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Current atomic-level understanding of electrochemical
nucleation and growth on low-energy surfaces
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Abstract

This review presents recent progress in the understanding of
electrochemical phase formation on low-energy substrates,
which is essential for metal electrodeposition and the design of
stable batteries. Advanced characterization techniques and
ultrasensitive electrochemical instrumentation give access to
experimental data that were not available a few years back.
Besides, the continuous development of theoretical models
gradually provides a more complete description of multiple
nucleation. However, important contradictions between
experimental findings and theoretical formulations are found:
nonclassical growth pathways, single-atom critical clusters,
and cluster densities that are orders of magnitude higher than
the calculated number of active sites. New descriptions of the
initial steps of nucleation are discussed. They are grounded on
nucleation being a nonactivated process, in which the initial
stages of phase formation could involve simply adsorbed
atoms collapsing into larger clusters driven by minimization of
the overall interfacial energy. Finally, some remaining chal-
lenges and possible research directions are outlined.
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Introduction
A good knowledge of electrochemical phase formation is
paramount for technologically important processes, such
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as the electrodeposition of metals on foreign surfaces or
the stability of batteries upon electrochemical cycling.
"The topic is an active subject of research for more than a
century. The understanding of electrochemical nucle-
ation and growth, from the atomic level to the macro-
scale, has progressed enormously, thanks to the advances
in electrochemical and analytical instrumentation.
However, despite decades of dedicated theoretical and
experimental studies, the quantitative description of
the nucleation and growth of multiple nuclei remains
incomplete.

The theoretical foundations of electrochemical phase
formation [1,2] have been recently reviewed [3—5]. [t is
generally agreed that electrodeposition on a foreign
substrate occurs by a process of nucleation, through
which ions in solution discharge over active sites on the
surface, that is, steps, kinks, holes, grain boundaries,
chemically modified locations, etc. Depending on the
size of the critical nucleus, 7, which depends on the
overpotential, 7, nucleation can be described either by a
classical or an atomistic approach [2—5]. The study of
the kinetics of nucleation consists, thus, in deriving the
dependence of nucleation rate on supersaturation. A
first approximation considers a stationary nucleation
rate Jgr, assumed to be first order with respect to the
number of active sites on the surface, NVy. The study of
multiple nucleation [6—11] considers that there is a
number of energetically identical active sites which is
instantaneously fixed upon application of a given 7.
Under these assumptions, during nucleation and
growth, the number of active sites would decrease with
time only because of two reasons: the nucleation itself
(i.e., occupation of active sites by nuclei) and the
spreading of zones of reduced concentration and over-
potential around growing stable clusters [12]. Growth of
the new phase is traditionally seen as to proceed by the
stepwise addition of atomic or molecular species: either
by incorporation of mobile adsorbed adatoms or by direct
attachment of ions from solution.

However, it is admitted that such models for multiple
nucleation and growth are not complete yet [4,5,12].
First, time-varying (nonstationary) and site energy—
dependent (heterogenous) nucleation rates should be
used. Second, the concept of active site is still under
discussion: active sites may appear or disappear from the
electrode surfaces simultaneously with the nuclei of the
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new phase, owing to adsorption/desorption or oxidation/
reduction processes. This makes it difficult to distin-
guish between the actual nucleation rates and the rates
of appearance and disappearance of active sites [13].
Third, recent experimental findings (see below) indi-
cate that growth can occur also by other nonclassical
pathways.

This review gives an overview of the most recent prog-
ress in the area. First, innovative experimental ap-
proaches, helped by the advent of nanoscale
characterization techniques and ultrasensitive electro-
chemical instrumentation, have given access to experi-
mental data, which were not available a few years back.
Second, the continuous development of analytical and
numerical models gradually provides a more complete
description of the electrochemical nucleation and
growth process, which enables a more consistent way of
interpreting experimental evidence. Finally, some of the
remaining challenges and possible research directions in
the area will be outlined.

Recent experimental findings on the early
stages of electrochemical nucleation and
growth on low-energy surfaces
Electrochemical nucleation is strongly dependent on
metal-to-substrate interaction. When the latter is high
(metal on metal), phase formation generally begins by
the formation of a 2D metal monolayer, which further
grows layer by layer or exhibits a transition to 3D growth
[14]. On the contrary, when metal nucleation takes
place on nonmetallic electrode materials (low-energy
surfaces), such as carbon or oxides, nucleation and
growth of 3D islands is assumed. For metal on metal
deposition, electrochemical scanning tunneling micro-
scopy (EC-STM) delivers atomic-scale resolution [15]
in electrochemical deposition on single crystals
[14,16,17]. For deposition on low-energy substrates,
atomic-resolution data are scarce owing to the nonne-
glectable roughness and structural surface heterogene-
ities. This review concentrates on the latter case, which
is highly interesting for the field of energy conversion
and storage.

The most accessible approach to study the electro-
chemical formation of a new phase on a low-energy
substrate is to record the current—time transient
(CTT) during a potentiostatic experiment, followed by
ex situ evaluation of the morphology of the deposit at
different times, by means of scanning electron micro-
scopy(SEM) and, more recently, transmission electron
microscopy (TEM). A way to get direct access to TEM
resolution on as-electrodeposited nuclei is by using
carbon-coated TEM grids (CCTGs) as electrochemical
electrodes [18]. Our results on silver [19] and platinum

[20] deposition have provided strong evidence that the
carly nucleation and growth process is much more
complex than what is assumed in the formulations of
multiple nucleation [6—11]. We suggest that (1) growth
inhibition at the nanocluster level, (2) surface mobility
of small nanoclusters (4 ~1 — 3 nm), and (3) aggregation
and coalescence, hereby denoted as nonclassical growth
pathways, are important elementary steps of the elec-
trochemical growth process (Figure 1la) [19—21]. In
relation to analogous phenomena in solution-based
nucleation and growth [22,23], we integrate these
growth pathways within an electrochemical aggregative
growth mechanism [21].

More recently, using thin enough boron-doped
diamond electrodes, identical-location scanning TEM
has allowed tracking of Au electrodeposition from a
single atom to a crystalline nanoparticle (NP) [24].
These studies provide direct evidence of other
nonclassical pathways: potential-induced atom move-
ment, atom clustering, and cluster transformation into
crystalline NPs via gain or loss of atoms (Figure 1b).

A less accessible but more efficient approach is the use
of liquid electrochemical TEM holders for i situ (S)
TEM investigation of early phase formation [26,27]. In
this way, CT'Ts can be recorded simultaneously with
TEM images. These studies show that the cluster
density determined from TEM videos is 3 orders of
magnitude greater than that calculated from the model
fit [28]. In situ electrochemical (S)TEM (EC-(S)TEM)
has also been used to study Pd electrodeposition on
carbon, where the evidence suggests that an electro-
chemical aggregative growth regime also operates [29].
Although the reproducibility and data interpretation are
still limited owing to the strong interaction of the
electron beam with the electrolyte [30], recent studies
foresee strategies to mitigate measurement artifacts
[31]. However, the scattering of the electrolyte also
limits the resolution of a typical liquid cell TEM
experiment: the smallest measured islands have di-
ameters about 30 — 50 zm [28,29,32]. This impedes so
far a direct comparison with ex szu (S)TEM, where
nanoclusters of # ~1 — 3 #zm can be imaged [19—21,24].

More recently, Cu deposition on indium tin oxide (I'TO)
has been investigated by high-speed lateral molecular
force microscopy (HS-LMFM) with unprecedented
spatiotemporal resolution (subsecond image acquisi-
tion) and extremely low probe-surface interaction [25].
These studies unveil again a scenario linked to
nonclassical growth pathways: a highly dynamic envi-
ronment before the formation of stable nuclei, featuring
nucleation/dissolution events and growth via a 2D ag-
gregation process (Figure 1c).
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Recent experimental findings that highlight the importance of nonclassical growth pathways. (a) Time evolution of the number density of Ag NPs during
deposition on CCTGs: small nanoclusters of d~1-2 nm (blue) are formed during deposition but aggregate to form polycrystalline NPs with d > 6 nm (red).
Adapted with permission from the study by Ustarroz [19], copyright 2012, American Chemical Society. (b). IL-STEM images show dynamic interactions
between NPs during Au electrodeposition: growth times of 5, 10, and 30 ms. Scale bar is 3 nm. Reprinted with permission from the study by Hussein [24],
copyright 2018, American Chemical Society. (c) Birth and growth of a copper nucleus evidenced by in situ HS-LMFM scans (46 x 46 nm? regions), taken
from 14 to 22 s after a potential step. Reprinted with permission from the study by Harniman et al [25], copyright 2017, Nature Publishing Group.

CCTGs,carbon-coated TEM grids; TEM, transmission electron microscopy; NPs, nanoparticles; IL-STEM, identical-location scanning TEM, HS-LMFM,

high-speed lateral molecular force microscopy.

Recent advances in analytical and
numerical modeling of electrochemical
nucleation and growth

Despite solid theoretical foundations [1,2], some of the
experimental findings outlined previously indicate that
the theoretical description of the electrocrystallization
process needs to include, stepwise, higher degrees of
complexity. Recent developments include more accu-
rate descriptions of the nucleation rate [33,34], nu-
merical modeling strategies for the electrochemical
growth of single [35,36] or multiple [37] clusters, and
extensions of the analytical formulation of the CTTs for
multiple nucleation under potentiostatic control
[38,39].

Most theoretical formulations consider (1) single-step
ion discharge reactions and (2) the formation of hemi-
spherical nuclei. However, first, electrodeposition may
also proceed by multiple-step discharge reactions and,
second, the nucleus wetting angle depends on the sur-
face and adhesion energies. Recent studies have shown

that a wrong consideration of any of these concepts leads
to considerable errors in the determination of nucleation
rate, growth kinetics, and current—time relationships
[33,34].

Moreover, despite not capturing all the nuances of the
nucleation and growth process, the use of CTTs to
obtain thermodynamic and kinetic parameters is very
practical. Nowadays, the early analytical formulations of
multiple nucleation [6—11] are extended (Figure 2a) to
include prenucleation ion discharge [40,41], electro-
catalytic reactions (proton reduction, etc.) on growing
centers [40,41], mixed kinetics [41—43], and wetting
angle [44]. Besides, more recently, a numerical model
[38] and an analytical approximation [39] have been
developed for mixed kinetics. The model has also been
expanded to include the prenucleation regime and
coreduction [45].

Over the years, it has been found that Jgz,, N(7), and Ny
obtained experimentally from surface analysis (Jg7_gxp,
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Advances in the theoretical description of multiple nucleation. (a) Contri-
butions of different processes to the CTTs (red): prenucleation ion
discharge and formation of small nanoclusters (black); growth of stable
islands by direct attachment considering the wetting angle, the induction
time and mixed kinetics (blue); and electrocatalytic reactions at the sur-
face of the growing islands (green). (b) Schematic representation of
different N(?): the total number of nuclei (black); the total number of
clusters considering aggregation (red); and the incorrect number of nuclei
that would be determined from the model fit of a CTT. Adapted with
permission from the study by Mamme et al [37], copyright 2018, The
Royal Society of Chemistry. CTTs, current—time transients.

N(7) pxp> and No_gxp) may be several orders of magni-
tude higher than those obtained from the CTTs
Usr—crrs N(@)opr, and No_crr) [19,21,28,41,46,47].
Therefore, some important clarifications related to the
interpretation of these data are needed.

First, all multiple nucleation models assume a stationary
nucleation rate Jg, whereas the nucleation rate should
be described as site- and time-dependent J(s,7) [12].
Second, the models do not consider the appearance or

disappearance of the active sites during nucleation
[4,13]. Third, even in the case that the CTT provides
estimates of Ny_¢yr and Jgy_copr in line with micro-
scopical observations, the resulting kinetic constant may
be orders of magnitude lower than this determined from
Tafel analysis in an appropriate experiment [45]. This
could be related to an inhibition of direct attachment
(by hydrogen adsorption [20,48,49] or hydroxide for-
mation [50,51]) in favor of other growth pathways
[20,21,49]. Fourth, all multiple nucleation models
assume that all nuclei are fixed to a surface site and grow
only by the stepwise attachment of atomic or molecular
species. However, N (7). does not represent the
number of nuclei, but only the number of particles
growing through direct attachment, which may be orders
of magnitude lower than that of the original nuclei
(Figure 2b), due to growth inhibition [20,48—51],
nanocluster mobility and aggregation [19,21,25,37], NP
detachment from the surface [47,52], and other in-
teractions between neighboring growing centers [24].
Deviations between Ny_gxp and Ny_ 77 could possibly
be related to any of these phenomena.

For example, for long enough deposition times, if
Jsr_gxp and Ny_gxp are orders of magnitude higher
than Jg7r_crr and Ny_¢rr, it is highly likely that growth
by direct attachment is inhibited [20,21]. Alternatively,
for short times, if Jg7_ gxp is much higher than Jg7_ 77,
it may also mean that clusters of many atoms undergo
surface diffusion and aggregation [19], whereas similar
values for Jg7_gxp and Jg7_crr would imply that sur-
face diffusion is limited to adatoms or clusters of a few
atoms. The latter case generally leads to CTTs with
longer induction times [37], however these CTTs can
also be encountered when growth is controlled by mixed
kinetics [38]. These few examples highlight that CTT
analysis is a valid preliminary step for the study of
electrochemical nucleation and growth but remains
insufficient. The reason is that CTTs represent a
convolution of multiple elementary processes and,
therefore, different growth pathways may still lead to
identical transients. However, a proper interpretation of
the C'T'Ts, combined with surface analysis provides very
valuable information about the classical and nonclassical
growth pathways taking place.

Because CT'Ts allow determining Jg7 (admitting the
incompleteness of the models, see above), the critical
size for nucleation, 7, and the nucleation energy,
AG(n;), can be calculated from the slope of the /(Jgr)
vs 7 relation [2,4]. Many studies report values of 7, of
few atoms [1,2]. More specifically, recent works esti-
mate #; = 0 — 1l atoms and AG(n,) as small as 1—
10 £J mo/~1, which depicts electrochemical nucleation
as a nonactivated process [41,53—55]. In this scenario,
the initial stages of the formation of a new phase could
involve a submonolayer of adsorbed atoms, which
collapse into larger clusters driven by minimization of
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the overall exposed area, and consequently of the
interfacial energy. This has been lately discussed in
terms of spinodal decomposition [12,53,54] or of an
electrochemical aggregative growth mechanism [19—
21,37].

Nevertheless, one should remember that », and
AG(n,) are calculated from Jgy (1) being determined
from fitting the C'T'Ts to a multiple nucleation model,
and, as explained previously, such Jg7_cpr does not
necessarily represent a nucleation rate, but the rate at
which nonmoving clusters, which grow under direct
attachment, are formed [19—21,37]. Further experi-
mental approaches, such as # siru EC-(S)TEM [28] and/
or multiscale computer simulations [37], are required to
validate the previous assumptions and to determine Jg7,
or J(s,7), from a complementary microscopic approach.

Electrochemical nucleation and growth of
single entities

Another interesting approach, developed over the last
few years, is to measure CT'Ts of a reduced number of
growing nuclei, down to the single-entity level. This
approach may be of interest to evaluate the heteroge-
neity of both the activity of the active sites and the
nucleation rate [33,34].

Scanning electrochemical cell microscopy limits the
deposition surface to the diameter of a nanopipette,
from a few microns to tens of nanometers. By combining
scanning electrochemical cell microscopy with CCTGs
and (S)TEM analysis, the electrochemical response of a
limited number of clusters and atomic-scale micro-
scopical observations can be directly linked [56]. In this
way, the deposition of Ag [47] and Pd [52] evidences
that, in addition to the nonclassical growth pathways
described previously, the growth centers may be
disconnected completely from the surface because of a
low adhesion energy (Figure 3a).

Compared with the description of multiple nucleation,
the theoretical formulation of the nucleation and
growth of a single nucleus is much more simple and
accessible to analytical formulations [60] and numeri-
cal modeling [35,36]. One way to address this
experimentally consists in using nanoelectrodes [60].
By limiting the size of the electrode, it is possible to
form, in principle, one nucleus that grows indepen-
dently. By comparing the CTTs with a one-nucleus
growth model, kinetic and mechanistic information
on the electrodeposition process can be obtained
(Figure 3b). The experimental data using nano-
electrodes (» ~ 1 nm) are in perfect agreement with
theoretical predictions. Not surprisingly, the induction
time, #;yp, becomes longer for smaller electrodes
(up to ~ 10s), reflecting the stochastic nature of

nucleation: the probability of a nucleation event is
small and proportional to the area of the electrode.

More recent studies involve the nucleation and growth
of single silver clusters on platinum
nanoelectrodes evaluated by # situ atomic force micro-
scopy (AFM) [57]. The dependence of #;yp on con-
centration, overpotential, and electrode size is
investigated. Much shorter #;yp (down to ~ ms) are
reported. In addition, the existence of latent nucleation
sites is confirmed, since repeated deposition experi-
ments show the growth of 1 or 2 single particles at
identical locations, within the limitation of AFM
(~ 10 mm). A similar study indicates that, for high
overpotentials, the density of active sites may be much
higher than that previously thought [61]. The existence
of active sites with different activities may be a plausible
explanation. These studies also support the hypothesis
that the values of Jg7 and Ny obtained from multiple
nucleation studies at macroelectrodes may reflect
nanocluster surface movement and aggregation [19,21].

More recently, the electrochemistry of single entities
has demonstrated to be viable on single atoms. Based on
the concept of catalytic amplification [62,63], the
nucleation of single Pt clusters is measured indirectly
through the electrocatalytic reduction of protons in just-
nucleated Pt clusters on a carbon ultramicroelectrode
(UME) (Figure 3c) [64]. Key to this method is the use
of such low concentrations so that even the first event of
the nucleation and growth process (discharge of a single
Pt ion) is limited by the diffusion rate of ions to the
electrode. By using a Bi UME, Zhou et al [65] report the
ability of depositing and electrochemically character-
izing Pt clusters, atom-by-atom, from a 1-atom to a 9-
atom cluster [58] or up to a NP of a few nanometers.
These atom-by-atom deposition studies confirm that,
whereas 1-atom clusters are stable (not desorbing from
the Bi surface), the stepwise addition of more atoms
results into only one growing cluster, probably driven by
surface area minimization [12,53,54].

Studies reporting nucleation and growth of single en-
tities have been rapidly increasing in the past few
years (Figure 3d). Different variants consist in (1)
nucleating a single NP on a tunneling UME [66], a
confined nanopore [67] or a nanodisk [68] or (2)
confining metal salt precursors to either micelles [69]
or attoliter water nanodroplets dispersed on an organic
solvent [59].

Conclusions

A review of the recent progress in the understanding of
electrochemical nucleation and growth of metals on low-
energy substrates presents the following scenario.
Although theoretical formulations for multiple nucle-
ation are constantly improving, they are not yet
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Electrochemical nucleation and growth of single entities. (a) Experimental CTTs obtained during the deposition of Ag on HOPG by using SECCM with a
nanopipette of d ~400 nm. Reprinted with permission from the study by Lai et al [47], copyright 2015, Royal Society of Chemistry. (b) The CTT obtained
during the growth of a single Ag nucleus on a 20 nm radius Pt UME. Three regions can be distinguished: zero current (induction time); growth limited by
kinetics owing to the small size of the cluster (/ £); and growth limited by mass transport (/= t>%). Reprinted with permission from the study by
Velmurugan [57], copyright 2012, Royal Society of Chemistry. (¢) Schematic representation of the experimental protocol for an atom-by-atom single
platinum cluster deposition and subsequent detection by electrocatalytic amplification by proton reduction. Reprinted with permission from the study by
Zhou et al [58], copyright 2017, American Chemical Society. (d) Deposition of Pt from attoliter water droplets colliding with a biased electrode: repre-
sentative CTTs and fits for nucleation and growth under kinetic (top) and diffusion control (bottom). Reprinted with permission from the study by Glasscott

et al [59], copyright 2019, American Chemical Society. SECCM, scanning electrochemical cell microscopy; CTTs, current—time transients; UME,

ultramicroelectrode; HOPG, highly oriented pyrolytic graphite.

complete. Therefore, one must be careful with the
interpretation of CTTs and the determination of
nucleation rates [12,33,34]. Recent experimental find-
ings indicate that several aspects still need to be
considered further:

- Nonstationary, time- and site-dependent nucleation
rates J(s,7).

- Nonclassical growth pathways: surface detachment
[47,52], movement, aggregation, and coalescence of
small nanoclusters [19—21]; secondary nucleation
[49]; cluster transformation into crystalline NPs via

both gain or loss of atoms [24]; nucleation and disso-
lution events before the formation of stable nuclei
[25]; etc.

In addition, some questions remain unanswered [5,12].
Why do we measure a higher number of nuclei than the
calculated number of active sites? Why, in most of the
cases, a single atom is a cluster of critical size? These
questions point to the need of developing new de-
scriptions of the initial steps of the nucleation process.
A plausible answer could be grounded on nucleation
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being a nonactivated process. Under this assumption,
the initial stages of phase formation could simply
involve adsorbed atoms, which collapse into larger
clusters, driven by minimization of the overall exposed
area and, consequently, of the interfacial energy. With a
size-dependent surface mobility, small clusters would
be highly mobile. Larger clusters would effectively be
fixed on the substrate and would grow not only by
direct attachment but also by incorporating other
clusters ranging from single atoms to a few nanometers.
Further discussion on these views can be found in
terms of spinodal decomposition [12,53,54] or of an
electrochemical aggregative growth mechanism [19—
21,37].

Possibilities to delve further into all the possible growth
pathways include (a) higher resolution  situ EC-(S)
TEM studies that resolve small nanoclusters of
d ~ 1 nm; (b) minimization of the electrode surface so
that the nucleation and growth of single (or a controlled
amount of) clusters can be studied under various
experimental conditions; (c) the use of nonaqueous
electrolytes with smaller nucleation frequencies; and
(d) multiscale modeling approaches that can tackle
simultaneously multiple classical and non-classical
growth pathways and deliver appropriate N(7) and
CTTs to be compared with experimental data.
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