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Abstract 
In this work, the H2/CO core of the widely used Aramco 2.0 mechanism was 
optimized for improve performances in diluted conditions. The resulting model 
showed accurate agreement with a wide set of experimental data regarding hydrogen, 
carbon monoxide and syngas ignition delay time in RCM and ST. Comparison with 
the nominal mechanism and another optimized mechanism for the same fuels is 
given. The uncertain variables selection was performed using a two-step sensitivity 
analysis which links all the mechanism parameters of the most impactful reactions 
directly with the quantity of interest (QoI). This methodology coupled with an 
Evolutionary algorithm for global optima searching was found to be particularly 
effective. Finally, the impact of the core optimization on the ignition delay time of 
low alkanes and alkenes was tested, showing promising results and room for future 
work.  
 
Introduction 
Reaching the low emission targets requires the use of alternative carbon-free fuels, 
like hydrogen, which is considered nowadays as a renewable energy source (RES). 
The latter fuel can be produced via water electrolysis exploiting the energy surplus 
of solar panels, converted into ammonia to facilitate its storage and transport, and 
then re-converted in-situ for power generation. Another promising RES is synthetic 
gas (syngas) which can be produced either via gasification of coal and burned 
directly in Integrated Gasification Combined Cycle (IGCC), or biomass. However, 
burning hydrogen and/or hydrogen-enriched fuels in air leads to very large NOx as 
their pronounced reactivity activates the thermal pathway. Moderate or Intense Low-
oxygen Dilution (MILD) combustion [1] is well-known for the inhibition of pollutant 
formation, such as NOx and soot. Nonetheless, MILD combustion modelling is 
challenging as the presence of a relevant amount of diluent makes the mixing and 
the chemistry time scales overlap. Indeed, the low Damköhler numbers resulting 
from this overlapping suggest that chemistry has to be addressed with detailed 
kinetics when modelling this particular regime. Unfortunately, due to the central role 
of diluents in MILD regime, kinetic mechanisms validated using conventional 
combustion data, usually accomplish a non-accurate estimation for these, conditions 
[2]. The aim of this work is to improve the core mechanism of the widely-used 
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Aramco2.0 for MILD-like conditions using a new optimization procedure based on 
evolutionary algorithm (EA), and existing data from literature. A novel procedure 
for parameters selection supports the optimizer with a two-step approach, which digs 
into the impact of each individual parameter on the target variable directly. 
 
Database and kinetic simulations 
This work is based on experiments in Rapid Compression Machines (RCM) and 
shock tubes (ST), which were collected from literature. Table 1 summarizes the 
characteristics of the test cases, which are composed by several datasets in turn. 
 

Table 1: Database details. 
Test Case Fuel Diluent, Reference 

1 H2 H2O, N2 [3] 
2 H2 H2O, N2, Ar [4] 
3 H2 H2O, N2 [5] 
4 CO H2O, N2, Ar [4] 
5 Syngas H2O, N2, Ar [4] 
6 Syngas CO2, N2 [6] 

 
Each experiment within the database has a virtual counterpart, which was reproduced 
with a 0-D simulation in OpenSMOKE++ [7]. Facilities effects were included into 
simulations. Regarding the RCM simulations, the experimental cold pressure traces 
were used to infer corresponding volume histories applying the adiabatic core 
assumption, following the procedure previously described in [8]. For shock tube 
simulations, constant volume conditions can be usually adopted, but often it is 
necessary to take into account the pressure rise before ignition. The ignition delay 
time was estimated accordingly with the experimental measurements. 
 
Sensitivity-based parameters selection 
A local sensitivity analysis, with respect to temperature, was performed for each 
experimental point using sensitivity analysis capabilities in OpenSMOKE++ [7]. 
Since, the QoI for the optimization is the IDT for each simulation the sensitivity 
coefficients are extracted on the onset of ignition. Subsequently, the testcase D 
related impact factor (I",$) for each reaction r is evaluated following equation 1. 
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Where s",$	is the testcase-related sensitivity coefficients vector for reaction r, which 
is obtained as the average of the absolute value of the sensitivity coefficients s",9 
related to each experiment d belonging to the testcase of dimensionality D. The 
uncertainty factor f" of the rth reaction is then multiplied with the sensitivity 
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coefficient. The I",$ vector is then used to rank reactions in term of importance and 
enable the user to choose which ones to optimize. Thereafter, the P parameters, 
which correspond to the selected reactions were considered for further evaluations. 
First, the uncertainty of the reaction rate is propagated to the parameters to obtain 
their uncertainty ranges, following the methodology reported in [9]. Subsequently, a 
local brute force sensitivity analysis, which is capable of linking the ignition delay 
time variations to every single parameter directly, was performed for each unit of the 
dataset. The local brute force impact coefficients I;,$ are computed according to 
equation 2 for each unit of the experimental dataset: 
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Where Dt𝐝 is the ignition delay time (IDT) variation due to the variation D𝐩 of the 
p-th parameter of nominal value 𝐩𝐧 on a specific data unit d, and t𝐧,𝐝 is the ignition 
delay time obtained with the nominal combination of selected kinetic parameters on 
that specific data-unit d. The uncertainty index (UIP) is an equivalent of f" for each 
parameter p. Again, parameters are sorted according to their I;,$ to facilitate the 
choice of the optimization active variables.  
 
Sensitivity-based parameters selection 
The optimization was performed by coupling OpenSMOKE++ [7] and Dakota [10]. 
The optimisation of pre-selected parameters of nominal values x is constrained 
between previously mentioned uncertainty range, within this range they are assumed 
to be uniformly distributed. The parameters hyperspace is then explored using a 
mono-objective evolutionary algorithm (EA) which performs a searching over the 
error function space to find global optima following the principle of the survival of 
the fittest combination of uncertain variables. Equation 3 reports the adopted 
objective function.  
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Where Fnorm,k is a normalized objective function for the kth dataset. SDS is the number 
of considered datasets within the complete database. Ei is the number of discrete 
experiments belonging to the lastly mentioned dataset. Yi,j

exp and Yij
sim are the values 

of the jth measurement and simulation belonging to the ith dataset. The third body 
efficiencies for H2O and CO2, were directly included in the optimization together 
with the other Arrhenius parameters, to account for their interdependency. 
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Results 
Figure 1 displays the results of this work showing only one dataset for each test 
cases. More than 300 targets compose the overall database. A comparison between 
the nominal mechanism, the optimized one and another available mechanism from 
ELTE group was performed. The latter was optimized for conventional conditions 
using an impressive number of targets. The agreement with experimental data is 
significantly improved.  
 

 
Figure 1: Optimization mechanism validation against experimental data. Comparison 
between Aramco 2.0, ELTE and this work. 
 
The optimization procedure involved 38 out of 50 kinetic parameters from 15 
elementary reactions. It is important to say that the third body efficiencies of both 
H2O and CO2 were found to be strongly impactful as well as in previous studies [2], 
especially because of their participation as colliders in the reactive process. Though, 
they were considered as active variable during the optimization. The search of the 
global optima was not performed directly on the complete set of experimental 
conditions but proceeded systematically and hierarchically. First, the algorithm was 
run using a single test case and related selected parameters. Subsequently, the 
obtained mechanism was used as a starting point for a new search, considering not 
only the targets from a second test case, but also a new set of parameters, union 
between old and new ones. This operation was repeated iteratively until all data for 
hydrogen were handled. At this point, in order to respect the hierarchical structure 
of the mechanism, sensitive reactions for hydrogen ignition were frozen, even though 
the process always accounted for related targets, when considering carbon monoxide 
and syngas experiments. Indeed, the reactions uncertainty bounds were always 
calculated from the original mechanism along the process, so to avoid the final rates 
to exceed the nominal boundaries. This was crucial to not lose mechanism 
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comprehensiveness. Eventually, the mechanism was validated against other data in 
diluted conditions involving the same fuel, in particular perfectly stirred reactors 
(PSR) and laminar flame speed (LFS) calculation were performed and showed good 
agreement. Finally, since Sabia et al. [2] stated the importance of fall-off reactions 
involving hydrogen for their experiments on more complex fuels, the optimized core 
was introduced within the original Aramco 2.0 to verify the impact of the performed 
optimization. The ignition delay time of biomass pyrolysis gas, composed by CO, 
CO2, CH4, C2H6, C2H4, was simulated in a plug flow reactor (PFR). Figure 2 shows 
the remarkable improvements due to the optimization of lower layers of the 
mechanisms. While significant error reduction was obtained in N2 and CO2, the 
optimization potential for H2O dilution remains much larger. This is due to the direct 
participation of water in reactions involving the methyl, ethyl and vinyl radical, 
which were found to be particularly sensitive in this study. 

 
Figure 2: Biomass pyrolysis gas ignition delay time in a PFR at atmospheric pressure. 
Comparison between optimized (--) and nominal (-) mechanism for dilution from different 
colliders. Experimental data from Sabia et al [2].  
 
Conclusion 
This study aimed at improving our knowledge about detailed kinetics in diluted 
conditions through heuristic methods. A new optimization procedure was proposed 
and tested on al relatively large amount of experimental evidences. Evolutionary 
algorithms were found to be particularly effective when coupled with a rigorous pre-
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process for parameters selection based on a two-step sensitivity analysis reaching the 
parameters level. The well-characterized core of the Aramco 2.0 mechanism was 
improved using a pool of 300 experiments in RCM and ST collected from literature 
for H2/CO/Syngas in diluted conditions and validated on as many data on PSR, and 
LFS. The impact on the ignition of biomass pyrolysis gas was also assessed. In fact, 
this study demonstrates further that the core fall-off reactions are responsible for a 
great part of the non-accurate prediction of diluted conditions using existing 
mechanisms, especially the third body efficiency of colliders such as H2O and CO2. 
Future work has to focus on water dilution for low alkanes and alkenes.  
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