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MEthOdOIOgy The optimization was performed using a coupling between
The experimental data used, were from Sabia et al. [7], where the for biomass the two software Dakota [8] and OpenSMOKE++ [9].

pyrolysis gas was evaluated in a Plug Flow Reactor (PFR). The experiments were performed at
different inlet temperatures, equivalence ratios and dilutions.
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The choice of which kinetic parameters to optimize was done in the following steps:

e First local sensitivity analysis was performed

e These were then combined into a (CSF)
. for the most sensitive reactions were then used in a local brute force sensitivity study
e The product of this sensitivity and the (U) of respective parameter then gave a (CIF)
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Table 2: List of reactions and specific 1=1 j=1
parameters used for the optimization.
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OH + CH, = H,0 + G5H, v Y Figure 1: Ignition delay time vs the inverse of the inlet temperature for biomass pyrolysis gas at different equivalence ratios and dilutions.
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