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Abstract Ant Colony Optimization (ACO) is a metaheuristic that is inspired
by the pheromone trail laying and following behavior of some ant species. Ar-
tificial ants in ACO are stochastic solution construction procedures that build
candidate solutions for the problem instance under concern by exploiting
(artificial) pheromone information that is adapted based on the ants’ search
experience and possibly available heuristic information. Since the proposal
of Ant System, the first ACO algorithm, many significant research results
have been obtained. These contributions focused on the development of high
performing algorithmic variants, the development of a generic algorithmic
framework for ACO algorithm, successful applications of ACO algorithms to
a wide range of computationally hard problems, and the theoretical under-
standing of important properties of ACO algorithms. This chapter reviews
these developments and gives an overview of recent research trends in ACO.

1 Introduction

Ant Colony Optimization (ACO) [63, 65, 72] is a metaheuristic for solving
hard combinatorial optimization problems. The inspiring source of ACO is
the pheromone trail laying and following behavior of real ants, which use
pheromones as a communication medium. By analogy with the biological
example, ACO is based on indirect communication within a colony of simple
agents, called (artificial) ants, mediated by (artificial) pheromone trails. The
pheromone trails in ACO serve as distributed, numerical information, which is
used by the ants to probabilistically construct solutions to the problem being
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solved and which they adapt during the algorithm’s execution to reflect their
search experience.

The first example of such an algorithm is Ant System (AS) [61, 69, 70, 71],
which was proposed using as example application the well known traveling
salesman problem (TSP) [6, 110, 155]. Despite encouraging initial results,
AS could not compete with state-of-the-art algorithms for the TSP. Never-
theless, it had the important role of stimulating further research both on
algorithmic variants, which obtain much better computational performance,
and on applications to a large variety of different problems. In fact, there
exist now a considerable number of applications of such algorithms where
world class performance is obtained. Examples are applications of ACO algo-
rithms to problems such as sequential ordering [84], scheduling [20], assem-
bly line balancing [21], probabilistic TSP [8], 2D-HP protein folding [160],
DNA sequencing [27], protein–ligand docking [107], packet-switched routing
in Internet-like networks [52], and so on. The ACO metaheuristic provides
a common framework for the existing applications and algorithmic variants
[63, 65]. Algorithms which follow the ACO metaheuristic are called ACO
algorithms.

The (artificial) ants in ACO implement a randomized construction heuris-
tic which makes probabilistic decisions as a function of artificial pheromone
trails and possibly available heuristic information based on the input data
of the problem to be solved. As such, ACO can be interpreted as an ex-
tension of traditional construction heuristics, which are readily available for
many combinatorial optimization problems. Yet, an important difference with
construction heuristics is the adaptation of the pheromone trails during al-
gorithm execution to take into account the cumulated search experience.

The rest of this chapter is organized as follows. In Section 2, we briefly
overview construction heuristics and local search algorithms. In Section 3,
we present a specific version of the ACO metaheuristic that focuses on ap-
plications to NP-hard problems. Section 4 outlines the inspiring biological
analogy and describes the historical developments leading to ACO. In Sec-
tion 5, we illustrate how the ACO metaheuristic can be applied to different
types of problems and we give an overview of its successful applications.
Section 6 gives an overview of recent developments in ACO and Section 7
concludes the chapter.

2 Approximate approaches

Many important combinatorial optimization problems are hard to solve. The
notion of problem hardness is captured by the theory of computational com-
plexity [88, 150] and for many important problems it is well known that they
are NP-hard, that is, the time needed to solve an instance in the worst case
grows exponentially with the instance size. Often, approximate algorithms
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procedure Greedy Construction Heuristic

sp = empty solution
while sp not a complete solution do

e = GreedyComponent(sp)

sp = sp ⊗ e
end

return sp
end Greedy Construction Heuristic

Fig. 1 Algorithmic skeleton of a greedy construction heuristic. The addition of component
e to a partial solution sp is denoted by the operator ⊗.

are the only feasible way to obtain near optimal solutions at relatively low
computational cost.

Most approximate algorithms are either construction algorithms or local
search algorithms.1 These two types of methods are significantly different,
because construction algorithms work on partial solutions trying to extend
them in the best possible way to complete problem solutions, while local
search methods move in the search space of complete solutions.

2.1 Construction algorithms

Construction algorithms build solutions to a problem under consideration in
an incremental way starting with an empty initial solution and iteratively
adding appropriate solution components without backtracking until a com-
plete solution is obtained. In the simplest case, solution components are added
in random order. Often better results are obtained if a heuristic estimate
of the myopic benefit of adding solution components is taken into account.
Greedy construction heuristics add at each step a solution component that
achieves the maximal myopic benefit as measured by some heuristic infor-
mation. An algorithmic outline of a greedy construction heuristic is given in
Figure 1. The function GreedyComponent returns the solution component e
with the best heuristic estimate as a function of the current partial solution
sp. Solutions returned by greedy algorithms are typically of (much) better
quality than randomly generated solutions. Yet, a disadvantage of greedy
construction heuristics is that they typically generate only a limited number
of different solutions. Additionally, greedy decisions in early stages of the
construction process constrain the available possibilities at later stages, often
causing very poor moves in the final phases of the solution construction.

1 Other approximate methods are also conceivable. For example, when stopping exact
methods, like Branch & Bound, before completion [11, 104] (after some given time bound,

or when some guarantee on the solution quality is obtained through the use of lower and
upper bounds, for example), we can convert exact algorithms into approximate ones.
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procedure IterativeImprovement (s ∈ S)

s′ = Improve(s)

while s′ 6= s do

s = s′

s′ = Improve(s)
end

return s

end IterativeImprovement

Fig. 2 Algorithmic skeleton of iterative improvement.

As an example, consider a greedy construction heuristic for the TSP. In the
TSP we are given a complete weighted graph G = (N,A) with N being the
set of vertices, representing the cities, and A the set of edges fully connecting
the vertices N . Each edge is assigned a value dij , which is the length of edge
(i, j) ∈ A. The TSP is the problem of finding a minimum length Hamiltonian
cycle of the graph, where an Hamiltonian cycle is a closed tour visiting exactly
once each of the n = |N | vertices of G. For symmetric TSPs, the distances
between the cities are independent of the direction of traversing the edges,
that is, dij = dji for every pair of vertices. In the more general asymmetric
TSP (ATSP) at least for one pair of vertices i, j we have dij 6= dji.

A simple rule of thumb to build a tour is to start from some initial city and
to always choose to go to the closest still unvisited city before returning to the
start city. This algorithm is known as the nearest neighbor tour construction
heuristic.

Construction algorithms are typically the fastest approximate methods,
but the solutions they generate are often not of very high quality and they
are not guaranteed to be optimal with respect to small changes; therefore, the
results produced by constructive heuristics can often be improved by local
search algorithms.

2.2 Local search algorithms

Local search algorithms start from a complete initial solution and try to find
a better solution in an appropriately defined neighborhood of the current
solution. In its most basic version, known as iterative improvement, the algo-
rithm searches the neighborhood for an improving solution. If such a solution
is found, it replaces the current solution and the local search continues. These
steps are repeated until no improving neighbor solution can be found and the
algorithm ends in a local optimum. An outline of an iterative improvement
algorithm is given in Figure 2. The procedure Improve returns a better neigh-
bor solution if one exists, otherwise it returns the current solution, in which
case the algorithm stops.
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2−exchange

Fig. 3 Schematic illustration of a 2-exchange move. The proposed move reduces the total
tour length if we consider the Euclidean distance between the points.

The choice of an appropriate neighborhood structure is crucial for the
performance of local search algorithms and has to be done in a problem
specific way. The neighborhood structure defines the set of solutions that can
be reached from s in one single step of the algorithm. A neighborhood example
for the TSP is the k-exchange neighborhood in which neighbor solutions differ
by at most k edges. Figure 3 shows an example of a 2-exchange neighborhood.
The 2-exchange algorithm systematically tests whether the current tour can
be improved by replacing two edges. To fully specify a local search algorithm,
it is necessary to designate a particular neighborhood examination scheme
that defines how the neighborhood is searched and which neighbor solution
replaces the current one. In the case of iterative improvement algorithms, this
rule is called the pivoting rule [188] and examples are the best-improvement
rule, which chooses the neighbor solution giving the largest improvement
of the objective function, and the first-improvement rule, which uses the
first improved solution found when scanning the neighborhood to replace the
current one. A common problem with local search algorithms is that they
easily get trapped in local minima and that the result strongly depends on
the initial solution.

3 The ACO metaheuristic

Artificial ants used in ACO are stochastic solution construction procedures
that probabilistically build a solution by iteratively adding solution compo-
nents to partial solutions by taking into account (i) heuristic information
about the problem instance being solved, if available, and (ii) (artificial)
pheromone trails which change dynamically at run-time to reflect the agents’
acquired search experience.

A stochastic component in ACO allows the ants to build a wide variety
of different solutions and hence to explore a much larger number of solutions
than greedy heuristics. At the same time, the use of heuristic information,
which is readily available for many problems, can guide the ants towards the
most promising solutions. More important, the ants’ search experience can
be used to influence, in a way reminiscent of reinforcement learning [179], the
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solution construction in future iterations of the algorithm. Additionally, the
use of a colony of ants can give the algorithm increased robustness and in
many ACO applications the collective interaction of a population of agents
is needed to efficiently solve a problem.

The domain of application of ACO algorithms is vast. In principle, ACO
can be applied to any discrete optimization problem for which some solution
construction mechanism can be conceived. In the remainder of this section,
we first define a generic problem representation that the ants in ACO may
exploit to construct solutions, and then we define the ACO metaheuristic.

3.1 Problem representation

Let us consider minimization problems2 and define a general model of a
combinatorial optimization problem.

Definition 1. A model P = (S,Ω, f) of a combinatorial optimization prob-
lem consists of

• a search space S that is defined by a finite set of decision variables, each
with a finite domain, and a set Ω of constraints among the variables;

• an objective function f : S 7→ IR+
0 that is to be minimized.

The search space is defined by a finite set of variables Xi, i = 1, . . . , n, each
having an associated domain Di of values that can be assigned to it. An
instantiation of a variable consists in an assignment of a value vji ∈ Di to

variable Xi and it is denoted by Xi = vji . A feasible solution s ∈ S is an
assignment to each variable of a value in its domain such that all the problem
constraints inΩ are satisfied. IfΩ is empty, then the problem is unconstrained
and each decision variable can take any value from its domain, independent
of the other variables. In this case, P is an unconstrained problem model;
otherwise it is called constrained. A feasible solution s∗ ∈ S is called a global
minimum of P if and only if f(s∗) ≤ f(s) ∀s ∈ S. We denote by S∗ ⊆ S the
set of all global minima. �

This model of a combinatorial optimization problem can be directly used
to derive a generic pheromone model that is exploited by ACO algorithms. To
see how, let us call the instantiation of a variable Xi with a particular value
vji of its domain a solution component, which is denoted by cji . Ants then
need to appropriately combine solution components to form high-quality, fea-
sible solutions. To do so, each solution component cji will have an associated
pheromone variable Tij . We denote the set of all solution components by C
and the set of all pheromone variables by T. Each pheromone variable Tij
has a pheromone value τij ; this value indicates the desirability of choosing

2 The adaptation to a maximization problem is straightforward.
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procedure ACO algorithm for combinatorial optimization problems

Initialization

while (termination condition not met) do

ConstructAntSolutions

ApplyLocalSearch % optional
GlobalUpdatePheromones

end

end ACO algorithm for combinatorial optimization problems

Fig. 4 Algorithmic skeleton for ACO algorithms applied to combinatorial optimiza-

tion problems. The application of a local search algorithm is a typical example of a

possible daemon action in ACO algorithms.

solution component cji . Note that, as said before, the pheromone values are
time-varying and therefore they are a function of the algorithm iteration t.
In what follows we will, however, omit the reference to the iteration counter
and write simply τij instead of τij(t).

As an example of this formalization, consider the TSP. In this case, the
solution components are the moves from one city to another one. This can
be formalized by associating one variable with each city. The domain of each
variable Xi has then n − 1 values, j = 1, . . . , n, j 6= i. As a result, with
each edge between a pair of cities is associated one pheromone value τij . An
instantiation of the decision variables corresponds to a feasible solution, if and
only if the set of edges corresponding to the values of the decision variables
forms a Hamiltonian cycle. (Note that for the TSP it is possible to guarantee
that ants generate feasible solutions.) The objective function f(·) computes
for each feasible solution the sum of the edge lengths, that is, the length of
the Hamiltonian cycle.

3.2 The metaheuristic

A general outline of the ACO metaheuristic for applications to static combi-
natorial optimization problems3 is given in Figure 4. After initializing param-
eters and pheromone trails, the main loop consists of three main steps. First,
m ants construct solutions to the problem instance under consideration, bi-
ased by the pheromone information and possibly by the available heuristic
information. Once the ants have completed their solutions, these may be im-

3 Static problems are those whose topology and costs do not change while they are being
solved. This is the case, for example, for the classic TSP, in which city locations and

intercity distances do not change during the algorithm’s run-time. In contrast, in dynamic
problems the topology and costs can change while solutions are built. An example of such
a problem is routing in telecommunications networks [52], in which traffic patterns change

all the time.
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proved in an optional local search phase. Finally, before the start of the next
iteration, the pheromone trails are adapted to reflect the search experience
of the ants. The main steps of the ACO metaheuristic are explained in more
detail in the following.

Initialization. At the start of the algorithm, parameters are set and
all pheromone variables are initialized to a value τ0, which is a parameter of
the algorithm.

ConstructAntSolutions. A set of m ants constructs solutions to the
problem instance being tackled. To do so, each ant starts with an ini-
tially empty solution sp = ∅. At each construction step, an ant extends
its current partial solution sp by choosing one feasible solution component

cji ∈ N (sp) ⊆ C and adding it to its current partial solution. N (sp) is the
set of solution components that may be added while maintaining feasibil-
ity and it is defined implicitly by the solution construction process that the
ants implement. If a partial solution cannot be extended while maintaining
feasibility, it depends on the particular construction mechanism whether the
solution construction is abandoned or an infeasible, complete solution is con-
structed. In the latter case, infeasible solutions may be penalized depending
on the degree of violation of the problem constraints.

The choice of the solution component to add is done probabilistically at
each construction step. Various ways for defining the probability distributions
have been considered. The most widely used rule is that of Ant System (AS)
[71]:

p(cji |sp) =
ταij · [η(cji )]

β∑
cli∈N(sp)

ταil · [η(cli)]
β
, ∀cji ∈ N(sp) (1)

where η(·) is a function that assigns a heuristic value to each feasible solu-
tion component cji ∈ N(sp), which is usually called the heuristic information.
Parameters α and β determine the relative influence of the pheromone trails
and the heuristic information and have the following influence on the algo-
rithm behavior. If α = 0, the selection probabilities are proportional to [ηij ]

β

and a solution component with a high heuristic value will more likely be se-
lected: this case corresponds to a stochastic greedy algorithm. If β = 0, only
pheromone amplification is at work.

ApplyLocalSearch. Once complete candidate solutions are obtained,
these may further be improved by applying local search algorithms. In fact,
for a wide range of combinatorial optimization problems, ACO algorithms
reach best performance when coupled with local search algorithms [72]. More
generally, local search is one example of what have been called daemon ac-
tions [63, 65]. These are used to implement problem specific or centralized
actions that cannot be performed by individual ants.

GlobalUpdatePheromones. The pheromone update is intended to make
solution components belonging to good solutions more desirable for the fol-
lowing iterations. There are essentially two mechanisms that are used to
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achieve this goal. The first is pheromone deposit, which increases the level of
the pheromone of solution components that are associated with a chosen set
Supd of good solutions. The goal is to make these solution components more
attractive for ants in the following iterations. The second is pheromone trail
evaporation, which is the mechanism that decreases over time the pheromone
deposited by previous ants. From a practical point of view, pheromone evap-
oration is needed to avoid a too rapid convergence of the algorithm towards
a sub-optimal region. It implements a useful form of forgetting, favoring the
exploration of new areas of the search space. The pheromone update is com-
monly implemented as:

τij = (1− ρ)τij +
∑

s∈Supd|cji∈s

g(s) (2)

where Supd is the set of solutions that are used to deposit pheromone,

ρ ∈ (0, 1] is a parameter called evaporation rate, g(·) : S 7→ IR+ is a function
such that f(s) < f(s′)⇒ g(s) ≥ g(s′). It determines the quality of a solution
and it is commonly called evaluation function.

ACO algorithms typically differ in the way pheromone update is imple-
mented: different specifications of how to determine Supd result in different
instantiations of update rule 2. Typically, Supd is a subset of Siter ∪ {sgb},
where Siter is the set of all solutions constructed in the current iteration of the
main loop and sgb is the best solution found since the start of the algorithm
(gb stands for global-best).

4 History

The first ACO algorithm to be proposed was Ant System (AS). AS was
applied to some rather small TSP instances with up to 75 cities. It was able
to reach the performance of other general-purpose heuristics like evolutionary
computation [61, 71]. Despite these initial encouraging results, AS did not
prove to be competitive with state-of-the-art algorithms specifically designed
for the TSP. Therefore, a substantial amount of research in ACO has focused
on ACO algorithms which show better performance than AS when applied,
for example, to the TSP. In the remainder of this section, we first briefly
introduce the biological metaphor on which AS and ACO are inspired, and
then we present a brief history of the early developments that have led from
the original AS to more performing ACO algorithms.
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4.1 Biological analogy

In many ant species, individual ants may deposit a pheromone (a chemical
that ants can smell) on the ground while walking [48, 89]. By depositing
pheromone, ants create a trail that is used, for example, to mark the path
from the nest to food sources and back. Foragers can sense the pheromone
trails and follow the path to food discovered by other ants. Several ant species
are capable of exploiting pheromone trails to determine the shortest among
the available paths leading to the food.

Deneubourg and colleagues [48, 89] used a double bridge connecting a
nest of ants and a food source to study pheromone trail laying and following
behavior in controlled experimental conditions.4 They ran a number of exper-
iments in which they varied the ratio between the length of the two branches
of the bridge. The most interesting of these experiments for our purposes is
the one in which one branch was longer than the other. In this experiment, at
the start the ants were left free to move between the nest and the food source
and the percentage of ants that chose one or the other of the two branches
was observed over time. The outcome was that, although in the initial phase
random oscillations could occur, in most experiments all the ants ended up
using the shorter branch.

This result can be explained as follows. When a trial starts there is no
pheromone on the two branches. Hence, the ants do not have a preference
and they select with the same probability either of the two branches. It can
be expected that, on average, half of the ants choose the short branch and the
other half the long branch, although stochastic oscillations may occasionally
favor one branch over the other. However, because one branch is shorter than
the other, the ants choosing the short branch are the first to reach the food
and to start their travel back to the nest.5 But then, when they must make a
decision between the short and the long branch, the higher level of pheromone
on the short branch biases their decision in its favor.6 Therefore, pheromone
starts to accumulate faster on the short branch, which will eventually be used
by the great majority of the ants.

It should be clear by now how real ants have inspired AS and later algo-
rithms: the double bridge was substituted by a graph, and pheromone trails
by artificial pheromone trails. Also, because we wanted artificial ants to solve
problems more complicated than those solved by real ants, we gave artificial
ants some extra capacities, like a memory (used to implement constraints
and to allow the ants to retrace their solutions without errors) and the ca-

4 The experiment described was originally executed using a laboratory colony of Argentine
ants (Iridomyrmex humilis). It is known that these ants deposit pheromone both when
leaving and when returning to the nest [89].
5 In the ACO literature, this is often called differential path length effect.
6 A process like this, in which a decision taken at time t increases the probability of making

the same decision at time T > t is said to be an autocatalytic process. Autocatalytic

processes exploit positive feedback.
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pacity for depositing a quantity of pheromone proportional to the quality of
the solution produced (a similar behavior is observed also in some real ants
species in which the quantity of pheromone deposited while returning to the
nest from a food source is proportional to the quality of the food source [10]).

In the next section we will see how, starting from AS, new algorithms have
been proposed that, although retaining some of the original biological inspi-
ration, are less and less biologically inspired and more and more motivated
by the need of making ACO algorithms better or at least competitive with
other state-of-the-art algorithms. Nevertheless, many aspects of the origi-
nal Ant System remain: the need for a colony, the role of autocatalysis, the
cooperative behavior mediated by artificial pheromone trails, the probabilis-
tic construction of solutions biased by artificial pheromone trails and local
heuristic information, the pheromone updating guided by solution quality,
and the evaporation of pheromone trail are present in all ACO algorithms.

4.2 Historical development

As said, AS was the first ACO algorithm to be proposed in the literature. In
fact, AS was originally a set of three algorithms called ant-cycle, ant-density,
and ant-quantity. These three algorithms were proposed in Dorigo’s doctoral
dissertation [61] and first appeared in a technical report [69, 70] that was
published a few years later in the IEEE Transactions on Systems, Man, and
Cybernetics [71]. Other early publications are [36, 37].

While in ant-density and ant-quantity the ants updated the pheromone di-
rectly after a move from a city to an adjacent one, in ant-cycle the pheromone
update was only done after all the ants had constructed the tours and the
amount of pheromone deposited by each ant was set to be a function of the
tour quality. Because ant-cycle performed better than the other two variants,
it was later called simply Ant System (and in fact, it is the algorithm that
we will present in the following subsection), while the other two algorithms
were no longer studied.

The major merit of AS, whose computational results were promising but
not competitive with other more established approaches, was to stimulate
a number of researchers, mostly in Europe, to develop extensions and im-
provements of its basic ideas so as to produce better performing, and often
state-of-the-art, algorithms.

4.2.1 The first ACO algorithm: Ant System and the TSP

The TSP is a paradigmatic NP-hard combinatorial optimization problem,
which has attracted an enormous amount of research effort [6, 103, 110].
The TSP is a very important problem also in the context of Ant Colony
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Optimization because it is the problem to which the original AS was first
applied [61, 69, 70, 71], and it has later often been used as a benchmark to
test new ideas and algorithmic variants.

In AS each ant is initially put on a randomly chosen city and has a mem-
ory, which stores the partial solution it has constructed so far (initially the
memory contains only the start city). Starting from its start city, an ant
iteratively moves from city to city, which corresponds to adding iteratively
solution components as explained in Section 3.2. When being at a city i, an
ant k chooses to go to an as yet unvisited city j with a probability given by
Equation (1). The heuristic information is given by ηij = 1/dij and N (sp) is
the set of cities that ant k has not yet visited.

The solution construction ends after each ant has completed a tour, that
is, after each ant has constructed a sequence of length n, corresponding to a
permutation of the city indices. Next, the pheromone trails are updated. In
AS this is done by using Equation (2), where we have

Supd = Siter (3)

and

g(s) = 1/f(s), (4)

where f(s) is the length of the tour s. Hence, the shorter the ant’s tour
is, the more pheromone is received by edges (solution components) belonging
to the tour.7 In general, edges which are used by many ants and which are
contained in shorter tours will receive more pheromone and therefore are also
more likely to be chosen in future iterations of the algorithm.

4.2.2 Ant System and its extensions

As previously stated, AS was not competitive with state-of-the-art algorithms
for the TSP. Researchers then started to extend it to try to improve its
performance.

A first improvement, called the elitist strategy, was introduced in [61, 71].
It consists of giving the best tour since the start of the algorithm (called sgb)
a strong additional weight. In practice, each time the pheromone trails are
updated by Equation (2), we have that Supd = Siter∪{sgb} while g(s), s 6= sgb,
is given by Equation (4) and g(sgb) = e/f(sgb), where e is a positive integer.
Note that this type of pheromone update is a first example of a daemon
action as described in Section 3.2.

7 Note that when applied to symmetric TSPs the edges are considered to be bidirectional

and edges (i, j) and (j, i) are both updated. This is different for the ATSP, where edges
are directed; in this case an ant crossing edge (i, j) will update only this edge and not edge
(j, i).
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Other improvements reported in the literature rank-based Ant System
(ASrank), MAX–MIN Ant System (MMAS), and Ant Colony System
(ACS). ASrank [32] is in a sense an extension of the elitist strategy: it sorts
the ants according to the lengths of the tours they generated and, after each
tour construction phase, only the (w−1) best ants and the global-best ant are
allowed to deposit pheromone. The rth best ant of the colony contributes to
the pheromone update with a weight given by max{0, w−r} while the global-
best tour reinforces the pheromone trails with weight w. This can easily be
implemented by an appropriate choice of Supd and g(s) in Equation (2).
MMAS [172, 175, 176] introduces upper and lower bounds to the values

of the pheromone trails, as well as a different initialization of their values.
In practice, the allowed range of the pheromone trail strength in MMAS
is limited to the interval [τmin, τmax], that is, τmin ≤ τij ≤ τmax ∀τij , and
the pheromone trails are initialized to the upper trail limit, which causes a
higher exploration at the start of the algorithm. In [172, 176] it is discussed
how to set the upper and lower pheromone trail limits. Pheromone updates
are performed using a strong elitist strategy: only the best solution gener-
ated is allowed to update pheromone trails. This can be the iteration-best
solution, that is, the best in the current iteration, or the global-best solu-
tion. The amount of pheromone deposited is then given by g(sb) = 1/f(sb),
where sb is either sib, the iteration-best solution, or sgb. In fact, the iteration-
best ant and the global-best ant can be used alternately in the pheromone
update. Computational results have shown that best results are obtained
when pheromone updates are performed using the global-best solution with
increasing frequency during the algorithm execution [172, 176]. As an ad-
ditional means for increasing the explorative behavior of MMAS (and of
ACO algorithms, in general), occasional pheromone trail reinitialization is
used. MMAS has been improved also by the addition of local search rou-
tines that take the solution generated by ants to their local optimum just
before the pheromone update.

ACS [66, 67, 83] improves over AS by increasing the importance of exploita-
tion of information collected by previous ants with respect to exploration of
the search space.8 This is achieved via two mechanisms. First, a strong elitist
strategy is used to update pheromone trails. Second, ants choose a solution
component (that is, the next city in the TSP case) using the so-called pseudo-
random proportional rule [67]: with probability q0, 0 ≤ q0 < 1, they move
to the city j for which the product between pheromone trail and heuristic
information is maximum, that is, j = arg maxcji∈N (sp)

{τij · ηβij}, while with

probability 1− q0 they operate a biased exploration in which the probability
pij(t) is the same as in AS (see Equation (1)). The value q0 is a parameter:

8 ACS was an offspring of Ant-Q [82], an algorithm intended to create a link between

reinforcement learning [179] and Ant Colony Optimization. Computational experiments
have shown that some aspects of Ant-Q, in particular the pheromone update rule, could

be strongly simplified without affecting performance. It is for this reason that Ant-Q was
abandoned in favor of the simpler and equally good ACS.
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ACO algorithm Main references Year TSP

Ant System [61, 69, 71] 1991 yes

Elitist AS [61, 69, 71] 1992 yes
Ant-Q [82] 1995 yes

Ant Colony System [66, 67, 83] 1996 yes

MMAS [174, 175, 176] 1996 yes
Rank-based AS [31, 32] 1997 yes

ANTS [124, 125] 1998 no

Best-Worst AS [38, 39] 2000 yes
Population-based ACO [92] 2002 yes

Beam-ACO [19, 20] 2004 no

Table 1 Overview of the main ACO algorithms for NP-hard problems that have been
proposed in the literature. Given are the ACO algorithm name, the main references where

these algorithms are described, the year they first have been published, and whether the

corresponding algorithms have been tested on the TSP.

when it is set to a value close to 1, as it is the case in most ACS applica-
tions, exploitation is favored over exploration. Obviously, when q0 = 0 the
probabilistic decision rule becomes the same as in AS.

Also, as inMMAS, only the best ant (the global-best or the iteration-best
ant) is allowed to add pheromone after each iteration of ACS; the former is
the most common choice in applications of ACS. The amount of pheromone
deposited is then given by g(sb) = ρ/f(sgb), where ρ is the pheromone evap-
oration.

Finally, ACS also differs from most ACO algorithms because ants update
the pheromone trails while building solutions (as in ant-quantity and in ant-
density). In practice, ACS ants “eat” some of the pheromone trail on the edges
they visit. This has the effect of decreasing the probability that the same path
is used by all ants (that is, it favors exploration, counterbalancing this way
the other two above-mentioned modifications that strongly favor exploitation
of the collected knowledge about the problem). Similarly to MMAS, ACS
also usually exploits local search to improve its performance.

We could continue by enumerating the modifications that have been pro-
posed in various other ACO algorithms that have been reported in the lit-
erature. Instead, we give an overview of the various developments on ACO
algorithms for NP-hard problems in Table 1. There we give for each of the
main ACO variants that have been proposed, the main references to these al-
gorithms, the year in which they have been proposed and whether they have
been tested on the TSP. In fact, (published) tests of most ACO variants have
been done on the TSP, which again confirms the central role of this problem
in ACO research.
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4.2.3 Applications to dynamic network routing problems

The application of ACO algorithms to dynamic problems, that is, problems
whose characteristics change while being solved, is among the main success
stories in ACO. The first such application [159] was concerned with routing
in circuit-switched networks (e.g., classical telephone networks). The pro-
posed algorithm, called ABC, was demonstrated on a simulated version of
the British Telecom network. The main merit of ABC was to stimulate the
interest of ACO researchers in dynamic problems. In fact, only rather lim-
ited comparisons were made between ABC and state-of-the-art algorithms,
so that it is not possible to judge on the quality of the results obtained.

A very successful application of ACO to dynamic problems is the AntNet
algorithm, proposed by Di Caro and Dorigo [50, 51, 52, 53] and discussed in
Section 5.3. AntNet was applied to routing in packet-switched networks (e.g.,
the Internet). It contains a number of innovations with respect to AS and it
has been shown experimentally to outperform a whole set of state-of-the-art
algorithms on numerous benchmark problems. Later, AntNet has also been
extended to routing problems in mobile ad-hoc networks, obtaining again
excellent performance [74].

4.2.4 Towards the ACO metaheuristic

Given the initial success of ACO algorithms in the applications to NP-hard
problems as well as to dynamic routing problems in networks, Dorigo and Di
Caro [63] made the synthesis effort that led to the definition of a first version
of the ACO metaheuristic (see also [63, 65, 72]). In other words, the ACO
metaheuristic was defined a posteriori with the goal of providing a common
characterization of a new class of algorithms and a reference framework for
the design of new instances of ACO algorithms.

The first version of the ACO metaheuristic was aimed at giving a compre-
hensive framework for ACO algorithm applications to “classical” NP-hard
COPs and to highly dynamic problems in network routing applications. As
such, this early version of the ACO metaheuristic left very large freedom to
the algorithm designer in the definition of the solution components, construc-
tion mechanism, pheromone update, and ants’ behavior. This more compre-
hensive variant of the ACO metaheuristic is presented in many publications
on this topic [63, 65, 72]. The version of the ACO metaheuristic described in
Section 3 is targeted towards the application of ACO algorithms to NP-hard
problems and therefore it is also more precise with respect to the definition of
solution components and solution construction procedure. It follows mainly
the versions presented in Chapter 3 of [72] or [23, 24].
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5 Applications

The versatility and the practical use of the ACO metaheuristic for the solu-
tion of combinatorial optimization problems is best illustrated via example
applications to a number of different problems.

The ACO application to the TSP has already been illustrated in the pre-
vious section. Here, we additionally discuss applications to two NP-hard
optimization problems, the single machine total weighted tardiness problem
(SMTWTP), and the set covering problem (SCP). We have chosen these
problems since they are in several aspects different from the TSP. Although
the SMTWTP is also a permutation problem, it differs from the TSP in the
interpretation of the permutations. In the SCP a solution is represented as a
subset of the available solution entities.

Applications of ACO to dynamic problems focus mainly on routing in
data networks. To give a flavor of these applications, as a third example, we
present the AntNet algorithm [52].

5.1 Example 1: The single machine total weighted
tardiness scheduling problem (SMTWTP)

In the SMTWTP n jobs have to be processed sequentially without interrup-
tion on a single machine. Each job has an associated processing time pj , a
weight wj , and a due date dj and all jobs are available for processing at time
zero. The tardiness of job j is defined as Tj = max{0, Cj − dj}, where Cj is
its completion time in the current job sequence. The goal in the SMTWTP
is to find a job sequence which minimizes the sum of the weighted tardiness
given by

∑n
i=1 wi · Ti.

For the ACO application to the SMTWTP, we can have one variable Xi

for each position i in the sequence and each variable has n associated values
j = 1, . . . , n. The solution components model the assignment of a job j to
position i in the sequence.

The SMTWTP was tackled in [47] using ACS (ACS-SMTWTP). In ACS-
SMTWTP, the positions of the sequence are filled in their canonical order,
that is, first position one, next position two, and so on, until position n. At
each construction step, an ant assigns a job to the current position using
the pseudo-random-proportional action choice rule, where the feasible neigh-
borhood of an ant is the list of yet unscheduled jobs. Pheromone trails are
therefore defined as follows: τij refers to the desirability of scheduling job
j at position i. This definition of the pheromone trails is, in fact, used in
many ACO applications to scheduling problems [9, 47, 136, 170]. Concerning
the heuristic information, the use of three priority rules allowed to define
three different types of heuristic information for the SMTWTP [47]. The in-
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vestigated priority rules were: (i) the earliest due date rule, which puts the
jobs in non-decreasing order of the due dates dj , (ii) the modified due date
rule which puts the jobs in non-decreasing order of the modified due dates
given by mddj = max{C + pj , dj} [9], where C is the sum of the processing
times of the already sequenced jobs, and (iii) the apparent urgency rule which
puts the jobs in non-decreasing order of the apparent urgency [144], given by
auj = (wj/pj) · exp(−(max{dj−Cj , 0})/kp), where k is a parameter. In each
case, the heuristic information was defined as ηij = 1/hj , where hj is either
dj , mddj , or auj , depending on the priority rule used.

The global and the local pheromone updates are carried out as in the stan-
dard ACS described in Section 4.2, where in the global pheromone update,
g(sgb) is the total weighted tardiness of the global best solution.

In [47], ACS-SMTWTP was combined with a powerful local search al-
gorithm. The final ACS algorithm was tested on a benchmark set available
from ORLIB at http://www.ms.ic.ac.uk/info.html. Within the compu-
tation time limits given,9 ACS reached a very good performance and could
find in each single run the optimal or best known solutions on all instances
of the benchmark set [47].

5.2 Example 2: The set covering problem (SCP)

In the set covering problem (SCP) we are given a finite set A = {a1, . . . , an}
of elements and a set B = {B1, . . . , Bl} of subsets, Bi ⊆ A, that covers A,

that is, we have
⋃l
i=1Bi = A. We say that a set Bi covers an element aj ,

if aj ∈ Bi. Each set Bi has an associated cost ci. The goal in the SCP is to
choose a subset C of the sets in B such that (i) every element of A is covered
and that (ii) C has minimum total cost, that is, the sum of the costs of the
subsets in C is minimal.

ACO can be applied in a very straightforward way to the SCP. A bi-
nary variable Xi is associated with every set Bi and a solution component
c1i indicates that Bi is selected for set C (that is, Xi = 1), while a solution
component c0i indicates it is not selected (that is, Xi = 0). Each solution com-
ponent c1i is associated with a pheromone trail τi and a heuristic information
ηi that indicate the learned and the heuristic desirability of choosing subset
Bi. (Note that no pheromone trails are associated with solution components
c0i .) Solutions can be constructed as follows. Each ant starts with an empty
solution and then adds at each step one subset until a cover is completed. A
solution component c1i is chosen with probability

9 The maximum time for the largest instances was 20 min on a 450MHz Pentium III PC

with 256 MB RAM. Programs were written in C++ and the PC was run under Red Hat

Linux 6.1.
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pi(sp) =
ταi · [ηi(sp)]β∑

l∈N (sp)
ταl · [ηl(sp)]β

, ∀c1i ∈ N (sp) (5)

where N (sp) consists of all subsets that cover at least one still uncovered
element of A. The heuristic information ηi(sp) can be chosen in several dif-
ferent ways. For example, a simple static information could be used, taking
into account only the subset cost: ηi = 1/ci. A more sophisticated approach
would be to consider the total number of elements di covered by a set Bi and
to set ηi = di/ci. These two ways of defining the heuristic information do not
depend on the partial solution. Typically, more accurate heuristics can be
developed taking into account the partial solution of an ant. In this case, it
can be defined as ηi(sp) = ei(sp)/ci, where ei(sp) is the so-called cover value,
that is, the number of additional elements covered when adding subset Bi
to the current partial solution sp. In other words, the heuristic information
measures the unit cost of covering one additional element.

An ant ends the solution construction when all the elements of A are
covered. In a post-optimization step, an ant can remove redundant subsets—
subsets that only cover elements that are already covered by other subsets in
the final solution—or apply some additional local search to improve solutions.
The pheromone update can be carried out in a standard way as described in
earlier sections.

When applying ACO to the SCP one difference with the previously pre-
sented applications is that the number of solution components in the ant’s
solutions may differ among the ants and, hence, the solution construction
only ends when all the ants have terminated their corresponding walks.

There have been a few applications of ACO algorithms to the SCP
[4, 42, 100, 112, 156]. The best results of these ACO algorithms are (still)
obtained by the variants tested by Lessing et al. [112]. In their article, they
compared the performance of a number of ACO algorithms with and without
the usage of a local search algorithm based on 3-flip neighborhoods [186].
The best performance results were obtained, as expected, when including lo-
cal search and for a large number of instances the computational results were
competitive with state-of-the-art algorithms for the SCP.

5.3 Example 3: AntNet for network routing
applications

Given a graph representing a telecommunications network, the problem
solved by AntNet is to find the minimum cost path between each pair of
vertices of the graph. It is important to note that, although finding a min-
imum cost path on a graph is an easy problem (it can be efficiently solved
by algorithms having polynomial worst case complexity [13]), it becomes
extremely difficult when the costs on the edges are time-varying stochastic



Ant Colony Optimization: Overview and Recent Advances 19

variables. This is the case of routing in packet-switched networks, the target
application for AntNet.

Here we briefly describe a simplified version of AntNet (the interested
reader should refer to [52], where the AntNet approach to routing is explained
and evaluated in detail). As stated earlier, in AntNet each ant searches for a
minimum cost path between a given pair of vertices of the network. To this
end, ants are launched from each network vertex towards randomly selected
destination vertices. Each ant has a source vertex s and a destination vertex
d, and moves from s to d hopping from one vertex to the next until vertex
d is reached. When ant k is in vertex i, it chooses the next vertex j to move
to according to a probabilistic decision rule which is a function of the ant’s
memory and of local pheromone and heuristic information (very much like
AS, for example).

Unlike AS, where pheromone trails are associated with edges, in AntNet
pheromone trails are associated with edge-destination pairs. That is, each
directed edge (i, j) has n − 1 associated trail values τijd ∈ [0, 1], where n is
the number of vertices in the graph associated with the routing problem. In
other words, there is one trail value τijd for each possible destination vertex
d an ant located in vertex i can have. In general, it will hold that τijd 6= τjid.
Each edge also has an associated heuristic value ηij ∈ [0, 1] independent of
the final destination. The heuristic values can be set for example to the values
ηij = 1 − qij/

∑
l∈Ni

qil, where qij is the length (in bits waiting to be sent)
of the queue of the link connecting vertex i with its neighbor j: links with a
shorter queue have a higher heuristic value.

Ants choose their way probabilistically, using as probability a functional
composition of the local pheromone trails τijd and heuristic values ηij . While
building the path to their destinations, ants move using the same link queues
as data packets and experience the same delays. Therefore, the time Tsd
elapsed while moving from the source vertex s to the destination vertex d
can be used as a measure of the quality of the path they built. The overall
quality of a path is evaluated by a heuristic function of the trip time Tsd
and of a local adaptive statistical model maintained in each vertex. In fact,
paths need to be evaluated relative to the network status because a trip
time T judged of low quality under low congestion conditions could be an
excellent one under high traffic load. Once the generic ant k has completed
a path, it deposits on the visited vertices an amount of pheromone ∆τk(t)
proportional to the quality of the path. To deposit pheromone after reaching
its destination vertex, the ant moves back to its source vertex along the same
path but backward and using high priority queues, to allow a fast propagation
of the collected information. The pheromone trail intensity of each edge lij
used by the ant while it was moving from s to d is increased as follows:
τijd(t)← τijd(t)+∆τk(t). After the pheromone trail on the visited edges has
been updated, the pheromone value of all the outgoing connections of the
same vertex i, relative to destination d, evaporates in such a way that the
pheromone values are normalized and can continue to be used as probabilities:
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τijd(t) ← τijd(t)/(1 + ∆τk(t)), ∀j ∈ Ni, where Ni is the set of neighbors of
vertex i.

AntNet was compared with many state-of-the-art algorithms on a large
set of benchmark problems under a variety of traffic conditions. It always
compared favorably with competing approaches and it was shown to be very
robust with respect to varying traffic conditions and parameter settings. More
details on the experimental results can be found in [52].

5.4 Applications of the ACO metaheuristic

ACO has raised a lot of interest in the scientific community. There are now
hundreds of successful implementations of the ACO metaheuristic applied
to a wide range of different combinatorial optimization problems. The vast
majority of these applications concern NP-hard combinatorial optimization
problems.

Many succesful ACO applications to NP-hard problems use local search
algorithms to improve the ants’ solutions. Another common feature of many
successful ACO applications is that they use one of the advanced ACO algo-
rithms such as ACS, MMAS, etc. In fact, AS has been abandoned by now
in favor of more performing variants. Finally, for problems for which ACO
algorithms reach very high performance, the available ACO algorithms are
fine-tuned to the problem under consideration. Apart from fine-tuning param-
eter settings, this typically involves the exploitation of problem knowledge,
for example, through the use of appropriate heuristic information, informed
choices for the construction mechanism, or the use of fine-tuned local search
algorithms. For a complete overview of ACO applications until the year 2004
we refer to [72]. Pointers to some early, successful applications of ACO algo-
rithms to challenging “static” optimization problems is also given in Table 2.

Another large class of applications of ACO algorithms is routing prob-
lems where some system properties such as the availability of links or the
cost of traversing links is time-varying. This is a common case in telecom-
munications networks. As said before, the first ACO applications have been
to telephone like networks [159], which are circuit-switched, and to packet
switched networks such as the Internet [52].

Ant-based algorithms have given rise to several other routing algorithms,
enhancing performance in a variety of wired network scenarios, see [49, 161]
for a survey. Later applications of these strategies involved the more challeng-
ing class of mobile ad hoc networks (MANETs). Unfortunately, the straight-
forward application of the ACO algorithms developed for wired networks has
proven unsuccessful due to the specific characteristics of MANETs (very high
dynamics, link asymmetry) [190]. An ACO algorithm which is competitive
with state-of-the-art routing algorithms for MANETs, while at the same time
offering better scalability, has been proposed by Ducatelle et al. [54, 74]. For
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Table 2 Some early applications of ACO algorithms. Applications are listed according to

problem types.

Problem type Problem name Authors Year References

Routing Traveling salesman Dorigo et al. 1991, 1996 [70, 71]

Dorigo & Gambardella 1997 [67]

Stützle & Hoos 1997, 2000 [175, 176]
TSP with time windows López Ibáñez et al. 2009 [118]

Sequential ordering Gambardella & Dorigo 2000 [84]
Vehicle routing Gambardella et al. 1999 [86]

Reimann et al. 2004 [154]

Favoretto et al. 2007 [79]
Fuellerer et al. 2009 [81]

Multicasting Hernández & Blum 2009 [101]

Assignment Quadratic assignment Maniezzo 1999 [125]
Stützle & Hoos 2000 [176]

Frequency assignment Maniezzo & Carbonaro 2000 [126]

Course timetabling Socha et al. 2002,2003 [166, 167]
Graph coloring Costa & Hertz 1997 [41]

Scheduling Project scheduling Merkle et al. 2002 [137]

Weighted tardiness den Besten et al. 2000 [47]
Merkle & Middendorf 2000 [135]

Flow shop Stützle 1997 [170]

Rajendran, Ziegler 2004 [152]
Open shop Blum 2005 [20]

Car sequencing Solnon 2008 [168]

Subset Set covering Lessing et al. 2004 [112]
l-cardinality trees Blum & Blesa 2005 [22]

Multiple knapsack Leguizamón & Michalewicz 1999 [111]

Maximum clique Solnon, Fenet 2006 [169]

Machine Classification rules Parpinelli et al. 2002 [151]

learning Martens et al. 2006 [127]

Otero et al. 2008 [148]
Bayesian networks Campos, Fernández-Luna 2002 [44, 45]

Neural networks Socha, Blum 2007 [163]

Bioinformatics Protein folding Shmygelska & Hoos 2005 [160]
Docking Korb et al. 2006 [106, 107]

DNA Sequencing Blum et al. 2008 [27]

Haplotype Inference Benedettini et al. 2008 [12]

an exhaustive list of references on ACO applications for dynamic network
routing problems we refer to [75, 78].

The above explicit applications are mainly early examples of successful
ACO applications. They have motivated other researchers to either consider
ACO-based algorithms for a wide range of different applications or to advance
some aspects of ACO algorithms on widely studied benchmark problems. As a
result, the number of ACO applications and, thus, also the number of articles
focusing on ACO has increased a lot, reaching a level of several hundreds of
articles listed annually in the Scopus database. In particular, Figure 5 gives
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Fig. 5 Development of the number of publications containing the terms “ant system” or

“ant colony system” or “ant colony optimization” in the title in the Scopus publication
database from the year 1996 to 2016.

the number of articles that are published annually based on a search of the
terms ant system, ant colony system, or ant colony optimization in article
titles. In particular, since the publication of the 1996 journal article by Dorigo
et al. [71], the number of articles published annually has increased strongly
until ca. the year 2010 and since then has maintained a high level of about
400 to 600 articles each year.

5.5 Main application principles

ACO algorithms have been applied to a large number of different combinato-
rial optimization problems. Based on this experience, one can identify some
basic issues that need to be adressed when attacking a new problem. These
issues are discussed in the following.

5.5.1 Definition of solution components and pheromone trails

Of crucial importance in ACO applications is the definition of the solution
components and of the pheromone model. Consider, for example, the differ-
ences in the definition of solution components in the TSP and the SMTWTP.
Although both problems represent solutions as permutations, the definition
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of solution components (and, hence, the interpretation of the pheromone
trails), is very different. In the TSP case, a solution component refers to
the direct successor relationship between elements, while in the SMTWTP
it refers to the allocation of a job to a specific position in the permutation.
This is intuitively due to the different role that permutations have in the two
problems. In the TSP, only the relative order of the solution components is
important and a permutation π = (1 2 . . . n) has the same tour length as
the permutation π′ = (n 1 2 . . . n− 1)—it represents the same tour. On the
contrary, in the SMTWTP (as well as in many other scheduling problems),
π and π′ would represent two different solutions with most probably very
different costs; in this case the position information is very important.

In some applications, the role of the pheromone trail definition has been in-
vestigated in more depth. Blum and Sampels compare different ways of defin-
ing the pheromone model for shop scheduling problems [25]. In [24], Blum and
Dorigo show that the choice of an inappropriate pheromone model can result
in an undesirable performance degradation over time. Fortunately, in many
applications the solution components used in high performing constructive al-
gorithms, together with the correct choice of the pheromone model, typically
result in high performing algorithms. However, finding the best pheromone
model is not always a straightforward task. Examples of some more complex
or unusual choices are the ACO application to the shortest common super-
sequence problem [140] or the application of ACO to protein–ligand docking
[107].

5.5.2 Balancing exploration and exploitation

Any effective metaheuristic algorithm has to achieve an appropriate balance
between the exploitation of the search experience gathered so far and the ex-
ploration of unvisited or relatively unexplored search space regions. In ACO
several ways exist for achieving such a balance, typically through the man-
agement of the pheromone trails. In fact, the pheromone trails induce a prob-
ability distribution over the search space and determine which parts of the
search space are effectively sampled, that is, in which part of the search space
the constructed solutions are located with higher frequency.

The best performing ACO algorithms typically use an elitist strategy in
which the best solutions found during the search contribute strongly to
pheromone trail updating. A stronger exploitation of the “learned” pheromone
trails can be achieved during solution construction by applying the pseudo-
random proportional rule of ACS, as explained in Section 4.2.2. These ex-
ploitation features are then typically combined with some means to ensure
enough search space exploration trying to avoid convergence of the ants to
a single path, corresponding to a situation of search stagnation. There are
several ways to try to avoid such stagnation situations. For example, in ACS
the ants use a local pheromone update rule during solution construction to
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make the path they have taken less desirable for subsequent ants and, thus,
to diversify the search. MMAS introduces an explicit lower limit on the
pheromone trail value so that a minimal level of exploration is always guar-
anteed. MMAS also uses a reinitialization of the pheromone trails, which
is a way of enforcing search space exploration. Finally, an important role in
the balance of exploration and exploitation is played by the parameters α
and β in Equation (1). Consider, for example, the influence of parameter α.
(Parameter β has an analogous influence on the exploitation of the heuristic
information). For α > 0, the larger the value of α the stronger the exploita-
tion of the search experience; for α = 0 the pheromone trails are not taken
into account at all; and for α < 0 the most probable choices taken by the ants
are those that are less desirable from the point of view of pheromone trails.
Hence, varying α could be used to shift from exploration to exploitation and
conversely.

5.5.3 ACO and local search

In many applications toNP-hard combinatorial optimization problems, ACO
algorithms perform best when coupled with local search algorithms. Local
search algorithms locally optimize the ants’ solutions and these locally opti-
mized solutions are used in the pheromone update.

The use of local search in ACO algorithms can be very interesting since
the two approaches are complementary. In fact, ACO algorithms perform
a rather coarse-grained search, and the solutions they produce can then be
locally fine-tuned by an adequate local search algorithm. On the other side,
generating appropriate initial solutions for local search algorithms is not an
easy task. In practice, ants probabilistically combine solution components
which are part of the best locally optimal solutions found so far and generate
new, promising initial solutions for the local search. Experimentally, it has
been found that such a combination of a probabilistic, adaptive construction
heuristic with local search can yield excellent results [28, 67, 175]. Particularly
good results are obtained when the integration of the local search in the ACO
algorithm is well designed. To reach highest performance when very powerful
local search algorithms are available or when problem instances are very large,
modifications of the ACO algorithm may also be beneficial in some cases as
shown by Gambardella et al. [85].

Despite the fact that the use of local search algorithms has been shown
to be crucial for achieving state-of-the-art performance in many ACO ap-
plications, it should be noted that ACO algorithms also show very good
performance when local search algorithms cannot be applied easily [52, 140].
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5.5.4 Heuristic information

The possibility of using heuristic information to direct the ants’ probabilistic
solution construction is important because it gives the possibility of exploiting
problem specific knowledge. This knowledge can be available a priori (this
is the most frequent situation in NP-hard problems) or at run-time (this is
the typical situation in dynamic problems).

For most NP-hard problems, the heuristic information η can be computed
at initialization time and then it remains the same throughout the whole
algorithm’s run. An example is the use, in the TSP applications, of the length
dij of the edge connecting cities i and j to define the heuristic information
ηij = 1/dij . However, the heuristic information may also depend on the
partial solution constructed so far and therefore be computed at each step of
an ant’s solution construction. This determines a higher computational cost
that may be compensated by the higher accuracy of the computed heuristic
values. For example, in the ACO applications to the SMTWTP and the SCP
the use of such “adaptive” heuristic information was found to be crucial for
reaching very high performance.

Finally, it should be noted that while the use of heuristic information is
rather important for a generic ACO algorithm, its importance is strongly
reduced if local search is used to improve solutions. This is due to the fact
that local search takes into account information about the cost to improve
solutions in a more direct way.

6 Developments

In this section, we review recent research trends in ACO. These include (i)
the application of ACO algorithms to non-standard problems; (ii) the devel-
opment of ACO algorithms that are hybridized with other metaheuristics or
techniques from mathematical programming; (iii) the parallel implementation
of ACO algorithms; and (iv) theoretical results on ACO algorithms.

6.1 Non-standard applications of ACO

We review here applications of ACO to problems that involve complicating
factors such as multiple objective functions, time-varying data and stochastic
information about objective values or constraints. In addition, we review some
recent applications of ACO to continuous optimization problems.
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6.1.1 Multi-objective optimization

Frequently, in real-world applications, various solutions are evaluated as a
function of multiple, often conflicting objectives. In simple cases, objectives
can be ordered with respect to their importance, or they can be combined
into a single-objective by using a weighted sum approach. An example of the
former approach is the application of a two-colony ACS algorithm for the
vehicle routing problem with time windows [86]; an example of the latter is
given by Doerner et al. [56] for a bi-objective transportation problem.

If a priori preferences or weights are not available, the usual option is
to approximate the set of Pareto-optimal solutions—a solution s is Pareto
optimal if no other solution has a better value than s for at least one objec-
tive and is not worse than s for the remaining objectives. The first general
ACO approach targeted to such problems is due to Iredi et al. [102], who
discussed various alternatives to apply ACO to multi-objective problems and
presented results with a few variants for a bi-objective scheduling problem.
Since then, several algorithmic studies have tested various alternative ap-
proaches. These possible approaches differ in whether they use one or several
pheromone matrices (one for each objective), one or several heuristic infor-
mation, how solutions are chosen for pheromone deposit, and whether one
or several colonies of ants are used. Several combinations of these possibil-
ities have been studied, for example, in [3, 120]. For a detailed overview of
available multi-objective ACO algorithms we refer to the review articles by
Garćıa-Mart́ınez [87], which also contains an experimental evaluation of some
proposed ACO approaches, and by Angus and Woodward [5].

A different approach to develop multi-objective ACO algorithms has been
proposed by López-Ibáñez and Stützle [121, 122]. They have analyzed care-
fully the various existing ACO approaches to tackle multi-objective prob-
lems and proposed a generalized multi-objective ACO (MOACO) structure
from which most of the then available approaches could be instantiated
but also new variants be generated. Exploring the resulting design space
of MOACO algorithms through a novel methodology for generating auto-
matically multi-objective optimizers, they could generate new MOACO algo-
rithms that clearly outperformed all previously proposed ACO algorithms for
multi-objective optimization [121]. Such framework may also be further ex-
tended to consider more recent ACO approaches to many-objective problems
such as those proposed by Falcón-Cardona and Coello Coello [77].

6.1.2 Dynamic versions of NP-hard problems

As said earlier, ACO algorithms have been applied with significant success to
dynamic problems in the area of network routing [52, 54]. ACO algorithms
have also been applied to dynamic versions of classical NP-hard problems.
Examples are the applications to dynamic versions of the TSP, where the
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distances between cities may change or where cities may appear or disap-
pear [76, 91, 92, 132]. More recent work in this area includes the explicit
usage of local search algorithms to improve the ACO performance on dy-
namic problems [131]. Applications of ACO algorithms to dynamic vehicle
routing problems are reported in [60, 133, 143], showing good results on both
academic instances and real-world instances. For a recent review of swarm
intelligence algorithms for dynamic optimization problems, including ACO,
we refer to [130].

6.1.3 Stochastic optimization problems

In many optimization problems data are not known exactly before generating
a solution. Rather, what is available is stochastic information on the objec-
tive function value(s), on the decision variable values, or on the constraint
boundaries due to uncertainty, noise, approximation or other factors. ACO
algorithms have been applied to a few stochastic optimization problems. The
first stochastic problem to which ACO was applied is the probabilistic TSP
(PTSP), where for each city the probability that it requires a visit is known
and the goal is to find an a priori tour of minimal expected length over all the
cities. The first to apply ACO to the PTSP were Bianchi et al. [15], who used
an adaptation of ACS. This algorithm was improved by Branke and Guntsch
and by Balaprakash et al. [8], resulting in a state-of-the-art algorithm for the
PTSP. Other applications of ACO include the vehicle routing problem with
uncertain demands [14], the vehicle routing problem with uncertain demands
and customers [7], and the selection of optimal screening policies for diabetic
retinopathy [30], which builds on the S-ACO algorithm by Gutjahr [95]. For
an overview of the application of metaheuristics, including ACO algorithms,
to stochastic combinatorial optimization problems we refer to [16].

6.1.4 Continuous optimization

Although ACO was proposed for combinatorial problems, researchers started
to adapt it to continuous optimization problems.10 The simplest approach
for applying ACO to continuous problems would be to discretize the real-
valued domain of the variables. This approach has been successfully followed
when applying ACO to the protein–ligand docking problem [107], where it
was combined with a local search that was, however, working on the con-
tinuous domain of the variables. ACO algorithms that handle continuous
parameters natively have been proposed [162]. An example is the ACOR al-

10 There have been several proposals of ant-inspired algorithms for continuous optimiza-

tion [17, 73, 142]. However, these differ strongly from the underlying ideas of ACO (for
example, they use direct communication among ants) and therefore cannot be considered

as algorithms falling into the framework of the ACO metaheuristic.
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gorithm by Socha and Dorigo [165], where the probability density functions
that are implicitly built by the pheromone model in classic ACO algorithms
are explicitly represented by Gaussian kernel functions. Other early refer-
ences on this subject are [162, 181, 183]. ACOR has been refined by Liao et
al. using an increasing population-size and integrating powerful local search
algorithms [113]; additional refinements are later reported by Kumar et al.
[109]. A unified framework for ACO applications to continuous optimization
is proposed by Liao et al. [114]. In their approach, many variants of ACOR

can be instantiated by choosing specific algorithm components and by setting
freely a large number of algorithm parameters. Using the help of an auto-
mated algorithm configuration tool called irace [119], the unified framework
proved to be able to generate continuous ACO algorithms superior to those
previously proposed in the literature. An extension of ACOR to multi-modal
optimization is presented by Yang et al. [187]. Finally, the ACOR approach
has also been extended to mixed-variable—continuous and discrete–problems
[115, 164].

6.2 Algorithmic developments

In the early years of ACO research, the focus was in developing ACO variants
with modified pheromone update rules or solution generation mechanisms to
improve the algorithmic performance. More recently, researchers have ex-
plored combinations of ACO with other algorithmic techniques. Here, we
review some of the most noteworthy developments.

6.2.1 Hybridizations of ACO with other metaheuristics

The most straightforward hybridization of ACO is with local improvement
heuristics, which are used to fine-tune the solutions constructed by the ants.
Often simple iterative improvement algorithms are used. However, in vari-
ous articles, other metaheuristic algorithms have been used as improvement
methods. One example is the use of tabu search to improve the ants’ solutions
for the quadratic assignment problem [176, 180]. Interestingly, other, more
sophisticated hybridizations have been proposed. A first one is to let the ants
start the solution construction not from scratch but from partial solutions
that are obtained either by removing solution components from an ant’s com-
plete solution [185, 189] or by taking partial solutions from other complete
solutions [1, 2, 182]. Two important advantages of starting the solution con-
struction from partial solutions are that (i) the solution construction process
is much faster and (ii) good parts of solutions may be exploited directly. Prob-
ably the most straightforward of these proposals is the iterated ants [185],
which uses ideas from the iterated greedy (IG) metaheuristic [158]. Once some
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initial solution has been generated, IG iterates over construction heuristics
by first removing solution components of a complete solution s, resulting in
a partial solution sp. From sp a complete solution is then rebuilt using some
construction mechanism. In the iterated ants algorithm, this mechanism is
simply the standard solution construction of the underlying ACO algorithm.
Computational results suggest that this idea is particularly useful if no effec-
tive local search is available.

6.2.2 Hybridizations of ACO with branch-and-bound techniques

The integration of tree search techniques into constructive algorithms is an
appealing possibility of hybridization since the probabilistic solution con-
struction of ants can be seen as the stochastic exploration of a search tree.
Particularly attractive are combinations of ACO with tree search techniques
from mathematical programming such as branch-and-bound. A first algo-
rithm is the approximate nondeterministic tree search (ANTS) algorithm by
Maniezzo [125]. The most important innovation of ANTS is the use of lower
bound estimates as the heuristic information for rating the attractiveness
of adding specific solution components. Additionally, lower bound compu-
tations allow the method to prune feasible extensions of partial solutions if
the estimated solution cost is larger than that of the best solution found so
far. An additional innovation of ANTS consists of computing an initial lower
bound to influence the order in which solution components are considered
in the solution construction. Computational results obtained with ANTS for
the quadratic assignment and the frequency assignment problems are very
promising [125, 126].

BeamACO, the combination of ACO algorithms with beam-search, was
proposed by Blum [20]. Beam-search is a derivative of branch-and-bound al-
gorithms that keeps at each iteration a set of at most fw nodes in a search
tree and expands each of them in at most bw directions according to a selec-
tion based on lower bounds [149]. At each extension step applied to the fw
current partial solutions, fw · bw new partial solutions are generated and the
fw best ones are kept (where best is rated with respect to a lower bound).
BeamACO takes from beam-search the parallel exploration of the search tree
and replaces the beam-search’s deterministic solution extension mechanism
by that of ACO. The results with BeamACO have been very good so far.
For example, it is a state-of-the-art algorithm for open shop scheduling [20],
for some variants of assembly line balancing [21], and for the TSP with time
windows [117].



30 Marco Dorigo and Thomas Stützle

6.2.3 Combinations of ACO with constraint and integer
programming techniques

For problems that are highly constrained and for which it is difficult to find
feasible solutions, an attractive possibility is to integrate constraint program-
ming techniques into ACO. A first proposal in this direction can be found in
[139]. In particular, the authors integrate a constraint propagation mechanism
into the solution construction of the ants to identify earlier in the construc-
tion process whether specific solutions extensions would lead to infeasible
solutions. Computational tests on a highly constrained scheduling problem
have shown the high potential of this approach. More recently, Khichane et
al. [105] have examined the integration of an ACO algorithm into a constraint
solver. Massen et al. [128] have considered the usage of ACO mechanisms in
a column generation approach to vehicle routing problems with black-box
feasibility constraints. The ACO-based approach is used to generate heuris-
tically candidate routes for the vehicles, which correspond to the columns
in the integer programming model; an “optimal” combination of the gener-
ated candidate routes is then found by an integer programming technique.
A further analysis of the parameters of this method is proposed by Massen
et al. [129], which resulted in some improved solutions to various benchmark
instances.

6.3 Parallel implementations

The very nature of ACO algorithms lends them to be parallelized in the data
or population domains. In particular, many parallel models used in other
population-based algorithms can be easily adapted to ACO. Most early par-
allelization strategies can be classified into fine-grained and coarse-grained
strategies. Characteristics of fine-grained parallelization are that very few
individuals are assigned to one single processor and that frequent informa-
tion exchange among the processors takes place. On the contrary, in coarse
grained approaches, larger subpopulations or even full populations are as-
signed to single processors and information exchange is rather rare. We refer,
for example, to [34] for an overview.

Fine-grained parallelization schemes have been investigated early when
multi-core CPUs and shared memory architectures were not available or not
common. The first fine-grained parallelization schemes were studied with par-
allel versions of AS for the TSP on the Connection Machine CM-2 by attribut-
ing a single processing unit to each ant [29]. Experimental results showed that
communication overhead can be a major problem, since ants ended up spend-
ing most of their time communicating the modifications they have made to
pheromone trails. Similar negative results have also been reported in [33, 153].
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As shown by several researches [29, 33, 123, 141, 171], coarse grained par-
allelization schemes are much more promising for ACO; such schemes are also
still relevant in the context of modern architectures. When applied to ACO,
coarse grained schemes run p subcolonies in parallel, where p is the number
of available processors. Even though independent runs of the p subcolonies
in parallel have shown to be effective [123, 171], often further improved per-
formance may be obtained by a well-designed information exchange among
the subcolonies. In this case a policy defines the kind of information to be ex-
changed, how migrants between the subcolonies are selected, to which colonies
the information is sent, when information is sent and what is to be done with
the received information. We refer to Middendorf et al. [141] or Twomey
et al. [184] for comprehensive studies on this subject. With the wide-spread
availability of multi-core CPUs and shared memory architectures, thread-
level parallelism is nowadays the option of choice to speed-up a single run
of an ACO algorithm. Nevertheless, if high solution quality is desired, the
above mentioned coarse-grained schemes can easily be implemented also on
such architectures. Recent work on parallelization of ACO algorithms evalu-
ates them on various platforms [90] and studies the exploitation of graphics
processor units to speed-up them up [35, 43, 46].

6.4 Theoretical results

The initial, experimentally driven research on ACO has established it as an
interesting algorithmic technique. After this initial phase, researchers have
started to obtain insights into fundamental properties of ACO algorithms.

The first question was whether an ACO algorithm, if given enough time,
will eventually find an optimal solution. This is an interesting question, be-
cause the pheromone update could prevent ACO algorithms from ever reach-
ing an optimum. The first convergence proofs were presented by Gutjahr
in [93]. He proved convergence with probability 1− ε to the optimal solution
of Graph-Based Ant System (GBAS), an ACO algorithm whose empirical
performance is unknown. Later, he proved convergence to any optimal solu-
tion [94] with probability one for two extended versions of GBAS. Interest-
ingly, convergence proofs for two of the top performing ACO algorithms in
practice, ACS and MMAS, could also be obtained [72, 173].

Unfortunately, these convergence proofs do not say anything about the
speed with which the algorithms converge to the optimal solution. A more de-
tailed analysis would therefore consider the expected runtime when applying
ACO algorithms to specific problems. In fact, a number of results have been
obtained in that direction. The first results can be found in [96] and since then
a number of additional results have been obtained [58, 59, 98, 99, 145, 146].
Due to the difficulty of the theoretical analysis, most of these results, how-
ever, have been obtained considering idealized, polynomially solvable prob-
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lems. While often these include simple pseudo-Boolean functions, in [147] a
theoretical runtime analysis is carried out for a basic combinatorial problem,
the minimum spanning tree problem, while Sudholt and Thyssen study the
shortest path problem [178]. More recently, Lissov and Witt have considered
the analysis of MMAS for dynamic shortest path problems, studying, in
particular, the impact of the population size on optimization performance as
a function of the type of dynamic variations [116]. For an early review of this
research direction, we refer to [97].

Other research in ACO theory has focused on establishing formal links be-
tween ACO and other techniques for learning and optimization. One example
relates ACO to the fields of optimal control and reinforcement learning [18],
while another examines the connections between ACO algorithms and prob-
abilistic learning algorithms such as the stochastic gradient ascent and the
cross-entropy method [138]. Zlochin et al. [191] have proposed a unifying
framework for so-called model-based search algorithms. Among other advan-
tages, this framework allows a better understanding of what are important
parts of an algorithm and it could lead to a better cross-fertilization among
algorithms.

While convergence proofs give insight into some mathematically relevant
properties of algorithms, they usually do not provide guidance to practitioners
for the implementation of efficient algorithms. More relevant for practical ap-
plications are research efforts aimed at a better understanding of the behavior
of ACO algorithms. Blum and Dorigo [24] have shown that ACO algorithms
in general suffer from first order deception in the same way as genetic algo-
rithms suffer from deception. They further introduced the concept of second
order deception, which occurs, for example, in situations where some solution
components receive updates from more solutions on average than others they
compete with [26]. The first to study the behavior of ACO algorithms by
analyzing the dynamics of the pheromone model were Merkle and Midden-
dorf [134]. For idealized permutation problems, they showed that the bias
introduced on decisions in the construction process (due to constraints on
the feasibility of solutions), leads to what they call a selection bias. When
applying ACO to the TSP, the solution construction can be seen as a prob-
abilistic version of the nearest neighbor heuristic. However, Kötzing et al.
show that different construction rules result in better performance at least
from a theoretical perspective [108].

A discussion of recent theoretical results on ACO including those on the
expected run-time analysis is given in tutorials on the theory of swarm in-
telligence algorithms [177]. A review paper on early advancements in ACO
theory is [62].
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7 Conclusions

Since the proposal of the first ACO algorithms in 1991, the field of ACO has
attracted a large number of researchers and nowadays a large number of re-
search results of both experimental and theoretical nature exist. By now ACO
is a well established metaheuristic. The importance of ACO is exemplified by
(i) the biannual conference ANTS (International conference on Ant Colony
Optimization and Swarm Intelligence; http://iridia.ulb.ac.be/~ants/),
where researchers meet to discuss the properties of ACO and other ant algo-
rithms, both theoretically and experimentally; (ii) the IEEE Swarm Intelli-
gence Symposium series; (iii) various conferences on metaheuristics and evolu-
tionary algorithms, where ACO is a central topic; and (iv) a number of journal
special issues [40, 57, 64, 68]. More information on ACO can also be found
on the Ant Colony Optimization web page: www.aco-metaheuristic.org.
Additionally, a moderated mailing list dedicated to the exchange of in-
formation related to ACO is accessible at: www.aco-metaheuristic.org/

mailing-list.html.
The majority of the currently published articles on ACO are clearly on its

application to computationally challenging problems. While most researches
here are on academic applications, it is noteworthy that companies have
started to use ACO algorithms for real-world applications [157]. For exam-
ple, the company AntOptima (www.antoptima.com) plays an important role
in promoting the real-world application of ACO. Furthermore, the company
Arcelor-Mittal uses ACO algorithms to solve several of the optimization prob-
lems arising in their production sites [55, 80]. In real-world applications,
features such as time-varying data, multiple objectives or the availability of
stochastic information about events or data are rather common. Interestingly,
applications of ACO to problems that show such characteristics are receiving
increased attention. In fact, we believe that ACO algorithms are particularly
useful when they are applied to such “ill-structured” problems for which it
is not clear how to apply local search, or to highly dynamic domains where
only local information is available.
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tors, Proceedings of the Genetic and Evolutionary Computation Conference, GECCO
2015, pages 33–40. ACM Press, New York, NY, 2015.

110. E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys. The Travelling
Salesman Problem. John Wiley & Sons, Chichester, UK, 1985.

111. G. Leguizamón and Z. Michalewicz. A new version of Ant System for subset problems.
In Proceedings of the 1999 Congress on Evolutionary Computation (CEC’99), pages

1459–1464. IEEE Press, Piscataway, NJ, 1999.
112. L. Lessing, I. Dumitrescu, and T. Stützle. A comparison between ACO algorithms
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