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Abstract—Angle-of-arrival (AoA) estimation-based localization
systems are a promising technology in the context of Internet-
of-Things. The system considered is a densely deployed set of
anchors equipped with arrays of antennas able to measure the
AoA of the signal emitted by the device to be located. Naturally,
the AoA measurements are prone to uncertainties due to noise,
channel conditions and uncertainties on the anchors placement
and orientations. In this work, a method based on Polynomial
Chaos Expansions is proposed to perform anchor selection in
order to enhance the precision of the positioning. An experi-
mental setup with six anchors is implemented to evaluate the
performance of the proposed method. The experimental results
demonstrate that by applying our anchor selection method, the
performance of the localization system improves.

Index Terms—localization, anchor selection, polynomial chaos
expansions, uncertainty

I. INTRODUCTION

The development of wireless telecommunication systems,
as well as the emergence of the 5G network have led to a
gigantic increase of the number of devices connected to the
network: the so-called Internet-of-Things. Many applications
of those devices will require precise positioning [1]. For
instance industrial process automation including asset tracking,
or industrial control such as robot positioning applications may
require a localization accuracy within 10 cm [2]. Many appli-
cations of the 5G network outside the IoT framework will also
benefit from enhanced positioning capabilities. Improving the
localization or positioning accuracy is therefore an important
topic to address nowadays.

Angle-of-arrival (AoA) estimation-based localization is a
promising technology for narrowband IoT applications that
need precise positioning, especially in indoor scenarios. It
requires a set of anchors of known position able to measure the
AoA of the signal emitted by the device to be located. These
anchors are therefore equipped with an array of antennas. To
the best of our knowledge, none of the AoA estimation-based
localization methods present in the literature provides simul-
taneously the position estimate with an uncertainty indicator
on this position. However for some applications, it is crucial
to know whether the position estimate is reliable or not.

In our previous work, a method based on Polynomial Chaos
Expansions (PCE) was introduced to obtain confidence regions
around the estimated position [3], [4]. These confidence re-
gions can serve as uncertainty indicators associated with each
position estimation.

In this work a localization system formed by a densely
deployed network of anchors is considered. As more anchors
than needed for localization are available in those conditions,
anchor selection is a possibility to enhance the precision of
the positioning. Anchor selection for AoA localization in
the literature mostly concerns acoustic sensors [5], and do
not rely on the uncertainty of AoA measurements. Instead,
methods of outlier detection that are able to detect if one of
the measurements is strongly biased are proposed [6]. In fact
the uncertainty on the AoA measurement can be modelled as
a sum of two effects: the measurement noise, which can be
modelled as a Gaussian distribution around the true AoA, and
outlier measurements which can be modelled as a Uniform
distributed random variable [7]. This work focuses on the first
type of uncertainty.

We propose an anchor selection method based on sensitivity
indices obtained using the PCE framework. We assembled an
experimental setup with six anchors using Universal Software
Radio Peripheral (USRP). We demonstrated the performance
of our localization method by applying it on measurements
collected with the experimental setup. This paper is organized
as follows: section II explains our method for anchor selection
in AoA localization using PCE. Section III presents the
experimental setup used for the measurements. Section IV
presents some results and discusses the performance of our
method, before concluding the article.

II. METHOD

A. AoA estimation-based localization

Consider the scenario where an emitting device of unknown
position x = (x, y) is to be located by a set of N anchors of
known positions xi = (xi, yi). This device is transmitting a
signal in order to communicate. The positioning process is
composed of two distinct steps. First, every anchor measures
the AoA of the signal emitted by the device. Then, at a central
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Fig. 1. Generic scenario for AoA estimation-based localization. Four anchors
are represented by grey rectangles. An IoT device to be located is represented
by a black dot. From the signal emitted by the device, each anchor estimates
the AoA θi of the signal. The intersection of the bearing lines defined by
these AoA’s allows one to estimate the position of the device.

computer, the position of the device is estimated from all the
AoA measurements associated with the known position of the
anchors. An illustration of this general situation is given in
Fig. 1.

The anchors are equipped with antenna arrays. The AoA
of the signal is obtained by analysing the phase difference
between the received signal at each antenna. Common methods
to compute the AoA include Beamforming [9] or multiple
signal classification (MUSIC) [10]. The AoA measured at
anchor i, θi is subject to a measurement error ni:

θi = arctan

(
y − yi
x− xi

)
+ ni i = 1, ..., N (1)

Throughout this work, the errors ni are assumed to be indepen-
dent, zero-mean white Gaussian distributed random variables
of variance σ2

θi
.

The linear least-squares estimator gives an estimation of the
device position x̂ = (x̂, ŷ) using the anchors locations and the
AoA measurements as [8]:

x̂ = (HTH)−1HTb (2)

where

H =


tan θ1 −1
tan θ2 −1

...
...

tan θN −1

 (3)

and

b =


x1 tan θ1 − y1

x2 tan θ2 − y2

...
xN tan θN − yN

 . (4)

In the case of two-dimension localization problem, a minimum
of two anchors is needed.

B. Polynomial Chaos Expansions of the position

The interest of the Polynomial Chaos Expansion theory is
to obtain statistical informations on the model response with
less computational effort than by a Monte-Carlo simulation of
the actual model. The estimation of the x- and y-coordinates
are separately expanded on the same polynomial chaos basis
[4]:

x̂ =
∑
α∈A

dαΨα({θi}Ni=1) (5)

ŷ =
∑
α∈A

eαΨα({θi}Ni=1). (6)

In those equations, dα and eα are the coefficients of
the expansion of the estimates of the x- and y-coordinates,
respectively. The multi-indices α give the degree of the used
polynomials. The set of indices A is determined by the
parameters of the expansions: the number of variables and the
total degree of the expansion. Detailed explanations on the
PCE and the way to compute the coefficients can be found
in [4]. It can be easily demonstrated that the mean and the
variance of the x-coordinate are respectively given by:

µx̂ = E[x̂] = d0 (7)

σ2
x̂ = Var

[∑
α∈A

dαΨα

]
=

∑
α∈A\0

d2α‖Ψα‖2. (8)

In the last summation, the index 0 is removed from the set A
because it corresponds to the mean of the expansion. The mean
and variance of the y-coordinate of the model response are
obtained similarly. The covariance Rx̂ŷ can be derived using
the orthogonality of the polynomials of the basis, leading to:

Rx̂ŷ =
∑
α∈A\0

dαeα‖Ψα‖2. (9)

Then, the covariance matrix Σ is constructed from (8) and (9):

Σ =

 σ2
x̂ Rx̂ŷ

Rŷx̂ σ2
ŷ

 . (10)

The covariance matrix Σ can then be used to draw confi-
dence regions, as detailed in [4].

It was demonstrated in [11] that the Sobol’ sensitivity
indices can be obtained from the expansion coefficients in
(5) and (6). These sensitivity indices translate how each of
the input variables of the problem contributes to the output
uncertainty. In this case, a large Sobol’ index corresponding
to one anchor means that this anchor contributes a lot to the
uncertainty on the position. In this work, we limit ourselves
to the use of the total Sobol’ sensitivity indices, which for
anchor i is given for the x-coordinate by:

ST
(x)
i =

∑
α∈Ji

d2α‖Ψα‖2/σ2
x̂. (11)



In this equation, the set Ji includes all multi-indices α whose
i-th component is non-zero. In other words, the square of all
coefficients that are related to angle θi measured by anchor i
are summed and then normalized by the total variance. ST (x)

i

therefore represents the proportion of the total variance of the
x-coordinate that is effectively due to the anchor i.

C. Anchor selection using Polynomial Chaos Expansions

Our method starts by collecting the AoA measurements and
associated uncertainties at the anchors. The Polynomial Chaos
Expansion of the x and y-coordinates are then computed. The
estimated position is given by (7) and the confidence region is
derived from the covariance matrix (10). The total sensitivity
indices are computed with (11) for the x and y coordinates
separately. For each anchor, both sensitivity indices are then
summed STi = ST

(x)
i + ST

(y)
i . The anchor corresponding

to the highest value of STi is then eliminated, and new
expansions are computed using the N − 1 other anchors. This
method can be applied iteratively, eliminating one anchor from
the set at each step.

III. EXPERIMENTAL SETUP

A. Setup geometry

An experimental setup was built to validate our method. Six
anchors were assembled and connected to a central computer.
Each anchor was built using a USRP X310 equipped with 2
UBX daughterboards, and an antenna array, as can be seen
in Fig. 2. From this 2-by-2 array, we only used two antennas
horizontally spaced by 6 cm, because we aim to localize in two
dimensions and therefore we only need to estimate the azimuth
angle. The over-the-air calibration procedure at the anchors
was realized in the following way. A continuous narrowband
signal at 2.5 GHz carrier frequency was generated by a USRP
b205mini-i. This signal was distributed to the center pin of
each antenna array using power splitters and coaxial cables.
Each anchor then recorded a large series of samples on both its
channels. The phase difference between the two channels was
then computed and stored as reference for calibration. This
calibration accounts for all hardware contributions at once,
and experiment showed that it is stable in time.

The emitter consists of a USRP b205mini-i connected to a
monopole antenna on a movable stand, sending a continuous
wave signal at 2.5 GHz carrier frequency. The antennas at the
anchors were therefore spaced by one half-wavelength.

Fig. 3 shows the 6 anchors installed on a large table.
As the anchors were placed by hand, we took into account
an uncertainty on the orientation of each anchor of 2◦. All
measurements were voluntarily performed with a high gain at
the emitter to ensure a high signal-to-noise ratio (SNR) on
the received samples. A typical value of SNR observed at the
receiver is 45 dB. This allowed us to add noise during the
treatment of the data in order to reach the desired SNR at
each anchor.

Fig. 2. Picture of one anchor. Two antennas of the array are used.

Fig. 3. The full setup consists of 6 independent anchors, all connected to a
central computer. The emitter antenna is a 2.4GHz monopole mounted on a
movable stand.

B. Measurement noise addition

Additive white Gaussian noise was added directly on the
received samples with the power corresponding to the desired
SNR. This measurement noise can be translated into an
uncertainty on the AoA using the Cramér-Rao lower bound
(CRLB). It is demonstrated in [12] that the CRLB for AoA
estimation by an uniform linear array of M antennas is given
by:

σ2
θ ≥

12

M(M2 − 1)

(
λ

2πd cos θ

)2
SNR−1

L
(12)

where L is the number of samples, λ is the carrier wavelength,
d is the inter-antenna spacing and θ is the AoA measured from
broadside. Since our PCE-based method requires a measure of
the uncertainty on the AoA as input, the latter was estimated
with the CRLB (12) using the SNR of the received signal
and the AoA θ estimated with MUSIC [10]. To that result,
we added the orientation uncertainty of 2◦ defined by expert
judgement.



TABLE I
SNR AND TOTAL SENSITIVITY INDICES AT EACH ANCHOR IN THE FIRST

EXAMPLE

Anchor 1 2 3 4 5 6
x[m] 1 2.8 3.7 1 1.7 3.7
y[m] 0.5 2.6 0.5 1.9 2.6 1.9

SNR [dB] 8 5 5 5 5 5
ST (x) 0.28 0.13 0.35 0.07 0.11 0.08
ST (y) 0.27 0.00 0.05 0.30 0.33 0.05
ST 0.55 0.13 0.40 0.37 0.43 0.13

IV. RESULTS

The experimental setup was used as follows. The anchors
were placed at known positions, surrounding the large table.
The emitter antenna was also placed at a known position in
order to evaluate the estimation error of the proposed local-
ization method. Large sets of samples were recorded at each
anchor for several positions of the emitter. However, the results
presented hereunder all used 10 samples per measurement at
each antenna. Note that all distances are given in meters.

A. Example of confidence regions and selection

The first result is an example of the proposed localization
method. The emitter was placed at position (3, 1.3). The six
anchors recorded 10 samples at each antenna. The AWGN was
added on each sample, with power corresponding to the SNR
given in Table I for each anchor. The AoA’s were estimated
using MUSIC algorithm. Then (12) was used to estimate
the AoA estimation uncertainty to which was added the 2◦

orientation uncertainty. The PCE of the position coordinates
were computed as (5) and (6) using UQLab [13], [14]. A third
degree expansion was chosen and an Ordinary Least Squares
regression scheme was used to compute the coefficients. The
estimated position is given by the mean of the expansions
(7). The covariance matrix (10) was used to draw the 90%
confidence region around the estimated position. The total
sensitivity indices derived from the PCE are given in Table I.

Although anchor 1 exhibits the highest SNR, our method
selects it to be discarded as its total sensitivity index ST is the
highest. The PCE-based positioning is then repeated with the
five remaining anchors, producing another estimated position
and associated confidence region. These results are shown in
Fig. 4. A significant amelioration of the estimation is observed
when the anchor with the highest ST is discarded. This
example is interesting because the anchor that was eliminated
from the set was subject to the highest SNR. It was therefore
not trivial to select that particular anchor to be eliminated.
Hence the proposed PCE-based anchor selection method is
able to select the best anchor subset considering the entire
problem, even in situations where the best subset would be
counter-intuitive.

B. Performance of the proposed method in equal noise con-
ditions

To evaluate the performance of the proposed method, we
applied it on 500 measurements and noise realizations, with
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Fig. 4. Anchor locations, position estimates and associated 90% confidence
regions before and after anchor selection using the Sobol sensitivity indices.
The blue crosses, triangle and dotted ellipse show the 6-anchor situation,
while the red circles, cross and continuous ellipse show the selected 5-anchor
situation.

TABLE II
RMSE, MEDIAN ERROR AND PROBABILITY OF REDUCTION. SNR = 10 dB

Number of anchors 6 5 4 3 2
RMSE [m] 0.18 0.13 0.10 0.12 5.72

Median error [m] 0.17 0.11 0.09 0.09 0.13
Pred[%] 93 62 45 34 /

all other parameters unchanged. The geometry given in Table I
was used, and we kept 10 measured samples per antenna. The
PCE-based anchor selection method was applied iteratively
until only two anchors were remaining. Hence for each noise
realization, we obtain 5 estimations of the position: using 6,
5, 4, 3 and 2 anchors. The SNR imposed at each anchor
was 10 dB in the first calculation. The cumulative distribution
function (CDF) of the positioning error is given in Fig. 5. The
probability of reduction Pred is defined as the probability that
the positioning error is lower with N − 1 anchors than with
N . The root mean square error (RMSE), the median error,
as well as probability of reduction are given in Table II. The
second calculation was similar to the latter except that a SNR
of 5 dB was applied to every anchor. The CDF’s obtained for
that calculation are given in Fig. 6 and the statistical values
in Table III.

In both examples, the precision of localization increases as
the first highest ST anchors are eliminated. The precision
gain is considerable when 5 anchors out of 6 are selected.

TABLE III
RMSE, MEDIAN ERROR AND PROBABILITY OF REDUCTION. SNR = 5 dB

Number of anchors 6 5 4 3 2
RMSE [m] 0.24 0.18 0.18 0.24 22.7

Median error [m] 0.21 0.14 0.13 0.14 0.27
Pred[%] 77 57 43 27 /



Fig. 5. Cumulative distribution function of the localization error. Comparison
of the localization performance using 6, 5, 4, 3 or 2 anchors (SNR = 10 dB).

Fig. 6. Cumulative distribution function of the localization error. Comparison
of the localization performance using 6, 5, 4, 3 or 2 anchors (SNR = 5 dB).

However, once a set of four anchors is selected, further
selection to form 3- or 2-anchors subsets cause a decrease of
the localization precision. It is observed in both examples that
Pred decreases as the number of anchors decreases. In fact, a
link can be made between Pred and the precision gain: when
discarding an anchor, the precision of localization increases
when Pred > 50%. Indeed, in both examples, Pred drops under
50% when 4 anchors remain from the selection process. The
RMSE and median error also reach a minimum value with 4
anchors. In the 10 dB example, the localization error using the
selected 4 anchors is under 15 cm with probability 88%, while
using the using 6 anchors without selection this probability is
36%. We can infer that our method can considerably improve
the precision of localization. Nevertheless, there is an optimal
number of anchors to discard in order to obtain the best
localization performance.

V. CONCLUSION

To enhance the localization performance of angle-of-arrival
estimation-based positioning systems, we proposed an anchor
selection method using Polynomial Chaos Expansions. The
selection is based on the total sensitivity indices derived from
the PCE, which express the fraction of positioning uncertainty
that is due to each anchor. An experimental setup was used to
collect measurement data on which the method was applied.
Results show that the method can effectively select the best
anchor subset considering the whole system and not simply
eliminate the anchor with the highest SNR. A performance
study showed that the localization precision is considerably
improved when the proposed selection method is applied on
a 6-anchors set in equal noise situations.
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