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Abstract Explosive eruptions that occur with little or no precursory unrest (less than a month) pose the
greatest hazards from volcanoes to nearby populations. Here we focus on the preeruptive conditions
for these explosive events, their triggers and how these eruptions evolve. We concentrate on Kelud
volcano, where we have conducted a set of petrological experiments to understand preeruptive storage
conditions for several recent eruptions. For the 2014 explosive eruption, we combine this with an analysis
of interferometric synthetic aperture radar measured deformation. Our data suggest that both explosive
and effusive eruptions at Kelud are sourced from a magma storage system at 2–4 km. However, explosive
eruptions are fed by magma stored under relatively cool (~1000 °C) and water‐saturated conditions,
whereas effusive eruptions are fed by slightly hotter (~1050 °C), water‐undersaturated magmas. We
propose that the initial phase of the 2014 eruption was triggered by volatile overpressure, which then
fostered top‐down decompression tapping discrete magma bodies. By compiling a global data set of
monitoring signatures of explosive eruptions, we show that the onset of unrest rarely points to the
shallow ascent of magma to the surface, as ascent mostly occurs in a matter of hours or minutes. We
relate the timescale of preeruptive unrest to eruption triggering mechanisms, with yearly/decadal periods
of unrest relating to magma injection events (which may or may not precede a magmatic eruption),
whereas internal triggering (e.g., second boiling) of an already present, cooling magma body can lead to
explosive eruptions with little warning.

1. Introduction

Recent studies suggest that arc magmas can remain in the upper crust for decades to millennia (Rubin
et al., 2017), in a mostly crystalline/mushy state (Cooper & Kent, 2014) or even stored as multiple melt‐rich
lenses from the middle to shallow crust (Edmonds et al., 2016) and that eruption can be triggered rapidly
(e.g.,Martin et al., 2008). In themost general terms, arcmagmas stall in the crust at a point when their density
is the same as the surrounding crust (neutral buoyancy). In this model, denser mafic melts normally reside
deeper in the crust (Bachmann & Bergantz, 2008), in comparison to felsic melts, which are generally stored
at shallower depths within the crust, but may also stall due to their higher viscosities (Annen et al., 2006).
In the absence of eruptive records, or for volcanoes that change their eruptive compositions, the depth of
inferredmagmatic storage alone (from petrological constraints) may provide a first order estimate of eruptive
compositions and rheologies, critical for forecasting eruptive behavior (e.g., Muir et al., 2014).

Often eruptions are preceded by long periods (months to years) of preeruptive unrest, but it is still very
difficult to forecast the style of an impending eruption. Some suggest that explosive eruptions are usually
preceded by short (less than a month) but intense periods of seismicity and/or deformation, which increase
in magnitude and rate (e.g., Pallister & McNutt, 2015; White & McCausland, 2016); however, this is not
always the case (e.g., Pinatubo 1991, Mt. St. Helens, 1980; Scandone et al., 2007). Linking volcano monitor-
ing data to the processes that cause unrest via retrospective petrological studies can provide further insights
into eruptive style controls. Petrological studies note that the conditions at which magmas are stored prior to
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eruptions, such as pressure, temperature and volatile content, may also control their explosivity (Joan
Andújar & Scaillet, 2012; Cassidy et al., 2016; Koleszar et al., 2012; Owen et al., 2013; Ruprecht &
Bachmann, 2010). Generally, whether a volcano erupts effusively or explosively is thought to be a product
of how efficiently the magma can outgas, which is related to its viscosity and the rate at which it decom-
presses and ascends (Cassidy et al., 2018; Eichelberger et al., 1986; Gonnermann & Manga, 2007; Jaupart
& Allègre, 1991). These parameters all differ depending on the conditions and processes that occur while
in storage. Fast ascent will limit outgassing (known as closed‐system degassing) thus increasing explosive
potential, and this could be controlled by the conditions magmas endure while in storage, how the eruptions
are triggered or how they evolve (i.e., changes in overpressure, degree of outgassing and storage conditions).
As an eruption progresses these parameters will change and may lead to transitions in eruptive style
(Eichelberger et al., 1986; Jaupart & Allègre, 1991). Monitoring how the magmatic properties evolve
throughout an eruption has the potential to help us forecast eruptive style transitions and when the eruption
will end.

Forecasting explosive eruptions is one of the key aims of volcanology, due to their potential for large losses of
life. Monitoring geophysical and geochemical signals is the basis for short to medium term forecasting and
for detecting changes during an ongoing eruption (Tilling, 2008). The duration and character of preeruptive
unrest therefore largely determines our ability to make forecasts. At some volcanoes, unrest in the form of
elevated seismicity, deformation, gas, and heat flux, can last for months to years (e.g., Soufriere Hills;
Druitt et al., 2004), while at others the transition from quiescence to eruption is rapid, lasting only days to
hours, leaving the nearby populations with little time to prepare (e.g., Calbuco; Castruccio et al., 2016).
Passarelli and Brodsky (2012) show that higher silica eruptions have generally longer run‐up times; longer
repose periods and erupt larger volumes of material, which they attribute to higher magma viscosities.
Phillipson et al. (2013) analyze monitoring records from the Smithsonian Institution Global Volcanism
Program between 2000 and 2011 and suggest a relationship between unrest periods and volcano type, with
calderas and shield volcanoes having on average longer periods of unrest than stratovolcanoes.

The duration of preeruptive unrest may also be linked to magma storage conditions (such as temperature,
pressure, crystal, and volatile contents), fast ascent rates, and their triggering mechanisms. For instance, a
magma recharge eruption trigger may be associated with months of seismicity during magmatic ascent
(e.g., Pinatubo, Pallister et al., 1992), uplift of the Earth's surface caused by elastic deformation (e.g., Lu &
Dzurisin, 2014), and elevated gas fluxes or ratios derived from recharging magmas (e.g., Merapi, Surono
et al., 2012). In contrast, eruptions that are triggered “internally” by volatile overpressure (Blake, 1984),
magma buoyancy (Caricchi et al., 2014), late stage volatile saturation (Stock et al., 2016), and decompression
(or top‐down triggering, e.g., Alidibirov & Dingwell, 1996; Tarasewicz et al., 2012) and the onset of degassing
(Girona et al., 2016) may not be associated with long periods of magma movement that cause measurable
geophysical signals (Petrelli et al., 2018). Retrospectively classifying rapid‐onset eruptions is challenging,
as it requires geophysical or geochemical gas measurements with sufficient temporal resolution to have
captured any preeruptive signals. Expansion and densification of ground‐based instrumentation and the
tasking of particular satellite instruments often occurs after the onset of eruptions, so that historical
monitoring records tend to be biased in coverage of coeruptive and posteruptive periods (e.g., Figure 4 in
Biggs et al., 2014). However, the increase in the number of volcanoes being continuously or regularly
monitored, together with developments in remote sensing (e.g., background satellite missions, continuously
recording infrasound), means that very brief periods of preeruptive unrest can be identified for several
eruptions over the past decade (e.g., Chaiten, 2008; Colima, 2015; Rabaul, 1995; Redoubt, 1989;
Reventador, 1999; Ruapehu, 1996, and eruptions from Hekla, Kilauea, Piton de la Fournaise, Usu. Pavlof,
and Calbuco; Lesage et al., 2018; Matoza et al., 2018; Passarelli & Brodsky, 2012).

Here we use experimental petrology to reconstruct the preeruptive storage conditions prior to several
explosive and effusive eruptions at Kelud volcano, Indonesia, a basaltic‐andesitic arc stratovolcano that
has erupted several times over the past century, with styles ranging from intense Plinian explosive eruptions
to lava dome extrusion (Triastuty et al., 2014). For the 2014 explosive eruption our petrological analysis is sup-
plemented by satellite radar and seismoacousticmeasurements to investigate evidence formagmamovement
during the buildup and progression of the eruption. Our data show that magma can reside almost undetected
in a shallow magma reservoir in the immediately preeruptive period (cf. Krafla; Elders et al., 2011) and that
explosive eruptions can be triggered internally, without need for a magmatic injection trigger.
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1.1. Geological Background

Kelud (often referred to as Kelut) sits on top of a subduction system, which stretches from northwest
Sumatra to Java and through to Flores in the east. Volcanism in Java is formed from the subduction of
the Indo‐Australian plate beneath the Eurasian plate at a rate of 6–7 cm/year (DeMets et al., 1990;
Tregoning et al., 1994). Kelud is situated in central‐east Java, near the locus of subduction of the Roo Rise
submarine topographic ridge (Kopp et al., 2006), leading to subduction erosion and consequently lower
subducted sediment signatures compared to the west (Plank & Langmuir, 1998).

Kelud's summit elevation is 1,731 m above sea level, and its irregular stratocone structure includes remnants
of lava domes, craters, and two avalanche calderas, one open to the south and the other to the west, within
which is the active crater (Bourdier et al., 1997). The western half of the volcano comprises debris avalanche
deposits several hundreds of meters thick from slope failure of the western flank (Bourdier et al., 1997;
Thouret et al., 1998).

Kelud is one of the most dangerous volcanoes in Indonesia, located in populous Java where over 2 million
people live within 30 km and over 50,000 within 10 km of the volcano (Global Volcanism Program,
Smithsonian Institution (2013); Loughlin et al., 2015). There have been eight eruptions over the last 100
years (1919, 1920, 1951, 1966, 1967, 1990, 2007–2008, and 2014) killing over 6,000 people, and more than
30 eruptions during the past six centuries that have claimed the lives of 15,000 victims from lahars, pyroclas-
tic density currents, and ash fall (Kusumadinata, 1979). Since 1901, an eruption has occurred every 13 years
on average (Nakamichi et al., 2017). Eruptive durations have normally been short (a few hours) and erup-
tions have been moderate in magnitude: VEI 4 (Volcanic Explosivity Index) for the explosive eruptions, with
~0.1–0.3 km3 of tephra per eruption (Bourdier et al., 1997; Goode et al., 2018; Nakamichi et al., 2017). The
average rate of extrusion of magma at Kelud during the twentieth century estimated from cumulative
volumes of mapped deposits is 2 × 106 m3/Y (Dense Rock Equivalent (DRE); Ishihara et al., 2011). Kelud
regularly changes its style of eruptions with some exhibiting fully effusive behavior (1376, 1920, 1967, and
2007), and others solely explosive (e.g., 1586, 1901, 1919, 1951, 1966, 1990, and 2014; Goode et al., 2018).

As a product of the frequent and dynamic eruptions, the morphology of the crater area of Kelud changes
significantly. During periods of quiescence a crater lake develops, fed by the underlying hydrothermal
system (Bernard & Mazot, 2004), which is generally then expelled during eruptions (e.g., 1990). Large
numbers of deaths in the eruptions can be attributed to water displaced from the crater lake producing
primary lahars (Thouret et al., 1998). Therefore, since the 1919 eruption, the lake volume has been
partially drained to reduce this risk (Badrudin, 1994). Due to this lake drainage, no primary lahars
were produced in the 1951 and 1990 eruptions and the casualties were consequently lower. During
the 2007–2008 eruption a dome filled the crater displacing some of the lake, and both the dome and
the lake were evacuated during the 2014 explosive eruption. Since the 2014 eruption, the crater is again
being filled in by a lake, which, as discussed below, can be useful to detect signals of increasing magmatic
activity via hydroacoustic noise and changing lake chemistry and temperature (Lesage & Surono, 1995;
Vandemeulebrouck et al., 2000).

1.2. Eruptions and Unrest Since 1990

Kelud's most recent eruptions (1990, 2007–2008, and 2014) were monitored and successfully forecasted by
the Center for Volcanology and Geological Hazard Mitigation (CVGHM) in Indonesia. The 1990 eruption
was preceded by 4 months of unrest, comprising seismic activity, increase of lake temperature, decrease in
pH, and changing lake chemistry, along with acoustic noise in the crater and lake, attributed to the influx
of volcanic gases and increased pressure and temperature within the underlying hydrothermal system
(Badrudin, 1994; Lesage & Surono, 1995; Vandemeulebrouck et al., 2000). The seismicity consisted of an
average of eight events per day of mostly shallow volcano tectonic (VT, most likely <1 km directly below
the crater) earthquakes producing low cumulative seismic energy (5.6 × 108 J) in the lead up to the eruption.
Seismicity returned to a very low level in the 3 weeks prior to the eruption, followed by a 24‐hr period
before the eruption when the seismicity increased rapidly, and tremor began (Lesage & Surono, 1995).
The seismicity is thought to be linked to the gradual fracturing of a solid body (thought to be cooled residual
magma from the 1966 eruption) within the eruptive conduit, the low seismic energy showing that the plug
did not offer strong mechanical resistance (Lesage & Surono, 1995). In addition to seismicity, changes in the
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crater lake were recorded 4 months prior to the eruption including, decreased pH, increased temperature,
and concentrations of sulfate, boron, magnesium, chloride and Mg/Cl ratio, these changes were attributed
to influx of magmatic‐derived fluids into the lake (Badrudin, 1994). The eruption started on 10 February
1990 at 11:41 (local time) with a series of phreatic eruptions, followed an hour later by Plinian/sub‐
Plinian column, which was sustained for several hours and rose to 10 km (Lesage & Surono, 1995). The erup-
tion lasted 4 hr in total and produced 0.12 km3 of tephra with an eruptive rate of 7.5 × 106 kg/s (Bourdier
et al., 1997).

The effusive dome‐forming eruption of 4 November 2007 was preceded by several months of unrest. In
August of that year, an echo‐sounding survey together with floating accumulation chamber measurements
detected abnormally high carbon dioxide emissions (Caudron et al., 2012). Soon after these measurements,
the lake temperature and conductivity started to increase. Seismicity rose in September and changes in lake
color and chemistry prompted the CVGHM to create a 5‐km evacuation zone. A regional L‐band interfero-
metric synthetic aperture radar (InSAR) survey did not detect deformation prior to the eruption (Philibosian
& Simons, 2011). However, tiltmeter data from the crater rim showed continuous uplift from July to the
beginning of September and the depths of VT earthquakes ranged from 5 km to just beneath the crater dur-
ing this period (Hidayati et al., 2011, 2018). The VT earthquakes stopped several days before the eruption and
were replaced by lowmagnitude ‘drumbeat’ like seismicity (Nakamichi et al., 2017). Following this was an 8‐
hr period of quiescence and then continuous tremor until a phreatic eruption. The authorities were expect-
ing an explosive eruption; however, between November 2007 andMay 2008 a 3.5 × 107 m3 lava dome grew in
the crater. Following the eruption in late 2008, there was a possible maximum 15 cm line‐of‐sight displace-
ment detected in InSAR data, although this is based on only two radar acquisitions, so doubts exist about
whether this was permanent, real deformation (inflation) rather than a short term atmospheric effect
(Philibosian & Simons, 2011).

Before the explosive eruption on 13 February 2014, the seismicity, dominantly comprising distal VTs, was at
a low level throughout January, gradually increasing until a peak on 2 February, reaching 117 events/day
(Global Volcanism Program, Smithsonian Institution (2013); Nakamichi et al., 2017). The seismicity then
decreased for the following 4 days before dramatically increasing from 7 February until the eruption on
13 February. The hypocenters of the seismicity were located centrally, 1–2 km below the bottom of the crater
(Triastuty et al., 2014). One tiltmeter showed gradual uplift of the crater area from December 2013 until 2 hr
before the eruption, and the small crater lake showed an increase in temperature of 4 °C from January 2014;
however, it is noted that single stations may record spurious signals (Nakamichi et al., 2017; Sri Hidayati
et al., 2018; Triastuty et al., 2014). On 2 February, alert levels were changed from level 1 (normal) to level
2 (advisory), changing to level 3 (watch) on 10 February, and such was the fast ramp up of seismic activity
in the last days, it was changed to level 4 (warning) only 90 min before the eruption. This contrasted with
the activity of 2007 where levels 3 and 4 were raised 5 and 3 weeks prior to the eruption, respectively
(Nakamichi et al., 2017). The total seismic energy preceding the 2014 eruption was an order of magnitude
higher (2.2 × 109 J) than the seismicity build up in 2007 (3 × 108 J), which also reflects the relative difference
in their erupted volume (Nakamichi et al., 2017).

The eruption started at 22:45 local time (15:45 UTC) with the destruction of the 2007–2008 dome, generating
high‐energy pyroclastic density currents (PDCs) toward the NE to a distance of ~7 km. The ballistic ejecta
and PDCs destroyed all the local monitoring instruments (Goode et al., 2018; Maeno et al., 2016). This stage
was associated with a brief infrasound signal followed by a weak seismic event indicating a small‐scale
eruption (Caudron et al., 2015). The second stage of the eruption occurred ~15 min later with the production
of a sustained Plinian column reaching an altitude of 26 km, with most of the ash injected 16–17 km into the
atmosphere (Kristiansen et al., 2015). This umbrella cloud spread over a large region, with the diameter
spreading to 200 km in less than 2 hr (Maeno et al., 2016). Seismicity suggests that this Plinian stage lasted
~2 hr before the eruption column became unstable and later collapsed (Caudron et al., 2015). The last stage
of the eruption marked the end of the main Plinian phase, producing pumice‐rich PDCs as the Plinian
column collapsed (Maeno et al., 2016). The eruption waned in energy producing a low‐altitude plume
affected by lower level SW winds, distributing fine ash across the villages northeast of the volcano. This
led to multiple roof collapses in Malang district, as observed in photos and reports. The mass eruption rate
was between 3 × 107 and 1 × 108 kg/s (Maeno et al., 2016; Suzuki & Iguchi, 2017). Seismic and infrasound
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data suggest the eruption had an estimated intensity between that of Mount St. Helens (1980, Washington
State, United States) and Pinatubo (1991, Philippines; Caudron et al., 2015), despite a total volume (0.14–
0.28 km3 in dense rock equivalent) that was an order of magnitude smaller than these events.

2. Materials and Methods

In this section we describe the collection of samples, our experimental and analytical setup, how our
monitoring data, for example, satellite data, seismic, and infrasound data was acquired. This multiparameter
data set aims to help constrain the storage conditions of Kelud magmas, and the monitoring data will help to
piece together the presence of prior unrest and the progression of the 2014 eruption.

2.1. Field Samples

The study uses samples from five different locations for the following eruptions; 2014 main and late phase
(low altitude plume phase), 2007, 1990, and an older explosive eruption (undated). These eruptive products
were sampled around Kelud during an expedition in 2015 with the assistance of the Kelud volcano observa-
tory in Margomulyo (Figure 1). The 2014 main‐phase pumices and 2007 dome rocks were sampled near the
crater rim and the 2014 late‐phase ash NE of Kelud from a 10‐ to 11‐cm‐thick dark ash deposit with fine
pumice lapilli. The 1990 eruptive products were sampled by digging a hole in a highly vegetated area SW
of the volcano. This ~28‐cm thick deposit was 11 cm below the surface, underlying a thin pumice fall deposit
of 2014 and a 7 cm soil horizon. The deposit comprised a fine, phreatomagmatic ash at the bottom (~5 cm),
and above this a normally graded 15‐cm thick coarse pumice lapilli unit, followed by an 8‐cm thick deposit of
finer pumiceous material. This deposit comprised both light and dark (“scoria”) pumice clasts as observed by
Bourdier et al. (1997). An older explosive eruption was sampled 0.5 m from the top of a small escarpment 9
km west of Kelud and comprised a 37‐cm thick deposit of well sorted, angular pumice fall. Its stratigraphic
position and lithofacies differed from the 1990 eruption (no scoria), but it may be associated with a more
voluminous historical explosive eruption (e.g., 1901, 1826, and 1586; Goode et al., 2018).

2.2. Experimental Setup

Experiments were undertaken to constrain the magma storage conditions prior to different eruptions at
Kelud. A gas‐pressurized TZM (Tungsten Zirconium Molybdenum) cold‐seal pressure vessel was used, with
Argon as the pressurizing medium. Due to the crystal‐rich nature of the basaltic andesite, coarsely crushed
aliquots of the 2014 Kelud pumice was used as starting material, to achieve partial equilibrium as in
Pichavant et al. (2007). This approach of “partial equilibrium” retains the antecrystic cores (<10% in the case
of Kelud; Cassidy et al., 2016), so that only the glass and the crystal rims reacted in the experiments, in order
to achieve equilibriumwith glass andmineral rims, with the crystal cores acting also as nucleation sites. Two
“reverse” or “crystallization” experiments were conducted, where we heated the starting material above
liquidus, thus mixing all crystal cores with the magma, and then returned it to a cooler equilibrium tempera-
ture. When comparing these with our standard experiments conducted at the same conditions, we were not
able to replicate the same matrix glass and mineral data (supporting information), reinforcing our approach
not to crush our crystal cores with the reactive magma. Approximately 0.1 g of sample was inserted into a
AgPd30 capsule, together with distilled water using a micro syringe, enough to saturate the magma in
H2O at the pressure and temperature of the experiments. For mixed volatile experiments AgCO3 powder
was added in specific molar proportions along with water, to generate water fractions (XH2O = H2O/
(H2O + CO2)) in the fluid phase from 0.55 to 0.75. To buffer the fO2 conditions to NNO, CH4 was added
as a pressurizing gas (0.4‐MPa partial pressure) and a double‐capsule technique was employed (Shea &
Hammer, 2013), whereby Nickel powder was added to a platinum foil capsule and left open to buffer the
magma. Ni powder (grey) oxidizes to green during oxidation to NiO; therefore, the capsules were checked
at the end of the experiment to ensure that both green and grey powder were still present. The sample
was welded on both ends using an acetylene and oxygen flame, with the capsule in contact with water to
limit capsule heating. The capsule was weighed again, to ensure no volatiles were lost during the welding
process. The AgPd30 capsules were inserted into the sample holder attached to a magnet, which was inserted
into a TZM autoclave, achieved by raising the external magnet up into the hottest part of the autoclave. A K‐
type thermocouple was inserted into a small hole in the end of the autoclave close to the capsule position to
check for temperature offset between the furnace's internal thermocouple and autoclave. The samples were
held at P and T commensurate with upper crustal conditions (e.g., 950–1100 °C; 25–200 MPa; Figure 2 and
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supporting information Table S1) for 1 to 3 days to equilibrate (Table S1) and then rapidly quenched by
lowering the external magnet so that the sample was drop quenched as it entered a water‐cooled coupling
system to prevent further crystallization. Both H2O‐saturated and mixed H2O‐CO2 conditions were
explored in this study (Figure 2 and Table S1).

2.3. Analytical Methods

Aliquots of the natural samples were crushed and milled for X‐ray fluorescence analysis. Major elements
were analyzed on glass beads prepared by fusion of a mixture of 0.5‐g subsamples and lithium tetraborate
in a ratio of 1:10. Minor elements were made into pellets using a press. Analyses were undertaken using a
Philips MagiXPRO spectrometer with a rhenium X‐ray tube at the Johannes Gutenberg University,
Mainz, Germany. Error and external accuracy (relative standard error) was <2% for all elements.

The samples were also made into polished thin sections and resin mounts, and then carbon coated for use in
a Zeiss DSM 942 scanning electron microscope (SEM) and electron microprobe analysis (EMPA) on a JEOL
superprobe at the Johannes Gutenberg University, Mainz. All quantitative EMPA analyses used an acceler-
ating voltage of 15 kV. For plagioclase and pyroxene analyses a spot size of 4 μm and a 100 nA beam current
was used. Rims of crystals were analyzed, where we can discern a difference rim growth from Back scatter
electron (BSE) images (e.g., supporting information Figure S2). For glasses, a 10‐μmdefocused spot was used
with a beam current of 10 nA, with counting times of 50–200 s per analysis. During glass measurements, Na
peaks were counted first to avoid significant migration during the run. In the 2007 eruptive products, most
melt inclusions were crystallized or considerably affected by post entrapment crystallization, so to generate a
more representative preeruptive composition (prior to microlite crystallization), 50‐μm spots of were used
over areas of groundmass mixed glass and microlites, the average and standard deviation was calculated
from 23 data points. As the groundmass was dominated by plagioclase crystals, the matrix effects will be lim-
ited, due to similar values for fluorescence, absorption, and atomic number between plagioclase and glass. A
Phi‐rho‐Z correction for atomic number, absorption, and fluorescence was automatically applied to all ana-
lyses, and the calibration was performed using a range of natural and synthetic standards. One sigma stan-
dard deviations were generally less than 2% for most major elements analyzed.

Figure 1. (a) Topographic map of Kelud volcano with sampling sites indicated. (b) The footprint of the descending CosmoSkyMed images used in our analysis
(heading = −168°, incidence angle = 32°) shown with scaled synthetic aperture radar intensity difference between 12 and 20 February 2014 (σbefore − σafter).
Higher values (reds and oranges) therefore indicate a decrease in intensity, which we attribute to ashfall. Blue contours are traced from Maeno et al. (2016) and
represent isopachs of ash fall thickness (in cm) derived from field measurements.
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To estimate the proportion of different mineral phases present in the natural and experimental products,
energy dispersive spectrometer (EDS) mapping was conducted on an Oxford instruments detector on the
SEM at the University of Mainz. Al, Ti, and Mg maps were made for plagioclase and glass and Ca and Na
maps for pyroxene. At least three maps of 1,024 × 1,024 pixel areas (at 70 frames each) were taken for each
sample, using a similar method to Muir et al. (2012). Image J was then used to threshold and calculate the
relative proportions of glass, plagioclase, pyroxene and oxides (supporting information Table S1).
Backscattered electron images of thin sections at varying magnifications were taken with the SEM to mea-
sure bubble number densities via the FOAMS program following the method of Shea et al. (2010).

2.4. Satellite Radar Measurements

InSAR allows the measurement of displacements of the Earth's surface using pairs or sets of time‐separated
radar images (e.g., Simons & Rosen, 2015). At volcanoes, InSAR has been used to investigate deformation
attributed to the movement of magma and magmatic fluids, variations in pressurization of a magmatic or
hydrothermal reservoir and the alteration of erupted material (e.g.,Biggs & Pritchard, 2017 ; Ebmeier
et al., 2018 ; Pinel et al., 2014). At Kelud, we analyze a set of 30 X‐band (wavelength = 0.031 m, pixel size
= ~3 m) COSMO‐SkyMed images spanning between 2 December 2013 and 19 May 2014.

InSARmeasurements of displacement are derived from phase differences between radar images and used to
produce maps of displacement (“interferograms”). When either changes in satellite position (characterized
by perpendicular baseline) or changes in surface scattering properties are too great, phase becomes

Figure 2. Experimental conditions explored in this study. (a) Water saturated experiments. The white boxes signify
absence of a phase, and black box signifies presence. Water content lines are produced uisng the glass chemistry, P and
T conditions using the Papale et al. (2006) solubility model. (b and c) Mixed volatile experiments at differing conditions.
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incoherent, and displacements cannot be retrieved. Dense vegetation, and particularly Kelud's steep topogra-
phy, contributes to low coherence, which prevent measurements on the edifice itself, even in the preeruptive
period. The 2014 eruption destroyed the dome from the 2007 event, created a new summit crater, killed the
surrounding vegetation, and blew down trees over an area >10 km2. During the first stage of the eruption,
high‐energy PDCs disturbed the area surrounding the summit, while pumice‐rich PDCs from later in the
eruption filled valleys on all sides of the volcano and extend >6 km, beyond the area affected by earlier
phases (Maeno et al., 2016; Figure 1). This complete alteration of scattering properties made measurements
of coeruptive displacement within ~7–8 km of Kelud's summit impossible. Our deformation observations
spanning the eruption are therefore limited to stable scatterers away from the volcanic edifice. We use
changes in radar intensity between 12 and 20 February 2014 to illustrate the distribution of ash fall, which
in this case caused a decrease in the proportion of microwave radiation reflected back to the satellite and a
decrease in intensity (Figure 1b).

We take a persistent scatterer approach (Ferretti et al., 2011; Hooper et al., 2004) to processing, initially based
on a set of single master interferograms (master date = 8 February 2018, perpendicular baseline magnitudes
from 0.4 m to 1,157 m, mean = 560 ± 340 m). Topographic phase contributions were corrected using the
TanDEM‐X WorldDEM (12‐m spatial resolution, released 2014). Due to the low number of persistent scat-
terers identified by our initial analysis using StAMPS (Hooper et al., 2004), we then reanalyzed the data using
points selected on the basis of ensemble coherence rather than time series methods (RapidSAR, Spaans &
Hooper, 2016). RapidSAR identifies groups of pixels that share a similar scattering mechanism (“siblings”)
and uses the resulting coherence estimate to predict coherent points individually for each interferogram.
After coregistration of all the images, a set of interferograms were constructed for each image, greatly
increasing the number of points in our analysis.

We constructed a time series of a small‐baseline subset of RapidSAR interferograms (Data Set S1) to find the
incremental displacements between image acquisition dates (e.g., (Berardino et al., 2002; Schmidt &
Bürgmann, 2003). We used a least squares inversion, fitting the minimum constraint to velocity over each
time interval, and treat the first date in the time series as a reference time when no deformation was taking
place. We solve for a linear ramp in each interferogram, but make no corrections for atmospheric contribu-
tions to phase.

2.5. Infrasound and Seismic Data

Due to the lack of available local (<15 km from the volcano) observations, we have to rely on remote
seismoacoustic records, which provide a timeline for the eruption. Volcanic eruptions often radiate
low‐frequency seismoacoustic energy (<1.0 Hz) that can propagate over large distances from a volcanic vent.
Several remote geophysical instruments detected the 2014 Kelud eruption permitting to study its chronology
and estimate its intensity (Caudron et al., 2015; Nakamichi et al., 2017). Three distinct low‐frequency signals
were detected by remote seismic stations while acoustic waves were recorded twice by several infrasound
arrays of the International Monitoring System network (Caudron et al., 2015) and as total electron content
variations by several satellites (Nakashima et al., 2016). Our analyses include the use of the ObsPy software
(Krischer et al., 2015).

3. Results
3.1. Natural Eruptive Products

The whole rock data for recent and historic eruptions (1990, 2007, 2014) comprise near identical chemical
compositions of basaltic andesite at ~54 to 55 wt% SiO2, consistent with previous studies (e.g., Jeffery
et al., 2013). The phenocryst contents are consistently high at ~50–60% (Cassidy et al., 2016), andmatrix glass
and melt inclusions are dacitic in composition (Figure 3). Melt inclusions were chosen on their glassy,
crystallized, and noncracked characteristics from multiple, nonantecryst (<90 An cores) plagioclase
phenocrysts. The plots on figure 3 show overlapping compositions for the natural eruptive products used
in this study: 2007, 1990, 2014, and late 2014, and a voluminous undated pumice fallout deposit, hereafter
referred to as the older explosive eruption. However, the older explosive eruption comprises ~1 wt% lower
concentrations for MgO, CaO, and Al2O3. Along with whole rock compositions, also plotted in Figure 3
are matrix glass and melt inclusions compositions for the natural products used in this study. There are
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broad negative correlations for most oxides versus SiO2, apart from K2O, where a weak positive correlation
exists. The matrix glass data plot mostly at higher CaO, FeO, Al2O3, and MgO contents relative to melt
inclusions. The most mafic of these are from the late 2014 eruption, while the most evolved are from the
older explosive eruption. The melt inclusion compositions form in closely packed clusters. The averaged
EMPA spots of 2007 groundmass are more scattered and extend to the highest SiO2 contents. There is a
variation in melt inclusions compositions between the 2014 main eruption phase and the later erupted
products, generally becoming more primitive and less silicic. The matrix glass contents for the main phase
of the 2014 eruption overlap in composition with the 2014 melt inclusion compositions (grey symbols in
Figure 3); however, there is a deviation in the late 2014 matrix glass and melt inclusion compositions
(black symbols), which extend to less evolved compositions.

3.2. Experimental Constraints on Magma Storage Conditions

The consistent whole rock composition of the natural eruptive products (Figure 3) allows us to apply our
experimental petrology data constraints to multiple eruptions, with the assumption that the initial source
magma compositions were more or less the same. Chemical compositions and phase proportions of
experimental glass and minerals are plotted along with the natural eruptive compositions (mostly melt
inclusion compositions) for comparison in Figures 4–7. As this was not a typical “phase equilibria” study
(instead “partial equilibrium”), the presence or absence of minerals was not a reliable indicator of exact
conditions, since some of these phases were present in the starting material. We therefore did not use this
approach to attain preeruptive storage constraints, but instead used the chemical compositions of glass
and mineral rims of the natural samples to match those in the experimental products (e.g., Erdmann
et al., 2016). Nevertheless, we have noted the presence of mineral phases in Figure 2 and Table 1, which pro-
vide some coarse constraints regarding the P‐T conditions that could not replicate the natural phase assem-
blage of plagioclase, orthopyroxene, clinopyroxene, magnetite, and glass (supporting information Figure S1).
It shows that some of the natural mineral phases were not stable at conditions above 125 MPa, and tempera-
tures below 975 °C, thus providing some initial constraints on P‐T conditions of the Kelud products.

Figure 3. Geochemistry plots of melt inclusions, matrix glass, and whole rock data for recent and older eruptions at Kelud.
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Tomatch the experimental compositionswith natural eruption products,melt inclusion compositionswithin
nonantecrystic plagioclase phenocrysts were used as a representative composition of the preeruptivemagma,
while in storage, these had not crystallized, due to fast quenching and thus did not need to be corrected. This
was preferred to matrix glass compositions, which can be affected by growth and nucleation of crystals upon
ascent or cooling. To test this assumption, the 5% plagioclase microlite content (measured by image analysis)
was subtracted from the matrix glass composition in a mass balance calculation. The microlite subtracted
values closely resemble the average melt inclusion composition (<0.3 wt% difference for all elements;
Table S2), confirming the melt inclusion composition is representative of the magma in storage. For the
2007 preeruptive composition, an averaged groundmass region (melt + crystals) was used due to the high
proportion of crystallizationwithin themelt inclusions and groundmass. In Figures 4 and 5, there is a general
trend in glass compositions whereby experiments conducted at lower pressures, water contents, and tem-
peratures generate more evolved compositions. This pattern extends to mineral compositions (Figure 6),
where higher anorthite contents are stable at higher water pressures, whereas Mg numbers (Mg#) for
clinopyroxene and orthopyroxene show a less discernible trend. All of the preeruptive glass and mineral
compositions for the older explosive eruption, 1990, 2007, 2014, and late 2014 are reproduced with experi-
ments at shallow pressures (25–100 MPa), temperatures between 975 and 1050 °C, and XH2O values from
0.55 to 1 (Figures 4 and 6). However, specific compositional differences allow us to constrain this further
for the individual eruptions of 2014 (main and late phase), 1990, 2007, and the older explosive eruption.

Figure 4. Dashed line/open symbol: where XH2O is <1. Grey band = 1 standard deviation of melt inclusion composition. Error bar indicate 1 standard deviation of
the glass data.
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For the main phase of the 2014 eruption (grey bars in Figures 4 and 6), the
melt compositions are best reproduced across temperatures between 1000
and 1025 °C, which is particularly apparent in SiO2 and FeO composi-
tions. In addition, CaO, Al2O3, and orthopyroxene Mg# and anorthite
show that the 2014 preeruptive compositions are best replicated by experi-
ments conducted at water‐saturated conditions. The glass chemistries
appear to be more sensitive than mineral compositions to changing sto-
rage conditions. Pressures for the 2014 eruption can be constrained by
using water content data measured in melt inclusions with Raman spec-
troscopy in Cassidy et al. (2016). Water contents extend to 2.2 wt%, which
correspond to maximum storage pressure of 57 MPa (assuming water
saturated conditions) or 102 MPa (assuming water undersaturated condi-
tions, XH2O = 0.55). The spread of water contents toward lower values
(mean: 1.1 wt%) cannot be attributed to leaking or diffusion as this was
assessed in Cassidy et al. (2016), and it is unlikely these melt inclusions
were formed under storage pressures as low as 7 MPa (if water saturated).
Instead, it suggests that the majority of these melt inclusions were
entrapped when the magma was water undersaturated, this provides
mean storage pressures of 52 MPa (at XH2O = 0.55). Yet immediately
prior to 2014 eruptions, these experiments show that the magma was
water saturated. These P‐T constraints are consistent with natural and
experiment matches for An content of plagioclase (Figure 6a) and further
by measurements made on feldspar phenocryst and glass contents as mea-
sured via EDS mapping (Figure 7). These constraints suggest the initial
magma feeding the 2014 eruption was stored at temperatures of ~1000 ±
25 °C and 50–100MPa, corresponding to a depth of ~1.9–3.8 km assuming
a crustal density of 2,640 kg/m3 (Smyth et al., 2007).

The old explosive eruption composition overlaps with the 2014 composi-
tion on most bulk and mineralogical chemical indicators and thus the
same preeruptive constraints (1000 °C, 50–100 MPa, and XH2O = 1) can
also be applied to this unit. The 1990 and late 2014 products differ slightly
in their preeruptive compositions, comprising lower SiO2, (~3 wt%), and
higher CaO contents (~0.5–1 wt%) than the 2014 melt compositions.
Their preeruptive compositions overlap with experiments conducted at
slightly deeper pressures (75MPa—~3‐km depth) and lower temperatures

(975 °C) as shown in Figure 4, but these distinctions are more marginal and slight changes in the initial
magma compositions may also account for this

The preeruptive composition of the 2007 (effusive) magma occupies a different chemical compositional
space than the other eruptions (Figure 4), comprising higher SiO2, lower Al2O3, and FeO glass contents
and lower anorthite and Mg# in clinopyroxene (Figure 6). The 2007 preeruptive compositions therefore
are better replicated by water undersaturated experiments (XH2O = 0.55) at temperatures of 1000–1050
°C and pressures of 50–100 MPa (Figures 4 and 6). This corresponds well to the observation from the
low water contents of Kelud melt inclusions (Figure 5), attributed to entrapment when the magma
was in a water undersaturated state. These constraints from mineral and glass chemistry are further
supported by glass and feldspar modalities, where the low glass contents and high phenocryst contents
of the 2007 magma most closely match the, 50 MPa, 1000–1050 °C, water undersaturated experimental
data.

3.3. Deformation Between December 2013 and May 2014

We do not detect any deformation in the period between 2 December 2013 and 8 February 2014, 3 days
before the eruption (Figures 8a and S1). The small spatial footprint of CosmoSkyMed imagery combined
with the lack of coherent points on Kelud's edifice mean that our measurements are sensitive to neither very
deep (middless to lower crust >10 km) nor very shallow (<1 km) sources within the edifice itself. Given that

Figure 5. Experimental glass compositions with calculated water contents
from solubility models (Papale et al., 2006) plotted on the same axis are
melt inclusions and water contents measured via Raman spectroscopy from
Cassidy et al. (2016).
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the preeruptive tilt is reported only at Kelud's crater and not at other sta-
tions further down the volcano's flanks (Nakamichi et al., 2017), it seems
likely that its origin was shallow. This signal is centered within the zone of
low phase coherence surrounding Kelud's summit and is likely to be well
below detection thresholds at distances where InSAR measurement was
possible. However, for a point source centered on the summit, we expect
that larger volume changes >0.1 km3 in the upper crust (e.g., depths up
to <10 km) would be detectable.

In interferograms spanning the period between 8 and 20 February 2014
we observe an increase in line‐of‐sight (apparent displacement away from
the satellite) around the southeastern rim of Kelud's edifice (Figure 8b
shows time series solution for this period). This feature does not appear
after 20 February. It is difficult to prove unequivocally that this is a real
displacement rather than a phase delay due to differences in tropospheric
water vapor. However, we note that this apparent subsidence is a
consistent feature in the cumulative displacement time series for
acquisitions dates after the eruption (Figures S1 and 8c). Since SAR satel-
lites are side‐looking, symmetrical subsummit deformation sources pro-
duce displacement signals that are both asymmetrical and off‐center
from the volcano summit in satellite line of sight (e.g., Magee et al.,
2018 ). For the descending geometry of our CosmoSkyMed imagery
(satellite heading = −168°, incidence angle = 32°), we expect a displace-
ment signal that is offset from the summit toward the southeast for a
centrally located geodectic source, which is consistent with our InSAR
observations (Figure 8b).

We assume that any coeruptive, contracting deformation source is central
(located within a few hundredmetres of Kelud's summit crater) and uses a
simple point‐source model (Mogi, 1958) to make a first‐order exploration
of possible depths and volume changes. We perform a grid search of the
parameter space between 0.5 and 15 km depth, −1 × 106 to −1 × 109 m3

volume change and at locations at intervals of 50 m within 500 m of
Kelud's crater. We find the lowest root mean square residuals for point
sources close to the crater at depths of >~2 km could be consistent with
the apparent coeruptive subsidence (an indicative source model located
at (112.309°, −7.90°), 2.1‐km depth, and −7 × 106 m3 change in volume).
However, we note that root mean square residuals of similar magnitude
can also be obtained at greater depths (up to 7 km). Model solutions are
nonunique, due to trade‐offs between depths and volumes as well as
because of the limited spatial coverage of our measurements. The
assumption of a point‐type source geometry may also be unrealistic, if,
for example, pressure changes take place over a more vertically extensive
ellipsoidal reservoir.

Given the limitations on our measurements, we restrict ourselves to the
following, largely qualitative conclusions. First, that there was no defor-
mation above our detection limits consistent with the intrusion of juvenile
material between 2 December 2013 and 8 February 2014. Any preeruptive
deformation was very shallow, originating within the volcano's edifice, as
suggested by the near‐vent tilt signals. Second, that the geodetic source for
the coeruptive subsidence was below the edifice, resulting in a broader
spatial footprint of deformation and subsidence in the more stably
scattering areas where InSAR measurement is possible. We estimate the
minimum depth for the source to be around 2 km, consistent with low

Figure 6. Mineral compositions of experimental samples compared to
natural products Open symbols indicate mixed volatile conditions, where
XH2O = <1.
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pressure estimates from experimental petrology (50 MPa), though it could
also plausibly be deeper.

3.4. Timing From Seismicity and Infrasound Networks

Since the studies of Caudron et al. (2015) and Nakashima et al. (2016),
additional seismic and infrasound data have beenmade available and pro-
cessed. The broadband seismic data from the nearby Kawah Ijen volcano
were analyzed in this study following the procedure described in Caudron
et al. (2015). Figure 9 (upper panel) shows the seismic trace high‐pass and
low‐pass filtered above 0.02 and below 0.1 Hz, respectively. Two signals
separated by 15 min emerge in the spectrogram (Figure 9, lower panel).
The results from a seismic antenna installed on the Merapi volcano and
an infrasound array (Figure 10) located in Pelabuhan Ratu (West Java)
are consistent with an acoustic origin for these two signals (Colbachini
et al., 2016). These seismoacoustic signals likely correspond to (1) the
initial phase of the eruption that destroyed the 2007–2008 dome plug
and (2) the Plinian phase of the eruption that followed 15 min after.

3.5. Decompression Rates

Using image analysis of SEM images, the average bubble number density
of the 2014 Kelud pumice comprised a volume (Nv) of 3,980 mm−3, with a
standard deviation of 862 mm−3 (n = 8, with a range of vesicularities).
This value was then used in the equation of Toramaru (2006), which
links nucleation theory to bubble number densities that are calibrated
by decompression experiments, to calculate decompression rates for the
2014 Kelud eruption. Input values for the Toramaru (2006) decompression
rate meter equation were provided from our experimental constraints,
using temperatures of 1000 °C, water values of 2.48%, PSat of 50 MPa,
and surface tension values from 0.02 to 0.05 N/m, as these values
represent assumed heterogeneous bubble nucleation, consistent with

the crystal‐rich nature of the Kelud magma (Shea, 2017). This yields decompression rates of 0.1–0.12
MPa/s; this range is consistent with other explosive eruptions (Cassidy et al., 2018). It should be noted that
decompression rates using bubble number densities most often record maximum rates, and not necessarily
the average rates (Shea, 2017). Assuming a lithological gradient of 0.025 MPa/m, this equates to an ascent
rate of 4–5 m/s. Using these ascent rates and the inferred crustal storage of 2–3 km, this gives a minimum
time estimate of 7–12 min for the magma to ascend from storage.

4. Discussion
4.1. Shallow Preeruptive Storage of Crystal‐Rich Basaltic Andesites

By matching experimental glass and mineral compositions, and mineral phase abundance with the natural
eruptive products (Figures 4–7), we have been able to assess the preeruptive storage conditions for different
eruptions at Kelud. The chemical and mineral characteristics of the 1990, 2007, and 2014, late phase 2014,
and older explosive eruption can all be replicated with experiments at shallow pressures (25–100 MPa), tem-
peratures between 975 and 1050 °C, and XH2O values from 0.55 to 1 (Figures 4 and 6). These experimentally
derived preeruptive storage constraints for the four different Kelud eruptions are compared to P‐T estimates
for other experiments conducted on intermediate magmas (Figure 11). This plot shows that preeruptive
Kelud magmas are stored at temperatures comparable to other basaltic andesite magmas, but higher than
commonly seen for andesites. The Kelud magmas however reside at shallower pressures (~<4‐km depth)
than all other basaltic andesite and andesite magmas, for which there are experimental data, but more akin
to some shallow dacite magma reservoirs. One reason for this is that many experiments use fine powder or
glass as opposed to the coarsely crushed sample used this and other studies (e.g., Erdmann et al., 2016).
Therefore, in our experiments it was mostly dacitic compositions that were in equilibrium with the mineral
phases; however, despite this, temperatures are generally much hotter than other dacites in this comparison.

Figure 7. Glass and feldspar modes as calculated from energy dispersive
spectrometer mapping images for selected experimental and natural
samples. The use of glass here refers to the nonphenocrystic area for
microlitic‐rich groundmass samples such as 2007. Open symbols indicate
mixed volatile conditions, where XH2O = <1. Close matches between
natural and experimental glass and mineral modalities further supports the
storage P‐T‐XH2O constraints from the chemical plots.
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Figure 8. (a) Preeruptive line‐of‐sight displacement between 2 December 2013 and 8 February 2014, h = satellite heading, i = angle of incidence. (b) Coeruptive
line‐of‐sight displacement between 8 and 20 February 2014. Note that the feature in the northwest quadrant of the image reverses in sign between panels
(a) and (b) and is therefore likely to be an atmospheric feature associated with the image acquired on 8 February. (c) Time series showing the mean cumulative
displacements for a wedge of π/2 centered on profile line i–ii and marked on panel (b). (c) Illustration of best, but not uniquely fitting, point source
model (112.309°, −7.90°, 2.1‐km depth, 7 × 106 m3 loss of volume) and residuals.

Figure 9. Upper panel: velocity waveform recorded by a broadband seismic station installed on the Kawah Ijen volcano (East Java, Indonesia) high‐pass and low‐
pass filtered above 0.02 and 0.1 Hz, respectively. Lower panel: corresponding spectrogram computed using 500‐s‐long 1% cosine‐tapered windows and showing two
signals separated by ~15 min. The timing of wave arrival is consistent with the origin time and propagation velocities of the Kelud 2014 eruption presented in
Caudron et al., 2015. Other causes of large seismic signals such as regional earthquake or teleseisms were also discarded.
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It should be noted that the experiments conducted here replicate the last stage of shallow residence prior to
ascent and eruption. Inevitably, the Kelud system will be fed from a deeper magmatic system, as evidenced
by relict high anorthite cores in plagioclases and the presence of glomerocrysts, xenocrysts, and mineral‐
melt barometry (Cassidy et al., 2016; Jeffery et al., 2013).

Figure 10. The upper and middle panels are time (x axis)‐frequency (y axis) plots, with the colors corresponding to the azimuths (upper panel in degrees)
and the speed (middle panel in m/s). Progressive Multi Channel Correlation (PMCC, Cansi, 1995; 15 log‐spaced bands adapted from Matoza et al., 2013,
and window lengths varying in proportion to the period from 30 to 250 s) results from the infrasound array installed in Pelabuhan Ratu (West Java)
highlighting two clear signals starting at ~16:21 and 16:36 with an azimuth of ~90° pointing toward the Kelud volcano (upper panel) and typical acoustic
speeds (~360 m/s, middle panel). The first signal is of short duration (a few minutes), while the second phase lasts for 2 hr (filtered between 0.1 and 5 Hz,
lower panel).

Figure 11. Comparison of preeruptive storage pressures and temperatures for other experiments (Joan Andújar et al., 2017) on intermediate magmas. Depth
estimates from (left) Arenal (Parat et al., 2014; Pertermann & Lundstrom, 2006), Merapi (Erdmann et al., 2016), Shasta (Grove et al., 2003), Mt. Pelee
(Martel et al., 1998; Pichavant et al., 2002). (middle) Basaltic andesites, Colima (Moore & Carmichael, 1998), Trident (Coombs et al., 2000), Soufrière Hills
(Couch et al., 2003), El Chichón (Luhr, 1990), Mt. Rainier (Venezky & Rutherford, 1997), Santorini (Andújar et al., 2016). Tungurahura (Andújar et al., 2017),
and Fish Canyon (Parat et al., 2008). (right) For Dacites; Nevado de Toluca (Arce et al., 2006, 2013), Novarupta (Coombs & Gardner, 2002; Hammer et al.,
2002), San Pedro (Costa, 2004), Santorini (Cadoux et al., 2014), Mt St Helens (Rutherford & Devine, 1988), Aniakchak (Larsen, 2006), Black Butte (McCanta
et al., 2007), Pinatubo (Scaillet & Evans, 1999), Unzen (Botcharnikov et al., 2008; Holtz et al., 2005), Santa Maria (Andrews, 2014), Fish Canyon (Caricchi &
Blundy, 2015), Cerro Uturuncu (Muir et al., 2014), Kizimen (Browne et al., 2010), Bezymianny (Shcherbakov et al., 2013), Quizapu (First et al., 2017).
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Such a low depth for preeruptive magmatic residence is more common for evolved magmas (such as dacites
and rhyolites; e.g., Castro et al., 2013; Coombs &Gardner, 2002; Hammer et al., 2002), as magmawill usually
stall and accumulate in the parts of the crust where its density is the same as the surrounding rock, assuming
there's no excess pressure, with crustal density normally becoming lower toward the surface (Lister & Kerr,
1991). However, there are some examples of dacitic magma storage stored at deeper depths (e.g., Mt St
Helens, Black Butte and Mt Pintatubo) suggesting that this is not always the case (Figure 11). InSAR mea-
surements of deformation, mostly in preeruptive periods, have been interpreted as evidence for shallow
magma reservoirs (<3 km) at other Indonesian volcanoes, including Sinabung, Kerinici, Slamet, Lawu,
Agung, and Anak Krakatau (Chaussard & Amelung, 2012).

The reasons behind Kelud's shallow magma storage are not entirely clear. Crustal heterogeneities, regional
stress regime, local extensional fault networks, and Kelud's small edifice may all be important factors
(Armienti et al., 2013; Castruccio et al., 2017; Pinel & Jaupart, 2000, 2004; Ten Brink & Brocher, 1987);
however, this also may be partly due to Kelud's dichotomous composition and aided by the presence of
exsolved volatiles. X‐ray fluorescence data show that whole rock compositions for Kelud eruptive products
plot consistently in the basaltic andesite field (Figure 3; 54 wt% SiO2 average), whereas matrix glasses and
melt inclusions are far more evolved (as their compositions have equilibrated in the shallow reservoir), plot-
ting in the dacite field (67 wt% SiO2 average; Figure 3). Therefore, it is perhaps the melt composition that
defines the accumulation of magma at a certain depth rather than the crystals (or the combination), due
to the enhanced mobility of melts relative to crystals, which promotes melt extraction and ascension.
Deeper parts of the Kelud system have been proposed to be volatile rich (8 wt% water; Jeffery et al., 2013).
Volatiles will exsolve during decompression and the retention of these exsolved volatiles (i.e., if the degas-
sing system is closed) will also increase the overall buoyancy of the magma aiding shallow emplacement.
As observed from previous studies at Kelud, the crystals have both grown within the magma during shallow
residence, as evidenced by the evolved melt inclusion compositions and mineral‐melt equilibrium (Cassidy
et al., 2016), and some also have been brought up from deeper parts of the system as antecrysts, demon-
strated by high anorthite plagioclase cores surrounded by less evolved rims grown within the shallow system
(~10%; Jeffery et al., 2013). This suggests that the melt‐rich magma does not simply ascend into an upper
crystal mush, but that some of these antecrysts are “dragged up” with the magma and then grow and new
crystals nucleate at shallower pressures during shallow level differentiation (e.g., Davidson et al., 2005).
That Kelud magmas have had a consistent whole rock composition between different eruptions supports
the notion that a common set of processes is continuously repeated at Kelud. Clearly not all of the magma
in the reservoir will be erupted (e.g., 2007–2008 eruption at Kelud), and thus, there is mixing between old
and new magmas, but trace element chemistry from mineral zoning suggests that recharging magmas have
a similar chemical composition (Cassidy et al., 2016). The shallow storage of Kelud magmas may be a com-
mon feature of other crystal‐rich and exsolved volatile‐rich magmas with evolved melt compositions, a good
example is Merapi volcano (Erdmann et al., 2016; Preece et al., 2013), which has very similar compositions
and is also stored at shallow depths (Figure 11). More homogenous basaltic andesite magmas, where matrix
glass and melt inclusions are also basaltic andesite, are stored at deeper depths (e.g., Arenal; Figure 11).|
However, the color coding symbols according to phenocryst content (Figure 11) shows little relationship
to magmatic storage depth.

Shallow (<3 km) geodetic sources have been observed in a range of volcanic settings, including in rift
zones (e.g., Biggs et al., 2009, 2011), arcs (e.g., Chaussard & Amelung, 2012), and at ocean island volcanoes
(e.g., Wolf, Sierra Negra, Galapagos, Bagnardi et al., 2013). However, many of these sources have been
attributed to changes in hydrothermal systems and sill intrusions, rather than reservoir inflation, this illus-
trates the need to consider the presence of magma reservoirs at depths below 3 km.

4.2. Preeruptive Storage Conditions and Processes Prior to Explosive and Effusive Eruptions

We can constrain the preeruptive magmatic storage estimates of the individual eruptions based on their
chemical comparisons with petrological experiments. The 2014, 1990, and old explosive eruption are most
consistent with experiments conducted at 1000°± 25°C, 50–100 MPa, and XH2O = 1 (water saturated). The
2007 effusive eruption was sourced from magmas under similar pressures (50–100 MPa), and temperatures
(1000–1050 °C), but from a water‐undersaturated (mixed with CO2) magma (XH2O = 0.55).
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Cassidy et al. (2016) in a study of plagioclase phenocryst zoning highlighted the presence of temperature and
water fluctuations during the evolution of magma in the reservoir. These temperature and water cycles were
modulated by recharging magma that had higher temperatures and lower water contents, thus diluting the
magmatic water content (e.g., 2007 effusive eruption). In the periods without magmatic recharge, the
magma cooled and differentiated, driving up water contents (before the 2014 explosive eruption). The higher
water contents coupled with increased viscosity (from cooling) was suggested to provide conditions that led
to more explosive eruptions (Cassidy et al., 2016). This study reaffirms this hypothesis and shows that water
contents (Figure 5), as measured by Raman spectroscopy inmelt inclusions in Cassidy et al. (2016), may have
been lowered in the effusive eruption by the presence of CO2 in the fluid phase, which acted to supress water
activity. Despite more CO2 being present in the 2007 magmas (XH2O = 0.55) and leading to lower water
contents, little dissolved CO2 is found in the melt inclusion compositions (<350 ppm), due to the low
solubility of CO2 at these shallow pressures, with the majority existing in the fluid/vapor phase (Moore,
2008; Papale et al., 2006). Our results suggest that Kelud magmas may spend the majority of their time in
storage under water‐undersaturated conditions (Figure 5) but may then become water saturated just before
they erupt explosively.

The presence of months of midcrustal seismicity, elevated gas, increased lake temperatures, and higher esti-
mated magmatic temperatures (Jeffery et al., 2013) prior to the 2007 effusive eruption, strongly point to a
recharging system from intruding magma. The most notable signal of unrest was an increase of magmatic
CO2 emitted from the bottom of the crater lake four months prior to the eruption (Caudron et al., 2012).
Given that the shallow reservoir (2–3 km) had likely degassed its CO2, we suggest that this CO2 outgassing
is likely derived from deeper intruding magma, which diluted or suppressed the water contents in the shal-
low magma system (e.g., Cassidy et al., 2016). It is likely that the intrusion may have triggered the eruption,
either via CO2 outgassing (e.g., Caricchi et al., 2018) or simply the volumetric input of a degassed magma
exceeding the yield strength of the overlying rocks (e.g., Degruyter et al., 2017).

Magmatic decompression rate (often coupled to ascent rate) is one of the strongest factors determining
whether an eruption becomes effusive or explosive (Cassidy et al., 2018; Castro & Dingwell, 2009;
Gonnermann & Manga, 2003; Jaupart & Allègre, 1991; Woods & Koyaguchi, 1994). The ascent of magma
from depth is driven by the exsolution of volatiles into the vapor phase. When these exsolved volatiles
remain coupled to the melt they increase the buoyancy of the magma and limit outgassing. Water as a mag-
matic volatile is particularly important for exsolution driven ascent as its solubility is such that it exsolves
over a large pressure range of the magmatic system (Baker & Alletti, 2012; Petrelli et al., 2018). In contrast,
the second most abundant volatile, CO2, exsolves at deeper depths and thus is more likely to be lost before
magmatic ascent occurs (Blundy et al., 2010). It is for this reasonwe suggest that magmas that are water satu-
rated (and not just volatile saturated) prior to eruptions are more likely to be explosive (e.g., Stock et al.,
2016). This hypothesis concurs with the estimates here for the ascent rates of the 2014 eruption of the
Kelud magma (4–5 m/s), which are comparable to other explosive eruptions (Cassidy et al., 2018). The
absence of deformation in the months before the 2014 eruption is consistent with a lack of a preeruptive
intrusion of juvenile magma, at least after 2 December 2013 (earliest SAR image analyzed here). However,
it is not diagnostic of there being no magma movement at all, as any intrusion may have been either too
small to detect or to some extent accommodated by magma and reservoir compressibility, especially
volatile‐saturated magmas at shallow depths (high bubble fraction; e.g., McCormick‐Kilbride et al., 2016).

4.3. Combining Petrology and Monitoring Data Sets to Track the Eruptive Progression

Using the multiparameter data collected in this study and others, we can piece together a likely series of
events occurring prior, during and after the Kelud 2014 eruption. In the months leading up to the eruption
there was little or no seismicity. Seismicity only started with small distal volcano‐tectonic earthquakes a
month prior, building up slowly, until shallow earthquakes (1–2 km) started occurring underneath the vol-
cano itself some 2 weeks before (Nakamichi et al., 2017; Triastuty et al., 2014). Furthermore, in the 3‐month
period of satellite observation prior to the 13 February eruption, our study shows that there is no evidence of
significant deformation in the coherent area surrounding the volcano's edifice. This suggests that no major
volume changes were taking place in the crust at depths below ~2 km and is consistent with the lack of other
signatures of magma injection before the 2014 eruption. This is in contrast to the evidence supporting
magma intrusion as a trigger for the 2007 effusive eruption (e.g., 3 months of middle and upper crustal
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seismicity, CO2 degassing from the lake, higher estimated magma temperatures, mixed volatile conditions,
and sieve texture and resorption zones within phenocrysts; Jeffery et al., 2013; Cassidy et al., 2016;
Philibosian & Simons, 2011). The lack of a magma injection shortly before the 2014 eruption is consistent
with phenocryst zoning signatures, which display normal zoning toward the rims of the feldspar crystals
(Cassidy et al., 2016). The increased water contents in melt inclusions at the rims of feldspar crystals
(Cassidy et al., 2016) and the water‐saturated nature of the 2014 eruption from experiments suggest that
volatile overpressure through differentiation and crystallization may be the most likely triggering
mechanism (Blake, 1984; Fowler & Spera, 2008; Tait et al., 1989; Tramontano et al., 2017). The pronounced
difference in magma water saturation between the 2007 and 2014 eruptions may be a consequence of the
cooling and crystallization of the unerupted magma during or following the 2007–2008 eruption. This
“internal” trigger or preconditioning for the 2014 eruption would also explain the lack of deep seismicity,
widespread deformation and the short run‐up times prior to the eruption. The volatile overpressure led to
the initial eruption destroying the 2007–2008 dome and was followed by the main Plinian phase 15 min later
(based on infrasound and seismic data presented here; Figures 9 and 10). This time lag corresponds closely
with the estimates of ascent times calculated from bubble number densities from the pumices in the main
Plinian stage. Decompression rates of 0.1–0.12 MPa/s (4–5 m/s) sourced from a magma at 50–100 MPa
provide a minimum time estimate of 7–16 min for the magma to ascend from the reservoir. Therefore, the
time lag between the two different eruptive phases implies rapid decompression of the Kelud magma
reservoir immediately following the preliminary eruption as the cause for the high‐intensity main Plinian
phase of the eruption.

Between the main Plinian eruption and the waning stage, 2 hr later (Figures 10), the chemistry of the melt
inclusions becomes less evolved (Figures 3). There is also a transition to more mafic compositions in the
matrix glass and therefore after melt inclusion entrapment. This suggests that the eruption mixed with a
likely deeper (or melt with different degrees of water saturation), more mafic reservoir as the magma tapped
different melt bodies as a consequence of downward propagating decompression‐driven eruption; e.g.,
Tarasewicz et al., 2012). This petrological finding could be consistent with the coeruptive subsidence
signature detected to the southeast of the edifice (Figure 8b). This adds further complexity and unpredictabil-
ity to the evolution of eruptions and how we monitor them.

4.4. Is Magmatic Ascent Related to the Onset of Unrest?

Unrest detected via monitoring techniques is commonly linked to ascent of magma through the crust
(Sparks, 2003; Sparks et al., 2012), or even from magma chamber to surface (Passarelli & Brodsky, 2012).
However, recent studies suggest that nonmagmatic unrest is common and unrest is not always associated
with ‘magma on the move’ (Pritchard et al., 2019). Figure 12 agrees with the latter view and shows that
the final ascent/decompression from a preeruptive magma reservoir can occur very rapidly in explosive
eruptions, even when sourced from deeper reservoirs (>7 km). Furthermore, this ascent time is often
decoupled from the onset time of unrest, as in the case for Kelud (Figure 12). The time of magmatic ascent
for various explosive and effusive eruptions in Figure 12 has been calculated from the ascent rate compila-
tion from Cassidy et al. (2018), and preeruptive storage depth estimates for the individual eruptions were
taken from the literature. When known, the onset of unrest time is plotted for the same eruptions using
the Global Volcanism Program reports. We use the term “onset of unrest” to describe the time at which
the background/baseline behavior of a volcano increases sufficiently to be notable and reported (akin to
Phillipson et al., 2013). Figure 12 shows that due to the difference in ascent rates, magmas feeding effusive
eruptions take longer to ascend (days to years), compared to explosive eruptions (minutes to days), but there
is some overlap. Some eruptions, all of which are effusive, have onset of unrest times close to the estimated
magma ascent time (e.g., Soufriere Hills, Colima 1998, and Mt. St. Helens), an observation that is consistent
in these cases with unrest being a direct reflection of magma ascent from the uppermost reservoir. However,
other dominantly effusive eruptions have longer time gaps between the onset of unrest and their estimated
ascent time (e.g., 1991 Unzen and 2011 Cordon Caulle). A caveat here is that magma may sometimes travel
long distances laterally before erupting (e.g., Castro et al., 2013; Jay et al., 2014). Equally likely is that magma
starts to move at the onset of unrest, but it stalls because of unfavorable thermal or stress conditions, which
can lengthen unrest timescales, particularly for volcanoes that have not erupted for a long time period
(Pritchard et al., 2019). In such instances the ascent time or rate as calculated from depth is not
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appropriate. In contrast to the effusive examples, all of the compiled explosive eruptions have ascent times
orders of magnitude shorter than the first signs of unrest (even when this unrest period is itself relatively
short). We therefore infer that unrest signatures in these cases are mostly unrelated to magmatic ascent to
the surface. Instead, these signatures from seismicity or in other forms may either be related to magmatic
movement deeper in the plumbing system, “fluids on the move” or could be linked to stress changes on
faults, aquifers and hydrothermal systems (e.g., White & McCausland, 2016).

One of the big caveats here is the use of syneruptive ascent rates to compare with preeruptive unrest, as some
magmas may have ascended slowly prior to eruption and rates then increased once the eruption began dur-
ing rapid decompression (e.g., Mt St Helens cryptodome, 0.01 m/s; Endo et al., 1981). This two‐stage process
would lengthen the ascent time. Another caveat, however, may make the ascent times shorter than plotted.
Here, we have assumed magmastatic pressure equals lithostatic pressure, which may not be the case for
overpressured systems. For example, if maximum magmatic overpressures of 20 MPa were assumed
(Sparks, 1997), this would equate to a ~0.77 km reduction in estimated depths, which would make the ascent
times slightly shorter than plotted for overpressurized systems.

Figure 13 plots some of the variables used to calculate ascent times in Figure 12 against each other. This
shows that most eruptions are sourced from reservoirs from 4 to 9 km, with no discernible difference
between effusive and explosive eruptions, suggesting that storage pressure (and by extension dissolved
volatile contents) ultimately have little control on eruptive style, as we have found for the Kelud system.
Kelud's shallow storage depth may have added to the lack of prewarning, as magma is ascending for a

Figure 12. Ascent and run up timings for explosive and effusive eruptions, with known ascent rates, storage depths, and
unrest timescales. Where onset of unrest times are not known, the ascent time estimates are plotted for comparison. It
should be noted that not all eruptions were exclusively explosive or effusive, for example, Cordon Caulle; however, we
defined them by their dominant eruptive style. Ascent rates are from the compilation of Cassidy et al. (2018), depth
estimates from Izu‐Oshima, Japan (Hamada et al., 2014), Chaparrastique, El Salvador (Scarlato et al., 2017), Arenal, Cost
Rica (Parat et al., 2014), Vesuvius, Italy (Scaillet et al., 2008), Mt Pelee (Martel et al., 1998), Soufriere Hills, Montserrat
(Barclay et al., 1998), Colima, Mexico (Moore & Carmichael, 1998), Tungurahua, Ecuador (Andújar et al., 2017),
Sakurajima, Japan (Miwa et al., 2009), Pinatubo, Philippines (Rutherford & Devinel, 1996), Santiaguito, Guatemala
(Scott et al., 2012), Santa Maria, Guatemala (Andrews, 2014), Unzen, Japan (Holtz et al., 2005), Mt. St. Helens
(Rutherford & Devine, 1988), Chaiten, Chile (Castro & Dingwell, 2009), Taupo, New Zealand (Smith et al., 2005),
Yellowstone, United States (Myers et al., 2016), and Bishop Tuff, United States (Wallace et al., 1999).
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shorter time period relative to magmas stored deeper. However, when plotting ascent time versus
preeruptive storage depth (Figure 13a), there is no significant correlation, despite the fact that the ascent
time was calculated partly from storage depth. Instead, it shows that ascent time is most dependent on the
rate of ascent (Figure 13e). Figures 13c and 13d show that the onsets of unrest are not correlated with
ascent times or rates. However, for the eruptions where the time of onset is longest, the ascent time is
also the longest (along with slower ascent rates). These plots also show that effusive eruptions generally
have longer periods of unrest (effusive mean is 380 days, explosive mean is 226 days), a slower magma
ascent rate and this magma takes longer to ascend (mean ascent effusive time is 98 days, with
explosive eruptions averaging 10 hours), which has implications for forecasting the eruptive style of an
impending eruption.

Figure 13. Plots comparing storage depths, onset and unrest timescales to ascent time, and rates for both explosive (black
symbols) and effusive eruptions (red symbols).
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4.5. Explosive Eruptions With Little Warning

Prior to the 2014 VEI our explosive eruption, Kelud showed limited evidence for major deformation up to
three months prior. Seismicity was low, shallow, and accelerated quickly 10 days prior to the eruption, such
that failure forecast modeling, conducted retrospectively, could not predict the start of the eruption, estimat-
ing it 3 days to 2 weeks late (Nakamichi et al., 2017). This rapid ramp‐up of activity prior to an explosive
eruption is particularly hazardous, requiring fast decision making and evacuations to take place, which in
the case of Kelud was conducted successfully 2 days before the eruption, leading to limited causalities
(Venzke, 2018). To understand the lead‐up of unrest prior to other explosive eruptions, we have compiled
a list of all the VEI >4 eruptions since 1992 (when satellite measurements of deformation began) from the
literature (Table S3 and Figure 14). Here, we use onset of any volcano‐related seismicity as described in
the particular publication or the Global Volcanism Program reports (Table S3). Distal VT seismicity, defined
in White and McCausland (2016) as “high‐frequency volcano tectonic earthquakes at distal locations on tec-
tonic fault structures at distances of one or two to tens of kilometers laterally from the site of the eventual
eruption,” is provided by Table 1 in White and McCausland (2016). Out of the 22 eruptions, no measure-
ments were made on three eruptions and some had limited information or uncertainty in the monitoring
data (Figure 14). Nevertheless, this data set shows that more than a third of VEI 4+ eruptions since 1992
occurred with less than 2 weeks notice and over a half (52%) occurred within only a month of the first sign
of unrest. It should be noted though that for some eruptions, given a more developed monitoring network,
more subtle unrest activity (e.g., distal VT seismicity) might have identified unrest further in advance. There
is a large range in the preeruptive unrest time periods, ranging from a few hours before an eruption
(Calbuco, 2015) to deformation over decade‐long intereruptive periods at Okmok (2008). Also plotted in
Figure 14 are the type of unrest signals, being seismicity, distal VT seismicity, deformation measured by
InSAR and via tilt or GPS, and phreatic or fumerolic activity. In 8 of 19 eruptions, some form of deformation
(inflation or deflation, measured either in situ or remotely sensed) was the first sign of unrest, often
occurring months to years prior to an eruption, and even months to years prior to any other sign of unrest.
Indeed, some preeruptive periods show long‐term changes in deformation, but only a short run‐up of seismic
activity (e.g., Okmok, Grimsvotn, and Wolf). Deformation can be caused by a range of volcanic processes
including magma movement, degassing and phase changes, and hydrothermal processes (e.g., Biggs et al.,
2014; Ebmeier et al., 2018; Hamlyn et al., 2018; Pinel et al., 2014). Even if deformation can be confidently
attributed to magma movement, this is not necessarily a sign of imminent eruption, and more
detections of deformation have been made during unrest than can be clearly linked to periods of eruption
(e.g., Biggs et al., 2014; Ebmeier et al., 2018; Jay et al., 2014). Bodies of magma can build up gradually by a
process of successive intrusions (e.g., Santorini, Parks et al., 2012; Pyle, 2017) or by posteruption recharge
(e.g., Okmok, Lu & Dzurisin, 2014) and reside in the crust for months to decades before eruption. On a
multidecadal time scale, detection of deformation is a good statistical predictor for an eruption taking place
over the same period of observation (Biggs et al., 2014; Furtney et al., 2018). However, eruptions have also
taken place at volcanoes where a lack of deformation has been measured (Rasmussen et al., 2018). At
Kelud a shallow magma body (at 2–4 km) may have resided undetected until it was triggered shortly before
the eruption in 2014, which has parallels in other eruptions with only short periods of preeruptive seismicity
(Reventador, Rabaul 1994, Kasatochi, Calbuco, Chaiten, Manam, and Ruang).

The rapid onset of unrest prior to the Reventador 2002 eruption was attributed to its low silica, volatile‐rich,
fluid magma, making it ascend aseismically (Hall et al., 2004). Stix (2018) also suggests “fast” volcanoes,
those with onset of unrest times of months to years prior, are derived from volatile‐rich, mobile magma,
with fast ascent rates, whereas “slow” volcanoes, those displaying restlessness over the course of decades
have complex plumbing systems, erupted magmas that are partly degassed and rheologically sluggish.
Absolute volatile contents or magma water contents are difficult parameters to compare, as these relate
to the solubility limit and therefore the depth at which the magma resides, making magma water
content comparisons meaningless unless corrected for depth, and we show here that magma storage
depth has little effect on onset time and eruptive style (Figure 13). The data presented here show that
high‐silica and high‐viscosity magmas can also erupt with little warning and that when ascent times
for explosive eruptions are on the order of minutes to days, then ascent does not need to be aseismic,
but simply rapid without much prior magma movement required. Data from White and McCausland
(2016) now show that distal VTs were recorded up to a month before the 2002 Reventador eruption,
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but not recognized at the time as being associated with volcanic unrest at Reventador volcano as these
are likely related to stress changes on peripheral faults and aquifers resulting from the pressurization
of the magma reservoir. These distal VTs could be important for forecasting rapid onset explosive
eruptions, as they often occur earlier than other forms of seismicity (e.g., Nabro, Kelud, Kasatochi,
and Reventador; Figure 14) or unrest signatures, and their magnitudes may be related to intruded
volumes (White & McCausland, 2016).

Some eruptions on Figure 14 are preceded by longer periods of unrest and display multiple unrest signals
that initiate at similar times (e.g., Cordon Caulle, Eyjafjallajokull, and Ulawun). Where this happens,
deformation signals (when caused by magma) may more likely be related to magma injections that trigger
ascent and eruption (e.g., Rasmussen et al., 2018). Indeed, timescales of magmatic injection prior to
eruptions gained from diffusion chronometry, often provide estimates on the order of months to decades
(e.g., Bouvet deMaisonneuve, 2015; Druitt et al., 2012; Till et al., 2015). Above, we attribute the limited uplift
signatures and rapid onset seismicity before the 2014 Kelud eruption and others to internal triggering via
volatile saturation. We therefore propose that the different unrest time signatures may be attributed to the
manner with which the eruptions were triggered. The eruptions that have longer periods of unrest of
different types occurring at similar times may be associated with a magmatic injection trigger generating
seismicity as themagma ascends and causes uplift and inflation of the edifice. In contrast, the eruptions with
a more rapid onset of seismicity prior to the eruption (or decoupled from the deformation signature) may be
triggered internally, not requiring fresh inputs of magmas but resulting from a magma crystallizing as it
cools (second boiling). This leads to volatile saturation and high overpressures, likely leading to faster

Figure 14. Run‐up time for explosive eruptions VEI 4 and greater since 1992. The eruptions of Lascar (1993), Sheveluch (1999) and Sarychev Peak (2009) were not
included due to insufficient monitoring data collected. The symbols indicate the onset of unrest, and the colored lines denote unrest that was recorded >1 month
prior to the eruption. The color indicates the type of unrest signal, in accordance with the symbol colors. The symbol “*” indicates eruptions with patchy
monitoring data sets, and thus, there is uncertainty over run‐up times. Data compiled for this figure is from Global volcanism reports (ed. Venzke, 2018), distal
seismic data from White and McCausland, (2016), and the following sources: Cordon Caulle, (Jay et al., 2014); Wolf (de Novellis et al., 2017; Xu et al., 2016);
Calbuco (Delgado et al., 2017); Kelud (Nakamichi et al., 2017); Tolbachik (Lundgren et al., 2015); Nabro (Goitom et al., 2015; Hamiel & Baer, 2016; Hamlyn et al.,
2014); Grimsvotn (Bato et al., 2016; Hreinsdóttir et al., 2014; Reverso et al., 2014); Merapi (Costa et al., 2013; Pallister et al., 2013; Saepuloh et al., 2010);
Eyjafjallajokull (Sigmundsson et al., 2010), Kasatochi (Ruppert et al., 2011; Waythomas et al., 2010); Okmok (Freymueller & Kaufman, 2010; Lu et al., 2010;
Passarelli & Brodsky, 2012); Chaiten (Wicks et al., 2011); Rabaul (Bouvet de Maisonneuve, 2015); Manam (Global Volcanism Program, 2004); Reventador
(Hall et al., 2004); Ruang (Bebbington & Marzocchi, 2011; Marzocchi & Bebbington, 2012; Phillipson et al., 2013; Wunderman, 2002); Ulawun (White &
McCausland, 2016; Wunderman, 2000); and Rabaul (Bouvet de Maisonneuve, 2015; Venzke, 2013); Mt Spurr (Gardner et al., 1998; Phillipson et al., 2013; Power
et al., 2002; Wiemer & McNutt, 1997). A compiled data table can be found in the supporting information.
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magma ascent; indeed, a recent study by Tramontano et al. (2017) shows that shallow reservoirs (<11 km)
are more susceptible to be triggered by volatile overpressure. These conditions shorten the onset of
unrest, make explosive eruptions more likely, and lessen the likelihood of detecting precursory activity.
A complexity to this argument is that magmas can undergo several different processes prior to eruptions,
such as magmatic injections which albeit do not trigger the eruption directly, but may precondition the
magma making it more susceptible to final triggering by some other later process, such as second boiling,
as was the case for Kelud.

5. Conclusions

By combining experimental and analytical petrology with monitoring and satellite data, we have been able
to deduce the following:

1. Preeruptive basaltic andesite magmas for various different eruptions at Kelud are stored at temperatures
of 1000–1050 °C and low pressures (50–100 MPa) equating to depths of 2–4 km. These storage depths are
shallower than other basaltic andesite or even andesite magmas but are more akin to more silicic mag-
mas. We speculate that this shallow storage may be related to Kelud's exsolved volatile‐ and crystal‐
rich magma with a more evolved melt composition. Kelud magmas are mixtures of silicic melt and mafic
crystals and thus different from pure basaltic andesites melts, and as a result can reach neutral buoyancy
within the crust and carrying its accompanying crystals.

2. The biggest difference in preeruptive storage conditions between eruptions is the range of water fractions
(XH2O), which ranges from water saturated in the explosive eruptions to water undersaturated
conditions (those mixed with CO2; XH2O = 0.55) in the 2007–2008 effusive eruption. This effusive
eruption was likely triggered by a CO2‐rich magma injection that heated the magma and suppressed
its water contents. We attribute the greater explosivity of the 2014 eruption to its water‐saturated nature.
Water has a large exsolution pressure range which aids buoyancy and fast ascent, relative to CO2, which
is often degassed at shallow pressures and can decouple from the melt.

3. The limited amount of unrest and deformation prior to the 2014 explosive eruption, combined with its
water‐saturated nature, suggests that volatile overpressure triggered the eruption (internally triggered).
The initial phase of the eruption destroyed the 2007–2008 dome plug and led to rapid decompression
of the underlying shallow magma reservoir producing a high Plinian plume 15 min later, a time lag
gained from infrasound and seismic data, but one that is also consistent with calculated decompression
rates from bubble number densities. Several hours following the main Plinian phase, the eruption energy
waned, leading to a low altitude plume distributing ash to the northeast regions. The ash from this phase
of the eruption comprised less evolvedmelt inclusion andmatrix glass compositions, evidence that points
to the tapping of deeper and more mafic magma bodies during the eruption. Coeruptive subsidence from
our InSAR data could be caused by geodetic sources at depths of 2–7 km. These combined petrological
and geodetic observations suggest deeper melts were tapped as the eruption progressed, sustaining the
Plinian eruption.

4. Compilations of calculated ascent times and onsets of unrest periods for multiple explosive and effusive
eruptions at other volcanoes show that there is often a large gap between the onset of unrest and the
ascent time of the magmas, highlighting that unrest signatures rarely correspond to direct magma ascent
to the surface. We find that effusive eruptions have longer preeruptive unrest periods as well as longer
ascent times, but that explosive eruptions can ascend in a matter of minutes to hours even when sourced
from deep reservoirs. Magmatic depth does not seem to affect whether eruptions are explosive or effusive,
as in the Kelud example, and ascent time is mostly controlled by ascent rate rather than the depth at
which magma is stored.

5. In a compilation of onset of unrest times for all VEI 4 eruptions since 1992, we find that over a half
occur with only a month or less of unrest prior to erupting. For others, deformation signals can occur
for months or years before an eruption, but some eruptions show limited deformation in the months
prior to an eruption if they are not triggered by magmatic injections. We show that compositional
differences related to viscosity have no bearing on ascent times or the duration of preeruptive unrest.
Using results from the Kelud 2014 eruption, we propose that explosive eruptions with little warning are
mostly triggered internally, via volatile saturation and overpressure, rather than externally (i.e., by
magma injection).
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