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Abstract: Mathematical models of metabolic networks are often underdetermined systems with more 

unknown fluxes than available equality constraints describing mass balances and external flux 

measurements. After reduction of the flux space based on the available equality constraints, the 

admissible reduced fluxes belong to a convex polytope defined by the intersection of half-planes 

representing the inequality constraints (e.g., upper and lower bounds of the fluxes). Random uniform 

sampling of this polytope allows building marginal distributions for each flux and computing the mean 

solution representative of the mean metabolism exhibited by the studied organism. This contribution 

proposes a new algorithm based on DIscrete Sampling of COnvex POlytopes via Linear program 

Iterative Sequences (DISCOPOLIS), in which the linear programs are iteratively used to constrain the 

solutions inside the polytope, taking into account all the previously estimated fluxes. The solutions are 

weighted to ensure sampling uniformity.  
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

1. INTRODUCTION 

The analysis of metabolic networks can be tackled with 

several methodologies. The most common one is Metabolic 

Flux Analysis (MFA) (Stephanopoulos et al., 1998) which 

aims at determining the values of the metabolic fluxes based 

on algebraic linear equations representing the mass balances 

of the intracellular metabolites and inequality constraints 

corresponding to lower and upper bounds for the fluxes. The 

quasi steady-state approximation, based on the assumption 

that intracellular metabolites do not accumulate, allows 

reducing the system of mass balances to a simple system of 

algebraic equations. The latter is classically augmented with 

the measurements that are available for some fluxes, usually 

describing exchanges between the inside and the outside of 

the cells. In most cases met in this constrained-based 

modeling context, the number of equations describing mass 

balances and measurements is less than the number of 

unknown fluxes, hence leading to an underdetermined system. 

Minimum and maximum values of each flux can be 

determined with linear programs. This methodology 

corresponds to Flux Variability Analysis (FVA) (Mahadevan 

and Schilling, 2003) or Flux Spectrum Approach (FSA) 

(Llaneras and Picó, 2007). The minimum and maximum flux 

values can also be obtained through complex analysis leading 

to the decomposition of all the admissible flux distributions as 

combinations of Elementary Flux Modes or Extreme 

Pathways (Klamt and Stelling, 2003). Another approach for 

dealing with system underdeterminacy is Flux Balance 

Analysis (FBA) (Orth et al., 2010a), which assumes an 

optimal metabolic behavior of the cells, described with an 

objective cost function consisting of a linear combination of 

some fluxes. The choice of the objective cost function to be 

minimized or maximized is here a key issue. One of the most 

commonly used choices corresponds to biomass growth 

maximization. It is worth noting that the optimal value of the 

cost function can often be reached with different flux 

distributions, hence keeping an underdetermined system. 

Recently, another kind of optimal solution, based on the 

concept of Most Accurate Fluxes (MAF) (Mhallem Gziri and 

Bogaerts, 2019) has been proposed with the advantages, on 

the one hand, to require no assumptions regarding an optimal 

biological behavior and, on the other hand, to guarantee a 

unique solution with a very low computational load.  

Besides these approaches, randomly sampling the set of 

existing solutions to the underdetermined system allows 

building marginal distributions for each flux and, especially, 

determining the mean value which should be representative of 

the mean metabolic behavior of the cell under specific 

conditions. After reduction of the flux space based on the 

available equality constraints, the admissible reduced fluxes 

belong to a convex polytope defined by the intersection of 

half-planes representing the inequality constraints. There are 

several methods to sample uniformly such a polytope. The 

most simple and intuitive one is the rejection technique 

(Rubinstein, 1982) which consists in, firstly, determining a 

regular shape, e.g. a rectangular parallelotope corresponding 

to the minimum and maximum values of the fluxes, that 

encloses the polytope of solutions and, secondly, uniformly 

     

DISCOPOLIS : an algorithm for uniform sampling of metabolic flux 

distributions via iterative sequences of linear programs 
 

Philippe Bogaerts*, Marianne Rooman** 


*3BIO-BioControl, **3BIO-BioInfo, Université Libre de Bruxelles 

Av. F.-D. Roosevelt 50 C.P. 165/61, B-1050 Brussels, Belgium 

(e-mail: philippe.bogaerts@ulb.ac.be ; mrooman@ulb.ac.be)  

 

Abstract: Mathematical models of metabolic networks are often underdetermined systems with more 

unknown fluxes than available equality constraints describing mass balances and external flux 

measurements. After reduction of the flux space based on the available equality constraints, the 

admissible reduced fluxes belong to a convex polytope defined by the intersection of half-planes 

representing the inequality constraints (e.g., upper and lower bounds of the fluxes). Random uniform 

sampling of this polytope allows building marginal distributions for each flux and computing the mean 

solution representative of the mean metabolism exhibited by the studied organism. This contribution 

proposes a new algorithm based on DIscrete Sampling of COnvex POlytopes via Linear program 

Iterative Sequences (DISCOPOLIS), in which the linear programs are iteratively used to constrain the 

solutions inside the polytope, taking into account all the previously estimated fluxes. The solutions are 

weighted to ensure sampling uniformity.  

Keywords: Metabolic network, Metabolic Flux Analysis, Flux Balance Analysis, Flux Variability 

Analysis, Most Accurate Fluxes, uniform sampling, hit-and-run methods, underdetermined systems, 

constrained-based modeling 



1. INTRODUCTION 

The analysis of metabolic networks can be tackled with 

several methodologies. The most common one is Metabolic 

Flux Analysis (MFA) (Stephanopoulos et al., 1998) which 

aims at determining the values of the metabolic fluxes based 

on algebraic linear equations representing the mass balances 

of the intracellular metabolites and inequality constraints 

corresponding to lower and upper bounds for the fluxes. The 

quasi steady-state approximation, based on the assumption 

that intracellular metabolites do not accumulate, allows 

reducing the system of mass balances to a simple system of 

algebraic equations. The latter is classically augmented with 

the measurements that are available for some fluxes, usually 

describing exchanges between the inside and the outside of 

the cells. In most cases met in this constrained-based 

modeling context, the number of equations describing mass 

balances and measurements is less than the number of 

unknown fluxes, hence leading to an underdetermined system. 

Minimum and maximum values of each flux can be 

determined with linear programs. This methodology 

corresponds to Flux Variability Analysis (FVA) (Mahadevan 

and Schilling, 2003) or Flux Spectrum Approach (FSA) 

(Llaneras and Picó, 2007). The minimum and maximum flux 

values can also be obtained through complex analysis leading 

to the decomposition of all the admissible flux distributions as 

combinations of Elementary Flux Modes or Extreme 

Pathways (Klamt and Stelling, 2003). Another approach for 

dealing with system underdeterminacy is Flux Balance 

Analysis (FBA) (Orth et al., 2010a), which assumes an 

optimal metabolic behavior of the cells, described with an 

objective cost function consisting of a linear combination of 

some fluxes. The choice of the objective cost function to be 

minimized or maximized is here a key issue. One of the most 

commonly used choices corresponds to biomass growth 

maximization. It is worth noting that the optimal value of the 

cost function can often be reached with different flux 

distributions, hence keeping an underdetermined system. 

Recently, another kind of optimal solution, based on the 

concept of Most Accurate Fluxes (MAF) (Mhallem Gziri and 

Bogaerts, 2019) has been proposed with the advantages, on 

the one hand, to require no assumptions regarding an optimal 

biological behavior and, on the other hand, to guarantee a 

unique solution with a very low computational load.  

Besides these approaches, randomly sampling the set of 

existing solutions to the underdetermined system allows 

building marginal distributions for each flux and, especially, 

determining the mean value which should be representative of 

the mean metabolic behavior of the cell under specific 

conditions. After reduction of the flux space based on the 

available equality constraints, the admissible reduced fluxes 

belong to a convex polytope defined by the intersection of 

half-planes representing the inequality constraints. There are 

several methods to sample uniformly such a polytope. The 

most simple and intuitive one is the rejection technique 

(Rubinstein, 1982) which consists in, firstly, determining a 

regular shape, e.g. a rectangular parallelotope corresponding 

to the minimum and maximum values of the fluxes, that 

encloses the polytope of solutions and, secondly, uniformly 

     

DISCOPOLIS : an algorithm for uniform sampling of metabolic flux 

distributions via iterative sequences of linear programs 
 

Philippe Bogaerts*, Marianne Rooman** 


*3BIO-BioControl, **3BIO-BioInfo, Université Libre de Bruxelles 

Av. F.-D. Roosevelt 50 C.P. 165/61, B-1050 Brussels, Belgium 

(e-mail: philippe.bogaerts@ulb.ac.be ; mrooman@ulb.ac.be)  

 

Abstract: Mathematical models of metabolic networks are often underdetermined systems with more 

unknown fluxes than available equality constraints describing mass balances and external flux 

measurements. After reduction of the flux space based on the available equality constraints, the 

admissible reduced fluxes belong to a convex polytope defined by the intersection of half-planes 

representing the inequality constraints (e.g., upper and lower bounds of the fluxes). Random uniform 

sampling of this polytope allows building marginal distributions for each flux and computing the mean 

solution representative of the mean metabolism exhibited by the studied organism. This contribution 

proposes a new algorithm based on DIscrete Sampling of COnvex POlytopes via Linear program 

Iterative Sequences (DISCOPOLIS), in which the linear programs are iteratively used to constrain the 

solutions inside the polytope, taking into account all the previously estimated fluxes. The solutions are 

weighted to ensure sampling uniformity.  

Keywords: Metabolic network, Metabolic Flux Analysis, Flux Balance Analysis, Flux Variability 

Analysis, Most Accurate Fluxes, uniform sampling, hit-and-run methods, underdetermined systems, 

constrained-based modeling 



1. INTRODUCTION 

The analysis of metabolic networks can be tackled with 

several methodologies. The most common one is Metabolic 

Flux Analysis (MFA) (Stephanopoulos et al., 1998) which 

aims at determining the values of the metabolic fluxes based 

on algebraic linear equations representing the mass balances 

of the intracellular metabolites and inequality constraints 

corresponding to lower and upper bounds for the fluxes. The 

quasi steady-state approximation, based on the assumption 

that intracellular metabolites do not accumulate, allows 

reducing the system of mass balances to a simple system of 

algebraic equations. The latter is classically augmented with 

the measurements that are available for some fluxes, usually 

describing exchanges between the inside and the outside of 

the cells. In most cases met in this constrained-based 

modeling context, the number of equations describing mass 

balances and measurements is less than the number of 

unknown fluxes, hence leading to an underdetermined system. 

Minimum and maximum values of each flux can be 

determined with linear programs. This methodology 

corresponds to Flux Variability Analysis (FVA) (Mahadevan 

and Schilling, 2003) or Flux Spectrum Approach (FSA) 

(Llaneras and Picó, 2007). The minimum and maximum flux 

values can also be obtained through complex analysis leading 

to the decomposition of all the admissible flux distributions as 

combinations of Elementary Flux Modes or Extreme 

Pathways (Klamt and Stelling, 2003). Another approach for 

dealing with system underdeterminacy is Flux Balance 

Analysis (FBA) (Orth et al., 2010a), which assumes an 

optimal metabolic behavior of the cells, described with an 

objective cost function consisting of a linear combination of 

some fluxes. The choice of the objective cost function to be 

minimized or maximized is here a key issue. One of the most 

commonly used choices corresponds to biomass growth 

maximization. It is worth noting that the optimal value of the 

cost function can often be reached with different flux 

distributions, hence keeping an underdetermined system. 

Recently, another kind of optimal solution, based on the 

concept of Most Accurate Fluxes (MAF) (Mhallem Gziri and 

Bogaerts, 2019) has been proposed with the advantages, on 

the one hand, to require no assumptions regarding an optimal 

biological behavior and, on the other hand, to guarantee a 

unique solution with a very low computational load.  

Besides these approaches, randomly sampling the set of 

existing solutions to the underdetermined system allows 

building marginal distributions for each flux and, especially, 

determining the mean value which should be representative of 

the mean metabolic behavior of the cell under specific 

conditions. After reduction of the flux space based on the 

available equality constraints, the admissible reduced fluxes 

belong to a convex polytope defined by the intersection of 

half-planes representing the inequality constraints. There are 

several methods to sample uniformly such a polytope. The 

most simple and intuitive one is the rejection technique 

(Rubinstein, 1982) which consists in, firstly, determining a 

regular shape, e.g. a rectangular parallelotope corresponding 

to the minimum and maximum values of the fluxes, that 

encloses the polytope of solutions and, secondly, uniformly 

     

DISCOPOLIS : an algorithm for uniform sampling of metabolic flux 

distributions via iterative sequences of linear programs 
 

Philippe Bogaerts*, Marianne Rooman** 


*3BIO-BioControl, **3BIO-BioInfo, Université Libre de Bruxelles 

Av. F.-D. Roosevelt 50 C.P. 165/61, B-1050 Brussels, Belgium 

(e-mail: philippe.bogaerts@ulb.ac.be ; mrooman@ulb.ac.be)  

 

Abstract: Mathematical models of metabolic networks are often underdetermined systems with more 

unknown fluxes than available equality constraints describing mass balances and external flux 

measurements. After reduction of the flux space based on the available equality constraints, the 

admissible reduced fluxes belong to a convex polytope defined by the intersection of half-planes 

representing the inequality constraints (e.g., upper and lower bounds of the fluxes). Random uniform 

sampling of this polytope allows building marginal distributions for each flux and computing the mean 

solution representative of the mean metabolism exhibited by the studied organism. This contribution 

proposes a new algorithm based on DIscrete Sampling of COnvex POlytopes via Linear program 

Iterative Sequences (DISCOPOLIS), in which the linear programs are iteratively used to constrain the 

solutions inside the polytope, taking into account all the previously estimated fluxes. The solutions are 

weighted to ensure sampling uniformity.  

Keywords: Metabolic network, Metabolic Flux Analysis, Flux Balance Analysis, Flux Variability 

Analysis, Most Accurate Fluxes, uniform sampling, hit-and-run methods, underdetermined systems, 

constrained-based modeling 



1. INTRODUCTION 

The analysis of metabolic networks can be tackled with 

several methodologies. The most common one is Metabolic 

Flux Analysis (MFA) (Stephanopoulos et al., 1998) which 

aims at determining the values of the metabolic fluxes based 

on algebraic linear equations representing the mass balances 

of the intracellular metabolites and inequality constraints 

corresponding to lower and upper bounds for the fluxes. The 

quasi steady-state approximation, based on the assumption 

that intracellular metabolites do not accumulate, allows 

reducing the system of mass balances to a simple system of 

algebraic equations. The latter is classically augmented with 

the measurements that are available for some fluxes, usually 

describing exchanges between the inside and the outside of 

the cells. In most cases met in this constrained-based 

modeling context, the number of equations describing mass 

balances and measurements is less than the number of 

unknown fluxes, hence leading to an underdetermined system. 

Minimum and maximum values of each flux can be 

determined with linear programs. This methodology 

corresponds to Flux Variability Analysis (FVA) (Mahadevan 

and Schilling, 2003) or Flux Spectrum Approach (FSA) 

(Llaneras and Picó, 2007). The minimum and maximum flux 

values can also be obtained through complex analysis leading 

to the decomposition of all the admissible flux distributions as 

combinations of Elementary Flux Modes or Extreme 

Pathways (Klamt and Stelling, 2003). Another approach for 

dealing with system underdeterminacy is Flux Balance 

Analysis (FBA) (Orth et al., 2010a), which assumes an 

optimal metabolic behavior of the cells, described with an 

objective cost function consisting of a linear combination of 

some fluxes. The choice of the objective cost function to be 

minimized or maximized is here a key issue. One of the most 

commonly used choices corresponds to biomass growth 

maximization. It is worth noting that the optimal value of the 

cost function can often be reached with different flux 

distributions, hence keeping an underdetermined system. 

Recently, another kind of optimal solution, based on the 

concept of Most Accurate Fluxes (MAF) (Mhallem Gziri and 

Bogaerts, 2019) has been proposed with the advantages, on 

the one hand, to require no assumptions regarding an optimal 

biological behavior and, on the other hand, to guarantee a 

unique solution with a very low computational load.  

Besides these approaches, randomly sampling the set of 

existing solutions to the underdetermined system allows 

building marginal distributions for each flux and, especially, 

determining the mean value which should be representative of 

the mean metabolic behavior of the cell under specific 

conditions. After reduction of the flux space based on the 

available equality constraints, the admissible reduced fluxes 

belong to a convex polytope defined by the intersection of 

half-planes representing the inequality constraints. There are 

several methods to sample uniformly such a polytope. The 

most simple and intuitive one is the rejection technique 

(Rubinstein, 1982) which consists in, firstly, determining a 

regular shape, e.g. a rectangular parallelotope corresponding 

to the minimum and maximum values of the fluxes, that 

encloses the polytope of solutions and, secondly, uniformly 

     

DISCOPOLIS : an algorithm for uniform sampling of metabolic flux 

distributions via iterative sequences of linear programs 
 

Philippe Bogaerts*, Marianne Rooman** 


*3BIO-BioControl, **3BIO-BioInfo, Université Libre de Bruxelles 

Av. F.-D. Roosevelt 50 C.P. 165/61, B-1050 Brussels, Belgium 

(e-mail: philippe.bogaerts@ulb.ac.be ; mrooman@ulb.ac.be)  

 

Abstract: Mathematical models of metabolic networks are often underdetermined systems with more 

unknown fluxes than available equality constraints describing mass balances and external flux 

measurements. After reduction of the flux space based on the available equality constraints, the 

admissible reduced fluxes belong to a convex polytope defined by the intersection of half-planes 

representing the inequality constraints (e.g., upper and lower bounds of the fluxes). Random uniform 

sampling of this polytope allows building marginal distributions for each flux and computing the mean 

solution representative of the mean metabolism exhibited by the studied organism. This contribution 

proposes a new algorithm based on DIscrete Sampling of COnvex POlytopes via Linear program 

Iterative Sequences (DISCOPOLIS), in which the linear programs are iteratively used to constrain the 

solutions inside the polytope, taking into account all the previously estimated fluxes. The solutions are 

weighted to ensure sampling uniformity.  

Keywords: Metabolic network, Metabolic Flux Analysis, Flux Balance Analysis, Flux Variability 

Analysis, Most Accurate Fluxes, uniform sampling, hit-and-run methods, underdetermined systems, 

constrained-based modeling 



1. INTRODUCTION 

The analysis of metabolic networks can be tackled with 

several methodologies. The most common one is Metabolic 

Flux Analysis (MFA) (Stephanopoulos et al., 1998) which 

aims at determining the values of the metabolic fluxes based 

on algebraic linear equations representing the mass balances 

of the intracellular metabolites and inequality constraints 

corresponding to lower and upper bounds for the fluxes. The 

quasi steady-state approximation, based on the assumption 

that intracellular metabolites do not accumulate, allows 

reducing the system of mass balances to a simple system of 

algebraic equations. The latter is classically augmented with 

the measurements that are available for some fluxes, usually 

describing exchanges between the inside and the outside of 

the cells. In most cases met in this constrained-based 

modeling context, the number of equations describing mass 

balances and measurements is less than the number of 

unknown fluxes, hence leading to an underdetermined system. 

Minimum and maximum values of each flux can be 

determined with linear programs. This methodology 

corresponds to Flux Variability Analysis (FVA) (Mahadevan 

and Schilling, 2003) or Flux Spectrum Approach (FSA) 

(Llaneras and Picó, 2007). The minimum and maximum flux 

values can also be obtained through complex analysis leading 

to the decomposition of all the admissible flux distributions as 

combinations of Elementary Flux Modes or Extreme 

Pathways (Klamt and Stelling, 2003). Another approach for 

dealing with system underdeterminacy is Flux Balance 

Analysis (FBA) (Orth et al., 2010a), which assumes an 

optimal metabolic behavior of the cells, described with an 

objective cost function consisting of a linear combination of 

some fluxes. The choice of the objective cost function to be 

minimized or maximized is here a key issue. One of the most 

commonly used choices corresponds to biomass growth 

maximization. It is worth noting that the optimal value of the 

cost function can often be reached with different flux 

distributions, hence keeping an underdetermined system. 

Recently, another kind of optimal solution, based on the 

concept of Most Accurate Fluxes (MAF) (Mhallem Gziri and 

Bogaerts, 2019) has been proposed with the advantages, on 

the one hand, to require no assumptions regarding an optimal 

biological behavior and, on the other hand, to guarantee a 

unique solution with a very low computational load.  

Besides these approaches, randomly sampling the set of 

existing solutions to the underdetermined system allows 

building marginal distributions for each flux and, especially, 

determining the mean value which should be representative of 

the mean metabolic behavior of the cell under specific 

conditions. After reduction of the flux space based on the 

available equality constraints, the admissible reduced fluxes 

belong to a convex polytope defined by the intersection of 

half-planes representing the inequality constraints. There are 

several methods to sample uniformly such a polytope. The 

most simple and intuitive one is the rejection technique 

(Rubinstein, 1982) which consists in, firstly, determining a 

regular shape, e.g. a rectangular parallelotope corresponding 

to the minimum and maximum values of the fluxes, that 

encloses the polytope of solutions and, secondly, uniformly 

     

DISCOPOLIS : an algorithm for uniform sampling of metabolic flux 

distributions via iterative sequences of linear programs 
 

Philippe Bogaerts*, Marianne Rooman** 


*3BIO-BioControl, **3BIO-BioInfo, Université Libre de Bruxelles 

Av. F.-D. Roosevelt 50 C.P. 165/61, B-1050 Brussels, Belgium 

(e-mail: philippe.bogaerts@ulb.ac.be ; mrooman@ulb.ac.be)  

 

Abstract: Mathematical models of metabolic networks are often underdetermined systems with more 

unknown fluxes than available equality constraints describing mass balances and external flux 

measurements. After reduction of the flux space based on the available equality constraints, the 

admissible reduced fluxes belong to a convex polytope defined by the intersection of half-planes 

representing the inequality constraints (e.g., upper and lower bounds of the fluxes). Random uniform 

sampling of this polytope allows building marginal distributions for each flux and computing the mean 

solution representative of the mean metabolism exhibited by the studied organism. This contribution 

proposes a new algorithm based on DIscrete Sampling of COnvex POlytopes via Linear program 

Iterative Sequences (DISCOPOLIS), in which the linear programs are iteratively used to constrain the 

solutions inside the polytope, taking into account all the previously estimated fluxes. The solutions are 

weighted to ensure sampling uniformity.  

Keywords: Metabolic network, Metabolic Flux Analysis, Flux Balance Analysis, Flux Variability 

Analysis, Most Accurate Fluxes, uniform sampling, hit-and-run methods, underdetermined systems, 

constrained-based modeling 



1. INTRODUCTION 

The analysis of metabolic networks can be tackled with 

several methodologies. The most common one is Metabolic 

Flux Analysis (MFA) (Stephanopoulos et al., 1998) which 

aims at determining the values of the metabolic fluxes based 

on algebraic linear equations representing the mass balances 

of the intracellular metabolites and inequality constraints 

corresponding to lower and upper bounds for the fluxes. The 

quasi steady-state approximation, based on the assumption 

that intracellular metabolites do not accumulate, allows 

reducing the system of mass balances to a simple system of 

algebraic equations. The latter is classically augmented with 

the measurements that are available for some fluxes, usually 

describing exchanges between the inside and the outside of 

the cells. In most cases met in this constrained-based 

modeling context, the number of equations describing mass 

balances and measurements is less than the number of 

unknown fluxes, hence leading to an underdetermined system. 

Minimum and maximum values of each flux can be 

determined with linear programs. This methodology 

corresponds to Flux Variability Analysis (FVA) (Mahadevan 

and Schilling, 2003) or Flux Spectrum Approach (FSA) 

(Llaneras and Picó, 2007). The minimum and maximum flux 

values can also be obtained through complex analysis leading 

to the decomposition of all the admissible flux distributions as 

combinations of Elementary Flux Modes or Extreme 

Pathways (Klamt and Stelling, 2003). Another approach for 

dealing with system underdeterminacy is Flux Balance 

Analysis (FBA) (Orth et al., 2010a), which assumes an 

optimal metabolic behavior of the cells, described with an 

objective cost function consisting of a linear combination of 

some fluxes. The choice of the objective cost function to be 

minimized or maximized is here a key issue. One of the most 

commonly used choices corresponds to biomass growth 

maximization. It is worth noting that the optimal value of the 

cost function can often be reached with different flux 

distributions, hence keeping an underdetermined system. 

Recently, another kind of optimal solution, based on the 

concept of Most Accurate Fluxes (MAF) (Mhallem Gziri and 

Bogaerts, 2019) has been proposed with the advantages, on 

the one hand, to require no assumptions regarding an optimal 

biological behavior and, on the other hand, to guarantee a 

unique solution with a very low computational load.  

Besides these approaches, randomly sampling the set of 

existing solutions to the underdetermined system allows 

building marginal distributions for each flux and, especially, 

determining the mean value which should be representative of 

the mean metabolic behavior of the cell under specific 

conditions. After reduction of the flux space based on the 

available equality constraints, the admissible reduced fluxes 

belong to a convex polytope defined by the intersection of 

half-planes representing the inequality constraints. There are 

several methods to sample uniformly such a polytope. The 

most simple and intuitive one is the rejection technique 

(Rubinstein, 1982) which consists in, firstly, determining a 

regular shape, e.g. a rectangular parallelotope corresponding 

to the minimum and maximum values of the fluxes, that 

encloses the polytope of solutions and, secondly, uniformly 

© 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.



270	 Philippe Bogaerts  et al. / IFAC PapersOnLine 52-26 (2019) 269–274

     

sampling the enclosing shape and keeping only the samples 

which satisfy the constraints defined by the half-planes. This 

method is not well suited to complex networks as the fraction 

of samples to be rejected increases dramatically with the 

dimension of the solution space. Hit-and-run methods (Smith, 

1984) follow random walks which determine samples 

included in the solution space. These algorithms converge to 

sets of uniformly distributed samples. However, a well-known 

drawback of hit-and-run methods is that, if the polytope of 

solutions has an irregular shape with some highly elongated 

directions, the samples get often stuck in some parts of the 

polytope, which prevents the algorithm to converge to a 

global uniform sampling of the whole set. To tackle this 

problem, other methods have been proposed, e.g. the artificial 

centering hit-and-run method (ACHR) (Kaufman and Smith, 

1998), which has been implemented in the COBRA toolbox 

(Schellenberger et al., 2011). However, this method has not 

been proven to converge to uniformly distributed samples. 

Recently, the coordinated hit-and-run with rounding (CHRR) 

method (Haraldsdóttir et al., 2017) has been added to the 

COBRA toolbox. Its key feature is to preprocess the solution 

polytope by, firstly, determining the ellipsoid with largest 

volume which can be inscribed in the polytope and, secondly, 

transforming it to a unit ball. After this rounding step, a 

classical coordinated hit-and-run is applied in the unit ball and 

the obtained samples are projected in the original space 

through the inverse of the transform that was applied to the 

ellipsoid. The hit-and-run becomes then very efficient given 

that all the points within the ball are solutions to the problem 

and the shape is perfectly regular. However, as will be shown 

below on a toy example, the points that are lost by the 

ellipsoid can bias the mean of the samples, which necessarily 

corresponds to the center of the ellipsoid.  

In this contribution, a new method is presented, which 

consists in determining each sample of the distribution by 

choosing first randomly the order of the fluxes to be 

determined, and then fixing iteratively their values using 

uniform random sampling on intervals defined by modified 

linear programs. The latter take into account all the inequality 

constraints defined, on the one hand, by the half-planes 

forming the original polytope and, on the other hand, by the 

equality constraints corresponding to the flux values fixed in 

the previous iterations. Although this algorithm does not - 

strictly speaking - lead to uniform samples, we recover 

uniformity by attaching weights to the samples, which correct 

for the reduction of the sampling space upon fixing some flux 

values. This weighting procedure yields a rigorous 

determination of the mean value of the flux distribution. 

The paper is organized as follows. Section 2 recalls the 

definition of the solution polytope for a metabolic network. 

Section 3 presents the DISCOPOLIS algorithm. Section 4 

illustrates its use, first, on a toy example which shows the bias 

obtained with the rounded polytope of the CHRR method and 

the unbiased result obtained with DISCOPOLIS and, 

secondly, on the core metabolic network of Escherichia coli 

(Orth et al., 2010b). Conclusions and perspectives are 

proposed in Section 5.  

  

2. THE POLYTOPE OF SOLUTIONS FOR THE FLUX 

DISTRIBUTION OF A METABOLIC NETWORK 

2.1  Metabolic Flux Analysis (MFA) and Flux Variability 

Analysis (FVA) 

We consider the general case of a metabolic network linking 

m intracellular metabolites through n metabolic fluxes.  

Assuming that intracellular metabolites do not accumulate 

inside the cell (and neglecting the dilution effect of 

intracellular concentrations due to cell growth), the system of 

mass balances of the intracellular metabolites reduces to a 

simple set of m algebraic homogenous equations with n 

unknowns 

0Nv    (1) 

where m nN   is the stoichiometric matrix and nv the 

metabolic fluxes (in mol.cell-1.h-1). Other linear equality 

constraints can usually be added to system (1), typically 

resulting from measurements of some exchange fluxes. All 

the equality constraints which link the metabolic fluxes (mass 

balances (1), measurements of exchange fluxes, etc.) will be 

concatenated in 

e e
A v b   (2) 

with en n

e
A  , en

e
b  . 

The metabolic fluxes are also subject to inequality constraints 

which can be concatenated in 

Av b   (3) 

with in n
A

  and in
b . These constraints mainly include 

lower and upper bounds for the fluxes but may also contain 

additional inequalities based on some biological assumptions, 

e.g. regarding overflow metabolism (Richelle et al., 2016; 

Bogaerts et al., 2017).  

MFA aims at solving system {(2),(3)} which is, in most cases, 

underdetermined with the number of equations (ne) lower than 

the number of unknown fluxes (n). Minimum and maximum 

values can be determined for each flux v(i), [1, ]i n , by 

solving 2n linear programs (LPs) 

,
, [1, ]

MIN MAX

i i
v

v Min Max v i n     (4) 

subject to {(2),(3)}.  

2.2  Elimination of the Equality Constraints and Definition of 

the Polytope of Solutions 

Let us define 
( )

0
en n nA    as the matrix whose columns 

represent the orthonormal basis for the null space of Ae, i.e. 

the set of all 
nv  such that 0

e
A v  . Using the equality 

0
0

e
A A  , any solution v of (2) can be decomposed into 
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sampling the enclosing shape and keeping only the samples 

which satisfy the constraints defined by the half-planes. This 

method is not well suited to complex networks as the fraction 

of samples to be rejected increases dramatically with the 

dimension of the solution space. Hit-and-run methods (Smith, 

1984) follow random walks which determine samples 

included in the solution space. These algorithms converge to 

sets of uniformly distributed samples. However, a well-known 

drawback of hit-and-run methods is that, if the polytope of 

solutions has an irregular shape with some highly elongated 

directions, the samples get often stuck in some parts of the 

polytope, which prevents the algorithm to converge to a 

global uniform sampling of the whole set. To tackle this 

problem, other methods have been proposed, e.g. the artificial 

centering hit-and-run method (ACHR) (Kaufman and Smith, 

1998), which has been implemented in the COBRA toolbox 

(Schellenberger et al., 2011). However, this method has not 

been proven to converge to uniformly distributed samples. 

Recently, the coordinated hit-and-run with rounding (CHRR) 

method (Haraldsdóttir et al., 2017) has been added to the 

COBRA toolbox. Its key feature is to preprocess the solution 

polytope by, firstly, determining the ellipsoid with largest 

volume which can be inscribed in the polytope and, secondly, 

transforming it to a unit ball. After this rounding step, a 

classical coordinated hit-and-run is applied in the unit ball and 

the obtained samples are projected in the original space 

through the inverse of the transform that was applied to the 

ellipsoid. The hit-and-run becomes then very efficient given 

that all the points within the ball are solutions to the problem 

and the shape is perfectly regular. However, as will be shown 

below on a toy example, the points that are lost by the 

ellipsoid can bias the mean of the samples, which necessarily 

corresponds to the center of the ellipsoid.  

In this contribution, a new method is presented, which 

consists in determining each sample of the distribution by 

choosing first randomly the order of the fluxes to be 

determined, and then fixing iteratively their values using 

uniform random sampling on intervals defined by modified 

linear programs. The latter take into account all the inequality 

constraints defined, on the one hand, by the half-planes 

forming the original polytope and, on the other hand, by the 

equality constraints corresponding to the flux values fixed in 

the previous iterations. Although this algorithm does not - 

strictly speaking - lead to uniform samples, we recover 

uniformity by attaching weights to the samples, which correct 

for the reduction of the sampling space upon fixing some flux 

values. This weighting procedure yields a rigorous 

determination of the mean value of the flux distribution. 

The paper is organized as follows. Section 2 recalls the 

definition of the solution polytope for a metabolic network. 

Section 3 presents the DISCOPOLIS algorithm. Section 4 

illustrates its use, first, on a toy example which shows the bias 

obtained with the rounded polytope of the CHRR method and 

the unbiased result obtained with DISCOPOLIS and, 

secondly, on the core metabolic network of Escherichia coli 

(Orth et al., 2010b). Conclusions and perspectives are 

proposed in Section 5.  

  

2. THE POLYTOPE OF SOLUTIONS FOR THE FLUX 

DISTRIBUTION OF A METABOLIC NETWORK 

2.1  Metabolic Flux Analysis (MFA) and Flux Variability 

Analysis (FVA) 

We consider the general case of a metabolic network linking 

m intracellular metabolites through n metabolic fluxes.  

Assuming that intracellular metabolites do not accumulate 

inside the cell (and neglecting the dilution effect of 

intracellular concentrations due to cell growth), the system of 

mass balances of the intracellular metabolites reduces to a 

simple set of m algebraic homogenous equations with n 

unknowns 

0Nv    (1) 

where m nN   is the stoichiometric matrix and nv the 

metabolic fluxes (in mol.cell-1.h-1). Other linear equality 

constraints can usually be added to system (1), typically 

resulting from measurements of some exchange fluxes. All 

the equality constraints which link the metabolic fluxes (mass 

balances (1), measurements of exchange fluxes, etc.) will be 

concatenated in 

e e
A v b   (2) 

with en n

e
A  , en

e
b  . 

The metabolic fluxes are also subject to inequality constraints 

which can be concatenated in 

Av b   (3) 

with in n
A

  and in
b . These constraints mainly include 

lower and upper bounds for the fluxes but may also contain 

additional inequalities based on some biological assumptions, 

e.g. regarding overflow metabolism (Richelle et al., 2016; 

Bogaerts et al., 2017).  

MFA aims at solving system {(2),(3)} which is, in most cases, 

underdetermined with the number of equations (ne) lower than 

the number of unknown fluxes (n). Minimum and maximum 

values can be determined for each flux v(i), [1, ]i n , by 

solving 2n linear programs (LPs) 

,
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MIN MAX

i i
v

v Min Max v i n     (4) 

subject to {(2),(3)}.  

2.2  Elimination of the Equality Constraints and Definition of 

the Polytope of Solutions 

Let us define 
( )

0
en n nA    as the matrix whose columns 

represent the orthonormal basis for the null space of Ae, i.e. 

the set of all 
nv  such that 0

e
A v  . Using the equality 

0
0

e
A A  , any solution v of (2) can be decomposed into 

     

0 0
v v A q    (5) 

where v0 is a particular solution of (2), i.e. Ae v0 = be, and 
qn

q .  

In this subspace of dimension nq, the inequality constraints (3) 

become  

' 'A q b   (6) 

with  

0
'A AA   (7) 

0
'b b Av    (8) 

A particular solution v0 is the parsimonious solution obtained 

with the quadratic program (QP) 

0

T

v
v Minv v   (9) 

subject to {(2),(3)}.  

In this new subspace of dimension nq, the original problem is 

now fully described by the set of inequalities (6). The 

intersection of the corresponding half-planes defines the 

convex polytope of solutions for the reduced flux distribution 

q. Note that, regarding the notations used in the following 

sections, we will systematically define the solution polytope 

with the set of inequalities (2) instead of (6), assuming that the 

appropriate reduction procedure {(5),(6),(7),(8)} has been 

applied.  

 

3. THE DISCOPOLIS ALGORITHM 

3.1 The Rejection Algorithm 

We first recall in Fig. 1 the rejection algorithm which will 

help introducing the DISCOPOLIS algorithm in the next 

section.  

 Input : solution polytope defined by A and b; number of samples N; 

minimum and maximum values of the fluxes vi
MIN and vi

MAX (i  [1,n]) 

obtained with Flux Variability Analysis; 
 Output : N samples v(k)  n (k  [1,N]); 

1 for k = 1 to N do 

for i = 1 to n do 
     generate vi

* from a uniform distribution on [vi
MIN, vi

MAX]; 

end 

 

while v* (with elements vi
*, i  [1,n]) does not satisfy A v*  b do 

     redo previous loop 2 to 4; 
end 

v(k) = v*; 
end 

2 
3 

4 
 

5 

6 

7 

8 
9  

Fig. 1. Rejection algorithm. 

The samples v(k) which are the outputs of this rejection 

algorithm genuinely correspond to a uniform distribution. 

Indeed, the values of the probability density function are all 

equal to  

1

( )
[ ( )]

( )
N

k

w k
p v k

w k





  (10) 

with  

1

1
( )    

n

MAX MIN
i i i

w k k
v v

 
   (11) 

hence leading to the well-known formula for the mean of 

uniform samples 

1 1

1
[ ( )] ( ) ( )

N N

k k

v p v k v k v k
N 

     (12) 

As mentioned in Section 1, this algorithm cannot be used for 

polytopes in high dimensional space given the fraction of 

rejected samples which rapidly explodes the computational 

load.  

3.2 The DISCOPOLIS Algorithm 

The DISCOPOLIS (DIscrete Sampling of COnvex POlytopes 

via Linear program Iterative Sequences) algorithm is 

presented in Fig. 2. For each sample v(k), a first flux index i is 

randomly selected in [1,n] (line 6) and its value vi is randomly 

chosen from a uniform distribution between its minimum and 

maximum values (lines 8 and 9). Rather than a continuous 

sampling on [vi
MIN,vi

MAX], a discretized uniform sampling is 

implemented by defining S equally spaced grid points in this 

interval and choosing randomly one grid point from a discrete 

uniform distribution on [1,S]. This approach is a key feature 

of the algorithm, which is indispensable when the number of 

fluxes is large and will be justified below. After fixing this 

first flux vi, the loop from lines 10 to 24 iteratively fixes the 

values of all the other fluxes. After having randomly chosen a 

new index i (line 12), a new interval of solutions 

[vi
MINnew,vi

MAXnew] is computed (lines 14 and 15) based on 2 

LPs subject to the inequality constraints (2) defining the 

solution polytope and the set of equality constraints (line 11) 

which takes into account all the flux values fixed in the 

previous iterations. The number Snew of grid points remaining 

in the reduced interval is then computed in line 16 and one 

grid point is randomly chosen from a uniform distribution on 

[1,Snew] (line 18). The corresponding value vi is computed on 

line 19. An exception is considered if the reduced interval 

[vi
MINnew,vi

MAXnew] only contains a single grid point, in which 

case vi is set equal to the center of the interval (line 21).  

The crucial update of the weights on line 23 takes into 

account that the uniform sampling on the reduced interval 

[vi
MINnew,vi

MAXnew] (due to the additional constraints in line 11 

corresponding to the flux values fixed at the previous 

iterations) artificially increases the probability of selecting 

one of the new grid points.  
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 Input : solution polytope defined by A and b; number of samples N; 

number of grid points S; minimum and maximum values of the fluxes 

vi
MIN and vi

MAX (i  [1,n]) obtained with Flux Variability Analysis 

 

 

 Output : N samples v(k)  n  (k  [1,N]) with their weights w(k) 
 

1 Aeq = ; beq = ;  /* initialize empty matrices for equality constraints  

2 Li = (vi
MAX - vi

MIN) / (S - 1);  /* compute for each flux vi the interval  

     between 2 grid points  

3 

4 

5 

6 

7 

8 

9 

 

10 

11 

12 

13 

14 

 

15 

 

16 

 

17 

18 

19 

 

20 

21 

 

22 

23 

24 

25 

for k = 1 to N do 

w(k) = 1;  /* initialize weight of the kth sample 

I = [1,n];  /* set of all indexes i of all the fluxes vi  v 

Randomly select an index i in I; 

Remove index i from set I; 

Generate one index g from a uniform distribution on [1,S]; 

vi = vi
MIN + (vi

MAX - vi
MIN) * (g - 1) / (S - 1);  /* discrete uniform  

     sampling of vi corresponding to the gth grid point 

while I   do 

   Augment Aeq and beq to account for last fixed vi; 

   Randomly select an index i in I; 

   Remove index i from set I; 

   vi
MINnew = min v vi computed with LP subject to A*v ≤ b 

        and Aeq*v = beq; 

   vi
MAXnew = max v vi computed with LP subject to A*v ≤ b 

        and Aeq*v =  beq; 

   Snew = 1 + floor ((vi
MAXnew - vi

MINnew) / Li);  /* number of grid  

        points remaining in the new constrained solution interval 

   if Snew > 1 then 

      Generate one index g from a uniform distribution on [1,Snew]; 

      vi = vi
MINnew + (vi

MAXnew - vi
MINnew) * (g - 1) / (Snew - 1);  /* discrete 

           uniform sampling of vi corresponding to the gth grid point 

   else 

      vi = (vi
MAXnew + vi

MINnew) / 2;  /* use of the center of the new  

           solution interval in case of only 1 remaining grid point 

   end 

   w(k) = w(k) * Snew / S;  /* update weight of the kth sample 

end 

end   

Fig. 2. DISCOPOLIS algorithm. 

Indeed, a thoughtless continuous uniform sampling on 

[vi
MINnew,vi

MAXnew], without taking into account its reduction 

from [vi
MIN,vi

MAX], would correspond to replace the factors 

(vi
MAX - vi

MIN)-1 in (11) with the larger values (vi
MAXnew - 

vi
MINnew)-1 given the new, narrower, constrained intervals.  

The update in line 23 cancels this effect through the correcting 

factor (vi
MAXnew - vi

MINnew) / (vi
MAX - vi

MIN) or, equivalently in the 

case of discrete sampling using grid points, the correcting 

factor Snew / S. Our procedure can be viewed as a generalized 

uniform sampling inside the polytope, in which each sample 

has a specific weight. It allows recovering the rigorous 

determination of the mean value of a uniform flux distribution 

using  

1

[ ( )] ( )
N

k

v p v k v k


    (13) 

with p[v(k)] given by (10) and w(k) by the output of the 

DISCOPOLIS algorithm.  

Finally, the use of grid points for a discrete sampling in the 

constrained intervals prevents the weights to rapidly tend to 0 

as the number of constraints in line 11 accumulate. This is 

especially important for solution polytopes that are generally 

extremely constrained and irregular. The lower bound of w(k) 

is indeed 1 / S(n-1), corresponding to the extreme case of a 

sample whose fluxes are almost perfectly determined when 

one particular flux has been fixed at the first iteration. As will 

be illustrated on case studies in Section 4, decreasing the 

number of grid points S leads to a higher fraction of samples 

v(k) whose sum of weights represents a high proportion of the 

total sum of weights, i.e. a higher fraction of samples with 

significant probability densities for computing the mean (13). 

There is thus a trade-off between the increase of the number 

of grid points to reach good precision, and the decrease of 

their number to get a reasonable fraction of samples with 

relatively high weights.  

 

4. CASE STUDIES 

4.1 Toy Example 

This toy example consists of a simple 2D polytope for which 

the mean of a genuine uniform sampling can easily be 

computed through the rejection algorithm. The first objective 

is to illustrate that the use of the ellipsoid with largest volume 

inscribed in the solution polytope (CHRR method, 

Haraldsdóttir et al., 2017) may lead to a biased estimation of 

the flux distribution mean. The second objective is to prove 

that the DISCOPOLIS algorithm provides accurately the 

mean of the genuine uniform sampling.  

Let us consider the polytope defined by fluxes vT = [v1 v2] 

belonging to the intersection of half-lines (3) with  

1 0 0

0 1 0
,

0 1 1

1 1 2

A b

   
       
   
   
   

  (14) 

To accurately determine the mean of the flux distribution, we 

apply the rejection algorithm (Fig. 1) to generate 5,000 

uniformly distributed random samples. The result is presented 

in Fig. 3, the straight line pointing to the mean of the 

distribution which is equal to  0.78 0.45Tv   (green 

diamond).  

The preprocess routine of the COBRA toolbox computes the 

ellipsoid with largest volume inscribed in the solution 

polytope, which consists of the rounding step of the CHRR 

method. The center of the ellipsoid {(3),(14)} is 

 0.75 0.50Tv  , and thus differs significantly from the 

mean of the uniform distribution because of the points lost by 

the inscribed ellipsoid. Notably, any subsequent hit-and-run 

sequence of samples provided by the CHRR algorithm 

necessarily has its mean positioned on the center of this 

ellipsoid.   

The results provided with the DISCOPOLIS algorithm (with 

different numbers of samples, numbers of grid points and seed 

values for the random generator) are provided in Table 1 and 

represented in Fig. 3. They show that the mean of the genuine 

uniform sampling performed with the rejection algorithm is 

recovered with very high accuracy by the DISCOPOLIS 

algorithm. Moreover, the results are robust with respect to the 

tuning parameters and random seeds.  
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 Input : solution polytope defined by A and b; number of samples N; 

number of grid points S; minimum and maximum values of the fluxes 

vi
MIN and vi

MAX (i  [1,n]) obtained with Flux Variability Analysis 

 

 

 Output : N samples v(k)  n  (k  [1,N]) with their weights w(k) 
 

1 Aeq = ; beq = ;  /* initialize empty matrices for equality constraints  

2 Li = (vi
MAX - vi

MIN) / (S - 1);  /* compute for each flux vi the interval  

     between 2 grid points  
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6 

7 

8 

9 

 

10 

11 

12 

13 

14 

 

15 

 

16 

 

17 

18 

19 

 

20 

21 

 

22 

23 

24 

25 

for k = 1 to N do 

w(k) = 1;  /* initialize weight of the kth sample 

I = [1,n];  /* set of all indexes i of all the fluxes vi  v 

Randomly select an index i in I; 

Remove index i from set I; 

Generate one index g from a uniform distribution on [1,S]; 

vi = vi
MIN + (vi

MAX - vi
MIN) * (g - 1) / (S - 1);  /* discrete uniform  

     sampling of vi corresponding to the gth grid point 

while I   do 

   Augment Aeq and beq to account for last fixed vi; 

   Randomly select an index i in I; 

   Remove index i from set I; 

   vi
MINnew = min v vi computed with LP subject to A*v ≤ b 

        and Aeq*v = beq; 

   vi
MAXnew = max v vi computed with LP subject to A*v ≤ b 

        and Aeq*v =  beq; 

   Snew = 1 + floor ((vi
MAXnew - vi

MINnew) / Li);  /* number of grid  

        points remaining in the new constrained solution interval 

   if Snew > 1 then 

      Generate one index g from a uniform distribution on [1,Snew]; 

      vi = vi
MINnew + (vi

MAXnew - vi
MINnew) * (g - 1) / (Snew - 1);  /* discrete 

           uniform sampling of vi corresponding to the gth grid point 

   else 

      vi = (vi
MAXnew + vi

MINnew) / 2;  /* use of the center of the new  

           solution interval in case of only 1 remaining grid point 

   end 

   w(k) = w(k) * Snew / S;  /* update weight of the kth sample 

end 

end   

Fig. 2. DISCOPOLIS algorithm. 

Indeed, a thoughtless continuous uniform sampling on 

[vi
MINnew,vi

MAXnew], without taking into account its reduction 

from [vi
MIN,vi

MAX], would correspond to replace the factors 

(vi
MAX - vi

MIN)-1 in (11) with the larger values (vi
MAXnew - 

vi
MINnew)-1 given the new, narrower, constrained intervals.  

The update in line 23 cancels this effect through the correcting 

factor (vi
MAXnew - vi

MINnew) / (vi
MAX - vi

MIN) or, equivalently in the 

case of discrete sampling using grid points, the correcting 

factor Snew / S. Our procedure can be viewed as a generalized 

uniform sampling inside the polytope, in which each sample 

has a specific weight. It allows recovering the rigorous 

determination of the mean value of a uniform flux distribution 

using  
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with p[v(k)] given by (10) and w(k) by the output of the 

DISCOPOLIS algorithm.  

Finally, the use of grid points for a discrete sampling in the 

constrained intervals prevents the weights to rapidly tend to 0 

as the number of constraints in line 11 accumulate. This is 

especially important for solution polytopes that are generally 

extremely constrained and irregular. The lower bound of w(k) 

is indeed 1 / S(n-1), corresponding to the extreme case of a 

sample whose fluxes are almost perfectly determined when 

one particular flux has been fixed at the first iteration. As will 

be illustrated on case studies in Section 4, decreasing the 

number of grid points S leads to a higher fraction of samples 

v(k) whose sum of weights represents a high proportion of the 

total sum of weights, i.e. a higher fraction of samples with 

significant probability densities for computing the mean (13). 

There is thus a trade-off between the increase of the number 

of grid points to reach good precision, and the decrease of 

their number to get a reasonable fraction of samples with 

relatively high weights.  

 

4. CASE STUDIES 

4.1 Toy Example 

This toy example consists of a simple 2D polytope for which 

the mean of a genuine uniform sampling can easily be 

computed through the rejection algorithm. The first objective 

is to illustrate that the use of the ellipsoid with largest volume 

inscribed in the solution polytope (CHRR method, 

Haraldsdóttir et al., 2017) may lead to a biased estimation of 

the flux distribution mean. The second objective is to prove 

that the DISCOPOLIS algorithm provides accurately the 

mean of the genuine uniform sampling.  

Let us consider the polytope defined by fluxes vT = [v1 v2] 

belonging to the intersection of half-lines (3) with  
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  (14) 

To accurately determine the mean of the flux distribution, we 

apply the rejection algorithm (Fig. 1) to generate 5,000 

uniformly distributed random samples. The result is presented 

in Fig. 3, the straight line pointing to the mean of the 

distribution which is equal to  0.78 0.45Tv   (green 

diamond).  

The preprocess routine of the COBRA toolbox computes the 

ellipsoid with largest volume inscribed in the solution 

polytope, which consists of the rounding step of the CHRR 

method. The center of the ellipsoid {(3),(14)} is 

 0.75 0.50Tv  , and thus differs significantly from the 

mean of the uniform distribution because of the points lost by 

the inscribed ellipsoid. Notably, any subsequent hit-and-run 

sequence of samples provided by the CHRR algorithm 

necessarily has its mean positioned on the center of this 

ellipsoid.   

The results provided with the DISCOPOLIS algorithm (with 

different numbers of samples, numbers of grid points and seed 

values for the random generator) are provided in Table 1 and 

represented in Fig. 3. They show that the mean of the genuine 

uniform sampling performed with the rejection algorithm is 

recovered with very high accuracy by the DISCOPOLIS 

algorithm. Moreover, the results are robust with respect to the 

tuning parameters and random seeds.  

     

Table 1. Mean of the flux distribution in the solution polytope 

{(3),(14)}, computed with (13) and the samples and weights 

obtained from the DISCOPOLIS algorithm (Fig. 2). N is the 

number of samples, S the number of grid points. The 2 

columns for each pair (N,S) correspond to 2 different seed 

values (rng(0) and rng(1)) of the random number generator 

(rand in Matlab).  

 N = 103 N = 104 

seed 1 seed 2 seed 1 seed 2 

S = 102 
v1 0.78 

0.46 

0.80 

0.45 

0.78 

0.45 

0.78 

0.44 v2 

S = 103 
v1 0.78 

0.46 

0.79 

0.44 

0.77 

0.45 

0.78 

0.44 v2 

 

v 2

 

Fig. 3. 5,000 random samples (magenta dots) uniformly 

distributed on the solution polytope defined by {(3),(14)}, 

generated with the rejection algorithm (Fig. 1). The straight-

line points to the mean of the flux distribution 

 0.78 0.45Tv   (green diamond). The 8 blue crosses 

correspond to the DISCOPOLIS solutions provided in Table 1 

and the red circle to the center of the inscribed ellipsoid with 

largest volume. 

 

4.2 Core Metabolic Network of Escherichia coli 

This second case study consists of the core metabolic network 

of Escherichia coli (Orth et al., 2010b). The COBRA model is 

available in the COBRA toolbox (Ecoli_core_model.mat). It 

consists of 95 fluxes with upper and lower bounds. As 

proposed in the supplementary tutorial of Haraldsdóttir et al. 

(2017), we set the maximum glucose uptake rate to 18.5 

mmol/gDW/h and we remove the cellular objective (no FBA). 

We only consider the aerobic model, with unlimited oxygen 

uptake. There are 72 intracellular metabolites which are 

assumed balanced, hence leading to a stoichiometric matrix 
72 95N   with a rank equal to 67. The equality constraints 

(2) correspond to the mass balances (1) augmented with 9 

fluxes which are fixed because the difference between their 

maximum and minimum values (computed with FVA through 

(4)) is less than 10-6. The rank of 81 95

e
A   is equal to 72. 

Hence, the dimension of the reduced flux vector q (see 

Section 2.2) is equal to 23. The matrix 172 23'A   defines the 

solution polytope (6) and corresponds, through (7), to the 

lower and upper bounds on the original fluxes (except for the 

9 fluxes whose values are fixed).  

The mean of the flux distribution is computed with the 

DISCOPOLIS algorithm for different numbers of samples N 

(103, 104, 105), different numbers of grid points S (10 and 102) 

and 2 different seed values. The solution with the largest 

number of samples (N = 105) and 10 grid points is considered 

as the reference and is compared to the other solutions in 

Table 2. The linear correlation coefficients R2 between the 

reference and the other DISCOPOLIS solutions are extremely 

close to 1 (0.99 in the worst case) for the 4 solutions of the 

first row which use 10 grid points. The correlation is 

significantly lower (between 0.59 and 0.91) when using 100 

grid points. This a priori counterintuitive result can be 

explained by looking at the percentage of samples whose sum 

of weights represents 99.9% of the total sum of weights. The 

very low percentages obtained for S = 100 (1.3% at most) 

show that the mean value (13) depends on a very low number 

of samples, which leads to less robust results. In contrast, the 

mean calculated with 10 grid points involve approximately 

70% of the samples. This illustrates the key importance of the 

discretization used in the algorithm. 

Fig. 2 provides the flux mean values for the reference solution 

(blue crosses) and the intervals between minimum and 

maximum values obtained with the 4 other solutions using 10 

grid points (first row in Table 2). These results are compared 

with the flux mean values based on the center of the largest 

inscribed polytope (red circles). Although both algorithms 

lead to very close results for many fluxes, several other fluxes 

have a significantly different mean, which is probably the 

consequence of some parts of the solution polytope lost by the 

largest inscribed ellipsoid.  

 

Table 2. At the top of each cell, linear correlation coefficients 

R2 for assessing the fitting between the mean of two flux 

distributions obtained with the DISCOPOLIS algorithm: one 

corresponding to N samples and S grid points, the other being 

the reference corresponding to 105 samples and 10 grid points. 

At the bottom, percentage of samples whose sum of weights 

represents 99.9% of the total sum of weights. The 2 columns 

for each pair (N,S) correspond to 2 different seed values 

(rng(0) and rng(1)) of the random number generator (rand in 

Matlab). 

 N = 103 N = 104 

seed 1 seed 2 seed 1 seed 2 

S = 10 
R2 0.99 

74% 

0.96 

73% 

0.995 

69% 

0.9996 

70% % 

S = 102 
R2 0.87 

0.6% 

0.59 

0.9% 

0.91 

0.6% 

0.75 

1.3% % 
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5. CONCLUSIONS AND PERSPECTIVES 

The DISCOPOLIS algorithm iteratively uses linear programs 

for constraining the flux distribution samples of a metabolic 

network inside the solution polytope, taking into account all 

the previously estimated fluxes. The solutions are weighted to 

ensure sampling uniformity. A first toy example showed that 

the mean of a genuine uniform distribution could indeed be 

recovered, which was not the case with the center of the 

largest inscribed ellipsoid (used in the CHRR method) that 

provides a biased estimate due to some lost regions of the 

solution polytope. The importance of the use of grid points 

and the robustness of the results has been illustrated on a 

second example about the core metabolic network of E. coli.  

Future work will consist in optimizing the algorithm in terms 

of computational load and in testing its use with more 

complex networks. Finally, we will investigate the issue of 

flux rescaling. Rather than considering an equal number of 

discrete points along each flux, we will vary this number 

according to the range of original flux values and compare the 

results. 

 

 
 

Fig. 4. Mean values of the flux distribution within the E. coli core metabolic network, obtained with the DISCOPOLIS 

algorithm (blue crosses :  N = 105 samples and S = 10 grid points; blue bars : intervals between minimum and maximum values 

obtained with the 4 cases in the first row of Table 2) and with the center of the largest inscribed ellipsoid (red circles).  
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