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Abstract—A relay network can provide the extended link
capacity and coverage thanks to its good spatial diversity.
In order to analyze the relay network performance, most
of the works in literature assume the independent relaying
channels. In practice, the received signals experience the
common scatterers, hence the correlated relaying channels
should be considered. In this paper, we first derive a
novel and accurate probability density function (PDF)
of a modulus of the sum of products of two correlated
zero-mean complex Gaussian random variables (RVs),
which is useful for the statistical analysis of the cascaded
relaying fading channels. Based on this result, we secondly
investigate the received signal-to-noise ratio (SNR) outage
probability of a relay network in the presence of correlated
relaying channels. It is found that the correlation magni-
tude is more important than the correlation phase for the
analysis of power-based signal-detection of relay networks.
Numerical simulations have been carried out to confirm
the correctness of the derivation.

Index terms— Probability density function, correlated
complex Gaussian RVs, relay network.

I. INTRODUCTION

Relay networks have been considered as a promising
solution in emerging wireless communication systems
thanks to their ability to increase the link capacity and
coverage [1]. Similar to the multiple antenna systems,
a relay network can benefit from the spatial diversity,
created by the different relay links [2]. The mobile
broadband communication systems, such as the long-
term evolution-advanced (LTE-A), IEEE 802.16j, IEEE
802.16m, have already integrated the relay-aided trans-
mission [3]. A relay network, composed of a source
node, several relay nodes and a destination node, gener-
ally has two main transmission phases. The source node
broadcasts the signal to all relay nodes in the first phase.
After that the relay nodes choose to either purely amplify
and retransmit the signal to the destination (amplify-
and-forward (AF) scheme) or to decode the signal and
then transmit the reconstructed signal to the destination
(decode-and-forward (DF) scheme). In this work, we
focus on the AF scheme because of its low complexity
and high efficiency [2].

In relay networks, the cascaded Rayleigh fading chan-
nel has been reported theoretically and experimentally
to be an appropriate channel model, i.e., multi-hop
mobile-to-mobile channels [4]. Most of the works in the

literature consider the statistically independent cascaded
channels [5]. In practice, because the signals experience
common scatterers, the channels can be correlated [6],
[7], especially in the cooperative sensor networks, where
low-complexity nodes are densely deployed. There are
various kinds of channel correlations existing in the relay
network and the review of such channel correlations
has been thoroughly documented in [8]. The authors
then analyzed the impact on the performance of the
best-relay-selection-scheme based relay network, when
there is a correlation between source-relay and relay-
destination channels for each relay. The spatial diversity
hence may not be fully exploited.

In this paper, we investigate the received signal-to-
noise ratio (SNR) outage probability of the relay network
in the presence of the correlated relaying channels. On
the contrary to [8], we assume the system uses all the
signals coming from the relay nodes (no relay selection).
More specifically, our contributions are summarized as
(1) the derivation of the exact probability density func-
tion (PDF) of the modulus of sum of products of two
correlated Gaussian random variables (RVs), which is
useful to characterize the cascaded relaying channels; (2)
the derivations of the PDF and cumulative distribution
function (CDF) of received SNR; (3) the received SNR
outage probability analysis of the relay nework with
correlated relaying channels and numerical validations.

Notation: E[·] and | · | are the expectation and absolute
operators, respectively; XR and XI denote the real and
imaginary parts of X , respectively; x! is the factorial of
a positive integer x; Γ(·) is the Gamma function and
Γ(x) = (x − 1)! for a positive integer number x; JL(·)
is the L-th order Bessel function of the first kind; IL(·)
and KL(·) are the L-th order modified Bessel functions
of the first and second kind, respectively.

II. PRE-REQUISITE: PDF OF THE MODULUS OF SUM
OF PRODUCTS OF TWO CORRELATED GAUSSIAN RVS

We consider that (Xl, Yl) are complex-valued,
zero-mean, Gaussian RVs, i.e., Xl ∼ CN

(
0, σ2

X

)
,

Yl ∼ CN
(
0, σ2

Y

)
of cross-correlation µ =

E [Xl · Yl]
/√

E
[
|Xl|2

]
· E
[
|Yl|2

]
= |µ| · exp(jε); and



such that (Xl, Yl) are statistically independent and iden-
tically distributed (i.i.d.) with any other pairs (Xk, Yk)
for ∀l 6= k.
Theorem: Let Z =

∑L
l=1Xl · Yl, the PDF of R =√

Z2
R + Z2

I is provided in (1).
Proof: See the Appendix. It is worth noticing that the
derivation steps are suggested in [9], unfortunately, the
detailed derivation was omitted. Furthermore, we correct
some errors in previously derived joint PDF formulas,
i.e., [9, eqs. (11) and (12)]. Inspecting (1), we observe
that the correlation phase ε plays no role in this PDF,
meaning that in the power-based detection system, only
the correlation magnitude |µ| has an impact on the
performance. Note that, the derived PDF has also been
applied on the performance analysis of the time-reversal
communications [10], when the correlation is equal to
zero.

III. OUTAGE PROBABILITY OF THE RELAY
NETWORK WITH CORRELATED RELAYING CHANNELS

A. Relay Network Model

We consider a relay network, where two terminals T1

and T2 are equipped with a single antenna. The com-
munication between two terminals is carried out via L
single-antenna relays r = (R1,R2, ...,RL)T . We define
h , (h1, h2, ..., hL)T and g , (g1, g2, ..., gL)T as the
channel vectors from T1 to each relay Rl and from each
relay Rl (∀l = 1, ..., L) to T2, respectively. We assume
that any of two relaying channels (between T1 and Rl as
well as between Rl and T2) are reciprocal and subject to
equally correlated block Rayleigh fading. According to
the Rayleigh assumption, the elements of the two vectors
h and g follow zero-mean circularly symmetric complex
Gaussian RV with variances σ2

h and σ2
g , respectively. The

relaying channels hl and gl are assumed to be correlated
with correlation µ = |µ| · exp(jε). This assumption
makes sense especially in the case there is no line-of-
sight (LoS) communication between T1 and T2, i.e., relay
network of vehicule-to-vehicule (V2V) communications
at the crossing streets and/or critical points [4], [8]. We
assume that the transmit power at the source T1 and each
relay Rl are Pt and Pr, respectively. During the first
transmission phase, T1 transmits the symbol x to each
relay Rl, where the value of x can be assigned from M-
phase shift keying (M-PSK) (or M-quadrature amplitude
modulation (M-QAM)) modulation and σ2

x , E[|x|2].
In order to ensure a normalized signal at each relay,
Rl simply scales the received signal by a fixed factor
α ,

√
Pr/(σ2

hPt + σ2
v1), where σ2

v1 denotes the variance
of the additive white Gaussian noise (AWGN) at each
relay node. Finally, relay nodes broadcast the signals to
T2 during the second transmission phase. The received
signal at T2 is expressed as

ỹ = gT · (α · h · x+ α · v1) + v2, (2)

where v1 = [v11, v12, ..., v1L]T is the AWGN added at
each relay after the first phase of the communication,
v2 is the AWGN of variance σ2

v2 at the receiver T2.
Exploiting the fact that g and v1 are independent of
each other, we define n , gT · v1 + v2/α as the
equivalent additive noise such that (2) can be rewritten
as y = gT · h · x + n, where y , ỹ/α is the scaled
received signal. It can be observed that the statiscal
characterization of equivalent cascaded channel hT ·g is
important for the analysis of the received signal in the
presence of the correlated relaying channels. Note that,
gT ·v1 also follows the distribution of cascaded channels,
with µ = 0 (no correlation). It is easy to show that n has
zero-mean and variance of σ2

n = Lσ2
gσ

2
v1 + σ2

v2/α
2. In

order to focus on the impact of the correlated relaying
channels on the relay network performance, in what
follows, we assume that n is the AWGN.

B. Relay Network Statistical Properties

The equivalent baseband received signal of a relay
network is written as y = R · x + n, where the fading
amplitude R is a RV following the PDF (1), whose shape
is specified by the variances of relaying channels σ2

h,
σ2
g , the number of relay nodes L and the correlation µ,

otherwise R is talked of without knowing what it means.
The AWGN n has the variance of σ2

n. The instantaneous
signal-to-noise ratio (SNR) per received symbol is γ =
R2σ2

x/σ
2
n and the corresponding average SNR is γ =

Ωσ2
x/σ

2
n, where Ω = E[R2].

By applying a simple variable change, Ω is derived as

Ω =

∞∫
0

r2 · fR (r) dr

=
σ2
hσ

2
g

(
1− |µ|2

)L+2

2L+1Γ (L)

∞∫
0

tL+2KL−1 (t) I0 (|µ| t) dt.

Applying [11, eq. (6.576.5)], we achieve

Ω = σ2
hσ

2
g

(
1− |µ|2

)L+2

2F1

(
L+ 1, 2; 1; |µ|2

)
,

where 2F1(·, ·; ·; ·) is Gauss hypergeometric function.
Applying [12, eq. (07.23.03.0142.01)] and after some
manipulations, we obtain Ω as follows

Ω = σ2
hσ

2
gL
(

1 + L|µ|2
)
. (3)

By changing the variables [13] and defining A ,

2
/(

1− |µ|2
)

and B ,

√
L
(

1 + L|µ|2
)/

γ, the PDF

of γ can be obtained as

fγ (γ) =
A ·BL+1

Γ (L)
γ(L−1)/2I0

(
|µ|AB · γ1/2

)
·KL−1

(
AB · γ1/2

)
. (4)



fR (r) =
4 · rL

Γ (L) · (σXσY )
L+1

(
1− |µ|2

) · I0
 2 |µ|

σXσY

(
1− |µ|2

)r
 ·KL−1

 2

σXσY

(
1− |µ|2

)r
 (1)
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Fig. 1. PDFs of the amplitude of RV Z, fR(r) when variances σg =
0.7, σh = 1.5 and correlation µ = 0.5 · exp (jπ/6).

The cumulative distribution function (CDF) of γ is
calculated by Fγ (γ) =

∫ γ
0
fγ (x) dx. This finite integral

can be evaluated via numerical integration. In order
to get rid of special Bessel functions, we apply the
elementary-functions-based series expansion of those
functions. Firstly, using some simple variable changes,
the CDF can be rewritten as

Fγ (γ) =
2

ALΓ (L)

ABγ1/2∫
0

xLI0 (|µ|x)KL−1 (x) dx.

By applying the primary definition of I0(·)
[12, eq. (03.02.02.0001.01)] I0 (|µ|x) =∑∞
k=0

(
|µ|2k

/(
(k!)

2
4k
))

x2k and the series
expansion of KL(·) [14, eq. (17)] KL−1 (x) =∑∞
q=0

∑∞
l=q Λ (L− 1, l, q) e−xxq−L+1, after some

manipulations, the CDF can be derived in (5), where

Λ (L, l, q) ,
(−1)q

√
π·Γ(2L)·Γ( 1

2 +l−L)·L(l,q)

2L−q·Γ( 1
2−L)·Γ( 1

2 +l+L)·l!
, L (l, q) ,(

l − 1
q − 1

)
l!
q! and Γlow (η, z) ,

∫ z
0
tη−1e−tdt is the

lower incomplete Gamma function. Note that, the
derived CDF is valid for L > 1. When L = 1 (one
relay), we use the recurrence identity of KL(·), i.e.,
K0 (x) = K2 (x) − 2x−1K1 (x) [12], and the CDF can
be obtained. We skip it here due to the space constraint.

C. Outage Probability (Pout)
The outage probability is defined as the probability

that the received SNR is smaller than a given threshold,
γth. Therefore, the outage probability can be easily
deduced by Pout(γth) = Fγ(γth).
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Fig. 2. Outage probability versus the normalized thresholds, when
variances σg = 0.7, σh = 1.5 and correlation µ = 0.5 · exp (jπ/6).

IV. NUMERICAL VALIDATION

For the sake of simplicity, we set variances σ2
g = 0.7,

σ2
h = 1.5 and the correlation µ = 0.5 · exp (jπ/6) in

all simulations in order to quickly validate the analysis.
The histograms are plotted after 1000 000 realizations.
The marker symbols and solid lines denote numerical
and analytical results, respectively.

We consider three cases, where the number of relay
nodes are set to L = 1, L = 5 and L = 10. Fig. 1
plots the derived PDF (1), fR(r), and the associated
simulated PDF, in comparion to the PDF (12), fR(r)
[9]. It can be seen that our proposed PDF better fits
the simulated ones. We further plot the derived outage
probability Pout(γth) as a function of the normalized
outage thresholds, γth/γ in Fig. 2. Again, it is observed
that the analytical curves match the numerical ones,
confirming the correctness of our derivations. It is further
observed that the outage probability strongly improves
with the number of relays.

V. CONCLUSION

We have investigated the outage probality of the relay
network with the correlated relaying channels. To this
end, we have derived the exact PDF of the modulus
of sum of products of correlated zero-mean Gaussian
RVs. The statistics of the cascaded relay channel have
also been analyzed. The numerical simulations have been
carried out to confirm the correctness of our derivations.

APPENDIX

In order to derive the PDF of R, we carry out the
step-by-step derivation: (A) Derivation of joint charac-



Fγ (γ) =
2

ALΓ (L)

∞∑
k=0

∞∑
q=0

∞∑
l=q

|µ|2k

(k!)
2
4k

Λ (L− 1, l, q) · Γlow
(

2k + q + 2, ABγ1/2
)
. (5)

teristic function (CF) of ZR and ZI ; (B) Inverse CF
transformation to yield the joint PDF of ZR and ZI ;
(C) Cartesian-polar transformation to yield the joint
PDF of the amplitude R =

√
Z2
R + Z2

I and the phase
Θ = arctan (ZI/ZR); (D) Integration of the joint PDF
over the RV Θ to yield the PDF of R.

A. Joint CF derivation

We first consider the case L = 1 and omit the
subscripts l of RVs Xl and Yl for simplicity. Once we
find the CF of Z, the generalization with any value of
L is straightforward thanks to the properties of the CF.
Let us express Y as the contribution of X plus a RV
U ∼ CN

(
0, σ2

U

)
independent of X as follows


YR =

σY |µ| cos ε

σX
XR +

σY |µ| sin ε
σX

XI + UR

YI =
σY |µ| sin ε

σX
XR −

σY |µ| cos ε

σX
XI + UI

where the variance σ2
UR

= σ2
UI

=
σ2
U

2 =
σ2
Y

2

(
1− |µ|2

)
.

It is easy to check that the correlation between X
and Y is µ. From aforementioned assumptions and
the distributions of X and Y , it is easy to obtain
the distribution of ZR and ZI conditioned on X as
ZR|X ∼ N

(
σY |µ| cos ε

σX
|X|2, σ

2
Y

2

(
1− |µ|2

)
|X|2

)
and

ZI |X ∼ N
(
σY |µ| sin ε

σX
|X|2, σ

2
Y

2

(
1− |µ|2

)
|X|2

)
.

The joint CF of ZR and ZI conditioned on X
can be expressed by ΨZR,ZI |X(jω1, jω2|X) =
E [ exp (j (ω1zR + ω2zI))|X = x] =

exp
{
j σY |µ|σX

(ω1 cos ε+ ω2 sin ε) |x|2

−σ
2
Y

4

(
1− |µ|2

) (
ω2

1 + ω2
2

)
|x|2
}

.
The joint CF of ZR and ZI can now be derived

as ΨZR,ZI (jω1, jω2) =
∞∫
−∞

ΨZR,ZI |X (jω1, jω2|X) ·

fX (x) dx, where the PDF of the RV X is expressed

by [15] fX (x) = 1
πσ2

X
e
− |x|

2

σ2
X . By changing variables,

i.e., xR = t cosφ and xI = t sinφ, after some mathe-
matical manipulations, the joint CF can be rewritten as

ΨZR,ZI (jω1, jω2) =
1

πσ2
X

∞∫
0

2π∫
0

t · exp

{
− t2

σ2
X

+ j
σY |µ|
σX

(ω1 cos ε+ ω2 sin ε) t2

−σ
2
Y

4

(
1− |µ|2

) (
ω2

1 + ω2
2

)
t2
}
dφ dt (6)

By solving the trivial problem (6), the CF correspond-
ing to L = 1 is obtained. The CF is generalized to any
value of L as presented in (7), in which we apply the
property that the CF of the summation of independent
RVs is equal to the multiplication of all individual CFs
w.r.t each RV. It can be observed that we obtain again
the CF derivation as in [9].

B. Joint PDF of ZR and ZI
The joint PDF of ZR and ZI can be de-

rived by performing the inverse CF transformation

as fZR,ZI (zR, zI) = 1
4π2

∞∫
−∞

∞∫
−∞

ΨZR,ZI (jω1, jω2) ·

e−j(ω1zR+ω2zI)dω1dω2. By changing the variables t1 =
ω1 − j 2|µ| cos ε

σXσY (1−|µ|2)
and t2 = ω2 − j 2|µ| sin ε

σXσY (1−|µ|2)
,

fZR,ZI (zR, zI) can be rewritten as

fZR,ZI (zR, zI) =
4L−1

(
1− |µ|2

)−L
π2(σXσY )

2L

· e
2|µ|(zR cos ε+zI sin ε)

σXσY (1−|µ|2)

∞∫
−∞

∞∫
−∞

 4

σ2
Xσ

2
Y

(
1− |µ|2

)2 + t21 + t22


−L

· e−j(zRt1+zIt2)dt1dt2 . (8)

Let C =
4L−1(1−|µ|2)

−L

π2(σXσY )2L
· exp

(
2|µ|(zR cos ε+zI sin ε)

σXσY (1−|µ|2)

)
and changing the variables t1 = u cosϕ
and t2 = u sinϕ, (8) is rewritten as

fZR,ZI (zR, zI) = C
∞∫
0

u

(
4

σ2
Xσ

2
Y (1−|µ|2)

2 + u2

)−L
·

2π∫
0

eju(zR cosϕ+zI sinϕ)dϕdu.

Applying the fact that
∫ 2π

0
ex cosϕ+y sinϕdϕ =

2πI0
(√

x2 + y2
)

[11, eq. 3.338-4] and Iα (x) =

j−αJα (jx), fZR,ZI can be rewritten as

fZR,ZI (zR, zI) = 2π · C ·
∞∫

0

u · J0

(
u
√
z2
R + z2

I

)
(D2 + u2)

L
du

(11)
where D = 2

σXσY (1−|µ|2)
. The integral in (11)

is of Hankel-Nicholson type [18] and due to the
fact that Kα(x) = K−α(x), (11) can be de-

rived as fZR,ZI (zR, zI) =
2πC

(√
z2R+z2I

)L−1

Γ(L)·(2D)L−1 ·



ΨZR,ZI (jω1, jω2) =


4

σ2
Xσ

2
Y (1−|µ|2)(

ω1 − j 2|µ| cos ε

σXσY (1−|µ|2)

)2

+

(
ω2 − j 2|µ| sin ε

σXσY (1−|µ|2)

)2

+ 4

σ2
Xσ

2
Y (1−|µ|2)

2


L

(7)

fZR,ZI (zR, zI) =
2
(
z2
R + z2

I

)L−1
2

π · Γ (L) · (σXσY )
L+1

(
1− |µ|2

) · e 2|µ|
σXσY (1−|µ|2)

(zR cos ε+zI sin ε)
KL−1

 2
√
z2
R + z2

I

σXσY

(
1− |µ|2

)

(9)

fR,Θ (r, θ) =
2 · rL

π · Γ (L) · (σXσY )
L+1

(
1− |µ|2

) · e 2|µ|
σXσY (1−|µ|2)

r cos(θ−ε)
KL−1

 2

σXσY

(
1− |µ|2

)r
 (10)

KL−1

(√
z2R+z2I
D

)
. Substituting the expressions of C

and D, we achieve the full formula of the joint PDF
(9), which is different compared to [9, eq. (11)]. Inter-
estingly, when µ = 0, in our formula the joint PDF is
still a function of the variances of RVs X and Y .

C. Joint PDF of R and Θ

We obtain the polar coordinate form of the joint PDF
of ZR and ZI by changing the variables in (9) as
zR = r cos θ and zI = r sin θ. Taking into account the
Jacobian matrix determinant of r, we reach the joint PDF
of the amplitude R and the phase Θ (10). Again we can
observe additional terms related to the variances of X
and Y compared to the one derived in [9, eq. (12)].

D. PDF of R

The PDF of R is derived by integrating the joint PDF
over the RV Θ. Applying again [11, eq. (3.338-4)], we
reach the PDF of R presented in (1). For comparison, we
derive the subsequent erroneous PDF of R (12), fR(r),
based on [9, eq. (12)] as follows

fR (r) =

(
1− |µ|2

)L
· rL

2L−1 · (L− 1)!
· I0 (|µ| r) ·KL−1 (r) . (12)
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