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Abstract

Industrial production scheduling problems are challenges that researchers
have been trying to solve for decades. Many practical scheduling problems
such as the hybrid flowshop are N P-hard. As a result, researchers resort
to metaheuristics to obtain e�ective and e�cient solutions. The traditional
design process of metaheuristics is mainly manual, often metaphor-based,
biased by previous experience and prone to producing overly tailored methods
that only work well on the tested problems and objectives. In this paper,
we use an Automatic Algorithm Design (AAD) methodology to eliminate
these limitations. AAD is capable of composing algorithms from components
with minimal human intervention. We test the proposed AAD for three
di�erent optimization objectives in the hybrid flowshop. Comprehensive com-
putational and statistical testing demonstrates that automatically designed
algorithms outperform specifically tailored state-of-the-art methods for the
tested objectives in most cases.
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1. Introduction

Many industries, in particular those related with manufacturing, face
scheduling decisions in the daily management of their operations. Broadly
speaking, scheduling entails the assignment of production tasks to manufac-
turing equipment in order to produce goods and services. Usually, equipment
and/or machines are limited. Proper scheduling involves sophisticated algo-
rithms that seek to maximize the utilization of these scarce resources in the
form of the optimization of one or more objectives. Academic scheduling is a
very well developed field with literally thousands of published papers since
the seminal work of Johnson (1954).

More formally, a scheduling problem consists of assigning and sequencing
n jobs to m machines, The simplest setting is a problem with a single machine.
When there are multiple machines,which might be disposed in series to form
what is referred to as a flowshop scheduling problem or in parallel, resulting
in a parallel machines scheduling problem. Most real production floors have a
combination of these two last problems in which there is a set of production
stages and at each stage there is more than one machine in parallel. Each
product to be manufactured goes from one stage to another. This problem
is known as the Hybrid Flowshop Scheduling (HFS) problem, which is well-
known to be N P-hard (Gupta, 1988) for the makespan objective. Based on
the scheduling literature and complexity hierarchies between objectives and
scheduling problems (Pinedo, 2016; Framiñan et al. 2014) we can assert that
the problems considered here are also N P-hard.

As a matter of fact, HFS problems are so di�cult that the best existing
exact approaches are only able to solve problems of a very small size (Ruiz
and Vázquez-Rodríguez, 2010). Consequently, researchers often resort to
approximate methods: heuristics and/or metaheuristics. While heuristics are
problem dependent, metaheuristics propose general mechanisms that are able
to deal with almost any optimization problem. When properly engineered,
metaheuristic algorithms often perform very well and o�er a good balance
between speed, solution quality, flexibility and robustness (Hoos and Stützle,
2004; Talbi, 2009).

All these benefits, however, come at a cost. Metaheuristics require careful
design, instantiation and parameter calibration or tuning. If these aspects are
neglected, most of the aforementioned benefits are lost. Consequently, the
literature of metaheuristics focuses a considerable amount of its e�orts on the
aspects of algorithm design, parameter calibration and related issues. This, in

2



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

turn, generates myriad problems that have been clearly acknowledged in the
literature. A particular problem is the overuse of so called nature-inspired
metaheuristics, duly discussed by Sörensen (2015). As a result, nowadays,
a portion of the metaheuristics community resorts to the development of
debatable metaheuristics in order to cope with the algorithm design process.
On the other hand, when dealing with the aspect of metaheuristic instantiation
and parameter calibration, authors often rely on trial-and-error procedures
and a sort of artisanship. It has to be noted that most of the excellent results
obtained for many di�erent optimization problems by the metaheuristics
community are due to the extensive experience and intuition of researchers.
However, it is preferable to rely more on sound scientific procedures for the
design and calibration of metaheuristic algorithms. Furthermore, many state-
of-the-art metaheuristics employ components or operators that are heavily
tailored to the specific problem in hand. While this is not bad per se, it goes
against the principle of generality present in metaheuristics.

As with most optimization problems, for HFS problems several highly
performing metaheuristic algorithms have been proposed to date. Similar
to other fields, these existing metaheuristics su�er from the aforementioned
shortcomings; nature-inspired and complex methodologies, problem specific
operators and trial-and-error algorithm instantiation, etc. Surprisingly, and
aAs will be highlighted in the next section, for the same HFS problem, a change
in the objective function studied results in wildly di�erent metaheuristic
techniques. As a result, the main benefit of metaheuristics, being the generality
and ease of instantiation, is lost along the way through a process of manual
design and fine tuning. There have been some attempts at automating, to
some extent, this instantiation. Some of these techniques have been referred
to as hyperheuristics (Cowling et al. 2001) Hyperheuristics often incorporate
some rules to help in the instantiation.

An alternative to manual design and calibration of metaheuristics are
Automatic Algorithm Configuration (AAC) techniques, one example being the
irace method (López-Ibáñez et al., 2016). AAC can speed up and automate
the process of instantiating and tuning the di�erent parameters of a given
metaheuristic template. However, AAC can be used not only to explore
the parameters of di�erent algorithm components but also to explore the
usage of di�erent alternative algorithm components, if alternative choices
are represented as parameters. If an AAC technique is combined with an
algorithmic framework that o�ers di�erent potential metaheuristic templates
and the components of the di�erent algorithms, one may generate as a result
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an algorithm consisting of a best combination of algorithmic components
while at the same time fine-tuning all numerical parameters. We refer to such
a combination of AAC techniques with algorithm frameworks as Automatic
Algorithm Design (AAD). Some authors see AAD as a form of advanced
hyperheuristics (Burke et al., 2013) as hyperheuristics might range from
simple methods to choose heuristics or rules, to any algorithm that works
with rules or heuristics and decides which one (or combination of them) to
use. In a nutshell, hyperheuristics are very broad and can include anything
from machine learning to random or weighted selection of rules.

HFS problems are very common in manufacturing industries. However,
and as will be pointed out in the following sections, rReal scheduling deals
with di�erent objective functions. At the same time, constantly changing
environment and markets result in varying problems within the same company
over a relatively short period of time. Therefore, highly problem-specific and
tailored metaheuristics are rarely used in practice. Instead, general methods
and an automated way of tuning and calibrating metaheuristics is a much
more promising approach.

The objective of this paper is to propose and exploit an AAD methodology
to automatically obtain highly performing algorithms for HFS problems with
varying optimization objectives, that is, without any manual tuning and
knowledge that is applicable to only a single problem variant. Of course, the
important question here is how these automatically generated algorithms will
compare to manually tuned methods. An important result and contribution
of this paper will be precisely to show that automatically generated algo-
rithms are, with some exceptions, state-of-the-art for the di�erent objectives
considered.

The remainder of this paper is organized as follows: Section 2 formally
describes the HFS problem and summarizes the related literature. Section 3
details the current process and issues in traditional algorithm design and
calibration. Section 4 describes the proposed Automatic Algorithm Design
methodology. Section 5 contains the details and the results of the extensive
computational experimentation carried out in this paper. Finally, Section 6
concludes the paper and proposes future lines of research.

2. Problem description and literature review

In the regular flowshop problem one has to sequence a set N of n jobs
each one visiting all the m machines from the set of machines M . Machines
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are disposed in series and each job is processed first on machine 1, then on
machine 2 and so on until machine m. Each job j, j = 1, 2, . . . , n needs a given
amount of time to be processed at each machine i, i = 1, 2, . . . , m. This time
is referred to as processing time and denoted as pij. Di�erent from flowshops,
in parallel machine scheduling problems, the di�erent machines are disposed
in parallel. Therefore, jobs have to be processed by one out of the m parallel
machines. HFS problems were initially studied about 20 years later than the
first papers on regular flowshops (Gupta, J. N. D. and Sta�ord, 2006) and
combine flowshops and parallel machines. Hence, in an HFS, instead of m
machines in series, there are m stages, where each stage i has mi Ø 1 parallel
machines were ÷i such that mi > 1 (Framiñan et al., 2014).

The most commonly studied objective in the HFS literature is makespan
minimization (Ruiz and Vázquez-Rodríguez, 2010). If we denote as Cj the
completion time of job j at stage m (i.e., when the job is completed and ready
for shipment), we have that makespan or Cmax = max{C1, C2, . . . , Cn}. As
already mentioned, the HFS with Cmax objective is strongly N P-hard, which
is the case even for the simplest possible setting where m = 2, m1 = 1 and
m2 = 2 (Gupta, 1988). Up to 60% of the existing work on the HFS revolves
around the Cmax objective (Ruiz and Vázquez-Rodríguez, 2010). Yet, this is
far from being the most realistic criterion for industrial companies. Another,
much less studied problem is the so called total flowtime or TFT = qn

j=1 Cj.
Under this TFT objective, work-in-progress is adequately dealt with, which
means less on-going inventory inside the shop. Note that we do not believe
that makespan is not important but rather we stress that other more realistic
objectives should not be overlooked. One such example of a more realistic
objective is the total earliness and tardiness minimization. Jobs have to be
delivered by a certain due date, referred to as dj. Jobs delivered beyond
their due dates are said to be tardy as measured by the tardiness function
Tj = max{0, Cj ≠ dj}. Similarly, jobs completed before their due date are
early by Ej = max{0, dj ≠ Cj}. Ideally, jobs should be completed as close as
possible to their due dates, avoiding tardiness, which translates into customer
dissatisfaction, or earliness, which increases inventory holding costs. Adding
weights to earliness and tardiness results in total weighted earliness and
tardiness minimization or TWET = qn

j=1
1
w

Õ
jEj + wjTj

2
where w

Õ
j and wj

denote the early and tardy weights of job j respectively. According to Ruiz
and Vázquez-Rodríguez (2010), less than 1% of the existing literature on
HFS studies this objective and most of the time weights are not considered.
Furthermore, due dates are often periods of several hours (for example, serving
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a job at a given day, but throughout the day). Recently, Pan et al. (2017)
extended this concept to due date windows where a job is neither tardy nor
early if completed within a time window {d≠

j , d+
j }. This significantly more

realistic function is denoted as TWET dw = qn
j=1

1
w

Õ
jE

dw
j + wjT dw

j

2
where

Edw
j = max{0, d≠

j ≠ Cj} and T dw
j = max{0, Cj ≠ d+

j }. Using the three field
–/—/“ notation of Graham et al. (1979) with the extension of Vignier et al.
(1999), we study the hybrid flowshop with identical parallel machines denoted
as HFm, ((PM(k)))m

k=1//“, where “ = Cmax, TFT, TWET dw.
The HFS has been surveyed periodically and we can refer the reader to the

some of the previous and extensive reviews of Vignier et al. (1999); Ruiz and
Vázquez-Rodríguez (2010);Linn and Zhang (1999); Wang (2005); Ribas et al.
(2010). It has to be noted though, that according to these reviews, almost a
third of the existing research deals with the specific case of two stages only. In
what follows, we mostly review papers on the regular HFS without additional
constraints and the aforementioned objectives.

Khalouli et al. (2010) proposed an ant colony optimization algorithm
(ACO) to tackle the HFS with weighted earliness tardiness. The HFS with
multiprocessor tasks (HFSMT) (a version where tasks may need more than
one machine to be processed) is studied by Engin et al. (2011) who designed
a genetic algorithm, and Singh and Mahapatra (2012) who implemented
a particle swarm optimization algorithm (PSO); both papers studied the
makespan objective. Another PSO for the regular HFS is that ofA particle
swarm optimization algorithm (PSO) was implemented for the HFS by Liao
et al. (2012) also for the makespan objective. Most authors studying makespan
in the HFS literature use the set of small instances by Carlier and Néron
(2000). Liao et al. (2012) added 10 new instances of slightly larger sizes to this
benchmark. The same HFS problem was studied by Marichelvam et al. (2013)
who proposed a bat algorithm (BA). Wang et al. (2013) designed an estimation
of distribution algorithm (EDA). A shu�ed frog-leaping algorithm (SFLA)
was implemented by Xu et al. (2013). Chung and Liao (2013) introduced an
immunoglobulin-based artificial immune system algorithm (IAIS). Boøejko
et al. (2013) designed a very complex parallel tabu search (PTS) employing
SSE2 (Streaming Single Instruction, Multiple Data Extensions 2) processor
instruction sets.

Marichelvam et al. (2014a) proposed a discrete firefly algorithm (DFA)
for a multi-objective version of the HFS with makespan and mean flowtime.
A migrating birds optimization algorithm (MBO) was designed by Pan and
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Dong (2014) for the HFS with total flowtime minimization, and a complete
comparison was shown which also included some promising algorithms for
similar problems. The authors claimed the MBO to be state-of-the-art for
this problem.

For makespan minimization in the HFS, Li et al. (2014) implemented a
hybrid variable neighborhood search (HVNS) and Marichelvam et al. (2014b)
introduced a cuckoo search (CS). Two di�erent disctrete artificial bee colony
(DABC) algorithms were proposed for the HFS with makespan criterion. The
former was presented by Pan et al. (2014) and the latter by Cui and Gu
(2015); both claimed to be state-of-the-art for this problem. In particular,
the DABC of Pan et al. (2014) includes functions and operators that are
specifically tailored for the makespan objective. The result is a very e�cient
and e�ective algorithm but that is only applicable to this objective.

As mentioned, Pan et al. (2017) presented, to the best of our knowledge,
the first and only work for the total earliness and tardiness with due date
windows for the HFS. The authors proposed an iterated local search (ILS)
and iterated greedy (IG) for the problem and carried out a comparison with
various algorithms. The ILS based method, referred to as ILST, resulted in
being state-of-the-art for the problem in their reported experiments.

As can be seen, there is a proliferation in the HFS literature of either
nature-inspired methods, criticized by Sörensen (2015), but also of heavily
tailored methods. We advocate the usage of general metaheuristics, which, as
mentioned, can be easily adapted to di�erent problems in practice.

3. Design and tuning of metaheuristics

When solving an optimization problem with metaheuristics, at least two
tasks must be carried out: First, the metaheuristic algorithm must be created,
usually as an instantiation of a given metaheuristic template. Second, once
the method has been created, it has to be calibrated and/or tuned in order
to set its operators and parameters. We now detail these two stages in the
metaheuristic creation process:

3.1. Algorithm Design
Algorithm Design relies on expertise and knowledge of both metaheuristics

and the specific problem to be solved. Usually, the first decision is which
algorithm template to apply. For example, academic researchers often decide
first that they want to develop a genetic algorithm, or a tabu search or any

7
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other template for the studied problem. This is already a potential shortcoming
in traditional algorithm design as the choice of template to instantiate usually
depends on previous experience and preferences rather than actual data.
Rarely do authors try radically di�erent algorithm templates in academic
research when developing and designing metaheuristics.

Furthermore, there are countless known templates of metaheuristic algo-
rithms that can be instantiated for almost any problem. Some well known
examples are: simulated annealing, tabu search, genetic algorithms, iterated
greedy, ant colony optimization and many more. Actually, and as pointed
out by Sörensen (2015), nowadays one could say that there are far too many
templates. An interesting satirical reckoning of the ever increasing list of meta-
heuristics is available at http://conclave.cs.tsukuba.ac.jp/research/
bestiary/.

Once the template has been selected, a very wide choice of decisions opens
up. One has to decide on the solution representation, mutation operators,
neighborhoods, the starting solution, acceptance criteria and a number of other
operators and options. Basically, the possible combinations are enormous.
Most regrettably, it is fairly common in the academic research to find that
the quantity of tests that are performed at this stage are usually limited.
Statements such as “in some preliminary experiments” are very common in
practice. Most authors employ a small set of instances at this design stage and
make decisions based more on trial and error than on actual sound science. It
has to be noted that there are some excellent works where authors employ
statistically sound methodologies at the design stage, most notably the Design
of Experiments (DOE) approach (Montgomery, 2012). However, even in these
cases, the number of tested combinations is limited due to the nature of
the DOE itself. Let us remark that there are other modern approaches like
Algorithm Selection Problems like Boøejko et al. (2018) where the authors rely
on the statistical analysis of the performance of di�erent algorithms to decide
the best method for a specific instance based on instance characteristics.

Despite the potential aforementioned shortcomings, the current state-of-
the-art in metaheuristics is extremely good. The reason is that new research
is built upon previous work which has already made inroads into improving
solutions Therefore, the accumulated body of research on a particular problem
yields very e�ective results.

8

http://conclave.cs.tsukuba.ac.jp/research/bestiary/
http://conclave.cs.tsukuba.ac.jp/research/bestiary/


 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

3.2. Algorithm Calibration
Most metaheuristic operators rely on a set of often numerical parameters.

For example, in a Genetic Algorithm template, the mutation probability has
to be set. Too high a mutation probability results in too random a search,
while too small a mutation probability results in premature convergence. As a
consequence, the performance of a metaheuristic often depends on a suitable
choice of values for the di�erent operators. Some metaheuristic templates
can easily have 10+ parameters. Another way of looking at parameters is
that di�erent values allow metaheuristics to adapt to di�erent problems or
instances within a given problem (Talbi, 2009).

Choosing the best set of values for the parameters is a daunting task.
Even though there is a large body of literature dealing with metaheuristic
calibration (Bartz-Beielstein et al., 2010), a common practice is to set param-
eters manually using trial-and-error techniques. DOE is a powerful statistical
procedure employed by some authors for testing, in a controlled way, a set of
parameters that might a�ect a response variable. DOE frequently relies on the
Analysis of Variance (ANOVA) technique to assess the statistical significance
of a given parameter. A very powerful trait in DOE+ANOVA is that it is
possible to study how di�erent factors interact. Despite these advantages,
DOE+ANOVA does not come without significant drawbacks: First, the num-
ber of treatments (experimental units) usually grows exponentially with the
number of factors and levels studied within each factor. Second, some a priori
knowledge is needed in order to reduce the number of experimental units.
Third, DOE+ANOVA is far from automatic, requiring several iterations of
statistical analysis and plot interpretation, etc. In a nutshell, DOE+ANOVA
is far better than manual methods but it is fairly limited in the number of
factors that one can study and it is time consuming and prone to error.

Alternatives to either manual or DOE+ANOVA calibration have been
proposed in the literature in the form of Automatic Algorithm Configuration
(AAC) methodologies. AACs are computational methods that are used to
configure metaheuristics or other algorithms, with the objective of obtaining
parameter settings that optimize performance. Some software packages ca-
pable of doing AAC have been proposed: irace (López-Ibáñez et al., 2016),
ParamILS (Hutter et al., 2009), or SMAC (Hutter et al., 2011). Contrary to
DOE+ANOVA, AAC is usually simpler, less a priori knowledge is needed
and the amount of computation might be reduced. The cost of using AAC is
loosing control of the calibration and the capability of studying interactions
(as a general rule). Finally, unlike ANOVA, AAC does not study all parame-
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ter/value combinations and the results generated are an approximation. This
is not to say that ANOVA is “exact” in the sense that ANOVA only yields
the best tested combination of parameter values, not the optimal one.

4. Automatic algorithm design for hybrid flowshop

4.1. Automated design of metaheuristic algorithms
The advent of AAC techniques also comes with a rather wide interpretation

of parameters. In fact, AAC techniques can typically deal with categorical
parameters, which can represent alternative choices for algorithm components
or operators, and numerical, i.e., integer or real parameters. Thus, when
AAC techniques are combined with appropriately designed, configurable
metaheuristic frameworks, we may actually speak of an Automatic Algorithm
Design (AAD). In a sense, AAD combines the two phases of algorithm design
and calibration, making it automatic in the sense that it requires minimal user
intervention. It can be applied without statistical knowledge, as the statistical
tests and procedures are often carried out within the AAC tool used. However,
AAC is mandatory for a realistic AAD as the number of components and
parameters is massive to be dealt with DOE+ANOVA. One requisite of
AAD is the isolation of the di�erent algorithm components into individual
entities. These entities must be able to work and interact with others without
interdependencies among them, i.e., they must be an abstraction. The task
of the AAD methodology is then to put together the best combination of
components so as to create a new algorithm which performs well for the
studied problem.

Several papers have already explored the possibility of using AAD method-
ologies to obtain highly-performing algorithms. KhudaBukhsh et al. (2016)
worked on an automated method to build stochastic local search solvers from
algorithmic components for the propositional satisfiability problem (SAT).
López-Ibáñez and Stützle (2012) presented a framework for the automatic
algorithm configuration of multiobjective ant colony optimization methods.
Burke et al. (2012) approached the bin packing problem using grammatical
evolution with local search heuristics. In Marmion et al. (2013) AAD was used
to develop a hybrid stochastic local search procedure for the permutation
flowshop problem with the weighted tardiness objective. Franzin and Stützle
(2016) worked on the design of automatically generated simulated annealing
algorithms for the quadratic assignment problem. The general consensus in
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these papers is that, most of the time, the automatically built procedures are
competitive with the manually constructed ones.

Previous work on AAD can be classified according to two main approaches:
top-down and bottom-up (López-Ibáñez et al., 2017; Stützle and López-Ibáñez,
2019). In the top-down approach, there is usually a predefined algorithm
template where di�erent algorithms are obtained by alternative choices for a
priori defined abstract procedures that are needed to instantiate the algorithm
template. Therefore, the top-down approach induces a bias towards a type of
algorithm as the template is given. Among the above mentioned examples,
KhudaBukhsh et al. (2016); López-Ibáñez and Stützle (2012); Franzin and
Stützle (2016) follow this approach. In the bottom-up approach, there is a set
of rules to enforce the possible combinations without a discernible template.
As a result, many more combinations are possible, including those resulting
in methods never studied before. The bottom-up approach is more flexible
and is less influenced by potential designer bias. An example for the latter is
Marmion et al. (2013).

In both approaches, a part of the AAD is referred to as flexible algorithm
framework in which the functions and parts of the algorithms are abstracted
into a set of independent entities. By doing so, AAD methods are able to
combine entities in multiple ways, potentially generating di�erent algorithms.
AAD automatically conceives specific algorithms as the sum of many entities
or components put together in a specific order. However, not any order is
feasible as the order matters. Thus we have another requisite, a set of rules to
ensure feasibility and correction in the algorithms. In top-down approaches,
correctness is typically ensured by the static, already ordered algorithm
template. In bottom-up approaches, these rules are enforced often through
grammars that guarantee that the di�erent entities interact with syntactic and
semantic correctness. Finally, since the goal of AAD is not to generate just any
algorithm, but a very e�ective one, we require a system that enables a search
for the good algorithms. This final part is carried out by the AAC technique.
In the following sections we detail all the parts of the AAD framework that
we have developed.

4.2. Automated generation of hybrid metaheuristics
Based on the initial ideas of a bottom-up approach to the design of

hybrid metaheuristic algorithms, we have developed a flexible algorithm
framework to support the automated design process. In fact, Marmion et al.
(2013) use a set of entities that exploit many elements that were available
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in the ParadisEO framework (Cahon et al., 2004). However, this led to a
code that is rather complex to use. In our work, we employ a C++ flexible
algorithm framework specifically designed for AAD, developed at the IRIDIA
laboratory of the Université Libre de Bruxelles and refereed to as EMILI
(short for Easily Modifiable Iterated Local Search Implementation). The
EMILI framework puts a strong focus on the concepts of modularity and
abstraction in modern software engineering , using these at a level appropriate
to support automated algorithm design. In part, this translates into a re-
use of components and supports problem-independent algorithm design. For
example, an e�cient local search operator usually includes many di�erent
components, such as a representation of the solution, a neighborhood, a way
of calculating incremental moves, a pivoting rule and a termination criterion,
etc. Most authors will add into e�cient local search procedures all these
components in an integrated way so as to speed up the search. This creates
interdependencies between the components as, for example, the incremental
move calculation depends on the problem constraints, objective function
or neighborhood, etc. Hence, EMILI o�ers such concepts in generic ways
and the algorithms we design, in the large part, use only generic algorithm
components. However, if desired, in EMILI problem-specific components may
also be integrated, as is done with some constructive heuristics as explained
in Section 4.3. Overall this gives the EMILI framework a significant flexibility.

On the metaheuristic side, EMILI is based on a generalized view of hybrid
metaheuristics as proposed by Marmion et al. (2013); López-Ibáñez et al.
(2017). In essence, the metaheuristic part is based on a generalized template
from which many di�erent metaheuristics can be instantiated that manipulate
a single incumbent solution. These metaheuristics comprise methods such as
iterated or variable neighborhood search, iterated greedy or Tabu Search. The
metaheuristics are instantiated starting from an iterated local search (ILS)
template (Lourenço et al., 2010), as shown in Algorithm 1 by appropriate
choices of alternative algorithm components. For example, by appropriate
instantiation of the initial solution, perturbation, local search and acceptance
criterion an ILS algorithm is obtained. For specific choices of the perturbation
(e.g. a random move in some neighborhood), no application of a further local
search (that is, setting SLS in line 6 to none) and setting the acceptance
criterion to the Metropolis condition, a simulated annealing algorithm may be
obtained. In addition, hybrids between the metaheuristics can be instantiated
by allowing SLS to be instantiated as the main ILS loop (lines 4 to 8), leading
to a possible recursive combination of metaheuristics. More details on this
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Algorithm 1 High-level algorithmic outline of an ILS template.
1: Output The best solution found fiú,
2: fi := Init();
3: fi := SLS(fi);
4: while ! termination criterion do

5: fiÕ := Perturbation(fi);
6: fiÕ := SLS(fiÕ);
7: fi := AcceptanceCriterion(fi, fiÕ);
8: end while

9: Return the best solution found in the search process

Algorithm 2 Snapshot of the grammar rules for deriving an iterative improvement
algorithm. The derivation starts by applying the first rule for <iterative_imp>

and replacing the non-terminals (delimited by angular parentheses) on the right
side with the respective rules. The rule for deriving the initial solution (indicated
by non-terminal symbol < initial_sol > is defined in Algorithm 3 below.
<iterative_imp> ::= < initial_sol >, < pivoting_rule >, < termination >, <

neighborhood >

<intial_sol> ::= random | slack | nwslack | nrz | nrz2 | mneh

<termination> ::= locmin | maxstep | soater

<pivoting_rule> ::= first improvement | best improvement

<neighborhood> ::= exchange | transpose | insert | finsert | binsert | tinsert

are explained in Marmion et al. (2013); López-Ibáñez et al. (2017); Stützle
and López-Ibáñez (2019).

The possible ways of constructing an algorithm are represented by a
grammar, which ensures correctness of the algorithm instantiations. In a
nutshell, the grammar dictates the possible ways of constructing a correct
algorithm from algorithmic components. Consider the example of creating a
generic iterative improvement algorithm. For such an iterated improvement
algorithm, we need to specify a neighborhood, a pivoting rule that determines
which neighbored solution replaces the current one and a termination criterion.
This rule and possible alternatives are encoded in the snippet of the grammar
given in Algorithm 2.

Instead of deriving possible algorithm compositions directly from the gram-
mar, we transform the grammar into a parametric representation following
Mascia et al. (2014). As our grammar includes a recursive rule, to enable this
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transformation we cut the recursion at the third level. A main advantage of
doing a translation of the grammar representation into a parametric one is to
allow the exploitation of standard AAC techniques (Mascia et al., 2014). In
particular, we use as an AAC tool irace López-Ibáñez et al. (2016), which is
available at http://iridia.ulb.ac.be/irace/.

irace generates possible algorithms, to which we refer as “candidates”
by sampling values for each of the relevant parameters. At each iteration,
irace generates a set of candidates and performs a “race” in which poor
candidates are discarded in favor of the best. During one race, irace iteratively
executes candidate algorithm configurations on problem instances one by
one. If at some point during the race some candidate configurations are
identified as performing inferiorly to others, they are dropped from the race.
The core principle of each race holds some similarities with the principles of
horse race algorithm comparisons or more modern judgemental systems for
programming competitions (for instance OPTIL.io by Wasik et al., 2016). A
race stops once a maximum number of experiments is reached or the number
of surviving candidates drops below a pre-specified bound. Before starting
a new race, irace biases the sampling mechanism for generating parameter
values towards the best configurations, thus, intensifying the search in the
parameter space. Through the combination of irace with EMILI we obtain
our proposed automatic algorithm design approach. Using possible parameter
values and training instances as the input, the generation and identification
of highly-performing algorithms is fully automated.

4.3. EMILI components
One key ingredient in EMILI is the set of algorithmic components it can

choose from. In the following, we describe at a high-level the main algorithmic
components we have considered for this work. In the set of components,
we have focused on generic components that are freely composable with
others and we have renounced problem-specific components. Nevertheless, our
subsequently presented computational results show that, even with generic
choices, very good is already demonstrable.

Metaheuristics. From our framework, we can directly instantiate the
metaheuristics Iterated Local Search, Iterated Greedy, Variable Neighborhood
Descent and Tabu Search by appropriate choices for the components defined
above as well as combinations of these metaheuristics.

Initial solution generation. As possiblities of how to generate initial solu-
tions we implemented the following: A random solution (indicated by random),
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the slack heuristic (slack), the slack heuristic with weights that is used as an
initial sequence for an insertion heuristic (nwslack) (Dubois-Lacoste et al.,
2011), an insertion heuristic that uses as initial seed sequence the RZ heuristic
(Rajendran and Ziegler, 1997) (nrz), a variant of nrz that does not use the
local search proposed in the RZ heuristic (nrz2 ), and a variant of the NEH
heuristic Nawaz et al. (1983) that uses the initial sequence as defined by
increasing order of standard deviations in the processing times of the jobs
(mneh) (Ding et al., 2015).

Neighborhood. We have implemented five neighborhoods, including the
contiguous transpose neighborhood (transpose), the pairwise exchange neigh-
borhood (exchange), the general insert neighborhood (insert), the insert
neighborhood restricted to forward (finsert) or backward insertion moves
(binsert) and the insert neighborhood that considers blocks of two jobs for
insertion (tinsert).

Pivoting rule. The pivoting rules we consider are the first improvement
and the best improvement rule.

Termination criteria: The termination criteria chosen as components of the
algorithm refer to terminating local search runs; the overall termination of the
configured algorithm is taken as a fixed computation time. The termination
criteria available as algorithm components are local minium (locmin), a
maximum number of search steps (maxstep) and a maximum number of
search steps proportional to the instance size (soater).

Perturbations: A first perturbation does random moves in a specified
neighborhood, which can be any of those described above; this is implemented
by an option rndmv(N, rm), which takes as a parameter the neighborhood N
and the number of random moves rm. igper(rd) implements the destruction
and construction processes of iterated greedy algorithms, where rd is the
number of jobs removed from the current solution (Ruiz and Stützle, 2007).
igls(rd, iterative_imp) is analogous to igper(rd) but in addition applies a
local search on the partial solution obtained after jobs removal, following
the ideas presented by (Dubois-Lacoste et al., 2017). igio(rd) and nrzper(rd)
are destruction–construction perturbations that reorder the jobs before con-
struction according to a non-increasing sum of processing times or the RZ
heuristic respectively. Finally tmiigper(rd, tl) introduces a tabu mechanism
into the perturbation to avoid re-inserting jobs into previous positions; tl is
the length of the tabu memory.

Acceptance criteria. The role of the acceptance criterion is to decide
whether to accept a new candidate solution as the new incumbent or not.
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The criterion ACIG(T ) computes a fixed temperature for the Metropolis
condition as used by (Ruiz and Stützle, 2007), parameterized by parameter
T . The acceptance criteria ACSA≠L(Ti, Te, Tr), ACSA≠pm(Ti, Te, Tr, sai), and
ACSA≠M(Ti, Te, Tr, sai, –) are variations of the Metropolis condition embed-
ded into an annealing schedule that is defined by parameters relating to
the initial temperature Ti, the end temperature Te, the linear reduction of
the temperature Tr and the multiplicative annealing coe�cient –; sai is a
parameter that specifies the number of iterations after which the temperature
is updated, which is done in ACSA≠M after every iteration. ACRA(pr) accepts
a new candidate solution with a fixed probability pr. Finally the criteria
ACRW and ACBetter always accept a new candidate solution (independent of
its quality) or only if it is better than the incumbent one respectively.

Tabu criterion. Finally, we have implemented five di�erent ways of defining
the tabu memory in tabu search algorithms, each parameterized by the tabu
tenure tl. The available options to define the tabu status of a move, which
is defined as a pair of integers (i, j) corresponding to the job j moved from
its old position i as follows: forbid the inverse move (move), using a hash
function of the solution (hash), forbidding the solution itself (solution), or
forbidding insertions in the proximity of positions where a job was removed
(pos_r) or removed and inserted (pos_ri).

As mentioned before, the grammar representation is translated into a
parametric representation for the automated configuration process with irace.
Depending on the number of recursion levels (from one to three) that are
allowed, this results in between 169 and 446 parameters to be set by irace.

5. Computational and statistical experiments

As mentioned in Section 2, we work with three di�erent objectives: Cmax,
TFT and TWET dw. These objectives seem related but they are actually very
di�erent as regards the solution and objective space topology. For example,
Cmax and TFT are regular functions of the job completion times Cj, i.e., only
a reduction of at least one Cj leads to a decrease in either Cmax or TFT.
However, TWET dw is not a regular function of Cj and one may need to insert
idle times in the sequences to ensure that no jobs finish before their due date
windows and, thus, to improve their quality.

As competing algorithms we have selected the three state-of-the-art meth-
ods for each objective: DABC for Cmax by Pan et al. (2014), MBO for TFT by
Pan and Dong (2014) and ILST for TWET dw by Pan et al. (2017). We have
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Algorithm 3 Snapshot of the grammar rules that are used to derive a hybrid
metaheuristic algorithm. The rules to derive iterative improvement algorithms are
given in Algorithm 2. The derivation starts by applying the rule for <ILS> and
replacing the non-terminals on the right side with the respective rules. Non-terminals
are delimited by angular parentheses.
<ILS> ::= < initial_sol >, < ILS_main >
<ILS_main> ::= < ls >, < termination >, < perturbation >, < acceptance >
<intial_sol> ::= random | slack | nwslack | nrz | nrz2 | mneh

<tabu> ::= < neighborhood >, < pivoting_rule >, < initial_sol >, < tabu_tenure >
, < termination >
<VND> ::= < neighborhoods >, < pivoting_rule >, < initial_sol >, < termination >
<ls> ::= < iterative_imp > | < V ND > | < tabu > | < ILS >
<perturbation> ::= < ig > | < ig_ls > | < igio > | < rndmv > | noper | <
nrzper > | < tmiig >
<ig> ::= igper, rd
<igio> ::= igio, rd
<nrzper> ::= nrzper, rd
<igls> ::= igls, rd, < iterative_imp >
<tmiig> ::= tmiigper, rd, tl
<rndmv> ::= rndmv, < neighborhood >, rm
<acceptance> ::= ACRA pr | ACRW | ACBetter | ACIG T | < ACSA≠L > | <
ACSA≠P M > | < ACSA≠M >
<ACSA≠L> ::= ACSA≠L, Ti, Te, Tr

<ACSA≠P M > ::= ACSA≠P M , Ti, Te, Tr, sai

<ACSA≠M > ::= ACSA≠M , Ti, Te, Tr, sai, –
<neighborhoods> ::= < neighborhood >, < neighborhoods > | ÿ
<tabu_tenure> ::= size, move | hash | solution | pos_r | pos_ri

obtained the original source codes and have the details of the calibrations from
the original authors. One of the objectives in this paper is to demonstrate that
AAD is more robust to changes in the problem definition (like the objective)
when compared to other state-of-the-art algorithms. These algorithms usually
do not show state-of-the-art performance when tested with other objectives
and are therefore not robust. This holds true even if the algorithm is carefully
recalibrated for another objective. To this end, we will test DABC for its
original Cmax objective and we refer to it as DABCú. In later sections, we will
re-calibrate DABC for the TFT objective (referred to as DABCf) and for
the TWET dw objective (referred to as DABCw). The same logic is applied to
algorithms MBO and ILST. All these methods are tested against the AAD
outcomes of the tested framework. With di�erent solution space topologies we
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can expect di�erent behavior from AAD runs. Therefore, potentially di�erent
algorithms might be generated by the AAD methodology for each objective,
but a main di�erence being that there is no human intervention as the process
is fully automatic. Additionally, this di�erent behavior will test the capacity
of adaptation of the AAD methodology to the di�erent objectives.

5.1. Instance sets
We have used four di�erent instance sets. Two for makespan and total

flow time and two more for total weighted earliness tardiness with due
date windows. For each objective there is one calibration and one testing
benchmark di�erent from the calibration one. For Cmax and TFT, there are
some benchmarks proposed in the literature, mainly for Cmax, which can
be used without changes for TFT. Nevertheless, most of these benchmarks
have a limited number of instances, which complicates statistical analyses.
Furthermore, the maximum instance size in these sets is also limited. For
these reasons, we generated a comprehensive set of instances that is at
the same time large enough for easy statistical analysis and contains large
instances. More specifically, the final testing benchmark contains instances
where all combinations of the following factors are tested: number of jobs
n œ {50, 100, 150, 200}, number of stages i œ {2, 4, 6, 8, 10} and number
of machines per stage m œ {2, 4, 6, 8, 10 and U[1-10]}. Each combination is
replicated 10 times, so there are 4◊5◊6◊10 = 1200 test instances. A total of
120 calibration instances are generated by randomly choosing (with di�erent
random seeds) the values of n, i and m. We have included in all instances
the best lower bound among the nine state-of-the-art bounds of Hidri and
Haouari (2011) for the Cmax objective. For the TWET dw objective we have
used the instances from the previous work by Pan et al. (2017). The process to
generate such instances is quite involved and the interested reader is referred
to that work for more details. Su�ce to say, that the factors used to build
the instances are: n œ {50, 100, 150, 200}, m œ {5, 10}, i œ {5, 10}, tardiness
factor T œ {0.2, 0.4, 0.6}, range of due dates factor R œ {0.2, 0.6, 1.0} and
width of due date windows W œ {10, 20}. In this case there are 1440 final
test instances and 144 calibration instances. All sets of instances, along with
the best solutions, are available at http://soa.iti.es.

5.2. Performance measures
To compare the results from the various metaheuristics, we compute the

Relative Percentage Deviation RPD, defined in Eq. (1) below, for Cmax and
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TFT and the Relative Deviation Index RDI, defined in Eq. (2), for TWET dw:

RPD = Methodsol ≠ Bestsol

Bestsol
◊ 100 (1)

RDI =

Y
_]

_[

0 if Worstsol = Bestsol

Methodsol ≠ Bestsol

Worstsol ≠ Bestsol
◊ 100 if Worstsol ”= Bestsol

(2)

For each instance, we have available the minimum (maximum) objective
function value Bestsol (Worstsol) and Methodsol is the objective function value
obtained by a metaheuristic in a specific run for that instance. RPD has a
direct interpretation, while RDI is a normalized value between 0 and 1. Note
that RPD cannot be used for TWET dw as Bestsol might be zero.

5.3. Computation times
During calibration and test, every algorithm uses the same termination

criterion based on elapsed CPU time. The running time depends on the
instance size and is calculated with the formula n · m · (fl + —). — is set to
30 only for the TWET dw objective and to 0 in all other cases because the
TWET dw evaluation requires more time. In the final tests fl is set to to three
di�erent levels {30, 60, 90} in order to observe the e�ect of additional CPU
time. In the calibration, we employ the lower value of fl.

We can also consider the CPU computation time for traditional calibration
and irace automatic algorithm generation. ANOVAs required a variable but
significant amount of CPU time, directly related with the instances, replicas,
factors and levels studied. For example, the ILST calibration for the TWET dw

objective involved 5 parameters/factors at 4, 4, 3, 3 and 2 levels/variants,
respectively, resulting in 42 ◊ 32 ◊ 21 = 288 treatments with a total of 14580
CPU hours considering the five replicates.
Considering that irace is not an exact algorithm, its results improve over
time.We set up the tuning sessions in such a way to use very modest CPU
times. So, the most time consuming irace algorithm generation took 10729
CPU hours. Conversely, for regular algorithms, the ANOVAs required a vari-
able but significant amount of CPU time. As a result, an additional benefit of
the AAD methodology is to potentially lower the CPU time required for the
configuration process. It has to be stressed out that the AAD methodology is
actually exploring (425-446 parameters) a much larger treatment space than

19



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

ANOVA. This is a clear advantage of the AAD methodology over ANOVA. In
fact, experiments with more than a few factors are intractable with ANOVA
as the number of treatments grows exponentially.

5.4. Calibration of the tested methods
In order to make a fair comparison between our AAD algorithms and

the state-of-the-art methods, we calibrated each algorithm for each objective.
This is important mainly for two reasons: First to validate our calibration, we
compare the results with the original calibration from the authors. Second,
since we employ a di�erent benchmark from that of the original authors, a
calibration ensures that there is no deterioration in results. This calibration
has been achieved through full factorial ANOVAs.

All algorithms have been compiled in Visual Studio 2013 with optimiza-
tions enabled but without language extensions in order to improve perfor-
mance. We have at our disposal two computing clusters. The SOA-Cluster
consists of Windows 7 virtual machines with one virtual processor and 4
GB of RAM memory. Virtual machines run in an OpenStack virtualization
platform supported by 12 blades, each one with four 12-core AMD Opteron
Abu Dhabi 6344 processors running at 2.6 GHz and 256 GB of RAM, for a
total of 576 cores and 3 TBytes of RAM. The second one, IRIDIA-Cluster,
contains 16-core AMD Opteron Interlagos 6272 processors running at 2.1
GHz under Cluster Rocks Linux with CentOS 6.3. The details concerning
the calibration, instances and results are available as on-line materials. The
final employed values for the algorithm parameters, obtained through the
calibration, are given in Table 1. The stopping criterion for the ANOVA
calibrations is n · m · (fl + —) seconds, where fl is set to 30 in all cases and
— is set to 30 only for the TWET dw objective and 0 in all other cases.The
results of the calibration proved to be identical for the ILST method by Pan
et al. (2017) and the TWET dw objective. This is expected as it is the same
algorithm with the same benchmark. For the other algorithms, there are
minor di�erences mainly due to the fact that we use larger instances.

As will be detailed in Section 4, the outcome of the AAD methodology is
three automatically designed algorithms, one for each objective. The config-
uration procedure consisted of four independent executions of irace on the
IRIDIA-Cluster and the configurations output was fed to a final irace exe-
cution that was used to generate the best automatically designed algorithm,
which is refereed to as ADA.
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Objectives

Parameter Cmax TFT TWET dw

DABC

– 30 50 50
Psize 20 25 25

“ 1 - -
· 1 - -

MBO

Psize 21 31 21
NeighborType insert insert hybrid

— 5 5 3
“ 2 2 1

toursize 5 5 5

ILST

Ê 2 2 2
È 50 30 30

Loopmax 200 300 300
◊ 4 2 4

2LS - - Yes

Table 1: Parameter values obtained after calibrating each algorithm for each objective

The most time consuming configuration run took 10729 CPU hours.
Conversely, for the regular algorithms, the ANOVAs have required a variable
but significant amount of CPU time. For example, the ILST calibration for
the TWET dw objective involved 5 parameters/factors at 4, 4, 3, 3 and 2 levels,
respectively, resulting in 42 ◊ 32 ◊ 21 = 288 treatments with a total of 14580
CPU hours considering the five replicates. As a result, an additional benefit
of the AAD methodology is a potentially lower CPU time requirement for
the configuration process. It has to be stressed that the AAD methodology
is actually exploring a much larger treatment space than ANOVA, which is
another advantage of the AAD methdology, as experiments with more than a
few factors are intractable with ANOVA as the number of treatments grows
exponentially.

5.5. AAD candidates
We now detail the three ADAs resulting from the AAD methodology.

Algorithms 4-6 detail the ADAs for Cmax, TFT and TWET dw respectively.
These are referred to as ADAm, ADAf , and ADAw respectively. We can see
that ADAm and ADAf have some resemblance as they have a similar general
structure (Iterated Greedy) to the Metropolis acceptance criterion. They also
share the initial constructive heuristic nrz2 while ADAw has slack.
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Algorithm 4 ADAm: Iterated Greedy (IG) method for Cmax.
1: Output The best solution found fibest

2: fi0 := nrz2()
3: fi := LSm(fi0, first improvement, locmin, transpose)
4: fibest := fi
5: while termination criterion not satisfied do

6: fiÕ := igper perturbation(fi, rd)
7: fi := iterative_impm(fi0,first improvement, locmin, transpose )
8: fi := ACSA≠L acceptance(fi, fiÕ, Ti, Te, Tr)
9: if f(fi) < f(fibest) then

10: fibest := fi
11: end if

12: end while

However, they have di�erent local search neighborhoods, di�erent destruc-
tion components and di�erent parameters. For ADAm, the number of jobs
to destroy (d) is 3, temperature (T ) starts at 3.9295 and ends at 0.4806 and
has a cooling factor of 0.0793. For ADAf , d is four, T starts at 3.9774 and
ends at 0.2796 and the cooling factor is 0.0331. (By default, the real-valued
parameters are set with four decimal positions by the irace technique. Such a
setting would not be possible with ANOVA unless complex mixture design
of experiments and response surface methodology tools were used.) Di�erent
from ADAm and ADAf , ADAw follows an interesting hybrid template. In
Algorithm 6, we observe that the general template is again an IG method
but the local search procedure is an ILS method (specified in Algorithm 7),
essentially, it is an ILS that is run inside an IG. This is a salient feature of
AAD, by which combinations of components never tested before might be
obtained. Apart from this hybrid template, all the components in both the
IG and ILS have di�erent perturbation, destruction, acceptance criterion and
local search, etc.

Basically, AAD has resulted in an algorithm that is completely di�erent
from those obtained for the other objectives. This indicates that the AAD
methodology can adapt the di�erent parameters and operators depending on
the objective.
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Algorithm 5 ADAf : Iterated Greedy (IG) method for TFT .
1: Output The best solution found fibest

2: fi0 := nrz2()
3: fi := LSf (fi, first improvement, locmin, exchange )
4: fibest := fi
5: while termination criterion not satisfied do

6: fiÕ := igls perturbation(fi, rd)
7: fi := iterative_impf (fi, best improvement, locmin, transpose )
8: fi := ACSA≠L acceptance(fi, fiÕ, Ti, Te, Tr)
9: if f(fi) < f(fibest) then

10: fibest := fi
11: end if

12: end while

Algorithm 6 ADAw: Iterated Greedy (IG) method for TWET dw

1: Output The best solution found fibest

2: fi0 := slack()
3: fi := ILSw(fi0)
4: fibest := fi
5: while termination criterion not satisfied do

6: fiÕ := igio perturbation(fi, rd)
7: fiÕÕ := ILSw(fiÕ) % see Algorithm 7
8: fi := ACIG(fiÕÕ, fi, T )
9: if f(fi) < f(fibest) then

10: fibest := fi
11: end if

12: end while

Algorithm 7 ILSw: Iterated Local Search (ILS) method for TWET dw

1: Input Current solution fi
2: Output The best solution found fibest

3: fi := LSw(fi, first improvement, locmin, exchange)
4: fibest := fi
5: for i = 1 to Max_Iterations do

6: fiÕ := rndmv(fi, s, transpose)
7: fiÕÕ := iterative_impw(fiÕ, first improvement, locmin, exchange )
8: fi := ACIG(fiÕÕ, fi, T )
9: if f(fi) < f(fibest) then

10: fibest := fi
11: end if

12: end for
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Makespan(Cmax) Total flow time(T F T )

fl n DABC
ú

ADAm ILSTm MBOm DABCf ADAf ILSTf MBO
ú

30 50 0.45 0.61 0.69 0.83 1.14 0.23 0.52 0.63
100 0.37 0.89 0.79 1.10 2.15 0.36 0.90 1.22
150 0.38 1.00 0.80 1.13 2.72 0.40 1.06 1.57
200 0.40 1.01 0.78 1.09 3.01 0.41 1.10 1.74

Average 0.40 0.88 0.76 1.04 2.25 0.35 0.90 1.29

60 50 0.30 0.44 0.56 0.58 1.00 0.16 0.44 0.51
100 0.21 0.63 0.61 0.75 1.79 0.22 0.80 1.03
150 0.21 0.73 0.62 0.82 2.25 0.24 0.95 1.33
200 0.22 0.73 0.60 0.81 2.53 0.23 0.99 1.48

Average 0.24 0.63 0.60 0.74 1.89 0.21 0.79 1.09

90 50 0.23 0.35 0.49 0.45 0.92 0.12 0.40 0.46
100 0.15 0.51 0.54 0.60 1.61 0.15 0.75 0.93
150 0.13 0.60 0.54 0.67 2.00 0.15 0.89 1.22
200 0.14 0.59 0.51 0.67 2.26 0.14 0.93 1.35

Average 0.16 0.51 0.52 0.60 1.70 0.14 0.74 0.99

Table 2: Average RPD for Cmax and TFT objectives for every fl in n · m(fl + —)ms. Best
results in bold.

5.6. Results
We carried out final experiments on the SOA-cluster with all the calibrated

algorithms and AAD outcomes. The benchmarks used now are the test
benchmark sets, which have not been used in the calibration and automatic
design phase, in other words, the test instances serve as an independent test
set. We use a stopping criterion of n · m(fl + —) seconds, where fl is tested at
three di�erent and independent levels {30, 60, 90} and — is again set to 30 for
the TWET dw objective and 0 for the others.For each objective we have four
algorithms. Table 2 shows the average RPD for the Cmax and TFT objectives
for the three fl levels. The numbers in bold indicate the best average for each
objective. Table 3 shows the results for the three di�erent values of fl + — for
the TWET dw objective.

For the Cmax objective we observe how the tailored DABCú gives the best
results regardless of the fl values. It has to be noted that the good performance
of DABCú is due to accelerated Cmax objective evaluations and also due to the
accelerated local search in the algorithm. More specifically, DABCú carries
out finely tuned local searches in the so called exact neighborhoods. This
gives the algorithm a significant advantage at the cost of losing modularity
and generality. Basically, the local search, the solution evaluation and other
parts of DABCú cannot be easily separated into independent components and
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fl + — n stages DABCw ADAw ILST
ú

MBOw

30+30 50 5 59.68 12.24 19.12 36.56
10 67.55 12.45 19.99 33.88

100 5 65.56 14.56 13.48 35.61
10 67.96 10.63 18.06 38.98

150 5 64.84 20.13 12.26 36.75
10 68.77 14.55 17.03 39.70

200 5 62.77 20.66 12.48 40.67
10 67.41 18.47 18.87 40.65

Average 65.57 15.46 16.41 37.85

60+30 50 5 50.21 9.71 15.54 28.59
10 58.00 9.39 16.52 27.57

100 5 52.07 9.36 10.56 27.64
10 55.58 7.39 14.57 31.21

150 5 54.09 15.38 8.75 26.36
10 57.65 9.48 13.23 32.39

200 5 53.81 17.68 9.29 27.22
10 57.61 13.55 14.76 33.17

Average 54.88 11.49 12.90 29.27

90+30 50 5 44.93 7.69 13.32 24.66
10 52.41 7.81 14.57 23.81

100 5 43.80 6.26 8.78 22.81
10 48.33 5.29 12.48 27.52

150 5 46.99 11.90 6.69 20.23
10 50.42 6.36 10.80 27.27

200 5 47.52 15.43 7.27 20.79
10 51.13 10.12 12.20 27.05

Average 48.19 8.86 10.76 24.27

Table 3: Average RDI for the TWET dw objective for di�erent fl + — values using n · m(fl +
—)ms. Best results in bold.

it is basically an integrated algorithm only for the Cmax objective. Our initial
hypothesis in this paper is that a good algorithm for one objective might not
necessarily translate into a method that performs well for another objective.
DABCú is a clear empirical demonstration of this hypothesis. Even after
recalibrating this method for the TFT and TWET dw objectives, we observe
that it is, by far, the worst performing method from the comparison. For
the TFT objective, even after allowing three times more CPU time (fl = 90),
DABCf gives an RPD of 1.70, which is significantly larger than that of the
second worst method MBOú with one third CPU time (fl = 30). A similar
result holds for the TWET dw objective as DABCw is again, by far, the worst
method in the comparison.

The situation for the TFT and TWET dw objectives is more interesting
and quite unexpected. The AAD methodology has produced two new state-of-
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the-art methods for these two objectives. More specifically, ADAf and ADAw

improve upon the previous state-of-the-art methods for each objective, namely
MBOú and ILSTú. This is quite remarkable as all the ADAs do not include
specific accelerations or operators for any of the objectives. Furthermore, for
TFT, the performance of ADAf is noteworthy. Using only one third of the
CPU time (fl = 30), ADAf obtains an average RPD of 0.35, which is less
than half of the RPD of the second best method, ILSTf where fl = 90. The
outperformance by ADAw for the TWET dw objective is more modest but
again this is due to the fact that the second best method, ILSTú includes a
second stage local search specially tailored to this objective, which ADAw

lacks. Even for the very competitive Cmax objective, ADAm is the third
best method when fl = 30 but when fl = 90 it is technically tied with the
second best method. Considering that it does not include any accelerations
or problem-specific knowledge, this is quite an achievement.

While most of the observed di�erences in the RPD values of Tables 2-3
are large enough so as to be statistically significant, we carry out independent
ANOVA tests as a confirmation. For each objective we consider all the results
having a single factor (algorithm) and RPD as the response variable (the
instance factors are also included as non-controllable factors in the ANOVA
experiment). The overall means plots for all three objectives are shown
in Figures 1-3. The plotted means include Honest Significant Di�erences
confidence intervals at the 95% confidence level. Overlapping intervals indicate
that the di�erences between the corresponding means are not statistically
significant.

As can be observed, even after averaging for all fl values, the observed
di�erences among all algorithms and objectives are statistically significant.

6. Conclusions and future research

We have presented a methodology to automatically design and configure
algorithms in a single process. We targeted a realistic scheduling problem,
the hybrid flowshop with three di�erent objectives, namely makespan, total
flowtime and total weighted earliness tardiness with due date windows. The
proposed methodology is able to combine a large number of algorithmic
templates, operators and parameters into potentially new algorithms that
result in surprisingly good performance without the need to specifically tai-
lor components that are usually only useful for one objective. In fact, the
automatic algorithm design methodology was shown to be able to produce
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Figure 1: Average RPD means plot and confidence intervals for the Cmax
objective

extremely good results with minimal human intervention: for total flowtime
and total weighted earliness tardiness with due date windows the automat-
ically generated algorithms improved upon recent state-of-the-art results,
in some cases by a significant margin. This is also remarkable, as our com-
prehensive computational and statistical testing has also demonstrated that
state-of-the-art methods for a given objective do not necessarily translate into
good performance for another objective, even if the algorithms are carefully
recalibrated.

Given these promising results, we can expect a similarly good performance
of the proposed automatic algorithm design methodology for more objectives,
additional constraints or di�erent scheduling problems. This can be done by
adding additional algorithmic components to the framework and regenerating,
using the automatic algorithm design methodology, algorithms for such prob-
lems. In fact, additional, more tailored algorithm components would be made
available as options in the automated algorithm design process, an extension
we are planning for future research. Other directions to take are extensions
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Figure 2: Average RPD means plot and confidence intervals for the TFT

objective

of the framework by population-based algorithm templates and algorithmic
components for manipulating populations of solutions. In doing so, interesting
hybrid algorithms might be obtained by the proposed methodology.
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