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1OPERA department, Université libre de Bruxelles (ULB), 1050 Brussels, Belgium
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Abstract—Multiple-antenna technologies provide a good
spatial diversity gain for emerging communication systems.
In combination to the orthogonal frequency division mul-
tiplexing (OFDM) modulation, a precoding system can be
easily implemented and efficient to combat the effect of
fading channels. However, the precoding system requires
a perfect knowledge of the channel, which is not usually
hold in practical cases. In this paper, we investigate the
impact of the imperfect channel state information (CSI)
on the downlink performance of multiple-input single-
output (MISO) OFDM systems using a matched-filter (MF)
precoder. Particularly, the exact mean-square-error (MSE)
expression of the equalized received signal of the MF
precoding system is derived. Numerical simulations with
Rayleigh fading channels are carried out to validate the
analysis. The results show that the imperfect CSI-based
precoder causes a MSE plateau compared to the ideal case
of using the perfect CSI.

Index terms— MF, MISO, OFDM, imperfect CSI.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) an-
tenna systems are now widely considered as enabling
technologies for 5G communication systems [1]. It has
been shown that a good spatial diversity and array
gains can be achieved when combining with precoding
techniques such as matched-filter (MF) [2] or maximum-
ratio-transmission (MRT) [3]. Massive MIMO systems
can operate in either time-division duplexing (TDD) or
frequency-division duplexing (FDD) modes [4]. How-
ever, the FDD massive MIMO system requires a dedi-
cated feedback channel for the channel state information
(CSI)-based precoding with a large amount of pilots
(proportional to the number of base-station antennas),
which is also sensitive to the feedback delays [5]. The
TDD massive MIMO system, requiring less overhead
than the FDD one, exploits the channel reciprocity and
uses the uplink CSIs for the downlink precoding. How-
ever, the time delay between the uplink CSI estimation
and the downlink CSI-based precoding transmission may
be bigger than the coherence time of the channel, making
the CSI-based precoding imperfect [6].

It is well known that precoding techniques can easily
be implemented in orthogonal frequency-division multi-

plexing (OFDM) systems, to efficiently combat the chan-
nel frequency selectivity [7]. Although both MRT and
MF precoding techniques simplify the signal processing
at the receiver side, the MF precoder is particularly
interesting compared to the MRT one because of the
simple pre-processing of the transmitted signals [8]. For
instance, it is shown that in the multiple-input single-
output (MISO) OFDM system, the MF precoding does
not require the channel information exchange among
antennas as the MRT precoding does [8], making it easy
to implement in geographically distributed MISO sys-
tems. In a rich scattering environment, the MF precoding
provides a significant focusing gain [9].

Because of the interest of using the MF precoding, the
performance analysis of the MF precoding systems plays
an important role to gain insights in system performance
evaluation and to avoid the lengthy simulations. An
analysis of the average bit-error-ratio (BER) of the
MF precoded MISO-OFDM system has been carried
out in [8]. However, the system was assumed to be
perfectly synchronized and the CSI was also assumed
to be perfect. Recently, the mean-square-error (MSE)
analysis of the impact of carrier frequency offset (CFO)
on the MF precoded MISO-OFDM system has been
investigated [10]. However, the perfect CSI was again
assumed. In practice, due to feedback delays and the fast
time-varying nature of the fading channels, the perfect
CSI assumption is not valid. In this paper, we investigate
the impact of the outdated CSI used for MF precoding
in MISO OFDM systems, which can be applied for any
number of the transmit antennas. More specifically, our
contributions are summarized as (1) the derivation of
the exact closed-form MSE expression of the received
equalized signal in MF precoded MISO-OFDM systems;
(2) the asymptotic MSE analysis to show the reason
of MSE plateau caused by the imperfect CSI-based
precoding; (3) numerical simulations to validate the
derived formulas.

Notation: Bold lower-case and upper-case letters denote
column vectors and matrices, respectively; IQ, FQ are
the Q × Q identity and Fourier matrices, respectively;



Λx is the diagonal matrix whose diagonal entries are the
elements of the vector x; tr{A} is the trace of a square
matrix A; Γ(x) is the Gamma function; || · ||, (·)∗, (·)H ,
(·)T , and E[·] are the Euclidean norm, complex con-
jugate, Hermitian transpose, transpose and expectation
operators, respectively.
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Fig. 1. A schematic of MF precoded MISO-OFDM system.

II. MF PRECODED MISO-OFDM SYSTEMS

We consider a downlink NT × 1 MISO OFDM
system (Fig. 1). We assume that the CSIs between
each transmit antenna and the receive antenna are used
at both transmitter (Tx) and receiver (Rx). Unfortu-
nately, due to the feedback delays of the channel es-
timation from the receiver to the transmitter side, the
MF precoding is imperfect. In order to focus on the
impact of the imperfect CSI, we assume that the sys-
tem synchronization is perfect. Furthermore, only one
size-Q OFDM symbol transmission is considered for
simplicity, x = [X0 ... XQ−1]T (Xq is an indepen-
dent zero-mean random variable (RV) with variance
E[|Xq|2] = σ2

X ). This OFDM symbol is then precoded
by a matrix Λpk on each antenna branch k. We define
hk , [Hk

0 Hk
1 ... Hk

Q−1]T as the channel frequency
response (CFR) associated with the k-th antenna. Vector
pk , [P k0 P k1 ... P kQ−1]T stacks the precoding values of
associated CFR between the k-th Tx antenna and the Rx
antenna. The precoding vector are usually normalized
to unity. Particularly, at the q-th subcarrier and the k-
th antenna, the MF precoding with imperfect CFR is
P kq =

(
ρ
(
Hk
q

)∗
+
√

1− ρ2
(
nkq
)∗)/√

NT , where ρ ∈
[0, 1] represents the amount of the imperfection of CFR,
nkq is assumed to be the zero-mean circularly complex
Gaussian RV, i.e., nkq ∼ CN (0, 1), to facilitate the anal-

ysis. It reduces to P kq =
(
Hk
q

)∗/√
NT , when the CFR

knowledge is perfect. Hence, the precoding vector is
represented as pk =

(
ρ · hk +

√
1− ρ2 · nk

)∗/√
NT .

The signals are then transformed to the time domain. The
signal is then made cyclic by adding the cyclic prefix
(CP) and propagated over the channel, which is math-
ematically equivalent to the left multiplication with the
Q×Q circulant matrix H̃k of the k-th CSI. We assume
that the CSIs between each transmit antenna and receive
antenna are spatially independent from one to another.
The matrix H̃k can be factorized as H̃k = FHQ ·Λhk ·FQ.

At the receiver side, the received signals are corrupted
by the additive white Gaussian noise (AWGN) ṽ. The
signals are brought back to the frequency domain (FD)
after CP removal by a fast Fourier transform (FFT) and

can be expressed as y = FQ ·
(
NT−1∑
k=0

H̃kFHQΛpk

)
·

x + v =

(
NT−1∑
k=0

ΛhkΛpk

)
· x + v, where v = FQ ·

ṽ = [V0, V1, ..., VQ−1]
T is the FD AWGN of variance

E[|Vq|2] = σ2
V . Since all the matrices are diagonal, the

received signal y can be rewritten as

y = ρΛk · x +
√

1− ρ2Λc · x + v, (1)

where k = [K0,K1, ...,KQ−1]
T stacks q-th com-

ponent defined as Kq ,
(
1
/√

NT
)∑NT−1

k=0

∣∣Hk
q

∣∣2.
Vector c = [c0, c1, ..., cQ−1]

T represents the addi-
tional term caused by imperfect CSI-based precoding,
in which the q-th component is defined as cq ,(
1
/√

NT
)∑NT−1

k=0 Hk
q (nkq )∗.

Considering a minimum-mean-square-error (MMSE)
equalizer Λg, the estimated symbol can be expressed as

x̂ = Λg · y, where g =
[

K0

K2
0+γ−1 , ...,

KQ−1

K2
Q−1+γ−1

]T
and

γ , σ2
X

/
σ2
V is the signal-to-noise ratio (SNR). In the

case of perfect CSI-based precoding, i.e., ρ = 1, the
received signal becomes x̂ = Λg ·Λk ·x + Λg ·v. Note
that, thanks to the precoding, the equalizer coefficients
are real-valued, which brings a receiver complexity re-
duction.

III. PERFORMANCE ANALYSIS

A. MSE Derivation

We define the equalized symbol error as e , x̂ − x,
the MSE is then calculated by MSE = E

[
eH · e

]
=

E
[
tr
{
e · eH

}]
. We further define the normalized MSE

(NMSE) as NMSE , MSE
/(
Qσ2

X

)
. Due to the fact

that E[XqVq] = 0, E[nkq ] = 0, after some manipulations,
we obtain

NMSE = 1 +
ρ2

Q
tr
{
E
[
ΛgΛkΛH

k ΛH
g

]}
+
γ−1

Q
tr
{
E
[
Λ2

g

]}
− 2ρ

Q
tr {E [ΛgΛk]}

+

(
1− ρ2

)
Q

tr
{
E
[
ΛgΛcΛ

H
c ΛH

g

]}
. (2)

We define
(
σkl
)2

, E
[∣∣hkl ∣∣2] as the variance of l-th

tap of the k-th CSI between the k-th transmit antenna
and the receive antenna. We assume that each tap of the
CSI is independent (i.e., constructed from the uncorre-
lated scattering) and follows the Rayleigh fading chan-
nel distribution. As a consequence, the corresponding
CFR components Hk

q are independently and identically
distributed (i.i.d.). Based on the derivation made in



Appendix, the exact closed-form NMSE expression (3)
is obtained, where S1n, S2n and S4n (n ∈ {1, 2, 3, 4})
are defined in equations from (11) to (22), containing
only the elementary functions.
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Fig. 2. NMSE versus SNRs in MF precoded 4× 1 MISO system.
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Fig. 3. NMSE versus the number of antennas when SNR = 30 dB.

From the derived NMSE expression, the NMSE can
be split into two parts. The first one is equal to the case
of using the perfect CSI, referred to as NMSEperfect
(4), while the second one corresponds to the contribution
of the imperfect CSI, called NMSEimpefect (5), such
that NMSEperfect +NMSEimperfect = NMSE. To
gain insights in the negative contribution on MSE perfor-
mance when using the imperfect CSI-based precoding,
we study the asymptotic MSE at high SNRs in the
following section.

B. Asymptotic MSE Analysis
At high SNRs, we first notice that the MMSE equal-

izer reduces to the ZF equalizer, meaning that Λg =
Λ−1

k . Therefore, the NMSE of using perfect CSI at high
SNRs, NMSEhighperfect, is readily derived as

NMSEhighperfect =
γ−1

Q
tr
{
E
[
Λ2

g

]}
=

−T2

4Γ (NT )

NT>2→ γ−1NT
(NT − 1) (NT − 2)

(6)

where we use the fact that when the perfect CSI is
used, ρ = 1, based on (2), it is easy to show that
1 + 1

Q tr
{
E
[
ΛgΛkΛH

k ΛH
g

]}
− 2

Q tr {E [ΛgΛk]} = 0.
When precoding the signal by the imperfect CSI,

from (2) the additional NMSE at high SNRs,
NMSEhighimperfect, is rewritten as

NMSEhighimperfect = 1 + ρ2 − 2ρ

+

(
1− ρ2

)
Q

tr
{
E
[
ΛgΛcΛ

H
c ΛH

g

]}
NT>1→ (1− ρ)

2
+

1− ρ2

NT − 1
. (7)

Since (1 − ρ)2 ≥ 0 and 1 − ρ2 ≥ 0, it is obvious
that NMSEhighimperfect ≥ 0, meaning that the imperfect
CSI used for precoding causes a plateau for the NMSE,
leading to the performance degradation (the detailed
asymptotic derivations are omitted due to the space con-
straint). The NMSE plateau can be reduced by increasing
the number of antennas. In what follows, we numerically
validate the derived formulas.

IV. RESULTS AND DISCUSSION

A multi-path channel of type Extended Pedestrian A
(EPA) [11] with a power delay profile (PDP) detailed
in [2] is used in simulations. The overall channel power
is normalized to unity. Each channel tap is assumed to be
statistically independent. We consider a 256-subcarrier
MISO OFDM system. In order to focus on the impact of
the imperfect CSI-based precoding, the synchronization
at the receiver side is assumed to be perfect. The
numerical and analytical results are presented by the
marker symbols and solid (or dashed) lines, respectively.

We present in Fig. 2 the NMSE as a function of the
SNR for the 4×1 MISO OFDM system, when the imper-
fect CSI-based precoding is applied with ρ2 = 0.97 and
ρ2 = 0.99. It is clearly seen that the imperfect CSI-based
precoding causes a MSE plateau at high SNRs, i.e., SNR
> 30 dB. The asymptotic MSE formulas derived in (6)
and (7) are also plotted. All the numerical results match
the analytical ones, confirming the correctness of our
derivations. Fig. 3 presents the NMSE as a function of
the number of antennas, showing that in the presence
of the imperfect CSI, the NMSE can be reduced by
increasing the number of antennas.

V. CONCLUSION

We have studied the impact of imperfect CSI on
the MF precoded MISO-OFDM system. By considering
Rayleigh fading channels, we have derived the exact
closed-form MSE expression of the received equalized
symbols. The MSE converges to a plateau when the
precoder is built based on the imperfect CSI. The plateau
can be reduced by increasing the number of antennas.
The correctness of the analytical derivation has been
numerically confirmed.



NMSE = 1− ρ2

4NT γ−1Γ (NT )
· T1 −

1

4Γ (NT )
· T2 −

ρ

j(NT γ−1)
1/2

Γ (NT )
· T3 −

1− ρ2

4NT γ−1Γ (NT )
· T4.

T1 = e−j(NT γ
−1)

1/2

S11 + ej(NT γ
−1)

1/2

S12 −
e−j(NT γ

−1)
1/2

j(NT γ−1)
1/2

S13 +
ej(NT γ

−1)
1/2

j(NT γ−1)
1/2

S14.

T2 = e−j(NT γ
−1)

1/2

S21 + ej(NT γ
−1)

1/2

S22 −
e−j(NT γ

−1)
1/2

j(NT γ−1)
1/2

S23 +
ej(NT γ

−1)
1/2

j(NT γ−1)
1/2

S24.

T3 = e−j(NT γ
−1)

1/2

S23 − ej(NT γ
−1)

1/2

S24.

T4 = e−j(NT γ
−1)

1/2

S41 + ej(NT γ
−1)

1/2

S42 −
e−j(NT γ

−1)
1/2

j(NT γ−1)
1/2

S43 +
ej(NT γ

−1)
1/2

j(NT γ−1)
1/2

S44. (3)

NMSEperfect = 1− T1

4NT γ−1Γ (NT )
− T2

4Γ (NT )
− T3

j(NT γ−1)
1/2

Γ (NT )
. (4)

NMSEimperfect =

(
1− ρ2

)
(T1 − T4)

4NT γ−1Γ (NT )
+

(1− ρ)T3

j(NT γ−1)
1/2

Γ (NT )
. (5)

APPENDIX

The RV Rq =
∑NT−1
k=0

∣∣Hk
q

∣∣2 has a probability density
function (PDF) fR (r) = rNT −1e−r

(NT−1)! [12]. We first derive
the second term on the right-hand-side (RHS) of (2)
E1 = ρ2

Q tr
{
E
[
ΛgΛkΛH

k ΛH
g

]}
. It can be rewritten as

E1 = ρ2E

[
R4
q(

R2
q +NT γ−1

)2
]

=
ρ2

Γ (NT )

∞∫
0

rNT +3

(r2 +NT γ−1)
2 e−rdr. (8)

The key derivation is based on the
fraction decomposition rNT +3

(r2+NT γ−1)2
=

−rNT +3

4NT γ−1

(
1

(r−j(NT γ−1)1/2)
2 + 1

(r+j(NT γ−1)1/2)
2 −

1
/(

j(NT γ
−1)

1/2
)

r−j(NT γ−1)1/2
+

1
/(

j(NT γ
−1)

1/2
)

r+j(NT γ−1)1/2

)
.

Hence, E1 is decomposed into E1 =
−ρ2

4NT γ−1Γ(NT )

(
E11 + E12 − E13

j(NT γ−1)1/2
+ E14

j(NT γ−1)1/2

)
,

in which the integral E11 is computed as follows

E11 =

∞∫
0

rNT +3(
r − j(NT γ−1)

1/2
)2 e−rdr

(1)
=

∞∫
j(NT γ−1)1/2

(
t+ j

(
NT γ

−1
)1/2)NT +3

ej(NT γ−1)1/2t2
e−tdt

(2)
= e−j(NT γ

−1)
1/2

S11, (9)

where the equality (1) is reached by making a vari-
able change t = r − j

(
NT γ

−1
)1/2

, the equality (2)
makes use of the binomial formula (x+ y)

n
=

n∑
k=0

(
n
k

)
xkyn−k. Term S11 is presented in (11), in

which the upper incomplete Gamma function Γup(η, z)
is defined as Γup (η, z) ,

∫∞
z
tη−1e−tdt. Similarly, the

integrals E12, E13 and E14 are derived as

E12 =

∞∫
0

rNT +3e−rdr(
r + j(NT γ−1)

1/2
)2 = ej(NT γ

−1)
1/2

S12.

E13 =

∞∫
0

rNT +3e−rdr

r − j(NT γ−1)
1/2

= e−j(NT γ
−1)

1/2

S13.

E14 =

∞∫
0

rNT +3e−rdr

r + j(NT γ−1)
1/2

= ej(NT γ
−1)

1/2

S14, (10)

where S12, S13 and S14 are shown in (12), (13) and (14),
respectively.

On the RHS of (2), the third term

E2 = γ−1

Q tr
{
E
[
Λ2

g

]}
= γ−1NT

Γ(NT )

∞∫
0

rNT +1

(r2+NT γ−1)2
e−rdr,

the fourth term E3 = 2ρ
Q tr {E [ΛgΛk]} =

2ρ
Γ(NT )

∞∫
0

rNT +1

r2+NT γ−1 e−rdr and the fifth term

E4 =
(1−ρ2)
Q tr

{
E
[
ΛgΛcΛ

H
c ΛH

g

]}
=

1−ρ2
Γ(NT )

∞∫
0

rNT +2

(r2+NT γ−1)2
e−rdr can be derived similar

to E1 derivation, but they are skipped due to the space
constraint. Finally, substituting E1, E2, E3 and E4 into
(2), we obtain (3).



S11 =

NT +3∑
k=0

(
NT + 3
k

)
Γup

(
k − 1,−j

(
NT γ

−1
)1/2)(

j
(
NT γ

−1
)1/2)NT +3−k

. (11)

S12 =

NT +3∑
k=0

(
NT + 3
k

)
Γup

(
k − 1, j

(
NT γ

−1
)1/2)(−j(NT γ−1

)1/2)NT +3−k
. (12)

S13 =

NT +3∑
k=0

(
NT + 3
k

)
Γup

(
k,−j

(
NT γ

−1
)1/2)(

j
(
NT γ

−1
)1/2)NT +3−k

. (13)

S14 =

NT +3∑
k=0

(
NT + 3
k

)
Γup

(
k, j
(
NT γ

−1
)1/2)(−j(NT γ−1

)1/2)NT +3−k
. (14)

S21 =

NT +1∑
k=0

(
NT + 1
k

)
Γup

(
k − 1,−j

(
NT γ

−1
)1/2)(

j
(
NT γ

−1
)1/2)NT +1−k

. (15)

S22 =

NT +1∑
k=0

(
NT + 1
k

)
Γup

(
k − 1, j

(
NT γ

−1
)1/2)(−j(NT γ−1

)1/2)NT +1−k
. (16)

S23 =

NT +1∑
k=0

(
NT + 1
k

)
Γup

(
k,−j

(
NT γ

−1
)1/2)(

j
(
NT γ

−1
)1/2)NT +1−k

. (17)

S24 =

NT +1∑
k=0

(
NT + 1
k

)
Γup

(
k, j
(
NT γ

−1
)1/2)(−j(NT γ−1

)1/2)NT +1−k
. (18)

S41 =

NT +2∑
k=0

(
NT + 2
k

)
Γup

(
k − 1,−j

(
NT γ

−1
)1/2)(

j
(
NT γ

−1
)1/2)NT +2−k

. (19)

S42 =

NT +2∑
k=0

(
NT + 2
k

)
Γup

(
k − 1, j

(
NT γ

−1
)1/2)(−j(NT γ−1

)1/2)NT +2−k
. (20)

S43 =

NT +2∑
k=0

(
NT + 2
k

)
Γup

(
k,−j

(
NT γ

−1
)1/2)(

j
(
NT γ

−1
)1/2)NT +2−k

. (21)

S44 =

NT +2∑
k=0

(
NT + 2
k

)
Γup

(
k, j
(
NT γ

−1
)1/2)(−j(NT γ−1

)1/2)NT +2−k
. (22)
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