bruxelles user on 29 January 2020



6 J. ALAMINOS et al.

We claim that
u2 ⊗ u − u ⊗ u2 �∈ span({x ⊗ y : x, y ∈ A, xy = 0}).

On the contrary, suppose that u2 ⊗ u − u ⊗ u2 = ∑n
k=1 xk ⊗ yk for some x1, . . . , xn, y1, . . . , yn ∈ A

with xkyk = 0 for each k ∈ {1, . . . , n}. We thus have

û(s)û(t)
(
û(s) − û(t)

) =
n∑

k=1

x̂k(s)ŷk(t) (s, t ∈ �).

Since x1y1 = 0, it follows that 	 ⊂ h(x1) ∪ h(y1), and therefore either h(x1) ∩ 	 or h(y1) ∩ 	 is
infinite. We define 	1 to be any of the infinite sets of the pair {h(x1) ∩ 	, h(y1) ∩ 	}. Observe that
x̂1(s)ŷ1(t) = 0 for all s, t ∈ 	1. Since x2y2 = 0, it follows that 	1 ⊂ h(x2) ∪ h(y2), and therefore
either h(x2) ∩ 	1 or h(y2) ∩ 	1 is infinite. We define 	2 to be any of the infinite sets of the pair
{h(x2) ∩ 	1, h(y2) ∩ 	1}. We now observe that x̂1(s)ŷ1(t) = x̂2(s)ŷ2(t) = 0 for all s, t ∈ 	2. By
repeating the process, we get infinite sets 	 ⊃ 	1 ⊃ · · · ⊃ 	n such that

x̂1(s)ŷ1(t) = · · · = x̂k(s)ŷk(t) = 0 (s, t ∈ 	k , k = 1, . . . , n).

Accordingly, û(s)û(t)(û(s) − û(t)) = 0 and so û(s) = û(t) for all s, t ∈ 	n, a contradiction.
Since u2 ⊗ u − u ⊗ u2 �∈ span({x ⊗ y : x, y ∈ A, xy = 0}), it may be concluded that there exists

a linear functional ϕ : A ⊗ A → C such that ϕ(u2 ⊗ u − u ⊗ u2) �= 0 and ϕ(x ⊗ y) = 0 whenever
x, y ∈ A are such that xy = 0. Then the bilinear functional f : A × A → C defined by f (x, y) =
ϕ(x ⊗ y) for all x, y ∈ A obviously satisfies (1). Since f (u2, u) �= f (u, u2), it follows that f does not
satisfy (2). �

We remark that the idea of the proof of this theorem was used in the paper by the second
author [7], written at about the same time as the present paper. The main result of [7] states that
a finite-dimensional unital algebra over an arbitrary field satisfies Balg (if and) only if it is generated
by idempotents.

4. Idempotents, commutators and square-zero elements in matrix and von Neumann algebras

The ultimate goal of this section is to prove that commutators in von Neumann algebras can be
written as sums of square-zero elements. We start, however, with a purely algebraic consideration of
matrix algebras Mn(B). Theorem 3.1 implies that commutators in these algebras are sums of square-
zero elements. We will establish this in a more explicit fashion, which will enable the passing to von
Neumann algebras.

Lemma 4.1 Let B be a unital algebra. Then every element in M2(B) can be written as e1e2 + e3e4 −
e5 − e6 for some idempotents ei ∈ M2(B) (i = 1, . . . , 6).

Proof . We have[
a11 a12

a21 a22

]
=
[

1 a11

0 0

] [
1 0
1 0

]
+
[

0 0
a22 1

] [
0 1
0 1

]
−
[

1 −a12

0 0

]
−
[

0 0
−a21 1

]

and all matrices appearing on the right-hand side are idempotent. �
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COMMUTATORS AND SQUARE-ZERO ELEMENTS 7

Proposition 4.2 Let B be a unital algebra, and n ≥ 2. Then every element in Mn(B) can be written
as e1e2 + e3e4 + e5e6 + e7 − e8 − e9 − e10 − e11 for some idempotents ei ∈ Mn(B) (i = 1, . . . , 11).

Proof . If n = 2k, then Mn(B) ∼= M2(Mk(B)) and we may use Lemma 4.1. Therefore, we may
assume that n = 2k + 1 for some k ≥ 1.

Take a = (aij) ∈ Mn(B) and set

a′ =

⎡
⎢⎢⎢⎣

a11 a12 . . . a1n

0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

⎤
⎥⎥⎥⎦ , a′′ =

⎡
⎢⎢⎢⎣

0 0 . . . 0
a21 0 . . . 0

...
...

. . .
...

an1 0 . . . 0

⎤
⎥⎥⎥⎦ .

Note that

a′ =

⎡
⎢⎢⎢⎣

1 a11 0 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

1 0 . . . 0
1 0 . . . 0
...

...
. . .

...
0 0 . . . 0

⎤
⎥⎥⎥⎦−

⎡
⎢⎢⎢⎣

1 −a12 . . . −a1n

0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

⎤
⎥⎥⎥⎦ ,

a′′ =

⎡
⎢⎢⎢⎣

1 0 . . . 0
a21 0 . . . 0
...

...
. . .

...
an1 0 . . . 0

⎤
⎥⎥⎥⎦−

⎡
⎢⎢⎢⎣

1 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

⎤
⎥⎥⎥⎦ ,

and all matrices on the right-hand sides of these two identities are idempotent. Since a − a′ − a′′ lies
in a subalgebra of Mn(B) isomorphic to M2(Mk(B)), it satisfies the conclusion of Lemma 4.1. Thus,
a = (a − a′ − a′′) + a′ + a′′ can be written in the desired form. �

Remark 4.3 Suppose that B is a unital C∗-algebra and Mn(B) is endowed with the standard C∗-
norm. An inspection of the proof of Lemma 4.2 shows that each of the idempotents ei has norm less
than or equal to max{2, 1 + ‖a‖}.

Following the approach from [10], we will now pass from idempotents to square-zero elements.

Theorem 4.4 Let B be a unital algebra, and n ≥ 2. Then every commutator in Mn(B) can be
written as the sum of 22 square-zero elements.

Proof . If e is an idempotent and x is an arbitrary element, then the commutator [e, x] is the sum of
two square-zero elements, namely

[e, x] = ex(1 − e) + (e − 1)xe.

If e′ is another idempotent, then [ee′, x] can be written as the sum of four square-zero elements:

[ee′, x] = ee′x(1 − e) + (e − 1)e′xe + e′xe(1 − e′) + (e′ − 1)xee′.

The desired conclusion can be now derived from Proposition 4.2. �
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8 J. ALAMINOS et al.

The number 22 could probably be lowered. In fact, from the proof of [25, Theorem 2] is evident
that every element in M2(B) is the sum of five square-zero elements. However, in this paper we will
not address the question about the minimal number of summands.

Now we proceed to von Neumann algebras.

Proposition 4.5 Let A be a von Neumann algebra without abelian central summands. Then every
element in A can be written as e1e2 + e3e4 + e5e6 + e7 − e8 − e9 − e10 − e11 for some idempotents
ei ∈ A (i = 1, . . . , 11).

Proof . We claim that A can be decomposed into a direct sum
⊕

i∈I Mi(Bi), where I ⊂ N \ {1} and
Bi is a von Neumann algebra for each i ∈ I. Indeed, by [28, Theorems V.1.19 and V.1.27], A can be
decomposed into a direct sum A1 ⊕ A2 ⊕ A3 of a properly infinite von Neumann algebra A1, a type
II1 von Neumann algebra A2 and a finite type I von Neumann algebra A3. Further, A3 = ⊕

j∈J Mj(Cj),
where J ⊂ N and Cj is an abelian von Neumann algebra for each j ∈ J . Since A has no abelian central
summands, it follows that 1 �∈ J . On the other hand, the unity of A1, as well as the unity of A2, is the
sum of two equivalent orthogonal projections ([28, Proposition V.1.36] and [28, Proposition V.1.35],
respectively). From [28, Proposition V.1.22], it follows that A1 = M2(D1) and A2 = M2(D2) for
some von Neumann algebras D1 and D2. If 2 ∈ J , then we take I = J , B2 = D1 ⊕ D2 ⊕ C2 and
Bi = Ci for each i ∈ I \ {2}, and otherwise we take I = J ∪ {2}, B2 = D1 ⊕ D2 and Bi = Ci for each
i ∈ J .

Let x ∈ A. Then x = (xi)i∈I ∈ ⊕i∈I Mi(Bi) and Proposition 4.2 together with Remark 4.3 show
that for each i ∈ I there are idempotents e1,i, . . . , e11,i ∈ Mi(Bi) such that

xi = e1,ie2,i + e3,ie4,i + e5,ie6,i + e7,i − e8,i − e9,i − e10,i − e11,i

and
‖e1,i‖, . . . , ‖e11,i‖ ≤ max{2, 1 + ‖xi‖} ≤ max{2, 1 + ‖x‖}.

The elements e1, . . . , e11 ∈ ⊕i∈I Mi(Bi) defined by ej = (ej,i)i∈I (j = 1, . . . , 11) satisfy our
requirements. �

Theorem 4.6 Let A be a von Neumann algebra. Then every commutator in A can be written as the
sum of 22 square-zero elements.

Proof . On account of [28, Theorems V.1.19 and V.1.27], A can be decomposed into a direct sum
A1 ⊕ A2, where A1 is the type I1 part of A (and therefore it is an abelian von Neumann algebra), and
A2 is a von Neumann algebra without abelian central summands. Let x, y ∈ A and write x = x1 + x2

and y = y1 + y2 with x1, y1 ∈ A1 and x2, y2 ∈ A2. Then [x, y] = [x2, y2] ∈ A2 and Proposition 4.5 now
shows that [x, y] can be written as the sum of 22 square-zero elements, as claimed. �

Remark 4.7 Let A be a von Neumann algebra and x ∈ A. On account of the canonical decompo-
sition of A and known results from the literature (see the introduction of [12]), it follows that there
exists z ∈ Z(A) such that x − z is the sum of finitely many commutators. Theorem 4.6 then shows
that x − z is the sum of finitely many square-zero elements.
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5. Square-zero elements and the commutator ideal

The purpose of this section is to apply our seminal result, Theorem 2.1, for characterizing the
commutator ideal of certain Banach algebras A. By the commutator ideal, we mean the closed ideal
generated by all commutators in A.

Lemma 5.1 Let A be a Banach algebra. Suppose that the quotient algebra A/I is semisimple for
each proper closed ideal I of A. Then the commutator ideal of A coincides with the closed subalgebra
of A generated by all commutators in A.

Proof . The proof is based on the following fact: the ideal generated by the commutators [[A, A], A]
is contained in the subalgebra B generated by all commutators [A, A]. Let us repeat the proof given
in [8, p. 2]. Given x, y, z, w ∈ A, we have

x[[y, z], w] = [x[y, z], w] − [x, w][y, z],

which shows that the left ideal generated by [[A, A], A] is contained in B. Similarly, we see that the
same is true for the right ideal generated by [[A, A], A]. Finally, from xuy = [xu, y] + (yx)u, with
x, y ∈ A and u ∈ [[A, A], A], we get the desired conclusion.

Hence, we see that it suffices to show that the closed ideal of A generated by [[A, A], A],
which we denote by C′, is equal to the commutator ideal C. That is, we have to show that C′

contains all commutators in A. We may assume that C′ �= A. Then the quotient Banach algebra
B = A/C′ is semisimple and satisfies the property [[B, B], B] = 0. This implies that δb(B) ⊂ Z(B)

for each b ∈ B, where δb stands for the inner derivation implemented by b. The Singer–Wermer
theorem [11, Corollary 2.7.20] now shows that δb(B) = 0 for each b ∈ B, which clearly implies that
B is commutative, and therefore that [A, A] ⊂ C′, as required. �

Let us show that Lemma 5.1 does not hold for all Banach algebras.

Example 5.2 Let A be the (complex) Grassmann algebra in three generators x1, x2, x3. That is, A is
the eight-dimensional algebra with basis

{1, x1, x2, x3, x1x2, x1x3, x2x3, x1x2x3}

whose multiplication is determined by x2
i = xixj + xjxi = 0 for all i, j = 1, 2, 3. Note that the

commutator ideal of A is equal to

C = Cx1x2 + Cx1x3 + Cx2x3 + Cx1x2x3,

the subalgebra generated by all commutators is equal to

B = Cx1x2 + Cx1x3 + Cx2x3,

and the ideal generated by the commutators [[A, A], A] is C′ = {0}.

Theorem 5.3 Let A be an essential Banach algebra with property B. Suppose that the quotient
algebra A/I is semisimple for each proper closed ideal I of A. Then the commutator ideal of A is
equal to the closed subalgebra generated by all square-zero elements in A.
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Proof . Let C denote the commutator ideal of A, and let D denote the closed subalgebra generated
by all square-zero elements. Theorem 2.1 and Lemma 5.1 imply that C ⊆ D. The proof will be
completed by showing that every square-zero element a ∈ A lies in C. We may assume that C �= A.
Since a + C is a square-zero element of the semisimple commutative Banach algebra A/C, it follows
that a ∈ C. �

Example 5.4 Let us point out some basic special cases of Banach algebras that satisfy the
requirements in Theorem 5.3.

(i) Arbitrary C∗-algebras.
(ii) For a compact group G, any of the Banach algebras Lp(G), with 1 ≤ p < ∞, or C(G)

(under convolution) has property B, and further [20, Theorem 15] shows that also satisfy the
semisimplicity condition of its quotient algebras. In [13, Example 3.1], it is given an exam-
ple of a non-compact, non-abelian group G for which the group algebra L1(G) has spectral
synthesis and this property, in particular, yields the semisimplicity of its quotient algebras.

6. Square-zero elements and central elements

Once again, we return to Theorem 2.1. In particular, it tells us that a non-commutative essential
Banach algebra with property B has non-zero square-zero elements. In fact, there is no need to
involve the linear span of square-zero elements to establish this. All one has to do is to consider the
map (x, y) 
→ yx in light of the definition of property B. Let us record the result which we obtain in
this way.

Proposition 6.1 Let A be an essential Banach algebra with property B. If A is not commutative,
then there exists a, b ∈ A such that ab = 0 and ba �= 0 (and hence A contains non-zero square-zero
elements).

We will now develop further the simple idea upon which this proposition is based. Our goal is to
give two characterizations of elements from the centre of a Banach algebra A with property B, which
satisfies some mild additional assumptions. In our first result, we will assume that A is both left and
right faithful, i.e. for every x ∈ A, each of the conditions xA = {0} and Ax = {0} implies x = 0.

Proposition 6.2 Let A be a Banach algebra with property B. Suppose that A is both left and right
faithful. Then the following conditions on c ∈ A are equivalent:

(i) c ∈ Z(A);
(ii) for all x, y ∈ A, xy = 0 implies xcy = 0.

Proof . It is enough to show that (ii) implies (i). Consider the continuous bilinear map f : A × A → A
defined by f (x, y) = xcy for all x, y ∈ A. Then (ii) implies that f satisfies condition (1) in Section 1.
Since A has property B, it follows that f (xy, z) = f (x, yz) and so that (xy)cz = xc(yz) for all
x, y, z ∈ A. This gives x[y, c]z = 0, and since A is both left and right faithful, it follows that [y, c] = 0
for every y ∈ A. That is, c ∈ Z(A). �

The second result is somewhat less straightforward to prove. We will sharpen (ii), but at the
price of assuming that the algebra A is semiprime, i.e. it does not contain non-zero nilpotent ideals
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(equivalently, for every x ∈ A, xAx = {0} implies x = 0). Our main examples of Banach algebras
with property B, C∗-algebras and group algebras over locally compact groups, are semiprime.

We need two lemmas. The first one was implicitly proved in [2], and was later used in [4] to study
the orthogonality preserving linear maps on group algebras.

Lemma 6.3 Let A be a Banach algebra with the property B, let X be a Banach space and let
f : A × A → X be a continuous bilinear map such that for all x, y ∈ A,

xy = yx = 0 ⇒ f (x, y) = 0.

Then

f (z1x2y2, z2x1y1) − f (z1x2, y2z2x1y1) + f (y1z1x2, y2z2x1) − f (y1z1x2y2, z2x1) = 0

for all x1, x2, y1, y2, z1, z2 ∈ A.

Proof . This is exactly what is proved in the first part of the proof of [2, Theorem 2.2] (indeed
the result is stated for C∗-algebras only, but this part of the proof obviously works for any Banach
algebra with property B). �

Lemma 6.4 Let A be a semiprime algebra. Then each of the following conditions on c ∈ A:

(i) cx ∈ Z(A) for every x ∈ A;
(ii) xc ∈ Z(A) for every x ∈ A;

(iii) [c, x] ∈ Z(A) for every x ∈ A;

implies that c ∈ Z(A).

Proof . Assuming (i), we have cxy = ycx for all x, y ∈ A. Replacing x by xz, it follows that cxzy =
ycxz. However, on the other hand (ycx)z = (cxy)z, and so comparing the last two relations we get
cx[z, y] = 0 for all x, y, z ∈ A. This clearly implies that [c, y]x[c, y] = c(yx)[c, y] − y(cx[c, y]) = 0 for
all x, y ∈ A. Since A is semiprime, this yields [c, y] = 0 for every y ∈ A, i.e. c ∈ Z(A).

Of course, (ii) can be handled in a similar fashion. So let us assume (iii). Then we have [c, x]c =
[c, xc] ∈ Z(A) for all x ∈ A. In particular, [[c, x]c, x] = 0. Since [c, x], as a central element, commutes
with x, it follows that [c, x]2 = 0. However, the centre of a semiprime algebra cannot contain non-
zero square-zero elements, so we obtain [c, x] = 0. �

Theorem 6.5 Let A be a semiprime Banach algebra with property B. Then the following conditions
on c ∈ A are equivalent:

(i) c ∈ Z(A);
(ii) for all x, y ∈ A, xy = yx = 0 implies xcy = 0.

Proof . Of course, it suffices to show that (ii) implies (i). As in the proof of Proposition 6.2, we con-
sider the continuous bilinear map f : A × A → A defined by f (x, y) = xcy for all x, y ∈ A. Assuming
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that (ii) holds, it follows from Lemma 6.3 that

z1x2y2cz2x1y1 − z1x2cy2z2x1y1 + y1z1x2cy2z2x1 − y1z1x2y2cz2x1 = 0

for all x1, x2, y1, y2, z1, z2 ∈ A. We can rewrite this identity as

[z1x2[y2, c]z2x1, y1] = 0,

which means that z1x2[y2, c]z2x1 ∈ Z(A) for all x1, x2, y2, z1, z2 ∈ A. Using Lemma 6.4(i) twice, it
follows that z1x2[y2, c] ∈ Z(A). Similarly, using Lemma 6.4(ii) twice we now get that [y2, c] ∈ Z(A)

for all y2 ∈ A. But then Lemma 6.4(iii) implies c ∈ Z(A). �
Another way of stating Theorem 6.5 is that every non-central element c ∈ A gives rise to a non-

zero square-zero element in A of the form xcy for some x, y ∈ A such that xy = yx = 0. We remark
that this is a generalization of the result by Magajna [22, Corollary 2.8], stating that for every non-
central element c in a C∗-algebra A there exist x, y ∈ A such that xcy �= 0 and (xcy)2 = 0.
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