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a b s t r a c t 

Measured external fluxes impose constraints to under-determined metabolic networks that narrow the 

internal flux intervals obtained using Flux Variability Analysis. Nevertheless, these constraints often lead 

to systems that do not admit a feasible solution. Measurement noise and data smoothing are among 

the sources of uncertainties that can cause system infeasibility. These constraints are classically released 

using interval representation of fluxes. This study investigates the use of Adaptive Flux Variability Analysis 

(AFVA), which allows determining a minimal coefficient of variation of the external fluxes along the time 

course of the experiment. Especially, AFVA is applied to a medium-size metabolic network and a rich 

dataset relative to HEK-293 cells cultured in batch, encompassing all 20 amino acids and less commonly 

measured metabolites, such as urea and pyruvate. AFVA appears as an effective tool for metabolic flux 

analysis. The impact of data-smoothing and the information provided by the cell growth are thoroughly 

analyzed. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Several industrial processes make use of cell cultures technolo-

ies in order to manufacture various products of interest such as

onoclonal antibodies, viral vectors, proteins, etc. To improve the

nderstanding of cell metabolism and henceforth the efficiency of

uch processes, different cell lines have been extensively studied

ver the last decades ( Heath and Kiss, 2007; Ravi et al., 2015 ). In

his context, the parallel development of ’-omics’ technologies and

omputational tools has allowed reconstructing cellular metabolic

etworks and quantitatively characterizing the activity of well-

nown intracellular pathways ( Duarte et al., 2007; Thiele and Pals-

on, 2010; Petiot et al., 2015; Kanehisa et al., 2016 ). 

These computational tools can be classified into three cate-

ories ( Trinh et al., 2009 ): metabolic flux analysis (MFA), flux bal-

nce analysis (FBA) and metabolic pathway analysis (MPA). MFA is

pplied when the considered networks become (over)determined

ith the addition of extracellular metabolite measurements. In

ome cases, this allows the computation of a unique solution

 Stephanopoulos et al., 1998; Provost and Bastin, 2004 ). Never-

heless, the complexity of the metabolic networks often leads to

nder-determined systems and thus to an infinity of admissible
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olutions, even with the addition of an extensive number of mea-

urements. FBA tackles this issue through the optimization of an

bjective function, such as the maximization of the growth rate

 Kauffman et al., 2003; Price et al., 2004 ), which leads in some case

tudies to the selection of a unique solution among the solution

pace. In many other cases however, the system remains underde-

ermined with an infinity of flux distributions leading to the same

inimum of the objective function. Instead of selecting one possi-

le set of internal fluxes among the infinity of admissible solutions,

PA defines the intervals in which the intracellular fluxes are con-

trained. MPA includes elementary flux mode analysis (EFM) and

xtreme pathway analysis (EPA) that both define all existing path-

ays (succession of reactions) linking cell substrates and products,

s well as the quantitative intervals in which internal fluxes are

onstrained. EPA differs from EFM in that it imposes that all ex-

reme pathways are systematically independent ( Trinh et al., 2009;

lamt and Stelling, 2003; Papin et al., 2004 )). Extreme pathways

herefore represent a subset of elementary modes. 

In addition to traditional MPA methods, extreme admissible

alues of individual internal fluxes can be determined through

omputation of flux variability analysis (FVA) which consists in

olving a simple linear programming problem ( Leighty and An-

oniewicz, 2011; Llaneras et al., 2012; Vercammen et al., 2014 ).

hile the usual analysis provides an insight into the cell activ-

ty under specific growth conditions, in the course of the expo-

ential phase or the stationary phase for example, several studies

rovide a dynamic overview over the whole experiment using FBA
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( Mahadevan et al., 2002 ), MPA ( Fernandes et al., 2016; Zamorano

et al., 2013 ) or FVA ( Richelle et al., 2016; Bogaerts et al., 2017 ). 

Even though FVA does not provide the whole set of potentially

used internal pathway combinations as in MPA, this tool has the

advantage of easily coping with measurement noise and data pro-

cessing uncertainties (spline smoothing, differentiation, etc., poten-

tially leading to the impossibility to satisfy the constraints imposed

by both the network and the inferred extracellular fluxes), by con-

sidering flux intervals instead of unequivocally determined extra-

cellular fluxes ( Mahadevan and Schilling, 2003; Llaneras and Picó,

2007; Richelle et al., 2016 ). In the classical approach, however, the

relative width of the intervals is constant over time and for all ex-

tracellular fluxes, regardless of the quality of the measured signals.

This may lead to large admissible internal flux intervals. This issue

is addressed in Abbate et al. (2019) where the authors develop a

method called adaptive flux variability analysis (AFVA) which iden-

tifies, at each analysis time instant and possibly for each individ-

ual extracellular component, the minimum interval representation

of fluxes that results in an admissible set of solutions. The user is

therefore able to obtain a quantitative indicator of the impact of

the measurement noise and indirect data processing, such as data

smoothing, on the solution. 

As the preliminary study ( Abbate et al., 2019 ) is restricted to

a small network presented in Bastin (2016) , one of the objectives

of the present work is to investigate the potential of AFVA with

a larger network and extensive measurement datasets of HEK-293

cell cultures in batch mode. This cell line is widely used for the

production of different viral vectors in the pharmaceutical industry

and several metabolic network studies are available in the litera-

ture ( Henry et al., 2005; Martinez et al., 2010; Henry et al., 2011;

Quek et al., 2014; Karengera et al., 2017; Petiot et al., 2015 ). The

present study considers a medium-size metabolic network with

82 reactions and 51 internal metabolites, including reversible re-

actions, and is based on a rich dataset encompassing all 20 amino

acids and less commonly measured metabolites, such as urea and

pyruvate. 

Since AFVA has been developed to cope with uncertainties,

a second objective of this work is to assess the impact of data

smoothing on the analysis results. 

A third objective is to investigate on how to account for the

biomass growth rate estimation through viable cell concentration

measurements, which often represents a very stringent (and there-

fore difficult to satisfy) constraint alongside the other inferred ex-

tracellular fluxes. This latter issue is usually tackled by considering

intervals on the admissible growth rate. The present study pro-

poses to use AFVA while imposing the biomass production rate

as an external signal and to investigate how the biomass concen-

tration can be reconstructed by integrating the resulting corrected

biomass production rate. 

The paper is organized as follows. The theory underlying FVA

and AFVA is first introduced in Section 2 . Next, the considered

metabolic network and the experimental data used in this work

are described in Sections 2.5 and 3 . The several results are dis-

cussed in Section 4 : a comparison between classical FVA and AFVA

is achieved in Section 4.1 , the impact of data-smoothing is assessed

in Section 4.2 and results obtained when fixing the biomass flux

are shown in Section 4.3 . Conclusions are presented in Section 5 . 

2. Main concepts of flux variability analysis 

In metabolic network analysis, the considered biological sys-

tem usually consists in an entire cell or a cell compartment to

which the principle of mass conservation of internal metabolites

is applied. Within the system, metabolites transform into other

metabolic intermediates through enzyme-catalysed reactions con-

sidered as internal reactions, or are transported inside and outside
he system through exchange reactions ( Trinh et al., 2009 ). The

eneral equation of the internal metabolite dynamics can therefore

e expressed as: 

d C 

dt 
= N ν − μC (1)

here C ∈ � 

m is the metabolite concentration vector expressed in

mmol/cell), ν ∈ � 

n is the vector of network fluxes, N ∈ � 

( m × n ) is

he stoichiometric matrix where element N i,j is the stoichiometry

oefficient relative to metabolite i taking part in reaction j, μC is

he expression of the dilution that occurs due to cell growth and

∈ � is the specific growth rate. 

This equation is then simplified using the assumption of

low/fast dynamics. On the one hand, the dilution term can be

eglected in comparison with the internal and exchange reaction

ates. On the other hand, intracellular reactions are also much

aster than extracellular ones which allows considering the inter-

al metabolites in a pseudo-steady state ( Stephanopoulos et al.,

998 ). Eq. (1) therefore reduces to an homogeneous system of lin-

ar equations: 

 ν = 0 (2)

t is important to note that the dynamic behaviour of the system

s not completely disregarded with the use of the latter assump-

ion since extracellular dynamics can still be introduced in the sys-

em via the cellular uptake and production rates ( Llaneras and Picó,

008 ). Besides, to ensure that the reactions proceed in the appro-

riate direction, network fluxes are usually positively constrained:

i > 0 i = 1 , . . . , I (3)

here I is the number of irreversible fluxes (or fluxes with direct

ontribution larger than their reverse counterpart). 

In metabolic network analysis, the number of studied metabo-

ites is usually much lower than the number of reactions consid-

red in the network. Equation system (2) under the constraints

3) is thus usually underdetermined with n − m degrees of free-

om (DoF) and leads to an infinity of admissible solutions ν . The

ddition of m e extracellular fluxes inferred from the measurements

f the external compounds allows reducing the underdeterminacy

f the system ( DoF = n − (m + m e ) ). These extracellular fluxes are

inked to the network fluxes ν via a matrix N e ∈ � 

m e ×m : 

e = N e ν (4)

nd the new system of equations can be written as: 

N 0 

N e −νe 

)
×

(
ν
1 

)
= 0 (5)

.1. Classical FVA approach 

Even with the addition of these m e new equations, system

5) often remains underdetermined. Nevertheless, the extreme val-

es of the set of admissible fluxes ν can be calculated using an

VA approach defined as follows ( Mahadevan and Schilling, 2003;

laneras and Picó, 2007; Richelle et al., 2016 ): 

∀ t k , ∀ j = 1 , . . . , n {
ν j,up (t k ) = max 

(
ν j (t k ) 

)
ν j,low 

(t k ) = min 

(
ν j (t k ) 

)s.t. 

{ 

N ν(t k ) = 0 

ν(t k ) ≥ 0 

N e ν(t k ) = νe (t k ) 

(6)

The former system defines a series of 2n Linear Programs (LPs)

here each flux ν j ( j = 1 , . . . , n ) is in turn minimized ν j, low 

( t k )

nd maximized ν j,up ( t k ). To take the measurement noise and the

ubsequent data-smoothing into account, a coefficient of variation
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 ν that defines the interval representation of fluxes can be intro-

uced in the Eq. (6) so that the system is written under the form:

∀ t k , ∀ j = 1 , . . . , n {
ν j,up (t k ) = max 

(
ν j (t k ) 

)
ν j,low 

(t k ) = min 

(
ν j (t k ) 

) s.t. 

⎧ ⎪ ⎨ 

⎪ ⎩ 

N ν(t k ) = 0 

ν(t k ) ≥ 0 

N e ν ≤ (1 + e ν ) νe (t k ) 
N e ν ≥ (1 − e ν ) νe (t k ) 

(7) 

.2. Adaptive flux variability analysis 

In previous studies ( Llaneras and Picó, 2007; Richelle et al.,

016; Bogaerts et al., 2017 ), the minimum value e ν that leads to

dmissible solutions for LP (7) is determined incrementally, start-

ng with a value of 0 and increasing it until the system admits so-

utions. The idea proposed in Abbate et al. (2019) is to consider the

oefficient of variation e ν as an unknown variable in the LP prob-

em, and to calculate along time the minimum e ν ( t k ) that satisfies

ll the problem constraints: 

∀ t k , e ν,low 

(t k ) = min ν ′ ( t k ) λ
T ν ′ ( t k ) 

s.t. 

⎧ ⎪ ⎨ 

⎪ ⎩ 

N ν(t k ) = 0 

ν ′ (t k ) ≥ 0 

N 

′ 
e −ν ′ (t k ) ≤ νe (t k ) 

N 

′ 
e + ν

′ (t k ) ≥ νe (t k ) 

with 

ν ′ (t k ) = 

[
ν(t k ) 
e ν (t k ) 

]
N 

′ 
e −(t k ) = 

[
N e − νe (t k ) 

]
N 

′ 
e + (t k ) = 

[
N e νe (t k ) 

]
λT = 

[
0 1 ,n 1 

]
(8) 

here ν′ (t k ) ∈ � 

(n +1) , N 

′ 
e + (t k ) as well as N 

′ 
e −(t k ) ∈ � 

(m e ,n +1) , and

 1, n is a row vector with n zeros. Once the time dependent co-

fficients of variation e ν ( t k ) are obtained, they can be introduced

n LP (7) to obtain the narrowest admissible set of solutions. Note

hat this method might lead to somewhat large coefficients of vari-

tion, in which case, the user might need to reconsider either the

ata smoothing and/or the suitability of the network to describe

he specific experimental data. 

The advantage of the adaptive flux variability analysis is that

he relaxation of constraints, which allows LP (7) to have admis-

ible solutions, is not constant over time and ensures the smallest

nternal flux intervals. 

Adaptive flux variability analysis can also be extended to the

ase where coefficients of variation are different for each consid-

red external flux. In this case, LP (8) becomes: 

∀ t k , 
∥∥e ν,low 

(t k ) 
∥∥

1 
= min ν ′′ ( t k ) λ

T ν ′′ ( t k ) 

s.t. 

⎧ ⎪ ⎨ 

⎪ ⎩ 

N ν(t k ) = 0 

ν ′′ (t k ) ≥ 0 

N 

′′ 
e −ν ′′ ≤ νe (t k ) 

N 

′′ 
e + ν

′′ ≥ νe (t k ) 

with : 

ν ′′ (t k ) = 

[
ν(t k ) 
e ν (t k ) 

]
N 

′′ 
e −(t k ) = 

[
N e − V e (t k ) 

]
N 

′′ 
e + (t k ) = 

[
N e V e (t k ) 

]
λT = 

[
0 1 ,n 1 1 ,m e 

]
(9) 

here e ν (t k ) ∈ � 

m e is a column vector containing the coefficients

f variation relative to the external flux vector νe , ν′′ (t k ) ∈ � 

(n + m e ) ,

 

′′ 
e −(t k ) and N 

′′ 
e + (t k ) ∈ � 

(m e ,n + m e ) , 0 1, n is a row vector with n zeros,

 1 ,m e 
is a row vector with m e elements equal to 1, while V e (t k ) ∈

 

(m e ×m e ) is a diagonal matrix in which elements V e,jj ( t k ) j =
(1 , . . . , m e ) are the corresponding external fluxes, namely νe,j ( t k ). 

.3. Absolute and normalized coefficients of variation 

In Eq. (9) , the coefficients of variation are introduced to model

elative errors with respect to the observed fluxes νe ( t ) at each
k 
ime of analysis t k . Yet, since external fluxes may significantly vary

long the culture, coefficients of variation might evolve accord-

ngly, ranging from very small in the case of large fluxes to very

arge when these fluxes tend to zero. In consequence, a slight per-

urbation of a small flux might have a significant impact on the

ptimization problem 9 . 

In order to tackle this issue, the nature of the considered errors

hould be changed. One possibility is to consider absolute errors.

n this case, Eq. (7) becomes: 

∀ t k , ∀ j = 1 , . . . , n 

{
ν j,up (t k ) = max 

(
ν j (t k ) 

)
ν j,low 

(t k ) = min 

(
ν j (t k ) 

) s.t. 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

N ν(t k ) = 0 

ν(t k ) ≥ 0 

N e ν ≤ νe (t k ) + e ν (t k ) 

N e ν ≥ νe (t k ) − e ν (t k ) 

(10) 

his type of errors will however give the prevalence to large

uxes in the optimization problem, possibly leading to distortion

r abrupt changes in the smallest fluxes. 

Another solution is to normalize the coefficients of variation

nd to rewrite Eq. (7) under the form: 

∀ t k , ∀ j = 1 , . . . , n 

{
ν j,up (t k ) = max 

(
ν j (t k ) 

)
ν j,low 

(t k ) = min 

(
ν j (t k ) 

) s.t. 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

N ν(t k ) = 0 

ν(t k ) ≥ 0 

N e ν ≤ νe (t k ) + e ν (t k ) max ( νe ) 

N e ν ≥ νe (t k ) − e ν (t k ) max ( νe ) 

(11) 

he use of normalized errors allows distributing the uncertainties

ore evenly on each signals, independently of their magnitudes. 

These three types of error representations are discussed in

ection 4 . 

.4. Calculation of the external fluxes 

The m e external fluxes, which constrain the optimization

roblem, are inferred from the extracellular concentration mea-

urements. Indeed, these fluxes are the specific consump-

ion/production rates of the measured culture substrates and prod-

cts, respectively. They can be easily isolated in the equations of

he general state space model of a perfused cell culture: 

˙ X = νX X − (1 − α) DX − k d X 

˙ S = −νS X + D ( S in − S ) 
˙ P = νP X + D ( P in − P ) 
˙ V = 0 

(12) 

here X is the viable biomass in 10 9 cells / l , S and P are respectively

he substrate and product concentration vectors (in mmol / l ), D is

he dilution rate ( h −1 ) that feeds the culture, α is the retention

actor ( α = 1 corresponds to complete retention), V is the constant

ioreactor volume ( l ), νX is the specific growth rate in h −1 , k d is

he specific mortality rate in h −1 , and ν j ( j = S, P ) are the spe-

ific consumption/uptake rates expressed in mmol. (h. 10 9 cells ) −1 .

he left hand-side time derivatives of system (12) are simply re-

laced by the derivatives of the smoothing-splines applied to the

oncentration measurements (this can be achieved in the Matlab

nvironment using the functions spaps for smoothing and fnder for

ifferentiation). 

.5. Materials and methods 

HEK-293 cell cultures were conducted in an ambr® 250 high

hroughput (Sartorius) automated bioreactor system. The latter al-

ows 24 parallel runs of 100–250 ml disposable bioreactors. Runs
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b  
are performed in duplicates or triplicates and consist in simple

batches with glucose adjustments. The data used in this study orig-

inates from one run of a triplicate. 

Biomass and viability are assessed using a Vi-Cell TM device

(Beckman Coulter) that performs the trypan blue dye exclusion

method. 

Glucose, lactate, glutamate, ammonium ions and pyruvate are

measured using a Cedex Bio HT Analyzer (Roche Custom Biotech) . 

Amino acids are quantified using UPLC measurements (Waters)

through derivatization, separation in a simple column and UV de-

tection. 

Urea is measured through quantitative colorimetric assays

(BioChain®). 

For the sake of confidentiality, relatively little detail about the

culture conditions can be provided. pH is controlled at 7,2 while

temperature is maintained at 37 ◦C. 

The smoothing splines based on the experimental data are

shown in Fig. 1 . Three different types of smoothing have been con-

sidered to draw these graphs: 

1. Soft: splines embrace all measurement points (yellow curves) 

2. Medium: splines qualitatively fit the data (blue curves) 

3. Strong: splines using smoothing weights 10 times larger than in

the medium smoothing (red curves) 

It is interesting to note that even if the concentration splines

look similar, their derivatives and in turn, the inferred values of

the fluxes may be quite different. The impact of smoothing on the

results is discussed in Section 4.2 . 

3. Network presentation 

The network used in this work has been largely inspired from

Fernandes et al. (2016) and adapted to take all available measure-

ments into account. It contains r = 82 reactions among which

27 are transport reactions, m = 51 internal metabolites and p

= 27 external metabolites measured in the extracellular medium

( CO 2 is not measured), and is presented in Table 1 . It encom-

passes the main metabolic pathways, namely the glycolysis, pen-

tose phosphate pathway, Tricarboxylic Acid Cycle (TCA), a cou-

ple of anaplerotic reactions, several reactions of the amino acid

metabolism and the urea cycle. 

It also contains two reactions for the biomass synthesis, namely

one reaction for the nucleotide synthesis and another for the

biomass itself. It must be stressed that although Table 1 in-

cludes the reaction cofactors such as NAD 

+ , NADH, ATP, ADP, AMP ,

...the latter are not considered in the network. Also, even though

Table 1 includes all potential reversible reactions, only four of

them are actually allowed proceeding in both directions : ν15 , ν16 ,

ν45 and ν47 , which are necessary to describe the dynamics ob-

served in the datasets regarding Ala, Lac, Orn and Asn. The direc-

tion of the other reactions is fixed from left to right in Table 1 .

Since animal cells are not able to synthesize all 20 amino acids,

essential amino acids (Met, His, Thr, Arg, Ile, Leu, Val, His, Phe,

Trp) can only be consumed, while non-essential amino-acids and

pyruvate can go in and out of the cell. Besides, urea can only be

produced. 

The biomass synthesis reaction is also borrowed from

the metabolic network of Fernandes et al. (2016) which is

designed for CHO cells, and not HEK cells. Nevertheless,

Pe’er et al. (2004) proves that the average amino acid composition

of eukaryote cells is very similar from one strain to another. It is

therefore assumed that the former synthesis reaction can be used

to model the related biomass flux. 
. Results and discussion 

.1. FVA and AVFA comparison and effect of the formulation of the 

oefficients of variation 

The original FVA approach ( Llaneras and Picó, 2007; Richelle

t al., 2016; Bogaerts et al., 2017 ) is first applied to the consid-

red metabolic network and datasets. In this analysis (denoted A1),

nly one coefficient of variation is identified, which is constant

ver time and common to all the variables. On the other hand,

nalysis A2 is based on the proposed AFVA methodology, so that

he coefficients of variation are allowed varying along the course

f the experiments, but remain common to all the variables. Fi-

ally, analysis A3 is performed using time- and variable-dependent

oefficients of variation. Solutions are calculated every 5h of the

xperiment time-course for each analysis and using the medium

moothing-splines (blue curves of Fig. 1 ). The three analyses are

erformed in the Matlab environment using the dual-simplex algo-

ithm implemented in the linprog function, which appears to be

he fastest among all the available algorithms. Nevertheless, when

he number of variables increases, numerical issues may arise. In

his case, the coefficients of variation (of analysis A3) are first iden-

ified using an interior-point algorithm, and further refined using

he dual-simplex algorithm. Moreover, once identified, the smallest

oefficients of variation are slightly increased (arbitrarily by 2%) to

revent further numerical issues. 

The analyses are performed for each type of errors, namely rel-

tive, absolute and normalized. The inferred internal fluxes using

 relative error model are shown in Fig. 2 a while Figs. 3 a and 4 a

resent the results obtained using absolute and normalized errors,

espectively. As observed in Abbate et al. (2019) , the intervals ob-

ained in analysis A1 (blue areas) are always the largest and en-

ompass those of analysis A2 (red areas). The latter observation is

bvious since at each time step, the identified coefficient of varia-

ion is always lower or equal to the one used in analysis A1, and

herefore constitutes an upper limit of the studied solution in A2.

he intervals obtained in analysis A3 (upper and lower limits in

reen) are clearly smaller, upper and lower limits being even often

ndistinguishable, and most of the time within A2 intervals. How-

ver, it can be noticed that some fluxes inferred using the absolute

rror model ( ν33 ) or normalized error model ( ν24 , ν28 and ν29 )

lightly go over the A1 upper bounds. This is due to the variable-

ependent distribution of the error in A3 conversely to A1 and A2

here the errors are equal for all species. 

Moreover, the inferred internal fluxes of analyses A1 and A2

resent different shapes depending on the error nature. Globally, it

an be noticed that relative coefficients of variation induce larger

ntervals ( Fig. 2 a) at the beginning of the experiment than ab-

olute and normalized coefficients ( Figs. 3 a and 2 a respectively).

n contrast, it seems that relative coefficients of variation provide

he smallest intervals in A1 and A2 at the end of the experiment,

hile those of A2 are larger on average. However, the fluxes en-

ompassed in the glycolysis, pentose phosphate pathway, and TCA

ycle are more accurate in A2, as compared to the optimal solu-

ions of A3. 

It is also observed that flux ν16 calculated in A3 with a relative

rror model displays a strange discontinuous shape. Indeed, this

ux reverses back and forth many times along the course of the

xperiment when using relative coefficient of variations. Yet, this

ux is directly linked to the external entry/exit of alanine, and this

ehaviour is not observed with the other error models. 

As a validation of the analysis, the estimated fluxes are inte-

rated to evaluate the evolution of the concentrations, which can

hen be compared to the original smoothing curves in Figs. 2 b,

 b and 4 b. The concentration intervals of the classical FVA (A1 -

lue curves) are wide and often include negative values, which is



T. Abbate, L. Dewasme and A. Vande Wouwer et al. / Computers and Chemical Engineering 133 (2020) 106633 5 

Table 1 

HEK cell metabolic network considered in the AVFA analyses. 

Metabolic Reaction network 

Glycolysis 

v 1 Glc + AT P → G 6 P + ADP

v 2 G 6 P ↔ F 6 P 

v 3 F 6 P + AT P → DHAP + G 3 P + ADP

v 4 DHAP ↔ G 3 P 

v 5 G 3 P + NAD + + ADP ↔ 3 PG + NADH + AT P

v 6 3 PG + ADP → Pyr + AT P

Tricarboxylic Acid Cycle 

v 7 Pyr + NAD + + C oASH → AcC oA + CO 2 + NADH

v 8 AcCoA + Oxal + H 2 O → Cit + CoASH

v 9 Cit + NAD (P) + → αKG + CO 2 + NAD (P) H

v 10 αKG + CoASH + NAD + → SucCoA + CO 2 + NADH

v 11 SucCoA + GDP + Pi ↔ Succ + GT P + CoASH

v 12 Succ + F AD ↔ F um + F ADH 2 
v 13 Fum ↔ Mal 

v 14 Mal + NAD + ↔ Oxal + NADH

Pyruvate Fates 

v 15 Pyr + NADH ↔ Lac + NAD + 

v 16 Pyr + Glu ↔ Ala + αKG 

Pentose Phosphate Pathway 

v 17 G 6 P + 2 NADP + + H 2 O → R 5 P + 2 NADPH + CO 2 
v 18 G 6 P + 2 NADP + + H 2 O → X5 P + 2 NADPH + CO 2 
v 19 2 X5 P + R 5 P ↔ 2 F 6 P + G 3 P

Anaplerotic Reaction 

v 20 Mal + NAD (P ) + ↔ P yr + CO 2 + NAD (P ) H

v 21 Pyr + CO 2 + AT P ↔ Oxal

Amino Acid Metabolism 

v 22 Glu + NAD (P) + ↔ αKG + NH + 
4 

+ NAD (P) H

v 23 Oxal + Glu ↔ Asp + αKG 

v 24 Gln → Glu + NH + 
4 

v 25 T hr + NAD + + CoASH → Gly + NADH + AcCoA 

v 26 Ser ↔ Gly 

v 27 3 PG + Glu + NAD + → Ser + αKG + NADH

v 28 Gly + NAD + → CO 2 + NH + 
4 

+ NADH

v 29 Ser → Pyr + NH + 
4 

v 30 T hr → αKb + CoASH + NAD + + NH + 
4 

v 31 αKb + CoASH + NAD + → PropCoA + NADH + CO 2 
v 32 PropCoA + HCO −

3 
+ AT P → SucCoA + ADP + Pi 

v 33 Lys + 2 αKG + 3 NAD (P) + F AD + → αKa + 2 Glu + 3 NAPH + F ADH 2 
v 34 T rp → Ala + 2 CO 2 + αKa 

v 35 αKa + CoASH + 2 NAD + → AcetoAcCoA + 2 NADH + 2 CO 2 
v 36 AcetoAcCoA + CoASH → 2 AcCoA 

v 37 Val + αKG + CoASH + 3 NAD + + F AD + → PropCoA + Glu + 2 CO 2 + 3 NADH + F ADH 2 
v 38 Ile + αKG + 2 CoASH + 2 NAD + + F AD + → AcCoA + PropCoA + Glu + CO 2 + 2 NADH + F ADH 2 
v 39 leu + αKG + CoASH + NAD + + F AD + + HCO −

3 
+ AT P → AcCoA + AcetoAc + Glu + CO 2 + NADH + F ADH 2 

v 40 AcetoAc + SucCoA → AcetoAcCoA + Succ

v 41 Phe + NADH → T yr + NAD + 

v 42 T yr + αKG → F um + AcetoAc + Glu + CO 2 
v 43 Met + Ser + AT P → Cys + αKb + NH + 

4 
+ AMP

v 44 Cys → Pyr + NH + 
4 

v 45 Asn ↔ Asp + NH + 
4 

v 46 Orn + αKG ↔ Glu γ SA + Glu 

v 47 Glu + AT P + 2 NADPH + H + ↔ Pro + ADP + 2 NADP + 

v 48 Glu γ SA ↔ Pro−
v 49 His → Glu + NH + 

4 

Urea Cycle 

v 50 Ar g → Or n + urea 

v 51 NH + 
4 

+ CO 2 + 2 AT P + Orn → Cln 

v 52 Cln + Asp + AT P → ArgSucc + AMP

v 53 Ar gSucc → Ar g + F um 

Nucleotides synthesis 

v 54 2 Asp + 1 Gly + 2 Gln + 0 . 6 R 5 P + CO 2 → 2 Mal + 2 Glu 

Biomass synthesis 

v 55 0 . 024 R 5 P + 0 . 029 G 6 P + 0 . 04 Gl n + 0 . 013 Al a + 0 . 0 07 Arg + 0 . 026 Asp + 0 . 0 03 His + 0 . 0 084 Ile + 0 . 013 Leu + 0 . 01 Lys + 0 . 099 Ser + 0 . 004 T yr + 0 . 0096 Val + 

0 . 016 Gly + 3 . 78 AT P → Biomass 

Transport Reactions 

v 56 Glc ext → Glc 

v 57 Gln ext → Gln 

v 58 Lac → Lac ext 

v 59 N H + 
4 

→ N H + 
4 ext 

v 60 Ala → Ala ext 

v 61 Asp ext → Asp 

v 62 Asn ext → Asn 

v 63 Glu → Glu ext 

( continued on next page ) 
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Table 1 ( continued ) 

Metabolic Reaction network 

v 64 Ser ext → Ser 

v 65 Arg ext → Arg 

v 66 Gly → Gly ext 

v 67 Pro ext → Pro 

v 68 Tyr ext → Tyr 

v 69 His ext → His 

v 70 Ile ext → Ile 

v 71 Leu ext → Leu 

v 72 Lys ext → Lys 

v 73 Met ext → Met 

v 74 Phe ext → Phe 

v 75 Thr ext → Thr 

v 76 Val ext → Val 

v 77 CO 2 → CO 2, ext 

v 78 Cys ext → Cys 

v 79 Orn → Orn ext 

v 80 Urea → Urea ext 

v 81 Pyr → Pyr ext 

v 82 Trp ext → Trp 
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physically not possible. This emphasizes that a part of the inter-

nal fluxes obtained using the classical FVA method should be re-

jected in order to avoid such non-admissible negative concentra-

tions. Unfortunately, it is impossible to discriminate admissible and

non-admissible fluxes among the solutions. 

On the contrary, concentrations obtained using analysis A3 are

precisely defined, with equal lower and upper limits. Most of the

estimated fluxes are very close to the initial smoothing-splines. It

must be noted however that some metabolite concentrations are

not well reproduced, especially the concentrations of NH3 and Arg

when normalized coefficient of variation are used ( Fig. 4 b), and

Ala, Ser and Arg when the coefficients of variation are relative. The

wrong estimations of Ala in the latter case is directly linked to the

strange behaviour of ν16 . Interestingly, the integration of the inter-

nal fluxes obtained using absolute errors faithfully reproduce the

data. 

These results confirm the interest of using AFVA, as compared

to the classical FVA approach. The quality of the reconstructed con-

centrations is quite remarkable even using an approximative de-

scription of the biomass reaction and supports the observation of

Pe’er et al. (2004) which suggests that the average amino acid

composition of eukaryote cells is very similar from one strain to

another. 

In a last round of tests, the possibility to relax the constraints

with different amplitudes for the upper and lower bounds of the

intervals is investigated (i.e., the consideration of non-centred in-

tervals). This could be useful in analyses A1 or A2, since a single

coefficient of variation is estimated for all the external metabo-

lite fluxes, but has no relevance in analysis A3, since coefficients

of variation are determined for each individual external flux and

already provide either an upper or lower bound relaxation. These

results are not shown in this article for the sake of brevity, as A3

remains the best performing and recommended approach. 

4.2. Influence of data smoothing 

The potential effect of data-smoothing is studied by performing

AFVA using normalized coefficients of variation (Analysis A3) and

for the three different intensity of smoothing previously defined.

The results are compared in Fig. 5 and show the mild impact of

data-smoothing on the quality of the estimated flux intervals. In-

deed, except for some variations in ν33 , ν34 , ν38 , ν41 , ..., most of

the flux ranges remain unaltered. These results confirm the robust-

ness of AFVA. As a general recommendation, the use of a strong

smoothing is therefore advisable. 
.3. Taking advantage of AFVA to fix biomass production rates 

Imposing the biomass production rate as a measured external

ignal might lead to system infeasibility since it constitutes a strin-

ent constraint alongside with other measured fluxes. Yet, when

his flux is not imposed, the resulting interval for the biomass

roduction rate can be quite large (see blue areas of flux ν55 in

igs. 2 a, 3 a and 4 a). AFVA offers the possibility to fix the biomass

rowth rate and to study the resulting internal flux distribution.

his section compares the AFVA results with those obtained using

BA, maximizing biomass production. 

The viable biomass specific growth rate can be obtained from

he corresponding mass balance Eq. (12) with D = 0 (batch opera-

ion): 

X (t) = ( ˙ X + 

˙ X d ) /X = 

˙ X /X + k d (13)

here k d is the specific death rate (cell lysis is assumed to be

egligible). The viable biomass specific rate can be estimated from

he measurements of the viable biomass concentration X ( t ) and of

he viability ratio V X = X/X tot , X tot being the total biomass popula-

ion (which is not directly measured). The total biomass and dead

iomass populations can be estimated on the basis of the following

xpressions: 

 tot = X/V X X d = X tot . (1 − V X ) (14)

he dead cell dynamics ˙ X d can be obtained by smoothing the mea-

ured signals and computing the time derivative. 

The comparison between AFVA (analysis A3 without imposed

iomass flux), FBA and AFVA+B (analysis A3 with biomass flux im-

osed), all performed using normalized coefficients of variation, is

resented in Fig. 6 . The FBA analysis is actually performed as an

FVA to ensure admissible solutions at each time of analysis. The

aximum flux ν55 of AFVA is then imposed to make sure that

he biomass is always maximized as in a classic FBA. Maximum

iomass fluxes ν55 of AFVA and FBA are therefore superimposed

n Fig. 6 and the maximum blue curve is thus not visible. Other

ux intervals are then calculated. Qualitatively, it can be noticed

hat intervals computed with AFVA+B have a smoother evolution

han with FBA. Interestingly, the maximum growth rate evaluated

ith AFVA+B is equal to 0.017 h −1 while the one obtained with FBA

s 0.052 h −1 , whereas a standard value in macro-modelling is ≈
.03 h −1 . 

The same analysis, performed using absolute coefficients of

ariation, leads to the same observations. However, as shown in

ig. 7 , the integration of the external fluxes leads to concentration
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Fig. 1. Normalized concentration curves and inferred specific fluxes in mmol.h −1 obtained for different types of smoothing (soft = blue curves, medium = red curves, 

strong = yellow curves). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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n  

(  

t  
ignals which are not in agreement with the original splines and

ery different from those observed without imposing the biomass

ux ( Fig. 7 a). This type of abnormalities is expected when solving

ptimization problems with signals of quite different magnitudes

s discussed in Section 2.3 . In contrast, the concentrations obtained

sing normalized coefficient of variations are in total agreement
ith former analyses ( Fig. 7 b). These results confirm that normal-

zed coefficient of variations robustify AFVA. 

In order to check the validity of these results, the biomass sig-

als can be compared to living cells and viability measurements

 Fig. 8 ). Indeed, the integration of the biomass growth rates ob-

ained with FBA and AFVA+B provides the evolution of the total
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Fig. 2. Results using relative coefficients of variation: (a) Internal fluxes in mmol.h −1 inferred from A1 (blue areas), A2 (red areas) and A3 (green curves); (b) Normalized 

external metabolite concentrations obtained through integration of the estimated flux intervals of A1 (blue curves) and A3 (green curves) compared to original splines (red 

dashed curves). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 3. Results using absolute coefficients of variation: (a) Internal fluxes in mmol.h −1 inferred from A1 (blue areas), A2 (red areas) and A3 (green curves); (b) Normalized 

external metabolite concentrations obtained through integration of the estimated flux intervals of A1 (blue curves) and A3 (green curves) compared to original splines (red 

dashed curves). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 4. Results using normalized coefficients of variation: (a) Internal fluxes in mmol.h −1 inferred from A1 (blue areas), A2 (red areas) and A3 (green curves); (b) Normalized 

external metabolite concentrations obtained through integration of the estimated flux intervals of A1 (blue curves) and A3 (green curves) compared to original splines (red 

dashed curves). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 5. Comparison of the internal fluxes obtained applying AFVA with different smoothing-splines (Soft smoothing = blue curves, medium smoothing = green curves, strong 

smoothing = red curves). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 6. Inferred fluxes (in mmol .l −1 ) with FBA (blue curves) and AFVA+B (red dashed curves). (For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.) 
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Fig. 7. Normalized external metabolite concentrations obtained through integration of the estimated flux intervals of A1 (blue curves) and A3 (green curves) compared to 

original smoothing splines (red dashed curves): (a) absolute coefficients of variation; (b) normalized coefficients of variation. In the latter case, the integrated curves remain 

in agreement with the results obtained with no biomass flux imposed. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 
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Fig. 8. Growth rates, total normalized biomass concentrations obtained by integration of the growth rate, and reconstructed viability corresponding to FBA approach and 

AFVA+B. 
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iomass ( X tot ) along the culture, i.e. both living and dead cell pop-

lations. The dead cell concentration is therefore simply the dis-

ance between X tot and the measured living cells and the viabil-

ty is easily obtained using Eq. (14) . In the case of FBA, the total

iomass X tot is far larger than the measured concentrations, and

he viability signal also deviates from the measurements. It cor-

esponds to an important drop of the viability in the early hours

f the culture, which does not make sense. Conversely, the total

iomass and the inferred viability signals obtained with AFVA+B

re much more coherent. This stresses the gain in precision that

an be expected when using AFVA+B instead of a classical FBA ap-

roach. 

It should be noted that these results have been obtained with

 biomass production reaction that refers to CHO cells and that

he results might be further improved using a tailored reaction for

iomass production. 

. Conclusions 

In this work, AFVA was successfully applied to a medium size

etwork containing 82 reactions, 51 internal metabolites as well

s 27 measured external species out of 28. AFVA allowed com-

uting the flux distribution corresponding to a rich dataset con-

aining all 20 amino acids, as well as metabolites such as pyruvate

nd urea. In addition, AFVA made it possible to impose a biomass

rowth rate inferred from the measurements of living cells and vi-

bility as an external flux. To the best of our knowledge, this was

ever achieved before, except in static studies ( Follstad et al., 1999 )

r using a FBA approach, likely because this constraint was too

tringent to obtain admissible fluxes. In the present study, the re-

ults of this analysis are satisfactory and it has been shown that

he biomass fluxes evaluated using AFVA are more consistent than

hose computed with FBA. These comforting results are obtained

ven though the biomass reaction actually corresponds to CHO

ells instead of HEK cells, which supports the claim ( Pe’er et al.,

004 ) that the composition of eukaryote cells is on average very

imilar. 
In addition, this study investigates the best formulation of the

rror model, corresponding either to relative, absolute or normal-

zed coefficients of variation. Although the use of absolute coef-

cients of variation leads to results in good agreement with the

vailable data when the biomass flux is not imposed, a lack of ro-

ustness is observed when this latter flux is fixed. Normalized co-

fficients of variation usually provide robust results and are recom-

ended. 

It has also been demonstrated that data-smoothing has little

mpact on the quality of the evaluated flux intervals, and it is sug-

ested to use a relatively strong data smoothing to enhance solu-

ion interpretation. 
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