
1 
 

A new potential anti-cancer beta-carboline derivative decreases the expression levels of 
key proteins involved in glioma aggressiveness: a proteomic investigation 
 
Running title: Proteomics of CM16 β-carboline against gliomas 
 
Annelise Carvalho, PhDa,b, Johan Viaene, PhDc, Guy Vandenbussche, PhDd, Kris De 
Braekeleer, PhDe, Bernard Masereel, PhDf, Johan Wouters, PhDf, Florence Souard, 
PhDe,g, Yvan Vander Heyden, PhDc, Pierre Van Antwerpen, PhDe,h, Cédric Delporte, 
PhDe, h*, Véronique Mathieu, PhDa,b* 

aDepartment of Pharmacotherapy and Pharmaceutics, Faculté de Pharmacie, Université Libre 
de Bruxelles, Brussels, Belgium 
bULB Cancer Research Center, Université Libre de Bruxelles, Brussels, Belgium 
c VUB –Analytical Chemistry, Applied Chemometrics and Molecular Modeling, 
Pharmaceutical Institute, Vrije Universiteit Brussel – VUB, Brussels, Belgium 

d Laboratory for the Structure and Function of Biological Membranes, Faculté des Sciences, 
Université Libre de Bruxelles, Brussels, Belgium 
e Unity of Pharmacognosy, Bioanalysis and Drug Discovery, Department of Research in Drug 
Development (RD3), Faculté de Pharmacie, Université Libre de Bruxelles, Brussels, Belgium 
f NAMEDIC, Department of Pharmacy, University of Namur, Namur, Belgium 
gUniv. Grenoble Alpes, CNRS, DPM, 38000 Grenoble, France 
h Analytical Platform of the Faculty of Pharmacy and Laboratory of Pharmaceutical 
Chemistry, Faculty of Pharmacy, Université Libre de Bruxelles, , Brussels, Belgium. 
 
 
 
 
 
 
 
 
 
 
*Correspondence to: 

Véronique Mathieu, MD, PhD 
Department of Pharmacotherapy and Pharmaceutics – Faculté de Pharmacie – Université 
Libre de Bruxelles [ULB], biology 
Campus de la Plaine – Boulevard du Triomphe – 1050 Brussels – Belgium. 
Tel: +32 478 317 388  
E-mail: vemathie@ulb.ac.be 
 
Cédric Delporte, PhD 
Unity of Pharmacognosy, Bioanalysis and Drug Discovery, Department of Research in Drug 
Development (RD3), and Analytical Platform of the Faculty of Pharmacy and Laboratory of 
Pharmaceutical Chemistry, Faculty of Pharmacy, Université Libre de Bruxelles [ULB], LC 
MS and auto MS/MS 
Campus de la Plaine – Boulevard du Triomphe – 1050 Brussels – Belgium. 
Tel: +32 2 650 52 77  
E-mail: cedric.delporte@ulb.ac.be  



2 
 

Abstract 

Gliomas remain highly fatal due to their high resistance to current therapies. Deregulation of 

protein synthesis contributes to cancer onset and progression and is a source of rising interest 

for new drugs. CM16, a harmine derivative with predicted high blood-brain barrier 

penetration, exerts antiproliferative effects partly through translation inhibition. We evaluated 

herein how CM16 alters the proteome of glioma cells.  The analysis of the gel-free LC/MS 

and auto-MS/MS data showed that CM16 induces time- and concentration- dependent 

significant changes in the total ion current chromatograms. In addition we observed 

spontaneous clustering of the samples according to their treatment condition and their proper 

classification by unsupervised and supervised analyses respectively. A 2D gel-based approach 

analysis allowed us to identify that treatment with CM16 may downregulate four key proteins 

involved in glioma aggressiveness and associated with poor patient survival (HspB1, BTF3, 

PGAM1 and cofilin), while it may upregulate galectin-1 and Ebp1. Consistently with the 

protein synthesis inhibition properties of CM16, HspB1, Ebp1 and BTF3 exert known roles in 

protein synthesis. In conclusion, the downregulation of HspB1, BTF3, PGAM1 and cofilin 

bring new insights in CM16 antiproliferative effects, further supporting CM16 as an 

interesting protein synthesis inhibitor to combat glioma.  
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Introduction 

Although primary brain tumors account for just 1.4% of all cancers, they have a high fatality 

rate of 60% (Strong et al., 2015). Gliomas are the most common type (~80%), accounting for 

the majority of the brain tumors with a poor prognosis (Ostrom et al., 2014). The poor 

survival rate of glioma patients has been attributed to various features, including their high 

invasion level (Paw, Carpenter, Watabe, Debinski, & Lo, 2015), resistance to pro-apoptotic 

stimuli triggered by radio- and chemotherapies, especially observed with glioma stem cells 

(Beier, Schulz, & Beier, 2011; Frosina, 2009), and the lack of drugs crossing the blood-brain 

barrier (BBB) (Azad et al., 2015).  

Harmine is a natural β-carboline displaying antiproliferative and antitumor effects (Dai et al., 

2012; Radhakrishnan et al., 2016; Zhang et al., 2014) through DNA intercalation and 

DYRK1A inhibition (Cao et al., 2005; Pozo et al., 2013; Radhakrishnan et al., 2016; Seifert, 

Allan, & Clarke, 2008). Despite its antitumor potential, the neurotoxicity caused by harmine 

in vivo limited its development for therapeutic uses (Cao et al., 2004; Chen et al., 2004). Thus, 

other harmine derivatives with different number of substituents were synthetized and tested 

for their antitumor potential in vitro and in vivo displaying lower toxicity than harmine and 

interfering with different cancer cell processes, such as cell cycle, apoptosis, angiogenesis and 

production of ROS (Cao et al., 2010; Guo et al., 2019; Han et al., 2012; Li et al., 2015; Luo et 

al., 2008; Ma, Chen, & Chen, 2016; Zhang et al., 2013; Zhang et al., 2016). In that context, 

the previously synthesized harmine derivative CM16 (Fig. 1a) (Meinguet et al., 2015) has 

been shown to display in vitro antiproliferative activity on various cell types including glioma 

models via, at least partly, an alteration of the initiation phase of protein translation (Carvalho 

et al., 2017).  

Protein synthesis plays a pivotal role in the regulation of gene expression, especially affecting 

homeostasis, controlling cell proliferation, and metabolism (Hershey, Sonenberg, & Mathews, 
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2012). Cancer cells are characterized by a metabolic reprogramming that contributes to the 

different phases of tumor biogenesis including gliomas  (Masuia, Caveneeb, & Mischel, 

2016). In these cancers in particular, the PI3K-Akt-mTOR pathway appeared to play pivotal 

roles to that aim: by activating mTORC2, it contributes to Warburg effect and resistance to 

therapy, while it also controls  protein synthesis through mTORC1 (Strickland & Stoll, 2017). 

Indeed, mTOR controls eIF4F assembly while MNK controls eIF4E phosphorylation 

(Ruggero, 2013). Additionally, the deregulated expression and activation status of 

translational factors has also been associated with cancer onset and progression (Hershey et 

al., 2012). Therefore, development of cancer cell protein synthesis inhibitory strategies is 

arousing growing interest in cancer research (Bhat et al., 2015). Such strategies include 

inhibition of specific targets in the translation machinery (Itoua Maïga et al., 2019) as well as 

inhibitors of upstream signaling pathways involved at different stages of cancer development 

(Bhat et al., 2015; Xie, Merrett, Jensen, & Proud, 2019).  

 

Importantly, CM16, in addition to being selective to cancer cells, has been designed to meet 

the physicochemical properties required for drug development and is predicted to penetrate 

the blood-brain barrier (Meinguet et al., 2015), making this compound of potential interest 

against gliomas. Our previous study suggested that the inhibition of  protein synthesis by 

CM16 might involve modification to eIF2α phosphorylation status and/or EIF1AX, EIF3E 

and EIF3H gene expression levels as the latter were found to be differently expressed at the 

mRNA level between highly and poorly sensitive cancer models among the 60 cancer cell 

lines panel of the National Cancer Institute (Bethesda, USA) (Carvalho et al., 2017). To gain 

further insights in the effects of CM16 treatment, we investigated herein the early proteomic 

changes triggered by CM16 in glioma cells by means of two complementary strategies i.e. a 

gel-free (shotgun proteomics) and a gel-based (2-D electrophoresis, 2-DE) approach using the 
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Hs683 human glioma cell model. We identified thereby that CM16 affects the expression 

levels of four proteins that play key roles in glioma progression, metabolism and migration. 

These potential targets could partly explain why cancer cells exhibit a higher sensitivity to 

CM16 than non-cancerous cell lines, even if translation per se has been shown to be similarly 

affected (Carvalho et al., 2017).  
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Materials and methods 

Cell line and compound 

The human glioma cell line Hs683 (ATCC code HTB-138) was cultivated at 37 °C and 5% 

CO2 in RPMI cell culture medium (10% FBS, 200U penicillin-streptomycin, 0.1 mg/ml 

gentamicin and 4mM L-glutamine). The compound CM16 was synthetized as described 

earlier (Meinguet et al., 2015). 

 

Protein extraction from cells and precipitation 

Proteins were extracted from Hs683 cells by homogenization after addition of protease 

inhibitors in PBS (Roche, Brussels, Belgium). Lysates were centrifuged (100 g, 5 min) and 

the protein content measured by the bicinchoninic acid assay (Thermo Scientific, Leuven, 

Belgium). Volumes corresponding to 1mg (LC-MS shotgun) or 3mg (2-DE) were collected 

and proteins precipitated in 13.3% (w/v) trichloroacetic acid ( Sigma Aldrich, Overijse, 

Belgium) in acetone containing 0.2% (w/v) dithiothreitol (Promega, Leiden, The Netherlands) 

according to the modified protocol from Görg et al. (Görg et al., 2000). The protein pellet was 

air dried and re-suspended in the appropriate solution, depending on the method of analysis 

(2-DE or LC-MS shotgun). For the LC-MS shotgun approach, 100 µg of ovalbumin was 

added to the samples as an internal standard (IS) before precipitation. Three independent 

experiments were carried out for the 2-DE approach and five for the LC-MS shotgun 

approach. 

Shotgun proteomics 

Digestion, data acquisition and analysis 

Each sample was re-suspended in 50 µL 100 mM ammonium bicarbonate (Sigma Aldrich, 

Overijse, Belgium) buffer (pH 7.8). Proteins were then denatured, reduced, alkylated and 
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digested overnight and finally reaction was stopped, samples evaporated  and re-suspended in 

100 µL 0.1% aqueous formic acid (v/v) prior to analysis as earlier described (Delporte et al., 

2014). Ten microliters of the digested samples were injected into the LC-system. Analyses 

were performed with a rapid resolution liquid chromatograph (RRLC) in reversed phase mode 

coupled to an electrospray ion source - quadrupole time-of-flight (Q-TOF) for the MS and 

auto MS/MS analyses, using the same parameters as in (Delporte et al., 2014). Data were 

acquired by the Mass Hunter Acquisition® software (version B.04 patch 3, Agilent 

Technologies) and analyzed by the Spectrum Mill® Workbench software (Rev B.04.01.141, 

Agilent Technologies) with the last updated UniProt (Swiss-Prot, November, 2016) database. 

Peptides and proteins were identified and validated using parameters described in (Delporte et 

al., 2014). Samples were injected three times in MS mode and once in autoMS/MS mode. For 

chemometrics and statistical analysis, LC-MS data were converted from .d format (Agilent) to 

either .mzXML (MS Converter from ProteoWizard) or .mzData type (exported by MH Qual, 

Agilent Software). 

Multivariate data analysis 

For the unsupervised and supervised multivariate analyses, the data obtained from the LC-MS 

was considered. Five different treatment conditions, i.e., non-treated control (1), treated with 

0.1 (2) or 1.0 µM (3) CM16 for 15 h, or with 0.1 (4) or 1.0 µM (5) CM16 for 24 h, were 

tested in Hs683 cells in five independent replicates and each replicate was injected three times 

for LC-MS analysis, totalizing 75 runs. Four outliers were excluded, thus 71 chromatograms 

were analyzed. The data matrix X [m x n] considered for the multivariate analyses consists of 

n = 71 samples and m = 12701 variables, with the latter representing the number of time 

points at which a signal intensity was measured (0-105 min). Pre-processing of the data was 

performed before further analysis. Peak alignment was applied for the 71 samples, using the 

correlation optimized warping (COW), with the warping toolbox in MatLab (The Mathworks, 



8 
 

MA). Normalization to the internal standard ovalbumin was also performed as described in 

the formula below: 

𝑺𝒏𝒐𝒓𝒎
𝑺𝒊

∑ 𝑆
∙  𝒙𝒏 

where each normalized sample (𝑺𝒏𝒐𝒓𝒎) was obtained by dividing each original individual 

chromatogram 𝑺𝒊 at each condition by the sum of the internal standard chromatogram 

(extracted ion chromatogram of ovalbumin) added to each condition (∑ 𝑆 ), where 𝑚 is 

the peak intensity measured for each time point (𝑚 1 … 12701) multiplied by the average 

sum 𝒙𝒏 of the 𝑛 71 internal standard chromatograms. 

Unsupervised principal component analysis (PCA) allows visualizing the information 

contained in the matrix X in a new space, represented by principal components (PC’s), which 

are linear combinations of the original variables. The contribution of each original variable to 

a PC is given by its loading. Hierarchical Clustering Analysis (HCA) also allows 

visualization of (dis)similarity among samples that were merged in clusters based on a 

distance, e.g. the Euclidean distance in the present study. The objects linked first are the most 

similar and clustering continues until all samples are clustered (Klein-Júnior et al., 2016). 

PCA and HCA analyses were performed to investigate whether the source of variance in the 

samples could be attributed, at least partly, to CM16 treatment. Both analyses were performed 

in MatLab with the ChemoAC v. 4.1 toolbox.  

Supervised analysis for classification was made with SIMCA (Soft Independent Modeling by 

Class Analogy), in which PCA models are created for each class individually (Smit et al., 

2009). The entire data set was applied as calibration set and models were evaluated based on 

cross validation by leave-more-out with Venetian blinds as well as by the calculation of class 

sensitivity and specificity (ratio). Three PCs were selected to model classes 1 (controls) and 5 
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(1 µM CM16 for 24h), four PCs to model classes 2 and 3 (0.1 µM CM16 for 15 and 24h 

respectively), and five to model class 4 (1 µM CM16 for 15h). 

Two-dimensional electrophoresis (2-DE) 

Sample loading, 2-DE PAGE, spot detection and protein identification 

The protocol described below is an adaptation of Berkelman and Stenstedt (Berkelman & 

Stenstedt, 1998). Briefly, following precipitation of 3 mg of protein per sample, samples were 

solubilized in rehydration buffer (7 M urea; 2 M thiourea; 2% CHAPS; 20 mM DTT; 0.5% 

IPG buffer pH 3–10 NL) and proteins were quantified with a Pierce detergent compatible 

Bradford assay kit (Thermo Scientific, Leuven, Belgium). A volume of 340 µL rehydration 

buffer containing 1 mg proteins was used to hydrate the Immobiline DryStrip gels (18 cm, pH 

3-10, NL) overnight at room temperature. The isoelectric focusing (IEF) was performed at 20 

°C in a Multiphor II system (GE Healthcare, Diegem, Belgium) using a step-wise voltage 

ramp according to the manufacturer’s instructions. After IEF, proteins were reduced and 

alkylated by incubation with agitation in two equilibrium buffers (6 M urea, 50 mM Tris-HCl, 

pH 8.8, 30% glycerol, 2% SDS) containing 1% DTT (w/v) and 2.5% iodoacetamide (w/v), 

respectively. Equilibrated strips were then applied onto 12.5 % SDS-PAGE and the proteins 

were separated in the second dimension in a Protean II multi-cell system (Bio-Rad, Temse, 

Belgium).  

Proteins were visualized by Coomassie Brilliant Blue R-250 staining. Gels were scanned on a 

GS-800 (BioRad, Temse, Belgium) and protein spots were analyzed quantitatively using the 

PDQuest software v. 8.0 build 035 (BioRad, Temse, Belgium). The selection of the spots for 

sequencing and identification by mass spectrometry was made on the basis of a two fold 

change and/or a significant t-test analysis (p < 0.05) of their densitometry. The selected 

protein spots were digested in-gel with sequencing grade trypsin (Promega, Leiden, The 
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Netherlands) and analyzed by mass spectrometry as previously described (Nguyen, Volkov, 

Vandenbussche, Tompa, & Pauwels, 2018). Based on the peptide sequences, the protein was 

identified using the MASCOT Sequence Query. In the sequence query search parameters, a 

MS/MS tolerance of 0.6 Da and only one missed cleavage was allowed per peptide. Cysteine 

carbamidomethylation and methionine oxidation were also taken into account. The criterion 

for acceptance of protein identification was a score above the MASCOT threshold, set at a 

significance level of p < 0.05.  
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Results 

Unsupervised analysis of the proteome of glioma cells under CM16 treatment  

Given the effects of CM16 on the protein synthesis of cancer cells (Carvalho et al., 2017), we 

first investigated how the whole proteome of glioma cells was affected by this treatment. 

Therefore, we used an LC-MS and MS-MS shotgun proteomic approach on the Hs683 human 

glioma model left untreated or treated with CM16 at 0.1 µM (IC50 concentration as 

determined by means of the MTT assay over 72h, (Carvalho et al., 2017)) or 1 µM (10 times 

higher concentration) for 15 and 24h. The 309 proteins that we were able to identify and were 

possibly present in whole Hs683 cell extracts of the different conditions were classified 

according to their localization, biological and molecular functions (Fig. S1). Briefly, all cell 

compartments are represented and samples are enriched in proteins involved in their own 

biogenesis, including ribosome-related and RNA-binding proteins, folding and metabolism.   

To conduct unsupervised multivariate analysis on those data, we first reduced dimensionality, 

by condensing the complex MS data obtained at each retention time into a fingerprint total ion 

current – TIC chromatogram. Fig. 1b shows the overlay of the mean TICs of each 

experimental condition. 

Thanks to Hierarchical Clustering Analysis that groups the samples into clusters based on the 

Euclidean distance, we observed a high similarity between the three injections of each sample, 

and a tendency of the TICs to group according to the treatment concentration (Fig. 2a). 

Indeed, most of the 1 µM treated samples (thicker bars) grouped into one cluster at the right 

of the tree while most of the negative controls and samples treated with the low concentration 

(0.1 µM) are grouped into one cluster on the left of the tree. 

The TIC data were then submitted to Principal Component Analysis (PCA). The PC2-PC3 

plot allowed distinction between the treatment conditions even if they account together for 
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only ~1% of the overall variation in the data (Fig. 2b). This means that while the treatments 

induced limited changes to the whole proteome of the cells during the first 24h of treatment, 

those changes can be detected using an LC-MS approach. Considering that CM16 is a 

cytostatic agent used here over short periods (i.e. 15h and 24h) and that changes in the 

proteome depend not only on the protein synthesis process but also on gene expression, 

protein half-life, recycling, and degradation (Chen, Smeekens, & Wu, 2016) it is not 

surprising that the effects induced by CM16 treatment contributed to such few variation of the 

data. 

To further evaluate the distinction between treated and non-treated samples, we compared the 

TICs of the non-treated and treated samples by drawing effect plots. Those are obtained by 

subtracting the average treated-cell TIC profile from the average untreated-cell TIC profile. 

Applying Dong’s algorithm (Vander Heyden, Nijhuis, Smeyers-Verbeke, Vandeginste, & 

Massart, 2001), we set an error threshold above or below which the effects can be considered 

significant (Klein-Júnior et al., 2016). Significant effects appear to be time and concentration-

dependent (Fig. 2c and Fig. S2). Additionally, we observed some similarities between the 

significant changes exceeding the critical margins of the difference TIC profiles and the PC2 

and PC3 loadings: the peaks detected around 20 min on the differential TIC profile of cells 

treated with 1µM for 15h (see arrows on Fig. 2c) contribute to the PC2 loadings (Fig. 2d) 

while those identified in the region between 60 and 80 min seem to contribute to the PC3 

loadings (Fig. 2e). Thus, the effect plots and the PC2 and PC3 loadings show certain specific 

peaks of the original variables that are different between CM16 treated and untreated samples. 

 

Sensitive shotgun MS approach to discriminate CM16 treatment conditions of glioma 

cells 
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SIMCA supervised analysis and modelling were then used to investigate the possibility to 

properly classify the samples according to their treatment on the basis of LC-MS data. 

SIMCA is a technique that selects a number of principal components to model each 

experimental treatment, named class, individually. Cross validated classification of the model 

assigned 61 of 71 injections to the correct class (Table 1). The success rate of 86% confirms 

that the model was indeed able to correctly classify most samples. Importantly, the non-

treated control (class 1) had no misclassification, i.e. no control sample was classified as 

treated (Table 1). Misclassifications (n=10/ 71) occurred mainly between treatment 

concentrations or between samples treated by the same CM16 concentration but for different 

periods of time. Interestingly, five misclassifications occurred between class 3 (15 h - 1µM) 

and class 5 (24 h - 1µM), which agrees with the results from the unsupervised analysis, in 

which the two treatment conditions at 1μM clustered together (Fig. 2a).  

Thus the gel-free approach appeared sensitive enough to detect that the cytostatic agent CM16 

induces significant minimal changes in the proteome of glioma cells, even after a short 

incubation period, e.g. 15 h. Although the proteomic variation induced by CM16 is significant 

in both unsupervised and supervised analyses, the complexity of the data contained in the 

TICs profiles did not allow us to identify specific proteins, whose expression are affected by 

CM16.  

 

CM16 treatment affects the expression of specific proteins involved in protein synthesis 

and aggressiveness of glioma cells 

To analyze CM16-induced effects on the protein expression profile of Hs683 cells, we thus 

moved to classical 2D electrophoresis. Untreated glioma cells were compared with CM16 

treated ones for 15h at 1µM, the latter condition having been selected on the basis of the 
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earliest time point showing a marked differential TIC profile in the LC-MS analysis (Fig. 2c 

and Fig. S2). Representative gels of each condition are provided in Fig. S3. An average of 357 

spots per gel was detected with a matching rate ranging from 53 to 97% between gels 

corresponding to a correlation coefficient of about 0.7. According to the applied cut-off (two-

fold change and/or p < 0.05 from t-test analysis), eight spots showed significant changes in 

CM16-treated cells compared to the non-treated glioma cells (Fig. S3).  

These spots were cut and analyzed through MS and MS/MS. Eight proteins were assigned to 

the 8 spots as follows: HspB1 (heat shock protein beta-1), Ebp1 (ErbB3-binding protein 1), 

PGAM1 (Phosphoglycerate mutase 1), CK-18 (cytokeratin-18), transcription factor BTF3, 

galectin-1, cofilin and dUTPase (Table 2, with their respective recovery rates). Two were 

upregulated, i.e. galectin-1 and Ebp1, while the other six were downregulated (see table 2). 

When searching for those specific proteins in the LC-MS data, four of them could be 

retrieved: HspB1, cofilin, PGAM1 and keratin 18 (Table 2, highlighted in grey). Importantly, 

they displayed the same trend (up/downregulation) as verified by relative quantification of the 

peptides analyzed (data not shown). 

In order to address the possible molecular interactions among these eight proteins as well as 

the initiation factors highlighted in the previous study - EIF1AX, EIF3E and EIF3H gene 

products and eIF2α - (Carvalho et al., 2017), the STRING tool was used. This database 

collects information of protein-protein association from different sources which enables to 

map out interactions of physical and functional types that are biologically meaningful for the 

proteins of interest (Deutsch, Lam, & Aebersold, 2008; Szklarczyk et al., 2017). Analysis of 

the functional enrichment in the network of the twelve proteins showed enrichment of ten of 

these proteins for only one annotation, i.e. RNA binding (Fig. 3). Interestingly these twelve 

proteins were identified in a large study defining the mRNA interactome of HeLa cells as 

possible RNA-binding proteins (RBPs), yet to be validated (Castello et al., 2012). RBPs are 
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associated with RNAs throughout their entire life cycle and participate in many functions 

from RNA synthesis to decay (Castello et al., 2012). Moreover, the eight proteins found in the 

2-D gel based approach play various roles in cancer as discussed below, with respect to their 

specific roles in glioma biology. Therefore the fact that they appear to be down or upregulated 

in Hs683 glioma cells when treated with CM16 could help understanding how this compound 

displays some selectivity towards cancer cells as earlier reported (Carvalho et al., 2017). 

 

Discussion 

Harmine cannot be used as such for its anti-cancer properties because of its neurotoxicity 

(Cao et al., 2004; Chen et al., 2004) but its scaffold is still of great interest for drug 

development. By example a N2-benzylated β-carboline derivative was recently shown to  

trigger apoptosis through PI3K/Akt inhibition and ROS production provoking thereby tumor 

growth inhibition in a colorectal cancer model in vivo (Zhang et al., 2016). Also trisubstituted 

β-carbolines appear promising with some of them having already been described to display 

antiproliferative effects both in vitro and in vivo , notably in lung cancer and sarcoma bearing 

mice with low acute toxicity (Zhang et al., 2013). We previously reported CM16 as another 

trisubstituted harmine derivative with potent cytostatic protein synthesis inhibitory properties 

on cancer cells (Carvalho et al., 2017). We herein conducted a proteomic investigation to gain 

further insight into its anti-cancer effects in glioma cells. Proteomics in cancer research has 

been successfully applied in the search for biomarkers as well as in drug target discovery 

(Dias, Kitano, Zelanis, & Iwai, 2016).  

In this study, the shotgun approach appeared sensitive enough to discriminate the treated from 

the untreated cells by both unsupervised and supervised analyses even when the variations 

induced by the treatments did not account for more than 1% of the total variation among the 

samples (Fig. 2b). However, the identification of specific proteins involved in the changes 
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observed in TIC profile was not possible due to the reduction of the data. Moreover, 

evaluation of low-abundance proteins is limited with shotgun proteomics due to the dynamic 

range of protein concentrations (Matallana-Surget, Leroy, & Wattiez, 2010). This could, for 

instance, be the case with respect to the EIF1AX, EIF3E and EIF3H gene products that we 

identified previously through transcriptomic analysis as possible drivers of cancer cell 

sensitivity to CM16 (Carvalho et al., 2017). We thus used also the 2-DE-gel-based 

conventional approach to identify differentially expressed proteins under CM16 treatment. 

Among these, the heat shock protein beta-1 (HspB1 or, alternatively, HSP 27), is induced in 

stress conditions and works as a molecular chaperone, conferring protection against protein 

misfolding (Arrigo & Gibert, 2013). Because of its chaperone role, HspB1 interacts with a 

variety of proteins involved in cancer cell growth, migration, transcription, translation, 

apoptosis and senescence suppression (Arrigo & Gibert, 2013). Inhibiting HspB1 leads to 

decrease in proliferation, migration and invasion of cancer cells as already shown with 

anticancer drugs such as imatinib and actinomycin D (Wu et al., 2017). Moreover, HspB1 

also modulates chemotherapeutic drug resistance and is related to poor prognosis in cancer 

(Wu et al., 2017). Accordingly, although it is constitutively expressed in most tissues, HspB1 

expression increases with World Health Organization (WHO) grading of astrocytic glioma 

(Mäkelä et al., 2014) and is correlated with poor survival of glioma patients (Gimenez et al., 

2015). Furthermore, it has been associated with resistance to temozolomide in vivo 

(Jakubowicz-Gil, Langner, Bądziul, Wertel, & Rzeski, 2013), making CM16 a possible good 

candidate to be used in combination to overcome this chemoresistance. Importantly, HspB1 

has also been associated to translation inhibition by its capacity to bind eIF4G, preventing 

thereby the assembly of the eIF4F complex required for cap-dependent protein synthesis 

(Cuesta, Laroia, & Schneider, 2000). Further investigations should be conducted to determine 
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whether the possible HspB1 downregulation observed after CM16 treatment is confirmed and 

contributes to its antiproliferative and protein synthesis inhibitory activity. 

Similarly, CM16 decreases the expression levels of the transcription factor BTF3 

(alternatively, NAC-beta). The name “NAC-beta” relates to its interaction with the nascent 

polypeptide chain coming from the ribosomes (Kogan & Gvozdev, 2014). In addition, BTF3 

is a RNA polymerase II transcription factor involved in apoptosis and cell cycle regulation 

(Kusumawidjaja et al., 2007), as well as in the endoplasmic reticulum biogenesis (Roy et al., 

2010). Thus, the downregulation of BTF3, caused by CM16 in glioma cells, might also 

contribute to its protein synthesis inhibition effect. Interestingly, BTF3 is overexpressed in 

high grade glioma (Odreman et al., 2005) and is suggested to be among the top 10 key genes 

for glioblastoma development (Kunkle, Yoo, & Roy, 2013).  

PGAM1 is an enzyme participating in glycolysis by converting 3-PG (3-phosphoglycerate) to 

2-PG (Fothergill-Gilmore & Watson, 1990) whose expression also correlates with glioma 

grade and patient survival (Gao et al., 2013). Although its role in cancer is still poorly 

understood, its knockdown increases the survival of glioblastoma bearing mice (Sanzey et al., 

2015). PGAM1 downregulation appeared thus as an interesting possible event triggered by 

CM16 to combat glioma.  

Other interesting results concern the decrease in mitochondrial dUTPase and cofilin. dUTPase 

catalyzes the transformation of dUTP into dUMP, eliminating the excess of dUTP and 

avoiding thereby its incorporation into the DNA. When incorporated, dUTP causes double-

stranded DNA breaks leading to cell death (Vertessy & Toth, 2009). Thus, further validation 

of CM16-induced decrease in dUTPase may be needed to possibly envisage its use for 

sensitizing cancer cells to DNA targeting chemotherapeutic agents as already proposed with 

respect to 5-FU (Ladner et al., 2000).  
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Cofilin downregulation induced by CM16 might confer additional anti-migratory properties to 

its cytostatic effects. Indeed, this actin filament assembly and disassembly regulator plays an 

important role in cell migration (Bernstein & Bamburg, 2010) and is overexpressed in 

glioblastoma (Naryzhny et al., 2014). The effects of CM16 on those five proteins seem thus 

promising when considering their roles in glioma biology as confirmed by the benefits 

obtained with their inhibition in glioma models, exemplified by the literature reported here. 

Finally, two upregulated proteins were identified in Hs683 cells treated with CM16, i.e. 

galectin-1 (Gal1) and the proliferation-associated protein 2G4 (Ebp1). Gal1 is overexpressed 

in numerous cancer types, including all types of human gliomas, where it is involved in 

cancer progression and poor prognosis (Le Mercier, Fortin, Mathieu, Kiss, & Lefranc, 2010). 

Gal1 expression has been shown to increase after radiotherapeutic and chemotherapeutic 

insults. Because Gal1 has also been reported to be part of the spliceosome, participating in the 

pre-mRNA splicing before its translation (Haudek, Patterson, & Wang, 2010), possible up-

regulation of Gal1 by CM16 may be hypothesized as a cancer cell defense mechanism in link 

with this later function. The other up-regulated protein is the Ebp1, known to promote cell 

survival and prevent apoptosis by associating with Akt (Ko, Chang, Park, & Ahn, 2016). 

Accordingly, high Ebp1 levels have been associated with poor clinical outcome of 

glioblastoma patients (Ko et al., 2016). Interestingly, Ebp1 is also known to inhibit 

phosphorylation of eukaryotic initiation factor 2α (eIF2α), thus allowing translation to occur 

(Squatrito, Mancino, Sala, & Draetta, 2006). Given that we previously reported induction of 

eIF2α phosphorylation by CM16 in a breast cancer cell model (Carvalho et al., 2017), 

possible up-regulation of Ebp1 might also be envisaged as a consequent defense of the cancer 

cell. These hypotheses remain however to be investigated at the cellular and molecular levels. 
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In conclusion, this proteomic study revealed that CM16 induces significant changes in the 

proteome of glioma cells in a time- and concentration- dependent manner. In particular, this 

study showed that CM16 decreases the expression of five proteins associated with glioma 

aggressiveness and poor clinical outcome. On the contrary, the two upregulated proteins 

identified might be linked to defense mechanisms of the cells to CM16 insult. Importantly,   

HspB1 and Ebp1 are actively participating in protein synthesis regulation, together with the  

initiation factors EIF1AX, EIF3E and EIF3H and eIF2α (Fig. 3) identified in the previous 

study as possible relevant cell components for CM16 responsiveness (Carvalho et al., 2017), 

while BTF3 and Gal1 may be indirectly involved. Further investigations are required to 

validate whether CM16 treatment actually change the protein expression level and/ or 

activation status of those possible different actors identified by transcriptomic and proteomic 

studies. In addition, we intend to decipher each of their role(s) in CM16 anti-proliferative 

effects by silencing techniques to pursue our investigations of  this harmine derivative as a 

protein synthesis inhibitor to combat glioma. 

 

Acknowledgments 

The PhD of A.C. has been financially supported by the Coordenação de Aperfeiçoamento de 

Pessoal de Nível Superior (Grant 0674-13/3; CAPES; Brazil). Part of this study has also been 

supported by the grant by the Belgian Brain Tumor Support (BBTS; Belgium), the Belgian 

National Fund for Scientific Research (FRS, N° 3.4553.08 and T.0136.13 PDR), and the 

Université Libre de Bruxelles (FER-207). FS is particularly thankful to UGA (Grenoble) for 

the scientific delegation conceded at Faculty of Pharmacy ULB (Brussels) and in particular 

Prof C. Ribuot and Prof E. Peyrin. 

 

Conflict of interest 



20 
 

The authors declare that they have no conflict of interest. 

  



21 
 

References 
Arrigo, A.-P., & Gibert, B. (2013). Protein interactomes of three stress inducible small heat 

shock proteins: HspB1, HspB5 and HspB8. International Journal of Hyperthermia, 
29(5), 409–422. doi:10.3109/02656736.2013.792956 

Azad, T. D., Pan, J., Connolly, I. D., Remington, A., Christy, M., & Grant, G. A. (2015). 
Therapeutic strategies to improve drug delivery across the blood-brain barrier. 
Neurosurgery Focus, 38(3), 1–19. 

Beier, D., Schulz, J. B., & Beier, C. P. (2011). Chemoresistance of glioblastoma cancer stem 
cells - much more complex than expected. Molecular Cancer, 10(1), 1–11. 
doi:10.1186/1476-4598-10-128 

Berkelman, T., & Stenstedt, T. T. (1998). 2-D Electrophoresis using immobilized pH 
gradients - Principles and Methods. Amersham Biosciences. Uppsala: Amersham 
Biosciences. 

Bernstein, B. W., & Bamburg, J. R. (2010). ADF/Cofilin: A functional node in cell biology. 
Trends in Cell Biology, 20(4), 187–195. doi:10.1016/j.tcb.2010.01.001 

Bhat, M., Robichaud, N., Hulea, L., Sonenberg, N., Pelletier, J., & Topisirovic, I. (2015). 
Targeting the translation machinery in cancer. Nature Reviews Drug Discovery, 14(4), 
261–278. doi:10.1038/nrd4505 

Cao, R., Chen, Q., Hou, X., Chen, H., Guan, H., Ma, Y., … Xu, A. (2004). Synthesis, acute 
toxicities, and antitumor effects of novel 9-substituted β-carboline derivatives. 
Bioorganic and Medicinal Chemistry, 12(17), 4613–4623. 
doi:10.1016/j.bmc.2004.06.038 

Cao, R., Guan, X., Shi, B., Chen, Z., Ren, Z., Peng, W., & Song, H. (2010). Design, synthesis 
and 3D-QSAR of beta-carboline derivatives as potent antitumor agents. European 
Journal of Medicinal Chemistry, 45(6), 2503–2515. doi:10.1016/j.ejmech.2010.02.036 

Cao, R., Peng, W., Chen, H., Ma, Y., Liu, X., Hou, X., … Xu, A. (2005). DNA binding 
properties of 9-substituted harmine derivatives. Biochemical and Biophysical Research 
Communications, 338(3), 1557–1563. doi:10.1016/j.bbrc.2005.10.121 

Carvalho, A., Chu, J., Meinguet, C., Kiss, R., Vandenbussche, G., Masereel, B., … Mathieu, 
V. (2017). Harmine-derived beta-carboline displays anti-cancer effects in vitro by 
targeting protein synthesis of cancer cells. European Journal of Pharmacology, 805, 25–
35. doi:10.1016/j.ejphar.2017.03.034 

Castello, A., Fischer, B., Eichelbaum, K., Horos, R., Beckmann, B. M., Strein, C., … Hentze, 
M. W. (2012). Insights into RNA Biology from an Atlas of Mammalian mRNA-Binding 
Proteins. Cell, 149(6), 1393–1406. doi:10.1016/j.cell.2012.04.031 

Chen, Q., Chao, R., Chen, H., Hou, X., Yan, H., Zhou, S., … Xu, A. (2004). Antitumor and 
neurotoxic effects of novel harmine derivatives and structure-activity relationship 
analysis. International Journal of Cancer, 114, 675–682. doi:10.1002/ijc.20703 

Chen, W., Smeekens, J. M., & Wu, R. (2016). Systematic study of the dynamics and half-
lives of newly synthesized proteins in human cells. Chemical Science, 7(2), 1393–1400. 
doi:10.1039/C5SC03826J 

Cuesta, R., Laroia, G., & Schneider, R. J. (2000). Chaperone Hsp27 inhibits translation during 
heat shock by binding eIF4G and facilitating dissociation of cap-initiation complexes. 
Genes and Development, 14(12), 1460–1470. doi:10.1101/gad.14.12.1460 

Dai, F., Chen, Y., Song, Y., Huang, L., Zhai, D., Dong, Y., … Yi, Z. (2012). A Natural Small 
Molecule Harmine Inhibits Angiogenesis and Suppresses Tumour Growth through 
Activation of p53 in Endothelial Cells. PLoS ONE, 7(12), e52161. 
doi:10.1371/journal.pone.0052162 

Delporte, C., Boudjeltia, K. Z., Noyon, C., Furtmüller, P. G., Nuyens, V., Slomianny, M.-C., 
… Van Antwerpen, P. (2014). Impact of myeloperoxidase-LDL interactions on enzyme 



22 
 

activity and subsequent posttranslational oxidative modifications of apoB-100. Journal 
of Lipid Research, 55(4), 747–57. doi:10.1194/jlr.M047449 

Deutsch, E. W., Lam, H., & Aebersold, R. (2008). Data analysis and bioinformatics tools for 
tandem mass spectrometry in proteomics. Gene Expression, 33, 18–25. 
doi:10.1152/physiolgenomics.00298.2007. 

Dias, M. H., Kitano, E. S., Zelanis, A., & Iwai, L. K. (2016). Proteomics and drug discovery 
in cancer. Drug Discovery Today, 21(2), 264–277. doi:10.1016/j.drudis.2015.10.004 

Fothergill-Gilmore, L. A., & Watson, H. C. (1990). Phosphoglycerate mutases. Biochemlcal 
Society Transactions, 18, 190–193. 

Frosina, G. (2009). DNA repair and resistance of gliomas to chemotherapy and radiotherapy. 
Molecular Cancer Research : MCR, 7(7), 989–99. doi:10.1158/1541-7786.MCR-09-
0030 

Gao, H., Yu, B., Yan, Y., Shen, J., Zhao, S., Zhu, J., … Gao, Y. (2013). Correlation of 
expression levels of ANXA2, PGAM1, and CALR with glioma grade and prognosis. 
Journal of Neurosurgery, 118(4), 846–53. doi:10.3171/2012.9.JNS112134 

Gimenez, M., Marie, S. K. N., Oba-Shinjo, S., Uno, M., Izumi, C., Oliveira, J. B., & Rosa, J. 
C. (2015). Quantitative proteomic analysis shows differentially expressed HSPB1 in 
glioblastoma as a discriminating short from long survival factor and NOVA1 as a 
differentiation factor between low-grade astrocytoma and oligodendroglioma. BMC 
Cancer, 15(481), 1–13. doi:10.1186/s12885-015-1473-9 

Görg, A., Obermaier, C., Boguth, G., Harder, A., Scheibe, B., Wildgruber, R., & Weiss, W. 
(2000). The current state of two-dimensional electrophoresis with immobilized pH 
gradients. Electrophoresis, 21(6), 1037–1053. doi:10.1002/(SICI)1522-
2683(20000401)21:6<1037::AID-ELPS1037>3.0.CO;2-V 

Guo, L., Ma, Q., Chen, W., Fan, W., Zhang, J., & Dai, B. (2019). Synthesis and biological 
evaluation of novel N - heterobivalent β -carbolines as angiogenesis inhibitors. Journal 
of Enzyme Inhibition and Medicinal Chemistry, 34(1), 375–387. 
doi:10.1080/14756366.2018.1497619 

Han, X., Zhang, J., Guo, L., Cao, R., Li, Y., Li, N., … Si, S. (2012). A Series of Beta-
Carboline Derivatives Inhibit the Kinase Activity of PLKs. PLoS ONE, 7(10). 
doi:10.1371/journal.pone.0046546 

Haudek, K. C., Patterson, R. J., & Wang, J. L. (2010). SR proteins and galectins: What’s in a 
name? Glycobiology, 20(10), 1199–1207. doi:10.1093/glycob/cwq097 

Hershey, J. W. B., Sonenberg, N., & Mathews, M. B. (2012). Principles of Translational 
Control: An Overview. Cold Spring Harbor Perspectives in Biology, 4, a011528. 
doi:10.1101/cshperspect.a009829 

Itoua Maïga, R., Cencic, R., Chu, J., Waller, D. D., Brown, L. E., Devine, W. G., … Pelletier, 
J. (2019). Oxo-aglaiastatin-Mediated Inhibition of Translation Initiation. Scientific 
Reports, 9(1), 1265. doi:10.1038/s41598-018-37666-5 

Jakubowicz-Gil, J., Langner, E., Bądziul, D., Wertel, I., & Rzeski, W. (2013). Silencing of 
Hsp27 and Hsp72 in glioma cells as a tool for programmed cell death induction upon 
temozolomide and quercetin treatment. Toxicology and Applied Pharmacology, 273(3), 
580–9. doi:10.1016/j.taap.2013.10.003 

Klein-Júnior, L. C., Viaene, J., Salton, J., Koetz, M., Gasper, A. L., Henriques, A. T., & 
Vander Heyden, Y. (2016). The use of chemometrics to study multifunctional indole 
alkaloids from Psychotria nemorosa (Palicourea comb. nov.). Part I: Extraction and 
fractionation optimization based on metabolic profiling. Journal of Chromatography A, 
1463, 60–70. doi:10.1016/j.chroma.2016.07.030 

Ko, H. R., Chang, Y. S., Park, W. S., & Ahn, J.-Y. (2016). Opposing roles of the two 
isoforms of ErbB3 binding protein 1 in human cancer cells. International Journal of 



23 
 

Cancer, 139(6), 1202–1208. doi:10.1002/ijc.30165 
Kogan, G. L., & Gvozdev, V. A. (2014). Multifunctional nascent polypeptide-associated 

complex (NAC). Molecular Biology, 48(2), 189–196. doi:10.1134/S0026893314020095 
Kunkle, B. W., Yoo, C., & Roy, D. (2013). Reverse engineering of modified genes by 

Bayesian network analysis defines molecular determinants critical to the development of 
glioblastoma. PloS One, 8(5), e64140. doi:10.1371/journal.pone.0064140 

Kusumawidjaja, G., Kayed, H., Giese, N., Bauer, A., Erkan, M., Giese, T., … Kleeff, J. 
(2007). Basic transcription factor 3 (BTF3) regulates transcription of tumor-associated 
genes in pancreatic cancer cells. Cancer Biology and Therapy, 6(3), 367–376. 
doi:10.4161/cbt.6.3.3704 

Ladner, R. D., Lynch, F. J., Groshen, S., Xiong, Y. P., Sherrod, A., Caradonna, S. J., … Lenz, 
H. (2000). dUTP Nucleotidohydrolase Isoform Expression in Normal and Neoplastic 
Tissues: Association with Survival and Response to 5-Fluorouracil in Colorectal Cancer. 
Cancer Research, 60, 3493–3503. 

Le Mercier, M., Fortin, S., Mathieu, V., Kiss, R., & Lefranc, F. (2010). Galectins and 
gliomas. Brain Pathology, 20(1), 17–27. doi:10.1111/j.1750-3639.2009.00270.x 

Li, S., Wang, A., Gu, F., Wang, Z., Tian, C., Qian, Z., … Gu, Y. (2015). Novel harmine 
derivatives for tumor targeted therapy. Oncotarget, 6(11), 8988–9001. 

Luo, W., Liu, J., Li, J., Zhang, D., Liu, M., Addo, J. K., … Huang, C. (2008). Anti-cancer 
effects of JKA97 are associated with its induction of cell apoptosis via a Bax-dependent 
and p53-independent pathway. Journal of Biological Chemistry, 283(13), 8624–8633. 
doi:10.1074/jbc.M707860200 

Ma, Q., Chen, W., & Chen, W. (2016). Anti-tumor angiogenesis effect of a new compound: 
B-9-3 through interference with VEGFR2 signaling. Tumor Biology, 37(5), 6107–6116. 
doi:10.1007/s13277-015-4473-0 

Mäkelä, K. S., Haapasalo, J. A., Ilvesaro, J. M., Parkkila, S., Paavonen, T., & Haapasalo, H. 
K. (2014). Hsp27 and its expression pattern in diffusely infiltrating astrocytomas. 
Histology and Histopathology, 29(9), 1161–8. doi:10.14670/HH-29.1161 

Masuia, K., Caveneeb, W. K., & Mischel, P. S. (2016). Cancer metabolism as a central 
driving force of glioma pathogenesis. Brain Tumor Pathology, 33, 161–168. 
doi:10.1007/s10014-016-0265-5 

Matallana-Surget, S., Leroy, B., & Wattiez, R. (2010). Shotgun proteomics: concept, key 
points and data mining. Expert Review of Proteomics, 7(1), 5–7. doi:10.1586/epr.09.101 

Meinguet, C., Bruyère, C., Frédérick, R., Mathieu, V., Vancraeynest, C., Pochet, L., … 
Wouters, J. (2015). 3D-QSAR, Design, Synthesis and characterization of trisubstituted 
harmine derivatives with in vitro antiproliferative properties. European Journal of 
Medicinal Chemistry, 94, 45–55. doi:10.1016/j.ejmech.2015.02.044 

Naryzhny, S. N., Ronzhina, N. L., Mainskova, M. A., Belyakova, N. V., Pantina, R. A., & 
Filatov, M. V. (2014). Development of barcode and proteome profiling of glioblastoma. 
Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry, 8(3), 243–251. 
doi:10.1134/S1990750814030111 

Nguyen, H. H., Volkov, A. N., Vandenbussche, G., Tompa, P., & Pauwels, K. (2018). In vivo 
biotinylated calpastatin improves the affinity purification of human m-calpain. Protein 
Expression and Purification, 145, 77–84. doi:10.1016/j.pep.2018.01.002 

Odreman, F., Vindigni, M., Gonzales, M. L., Niccolini, B., Candiano, G., Zanotti, B., … 
Vindigni, A. (2005). Proteomic studies on low- and high-grade human brain 
astrocytomas. Journal of Proteome Research, 4(3), 698–708. doi:10.1021/pr0498180 

Ostrom, Q. T., Bauchet, L., Davis, F. G., Deltour, I., Fisher, J. L., Langer, C. E., … 
Barnholtz-Sloan, J. S. (2014). The epidemiology of glioma in adults: A state of the 
science review. Neuro-Oncology, 16(7), 896–913. doi:10.1093/neuonc/nou087 



24 
 

Paw, I., Carpenter, R. C., Watabe, K., Debinski, W., & Lo, H.-W. (2015). Mechanisms 
regulating glioma invasion. Cancer Letters, 362(1), 1–7. 
doi:10.1016/j.canlet.2015.03.015 

Pozo, N., Zahonero, C., Fernández, P., Liñares, J. M., Ayuso, A., Hagiwara, M., … Sánchez-
Gómez, P. (2013). Inhibition of DYRK1A destabilizes EGFR and reduces EGFR-
dependent glioblastoma growth. Journal of Clinical Investigation, 123(6), 2475–2487. 
doi:10.1172/JCI63623 

Radhakrishnan, A., Nanjappa, V., Raja, R., Sathe, G., Puttamallesh, V. N., Jain, A. P., … 
Chatterjee, A. (2016). A dual specificity kinase, DYRK1A, as a potential therapeutic 
target for head and neck squamous cell carcinoma. Scientific Reports, 6(1), 36132. 
doi:10.1038/srep36132 

Roy, L., LaBoissière, S., Abdou, E., Thibault, G., Hamel, N., Taheri, M., … Paiement, J. 
(2010). Proteomic analysis of the transitional endoplasmic reticulum in hepatocellular 
carcinoma: An organelle perspective on cancer. Biochimica et Biophysica Acta - 
Proteins and Proteomics, 1804(9), 1869–1881. doi:10.1016/j.bbapap.2010.05.008 

Ruggero, D. (2013). Translational Control in Cancer Etiology. Cold Spring Harbor 
Perspectives in Biology, 5, a012336. doi:10.1101/cshperspect.a015891 

Sanzey, M., Abdul Rahim, S. A., Oudin, A., Dirkse, A., Kaoma, T., Vallar, L., … Niclou, S. 
P. (2015). Comprehensive analysis of glycolytic enzymes as therapeutic targets in the 
treatment of glioblastoma. PloS One, 10(5), e0123544. 
doi:10.1371/journal.pone.0123544 

Seifert, A., Allan, L. A., & Clarke, P. R. (2008). DYRK1A phosphorylates caspase 9 at an 
inhibitory site and is potently inhibited in human cells by harmine. FEBS Journal, 
275(24), 6268–6280. doi:10.1111/j.1742-4658.2008.06751.x 

Smit, S., Govorukhina, N. I., Hoefsloot, H. C. J., Horvatovich, P. L., Suits, F., Zee, A. van 
der, … Smilde, A. K. (2009). Enhancing classification performance: covariance matters. 
In S. Smit (Ed.), Statistical data processing in clinical proteomics (pp. 81–92). 
Amsterdam: UvA-DARE (Digital Academic Repository) Statistical. 

Squatrito, M., Mancino, M., Sala, L., & Draetta, G. F. (2006). Ebp1 is a dsRNA-binding 
protein associated with ribosomes that modulates eIF2α phosphorylation. Biochemical 
and Biophysical Research Communications, 344(3), 859–868. 
doi:10.1016/j.bbrc.2006.03.205 

Strickland, M., & Stoll, E. A. (2017). Metabolic Reprogramming in Glioma. Frontiers in Cell 
and Developmental Biology, 5(43), 1–32. doi:10.3389/fcell.2017.00043 

Strong, J. M., Garces, J., Vera, J. C., Mathkour, M., Emerson, N., & Ware, M. L. (2015). 
Brain Tumors: Epidemiology and Current Trends in Treatment. Journal of Brain Tumors 
& Neurooncology, 1(1), 1–21. doi:10.4172/2475-3203.1000102 

Szklarczyk, D., Morris, J. H., Cook, H., Kuhn, M., Wyder, S., Simonovic, M., … von Mering, 
C. (2017). The STRING database in 2017: quality-controlled protein–protein association 
networks, made broadly accessible. Nucleic Acids Research, 45(D1), D362–D368. 
doi:10.1093/nar/gkw937 

Vander Heyden, Y., Nijhuis, A., Smeyers-Verbeke, J., Vandeginste, B. G. M., & Massart, D. 
L. (2001). Guidance for robustness/ruggedness tests in method validation. Journal of 
Pharmaceutical and Biomedical Analysis, 24(5–6), 723–753. doi:10.1016/S0731-
7085(00)00529-X 

Vertessy, B. G., & Toth, J. (2009). Keeping uracil out of DNA: physiological role, structure 
and catalytic mechanism of dUTPases. Accounts of Chemical Research, 42(1), 97–106. 
doi:10.1021/ar800114w 

Wu, J., Liu, T., Rios, Z., Mei, Q., Lin, X., & Cao, S. (2017). Heat Shock Proteins and Cancer. 
Trends in Pharmacological Sciences, 38(3), 226–256. doi:10.1016/j.tips.2016.11.009 



25 
 

Xie, J., Merrett, J. E., Jensen, K. B., & Proud, C. G. (2019). The MAP kinase-interacting 
kinases (MNKs) as targets in oncology. Expert Opinion on Therapeutic Targets, 16, 1–
13. doi:10.1080/14728222.2019.1571043 

Zhang, G., Cao, R., Guo, L., Ma, Q., Fan, W., Chen, X., … Ren, Z. (2013). Synthesis and 
structure-activity relationships of N2-alkylated quaternary beta-carbolines as novel 
antitumor agents. European Journal of Medicinal Chemistry, 65, 21–31. 
doi:10.1016/j.ejmech.2013.04.031 

Zhang, H., Sun, K., Ding, J., Xu, H., Zhu, L., Zhang, K., … Sun, W. (2014). Harmine induces 
apoptosis and inhibits tumor cell proliferation, migration and invasion through down-
regulation of cyclooxygenase-2 expression in gastric cancer. Phytomedicine, 21(3), 348–
355. doi:10.1016/j.phymed.2013.09.007 

Zhang, X.-F., Sun, R., Jia, Y., Chen, Q., Tu, R.-F., Li, K., … Cao, R. (2016). Synthesis and 
mechanisms of action of novel harmine derivatives as potential antitumor agents. 
Scientific Reports, 6(1), 33204. doi:10.1038/srep33204 

 



26 
 

Table 1 Supervised SIMCA classification results, sensitivity and specificity attributed to each class (experimental condition). 

Class number Type of samples Number of samples 
Correct classification 

(Cross validation)
Sensitivity Specificity 

1 CT – Non-treated 15 15 1.00 0.98 

2 15h - 0.1 µM 15 13 0.87 1.00 

3 15h - 1.0 µM 15 13 0.87 0.95 

4 24h - 0.1 µM 14 10 0.71 1.00 

5 24h - 1.0 µM 12 10 0.83 0.90 

          Total 71 61 - - 
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Table 2 Proteins identified in the gel-based approach (2-DE), their regulation and information 
from sequencing. Proteins highlighted in grey were also found in the shotgun approach 
dataset. 

Protein name 

Regulation 
in CM16 
treated 
Hs683 
cells

Swiss-
Prot ID 

Mass 
(kDa)/pI 

Mascot 
score 

(sequence 
query 

search) 

% C 
(sequence 
coverage)

Heat shock protein beta-1 down P04792 22.78/5.98 779 75 

Cofilin-1 down P23528 18.50/8.22 264 59 

Transcription factor BTF3 down P20290 22.17/9.41 785 53 

Phosphoglycerate mutase 1 down P18669 28.80/6.67 492 45 

Galectin-1 up P09382 14.71/5.34 284 38 

Keratin, type I cytoskeletal 
18 

down P05783 48.06/534 790 42 

Deoxyuridine 5'-
triphosphate 

nucleotidohydrolase, 
mitochondrial 

down P33316 26.56/9.46 405 26 

Proliferation-associated 
protein 2G4/ Ebp1 

up Q9UQ80 43.79/6.13 767 29 
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Legends to figures 

Fig. 1 a chemical structure of CM16.  b Overlay of the average fingerprint TIC 

chromatograms of the samples for each condition (Time x Peak intensity) used in the 

unsupervised and supervised analyses. Outliers were identified visually when looking at the 

overlapped profiles of each run and excluded for further data analysis (data not shown). 

Fig. 2 Results of the unsupervised analysis a Dendrograms obtained with the TIC of all 

conditions with color code attributed to the CM16 treatments. The numbers on the x axis 

correspond to the samples injected (1-71). The three replicate injections of a sample are 

clustered together (e.g. 16-17-18 are three injections of one 15 h-1.0 µM sample). b PC2-PC3 

score plot of the TIC of all conditions with color code attributed to the CM16 treatments. The 

black, orange and purple ellipses indicate the clustering tendency of the untreated control 

samples and of those treated with 0.1 µM and 1 µM CM16, respectively. c Graphical 

representation of the effects at each time point (effect plot), presented as the difference 

between the mean TIC profile of samples treated by CM16 for 15 h at 1 µM and the non-

treated samples (horizontal solid lines: critical effect values obtained by Dong’s algorithm). d 

and e Loadings of the original variables to PC2 and PC3, respectively. Arrows indicate the 

peaks on the loadings, detected around 20 min (PC2) and between 60-80 (PC3), that were also 

indicated as significant effects in the differential TIC profile effect plot in 2c. 

Fig. 3 Networking of the twelve genes linked to CM16 effects in cancer cells. Node in red 

showing the genes identified as enriched for RNA binding. HSPB1, PA2G4 (Ebp1) and the 

initiation factors seem to directly participate in the protein synthesis regulation. Association of 

HspB1, dUTPase (DUT) and cofilin 1 (CFL1) and PA2G4, EIF1AX, EIF3E, EIF3H and 

EIF2A is also shown through the connecting lines. They are linked by known interaction as 

experimentally determined (pink), as well association from text mining (yellow), co-
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expression (black), gene neighborhood (green) and curated databases (blue). Figure generated 

with STRING (https://string-db.org). 
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