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abstract

Motivation: The solubility of a protein is often decisive for its proper functioning. Lack
of solubility is a major bottleneck in high-throughput structural genomic studies and in
high-concentration protein production, and the formation of protein aggregates causes a
wide variety of diseases. Since solubility measurements are time-consuming and expensive,
there is a strong need for solubility prediction tools.
Results: We have recently introduced solubility-dependent distance potentials that are
able to unravel the role of residue-residue interactions in promoting or decreasing protein
solubility.Here, we extended their construction by defining solubility-dependent potentials
based on backbone torsion angles and solvent accessibility, and integrated them, together
with other structure- and sequence-based features, into a random forest model trained
on a set of E. coli proteins with experimental structures andsolubility values. We thus
obtained the SOLart protein solubility predictor, whose most informative features turned
out to be folding free energy differences computed from our solubility-dependent statistical
potentials. SOLart performances are very good, with a Pearson correlation coefficient
between experimental and predicted solubility values of 0.7 both in the training dataset and
on an independent set of S. Cerevisiae proteins. On test sets of modeled structures, only a
limited drop in performance is observed. SOLart can thus be used with both high-resolution
and low-resolution structures, and clearly outperforms state-of-art solubility predictors. It
is available through a user-friendly webserver, which is easy to use by non-expert scientists.
Availability: The SOLart webserver is freely available at babylone.ulb.ac.be/SOLART/

1. Introduction

Solubility and aggregation are crucial properties of proteins, which can either ensure
or prevent their correct functioning (Trevino et al., 2008). Obtaining a thorough under-
standing of these matters is becoming increasingly important, since protein solubilization
is required for improving a wide range of biotechnological and biopharmaceutical processes,
especially when high protein concentrations are demanded. Just to mention some of them,
protein solubility is frequently a serious bottleneck for the successful development of an-
tibody therapeutics, which often suffer from aggregation at the conditions in which they
are stored (Perchiacca and Tessier, 2012; Roberts, 2014), as well as in genome-wide struc-
tural analyses where about 80% of the total number of non-membrane proteins have been
estimated to have insolubility-related problems (Golovanov et al., 2004).
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In the context of recombinant protein production, the formation of insoluble inclusion
bodies, which are thought to contain clusters of different conformational states correspond-
ing to folded, misfolded and partially folded structures, frequently makes the procedure to
get bioactive proteins very challenging, involving first the solubilization of the inclusion
bodies followed by the native refolding of the proteins (Mart́ınez-Alonso et al., 2009; Singh
et al., 2015; Baneyx and Mujacic, 2004; Singh and Panda, 2005; Vallejo and Rinas, 2004).

Scarse solubility properties are also directly related to pathological conditions such as
the neurodegenerative Alzheimer and Parkinson diseases, whose hallmark is the progressive
accumulation of insoluble deposits, i.e β-amyloid and α-synuclein aggregates, respectively,
that become toxic and interfere with the normal cell functioning (Chiti and Dobson, 2006;
Bucciantini et al., 2002; Irvine et al., 2008; Ross and Poirier, 2004).

Reaching a full understanding of protein solubility mechanisms is particularly challeng-
ing, since solubility is a complex physicochemical property determined not only by various
intrinsic factors such as residue-residue interactions, protein flexibility, amino acid com-
position and hydrophobicity, but also by various extrinsic variables such as the pH, the
environmental temperature, the ionic strength and the protein concentration.

During the past decades, many efforts have been devoted to investigate the mechanisms
and the factors that influence protein solubility (Trainor et al., 2017). It has been reported
that smaller proteins tend to have a higher solubility when overexpressed in E. Coli than
longer proteins (Wilkinson and Harrison, 1991). The amino acid composition also influences
protein solubility. For example, Asp, Glu and Ser contribute more favorably to solubility
than other hydrophilic amino acids (Niwa et al., 2009; Chan et al., 2013); the values of
the Lys/Arg and Glu/Asp ratios correlate with solubility (Warwicker et al., 2013; Chan
et al., 2013); and aromatic-poor proteins tend to be more soluble than those enriched in
aromatics (Niwa et al., 2009; Hebditch et al., 2017).

Furthermore, protein-protein and protein-solvent interactions have been shown to play
key roles in the solubility properties. In particular, solvent exposed residues have some
characteristics that are well correlated with solubility: insoluble proteins tend to have
larger surface patches carrying a net positive charge than soluble proteins (Chan et al.,
2013), which are characterized instead by a more negatively charged surface (Kramer et al.,
2012).

In a recent work (Hou et al., 2018), we showed that among all residue-residue inter-
actions, the Lys-containing salt bridges and the aliphatic interactions contribute more
strongly than others to promote solubility, whereas interactions involving delocalized π-
electrons favor aggregation (e.g. aromatic, His-π, cation-π, amino-π and anion-π inter-
actions). These different findings demonstrate the important potentiality of structural
information in the understanding of the biophysical mechanisms underlying solubility data.

Several computational methods, mostly based on machine learning techniques, have re-
cently been developed to predict protein solubility (Smialowski et al., 2006, 2012; Idicula-
Thomas et al., 2005; Magnan et al., 2009; Agostini et al., 2014; Hebditch et al., 2017;
Khurana et al., 2018; Hirose and Noguchi, 2013; Sormanni et al., 2015). The large major-
ity of the features that they use are extracted from the amino acid sequences, such as the
sequence length, the amino acid composition, the absolute charge, the isoelectric point, the
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aliphatic index and the average hydropathy. Some other features are associated to struc-
tural properties, such as β-stand propensities or fractions of exposed and buried residues.
However, these features are not assigned from the structure, but rather predicted from the
sequence.

Structure-based techniques to predict solubility make use of extensive molecular dy-
namics simulations to evaluate the free energy difference between solution and aggregation
phases (Tjong and Zhou, 2008). However these methods are computationally expensive
and cannot be certainly applied to large-scale investigations of the protein solubility.

In summary, the current prediction methods tend to overlook structural data and require
only the sequence as input. Clearly, considering features derived from experimental 3-
dimensional (3D) structures adds valuable information, which should in principle boost
the methods’ performances. However, requiring 3D structures decreases the applicability
of the predictor, as they are not always available. But this drawback is loosing importance,
since homology modeling tools provide always better structural models that can safely be
used by some predictors. Hence, progress is definitely expected in the solubility prediction
field from the utilization of 3D structures.

In this paper, we fully exploited protein structure data through the use of statistical po-
tentials, which have largely proven to be successful in many studies ranging from structure
prediction to mutant analyses (see e.g.Kocher et al. (1994); Folch et al. (2010); Dehouck
et al. (2009); Pucci et al. (2016)). More precisely, we used our recently developed solubility-
dependent statistical potentials (Hou et al., 2018) to discriminate between residue pair in-
teractions that favor or disfavor protein solubility. In addition to these energetic features,
we considered a series of other structure-based features and of commonly used sequence
features. These were integrated into a predictor with the help of a random forest regression
algorithm, so as to predict protein solubility with improved accuracy. Our predictor, called
SOLart, is made freely available online at http://babylone.ulb.ac.be/SOLART/.

2. Materials and Methods

2.1. Protein solubility definition. We used as a definition of solubility S (in %) the
ratio of the supernatant fraction obtained after centrifugation of the translation mixture
over the total concentration of the overexpressed protein (Niwa et al., 2009). It ranges
from 0% to 130%. It is generally different from the physical solubility S0, measured in g/l
and defined as the concentration of protein in a saturated solution that is in equilibrium
with a solid phase.
S0 is difficult to measure and strongly depends on the type of precipitant used to perform

the experiment and on the environmental variables such as the temperature. This makes
the construction of a large dataset of S0 values for training and testing bioinformatic models
almost impossible. We thus chose to use the S definition that can be measured and studied
in large-scale investigations (Niwa et al., 2009; Uemura et al., 2018).

2.2. Protein datasets. To train and test SOLart, we considered two datasets of proteins
that were expressed with the cell-free expression system called PURE (Shimizu et al., 2005)
and whose solubilities S were measured. These are EsolEcoli and EsolScerevisiae, which
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contain the solubilities of about 70% of the entire E. coli K-12 strain proteome (Niwa
et al., 2009), and of around 500 cytosolic proteins from S. cerevisiae (Uemura et al., 2018),
respectively.

We used the functional and structural annotation server EcoGene (Zhou and Rudd, 2013)
and the UNIPROT server (Apweiler et al., 2004) to map the gene accession ids of every
entry in these datasets onto the corresponding structures from the Protein Data Bank
(PDB) (Berman et al., 2000). Only X-ray structures with maximum 2.5 Å resolution,
which have a sequence identity of 100% and at least 90% coverage with the associated Esol
sequences, were selected.

We also considered the remaining proteins from the Esol datasets, which have no experi-
mental structure. We collected structural models for these entries from the SWISS-MODEL
repository (Bienert et al., 2016). Only the models constructed using a template with a good
resolution X-ray structure (≤ 2.5 Å) and at least 30% sequence identity and 50% coverage
with the query sequence were kept.

We first focused on the set of X-ray structures from E. coli. We used the protein-culling
server PISCES (Wang and Dunbrack Jr, 2003) to select proteins with pairwise sequence
identity of 25% at most. This dataset, called DEcoli , contains 406 well resolved protein
structures with experimental solubility values and low pairwise sequence identity. It is
used as the SOLart training set.

Out of the modeled structures from E. coli, we dropped those that have a sequence
identity of more than 40% with a protein from DEcoli , and filtered out sequences with more
than 40% pairwise identity. We obtained in this way the MEcoli dataset containing 679
protein models, which were used as a first test set.

We used the same procedure on the datasets of X-ray and modeled structures from S.
cerevisiae proteins: we removed the entries that have more than 40% sequence identity
with the training set DEcoli , and finally filtered out proteins with more than 40% pairwise
sequence identity. In this way, we obtained a third test set DScerevisiae composed of 70 X-
ray structures and a fourth test set MScerevisiae with 64 structures obtained via homology
modeling.

The proteins that are contained in the four datasets are listed in Tables S1 of Supple-
mentary Material, with some additional information.

Our datasets could be suspected to be biased and to contain only some types of confor-
mations. To check that they do not suffer from this problem, we mapped all structures from
our datasets onto the corresponding CATH categories (Dawson et al., 2016). As shown
in Table 1, the 406 X-ray structures of DEcoli belong to 344 homologous superfamilies,
which cover all four classes, 59% of the architectures and 15% of the folds. The three test
datasets DScerevisiae , MEcoli and MScerevisiae do not cluster into the same superfamilies.
This indicates that the protein sets are unbiased, and not specifically enriched in certain
superfamilies but tend to cover the full fold universe.
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DEcoli MEcoli DScerevisiae MScerevisiae

(406) (679) (70) (64)
n % n % n % n %

C 4 100 4 100 3 75 3 75
A 24 59 26 63 15 37 15 37
T 214 15 244 18 55 4 54 4
H 344 6 458 7 70 1 64 1

Table 1. Mapping of the proteins of our datasets onto CATH cat-
egories (Dawson et al., 2016). The numbers in parentheses correspond
to the amount of proteins in the corresponding dataset. ‘C’ stands for Class,
‘A’ for Architecture, ‘T’ for Topology or fold, and ‘H’ for Homologous su-
perfamily. ‘n’ is the number of C, A, T or H categories that have at least
member in the dataset and ’%’ the fraction of these categories represented
in the dataset.

3. Results

3.1. Features. We used a series of features to set up the SOLart solubility predictor,
which are described below.
• Statistical potentials

We applied and extended the solubility-dependent statistical potentials recently introduced
in (Hou et al., 2018), which have proven to yield an objective and informative description
of the interactions that modulate protein solubility properties. The idea was to divide
the dataset DEcoli into two subsets of equal size, called Dinsol

Ecoli and Dsol
Ecoli , which contain

aggregation-prone and soluble proteins, respectively, and to derive distance potentials from
each of the the two subsets (see (Hou et al., 2018) for details). In this way, we defined two
distinct potentials referred to as ”insoluble” and ”soluble”.

Here we generalized this construction to other types of potentials involving various se-
quence and structure elements. In particular, for potentials based on one sequence element
s and one structure element c, we have:

∆W insol(c, s) = −kBT ln
P (c, s,Dinsol

Ecoli)

P (s,Dinsol
Ecoli)P (c,DEcoli)

∆W sol(c, s) = −kBT ln
P (c, s,Dsol

Ecoli)

P (s,Dsol
Ecoli)P (c,DEcoli)

(1)

where kB is the Boltzmann constant and T the absolute temperature. The sequence de-
scriptor s is an amino acid type, and the structure descriptor c is either an inter-residue
distance d computed between the average geometric centers of the heavy side chain atoms, a
backbone torsion angle domain t, or a solvent accessibility a computed as the ratio between
the solvent accessibility of a residue in a given structure and in an extended Gly-X-Gly
tripeptide conformation (see e.g. (Kocher et al., 1994; Rooman et al., 1991; Pucci et al.,
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2014)). P (s, c,D) is the probability of joint occurrence of the sequence and structure el-
ements s and c in the dataset D, and similarly for the probability functions P (s,D) and
P (c,D). These probabilities were estimated in terms of the number of occurrences of the
sequence-structure associations in D.

We constructed eleven solubility-dependent statistical potentials from different combi-
nations of s and c elements, listed in Table 2. We named the potentials according to the
type and number of sequence and structure descriptors. For example, ”sa” represents the
potential in which one amino acid type and one solvent accessibility are specified, whereas
”sds” describes the potential in which two amino acid types and their interresidue distance
are given.

We used these different potentials to compute folding free energy contributions of target
proteins. As an example, the folding free energies computed from the soluble and insoluble
ssd distance potentials were defined as:

(2) ∆Gαsds =

N∑
i=1

N∑
j=i+2

∆W (si, s
′
j , dij ,DαEcoli)

where α is equal to ”sol” or ”insol”, si and s′j are two residue types at positions i and j
along the sequence, dij is their spatial distance, and N is the number of amino acids of the
target protein. We then computed the folding free energy difference:

(3) ∆∆Gsds = ∆Gsol
sds −∆Ginsol

sds

Using analogous relations, we computed the folding free energy ∆Gα and the folding free
energy difference ∆∆G for each potential listed in Table 2.

• Protein size and accessible surface area
We considered three global characteristics of the proteins, which are the protein length (Λ),
its solvent accessible surface area (SAcc) estimated with an in-house program (Dalkas et al.,
2014), and its solvent accessible surface area divided by the protein length (SAcc/Λ); in the
latter case we used the length of the sequence whose structure has been determined. Note
that the former feature is sequence-based, and that the latter two require the knowledge
of the 3D structure.
• Secondary structure content

Another series of structure-based features were added, which are the fraction of protein
residues that are in α-helical, β-strand or coil (called here γ) conformation. We distin-
guished between the α, β and γ residues that are buried in the protein core (solvent acces-
sibility ≤ 20%), moderately buried (between 20 and 50%), and solvent exposed (≥ 50%).
Our in-house program (Dalkas et al., 2014) was used to assign the secondary structure and
solvent accessibility.
• Amino acid composition

We integrated 20 purely sequence-based features, corresponding to the fraction of each
of the 20 amino acid present in a protein. We also considered the fraction of amino acid
groups, i.e. positively charged residues (K+R), negatively charged residues (D+E), charged
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residues (K+R+D+E) aromatic residues (F+W+Y), as well as the difference between the
fractions of K and R (K-R), D and E (D-E), and K+R and D+E (K+R-D-E). We combined
these features with the solvent accessibility and defined three categories per amino acid
or amino acid group, according to whether the residue is exposed, moderately buried or
buried. This yielded 81 additional structure-based features.

3.2. Feature selection. The next step consisted in selecting, out of the above-defined
28 purely sequence-based features and 103 structure-based features, the subset of features
that are the most informative for protein solubility. We used for that purpose the DEcoli

training set, which contains 406 non-redundant high-resolution X-ray structures of E. coli
proteins with low pairwise sequence identity and experimentally measured solubility (see
Methods). The feature selection was performed using the Boruta algorithm (Kursa et al.,
2010) implemented in the Caret package of R (Kuhn et al., 2008), a wrapper built around
the random forest classification algorithm (Liaw et al., 2002), which compares the impor-
tance of the real features with those of random (shadow) features using statistical testing.
The results are obtained as an average over several runs (here 1,000) of random forest.

We filtered out the features whose average importance measured by the Boruta algorithm
is lower than 1. This led us to keep a total of 52 features, which are shown in in Fig. 1
and Supplementary Information Fig. S1. Among these, 37 require the knowledge of the
structure.

Strikingly, the four top-ranked features are folding free energy differences ∆∆G com-
puted from our solubility-dependent potentials: the backbone torsion angle potential sst,
the solvent accessibility potential ssa and the two distance potentials sd and sds (see Ta-
ble 2). The next most important feature is the protein length Λ, followed by the solvent
accessibility and fractions of some amino acid types. The features based on the secondary
structure do not appear among the 30 top features, but some appear in the list of 52
selected features.

3.3. Setting up SOLart. The 52 selected features were combined to set up the SOLart
predictor of the solubility of target proteins on the basis of their 3D structures. We used for
that purposeDEcoli as training set, and the random forest regression algorithm implemented
in the R package (Liaw et al., 2002) to construct the model. This algorithm is a tree-based
system composed of multiple regression trees; the number of trees is here set to 500. The
training process starts with a randomly selected subset of the original dataset from which
a regression tree is constructed by the iterative partitioning of the data space into smaller
subsets. At each node of the tree, randomly sampled features are used; the number of
features depends on a global parameter ”mtry” taken here between 1 and 3. The optimal
mtry value is obtained through a grid search procedure as the one that yields the highest
correlation coefficient in the training dataset. The regression for a target protein is obtained
by averaging the predictions over all trees.

3.4. Performance of SOLart. SOLart’s performances were evaluated by three replicates
of a 10-fold cross validation procedure on the DEcoli training set. The replicates were
performed with different random divisions into folds, and the performances were computed

All rights reserved. No reuse allowed without permission. 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/600734doi: bioRxiv preprint first posted online Apr. 7, 2019; 

http://dx.doi.org/10.1101/600734


8 Q. HOU 1, J. M. KWASIGROCH 1, M. ROOMAN1,†, AND F. PUCCI1,2,†

as averages over the replicates. Our computational model reaches a good linear correlation
coefficient r = 0.67 between the SOLart solubility predictions and the experimental values,
and a root mean square error RMSE= 25% (Table 3).

We also tested SOLart on an independent test set that contains S. cerevisiae proteins
with a well resolved X-ray structure, grouped in the DScerevisiae set (see Methods). The
performance of SOLart on this set is evaluated by a linear correlation coefficient r = 0.70
and an RMSE = 23%. When 10% outliers are removed, the score increases up to r = 0.78
and RMSE = 19% (Table 3). The scores on this independent set are thus even better than
those obtained in cross validation on the training set DEcoli .

To further analyze this result, we estimated the importance of each feature in the SOLart
prediction using the varImp permutation scheme-based function (Kuhn et al., 2008). It
proceeds by randomly permuting each feature in turn in order to break its association
with the response, and then using it together with the remaining unpermuted features
for prediction. The decrease of the prediction accuracy is a measure of the importance
of the permuted feature. This measure estimates the weight of each individual feature in
the predictor, whereas the feature selection algorithm applied in section 3.2 measures the
feature relevance independently of the prediction model. They thus yield slightly different
rankings.

The 20 most important features of our prediction model are shown in Fig. 3. Inter-
estingly, almost all the features that correspond to folding free energy differences (∆∆G)
are in this list (9 out of 11), and the 6 top features are the ∆∆Gs computed from the
potentials ssa, sst, sd, sds, saa, and sa (Table 2). The two best ones, almost ex æquo, are
∆∆Gssa and ∆∆Gsst, which also ranked first in the feature selection (Fig. 1). They are
computed from the propensities of amino acid pairs to be associated with a certain solvent
accessibility range a or a certain backbone torsion angle domain t of a residue. These
propensities differ between soluble and aggregation-prone proteins, and it is this difference
which is measured through the ∆∆G features. The next best ranked features are ∆∆Gsd

and ∆∆Gsds, computed from the propensities of residue pairs to be separated by a certain
spatial distance, followed by two other accessibility potentials ∆∆Gsaa and ∆∆Gsa.

These folding free energy features require the protein structure as input. In fact, more
than half of the top 20 features are structure-based. This confirms the relevance of the
structural information in the determination of the protein solubility properties. The first
sequence-based feature ranks seventh. It is the sequence length Λ: in general, the smaller
the sequence, the most soluble the protein (Kramer et al., 2012). The two related features,
i.e. the solvent accessible surface area SAcc divided or not by the length, are also among
the top 20 features.

The remaining top 20 features are sequence-based: the difference between Lys and Arg
composition (K-R) which is positively correlated with solubility (Warwicker et al., 2013;
Hou et al., 2018), the percentage of aromatic residues (F+Y+W) which favor aggregation
(Niwa et al., 2009; Hou et al., 2018), and the total fraction of negatively charged residue
(D+E) that have also been shown to promote solubility (Niwa et al., 2009; Hou et al.,
2018). The next features are the composition in R and Q, which disfavors solubility, the
composition in E and K, which instead promotes solubility, and the difference between
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the fraction of positively and negatively charged residues (K+R-D-E), which augments
insolubilty.

Note that all these sequence-based features are also employed by the solubility predic-
tors available in the literature. However, in addition to these commonly used features, we
exploit a series of structure-based features among which the most important ones are ob-
tained from the newly developed solubility-dependent statistical potentials. These capture
the solubility properties in a more accurate way and represent the key instrument of our
approach.

3.5. Performance on modeled protein structures. SOLart has been shown to be
accurate when the 3D structure of the target protein is known. To enlarge its applicability,
we tested it on low-resolution structures obtained via homology modeling. We first applied
it to the MEcoli dataset containing 679 proteins from E. coli (see Methods). We obtained
a correlation of r = 0.51 and a RMSE of 28%, which is relatively good but lower than the
performance on DEcoli (Table 3). This drop is expected since we have to take into account
the possible inaccuracies in the modeled structures that have to be added to the error of
our computational method. After removing 10% outliers, the performance increases to
r = 0.66 and RMSE= 23%, and reaches thus the same performance as on good-resolution
structures.

As a last test set, we usedMScerevisiae that contains S. cerevisiae proteins with modeled
structures. The performance of SOLart on this set is given by r = 0.65 and RMSE = 24%,
and increases up to r = 0.71 and RMSE = 20% without 10% outliers. The scores are
thus much higher on this test set than on the E. coli test set, which suggests that some
structural protein models or experimental solubility values might be less accurate on the
the E. coli set than on the S. cerevisiae set.

Note that these tests are quite strict, since there is a low sequence similarity (¡40%)
between these test sets and the training set. We thus conclude that SOLart can reliably
be used to predict solubility not only for high-resolution experimental structures but also
for modeled or other low-resolution structures.

3.6. Comparison with other solubility prediction methods. The performance of
SOLart was compared with that of other solubility prediction methods on the combina-
tion of DScerevisiae and MScerevisiae sets, that group X-ray and modeled structures from S.
cerevisiae proteins, as these are independent test sets that are not included in the training
sets of any of the predictors. More precisely, we tested the methods Protein-SOL (Heb-
ditch et al., 2017), ccSOL (Agostini et al., 2014), CamSol (Sormanni et al., 2015), PROSO
(Smialowski et al., 2006), PROSO II (Smialowski et al., 2012) and SOLpro (Magnan et al.,
2009), by submitting to their respective webservers all the proteins from our test datasets.
Note that all these methods are sequence-based.

The linear correlation coefficient r between the solubility predictions and the experimen-
tal values for all these predictors are given in Table 4. Our method clearly outperforms the
competitors (r = 0.68 against r = 0.56 for the second best method). This demonstrates
the importance of using structural information.
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3.7. Webserver. We provided a freely available webserver interface for our prediction
method, which targets non-expert users (http://babylone.ulb.ac.be/ SOLART/index.php)
(Fig. 4). The input consists of the 3D structure of the target protein in PDB format. It can
be uploaded directly by the user or imported from the PDB (Berman et al., 2000) by typing
its 4-letter code. The webserver then provides a brief summary of some of the protein’s
characteristics and allows the user to choose one of the protein chains. The computation
starts after the query submission. All the structure-based free energy, secondary structure
and solvent accessibility features are first computed and then integrated with the other,
sequence-based, features.

In the output page, reached by following the link provided, the value of the predicted
scaled solubility S is given. If the score is close to zero, the target protein is predicted as
aggregation-prone and, when it is close to 130, as soluble. Moreover, to have an indication
of the contribution of each single feature to the solubility prediction of the target protein, we
also show a figure (Fig. 4) with the solubility predicted from each feature taken individually
and with all SOLart features together. The prediction with each single feature is computed
from a random forest model trained on the experimental solubility values of the DEcoli set.
This figure can be used as a source of inspiration to suggest the characteristics to modify
in view of modulating solubility.

Due to its simplicity of use, we expect that this webserver will be of interest for re-
searchers in academia and industry who are interested in modulating protein solubility
without needing any prior bioinformatic knowledge.

4. Discussion

We introduced SOLart as on of the first structure-based solubility prediction method,
which is able to predict quickly and accurately the protein solubility of a protein from its
experimental or modeled 3D structure.

SOLart employs a series of features, among which the sequence-based features that are
commonly used for solubility prediction and some classical structure-based features such
as secondary structure composition and solvent accessibility. In addition, it takes advan-
tage of the potentiality of solubility-dependent statistical potentials to discriminate the
residue interactions that favor aggregation or solubility. Besides the distance potentials
that have previously been analyzed (Hou et al., 2018), ten new solubility-dependent po-
tentials were introduced here, which describe the local propensities of residues to adopt
certain backbone torsion angle domains or to have certain solvent accessibility values in
soluble or aggregation-prone proteins. Note that the feature importance analyses show that
the torsion, solvent accessibility and distance potentials are the most important features
in the random forest regression prediction. The folding free energy differences computed
with these potentials are better correlated with solubility than other protein properties
analyzed in the literature such as protein length, isoelectric point and aliphatic index.

The performances of SOLart are high and robust: the linear correlation on both the
training dataset (in cross validation) and on three independent test sets almost reaches
0.7 on good-resolution X-ray structures and slightly lower on modeled structures. It is
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important to underline that SOLart can be used with modeled structures, as it largely
expands the domain of applicability of our tool. Furthermore, it performs similarly in the
training and testing datasets, which indicates its robustness and absence of bias towards
the training set. Finally, SOLart outperforms the state-of-the-art solubility predictors on
an independent dataset containing S. Cerevisiae proteins, with an increase of more thant
20% in the correlation coefficient between the predicted and the experimental values of the
solubility. This provides a strong demonstration of SOLart’s accuracy and usefulness.

Another advantage of SOLart is its fastness: it is able to predict the solubility of a
medium-size protein in less than one minute. This quality make this tool a perfect instru-
ment to investigate protein solubilty properties on a large scale.

Even though SOLart performances are good, there is still a lot of work needed to unravel
the various effects and to understand the biophysical mechanisms underlying solubility
and aggregation. One direction is to design better energy functions that describe more
efficiently these phenomena by enlarging the protein datasets with experimental solubility
values or modifying their original formulation. For example, the definition of the reference
state that is adequate for solubility properties is still an open problem. It has been argued
that interactions between unfolded conformations could lead to insoluble aggregates and,
indeed, inclusion bodies forming in heterologous expression in E. coli have been shown to
involve folded, unfolded, misfolded and partially folded proteins (Mart́ınez-Alonso et al.,
2009; Singh et al., 2015; Baneyx and Mujacic, 2004; Singh and Panda, 2005; Vallejo and
Rinas, 2004), which makes it challenging to disentangle the characteristics contributing to
its formation.

Note also that the definition of the solubility (S) used in this paper differs from the
physical definition of solubility (S0), measured in g/l, defined as the concentration of a
protein in a saturated solution that is in equilibrium with a solid phase. To get insights
into the relation between these two solubility definitions, they should systematically be
compared. This is currently impossible as no large datasets of S0 values are available due
to the difficulties in its experimental measurements.

A final perspective concerns industrial biotechnological applications, in which water is
replaced by other polar solvents or even by non-polar solvents. Understanding how the
protein solubility changes according to the type of solvent and being able to accurately
predict this change is a major target for computational tools. On the same footing, it
would also be important to understand and predict the influence of buffer salts and ionic
strength on the solubility properties of proteins.

In summary, SOLart is a new and efficient method to predict protein solubility. Thanks
to its user-friendly interface, both expert and non-expert users can use its predictions to an-
alyze and improve the solubility properties of targeted proteins involved in biotechnological
processes, where solubility is frequently a major bottleneck.
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Features Description SOLart
Statistical potentials

sd: ∆∆Gsd 1 amino acid, 1 distance �X
sds: ∆∆Gsds 2 amino acids, 1 distance �X
sa: ∆∆Gsa 1 amino acid, 1 solvent accessibility �X

saa: ∆∆Gsaa 1 amino acid, 2 solvent accessibilities �X
ssa: ∆∆Gssa 2 amino acids, 1 solvent accessibility �X
st: ∆∆Gst 1 amino acid, 1 torsion angle domain �X

stt: ∆∆Gstt 1 amino acid, 2 torsion angle domains �X
sst: ∆∆Gsst 2 amino acids, 1 torsion angle domain �X
sad: ∆∆Gsad 1 amino acid, 1 distance and 1 solvent accessibility �X
std: ∆∆Gstd 1 amino acid, 1 distance and 1 torsion angle domain �X
sta: ∆∆Gsta 1 amino acid, 1 distance and 1 solvent accessibility �X

Protein size and solvent accessible surface area
Λ protein length �X

SAcc protein solvent accessibility �X
SAcc/Λ protein solvent accessibility divided by length �X

Secondary structure content
β b fraction of buried β residues �X
β m fraction of moderately buried β residues �X
β e fraction of exposed β residues
α b fraction of buried α residues
α m fraction of moderately buried α residues �X
α e fraction of exposed α residues �X
γ b fraction of buried coil residues
γ m fraction of moderately buried coil residues
γ e fraction of exposed coil residues

Amino acid composition
Ci (i=1..20) fraction of each of the 20 amino acid types X

K+R fraction of positively charged residues
K-R fraction of K minus fraction of R �X
D+E fraction of negatively charged residues �X
D-E fraction of D minus fraction of E

K+R+D+E fraction of charged residues �X
K+R-D-E fraction of positively minus negatively charged residues �X
F+W+Y fraction of aromatic residues �X

b, m, e idem with distinction between buried, X
moderately buried and exposed residues

Table 2. List of all the features tested for SOLart. Those used in
the final version are marked by a �X; those for which a subset is used are
marked by a X.
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Figure 1. The top 30 most important features identified by fea-
ture selection, from left to right. The names in lower-case letters
indicate folding free energy differences, e.g sst means ∆∆Gsst.
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Figure 2. The top 20 most important features of SOLart, from
right to left. The names in lower-case letters indicate folding free energy
differences, e.g sst means ∆∆Gssa.

DEcoli MEcoli DScerevisiae MScerevisiae

r 0.67 0.51 (0.66) 0.70 (0.78) 0.65 (0.71)
RMSE 25% 28% (23%) 23% (19%) 24% (20%)

Table 3. SOLart performances in cross validation on the learning set
DEcoli , and on three independent test sets: DScerevisiae containing X-ray
structures andMEcoli andMScerevisiae containing modeled structures. The
values in parentheses correspond to the performance with 10% outliers re-
moved.

Predictor r
SOLart 0.68

Protein-Sol 0.56
ccSOL 0.56
CamSol 0.39

PROSO II 0.13
SOLpro 0.18
PROSO 0.20

Table 4. Comparison of the performance of different predictors
on the combination of the DScerevisiae and MScerevisiae test sets, on
the basis of the Pearson correlation coefficient between predicted and ex-
perimental solubility values. SOLpro and PROSO first predict the proteins
as soluble or insoluble and then give a probability score; we thus calculated
the correlation by considering the solubility to be -1 for proteins predicted
as insoluble and +1 for proteins predicted as soluble.
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Figure 3. The webserver interface of SOLart.

Figure 4. Predicted solubility of an example protein (PDB code
2qia, Uniprot code P0A722) with all features used in SOLart (hor-
izontal line) or with each single feature only (histogram bars).
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