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3ECARES, Université libre de Bruxelles, Belgium8

Abstract9
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1 Introduction20

In recent years, the analysis of high-dimensional time series data has become one21

of the most active subjects of modern statistical and econometric studies, bringing22

significant challenges, both from the statistical and the numerical points of view.23

The most successful procedures so far, particularly for the analysis of economic and24

financial data, are based on high-dimensional factor models, which allow both the25

sample size and the dimension of the time series under study to go to infinity.26

Above all, factor models do not suffer from the so-called curse of dimensionality27

as the number of assets grows; see the surveys of Barhoumi et al. (2014) and Bai28

and Wang (2016) for more details. These models can be used to summarize the29

information contained in a large number of economic and financial variables into30

a small number of factors or shocks common to the set of variables. The factors,31

being estimated from the high dimensional data, can be used for either descrip-32

tive or predictive purposes. Applications include: forecasting macroeconomic time33

series (Stock and Watson, 2002a,b; Forni et al., 2005; Bai and Ng, 2008); excess34

returns in stock and bond markets (Ludvigson and Ng, 2007, 2009); construction of35

business cycle indicators and nowcasting (Cristadoro et al., 2005; Giannone et al.,36

2008; Altissimo et al., 2010); structural macroeconomic analysis and monetary pol-37

icy (Bernanke and Boivin, 2003; Favero et al., 2005; Stock and Watson, 2005; Eick-38

meier, 2007; Forni et al., 2009; Forni and Gambetti, 2010); prediction of conditional39

variance-covariance matrix (Alessi et al., 2009; Aramonte et al., 2013; Trućıos et al.,40

2019b), to quote only a few.41

However, applications are based on a static factor-loading scheme (Bai and Ng,42

2002; Stock and Watson, 2002a,b), the main advantage of which is to allow for43

estimation methods based on traditional principal components. Although this ap-44

proach is easy to implement and widely used, the assumption of a static factor-45

loading scheme, as pointed out by Forni and Lippi (2011) and Forni et al. (2015),46

is quite restrictive and rules out some very simple and plausible cross-correlation47

patterns leading to infinite-dimensional factor spaces . To overcome this issue, Forni48

et al. (2000) introduced the so-called generalized or general dynamic factor model49

(GDFM), in which factors (equivalently, common shocks) are loaded through filters50
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rather than matrices. As shown in Hallin and Lippi (2013), the GDFM arises as51

a representation result that, besides second-order stationary and the existence of52

spectral densities, essentially does not place any restriction on the data-generating53

process, and therefore, encompasses all other high-dimensional factor models con-54

sidered in the literature. An information criterion for determining the number of55

common shocks and one-sided filters for a consistent non-parametric estimation of56

the GDFM are provided by Hallin and Lǐska (2007) and Forni et al. (2015, 2017),57

respectively. The Forni et al. (2015, 2017) procedure has been successfully used to58

forecast inflation and financial returns; see Della Marra (2017), Forni et al. (2018),59

Giovannelli et al. (2018). It also has been used in the prediction of the conditional60

variances of financial returns, the extraction of market shocks (Barigozzi and Hallin,61

2016, 2017, 2018), and the prediction of conditional variance-covariance matrices62

(Trućıos et al., 2019b).63

Nevertheless, the estimation of the GDFM, including the identification of the64

number of common shocks, does not take into account the existence of possible65

outliers. It is known that principal components and likelihood-based estimates are66

quite sensitive to outliers, especially outliers to the additive type, which are the most67

common ones in practice. Several methods for outlier detection in time series are68

available. Most methods, however, apply to univariate time series and little attention69

has been given to robustness issues in the context of factor model. A method for70

detecting and estimating the size of outliers in the dynamic factor model is proposed71

by Baragona et al. (2007), based on linear transformations of the observed data.72

Kristensen (2014) shows that the performance of predictors in static factor models73

can be improved by replacing principal components with a robust alternative based74

on least absolute deviations. A similar idea has been investigated previously by75

Croux and Exterkate (2011). In their paper a number of alternatives to principal76

components are examined including LAD-based approaches, but they obtain mixed77

results as to which approach to be preferred from the point of view of forecasting78

performance.79

We claim that the problem lies in the non-robustness of the estimation and80

prediction procedures as well. As discussed by Baragona et al. (2007), both the tra-81
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ditional (static) PCA methods1 and the more general dynamic PCA methods2 yield82

biased estimates in the presence of outliers. Given the good forecasting performance83

of the GDFM model evidenced in the literature, we propose a robust version of the84

criterion introduced by Hallin and Lǐska (2007) to estimate the number of common85

shocks and a robust version of the estimation procedure of Forni et al. (2015, 2017)86

in order to obtain robust estimates of common shocks, impulse-response functions,87

and forecasts.88

This paper contributes to the literature in three ways. First, we show through89

Monte Carlo experiments that the identification, estimation, and forecasting of the90

GDFM are strongly affected by the presence of outliers. In particular, the criterion of91

Hallin and Lǐska tends to overestimate the number of common shocks. These results92

are in agreement, for instance, with those obtained by Kristensen (2014), who finds93

that the commonly used information criteria of Bai and Ng (2002) (estimating the94

number of static factors) is severely inflated by outliers. Second, we propose robust95

procedures for the identification, estimation, and prediction of the GDFM. Third, an96

empirical application indicates that the best performance of our robust prediction97

procedure, relative to the non-robust procedure, is achieved during crisis periods,98

i.e, in the presence of outliers.99

The structure of the paper is as follows. In Section 2, we present the GDFM100

model with the estimation and prediction procedures and the identification crite-101

rion for the number of common shocks. Section 3 presents Monte Carlo experiments102

evaluating the performance of the GDFM in the presence of additive outliers. Be-103

cause the results indicate that the existing procedures are highly non-robust to104

additive outliers, Section 4 presents a robust alternative to circumvent the problem105

and simulations showing that the suggested alternative presents a substantially bet-106

ter performance. In Section 5 an empirical application is conducted to assess the107

pseudo real-time forecasting performance of our robust procedure. We employ the108

same large monthly dataset of macroeconomic and financial time series for the US109

economy used in Forni et al. (2018). Concluding remarks are presented in Section 6.110

1Based on the contemporary covariance matrix of the observations
2Based on the spectral density matrix of the observations
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2 The general dynamic factor model (GDFM)111

2.1 General dynamic factor model with infinite-dimensional factor112

space113

Let {Xt = (X1t X2t . . . )′, t ∈ Z}, be a double-indexed zero-mean second-order114

stationary stochastic process, where the first index stands for the series and t for115

time. The GDFM introduced in Forni et al. (2000) is based on a dynamic factor116

representation of the form117

Xit = χit + ξit

= bi1(L)u1t + bi2(L)u2t + ...+ biq(L)uqt + ξit, i ∈ N, t ∈ Z,
(1)

where L stands for the lag operator and the unobservable χit, ξit, and ujt for the118

common components, idiosyncratic components, and common shocks, respectively.119

We assume the following.120

1. The vector process {ut = (u1t u2t ... uqt)
′, t ∈ Z} is an unobservable q-121

dimensional orthonormal white noise process: the common shocks.122

2. The idiosyncratic process {ξt = (ξ1t ξ2t . . . )′, t ∈ Z} is zero-mean second-123

order stationary and, additionally, ξkt and uk′t′ are mutually orthogonal for124

any k, k′, t and t′. Moreover, it is assumed that {ξt} is weakly cross-sectionally125

correlated, so that the comovements of the Xit’s are mainly accounted for by126

the q common shocks.127

3. The filters bik(L) are one-sided polynomials with square-summable coefficients128

for any i = 1, 2, ... and any k = 1, ..., q.129

4. The number q of common shocks is the smallest integer for which 1-3 hold.130

The assumptions above define the GDFM, of which all other factor models in the131

econometric time series literature are particular cases; see Forni et al. (2015, 2017).132

An additional assumption which is adopted by many authors is that the common133

components span a finite-dimensional space (Bai and Ng, 2002; Stock and Watson,134

2002b; Forni et al., 2005, 2009; Alessi et al., 2010; Aramonte et al., 2013). Under135
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this assumption, we can rewrite the decomposition (1) in the static form136

Xit = λi1F1t + ...+ λirFrt + ξit, (2)

where the static factors F1t, ..., Frt and the loadings λi1, ..., λir , i = 1, 2, ..., can137

be estimated consistently using the first r standard principal components, r ≥ q.138

However, as pointed out by Forni et al. (2000), Forni and Lippi (2011), Forni et al.139

(2015, 2017) and Forni et al. (2018), representation (2) rules out simple and quite140

plausible cases as141

Xit = ai (1− diL)
−1 ut + ξit, (3)

where the coefficients di are drawn, e.g., from a uniform distribution over the station-142

ary region. In this case, the space spanned by the common components in model (3)143

is no longer finite-dimensional.144

Forni et al. (2000) and Forni et al. (2004) propose to use Brillinger’s (1981)145

concept of dynamic principal components, which is based on the spectral density146

of the X’s, to estimate model (1). While this estimator does not require a finite-147

dimensional assumption on the space spanned by the common components, it in-148

volves the application of two-sided filters, which lead to poor forecasting perfor-149

mances.150

Recently, Forni et al. (2015, 2017) showed how to obtain one-sided filters without151

assuming a finite-dimensional factor space and how to construct estimators for (1) by152

imposing the mild additional assumption that the common components have rational153

spectral density (Assumption A.3 of Forni et al. (2015)), that is, each filter bif (L)154

in (1) is a ratio of polynomials in L with unspecified, yet finite orders. Thus, they155

assume that the common component in (1) can be rewritten as156

χit =
ci1(L)

di1(L)
u1t +

ci2(L)

di2(L)
u2t + ...+

ciq(L)

diq(L)
uqt, i ∈ N, t ∈ Z (4)

where

cif (L) = cif,0+cif,1L+...+cif,S1
LS1 , dif (L) = 1+dif,1L+...+dif,S2

LS2, f = 1, 2, ..., q,

the roots of each polynomial are outside the unit circle, and there are no common157

roots among cif (L) and dif (L) for any i and f = 1, 2, ..., q.158
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Then, under this mild assumption of a rational spectrum, Forni et al. (2015, 2017)159

derive a static factor model representation (2) for a block-diagonal autoregressive160

filtering of the observed process X satisfying (1). From Assumption A.3 of Forni161

et al. (2015), the (q+1)-dimensional vector χ
(k)
t = (χ(k−1)(q+1)+1,t . . . χk(q+1),t)

′ has162

the autoregressive representation163

A(k)(L)χ
(k)
t = R(k)u

(k)
t , (5)

where R(k) is (q + 1) × q, A(k)(L) is a (q + 1) × (q + 1) polynomial matrix with164

finite degree, and u
(k)
t = (u1t . . . uqt)

′, k ∈ N. Moreover, the filters A(k)(L) are165

one-sided and fundamental, i.e. det(A(k)(z))6= 0 for z ∈ C such that |z| ≤ 1. That166

assumption, actually, is very mild, as it holds generically3 under (4).167

2.2 Estimation and forecasting168

In practice, we have an observed (n × T )-dimensional panel of time series. There-169

fore, assume, without loss of generality4, that n factorizes into n = m(q + 1) for170

some m ∈ N, and partition the vector χnt as χnt = (χ
(1)
t χ

(2)
t . . . χ

(m)
t )′. In view171

of (5), the n-dimensional vector χnt has a block-diagonal VAR representation of the172

form173

An(L)χnt =




A(1)(L) 0 . . . 0

0 A(2)(L) . . . 0
...

...
. . .

0 0 . . . A(m)(L)



χnt = Rnut =




R(1)

R(2)

...

R(m)



ut, (6)

where Rn is an n× q matrix of static loadings.174

From (6), lettingXnt = (X
(1)
t . . . X

(m)
t )′ withX

(k)
t = (X(k−1)(q+1)+1,t . . . Xk(q+1),t)

′,175

and filtering both sides of (1) by An(L), we obtain176

Ynt = A(L)Xnt = Rnut +A(L)ξnt, (7)

which has a factor model representation with finite-dimensional common space.177

3Precisely, it holds for all values of the parameters cif,j and dif,k, except for a subset with

Lebesgue measure zero.
4This is taken care of at the estimation stage, by generating random permutations of the cross-

section.
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The common components χnt in (6) can be recovered by inversion of the poly-178

nomial A
(k)
n (L):179

χnt = [An(L)]
−1Rnut = Bn(L)ut = Bn0ut +Bn1ut−1 + ... (8)

where the common shocks ut in (8) are the same as in (7) and (1), and180

[An(L)]
−1 =




[A(1)(L)]−1 0 . . . 0

0 [A(2)(L)]−1 . . . 0
...

...
. . .

0 0 . . . [A(m)(L)]−1



. (9)

The main advantage of representation (7) over (1) is that, after a simple filtering181

involving (q + 1)-dimensional VARs, the GDFM can be estimated using one-sided182

filters.183

As mentioned in Forni et al. (2017, 2018) and Barigozzi et al. (2018), the estima-184

tion of An(L) depends on the arbitrary cross-sectional ordering of the panel. Based185

on a Rao-Blackwell argument, Forni et al. (2017) propose to average the estimates186

over the n!/m! [(q + 1)!]m possible (q+1)-tuples of n cross-sectional items or, equiva-187

lently, over the n! possible permutations of the cross-section. Clearly, averaging over188

all n! permutations or a number n!/m! [(q + 1)!]m of (q+1)-tuples is unfeasible even189

for moderate n. Fortunately, simulations reported in Forni et al. (2017) reveal that190

the stabilization of the estimates is very fast, so that few permutations are sufficient191

to obtain the same performance as if the n! possible ones were performed.192

The estimation procedure is described as follows.193

• Step 1: Determine the number q of common shocks in (1) applying, for194

instance, the Hallin and Lǐska criterion.195

• Step 2: For a given permutation of Xnt, start with a consistent estimator

Σ̂X(θ) =
1

2π

MT∑

k=−MT

e−ikθK

(
k

BT

)
Γ̂X
k

of the spectral density matrix of Xnt, where θ ∈ [−π, π], K(·) is a kernel func-196

tion, MT is a truncation parameter, BT is the bandwidth parameter, and Γ̂X
k197
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is the estimated covariance matrix between Xnt and Xn,t−k. In this paper, we198

use the triangular kernel with BT =
√
T .199

• Step 3: Using the first q dynamic principal components of Σ̂X(θ), estimate,200

as in Forni et al. (2000), the spectral density matrix of the common com-201

ponents Σ̂χ(θ) and, by classical inverse Fourier transform, the corresponding202

autocovariance matrices, Γ̂χ
k .203

• Step 4: For each of them (q+1)×(q+1) diagonal blocks of Γ̂χ
k , estimate (after204

AIC or BIC order identification) the coefficients of A(i)(L) via the Yule-Walker205

method for i = 1, ...,m in (6). This yields an estimation of the block-diagonal206

operator An(L) and, therefore, Ŷnt = Ân(L)Xnt is an estimate of the left-207

hand side of (7).208

• Step 5: As Ŷnt (up to estimation errors) admits a static factor model rep-

resentation, estimates ût and R̂ of ut and R, respectively, can be obtained

from the first q standard principal components of Ŷt: see Stock and Watson

(2002a) and Stock and Watson (2002b). Inverting the estimated polynomial

matrix Ân(L) yields the estimated impulse-response matrix

B̂n(L) = [Ân(L)]
−1R̂n.

• Step 6: Use B̂n(L) to obtain the estimated common factors:

χ̂nt = [Ân(L)]
−1R̂nût = B̂n(L)ut = B̂n0ût + B̂n1ût−1 + ...+ B̂nsût−s,

where s is a truncation threshold, large enough.209

• Step 7: Repeat steps 2 - 6 for B different permutations. The estimated210

impulse-response matrix
̂̂
Bn(L) and the estimated common components ̂̂χnt,211

then, are obtained by averaging the B matrices B̂n(L) and χ̂nt. Note that212

before averaging, each B̂n(L) and χ̂nt, for b = 1, ..., B, must be rearranged in213

the original order of the panel. The averaging of each B̂n(L) also requires their214

identification and, as in Forni et al. (2017), we impose a Cholesky identification215

constraint on the first q variables.216
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To obtain the h-step-ahead common component forecast, an additional step

should be added. For each permutation, the prediction equation for the common

components at horizon h takes the form

χ̂n,t+h|t = B̂nhût + B̂n,h+1ût−1 + ...

Then, the h-step-ahead common component forecast ̂̂χn,t+h|t is obtained by averag-

ing the B vectors χ̂n,t+h|t. Finally, putting
̂̂
ξnt = Xnt− ̂̂χnt, each of the idiosyncratic

variables
̂̂
ξit can be predicted using univariate methods, yielding the h-step ahead

predictor
̂̂
X i,t+h|t = ̂̂χi,t+h|t +

̂̂
ξi,t+h|t.

2.3 Determining the number of common shocks217

A crucial step in the analysis of dynamic factor models is the identification of the218

number of common shocks. This number, beyond the economic interpretation, also219

plays an important role in estimation and forecasting; see, for instance, Forni et al.220

(2009), Aramonte et al. (2013), Della Marra (2017), Barigozzi et al. (2018) and Forni221

et al. (2018).222

A formal information criterion to determine the number of common shocks was223

proposed by Hallin and Lǐska (2007) and achieves good performance, even in small224

samples. This procedure is based on the eigen-decomposition of the spectral density225

matrix and does not assume that the space spanned by the common components is226

finite.227

For given n, T and a positive constant c, the criterion selects the number of228

common shocks that minimizes the contribution of the idiosyncratic components229

q̂n,T ;c = arg min
0≤k≤qmax

ICn,T ;c(k), 0 ≤ k ≤ qmax, (10)

where qmax is a predefined upper bound and ICn,T ;c(k) is a information criterion230

associated with the spectral density matrix ΣX(θ). In this paper, we use the loga-231

rithmic information criterion as in Forni et al. (2017), which is given by232

ICn,T ;c(k) = log


 1

n

n∑

i=k+1

1

2MT + 1

MT∑

l=Mt

λT
i (θl)


+ c k p(n, T ), (11)
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where p(n, T ) is a penalty function such that min(n,M2
T ,M

−1/2
T T 1/2)p(n, T ) → ∞

and p(n, T ) → 0 when n, T→ ∞, θl = πl/(MT + 1/2), λT
i (θl) is the i-th eigenvalue

of the spectral density matrix ΣX(θ); c is an arbitrary positive real value and the

estimator of ΣX(θ) is defined in Step 2; a maximal value qmax of q also has to be

chosen. Hallin and Lǐska (2007) prove that q̂n,T ;c is consistent for any c > 0 as n

and T tend to infinity. An optimal value of c, denoted by c∗, is selected as follows.

Setting an upper bound C for the constant c, consider J subsamples of size (nj , Tj),

with 0 < n1 < ... < nJ = n and 0 < T1 ≤ ... ≤ TJ = T , j = 1, ..., J . Although we

can take Tj < Tj+1, choosing Tj = T for all j is recommended and it is used in this

paper. For each c > 0 and each subsample, the criterion yields a number q̂nj ,Tj ;c of

common shocks. For each c > 0, the variability among the J values of q̂nj ,Tj ;c for

j = 1, ..., J , is captured by

Sc =
1

J

J∑

j=1


q̂nj ,Tj ;c −

1

J

J∑

j=1

q̂nj ,Tj ;c



2

.

To select c∗ we look for intervals of c over which Sc=0. Hereafter, such intervals233

are called stability intervals. Stability intervals are such that q̂nj ,Tj ;c=q̂n,T ;c is con-234

stant for c ranging over such intervals. Starting in the neighbourhood of c=0 (no235

penalty at all), a first stability interval (0, c+1 ) corresponds to q̂n,T ;c=qmax. Disregard-236

ing this qmax which clearly is not a consistent solution, choose c∗ as any point in the237

next stability interval (c−2 , c
+
2 ). The selected number of factors is then q̂n,T=qn,T ;c∗.

5
238

Summing up, in practice the identification method is performed as follows:239

• choose MT and a maximum number qmax of common shocks; we chose240

MT = 0.75
√
T and qmax=6;241

• set a grid of values for the constant c ∈ C ⊂ [C−, C+] ⊂ R
+; we chose242

c = 0.01, 0.02, ..., 3.00;243

• for each value of c in that grid, (a) randomly choose subsamples of increas-244

ing dimension 0 < n1 < ... < nJ = n; we chose nj = n1 + ⌊(n − n1)/10⌋,245

j = 2, 3, ..., J , with n1 not too small6; (b) solve (10) to find q̂c;nj,T246

5See Hallin and Lǐska (2007) for an extensive explanation of the role of the constant c and other

parameters.
6We set this value to n1 = 3n/4.
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for j = 1, ..., J ; (c) using the sequence q̂nj,T ;c, j = 1, ..., J , compute the variance247

of Sc;248

• identify q as q̂ = q̂n,T ;c∗, where c∗ belongs to the second stability interval of c.249

Hallin and Lǐska (2007) in their Monte Carlo experiments use the following three

penalty functions:

p1(n, T ) = (M
1/2
T T−1/2 +M−2

T + n−1)× log(min[T 1/2M
−1/2
T ;M2

T ;n]);

p2(n, T ) = (min[T 1/2M
−1/2
T ;M2

T ;n])
−1/2;

p3(n, T ) = (min[T 1/2M
−1/2
T ;M2

T ;n])
−1 × log(min[T 1/2M

−1/2
T ;M2

T ;n]).

In our estimations we used p1(n, T ).250

3 Monte Carlo experiments251

In order to evaluate the performance of the GDFM in the presence of additive252

outliers we carry out Monte Carlo experiments to evaluate their effects on the number253

of common shocks identified by the Hallin and Lǐska (2007) criterion and on the254

ensuing estimation of the common shocks and impulse response functions using the255

procedure of Forni et al. (2015, 2017). Results are presented in Sections 3.1 and 3.2,256

respectively. Finally, in Section 3.3, we assess the impact of outliers on the one-257

step-ahead forecast procedure described in Forni et al. (2015, 2017) and Forni et al.258

(2018). We consider the same data-generating process (admitting no static factor259

representation) as in Forni et al. (2017), namely,260

Xit = ai1(1− αi1L)
−1u1t + ai2(1− αi2L)

−1u2t + ξit, (12)

where ujt and ξit (j = 1, 2, i = 1, ...n, t = 1, ..., T ) are generated as i.i.d. standard261

Gaussian variables; aij as i.i.d. uniform variables on the interval [−1, 1]; and αij as262

i.i.d. uniform variables on the interval [−0.8, 0.8].263

The (n, T )-dimensional panel is contaminated with two consecutive outliers ei-264

ther in the middle or at the end of the sample period, in 5%, 10% and 15% of the265

series. In all cases, outliers of size 10 times the standard deviation of the univariate266

uncontaminated processes were considered.267
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3.1 Estimation of the number of common shocks268

Table 1 presents the percentage of times the Hallin and Lǐska criterion identified269

the correct number of common shocks from series contaminated by two consecutive270

outliers in the middle or at the end of the series. For the sake of comparison,271

we also include the results for uncontaminated series. We consider panel dimen-272

sions n = 60, 120 and 240, sample size T=120 and 500 replications.273

Results show that the Hallin and Lǐska criterion never under identifies the right274

number of common shocks. When there are no outliers, the identification was incor-275

rect in only 5 replications, all for panel dimension 60, which corresponds to 1% of the276

cases only for this panel dimension. However, in most cases, only two consecutive277

outliers in a few series are sufficient to produce an overestimation of the number of278

common shocks. The overestimation is larger when the outliers occur in the middle279

of the series and also when the percentage of outliers and sample size increase. When280

only 5% of the series are contaminated by outliers at the end of the series, no big281

differences with the uncontaminated case are observed. For outliers in the middle of282

the series, when we increase the panel dimension to 120, the overestimation increases283

to 28.2%. When 10% of the series are contaminated, for panel dimension 120, we284

already have overestimation in 96.4% of the cases when the outliers are at the end285

of the series, and 99.4% when the outliers are in the middle of the series. When we286

have contamination in 15% of the series, the overestimation percentage is already287

as high as 97.2%(97.4%) when the panel dimension is equal to 60 and the outliers288

occur at the end (in the middle) of the series. It is clear that the Hallin and Lǐska289

(2007) criterion under such contamination tends to overestimate the number of com-290

mon shocks, and it can reach all cases as the proportion of contaminated series and291

the number of series increases. These results demonstrate the need for a more ro-292

bust method, especially considering that the method is recommended to be used for293

high-dimensional data sets.294

These results are in concordance with those obtained by Kristensen (2014) and295

Trućıos et al. (2019a) who, in a different but related context, found that the num-296

ber of principal components (Peason, 1901; Hotelling, 1933) and principal volatility297

components (Hu and Tsay, 2014; Li et al., 2016) also tend to be over-identified when298

the series are contaminated by additive outliers.299
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Table 1: Percentage of common shocks selected by the Hallin and Lǐska criterion

in uncontaminated and contaminated series. Panel dimension n equal to 60, 120,

and 240 and sample size T=120. Pattern of contamination: two consecutive outliers

of size 10 either in the middle or at the end of the sample period. The number of

Monte Carlo replications is 500 and the correct number of common shocks is 2.

n q̂

No Percentage of series contaminated by two consecutive additive outlier:

outlier 5% 10% 15%

in the middle at the end in the middle at the end in the middle at the end

6
0

1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2 99.0 93.4 98.0 20.2 34.6 1.2 2.4

3 1.0 6.4 2.0 79.0 64.8 97.4 97.2

4 0.0 0.2 0.0 0.8 0.6 1.4 0.2

5 0.0 0.0 0.0 0.0 0.0 0.0 0.2

1
2
0

1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2 100 83.2 99.4 0.4 3.6 0.0 0.0

3 0.0 16.8 0.6 99.4 96.4 99.8 100

4 0.0 0.0 0.0 0.0 0.0 0.0 0.0

5 0.0 0.0 0.0 0.2 0.0 0.2 0.0

2
4
0

1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2 100 71.8 92.8 0.0 0.0 0.0 0.0

3 0.0 28.2 7.2 100 100 100 99.8

4 0.0 0.0 0.0 0.0 0.0 0.0 0.2

300

3.2 Estimation of common shocks and impulse-response function301

We reproduce the Monte Carlo experiment of Forni et al. (2017) using (12) and302

compare the average and standard deviation of the normalized mean squared er-303

rors (MSE) in uncontaminated series with those obtained under different patterns304

of contamination. The number of common shocks is assumed to be known when305

computing the normalized MSEs. Furthermore, the comparison of the estimated306

shocks and impulse–response functions with the corresponding simulated quantities307

requires an identification rule. As in Forni et al. (2017), our exercise is based on308

a Cholesky identification scheme on the first q variables; see Forni et al. (2017) for309

more details. A superscript* is used for identified quantities. The normalized MSE310
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for the impulse-response functions is given by311

∑n
i=1

∑q
f=1

∑K
k=1(b̂

∗
if,k − b∗if,k)

2

∑n
i=1

∑q
f=1

∑K
k=1(b

∗
if,k)

2
, (13)

where b∗if,k is the estimated impulse-response coefficient of variable i for shock f at312

lag k and the truncation lag K is set to 60. Similarly, the estimation error on the313

shocks is measured by314 ∑q
f=1

∑T
t=1(û

∗
ft − u∗ft)

2

∑q
f=1

∑T
t=1(u

∗
ft)

2
. (14)

Table 2 reports the results for different values of the panel dimension n and315

sample size T=120. Results confirm the intuition that the performance on the316

estimation of the impulse-response functions and structural shocks decreases as the317

proportion of contaminated series increases. A substantial increase in the average318

and standard deviation of the MSE is observed regardless of the outlier position.319

Note that, even with as little as 5% of series contaminated, a significant increase in320

the average and standard deviation of the MSE is observed.321

To understand the effects of over-identification of the number of common shocks,322

Figure 1 plots the estimated common shocks of a single simulated panel with n = 60,323

T=120, and q=2 where 15% of the series are contaminated. We consider uncon-324

taminated series (first and second columns), series contaminated at the end of the325

sample period (third and fourth columns) and series contaminated in the middle of326

the sample period (fifth and sixth columns). We either considered q as known or327

determined by the Hallin and Lǐska criterion, which yields q̂ = 3 in contaminated328

series and q̂ = 2 for the uncontaminated ones. For the sake of comparison, we have329

also considered an imposed value of q̂ = 3 in the uncontaminated case.330

For uncontaminated series, over-identification of the number of common shocks331

does not seem to be a big concern. The first two estimated common shocks are quite332

similar, whether q̂ = 2 or q̂ = 3 and, for q̂=3, the third estimated common shock333

is close to zero with small variability. On the other hand, for contaminated series,334

over-identification has a strong effect in the estimation of the common shocks. Note335

that, when we estimate three common shocks, as determined by the Hallin and Lǐska336

criterion, the results are worse than using the correct number of common shocks in337

the presence of outliers.338
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Table 2: Monte Carlo averages and standard deviations (in parentheses) of nor-

malized MSE for estimated impulse-response functions (top panel) and structural

shocks (bottom panel) in uncontaminated and contaminated series across 500 data

sets. Panel dimensions n=60, 120, 240 and sample size T=120.

n

No Percentage of series contaminated by two consecutive additive outlier

outliers 5% 10% 15%

in the middle at the end in the middle at the end in the middle at the end

Impulse-response functions

60 0.145 0.246 0.244 0.267 0.271 0.299 0.315

(0.034) (0.098) (0.092) (0.106) (0.096) (0.113) (0.112)

120 0.157 0.261 0.258 0.272 0.281 0.297 0.315

(0.034) (0.089) (0.096) (0.090) (0.100) (0.098) (0.104)

240 0.163 0.268 0.268 0.280 0.288 0.302 0.321

(0.033) (0.082) (0.090) (0.087) (0.093) (0.092) (0.102)

Structural shocks

60 0.135 0.209 0.208 0.221 0.222 0.239 0.249

(0.033) (0.101) (0.093) (0.111) (0.097) (0.119) (0.111)

120 0.093 0.171 0.169 0.177 0.181 0.193 0.202

(0.031) (0.092) (0.106) (0.096) (0.110) (0.106) (0.116)

240 0.069 0.145 0.147 0.154 0.157 0.169 0.179

(0.028) (0.084) (0.098) (0.093) (0.101) (0.100) (0.114)

339 3.3 Forecasting340

In this section, we analyse the forecasting performance of the GDFM in the presence341

of outliers. For the sake of comparison, as in Forni et al. (2017), the accuracy of342

one-step-ahead forecasts is measured by343

∑n
i=1(χ̂i,T+1 − χi,T+1)

2

∑N
i=1(χi,T+1)2

, (15)

where χ̂i,T+1 =
∑q

f=1(b̂if,1ûfT + b̂if,2ûf,T−1+ ...). We consider two cases. In the first344

case (top panel of Table 3), the number of common shocks is known, that is, there345

is no misidentification. In the second case (bottom panel of Table 3), the number346

of common shocks is determined by the Hallin and Lǐska criterion which, as shown347

in Section 3.1, is not robust in the presence of outliers. The normalized MSE of348

the one-step-ahead forecasts reported in Table 3 reveals the strong effect of outliers349

on the forecasting performance. The highest MSEs are observed when the number350
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Figure 1: Estimated common shocks in a simulated panel with n=60, T=120, q=2.

Uncontaminated series (first and second column), 15% of contamination at the end

(third and fourth columns) and 15% of contamination in the middle (fifth and sixth

columns) of the sample period.

of common shocks is determined by the Hallin and Lǐska criterion. These results351

show that, in the presence of outliers at the end of the sample period, identifying352

more common shocks than necessary has a strong impact on the forecasts. When q is353

known the normalized MSE decreases when the panel dimension increases, regardless354

the presence of outliers. When q is unknown, that also happens, except when the355

outliers occur at the end of the series with 5% and 10% of contamination. This356

possibly happens because the negative effect of the overestimation of the number of357

common shocks is stronger than the gain from the panel dimension increase.358

In practice, we are in fact interested in forecasting the variables Xits and we359

do not know the number of common shocks, which is the case in the application of360

Section 5.361
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4 Robustification362

As reported in the previous section, Monte Carlo experiments show that the iden-363

tification, estimation, and forecasting of the GDFM are strongly affected by the364

presence of outliers. In this section, we provide a robust alternative to circumvent365

these problems.366

Table 3: Monte Carlo averages and standard deviations (in parentheses) of nor-

malized MSE for the one-step-ahead forecasts in uncontaminated and contaminated

series across 500 data sets. The panel dimensions are n = 60, 120 and 240 and

sample size is T=120.

N

No Percentage of series contaminated by two consecutive additive outlier

outliers 5% 10% 15%

at the middle at the end at the middle at the end at the middle at the end

q is known

60 0.414 0.527 0.560 0.565 0.704 0.636 0.955

(0.246) (0.215) (0.298) (0.240) (0.402) (0.332) (0.658)

120 0.368 0.493 0.499 0.531 0.624 0.600 0.823

(0.211) (0.175) (0.191) (0.210) (0.262) (0.307) (0.430)

240 0.344 0.487 0.484 0.520 0.593 0.583 0.779

(0.146) (0.154) (0.163) (0.189) (0.198) (0.260) (0.315)

q is determined by Hallin and Lǐska

60 0.414 0.527 0.586 0.554 4.382 0.567 7.830

(0.246) (0.221) (0.402) (0.327) (10.244) (0.343) (12.831)

120 0.368 0.492 0.605 0.488 4.919 0.498 6.408

(0.211) (0.193) (1.244) (0.305) (7.039) (0.262) (10.450)

240 0.344 0.471 1.047 0.448 4.475 0.462 5.378

(0.146) (0.169) (5.705) (0.191) (8.075) (0.188) (8.474)

367

4.1 Robust identification criterion368

The correct identification of the number of common shocks is crucial for the esti-369

mation of the GDFM. In Section 3 we showed through Monte Carlo simulations the370
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non-robustness of the procedure proposed by Hallin and Lǐska (2007)7 and its impli-371

cations in the estimation and forecasting of the GDFM. To overcome the misidentifi-372

cation observed under contaminated data, we propose a robust version of the Hallin373

and Lǐska criterion.374

As the Hallin and Lǐska criterion is based on the eigen-decomposition of Σ̂X(θ),375

we propose to replace Σ̂X(θ) by a robust estimator Σ̃X(θ) of the spectral density376

matrix. This is achieved by using a robust estimator Γ̃k of the covariance matrix377

between Xt and Xt−k, yielding the robust estimator378

Σ̃X(θ) =
1

2π

MT∑

k=−MT

e−ikθK

(
k

BT

)
Γ̃k. (16)

The GDFM is used in high-dimensional data to circumvent the curse of di-379

mensionality. Because robust procedures with high computational costs make the380

estimation unfeasible in a high-dimensional context, a robust and fast procedure to381

estimate Γk is necessary. As mentioned in Maronna et al. (2006), a fast and robust382

alternative can be achieved via a robust estimation of pairwise covariances. We383

propose to use the robust estimator of Ma and Genton (2000), which is based on384

the scale parameter of Rousseeuw and Croux (1992, 1993) for each pair of variables.385

This estimator is fast to compute, location-free, and has shown a good trade-off386

between efficiency and robustness. Plenty of robust alternatives to Ma and Genton387

(2000) are available in the literature, but they are computationally more expensive388

and generally unfeasible in a high-dimensional framework.389

We ran a Monte Carlo experiment with 500 replications considering the robust390

criterion in Table 4 with n = 60, 120, 240 and T =120. The minimum values n1 (see391

Section 3.2) used in the robust procedure were 3n/4, n/2 and n/4 for n= 60, 120, and392

240, respectively. The performance of our procedure appears to be sensitive to the393

choice of n1. As a rule of thumb, we suggest using 3n/4 when the concentration ratio394

is smaller than one, n/2 when the concentration ratio is close to one, and n/4 when395

the concentration ratio is larger than one. These values yields good performances in396

our Monte Carlo experiments. As we observe in Table 4, the robustified procedure397

correctly identifies the number of common shocks almost 100% of times, whereas398

7Actually, the Hallin and Lǐska criterion, for the GDFM, is the only consistent method available

in the literature.
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the unrobustified procedure of Hallin and Lǐska (2007) overestimates the number of399

common shocks (see Table 1).400

Table 4: Percentage of common shocks selected by the robust version of Hallin and

Lǐska criterion in uncontaminated and contaminated series for dimensions n= 60

(top panel), 120 (middle panel), 240 (bottom panel), and sample size T = 120. The

number of Monte Carlo replications is 500.

N q̂

No Percentage of series contaminated by additive outlier

outlier 5% 10% 15%

in the middle at the end in the middle at the end in the middle at the end

6
0

1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2 99.6 99.6 99.4 99.6 99.6 99.6 99.6

3 0.4 0.4 0.6 0.4 0.4 0.4 0.4

1
2
0

1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2 99.6 99.6 99.4 99.6 99.6 99.6 99.4

3 0.4 0.4 0.6 0.4 0.4 0.4 0.6

2
4
0

1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2 100 100 100 100 100 100 100

3 0.0 0.0 0.0 0.0 0.0 0.0 0.0

401

Although the pairwise approach by Ma and Genton (2000) is fast and easy402

to implement, it lacks the affine equivariance and the positive definiteness prop-403

erties. Modifications to obtain positive definiteness and approximate equivariance404

have been proposed in the literature; see Rousseeuw and Molenberghs (1993) and405

Maronna and Zamar (2002). Nevertheless, the componentwise estimator without406

any modification reported the best performance in our Monte Carlo experiments.407

An even faster alternative is the procedure recently proposed by Raymaekers408

and Rousseeuw (2018), which is based on a V-robust transformation of the data;409

see Hampel et al. (1981) and Raymaekers and Rousseeuw (2018) for details. This410

procedure consists in applying a transformation to all observations in the original411

dataset and then computing the sample covariance matrix as usual. The transformed412

observations are of the form413

X∗
it = µ̂i + σ̂iΨb,c

(
Xit − µ̂i

σ̂i

)
, (17)
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where µ̂i and σ̂i are robust estimates of µi and σi, respectively, and414

Ψb,c(x) =





x, 0 ≤ |x| ≤ b,

d1 tanh (d2 (c− |x|)) sign(x), b ≤ |x| ≤ c,

0, c ≤ |x|,

with the constants d1 and d2 chosen such that Ψb,c(·) is a continuous function.8415

We use b = 1.5, c = 4, d1 = 1.540793 and d2 = 0.8622731 as in Raymaekers and416

Rousseeuw (2018). The robust scale estimator proposed by Rousseeuw and Croux417

(1992, 1993) is used to estimate σi, and µ̂i is obtained by an M-estimator using418

the function Ψb,c(·). Besides its cheaper computational cost, the robust estimator419

of Raymaekers and Rousseeuw (2018) satisfies the affine equivariance as well as the420

positive semidefiniteness properties, which makes its use more attractive.421

Table 5 reports the results of the robust version of Hallin and Lǐska (2007) based422

on the robust estimators of Raymaekers and Rousseeuw (2018). Results are very423

similar to those obtained in Table 4, the number of common shocks is correctly424

identified almost 100% of times.425

Despite the good finite-sample properties of both methods, we suggest using the426

last one because its computational time is much smaller, and also due to its desirable427

properties of invariance and positiveness. Unlike the robust alternative using the428

estimator of Ma and Genton (2000), where the value of n1 plays an important role429

and needs to be chosen according to the concentration ratio, the Raymaekers and430

Rousseeuw (2018) method is not sensitive to the choice of n1, and we set this value431

to n1 = 3n/4.432

433

8Details about how to obtain the constants can be found in the supplementary material of

Raymaekers and Rousseeuw (2018).
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Table 5: Percentage of common shocks selected by the Hallin and Lǐska criterion

when robustified via Raymaekers and Rousseeuw (2018), in uncontaminated and

contaminated series, for dimensions n=60 (top panel), 120 (middle panel), 240 (bot-

tom panel), and sample size T = 120. The number of Monte Carlo replications is

500.

N q̂

No Percentage of series contaminated by additive outlier

outlier 5% 10% 15%

in the middle at the end in the middle at the end in the middle at the end

6
0

1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2 99.0 99.2 99.6 99.0 99.0 99.0 99.2

3 1.0 0.8 0.4 1.0 1.0 1.0 0.8

1
2
0

1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2 100 99.8 99.8 99.8 99.8 100 99.8

3 0.0 0.2 0.2 0.2 0.2 0.0 0.2

2
4
0

1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2 100 100 100 100 100 100 100

3 0.0 0.0 0.0 0.0 0.0 0.0 0.0

4.2 Robust estimation and forecasting procedures434

A robust estimator of the spectral density matrix alone is not enough to robustify435

the GDFM estimator, as it only ensures robust estimates Ãn(L) for A(L). In-436

deed, Ỹnt = Ãn(L)Xnt in Step 3 of Section 2.2 still will be affected by the presence437

of outliers due to the contamination in Xnt. To overcome this issue, we propose a438

slight modification in Steps 5 and 6 of Section 2.2. Once the number of common439

shocks is selected using the previously described robust procedure, we proceed as440

follows.441

• Step 5*: Apply a robust principal component procedure to Ỹnt = Ãn(L)Xnt,442

where Ãn(L) is a robust estimate of A(L) based on Σ̃X(θ). Then, the impulse-443

response matrix is given by B̃n(L) = [Ãn(L)]
−1R̃, where R̃ is the matrix of444

eigenvectors associated with the q largest eigenvalues obtained from the robust445

principal component procedure.446

• Step 6*: Use B̃n(L) to obtain a robust estimation

χ̃nt = [Ãn(L)]
−1R̃nũt = B̃n(L)ũt = B̃n0ũt + B̃n1ũt−1 + ...+ B̃nsũt−s,
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of the common components, where Ãn(L) and R̃n are as defined in the previous447

step. As ũt = ỹntR̃n is still affected by outliers, the robust estimation of the448

common shocks is taken as ũt = ρ(ỹt)R̃n with449

ρ(ỹt) =





(ỹ1t, ..., µ̂
R
i , ..., ỹnt), if (ỹit − µ̂R

i )/σ̂
R
i > c1

µ̂R, if SDt > c2 and ODt > c3

ỹt, otherwise,

(18)

where i stands for the ith series in the panel, µ̂R
i = (µ̂1t, ..., µ̂nt)

′ is a ro-450

bust location estimator of Ỹit, µ̂
R is a multivariate robust location estimator451

of Ỹnt and SDt and ODt stand for the score distance and orthogonal dis-452

tance associated to ỹt; see, for instance, Hubert et al. (2002, 2005, 2018)453

for more details about SDt and ODt. The first inequality in (18) can be454

valid for no series or even for all series, and eventually obtain a vector of the455

form (ỹ1t, . . . , µj1 , ỹj1+1,t, . . . , µjk , . . . , ỹnt) .456

Similarly to the non-robust version, the robust forecast of the common components

at horizon h is obtained as

χ̃n,t+h|t = B̃nhũt + B̃n,h+1ũt−1 + ...+ B̃n,t+h−1ũ1.

Finally, the robust version of the final estimated impulse-response matrix
˜̃
Bn(L),457

the common components ˜̃χnt, and the h-step-ahead common component ˜̃χn,t+h|t458

are obtained by averaging their corresponding versions across B permutations as in459

Step 7 of Section 2.2.460

There are a number of robust alternatives to classical principal components anal-461

ysis; see, for instance, Croux and Haesbroeck (2000), Engelen et al. (2005) and462

Maronna (2005) for interesting comparative studies. Those approaches can be di-463

vided into two groups. The first group is based on a robust estimation of the464

covariance matrix and the second is based on projection pursuit. However, only465

few of the existing methods are feasible in a high-dimensional framework. In this466

paper, we have used the robust principal component procedure (ROBPCA) of Hu-467

bert et al. (2005) because its good performance in high dimensions. That procedure468

combines projection pursuit and robust estimation of the covariance matrix. We469
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have also used the robust procedure of Hubert et al. (2002), but the results using470

the ROBPCA procedure were much better.471

Results comparing the robust and non-robust procedures when estimating the472

impulse-response functions, structural shocks and common components of the GDFM473

are reported in Figures 2 - 4. In the absence of outliers, the performance of the non-474

robust procedure is (not surprisingly so) slightly better. However, the advantage475

of the use of the robust procedure in the presence of outliers is clear in all cases.476

Note that, when the number of common shocks is estimated in a non-robust way,477

the differences between the robust and non-robust procedures are huge. Assuming478

that the true number of common shocks is known results in an improvement in the479

non robust procedure, although better results still are obtained with the robust ap-480

proach. Whenever outliers are likely to be present in the observations, we suggest481

using our robust approach, as the consequences of neglecting the impact of those482

outliers may be quite dramatic.483
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Figure 2: Boxplots of the normalized MSE in logarithmic scale for estimated impulse-

response functions in uncontaminated and contaminated series, using the non-robust

(red) and robust (blue) procedures. Dimension n = 60 (top panel), 120 (middle

panel), and 240 (bottom panel). Sample size T = 120. The number of Monte Carlo

replications is 500.
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Figure 3: Boxplots of the normalized MSE in logarithmic scale for estimated struc-

tural shocks in uncontaminated and contaminated series, using the non-robust (red)

and robust (blue) procedures. Dimension n = 60 (top panel), 120 (middle panel),

and 240 (bottom panel). Sample size T = 120. The number of Monte Carlo replica-

tions is 500.
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Figure 4: Boxplots of the normalized MSE in logarithmic scale for the estimated

common components when the number of common shocks is known (top) and esti-

mated (bottom). The Hallin and Lǐska criterion was used in the non-robust analysis

while the robust analysis was based on the robust procedure in (16) based on the

estimator of Raymaekers and Rousseeuw (2018). Dimension n = 60, 120, and 240 .

Sample size T = 120. The number of Monte Carlo replications is 500.
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5 Empirical application484

We use the same dataset as Forni et al. (2018), which consists of 115 US macroe-485

conomic and financial time series at monthly frequency between January and Au-486

gust 2014. Each series is transformed properly to achieve stationarity.9487

Let Zt = (Z1t Z2t ... Znt)
′ be the raw dataset, and Xt = (X1t X2t ... Xnt)

′ be488

the stationary result of the transformations of Zt.
10 Estimation is carried out using489

the marginal standardized version of Xt denoted as xt.490

As in Forni et al. (2018), at time t we compute the h-step ahead forecasts for the i-491

th series xi,t+h, h = 6, 12, 24. The forecasts are estimated using (m1) the non-robust492

estimation procedure of Forni et al. (2015, 2017) (FHLZ); (m2) our proposed robust493

estimation procedure (RFHLZ); (m3) the standard principal component model in-494

troduced in Stock and Watson (2002a,b) with five factors (SW5); (m4) the model495

based on generalized principal components introduced in Forni et al. (2005) (FHLR);496

and (m5) n marginal univariate autoregressive models (AR) as the benchmark. The497

specifications of models FHLZ, FHLR, SW and AR and the calibration procedure498

are summarized in the Appendix, and they are the same as in Forni et al. (2018),499

For all the methods we use a rolling 10-year window [t-119, t], and the models500

are re-estimated for each t. All the forecasts are obtained directly for each horizon h,501

not iterating one-step-ahead forecasts. The forecast of Xi,t+h is, then, obtained by502

restoring the standard deviation and the mean. As in Forni et al. (2018), our first503

rolling window comprises February 1975 to January 1985 and the last forecast is504

August 2014 for all horizons. The period previous to February 1975 is used in the505

calibration procedure.506

Our objective is to assess the performance of methods ml when predicting the507

industrial production index (IP) and the consumer price index (CPI) (i = 1, 77).508

Figure 5 presents the plots of these series and their normalized versions. For the509

IP series the normalized series are their returns, while for the CPI series they are510

the seasonal difference of their returns. During the sub-prime crisis period, there511

9We dropped the variable ”US AVG OVERTIME HOURS - MANUFACTURING VOLA”

(USHXPMANO) due to its lack of variation. Our final database, then, contains 114 monthly

macroeconomic time series.
10We implement the same transformations to stationary as Forni et al. (2018).
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is a continuously strong decrease of the IP series. There is also an increase in the512

volatility of IP and CPI series during the crisis period.513

In order to check for the presence of outliers, in Figure (6) we apply to all the se-514

ries the robust transformation procedure of Raymaekers and Rousseeuw (2018) given515

by Equation (17). We observe in Figure (6) many points outside the bands |b|=1.5516

and |c|=4, with larger concentration in the crisis and post-crisis periods (from De-517

cember 2007 on). For simplicity we call this period the crisis period.518

As in Forni et al. (2018), we compare the predictor performance by the MSFE, the519

Diebold-Mariano test (Diebold and Mariano, 1995) for the null hypothesis of global520

equal performances between two predictors, and the fluctuation test of Giacomini521

and Rossi (Giacomini and Rossi, 2010) to compare locally the performance of two522

predictors.523

For the variable i and the ml prediction method, the MSFE forecasting perfor-

mance evaluated as

MSFEml

i,h =
1

(T1 − h)− T0 + 1

T1−h∑

τ=T0

[FEml

i,τ,h]
2,

where

FEml

i,t,h =
1

h
((X̂ml

i,t+1|t −Xi,t+1) + ...+ (X̂ml

i,t+h|t −Xi,t+h)),

and X̂ml

i,t+k|t, k = 1, · · · , h, is the k−step-ahead prediction for the variable i given by524

method ml, l = 1, ..., 5.525

Denote by MSFEm5

i,h the MSFE of the benchmark AR model. As in Forni et al.

(2018), the relative performance of the m prediction method at horizon h = 6, 12, 24

for the variable i in relation to the benchmark AR model is defined as

RMSFEml

i,h =
MSFEml

i,h

MSFEm5

i,h

, l = 1, ..., 4.

The results of the application is given in Table 6. As in Forni et al. (2018), we give526

results for the pre-crisis period, from February 1985 to November 2007, and for the527

full sample period, from February 1985 to August 2014. We also add the results for528

the crisis period.529

Tables 7 presents the p-values of the two-sided Diebold-Mariano test for the null530

hypothesis of global equal performance between two predictors. Due to the presence531
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Figure 5: Z1t = IPt (first panel); Z77t = CPIt (second panel); x1t = (1 − L)logIPt

(third panel); x77,t = (1 − L)(1 − L)12logCPIt (fourth panel). Dashed red line

represents the crisis beginning (2007:12). The NBER recession periods are shaded

in light gray.
29



Table 6: Relative MSFE for IP and CPI series for horizons h = 6, 1, 24. The best

result for each horizon over all methods is in bold.

IP

RFHLZ FHLZ FHLR SW(5)

h=6 a 0.8705 0.8641 0.9943 0.9998
b 0.9465 1.0641 0.7079 0.6945

c 0.9118 0.9716 0.8393 0.8347

h=12 a 0.8919 0.8782 0.9541 0.9813

b 0.8595 1.0197 0.7588 0.7475

c 0.8794 0.9645 0.8398 0.8427

h=24 a 0.9703 0.9587 0.9383 0.9912

b 0.6393 0.9604 0.7690 0.7879

c 0.8756 0.9732 0.9070 0.9304

CPI

RFHLZ FHLZ FHLR SW(5)

h=6 a 0.9456 0.9352 1.0365 1.0413

b 0.9298 0.9099 1.0779 1.0353

c 0.9491 0.9369 1.0818 1.0586

h=12 a 0.7941 0.8110 0.9284 0.9750

b 1.0279 1.0745 1.2046 1.1787
c 0.9254 0.9658 1.0920 1.1020

h=24 a 0.7676 0.8475 0.8217 0.8925

b 1.5578 1.8129 1.6656 1.5936

c 0.9524 1.0257 0.9748 1.0034

apre-crisis (1985:2-2007:11); bcrisis (2007:12-2014:8);

cfull sample (1985:2-2014:8)
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Figure 6: V-robust transformation (17) applied to the whole stationary data set.

Black and red bands correspond to |b|=1.5 and |c|=4, respectively. The NBER

recession dates are shaded in light gray. Out-of-sample period reported (1985:2-

2014:8).

of structural breaks and outliers, as in Forni et al. (2018) we only present the results532

for the pre-crisis period.533

Figures 7 and 8 present the equal local performance fluctuation test of Giacomini534

and Rossi (2010). We draw 5% critical values for the bilateral test. When testing535

Model 1 vs Model 2, values below (above) the critical values means that Model 1536

(Model 2) is statistically better (worse) than Model 2 (Model 1).537

The analysis of the results for the non-robust predictors are similar to the Forni538

et al. (2018) results. For the IP series, all predictors have smaller MSFEs than the539

AR model, except for FHLZ at horizons 6 and 12 in the second period. The null540

of equal performance with AR, in the pre-crisis period, is rejected for both RFHLZ541

and FHLZ at horizons 6 and 12 (see Tables 6 and 7). For the CPI series, compared542

to the AR model, SW(5) and FHLR have a poor performance while FHLZ and543

RFHLZ have smaller MSFES, except for horizons 12 and 24 in the second period.544

The null of equal performance with AR, in the pre-crisis period, is rejected for both545

RFHLZ and FHLZ at horizons 12 and 24 and for FHLR at horizon 24 (see Tables 6546

and 7). Analyzing the same tables, comparing RFHLZ to FHLZ, we can see that, for547

the pre-crisis period, in general their performances are almost equivalent, while in548

the crisis period we have a better performance of RFHLZ. The comparison between549

the effect of robustification is better illustrated by the fluctuation test presented in550
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Table 7: p-values of Diebold-Mariano test comparing Model 1 vs Model 2 with null

hypothesis of equal global prediction performance during the pre-crisis period. Two-

sided test and horizons (h) equal to 6, 12 and 24. In bold are the results significant

at 10% level.

IP

RFHLZ FHLZ RFHLZ FHLR SW(5)

vs AR vs AR vs FHLZ vs AR vs AR

h=6 0.055 0.027 0.757 0.958 0.999

h=12 0.028 0.002 0.488 0.623 0.852

h=24 0.248 0.113 0.674 0.341 0.890

CPI

RFHLZ FHLZ RFHLZ FHLR SW(5)

vs AR vs AR vs FHLZ vs AR vs AR

h=6 0.322 0.265 0.549 0.855 0.826

h=12 0.023 0.038 0.452 0.632 0.834

h=24 0.011 0.009 0.028 0.373 0.657
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Figures 7 and 8. We can see that robustification improves the performance of FHLZ551

and that, in fact, the improvements start some months before the outset of the crisis.552

Summing up, the empirical application shows a better performance of the robust553

version of the FHLZ model, it increases the performance in periods with outliers554

and/or structural breaks, and there is no significant decrease of the performance in555

other periods.556

6 Conclusions557

In this paper, we addressed the identification, estimation, and forecasting procedures558

in the GDFM with infinite-dimensional factor space, showing that all procedures are559

badly affected by the presence of additive outliers, even when only a few outliers are560

present. We also illustrate the impact of neglecting this issue and propose a robust561

alternative to circumvent this problem.562

Using a robust estimator of the covariance/spectral density matrix, we propose563

a robust version of the identification criterion of Hallin and Lǐska (2007) with good564

sample properties. The robust alternative has a good performance in contaminated565

as well as uncontaminated series.566

Furthermore, based on robust estimators and robust filters, we also propose567

robust estimation and robust forecasting procedures in the context of GDFM. Our568

simulations indicate that our procedures are superior to the non-robust ones in the569

presence of outliers with little to no cost in the uncontaminated case.570

The new procedures are also applied to macroeconomic and financial time series,571

where better results are observed in the crisis period (presence of outliers) compared572

to those of the non-robust procedures, and with comparable performance in periods573

without crisis.574

Our findings are useful for practitioners interested in applying GDFM for fore-575

casting purposes giving tips of better practices in the estimation and forecasting576

processes. Additionally, the results of our paper contribute to the literature of577

GDFM providing new insights and material for future theoretical results.578
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7 Appendix579

The pre-sample period, February 1960 to January 1985, is used by Forni et al. (2018)580

to calibrate the FHLZ, FHLR, SW, and AR methods. To compare two specifications581

ma and mb, say, of method m at horizon h=6, 12, 24 for variable i, they use the582

ratio583

RMSFE
ma/mb

i,h =
MSFEma

i,h

MSFEmb

i,h

.

The calibration procedure is limited to IP and CPI (i = 1 and 77, respectively);584

see Forni et al. (2018) for details about the specifications of each model used in585

the calibration procedure. The resulting specification of FHLZ and FHRL uses the586

triangular kernel with B = 30 and B = 40, respectively. For each rolling window,587

the degrees of the VARs are determined by AIC with maximum lag 5, and q is588

determined by Hallin-Lǐska criterion. For FHLR, the number of static factors r is589

fixed and equal to 6 for IP and 5 for CPI, and the prediction equation of FHLR590

does not include lagged values of the generalized principal components and of the591

predicted variable. For SW, the selected specifications include a static factor model592

with 5 or 6 static factors for IP and a model with 5 static factors for CPI, and no593

lags of the static factors and of the predicted variable are included in the prediction594

equation. In our paper, we estimate SW with 5 static factors for both IP and CPI.595

For the AR model, the number of lags is determined at each rolling window, for each596

h, by BIC with maximum lag 13. Finally, we use the same specifications of FHLZ597

for its robust version.598
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Figure 7: Equal local performance of two forecasting methods (IP). Fluctuation test statis-

tic (solid line) and 5% two-side critical values (dotted line). If the solid is below (above) the

lower (upper) critical value, the first method is significantly better (worse) than the second

one.
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Figure 8: Equal local performance of two forecasting methods (CPI). Fluctuation test

statistic (solid line) and 5% two-side critical values (dotted line). If the solid is below

(above) the lower (upper) critical value, the first method is significantly better (worse) than

the second one.
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