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Abstract
Recent	years	have	seen	the	extensive	use	of	phylogeographic	approaches	to	unveil	
the	 dispersal	 history	 of	 virus	 epidemics.	 Spatially	 explicit	 reconstructions	 of	 viral	
spread	represent	valuable	sources	of	lineage	movement	data	that	can	be	exploited	to	
investigate	the	impact	of	underlying	environmental	layers	on	the	dispersal	of	patho‐
gens.	Here,	we	performed	phylogeographic	inference	and	applied	different	post	hoc	
approaches	to	analyse	a	new	and	comprehensive	data	set	of	viral	genomes	to	eluci‐
date	the	dispersal	history	and	dynamics	of	 rabies	virus	 (RABV)	 in	 Iran,	which	have	
remained	largely	unknown.	We	first	analysed	the	association	between	environmen‐
tal	factors	and	variations	in	dispersal	velocity	among	lineages.	Second,	we	present,	
test	and	apply	a	new	approach	to	study	the	link	between	environmental	conditions	
and	 the	 dispersal	 direction	 of	 lineages.	 The	 statistical	 performance	 (power	 of	 de‐
tection,	false‐positive	rate)	of	this	new	method	was	assessed	using	simulations.	We	
performed	phylogeographic	analyses	of	RABV	genomes,	allowing	us	to	describe	the	
large	diversity	of	RABV	in	Iran	and	to	confirm	the	cocirculation	of	several	clades	in	
the	country.	Overall,	we	estimate	a	relatively	high	lineage	dispersal	velocity,	similar	
to	previous	estimates	for	dog	rabies	virus	spread	in	northern	Africa.	Finally,	we	high‐
light	a	tendency	for	RABV	lineages	to	spread	in	accessible	areas	associated	with	high	
human	population	density.	Our	analytical	workflow	illustrates	how	phylogeographic	
approaches	can	be	used	to	investigate	the	impact	of	environmental	factors	on	several	
aspects	of	viral	dispersal	dynamics.
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1  | INTRODUC TION

RNA	viruses	are	characterized	by	high	rates	of	evolutionary	change,	
which	 results	 from	 fast	 replication	 with	 error‐prone	 RNA	 poly‐
merases	and	a	combination	of	natural	selection	and	sometimes	re‐
combination	 (Holmes,	2004).	The	 resulting	high	genetic	 variability	
of	RNA	viruses	underpins	their	ability	to	adapt	to	changing	environ‐
ments	(Kühnert,	Wu,	&	Drummond,	2011),	including	their	emergence	
and	 spread	 in	 new	 host	 species	 or	 ecological	 niches.	 In	 addition,	
spatial	 heterogeneity	 such	 as	 topographical	 features	 (e.g.,	 rivers,	
mountains,	deserts)	and	socio‐economical	characteristics	(e.g.,	road	
networks,	mode	of	commercial	exchanges,	 levels	of	education	and	
awareness)	 together	 with	 control	 measures	 can	 also	 affect	 viral	
spread	by	 impeding	or	 facilitating	host	movement	 and	 influencing	
host	distributions,	densities	and	susceptibility	(Brunker	et	al.,	2018;	
Dellicour	et	al.,	2017).	Therefore,	the	dynamic	and	inherently	spatial	
dimension	of	epidemiological	processes	present	unique	challenges	
to	studying	and	managing	the	spread	of	emerging	and	re‐emerging	
infectious	diseases.

The	burgeoning	field	of	 landscape	epidemiology	aims	at	exam‐
ining	interactions	between	landscape	heterogeneity	and	the	associ‐
ated	environmental	processes	that	drive	the	spread	and	persistence	
of	 diseases	 and	 the	 evolution	 of	 viruses	 (Grenfell,	 Bjørnstad,	 &	
Kappey,	2001;	Keeling	et	al.,	2001;	Pybus,	Tatem,	&	Lemey,	2015;	
Real	&	Biek,	2007).	In	this	respect,	the	recent	and	rapidly	increasing	
availability	of	viral	genomic	data	provides	an	unprecedented	oppor‐
tunity	to	develop	and	apply	new	evolutionary	approaches	to	explore	
how	evolutionary	and	spatial	processes	give	rise	to	geographical	dis‐
tributions	of	RNA	viruses.	In	particular,	phylogeographic	analysis	of	
genetic	sequences	sampled	in	two‐dimensional	space	has	emerged	
as	a	useful	approach	to	study	viral	dispersal	histories	and	dynamics	
in	a	spatially	explicit	context,	that	is	without	the	need	to	delineate	
discrete	 sampling	 locations.	The	 implementation	of	 such	a	 contin‐
uous	phylogeographic	model	 (Lemey,	Rambaut,	Welch,	&	Suchard,	
2010;	Pybus	et	 al.,	 2012)	 allows	 inferring	 spatially	 and	 temporally	
referenced	 phylogenies	 while	 accommodating	 variation	 in	 disper‐
sal	 velocity	 among	 branches	 (Baele,	 Dellicour,	 Suchard,	 Lemey,	 &	
Vrancken,	2018).	These	annotated	trees	can	in	turn	be	used	to	per‐
form	landscape	phylogeographic	analyses,	that	is	to	use	phylogenet‐
ically	informed	movements	to	investigate	the	factors	impacting	virus	
dispersal,	thereby	opening	up	new	opportunities	to	acquire	a	better	
understanding	of	how	environmental	conditions	 impact	the	spatial	
dynamics	of	rapidly	evolving	populations	of	viruses	(Brunker	et	al.,	
2018;	Dellicour,	Vrancken,	Trovão,	Fargette,	&	Lemey,	2018).	Recent	
years	have	seen	the	development	of	methods	to	investigate	the	im‐
pact	of	environmental	factors	on	the	lineage	dispersal	velocity	of	vi‐
ruses	(Dellicour,	Rose,	&	Pybus,	2016;	Jacquot,	Nomikou,	Palmarini,	
Mertens,	&	Biek,	2017)	and	the	impact	of	landscape	features	acting	

as	potential	barriers	that	decrease	the	dispersal	frequency	between	
geographical	areas	(Dellicour,	Baele,	et	al.,	2018).

While	analytical	frameworks	have	been	previously	developed	to	
analyse	the	association	between	environmental	factors	and	lineage	
dispersal	 velocity	 and	 frequency,	 little	 attention	has	been	paid	on	
testing	 the	 tendency	 of	 lineages	 to	 remain	 in	 and/or	 disperse	 to‐
wards	specific	environmental	conditions.	Nonetheless,	an	environ‐
mental	factor	could	not	have	any	impact	on	the	dispersal	velocity	of	
a	virus	spread	but	instead	determines	the	probability	of	viral	lineages	
to	disperse	towards	given	areas.	Methods	 investigating	the	poten‐
tial	impact	of	external	factors	on	the	dispersal	velocity	and	direction	
of	 lineages	would	 thus	 represent	 complementary	 approaches	 that	
could	be	applied	to	identify	the	drivers	of	viral	spreads.

Because	of	the	impact	on	human	and	wildlife	populations,	rabies	
virus	(RABV)	spread	represents	an	important	study	case	for	how	un‐
derstanding	the	impact	of	external	factors	may	ultimately	inform	the	
prevention,	prediction	and	control	of	 the	disease,	especially	when	
these	analyses	focus	on	the	goal	of	rabies	elimination	(WHO,	2018).	
Rabies	is	a	widespread	zoonotic	disease	distributed	worldwide	and	
remains	the	disease	with	the	highest	case	fatality	rate	in	animals	and	
humans	 (nearly	 100%	 in	 dogs	 and	 in	 humans	 once	 symptoms	 de‐
velop)	and	an	incidence	in	humans	of	approximately	59,000	cases	per	
year	(Hampson	et	al.,	2015).	In	Africa	and	Asia,	almost	all	human	ra‐
bies	cases	are	caused	by	infections	with	dog	RABV,	and	the	majority	
occurs	due	to	lack	of	rabies	vaccination	in	domestic	dog	populations	
(Dodet	et	al.,	2008;	Knobel	et	al.,	2005).	 In	all	cases,	 transmission	
occurs	 through	 contact	 between	 infectious	 and	 susceptible	 hosts	
(through	bites/scratches	or	through	direct	contact	of	mucosa	with	
saliva	from	infected	animals).	Environmental	heterogeneity	and	host	
distribution,	density	and	contact	 rates	all	have	a	strong	 impact	on	
the	spread	and	maintenance	of	the	disease.	This	has	led	to	a	growing	
demand	for	analytical	tools	to	analyse	spatially	resolved	genetic	data	
together	with	epidemiological	and	environmental	data.

Phylogeographic	 approaches	 have	 previously	 been	 used	 to	
study	 the	 dynamics	 and	 spread	 of	 RABV	 at	 both	 large	 (Biek,	
Henderson,	Waller,	Rupprecht,	&	Real,	2007;	Horton	et	al.,	2015;	
Kuzmina	et	 al.,	 2013;	Talbi	 et	 al.,	 2009;	Troupin	et	 al.,	 2016)	 and	
small	 geographical	 scales	 (Bourhy	 et	 al.,	 2016;	 Zinsstag	 et	 al.,	
2017).	Here,	we	use	continuous	phylogeographic	analyses	as	well	
as	 related	 post	 hoc	 approaches	 to	 study	 the	 dispersal	 history	 of	
RABV	spread	in	Iran	and	to	investigate	the	environmental	factors	
impacting	 its	 dispersal	 dynamics.	 Iran	 is	 located	 in	 the	 centre	 of	
Eurasia	and	shares	almost	5,500	kilometres	of	borders	in	total	with	
eight	countries.	For	centuries,	rabies	has	been	present	in	Iran	and	
has	 been	 a	 notifiable	 disease	 since	 several	 decades	 (Baltazard	&	
Ghodssi,	1954).	Dogs	(Canis lupus familiaris)	are	the	primary	source	
of	 human	 rabies	 in	 Iran,	 but	many	 other	 rabid	wild	 animals	 such	
as	 Blanford's	 foxes	 (Vulpes cana),	 golden	 jackal	 (Canis aureus),	
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mongooses	 (Herpestes auropunctatus,	 Herpestes edwardsii)	 and	
wolves	(Canis lupus)	are	reported	with	high	frequency	throughout	
the	country	yearly,	suggesting	a	complex	epidemiological	scenario	
(Janani	et	al.,	2008;	Picot	et	al.,	2017;	Seimenis,	2008).	As	a	con‐
sequence,	Iran	is	characterized	by	one	of	the	highest	annual	rates	
of	postexposure	prophylaxis	(PEP;	22/10000	by	2018)	provided	to	
exposed	patients	worldwide	(Dehghani,	Sharif,	Madani,	Kashani,	&	
Sharif,	 2016;	 Farahtaj,	 Fayaz,	 Howaizi,	 Biglari,	 &	Gholami,	 2014).	
Despite	this	high	burden,	epidemiological	studies	on	rabies	in	Iran	
have	so	far	been	limited	to	epidemiological	studies	of	animal	bites	
(Charkazi	et	al.,	2013;	Dehghani	et	al.,	2016;	Feizhaddad,	Kassiri,	
Lotfi,	 &	 Hoseini,	 2014)	 and	 to	 small‐scale	 molecular	 epidemio‐
logical	 investigations	 (Nadin‐Davis,	 Simani,	 Armstrong,	 Fayaz,	 &	
Wandeler,	2003).	More	comprehensive	data	to	define	the	distribu‐
tion,	reservoirs	and	dispersal	dynamics	of	rabies	in	Iran	are	hence	
important	 in	 order	 to	 gain	 a	 better	 understanding	 of	 the	 role	 of	
environmental	heterogeneity	and	potentially	different	animal	host	
species	in	the	maintenance	and	spread	of	the	disease	as	well	as	the	
development	of	control	measures.

The	overall	goal	of	the	present	study	is	to	describe	and	apply	a	
comprehensive	workflow	of	landscape	phylogeography,	including	a	
novel	approach	to	 investigate	the	 impact	of	environmental	factors	
on	the	dispersal	direction	of	viral	 lineages.	We	apply	 this	compre‐
hensive	workflow	on	a	new	data	set	of	viral	sequences	to	analyse	
the	RABV	dispersal	in	Iran.	Specifically,	we	aim	at	(a)	identifying	the	
different	RABV	lineages	spreading	in	Iran,	(b)	inferring	the	dispersal	
history	of	these	distinct	lineages,	(c)	comparing	their	dispersal	veloc‐
ity	with	other	instances	of	RABV	spread	across	the	world,	(d)	investi‐
gating	the	impact	of	environmental	factors	on	the	dispersal	velocity	
and	direction	of	viral	lineages	in	Iran,	and	(e)	testing	the	performance	
of	our	new	approach	using	simulations.

2  | MATERIAL S AND METHODS

2.1 | Virus sampling

We	analysed	101	nearly	complete	genome	sequences	from	RABV	
isolates,	collected	in	Iran	between	2008	and	2015.	Samples	were	
obtained	through	a	collaborative	programme	of	passive	public	sur‐
veillance	following	protocols	put	in	place	by	the	Iranian	Department	
of	Environment	and	the	 Iranian	Veterinary	Organization,	 two	 in‐
stitutions	 collaborating	 on	 the	 present	 study:	 brain	 samples	 of	
domestic,	 farm	or	wild	animals	suspected	of	 rabies	are	collected	
across	the	entire	countries	by	the	Health	Network	of	the	Iranian	
Veterinary	 Organization	 and	 sent	 to	 the	 WHO	 Collaborating	
Center	 for	 References	 and	 Research	 on	 Rabies	 (at	 the	 Pasteur	
Institute	of	 Iran	 in	Teheran)	 for	analyses.	New	samples	analysed	
in	the	present	study	were	selected	at	random	but	while	trying	to	
maximize	 the	 spatial	 coverage	 of	 the	 country.	 Furthermore,	 we	
also	included	a	balanced	proportion	of	nondomestic	dog	samples	
in	our	final	data	set	(41%)	in	order	to	investigate,	but	also	to	avoid	
underestimating,	the	role	of	wildlife	species	in	spreading	the	virus	
on	 the	 study	 area.	 The	 lower	 proportion	 of	 genomes	 originated	

from	eastern	regions	of	the	country	simply	reflects	the	lower	num‐
ber	of	 samples	coming	 from	 these	areas.	All	brain	 samples	were	
sent	to	the	reference	 laboratory	along	with	a	 form	that	contains	
information	 on	 sampling	 origin,	 the	 GPS	 coordinates	 of	 which	
were	later	retrieved.

2.2 | RNA extraction and next‐
generation sequencing

Total	RNA	was	extracted	using	TRIzol	(Ambion)	according	to	the	man‐
ufacturer's	instructions	from	brain	samples.	RNA	was	then	reverse‐
transcribed	using	Superscript	III	reverse	transcriptase	with	random	
hexamers	(Invitrogen)	according	to	the	manufacturer's	instructions.	
The	 complete	 viral	 genome	 (excluding	 the	 3′	 and	 5′	 extremities,	
corresponding	to	the	leader	and	the	trailer	regions,	respectively)	of	
101	new	isolates	was	amplified	with	six	overlapping	PCR	fragments	
by	 using	 the	 Phusion	 polymerase	 (Thermo	 Fisher)	 as	 previously	
described	 (Troupin	 et	 al.,	 2016).	 After	 electrophoresis,	 each	 PCR	
fragment	was	independently	purified	using	the	NucleoSpin	Gel	and	
PCR	clean‐up	kit	(Macherey‐Nagel)	and	quantified	using	PicoGreen	
dsDNA	quantification	kit	 (Invitrogen).	For	each	sample,	all	six	PCR	
fragments	were	pooled	with	equimolar	proportions	to	obtain	500	ng	
of	dsDNA.	dsDNA	libraries	were	constructed	using	the	Nextera	XT	
kit	(Illumina)	and	sequenced	using	a	2	×	150	nucleotides	paired‐end	
strategy	on	the	NextSeq500	platform.

2.3 | Genome sequence analyses

All	 reads	were	 preprocessed	 to	 remove	 low‐quality	 or	 artefactual	
bases.	Library	adapters	at	5′	and	3′	ends	and	base	pairs	with	a	Phred	
quality	score	<25	were	trimmed	using	AlienTrimmer	as	implemented	
in	Galaxy	(Criscuolo	&	Brisse,	2013;	https	://resea	rch.paste	ur.fr/en/
tool/paste	ur‐galaxy‐platform).	Reads	with	 length	 lower	than	75	bp	
(base	 pairs)	 after	 these	 preprocessing	 steps	 or	 those	 containing	
>20%	of	bp	with	a	Phred	score	of	<25	were	discarded.	The	filtered	
reads	were	mapped	 to	 specific	 complete	 genome	 sequences:	 iso‐
lates	91047FRA	and	NNV‐RAB‐H	 (with	Accession	nos.	KX148127	
and	 EF437215)	 for	 the	 cosmopolitan‐	 and	Arctic‐related	 clade	 vi‐
ruses,	 respectively.	 For	 that	 purpose,	we	 used	 the	CLC	Genomics	
Assembly	 Cell	 in	 Galaxy	 (http://www.clcbio.com/products/clc‐as‐
sembly‐cell).	The	majority	nucleotide	 (>50%)	at	each	position	with	
generally	a	minimum	coverage	of	200	was	used	to	generate	the	con‐
sensus	sequence.	All	consensus	sequences	were	manually	inspected	
for	 accuracy,	 such	 as	 the	presence	of	 intact	open	 reading	 frames,	
using	bioedit	 (Hall,	1999).	A	multiple	 sequence	alignment	was	con‐
structed	using	clustalw2	with	default	parameters	(Larkin	et	al.,	2007)	
implemented	 in	Galaxy	 and	manually	 adjusted	when	necessary.	 In	
addition	to	the	101	nearly	full‐length	genome	sequences	generated	
in	the	present	study,	we	also	 included	in	our	data	set	8	full‐length	
genome	sequences	of	Iranian	isolates	collected	in	Iran	between	1974	
and	1996,	which	were	previously	sequenced	by	Troupin	et	al.	(2016).	
Sampling	data	and	GenBank	Accession	nos.	are	summarized	in	Table	
S1,	and	a	sampling	map	is	displayed	in	Figure	1.

https://research.pasteur.fr/en/tool/pasteur-galaxy-platform
https://research.pasteur.fr/en/tool/pasteur-galaxy-platform
info:ddbj-embl-genbank/KX148127
info:ddbj-embl-genbank/EF437215
http://www.clcbio.com/products
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2.4 | Discrete phylogeographic analysis

In	 order	 to	 identify	 the	different	RABV	 clades	 circulating	 and	 the	
potential	 introductions	 of	 the	 virus	 in	 Iran,	 we	 first	 performed	 a	
discrete	 phylogeographic	 analysis	 involving	 previously	 sequenced	
genomes	 that	 did	 not	 originate	 from	 Iran.	 This	 discrete	 phylogeo‐
graphic	 analysis	 was	 performed	 in	 beast	 1.10	 (Lemey,	 Rambaut,	
Drummond,	&	Suchard,	2009;	Suchard	et	al.,	2018).	For	this	analysis,	
we	 specified	 a	 simple	 constant	 population	 size	 coalescent	 prior,	 a	
GTR	+	I	+	Γ4	model	of	nucleotide	substitution	and	a	relaxed	(uncor‐
related	 log‐normal)	molecular	clock.	 In	addition	to	the	new	Iranian	
RABV	 genomes,	 we	 included	 a	 large	 number	 of	 non‐Iranian	 ge‐
nomes	from	a	previous	large‐scale	phylogenomic	study	(Troupin	et	
al.,	2016)	as	well	as	three	full‐length	genomes	of	new	isolates	from	
Egypt	(GenBank	Accession	nos.	MK760768–MK60770).	In	line	with	
the	objective	of	this	phylogeographic	exploration,	we	only	specified	
two	possible	location	states:	“Iran”	and	“other.”	In	order	to	enhance	
computation	 speed,	 all	 beast	 analyses	 were	 performed	 using	 the	
BEAGLE	library	(Ayres	et	al.,	2012).

2.5 | Continuous phylogeographic inference

The	 history	 of	 RABV	 lineage	 dispersal	 in	 Iran	 was	 inferred	 using	
the	continuous	phylogeographic	method	implemented	in	beast 1.10 
(Lemey	et	al.,	2010;	Suchard	et	al.,	2018).	We	performed	a	distinct	
continuous	phylogeographic	analysis	for	each	Iranian	clade	identified	
by	 the	 discrete	 phylogeographic	 analysis.	 For	 these	 clade‐specific	
analyses,	we	used	a	flexible	Bayesian	skygrid	coalescent	model	(Gill	
et	al.,	2013)	as	well	as	a	relaxed	random	walk	diffusion	model	(RRW;	
Lemey	et	al.,	2010).	Because	the	low	numbers	of	genomes	involved	
in	 these	 analyses	 did	 not	 allow	 to	 adequately	 inform	 a	molecular	
clock	model,	we	used	an	informative	prior	on	the	substitution	rate	to	
obtain	precise	and	realistic	estimates	of	time‐dependent	estimates	
such	as	branch	durations	or	 the	 time	of	 the	most	 recent	 common	
ancestor	(TMRCA;	Jung	et	al.,	2012).	This	informative	prior	was	here	
set	up	as	normal	distribution,	of	which	the	mean	and	standard	devia‐
tion	were	set	according	to	posterior	estimates	of	the	overall	discrete	
phylogeographic	analysis.	The	MCMC	(Markov	chain	Monte	Carlo)	
analyses	were	run	until	adequate	effective	sample	size	(ESS)	values	
were	obtained	(ESS	>200;	Drummond	&	Bouckaert,	2015):	100	mil‐
lion	iterations	for	clades	A,	B	and	E–F,	500	million	iterations	for	clade	
C,	and	1	billion	iterations	for	clade	D.	We	used	the	program	tracer 
version	1.7	 (Rambaut,	Drummond,	Xie,	Baele,	&	Suchard,	2018)	to	
examine	ESS	 values,	 to	 determine	 the	 number	 of	 trees	 to	 discard	
as	burn‐in	 and	 to	obtain	highest	posterior	density	 (HPD)	 intervals	

for	 estimated	 parameters.	Maximum	 clade	 credibility	 (MCC)	 trees	
were	summarized	using	treeannotator	1.10	(Suchard	et	al.,	2018)	and	
visualized	with	figtree	1.7	(www.tree.bio.ed.ac.uk/softw	are/figtree).

The	spatio‐temporal	information	contained	in	the	inferred	phy‐
logenetic	trees	was	then	extracted	using	the	“seraphim”	r	package	
(Dellicour,	Rose,	Faria,	Lemey,	&	Pybus,	2016).	After	having	discarded	
10%	of	sampled	trees	as	burn‐in,	we	extracted	the	spatio‐temporal	
information	from	the	remaining	subset	of	900	trees	sampled	from	
the	 posterior	 distribution	 of	 trees	 inferred	 for	 each	 Iranian	 clade.	
After	this	extraction	step,	phylogenetic	branches	can	be	treated	as	
conditionally	 independent	movement	 vectors	 (Pybus	 et	 al.,	 2012).	
We	also	used	the	R	package	“seraphim”	to	estimate	dispersal	statis‐
tics	based	on	these	extracted	movement	vectors.	We	estimated	the	
mean	branch	dispersal	velocity,	 the	weighted	branch	dispersal	ve‐
locity,	the	mean	diffusion	coefficient	as	originally	defined	by	Pybus	
et	 al.	 (2012)	 and	 the	weighted	 diffusion	 coefficient	 as	 defined	 by	
Trovão	et	al.	 (2015).	While	the	mean	branch	velocity	and	diffusion	
coefficient	are	estimates	of	the	dispersal	velocity	and	of	the	diffu‐
sion	coefficient	averaged	over	all	 tree	branches	 respectively,	 their	
weighted	average	counterparts	involve	a	weighting	by	branch	time.	
As	detailed	in	Dellicour	et	al.	(2017),	for	a	given	tree,	branches	with	
short	duration	will	have	less	of	an	impact	on	the	weighted	metrics,	
resulting	in	lower‐variance	estimates.	Therefore,	the	weighted	statis‐
tics	are	particularly	useful	when	aiming	to	discriminate	between	dif‐
ferent	dispersal	measures	among	data	sets.	On	the	other	hand,	the	
nonweighted	metrics	are	useful	when	investigating	the	heterogene‐
ity	in	lineage	dispersal	velocity	or	diffusion	within	a	specific	spread	
(see	also	the	related	“seraphim”	tutorial	for	more	details	about	the	
different	dispersal	metrics).	All	these	dispersal	metrics	were	summa‐
rized	separately	for	each	clade	and	for	all	the	clades	combined,	that	
is	collecting	all	the	movements	vectors	extracted	from	the	distinct	
continuous	phylogeographic	inferences.

2.6 | Investigating the impact of environmental 
factors on lineage dispersal velocity

Our	analytical	framework	investigating	the	impact	of	environmental	
factors	on	 lineage	dispersal	velocity	comprised	four	distinct	steps,	
which	were	previously	applied	in	other	studies	(e.g.,	Dellicour,	Rose,	
&	Pybus,	2016;	Laenen	et	al.,	2016).	The	first	step	consisted	in	ex‐
tracting	 the	spatio‐temporal	 information	embedded	 in	a	collection	
of	 posterior	 trees	 obtained	 using	 continuous	 phylogeographic	 in‐
ference.	Due	 to	 computational	 time	 limitations,	we	 restricted	 this	
analysis	to	100	trees	sampled	from	each	post‐burn‐in	posterior	dis‐
tribution	 inferred	 using	 clade‐specific	 phylogeographic	 inference.	

F I G U R E  1   (a)	Part	of	the	maximum	clade	credibility	(MCC)	tree	estimated	from	the	discrete	phylogeographic	analysis	performed	to	
identify	independent	RABV	introductions	in	Iran	(see	Figure	S1	for	the	entire	tree).	Branch	support	is	only	reported	for	internal	nodes	
associated	with	a	posterior	probability	<0.95	(except	for	nodes	connecting	tip	nodes	for	which	lower	support	is	not	reported	here).	In	
addition,	we	indicate	in	italic	the	only	two	posterior	probabilities	lower	than	0.95	associated	with	internal	nodes	for	the	ancestral	states'	
reconstruction	(involving	only	two	possible	discrete	locations,	i.e.,	“Iran”	and	“other”).	For	each	clade,	we	also	report	the	number	of	times	an	
RABV	sequence	has	been	sampled	in	a	given	host,	as	well	as	the	proportion	of	sequences	sampled	in	dogs.	“AF.3”	refers	to	clade	“Africa‐3”	
(Troupin	et	al.,	2016).	(b)	Total	number	of	sequences	sampled	in	each	host.	(c)	Posterior	distribution	of	substitution	rate	estimated	from	the	
same	beast	analysis.	(d)	Sampling	map	coloured	by	clades

info:ddbj-embl-genbank/MK760768
info:ddbj-embl-genbank/MK60770
http://www.tree.bio.ed.ac.uk/software/figtree
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Specifically,	 each	 phylogenetic	 branch	 was	 considered	 a	 vector	
defined	by	 its	start	and	end	 locations	 (latitude	and	 longitude),	and	
its	start	and	end	dates	(in	decimal	units).	These	phylogeny	branches	
therefore	represent	conditionally	independent	viral	lineage	dispersal	
events	(Pybus	et	al.,	2012).	Following	this	extraction	step,	all	move‐
ment	vectors	extracted	from	the	different	Iranian	clades	were	gath‐
ered	for	subsequent	analyses.

In	a	second	step,	these	movement	vectors	were	assigned	an	en‐
vironmental	 distance,	 that	 is	 a	 spatial	 distance	 that	 was	 weighted	
according	to	the	values	of	an	underlying	environmental	raster.	In	prac‐
tice,	we	used	two	different	path	models	to	compute	the	environmental	

distances:	(a)	the	least‐cost	path	model,	which	uses	a	least‐cost	algo‐
rithm	to	determine	the	route	taken	between	locations	(Dijkstra,	1959),	
and	 (b)	 the	 Circuitscape	 path	 model,	 which	 uses	 circuit	 theory	 to	
accommodate	uncertainty	 in	the	route	taken	(McRae,	2006).	 In	this	
study,	 we	 investigated	 the	 impact	 of	 the	 following	 environmental	
factors	 (Figure	2):	 elevation,	 the	most	 represented	 land	 cover	 vari‐
ables	on	the	study	area	(i.e.,	barren	vegetation,	shrublands,	grasslands	
and	croplands;	land	cover	categorized	according	to	the	International	
Geosphere	Biosphere	Program,	IGBP),	major	roads,	human	population	
density	 and	 inaccessibility	 (travel	 time	 to	 the	 nearest	major	 city	 of	
>50,000	inhabitants;	see	Table	S2	for	the	sources	of	the	original	raster	

F I G U R E  2  Environmental	variables	that	were	tested	in	the	analysis	of	the	RABV	clades	identified	in	Iran.	The	first	map	only	displays	
the	geopolitical	context	of	the	study	area.	On	this	map,	"Ru."	refers	to	Russia,	"Ka."	refers	to	Kazakhstan,	"Uz."	refers	to	Uzbekistan,	"Ar."	
refers	to	Armenia,	"Sy."	refers	to	Syria,	"Af."	refers	to	Afghanistan,	"Pa."	refers	to	Pakistan	and	"UAE"	refers	to	United	Arab	Emirates.	The	
inaccessibility	raster	is	in	units	of	time	(min)	and	indicates	the	time	to	travel	to	the	nearest	major	city	of	at	least	50,000	inhabitants
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files).	All	 factors	were	 tested	as	potential	 conductance	 factors	 (i.e.,	
factors	facilitating	movement)	and	as	potential	resistance	factors	(i.e.,	
factors	 impeding	movement).	 Further,	 several	 distinct	 rasters	were	
generated	by	transforming	original	raster	cell	values	with	the	follow‐
ing	formula:	vt	=	1	+	k*(vo/vmax),	where	vt and vo	are	the	transformed	
and	original	raster	cell	values,	and	vmax	the	maximum	raster	cell	value	
recorded	 in	 the	 raster.	 The	 rescaling	 parameter	k	 here	 allowed	 the	
definition	and	testing	of	different	strengths	of	raster	cell	conductance	
or	resistance,	relative	to	the	conductance/resistance	of	a	cell	with	a	
minimum	value	set	to	“1.”	For	each	environmental	factor,	we	tested	
three	different	values	for	k	(i.e.,	10,	100	and	1,000).

In	a	third	step,	we	estimated	the	correlation	between	branch	du‐
rations	and	environmental	distances	with	the	statistic	Q	defined	as	
the	difference	between	two	coefficients	of	determination	(R2):	(a)	R2 
obtained	when	branch	durations	are	regressed	against	environmen‐
tal	distances	computed	on	the	environmental	raster,	and	(b)	R2 ob‐
tained	when	branch	durations	are	regressed	against	environmental	
distances	computed	on	a	null	raster,	that	is	an	environmental	raster	
with	a	value	of	“1”	assigned	to	all	the	cells.	Therefore,	when	Q	>	0,	
distances	 weighted	 according	 to	 a	 heterogeneous	 environmental	
raster	are	correlated	more	strongly	with	branch	duration	than	dis‐
tances	computed	on	a	“null”	raster	 (which	represents	geographical	
distance	alone).	Since	one	Q	value	was	estimated	per	sampled	tree,	
we	thus	obtained	a	distribution	of	Q	values	for	each	combination	of	
environmental	factor,	k	parameter	value	and	path	model.	A	variable	
can	only	be	considered	as	potentially	explanatory	if	both	its	distribu‐
tion	of	regression	coefficients	and	associated	distribution	of	Q val‐
ues	are	positive	(Jacquot	et	al.,	2017).	In	the	final	step,	the	statistical	
support	of	each	Q	distribution	was	evaluated	against	a	null	distribu‐
tion	generated	by	a	randomization	procedure	and	formalized	as	an	
approximated	Bayes	factor	value	(Dellicour	et	al.,	2017).

Our	framework	relies	on	univariate	testing	of	environmental	fac‐
tors	(Dellicour,	Rose,	&	Pybus,	2016)	mostly	because	performing	mul‐
tivariate	analyses	would	 require	dealing	with	multicollinearity	 issues	
among	covariates,	a	notable	limitation	when	co‐analysing	environmen‐
tal	distances	computed	on	distinct	environmental	 layers.	 Indeed,	no	
matter	the	path	model	used	to	compute	environmental	distances	be‐
tween	locations,	such	distances	computed	among	the	same	locations	
but	 on	 different	 layers	will	 remain	more	 or	 less	 correlated	 because	
the	 distances	 inherently	 correlate	 with	 the	 geographical	 distances	
between	locations	(Dellicour,	Vrancken,	et	al.,	2018).	Consequentially,	
the	analytical	strategy	selected	in	the	present	workflow	mainly	served	
to	analyse	the	different	environmental	 factors	 independently,	which	
were	then	compared	in	the	context	of	a	discussion.	All	the	scripts	re‐
lated	to	this	approach	are	available,	along	with	tutorials	and	example	
files,	in	the	r	package	“seraphim”	(Dellicour,	Rose,	Faria,	et	al.,	2016).

2.7 | Investigating the impact of environmental 
factors on lineage dispersal direction

We	here	 introduce	 a	 new	 analytical	 framework	 to	 investigate	 the	
impact	of	environmental	 factors	on	the	dispersal	direction	of	viral	
lineages.	Specifically,	the	idea	is	to	test	if	lineages	tended	to	remain	

in	and/or	tended	to	disperse	towards	particular	environmental	con‐
ditions.	 For	 instance,	 one	may	 be	 interested	 in	 testing	 if	 a	 RABV	
lineage	 tended	 to	disperse	 to	 areas	 associated	with	higher	human	
population	density,	a	variable	that	is	at	least	partially	correlated	with	
domestic	 dog	 population	 density	 (Hampson	 et	 al.,	 2015).	 In	 prac‐
tice,	this	framework	consists	of	similar	steps	as	the	approach	used	
to	analyse	the	impact	of	environmental	factors	on	lineage	dispersal	
velocity	(see	above),	but	instead	of	comparing	branch	durations	and	
associated	environmental	distances,	we	here	 focused	on	 the	envi‐
ronmental	conditions	at	the	locations	of	tree	nodes.

For	 this	 purpose,	we	 here	 propose	 to	 compute	 and	 test	 two	
distinct	 metrics:	 (a)	 E	 defined	 as	 the	 mean	 of	 the	 environmen‐
tal	values	extracted	at	 the	nodes'	positions,	and	 (b)	R	defined	as	
the	 proportion	 of	 branches	 for	 which	 the	 environmental	 value	
recorded	at	 the	oldest	node	position	 is	higher	 than	 the	environ‐
mental	 value	 recorded	 at	 the	 youngest	 node	 position.	 While	 E 
measures	the	tendency	of	tree	nodes	to	remain	located	in	lower/
higher	environmental	values,	R	measures	the	tendency	of	lineages	
to	 disperse	 towards	 lower/higher	 environmental	 values.	 These	
two	 metrics	 are	 computed	 for	 each	 tree	 in	 the	 posterior	 sam‐
ple,	 and	we	 therefore	obtain	posterior	distributions	 for	E and R. 
Analogous	to	the	final	step	of	the	first	procedure	described	above,	
these	posterior	distributions	were	compared	to	null	distributions	
of	the	same	metrics	computed	after	having	randomized	phyloge‐
netic	node	positions	within	 the	 study	area,	under	 the	constraint	
that	 branch	 lengths,	 tree	 topology	 and	 root	 position	 remain	un‐
changed.	This	approach	only	requires	one	randomization	per	sam‐
pled	 tree	 and	 leads	 to	 the	 approximation	 of	 a	Bayes	 factor	 (BF)	
support	 for	 each	metric.	 For	 a	particular	 environmental	 factor	e 
tested	as	a	factor	attracting	 lineages,	the	Bayes	factor	BFe	asso‐
ciated	with	the	statistic	E	 is	approximated	by	the	posterior	odds	
that	Eestimated > Erandomized	divided	by	the	equivalent	prior	odds	(the	
prior	probability	for	Eestimated > Erandomized	is	considered	to	be	0.5):

where	pe	is	the	posterior	probability	that	Eestimated > Erandomized,	that	is	
the	frequency	at	which	Eestimated > Erandomized	in	the	samples	from	the	
posterior	distribution.	The	prior	odds	 is	1	because	we	can	assume	
an	 equal	 prior	 expectation	 for	Eestimated and Erandomized.	 The	 formal	
estimate	 of	 posterior	 predictive	 odds	 is	 analogous	 to	 computing	
Bayes	factors	in	case	two	alternative	hypotheses	exist,	such	as	for	
the	inclusion	of	rate	parameters	or	predictors	in	BSSVS	procedures	
(Dellicour	et	al.,	2017;	Lemey	et	al.,	2009).	Alternatively,	if	the	envi‐
ronmental	factor	was	tested	as	a	factor	repulsing	lineages,	BFe would 
be	approximated	by	the	posterior	odds	that	Eestimated	<	Erandomized di‐
vided	by	 the	 equivalent	 prior	 odds.	 The	 same	 approach	was	 used	
to	 approximate	 Bayes	 factor	 support	 for	 the	R	 statistic.	Whether	
the	environmental	 factor	 is	 tested	as	a	factor	attracting	or	repuls‐
ing	 lineages,	 the	 posterior	 BFe	 for	R	 is	 approximated	 by	 the	 pos‐
terior	 odds	 that	 Restimated	 <	 Rrandomized	 (attracting	 lineages)	 or	 that	
Restimated > Rrandomized	 (repulsing	 lineages)	divided	by	the	equivalent	
prior	 odds.	 Following	 the	 same	 logic	 used	 for	 investigating	 the	

BFe=
pe

1−pe
∕

0.5
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impact	of	environmental	factors	on	lineage	dispersal	velocity,	each	
environmental	factor	was	tested	as	a	potential	driver	and	as	a	poten‐
tial	impeder	of	virus	dispersal.	This	new	approach	has	been	added	to	
the	r	package	“seraphim”	(Dellicour,	Rose,	Faria,	et	al.,	2016;	evolve.
zoo.ox.ac.uk/Evolv	e/Serap	him.html),	along	with	a	related	tutorial.	In	
addition	to	the	RABV	data	set	from	Iran,	we	also	used	this	new	pro‐
cedure	to	analyse	a	RABV	data	set	from	northern	Africa	previously	
published	by	Talbi	et	al.	(2010)	and	also	analysed	by	Dellicour	et	al.	
(2017)	in	a	study	focusing	on	lineage	dispersal	velocity.	The	re‐anal‐
ysis	of	this	alternative	domestic	dog	RABV	data	set	was	performed	
to	allow	a	comparison	of	the	environmental	factors	associated	with	
the	dispersal	events	of	viral	lineages	in	these	two	different	regions.

2.8 | Assessing the performance of our approach to 
investigate lineage dispersal direction

The	 approach	 described	 above	 and	 developed	 to	 investigate	 the	
impact	of	environmental	factors	on	lineage	dispersal	direction	was	
tested	on	data	sets	simulated	according	to	some	control	scenarios.	
To	simulate	these	scenarios,	we	built	on	a	procedure	initially	devel‐
oped	 to	simulate	a	 forward‐in‐time	 relaxed	 random	walk	diffusion	
(RRW)	 process	 along	 branches	 of	 trees	 obtained	 by	 continuous	
phylogeographic	 inference	 conditional	 on	 the	 sampled	 precision	
matrix	parameters	and	 location	at	 the	 root	node	 (Dellicour,	Baele,	
et	 al.,	 2018).	We	adapted	 this	 simulation	 approach	 in	 two	distinct	
procedures	to	condition	the	simulation	of	each	dispersal	event	along	
a	phylogeny	branch	on	 the	environmental	 values	 at	 the	 simulated	
node	position.	In	the	first	simulation	procedure,	simulated	node	po‐
sitions	were	more	likely	to	fall	in	raster	cells	associated	with	higher	
(or	 alternatively	 lower)	 environmental	 values.	 In	 the	 second	 pro‐
cedure,	 simulated	node	positions	were	more	 likely	 to	 fall	 in	 raster	
cells	that	maximize	the	positive	(or	alternatively	negative)	difference	
between	the	cell	values	at	the	ending	(youngest)	and	starting	(old‐
est)	node	positions.	For	a	given	branch,	for	which	the	position	of	the	
oldest	node	was	already	simulated	(or	fixed	in	the	case	of	the	root),	
the	position	of	the	youngest	node	was	simulated	100	times	and	the	
environmental	values	below	that	nodes	were	recorded.	In	the	first	
procedure,	the	probability	to	select	one	specific	simulated	position	
in	the	raster	cell	i	was	defined	as	follows:

where	vi	is	the	environmental	value	in	cell	i,	and	vtot	the	sum	of	the	
raster	cell	values	extracted	at	the	100	simulated	node	positions.	
Alternatively,	in	the	second	procedure,	the	probability	pi	to	select	
one	specific	simulated	position	in	the	raster	cell	 i	was	defined	as	
follows:

where	v0	 is	the	environmental	value	in	the	raster	cell	of	the	oldest	
node.	While	the	first	procedure	allows	simulating	dispersal	scenar‐
ios	 in	which	 lineages	 tend	 to	 remain in,	 and	 thus	 favour,	particular	

environmental	conditions,	the	second	procedure	allows	to	simulate	
scenarios	where	lineages	tend	to	progressively	disperse towards	spe‐
cific	 conditions.	 All	 these	 simulations	 were	 also	 constrained	 such	
that	 the	 simulated	 node	 locations	 remain	 within	 the	 study	 area,	
which	 is	here	defined	by	the	minimum	convex	hull	built	around	all	
node	positions,	minus	nonaccessible	sea	areas.

Specifically,	we	 applied	 our	 two	new	methods	 described	 above	
(see	 “Investigating	 the	 impact	of	 environmental	 factors	on	 lineages	
dispersal	direction”)	to	test	the	impact	of	human	population	density	
on	data	sets	consisting	of	1,000	spatially	annotated	trees	simulated	
under	five	scenarios:	a	scenario	in	which	dispersal	direction	of	lineages	
were	not	impacted	by	any	environmental	heterogeneity	(scenario	1),	
scenarios	in	which	lineages	tended	to	remain in	(scenarios	2–3,	simu‐
lated	with	the	first	procedure)	or	to	disperse towards	 (scenarios	4–5,	
simulated	with	the	second	procedure)	areas	of	high	human	population	
density.	The	difference	between	scenarios	2	and	3,	as	well	as	between	
4	and	5,	is	that	the	former	ones	are	based	on	the	original	human	pop‐
ulation	 raster	while	 the	 latter	ones	are	based	on	a	 log‐transformed	
version	of	that	raster	(which	thus	gives	relatively	less	importance	to	
highly	populated	areas).	The	analyses	of	spatially	annotated	trees	sim‐
ulated	under	scenario	1	aimed	at	assessing	the	absence	of	type	I	error	
(false	positives),	 and	 simulations	performed	under	 scenarios	2–3	as	
well	as	under	scenarios	4–5	allowed	investigating	the	statistical	power	
of	the	analytical	frameworks	based	on	the	metrics	E and R	 (and	the	
associated	randomization	procedure),	respectively.

3  | RESULTS

3.1 | Identification of independent introductions in 
Iran

The	 preliminary	 discrete	 phylogeographic	 analysis	 (Lemey	 et	 al.,	
2009)	was	based	on	109	Iranian	RABV	genomes,	of	which	101	were	
sequenced	in	the	context	of	this	study,	as	well	as	274	non‐Iranian	
genomes	from	a	previous	large‐scale	phylogenomic	study	(Troupin	
et	al.,	2016).	 In	this	analysis,	we	only	specified	two	possible	 loca‐
tion	states,	that	is	“Iran”	and	“other,”	to	focus	on	the	identification	
of	 Iranian	 introductions.	This	 first	analysis	 identifies	 independent	
introductions	for	one	isolated	sequence	as	well	as	for	seven	mono‐
phyletic	clades	whose	tip	nodes	are	all	located	in	Iran	(clades	A–H	
in	Figure	1).	While	 the	majority	of	 Iranian	RABV	sequences	have	
been	sampled	from	dogs	(60%;	Figure	1),	viral	sequences	have	also	
been	sampled	 from	various	other	host	 species	whose	proportion	
varies	between	clades	(Figure	1).	Clade	A,	which	combines	clades	
A1	 and	 A2,	 constitutes	 the	 major	 monophyletic	 clade	 of	 Iranian	
sequences.	Along	with	clade	B,	they	are	both	closely	related	to	a	
clade	of	Middle	Eastern	sequences	from	Israel,	Oman,	Saudi	Arabia	
and	the	United	Arab	Emirates,	that	are	known	to	circulate	in	foxes.	
The	proportion	of	positive	 samples	originating	 from	wildlife	 (fox,	
wolf,	 jackal,	 marten)	 among	 the	 75	 isolates	 belonging	 to	 these	
three	 clades	 amounts	 to	 47%.	 By	 comparison,	 Iranian	 clade	 C	 is	
connected	 to	 two	paraphyletic	clades	of	 sequences	 from	eastern	
Europe,	Russia	and	Asia,	which	are	also	known	to	circulate	in	foxes.	
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Isolates	collected	from	wildlife	animals	 represent	55%	 (n	=	11)	of	
the	sequences	gathered	in	clade	C.	Clade	D	only	includes	isolates	
collected	from	dogs	(n	=	7)	and	its	neighbouring	clade	exclusively	
consists	 of	 sequences	 sampled	 in	 Turkey.	 Clades	 E	 and	 F	 form,	
together	 with	 an	 Iraqi	 and	 a	 Russian	 sequence,	 another	 distinct	
monophyletic	 clade	 almost	 exclusively	 composed	of	dog	 samples	
(92%,	n	=	12).	Finally,	the	more	isolated	Iranian	clades	G	and	H	ap‐
pear	to	be	related	to	other	sequences	obtained	from	samples	col‐
lected	 from	Central	Asia	 (Nepal,	Afghanistan,	 India	and	Pakistan)	
and	 are	 exclusively	 composed	 of	 sequences	 collected	 from	 dog	
samples	(n	=	4).	As	these	two	clades	only	contained	one	and	three	
sequences,	 respectively,	 they	were	not	considered	for	the	subse‐
quent	 continuous	 phylogeographic	 analyses.	 Because	 this	 initial	
phylogenetic	analysis	was	based	on	a	large	set	of	RABV	sequences	
sampled	 across	 a	 range	 of	 multiple	 years,	 this	 also	 provided	 an	
opportunity	 to	estimate	 the	evolutionary	 rate	 to	calibrate	subse‐
quent	time‐measured	continuous	phylogeographic	analyses	based	
on	restricted	numbers	of	sequences.	From	this	initial	analysis,	we	
estimate	 a	 substitution	 rate	 of	 2.13	 ×	 10–4	 substitutions	 per	 site	
per	year	(95%	HPD	[1.88,	2.35];	Figure	1),	which	is	consistent	with	
previous	estimates	obtained	by	Zhang	et	al.	(2017).

3.2 | Continuous phylogeographic inferences

We	performed	continuous	phylogeographic	 inference	 (Lemey	et	al.,	
2010)	for	the	six	distinct	clades	treated	as	potential	separate	introduc‐
tions:	A1,	A2,	B,	C,	D,	as	well	as	the	combined	Iranian	clade	formed	by	
the	closely	related	clades	E	and	F	(Figure	1).	These	inferences	resulted	
in	different	phylogeographic	 reconstruction	patterns	 (Figure	3).	For	
instance,	the	continuous	phylogeographic	analyses	of	clades	A1	and	
D	clearly	reveal	that	most	of	their	dispersal	has	occurred	in	relatively	
restricted	northwest	regions	of	the	country,	which	also	correspond	to	
the	most	populated	areas.	By	contrast,	clades	A2,	B	and	EF	appear	to	
be	associated	with	more	central	and	widespread	distributions	within	
the	country.	Finally,	clade	C	presents	a	relatively	widespread	distribu‐
tion	mostly	covering	the	northeast	part	of	Iran.

3.3 | Comparative analysis of dispersal statistics

Spatio‐temporal	information	contained	in	the	inferred	phylogenetic	
trees	was	subsequently	used	to	estimate	dispersal	statistics	such	as	
branch	dispersal	velocities	and	diffusion	coefficients.	We	summarize	
these	estimates	per	clade	(Table	S3)	but	also	for	all	clades	considered	

F I G U R E  3  Reconstructed	spatio‐temporal	diffusion	for	six	monophyletic	clades	whose	tip	nodes	are	all	located	in	Iran:	maximum	
clade	credibility	(MCC)	trees	and	80%	HPD	regions	based	on	100	trees	subsampled	from	the	posterior	distribution	of	each	continuous	
phylogeographic	analysis.	Internal	and	tip	nodes	of	the	MCC	trees	are,	respectively,	displayed	as	dots	and	squares,	and	all	nodes	are	coloured	
according	to	their	time	of	occurrence.	80%	HPD	regions	were	computed	for	successive	time	layers	and	then	superimposed	using	the	same	
colour	scale	reflecting	time.	Only	the	borders	of	Iran	are	displayed	on	the	map
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together,	 and	we	compare	 them	with	 the	same	metrics	previously	
reported	for	other	RABV	data	sets	(Table	1).	First,	the	comparison	
between	clades	mainly	highlights	a	much	higher	dispersal	velocity	
and	diffusion	coefficient	for	clade	D.	This	clade	could	correspond	to	
a	particularly	rapid	and	recent	RABV	spread	in	the	northwest	region	
of	the	country.	Sequences	from	that	clade	were	exclusively	sampled	
in	domestic	dogs,	but	this	is	also	the	case	for	clade	E,	which	is	associ‐
ated	with	 lower	branch	dispersal	 velocities.	More	generally,	when	
comparing	branch	dispersal	velocity	and	the	host	species	composi‐
tion,	we	were	not	able	to	identify	any	general	trends	(Table	S3).

Second,	the	comparison	with	other	RABV	data	sets	reveals	that	
dispersal	statistics	estimated	for	the	RABV	spread	in	Iran	are	highly	
similar	with	those	estimated	for	the	dog	RABV	dispersal	in	northern	
Africa,	as	inferred	from	the	data	set	of	Talbi	et	al.	(2010).	The	similarity	
is	particularly	striking	when	comparing	the	“weighted”	metrics,	that	is	
the	weighted	branch	velocities	and	diffusion	coefficients.	The	spread	
of	dog	RABV	in	Iran	and	in	northern	Africa	are	clearly	associated	with	
the	highest	values	for	the	diffusion	coefficients.	Indeed,	diffusion	co‐
efficient	estimates	are	two	to	three	times	higher	for	these	two	data	
sets	than	for	the	raccoon	and	skunk	RABV	data	sets,	but	also	higher	
than	for	the	bat‐related	data	set	from	Argentina	and	Brazil.	Only	one	
of	the	bat‐related	data	sets	from	Peru	(lineage	L1)	is	associated	with	
branch	velocity	and	diffusion	coefficient	values	higher	than	those	es‐
timated	for	the	present	dog	RABV	data	set	from	Iran.

3.4 | Impact of environmental factors on viral 
lineage dispersal

The	 analysis	 of	 lineage	 dispersal	 velocity	 further	 reveals	 non‐neg‐
ligible	variability	among	all	phylogenetic	branches	 (CV	=	2.82,	95%	

HPD	 [1.90,	7.53]).	As	a	 consequence,	 it	 is	 relevant	 to	 investigate	 if	
an	environmental	factor	might	explain	the	observed	heterogeneity	in	
dispersal	velocity.	To	this	end,	we	have	used	the	analytical	framework	
implemented	 in	 the	r	package	 “seraphim”	 (Dellicour,	Rose,	Faria,	et	
al.,	2016)	 to	compare	phylogenetic	branch	durations	and	a	number	
of	environmental	distances.	This	analysis	consists	of	using	path	mod‐
els	(Dijkstra,	1959;	McRae,	2006)	to	compute,	for	each	phylogenetic	
branch,	environmental	distances.	These	distances	are	computed	on	
environmental	rasters	(i.e.,	grids)	as	well	as	on	a	so‐called	“null”	raster	
with	a	value	of	 “1”	assigned	 to	all	 accessible	cells.	The	correlations	
between	environmental	distances	and	branch	durations	are	then	in‐
vestigated	to	assess	if	heterogeneous	environmental	rasters	could	ex‐
plain	the	differences	in	lineage	dispersal	velocity.	The	analysis	reveals	
a	relatively	low	correlation	between	branch	durations	and	geographi‐
cal	distances,	that	is	environmental	distances	computed	on	the	“null”	
raster,	no	matter	what	path	model	is	used	to	compute	these	distances	
(R2	~	10%).	Yet,	none	of	the	environmental	distances	computed	on	
an	 environmental	 layer	 significantly	 increases	 this	 correlation	with	
branch	durations.	Indeed,	none	of	the	tested	environmental	factors	
leads	to	a	Q	distribution	with	at	least	90%	positive	values	(Table	S4),	
suggesting	that	they	do	not	appropriately	explain	the	RABV	dispersal	
velocity	better	than	the	geographical	distance	factor	alone.	Because	
clade	D	 is	 associated	with	a	much	higher	branch	dispersal	 velocity	
(Table	S3),	this	analysis	was	also	repeated	after	having	discarded	phy‐
logeny	branches	belonging	to	that	clade.	However,	discarding	this	po‐
tential	outlier	clade	does	not	lead	to	overall	different	results,	as	none	
of	the	Q	distributions	tend	to	be	clearly	higher	than	zero	(Table	S5).

While	the	first	analysis	consists	of	testing	the	impact	of	environmen‐
tal	factors	on	dispersal	velocity,	we	have	also	used	a	new	approach	that	
aims	at	testing	the	impact	of	such	factors	on	the	dispersal	direction,	that	

TA B L E  1  RABV	dispersal	statistics	estimated	from	continuous	phylogeographic	analyses	performed	on	different	data	sets

 n
Mean branch veloc‐
ity (km/year)

Weighted branch veloc‐
ity (km/year)

Original diffusion coef‐
ficient (km2/year)

Weighted diffusion coef‐
ficient (km2/year)

RABV	in	Iran	(present	
study)

105 55.5	[38.9,	142.4] 18.1	[16.3,	20.8] 2,676	[1,935,	5,066] 1,643	[1,356,	2,325]

Dog	RABV	in	northern	
Africa

250 43.4	[30.9,	64.2] 19.5	[16.2,	23.5] 3,779	[2,444,	7,700] 1,511	[1,246,	1,936]

Raccoon	RABV	in	
North	America

47 37.0	[22.3,	117.1] 11.8	[9.6,	13.3] 1,126	[744,	4931] 561	[454,	689]

Skunk	RABV	in	North	
America

229 28.4	[20.1,	56.0] 9.4	[8.3,	10.6] 983	[633,	2,963] 579	[474,	675]

Bat	RABV	in	Argentina 131 76.0	[60.9,	127.5] 34.7	[28.1,	41.6] 1,051	[720,	2,586] 721	[555,	929]

Bat	RABV	in	eastern	
Brazil

41 37.4	[24.5,	148.6] 12.5	[7.8,	20.3] 615	[334.7,	3137] 273	[146.9,	423]

Bat	RABV	in	Peru	
(lineage	L1)

81 61.6	[34.9,	284.7] 21.8	[16.8,	28.2] 4,276	[2,166,	21,397] 2,056	[1,525,	2,800]

Bat	RABV	in	Peru	
(lineage	L3)

179 25.5	[17.5,	68.3] 8.7	[7.3,	10.2] 111	[64,	362] 61	[49,	76]

Note: For	each	statistic,	we	report	both	the	median	value	and	95%	HPD	interval.	In	addition	to	the	Iranian	RABV	data	set	introduced	in	the	present	
study,	we	also	report	dispersal	statistics	estimated	for	several	previously	published	RABV	data	sets:	bat	RABV	data	sets	from	Argentina	(Torres	et	
al.,	2014),	Brazil	(Vieira,	Pereira,	Carnieli,	Tavares,	&	Kotait,	2013)	and	Peru	(Streicker	et	al.,	2016),	raccoon	and	skunk	RABV	data	sets	from	North	
America	(Biek	et	al.,	2007;	Kuzmina	et	al.,	2013)	and	a	dog	RABV	data	set	from	northern	Africa	(Talbi	et	al.,	2010).	“n”	indicates	the	number	of	se‐
quences	in	each	data	set.	See	also	Table	S3	for	separate	estimates	obtained	from	each	RABV	clade.



     |  4345DELLICOUR Et aL.

is	on	the	tendency	of	viral	lineages	to	remain	in	or	disperse	towards	spe‐
cific	environmental	conditions.	In	contrast	to	the	analysis	of	the	impact	
on	dispersal	velocity,	 the	analysis	of	the	 impact	on	dispersal	 tendency	
reveals	several	environmental	factors	associated	with	Bayes	factor	val‐
ues	>20,	which	can	be	considered	as	a	strong	support	(Table	2).	Indeed,	
the	analysis	highlights	that	viral	lineages	tended	to	spread	towards	and	
remain	in	accessible	areas	associated	with	relatively	high	human	popula‐
tion	density.	In	addition,	this	analysis	also	underlines	that	lineages	were	
less	likely	to	spread	towards	grasslands	and	to	occur	in	barren	vegetation	
areas.	The	latter	result	related	to	barren	vegetation	is,	however,	a	likely	
consequence	of	the	nonuniform	sampling	across	the	study	area	(cfr	the	
discussion).	To	put	these	results	in	perspective,	we	have	also	performed	
the	same	analyses	on	the	dog	RABV	data	set	of	northern	Africa	(Talbi	et	
al.,	2010).	Interestingly,	these	analyses	provide	evidence	for	the	same	sig‐
nificant	trends	regarding	the	association	between	lineage	dispersal	direc‐
tion	and	inaccessibility/human	population	density	(Table	2).	Several	other	
factors	are	also	highlighted	when	analysing	this	northern	African	data	set:	
RABV	lineages	did	not	tend	to	occur	in	shrublands,	barren	vegetation	and	
elevated	areas,	and	did	not	tend	to	disperse	towards	croplands.

3.5 | Assessing the performance of our approach to 
investigate lineage dispersal direction

To	 test	 the	 statistical	 performance	 of	 our	 new	 approach	 focusing	
on	lineage	dispersal	direction,	we	have	analysed	data	sets	simulated	
under	different	scenarios.	The	results	are	summarized	in	Table	3	and	

first	indicate	the	absence	of	false	positives	when	analysing	data	sets	
simulated	on	a	uniform	environmental	layer,	that	is	without	any	en‐
vironmental	impact	on	the	dispersal	direction	(null	model;	BFs	~	1).	
Furthermore,	 the	analyses	reveal	a	strong	power	of	detection:	ap‐
proximated	 Bayes	 factor	 supports	 are	 >>20	 when	 analysing	 the	
tendency	 of	 lineages	 to	 remain	 in	 or	 disperse	 towards	 populated	
areas,	when	analysing	dispersal	histories	simulated	under	scenarios	
2	 (tendency	 to	 remain	 in	 highly	 populated	 areas)	 and	4	 (tendency	
to	 progressively	 converge	 to	 highly	 populated	 areas),	 respectively	
(Table	3).	However,	when	the	tendency	to	remain	in	highly	populated	
areas	 is	 simulated	according	 to	a	 log‐transformed	 raster	of	human	
population	density	(scenario	3),	we	note	a	decrease	in	the	statistical	
power	of	detection	with	approximated	Bayes	factor	supports	<10.

4  | DISCUSSION

Our	discrete	phylogeographic	analysis	 confirms	 the	co‐occurrence	
of	distinct	lineages	in	Iran	(Horton	et	al.,	2015)	and	reveals	the	pres‐
ence	of	at	least	eight	RABV	clades	circulating	in	the	region.	As	these	
lineages	 are	 likely	 to	 correspond	 to	 independent	 introductions	 of	
rabies	in	Iran,	this	highlights	the	importance	of	the	geographical	po‐
sition	of	 the	 Iranian	region.	Therefore,	 the	 Iranian	region	 is	every‐
thing	but	an	area	with	isolated	RABV	spread,	as	previously	reported	
for	many	parts	of	the	world	(Bourhy	et	al.,	1999;	Chen,	Zou,	Jin,	&	
Ruan,	2015;	Cliquet,	Picard‐Meyer,	&	Robardet,	2014;	Horton	et	al.,	

TA B L E  2   Impact	of	several	environmental	factors	on	the	dispersal	direction	of	RABV	lineages	in	Iran	and	in	northern	Africa

Environmental factor

Testing the tendency of lineages to remain in specific 
environmental conditions (E)

Testing the tendency of lineages to disperse towards 
specific environmental conditions (R)

BF for factors treated as 
negative drivers

BF for factors treated as 
positive drivers

BF for factors treated as 
negative drivers

BF for factors treated as 
positive drivers

Data	set:	RABV	in	Iran	

Elevation 0.1 16.3 12.8 0.1

Barren	vegetation 179.0 0.0 0.7 1.3

Shrublands 2.5 0.4 0.6 1.5

Grasslands 0.1 9.2 224.0 0.0

Croplands 0.1 13.5 3.5 0.3

Inaccessibility >999 0.0 >999 0.0

Human	pop.	density 0.0 >999 0.0 >999

Data	set:	RABV	in	North	Africa

Elevation >999 0.0 3.1 0.3

Barren	vegetation >999 0.0 0.0 27.1

Shrublands 25.5 0.0 0.4 2.4

Grasslands 6.1 0.2 0.7 1.4

Croplands 0.4 2.7 44.0 0.0

Inaccessibility >999 0.0 41.9 0.0

Human	pop.	density 0.0 >999 0.0 127.6

Note: We	report	Bayes	factor	(BF)	support	obtained	from	analyses	based	on	900	trees	sampled	in	each	posterior	distribution.	Each	environmental	
variable	was	treated	as	a	positive	and	as	a	negative	driver	of	the	viral	lineage	dispersal.	BF	>3	and	>20	are	considered	as	“positive”	and	“strong”	
evidence,	respectively	(Kass	&	Raftery,	1995).
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2015;	Pant	et	al.,	2013;	Talbi	et	al.,	2009,	2010;	Troupin	et	al.,	2016).	
However,	 vaccination	 campaigns	 focusing	 on	 Iran	 could	 eliminate	
dog‐mediated	rabies	in	the	country	by	restricting	rabies	cases	to	a	
few	introductions	from	neighbouring	countries	that	will	not	spread	
within	vaccinated	populations.

Further,	the	analysis	of	metadata	associated	with	these	Iranian	
clades	 suggests	 frequent	 RABV	 transmissions	 between	 dog	 and	
wildlife	animal	populations,	and	vice	versa.	Such	a	complex	 trans‐
mission	pattern	has	already	been	identified	in	other	regions	such	as	
Tanzania	(Brunker	et	al.,	2018)	and	in	close	countries	such	as	Turkey	
(Horton	et	al.,	2015;	Marston	et	al.,	2017).	From	an	epidemiological	
point	of	view,	the	identification	of	this	transmission	pattern	under‐
lines	 the	 importance	 of	 the	wildlife	 reservoir	 in	 the	maintenance	
and	 circulation	 of	 the	 virus.	 It	 is	widely	 accepted	 that	 host	 shifts	
of	RABV	and	emergence	of	wildlife	rabies	from	dog‐adapted	RABV	
occurred	on	many	occasions	 (Troupin	et	al.,	2016).	Some	of	 these	
shifts	and	emergence	have	been	for	 instance	described	 in	Europe	
(Bourhy	et	al.,	1999;	McElhinney	et	al.,	2011;	Troupin	et	al.,	2016),	
Taiwan	(Lin	et	al.,	2016)	or	more	recently	in	Turkey	(Marston	et	al.,	
2017;	McElhinney	et	al.,	2011).	Understanding	the	key	sources	re‐
sponsible	 for	 rabies	 epizootics	 and	 identifying	 host	 switches	 can	
have	concrete	implications	on	the	implementation	of	rabies	control	
measures	 in	animals,	as	well	as	on	the	strategy	of	animal	vaccina‐
tion	 towards	 the	ultimate	goal	 of	 elimination	 (Fusaro	et	 al.,	 2013;	
Un	et	al.,	2012).	In	fact,	rabies	vaccination	in	wildlife	requires	spe‐
cific	strategies	and	stakeholder	 involvement	 (Freuling	et	al.,	2013,	
Hsu	et	al.,	2017,	Müller	et	al.,	2015,	Wallace	et	al.,	2018),	which	are	
different	from	those	applied	for	infected	dogs	(Fahrion	et	al.,	2017;	
Lembo,	2012).	In	Iran	and	the	Middle	East,	rabies	has	been	reported	
in	many	wild	carnivore	species	such	as	foxes,	golden	jackals,	wolves	
and	martens	(Janani	et	al.,	2008;	Picot	et	al.,	2017;	Seimenis,	2008).	
Our	study	clearly	shows	that	some	of	the	lineages	circulating	in	Iran	
are	more	 often	 found	 in	wildlife	 species	 (in	 50%	 of	 isolates	 from	
clades	A1,	A2,	B	and	C	altogether;	n	=	86)	than	those	of	the	other	
clades	(D,	E,	F,	G	and	H),	which	were	almost	exclusively	isolated	from	

dogs	(96%;	n	=	25).	Consequently,	a	clear	understanding	of	the	role	
and	the	geographical	distribution	of	the	animal	species	potentially	
involved	in	the	maintenance	of	the	complex	RABV	epidemiological	
situation	is	crucial	to	improve	the	cost	effectiveness	of	control	mea‐
sures	as	well	as	vaccination	campaigns	in	low‐income	countries.

In	this	context,	our	spatially	explicit	continuous	phylogeographic	
reconstructions	have	first	allowed	measuring	a	non‐negligible	disper‐
sal	velocity	that	appears	to	be	highly	similar	to	previously	reported	
estimations	 for	 dog	 rabies	 spread	 in	 northern	Africa	 (Dellicour	 et	
al.,	2017;	Talbi	et	al.,	2010).	One	could	therefore	hypothesize	that	
the	dispersal	velocity	measured	 in	both	cases	 is	 intimately	related	
to	one	of	the	main	host	species,	that	is	dogs,	whose	distribution	and	
individual	movements	are	 impacted	by	human	activities.	Yet,	con‐
trary	to	the	study	performed	on	the	dog	RABV	data	set	from	north‐
ern	Africa	(Dellicour	et	al.,	2017),	we	do	not	detect	any	correlation	
between	 human‐related	 factors	 (or	 any	 other	 tested	 factors)	 and	
lineage	 dispersal	 velocity.	On	 the	 other	 hand,	 the	 analysis	 of	 the	
dispersal	direction	of	 lineages	 reveals	 the	potential	 importance	of	
two	human‐related	factors,	that	 is	accessibility	to	major	cities	and	
human	population	densities	 for	both	study	areas,	 that	 is	northern	
Africa	and	Iran.	Indeed,	the	analyses	of	both	data	sets	revealed	that	
lineages	tended	to	remain	in	but	also	disperse	towards	human‐pop‐
ulated	and	accessible	areas.	These	two	environmental	factors	are	by	
definition	correlated	to	each	other,	and	it	is	thus	not	so	surprising	to	
detect	the	same	association	with	lineage	dispersal	direction	for	both	
of	them.	These	results	underline	the	indirect	importance	of	human‐
populated	 areas,	which	 should	be	 reasonably	 correlated	with	dog	
population	density	(Hampson	et	al.,	2015),	in	attracting	and	further	
spreading	the	virus.	It	is	also	in	line	with	results	previously	obtained	
by	exploring	the	spatio‐temporal	circulation	of	dog	RABV	in	a	large	
African	 city	 (Bangui,	 the	 capital	 city	 of	 Central	 African	 Republic;	
Bourhy	et	al.,	2016).	This	study	revealed	that,	although	dog	RABV	
appears	to	be	endemic	in	Bangui,	its	epidemiology	is	in	fact	shaped	
by	 the	 regular	 extinction	 of	 local	 chains	 of	 transmission	 coupled	
with	the	introduction	of	new	lineages	originating	from	outside	the	

TA B L E  3  Performances	of	the	analytical	workflow	to	test	the	impact	of	environmental	factors	on	the	dispersal	direction	of	lineages

Different scenarios under which spatially anno‐
tated trees were simulated

Testing the tendency of lineages to  
remain in populated areas (E)

Testing the tendency of lineages to  
disperse towards populated areas (R)

1—No	impact	of	human	pop.	density 1.0	(1.2) 1.1	(1.1)

2—Tendency	to	remain	in	populated	area 999	(>999) 1.1	(1.1)

3—Tendency	to	remain	in	populated	areas	(log) 4.6	(8.1) 0.9	(0.9)

4—Tendency	to	disperse	towards	populated	areas 0.4	(1.2) 499	(499)

5—Tendency	to	disperse	towards	populated	areas	
(log)

0.4	(1.7) >999	(>999)

Note: We	report	Bayes	factor	(BF)	support	obtained	from	analyses	based	on	1,000	spatially	annotated	trees	simulated	under	different	scenarios:	
dispersal	direction	of	lineages	was	not	impacted	by	any	environmental	heterogeneity	(scenario	1),	lineages	tended	to	remain	in	(scenarios	2–3)	or	to	
disperse	towards	(scenarios	4–5)	areas	of	high	human	population	density.	The	difference	between	scenarios	2	and	3,	as	well	as	between	4	and	5,	is	
that	the	former	ones	are	based	on	the	original	human	population	raster	and	that	the	latter	ones	are	based	on	a	log‐transformed	version	of	that	raster	
(which	thus	gives	relatively	less	importance	to	highly	populated	areas).	BF	values	reported	between	parentheses	correspond	to	the	support	obtained	
when	testing	the	log‐transformed	version	of	the	human	population	density	raster.	BF	>3	and	>20	are	considered	as	“positive”	and	“strong”	evidence,	
respectively	(Kass	&	Raftery,	1995).
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city,	 generating	 successive	 waves	 of	 spread.	 In	 conclusion,	 pop‐
ulated	 areas	 represent	 strategic	 places	 for	 vaccination	 campaigns	
because	they	can	act	as	crossroads	and	attractors	of	transmission	
chains.	However,	epidemiological	surveillance	and	vaccination	strat‐
egy	should	also	consider	their	connection	with	less	populated	areas	
that	can	be	responsible	for	RABV	re‐emergence.	This	latter	aspect	
also	 highlights	 the	 complexity	 of	 implementing	 an	 efficient	 vacci‐
nation	strategy	allowing	rabies	eradication,	which	will	require	suc‐
cessive	vaccination	campaigns	in	the	same	areas	(Rattanavipapong	
et	al.,	2018).

While	 the	 outcomes	 of	 continuous	 phylogeographic	 analyses	
can	 be	 exploited	 to	 investigate	 the	 impact	 of	 environmental	 fac‐
tors	 on	 lineage	dispersal	 velocity	 and	direction,	 it	 is	 important	 to	
note	that	such	analyses	depend	on	inferred	viral	lineage	movement	
and	thus,	to	some	extent,	on	the	spatial	distribution	of	the	sampled	
sequences.	 Although	 a	 particular	 sampling	 will	 always	 affect	 the	
reconstructed	 dispersal	 history	 of	 viral	 lineages,	 continuous	 phy‐
logeographic	 inference	 will	 still	 provide	 movement	 data	 that	 can	
inform	on	the	dispersal	dynamics	of	the	virus.	Indeed,	even	if	con‐
nected	through	tree	topologies,	branches	can	be	treated	as	distinct	
movement	vectors	informing	on	the	mode	and	tempo	(dispersal	ve‐
locity,	dispersal	direction)	of	lineage	dispersal	events	(Pybus	et	al.,	
2012).	However,	we	acknowledge	two	potential	impacts	of	sampling	
bias	on	these	post	hoc	approaches.	First,	the	effect	of	environmen‐
tal	 conditions	 that	 are	mostly	 represented	 in	undersampled	 areas	
will	be	challenging	to	detect	when	testing	 their	 impact	on	 lineage	
dispersal	velocity	or	the	tendency	of	 lineages	to	disperse	towards	
these	particular	 conditions	 (based	on	 the	R	metric	 and	associated	
randomization	procedure).	Second,	as	currently	implemented,	sam‐
pling	bias	can	directly	impact	the	test	on	the	tendency	of	lineages	to	
remain	in	specific	environmental	conditions	(based	on	the	E	metric	
and	 associated	 randomization	 procedure).	 This	 is	 the	 case	 for	 in‐
stance	 in	 the	present	sampling	where	barren	vegetation	areas	are	
barely	sampled	but	still,	as	expected,	identified	as	a	factor	repulsing	
lineages.	In	conclusion,	because	of	its	stronger	dependence	on	sam‐
pling	heterogeneity,	the	latter	method	based	on	the	metric	E can be 
considered	 to	be	more	descriptive	or	exploratory	 in	nature	 rather	
than	a	proper	statistical	test	and	should	hence	be	interpreted	with	
caution.

Overall,	 our	 study	 demonstrates	 that	 continuous	 phylogeo‐
graphic	 reconstructions	 represent	 a	 useful	 tool	 to	 describe	 but	
also	to	analyse	the	dispersal	dynamic	of	virus	spread.	Indeed,	phy‐
logenetic	trees	inferred	by	continuous	phylogeographic	inference	
can	first	be	exploited	to	estimate	dispersal	statistics,	which	mainly	
represent	useful	metrics	in	the	context	of	a	comparison	between	
virus	spread	associated	with	different	host	species	and/or	environ‐
mental	conditions,	or	even	between	different	viruses.	In	addition,	
such	annotated	trees	can	be	used	to	investigate	the	impact	of	en‐
vironmental	 factors	 on	 the	 dispersal	 velocity	 and	 tendency,	 two	
different	but	 important	aspects	 to	consider	 in	order	 to	elucidate	
the	drivers	behind	an	epidemic.	However,	these	phylogeographic	
approaches	come	with	 relatively	 important	 limitations.	First,	and	

as	 discussed	 above,	 they	 remain	 dependent	 from	 the	 sampling	
pattern	 and	 quality.	 For	 instance,	 environmental	 conditions	 as‐
sociated	with	 the	 least	 sampled	 areas	will	 be	 proportionally	 less	
investigated	 than	 in	 well	 sampled	 areas.	 Consequently,	 there	 is	
always	 a	 possible	 risk	 than	 an	 important	 environmental	 factor	 is	
not	identified	because	of	sampling	bias.	More	generally,	while	the	
effects	of	sampling	bias	are	relatively	well	known	in	the	context	of	
discrete	 phylogeographic	 inference	 (Baele	 et	 al.,	 2018;	De	Maio,	
Wu,	O'Reilly,	&	Wilson,	2015),	its	implications	for	continuous	phy‐
logeographic	are	still	unclear	and	should	ideally	be	investigated	in	
future	 studies.	 Second,	 these	 approaches	 require	 the	 availability	
of	precise	sampling	data	such	as	sampling	dates	but	also	sampling	
locations.	While	the	availability	of	sampling	dates	is	crucial	to	ob‐
tain	 temporal	 signal	 required	 to	 infer	 time‐stamped	phylogenies,	
sampling	 geographical	 coordinates	 are	 also	 compulsory	 for	 con‐
tinuous	 phylogeographic	 inference.	 Precise	 sampling	 origins	 in	
particular	are	not	frequently	available	along	with	publicly	available	
sequences	 (directly	 in	 databases	 like	 GenBank	 or	 in	 associated	
publications).	 Increasing	 the	 availability	 of	 such	 metadata	 could	
open	new	opportunities	for	 large‐scale	phylogeographic	analyses	
with	key	benefits	for	epidemiologic	investigations	based	on	phylo‐
geographic	approaches.
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