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Purpose: To improve multi‐atlas segmentation of the skeleton from whole‐body 
MRI. In particular, we study the effect of employing the atlas segmentations to itera-
tively mask tissues outside of the region of interest to improve the atlas alignment 
and subsequent segmentation.
Methods: An improved atlas registration scheme is proposed. Starting from a suit-
able initial alignment, the alignment is refined by introducing additional stages of 
deformable registration during which the image sampling is limited to the dilated 
atlas segmentation label mask. The performance of the method was demonstrated 
using leave‐one‐out cross‐validation using atlases of 10 whole‐body 3D‐T

1
 images 

of prostate cancer patients with bone metastases and healthy male volunteers, and 
compared to existing state of the art. Both registration accuracy and resulting seg-
mentation quality, using four commonly used label fusion strategies, were evaluated.
Results: The proposed method showed significant improvement in registration and 
segmentation accuracy with respect to the state of the art for all validation criteria 
and label fusion strategies, resulting in a Dice coefficient of 0.887 (STEPS label 
fusion). The average Dice coefficient for the multi‐atlas segmentation showed over 
11% improvement with a decrease of false positive rate from 28.3% to 13.2%. For 
this application, repeated application of the background masking did not lead to sig-
nificant improvement of the segmentation result.
Conclusions: A registration strategy, relying on the use of atlas segmentations as 
mask during image registration was proposed and evaluated for multi‐atlas segmen-
tation of whole‐body MRI. The approach significantly improved registration and 
final segmentation accuracy and may be applicable to other structures of interest.
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1 |  INTRODUCTION

Multi‐modal whole‐body MRI is emerging as a new im-
aging standard for many diseases requiring detection and 
monitoring of skeletal and soft tissue involvement in sys-
temic cancers. Whole‐body MRI has been successfully 
used in several cancers for the detection of bone, lymph 
nodes, and visceral metastases and their monitoring under 
treatment.1-6 Among these, metastatic cancers to bone and 
hematologic malignancies, mainly multiple myeloma, ben-
efit from the excellent study of the skeleton by whole‐body 
MRI. However, the radiologist reading time of the whole‐
body MRI scans may be long due to the large amount of 
information provided by the images, and to the limited con-
trast with adjacent tissues.

The principle challenge for integrating whole‐body MRI 
in clinical routine comes from the large amount of data to be 
reviewed. Computer‐aided image analysis may alleviate the 
workflow. Such automatic algorithms could ultimately facil-
itate the process of reading whole‐body scans by reducing 
the reading time and improving the diagnostic accuracy of 
whole‐body MRI.

Segmentation of anatomical tissue of interest is crucial 
for quantitative analysis of whole‐body images. In meta-
static bone disease (MBD), staging and treatment response 
monitoring together with medical image processing tools, 
like skeleton segmentation, could assist in automatic tumor 
detection, as well as volumetric lesion burden assessment.7 
Skeleton segmentation can be used to remove false positive 
findings outside of the region of interest, thus directing the 
reader's attention directly to the bones. Additionally, in com-
bination with spatially pre‐aligned “functional” whole‐body 
MRI sequences such as diffusion‐weighted (DWI) whole‐
body MRI8 and apparent diffusion coefficient (ADC) maps, 
it enables focused, efficient, multi‐parametric quantitative 
evaluation of the bone.

The segmentation of the skeleton from a mono‐modal 
MRI anatomical sequence is a challenging process. The  
T1‐weighted MR images represent superior resolution and  
signal‐to‐noise ratio compared to “functional” modalities; 
however, osseous tissue is not easily distinguishable. The bone 
cortices do not generate signal and the visible part is mainly 
the bone marrow. Additionally, there is a significant intensity 
overlap between the values of the bones and extra‐osseous 
fat tissue in T1‐weighted acquisition sequences. Therefore, 
in contrary to computed tomography (CT), a segmentation 
based only on the image intensity profile is not feasible.

Hedström9 proposed a skeleton segmentation method 
utilizing the contrast properties of whole‐body multi‐modal 

MRI (water‐fat separated images), by extracting regions with 
low bone signal, removing segmented lung and abdomen, 
and using various filtering techniques. The method resulted 
in 0.94 mean Dice coefficient over a dataset of 20 whole‐
body images; however, it requires multiple MR modalities 
with a specific MR parameter weighting.

An atlas‐based segmentation approach could provide a 
viable solution applicable to both single and multi‐modality  
skeleton segmentation problem. A classical atlas‐guided  
approach treats segmentation as an image registration prob-
lem, where spatial correspondence is established between the 
atlas and target image. However, due to the complexity of 
the skeleton, large variations in patient anatomy (in terms of 
size, weight, and body composition) and differences in pose 
during scanning, spatial image registration of inter‐patient 
whole‐body images is a higly challenging task, limiting the 
accuracy of the segmentation algorithm.10

To date, few authors have reported the registration of 
whole‐body MR inter‐patients scans. Strand et al11 proposed a 
sequential intersubject whole‐body MRI registration method 
that relies on tissue‐specific elasticity constraints. It requires 
multiple whole‐body image modalities (i.e. Dixon water‐fat 
imaging), used to automatically define tissue classes prior to 
the registration (i.e. water, fat, different bone regions9). The 
skeleton was registered with a region specific piecewise af-
fine approach. The method performed well for inter‐patient 
whole‐body image alignment. Akbarzadeh et al12 proposed a 
two‐stage whole‐body MRI to CT registration scheme, con-
sisting of rigid and deformable registration. The scheme was 
later adapted by Arabi et al13 in a large label fusion compari-
son study for atlas‐based skeleton segmentation.

In this study, we propose a novel multi‐atlas skeletal seg-
mentation approach based on registration with iterative tissue 
masking. Our approach consists of a multi‐stage registration 
in which target patient and atlas are first roughly aligned using 
standard rigid and deformable registration. Next, background 
anatomy is progressively masked out using the label maps in 
the atlas, and registration on the target anatomical structure 
is refined further. Experiments are performed on whole‐body 
MR acquisitions of patients with bone metastases and healthy 
volunteers.

2 |  METHODS

2.1 | Atlas‐based segmentation
Atlas‐based segmentation is an automated segmentation tech-
nique which relies on spatial registration of the target image 
to be segmented with an atlas, a template intensity image for 
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which the segmentation (the atlas labels) are available. After 
alignment of the atlas template and the target image, the atlas 
labels are propagated to the target image. Often, multiple at-
lases are employed and target segmentations obtained from 
each atlas are combined using label fusion. So‐called multi‐
atlas segmentation offers benefits in terms of robustness and 
accuracy.14

The proposed skeleton multi‐atlas segmentation from 
whole‐body MRI consists of multiple pairwise image regis-
trations, performed between each atlas and the target image 
using iterative background masking, followed by a label fu-
sion to obtain the final segmentation result.

2.2 | MRI and atlas skeleton label images
Anatomical whole‐body 3D‐T1 

15 spin‐echo images (Philips 
Ingenia 3T) were acquired as a routine follow‐up examination 
of male patients with advanced prostate cancer with both focal 
and multi‐focal bone metastases. The following parameters 
were used: echo time = 8 ms, repetition time = 382 ms, image 
station matrix size = 480 × 480, pixel spacing = 0.65 mm, 
slice thickness = 1.19 mm. The whole‐body image composi-
tion from the four independent stations resulted in an image of 
a matrix size equal to 210 × 768 × 1612‐1705. The same acqui-
sition protocol was used for scanning healthy male volunteers. 
The study was performed as part of the Platform for Imaging 
in Clinical Research in Brussels (PICRIB), supported by the 
Brussels Region, and approved by the Institutional Ethics 
Board of the Cliniques Universitaires Saint‐Luc, Universitair 
Ziekenhuis Brussels and ULB‐Hôpital Erasme.

The skeleton atlases consisted of 10 whole‐body images 
(5 male advanced prostate cancer patients and 5 male vol-
unteers, mean age equal to 57 years ± 17.8 years). For each 
subject, the skeleton segmentation was performed manually 

using the GrowCutEffect algorithm from Slicer16 and man-
ually refined using the ITK‐SNAP17 tool and mathematical 
morphology binary closing with a kernel radius equal to  
2 voxels. The segmented bones were those most relevant for 
metastatic bone disease involvement and included the clavi-
cle, vertebra from the second cervical up to sacrum, pelvis, 
and femur bones (see Figure 1). Both trabecular and cortical 
bone were included. On T1‐weighted MRI, bone metastases 
appear as a hypo‐intense in comparison to healthy bone tissue 
and were included as the part of the skeleton mask.

2.3 | Data preprocessing
Prior to atlas registration, all whole‐body images were cor-
rected for the following geometric and intensity artifacts (see 
Figure 1):

• Inter‐station spatial misalignment. Due to patient move-
ment during scanning, separate anatomical station images 
are often misaligned at the station edge, mostly along ante-
rior‐posterior and right‐left directions. Groupwise rigid 
image registration was applied to align all stations,18 using 
the average mutual information metric (AMI).19,20

• Image noise and low‐frequency bias field. A standard Insight 
Segmentation and Registration Toolkit21 (ITK) implemen-
tation of anisotropic diffusion filtering22 was applied to 
reduce the image noise while conserving the edge infor-
mation. The default parameters available in the ITK imple-
mentation were applied: conductance = 4, iterations = 10,  
and time step = 0.01. Bias field was automatically reduced 
using the N4ITK nonparametric nonuniform intensity nor-
malization algorithm.23

• Inter‐station intensity differences. Whole‐body MRI sta-
tions do not represent comparable intensity profiles within 

F I G U R E  1  Raw whole‐body T
1
 anatomy image before (left) and after preprocessing steps (middle). Corrected image was used to obtain 

manual skeleton segmentation. Coronal view of a whole‐body T
1
 image in overlay with corresponding manual bone segmentation mask (red) and 

volume rendering from manual segmentation (right)
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the same whole‐body acquisition. Therefore, a linear in-
tensity matching between 0th and 99th intensity percentile 
based on the station overlap region was applied sequen-
tially prior to whole‐body image composition, to align the 
whole‐body intensity profile along the craniocaudal direc-
tion. The middle station was used as a reference intensity 
profile to minimize the influence of the cumulative inten-
sity bias.

2.4 | Registration
The registration process of multi‐atlas segmentation typi-
cally consists of pairwise multi‐stage registrations between 
the 3D‐T1 target whole‐body image t and each atlas template 
MR image a

n
, n = 1, …, N, N being the number of consid-

ered atlases. It is commonly defined as the optimization prob-
lem over the parameters µ

n
 of the spatial transformation  , 

guided by the cost function  

In (1), the spatial coordinate x is taken from the overlapping re-
gion Ω, in which we assumed an intensity interpolation scheme 
for the discrete images t and a

n
.

Arabi et al13 reported good segmentation accuracy using 
a registration method consisting of a rigid registration fol-
lowed by a deformable B‐Spline stage using a mutual in-
formation metric (see Table 1). For the ease of comparison, 
the proposed image registration protocol was implemented 
as an extension to the reported state‐of‐the‐art registration 

scheme12,13 by adding additional registration stages, that is, 
new registrations initialized from the previous solution.

Each additional stage consisted of a B‐Spline registra-
tion using mutual information and a bending energy penalty 
(BEP).24 In contrast to the previous stages, only regions in 
immediate vicinity of the region of interest to be segmented 
were considered. To this end, a dilated binary atlas‐label 
image l

n
 was added as a registration mask. The degree of dila-

tion (and the amount of neighboring tissue considered during 
registration) was decreased in each additional registration 
stage. The underlying assumption is that alignment of the tar-
get structures may be hampered by surrounding tissues, not 
of interest for the segmentation task, due to different relative 
position of these structures in the atlas and target patients. 
As the alignment after each additional iteration improves, a 
lower degree of dilation can be used, further focusing the reg-
istration on the region of interest.

The choice of dilation radius should provide sufficient 
overlap between the registration mask and the structures 
of interest, and take into account the image downsampling 
factor determined by the choice of multi‐resolution image 
pyramid schedule. First, the initial dilation radius value 
was investigated, through quantitative evaluation of differ-
ent dilation kernel sizes (range 5‐100 mm). In the following 
experiments, the benefit of iterative masking with decreas-
ing kernel sizes was investigated. To this end, the optimal 
dilation kernel was decreased by a factor two in subsequent 
iterations.

Registration was implemented in the elastix software 
package.25 Contrary to (1), we redefined the transformation 

(1)µ̂
n
= arg min

µn


x∈Ω

(
t(x), a

n

(


µn
(x)

))
.

  State‐Of‐The‐Art12  

Parameter 1st stage 2nd stage Proposed additional stages

Transform Rigid B‐Spline Masked B‐Spline

Metric 
MI

a 
MI


MI

, BEPb

Number of resolution levels 5 5 4

Image pyramid schedule 16 8 4 2 1 16 8 4 2 1 10 4 2 1

B‐Spline grid spacing ‐ 32 16 8 4 2 4 2 1 1

Final B‐Spline grid spacing (mm) ‐ 8 15

Number of histogram bins 32 32 32

Metric 1 weight 1 1 10

Metric 2 weight ‐ ‐ 1 10 10 25

Max iterations 4096 2048 1024 512 256 4096 4096 2048 1024 512 2000

Sampler Random Random Random Sparse Mask

Number of samples 2000 5000 2000
aMutual information similarity metric. 
bBending energy penalty regularizer. 

T A B L E  1  Overview of the registration parameters used in multi‐atlas registration
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from atlases a
n
 to the target t, allowing to use a fixed image 

mask which enables more efficient sampling strategies, 

where metric calculation was limited to the region of the dilated 
label image ld

n
.

The obtained set of transformation maps were used to de-
form each atlas label image l

n
 onto a target whole‐body image 

t using the inverted transformation  −1
µn

. The inverse of a  
B‐Spline transform cannot be computed analytically, as in 
case of a rigid transform, and has to be approximated using 
an iterative optimization process. Here, the inverse deforma-
tion field was found by iteratively minimizing the difference 
between the forward and inverse deformation field 

The approach was shown to provide accurate approxima-
tions.26 The same optimization algorithm, multi‐resolution 
pyramid schedule, and other registration parameters were 
used as for the initial deformable registration. The final seg-
mentation is obtained through the application of a label fu-
sion strategy (see Figure 2). All registration parameters are 
presented in Table 1.

2.5 | Label fusion strategies
Labels are combined using label fusion, aimed at maximiz-
ing the final skeleton segmentation accuracy. Arabi et al13 
performed an extensive study on the influence of different 

label fusion strategies on the accuracy of the atlas‐based MRI 
skeleton segmentation. The local, voxel‐wise weighted atlas 
fusion approach provided the best result achieving a Dice co-
efficient of 0.75‐0.81, depending on the similarity measure 
used for ranking of the atlas voxels.

As the quality of registration may have an impact on the 
optimal strategy and settings of the label fusion, a few of com-
mon label fusion algorithms were reevaluated for current study.

• Majority Voting27 (MV): all registered binary atlases are 
summed and normalized resulting in a probability map 
representing a probability for each voxel being a seg-
mented structure. The probability map is later thresholded, 
allowing to obtain the final binary segmentation.

• Global Weighting28 (GNCC): the pair‐to‐pair image reg-
istration quality in atlas segmentation may differ due to 
large differences between the target and atlas subject body 
size, weight, and pose during scanning and image qual-
ity. Therefore, for each pairwise registration, a similarity 
metric can be calculated between the reference image and 
the transformed atlas image, providing a quantitative value 
representing the registration accuracy for each image pair. 
First, the normalized cross‐correlation metric (NCC) was 
calculated to rank the registration accuracy for each image 
pair. Later, only the first r best‐ranked atlases were used in 
the MV scheme.

• Local Weighting29 (LNCC): similarly to global weighting, 
the normalized cross‐correlation is used to assess the simi-
larity of the registered image with the reference. However, 
the calculation is performed locally. The similarity metric 
is calculated using a specific 3D image kernel of a given 

(2)µ̂
n
= arg min

µn


x∈ld

n

(
a

n
(x), t

(


µn
(x)

))
,

(3)‖T
−1
µ

(T
µ

(x))−x‖.

F I G U R E  2  Schematic representation of the registration algorithm. Multiple pairwise registrations are performed between fixed atlas images 
a

n
 and a moving image t allowing for more efficient sampling using a dilated atlas‐label fixed image mask ld

n
. Obtained transformations are inverted 

to warp atlas‐label images on a common image space allowing for label fusion
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radius k, from which the r highest ranked atlases are se-
lected for local MV.

• STEPS: the Similarity and Truth Estimation for 
Propagated Segmentations (STEPS),30 is an extension to 
the Simultaneous Truth and Performance Level Estimation 
(STAPLE)31 algorithm. It is an expectation‐maximization 
algorithm, which computes the probabilistic estimate of 
the true segmentation from a collection of warped atlas 
label images, and a measure of the performance level rep-
resented by each segmentation. The optimal combination 
of the segmentations is obtained by facilitation of the local 
and global weighting of each deformed atlas label (using 
NCC metric), additionally incorporating a prior model of 
the spatial distribution of structures and a performance 
parameter bias improving the segmentation accuracy of 
structures much smaller than the background.

The label fusion strategies implementation was adapted 
from an open‐source software toolbox NiftiSeg.32 The value 
of threshold for all label fusion strategies was set to 0.5, 
corresponding to a majority vote. For GNCC, LNCC, and 
STEPS, the influence of the number of highest ranked at-
lases (r = 3‐8) was investigated. Additionally, for the locally 
weighted (LNCC) and STEPS label fusion methods, different 
kernel sizes were applied (k = 3‐33 voxels).

2.6 | Evaluation criteria
Evaluation of the accuracy of obtained registration and segmen-
tation results was performed using segmentation overlap and 
distance measures. The result of registration accuracy was calcu-
lated taking a mean of all atlas‐target image pairs after the regis-
tration. The result segmentation was compared with the ground 
truth manual skeleton segmentation using a leave‐one‐out  
cross‐validation on the atlas of 10 whole‐body images. The over-
lap measures included the Dice coefficient (DC) and false posi-
tive and false negative error volume fractions (FP, FN).33 

 

 

where V
R
 is the skeleton segmentation binary ground truth 

image and V
S
 is the obtained segmentation image.

The distance criteria included the Hausdorff mean dis-
tance, the Hausdorff maximum distance, and SD. The 
Hausdorff distance (in mm) was computed from the Euclidean 
distance map of the ground truth manual segmentation and 
the surface of the segmentation obtained from atlas‐based 
method, according to the formula: 

where 

Since not all of the data were normally distributed 
(Shapiro‐Wilk normality test,34 P > .05), nor equality of vari-
ance was observed (F‐test,35 P > .05), the Wilcoxon 2‐tailed 
signed‐rank test was used to check for statistical significance 
(P  =  .05) between the proposed method and the baseline 
method. The statistical difference between applied label fu-
sion strategies was additionally investigated (P = .05).

3 |  RESULTS

The proposed registration strategy based on the use of a dilated 
atlas mask was evaluated and compared to the state of the art 
through computation of the Dice coefficient between the atlas 
and target label images after registration. The influence of the 
size of the dilation mask radius was investigated for a range of 
5‐100 mm. The results of the Dice coefficient are presented in 
Table 2. The most accurate set of registrations was obtained 

(4)DC(V
R
, V

S
)=

2|V
R
∩V

S
|

|V
R
|+ |V

S
|

(5)FP(V
R
, V

S
)=

|V
S
⧵V

R
|

|V
S
|

(6)FN(V
R
, V

S
)=

|V
R
⧵V

S
|

|V
R
|

(7)H(V
R
,V

S
)=max (h(V

R
, V

S
), h(V

S
, V

R
)),

(8)h(V
R
, V

S
)=max

a∈VR

min
b∈VS

‖a−b‖.

T A B L E  2  Top: Influence of the size of the registration mask dilation radius (in mm) on registration accuracy

  Dilation of the registration mask in mm

  SOTA 5 10 15 20 25 30 35 40 50 75 100

Registration DC 0.517 0.688 0.716 0.725 0.730 0.729 0.724 0.713 0.715 0.681 0.658 0.628

Segmentation DC 0.746 0.875 0.884 0.886 0.887 0.885 0.882 0.878 0.875 0.863 0.848 0.808

Mask dilation (mm) DC FP FN H
mean

H
max

H
SD

20 0.887 ± 0.011 0.132 ± 0.025 0.093 ± 0.023 0.989 ± 0.189 32.23 ± 19.67 1.598 ± 0.890

20 + 10 0.887 ± 0.010 0.131 ± 0.024 0.092 ± 0.021 1.013 ± 0.152 42.98 ± 20.83 1.774 ± 0.717

20 + 10 + 5 0.885 ± 0.012 0.145 ± 0.025 0.080 ± 0.019 0.894 ± 0.125 26.04 ± 17.45 1.352 ± 0.649

Notes: The mean Dice coefficient for all registration pairs and the segmentation Dice coefficient for STEPS‐label fusion LOOCV (r = 4, k = 5) is given. Bottom: 
Segmentation accuracy (±SD) after additional stages with decreasing registration mask size. All results are given for STEPS‐label fusion.
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using the kernel dilation radius of 20 mm. For this specific 
application, the choice of the kernel size was not critical in the 
range 10‐30 mm, all providing comparable results.

The detailed comparison of the Dice coefficient for the 
best performing kernel size (20 mm) values for all registration 
pairs are presented in Figure 3. The state‐of‐the‐art methodol-
ogy provided a mean Dice coefficient of 0.517 ± 0.159 for all 
registration atlas‐target pairs. The proposed method improved 
registration accuracy on a vast majority of image pairs, pro-
viding a significantly better mean Dice coefficient equal to 
0.730 ± 0.129 (P < .001). The proposed method can be char-
acterized by higher robustness, providing less misregistrations 
across all possible target image to atlas image combinations. 
The majority of the reported Dice coefficients for different 
atlas pairs have improved; however, for some subject pairs the 
accuracy is still low (e.g., pair V3 vs. P5). After visual inves-
tigation of the registration result for this specific subject pair, 
the registration failed in the baseline stage, resulting in a large 
spatial deformations predominantly in the pelvic region.

The application of additional registration stages with 
decreasing mask dilation (mask with 10 mm and 10 mm + 
5 mm dilation, respectively) did not further improve the reg-
istration mean Dice coefficient (0.733 ± 0.130 and 0.728 ± 
0.129, respectively, P > .124), see Figure 3.

In order to verify that the atlas registration accuracy im-
provement was caused by background masking and not due 
to increased sampling in the region of interest, the experi-
ment was repeated using a full image sampler in the third 
registration stage, without using a sampling mask. The results 
showed no significant improvement (P = .436) in comparison 
to the state‐of‐the‐art result (two‐stage registration, STEPS). 
A similar experiment was conducted using the proposed 
three‐stage registration without BEP regularizer, demonstrat-
ing that it is not significantly different from proposed meth-
odology with BEP (P = .241, STEPS).

The choice of the optimal label fusion strategy with hy-
perparameters was additionally investigated for the proposed 

dataset using state‐of‐the‐art and proposed registration meth-
odologies. The Dice coefficient results of STEPS label fu-
sion strategy, significantly outperformed MV and GNCC 
label fusion strategies for the proposed registration scheme 
(P  <  .001). Label fusion hyperparameter optimization was 
performed to obtain the optimal value of parameters k (ker-
nel size) and r (number of highest ranked atlases used). 
Figure 4 shows the accuracy of extracted skeleton using dif-
ferent kernel sizes and number of highest ranked atlases for 
different label fusion strategies. The best result for GNCC 
was achieved using r  =  7 highest ranked atlases, irrespec-
tive of the chosen registration. The best results for LNCC and 
STEPS was achieved using a number of atlases equal to r = 3 
and r = 4, respectively, and a kernel size k = 5 voxels for both 
registration approaches. The STEPS method proved to be 
least effected by the number of highest ranked atlases used. 
Additionally, the average Dice coefficient for varying num-
ber of atlases selected randomly (all combinations) from the 
entire dataset was investigated (see Figure 4, right), showing 
less DC variation, plateauing after six used atlases.

For the multi‐atlas segmentation, using one additional reg-
istration stage, the mean Dice coefficient using STEPS label 
fusion technique was equal to 0.746 for the baseline method, 
whereas the proposed registration allowed for a mean 11% 
improvement in Dice coefficient (0.887, P  <  .001), using 
leave‐one‐out cross‐validation. Additionally, all other valida-
tion criteria provided significantly better results (except of 
Hmax, P = .075), showing 53% improvement for false positive 
and 114% for false negatives. Quantitative results for each 
validation criterion of the best performing label fusion strat-
egy (STEPS) are presented in Table 3. The table with detailed 
performance of all of the label fusion strategies is included 
in the manuscript supplementary material (see Supporting 
Information Table S1).

An example of qualitative analysis for the state‐of‐the‐art 
and proposed methods are depicted in Figures 5 and 6. Figure 5  
shows the effect after one additional, masked registration 

F I G U R E  3  Atlas template registration confusion matrix results representing the Dice coefficient for the state‐of‐the‐art (left), proposed 
(middle), and proposed with an extra resolution with a smaller mask size method for all registration combinations of patient and volunteer images
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stage on the 3D reconstructed segmentation volumes and the 
Hausdorff distance between the ground truth and obtained 
result. A representative coronal slice of a whole‐body T1 in 
overlay with atlas‐based segmentation, showing true positive, 
false positive, and false negative volume ratios, are presented 
in Figure 6. It is clearly visible that the false positive volume 
fraction has decreased (mostly in the intervertebral area) with 
a simultaneous increase of true positive volume fraction.

3.1 | Computation times
Processing was performed on a cluster node using Intel 
E5‐2680v2 and 64 GB RAM. The registration procedure for 
one atlas took approximately 20 minutes (single‐threaded ex-
ecution), the total atlas registration time (N = 9) was approxi-
mately 180 minutes. The execution of label fusion strategies 
took respectively: 1 minute for MV, 3 minutes for GNCC, 
and 30 minutes for LNCC and STEPS.

4 |  DISCUSSION AND 
CONCLUSIONS

Skeletal segmentation from whole‐body imaging may be of 
considerable benefit to longitudinal follow‐up studies for pa-
tients with bone tumoral involvement, facilitating the assess-
ment and tracking of changes in bone lesion distribution, total 
tumoral volume, and treatment‐induced changes in ADC within 
segmented bone metastases. Due to its complex topology con-
sisting of multiple structures with highly variable sizes, and 
large anatomical variations between different atlases, multi‐
atlas segmentation of the human skeleton remains a challeng-
ing task. The key step, having a large impact on the accuracy of 
the obtained segmentation, is the quality of spatial registration 
between the reference image and its atlas counterpart.

Arabi et al13 reported Dice coefficient of 0.78 ± 0.05 
(LNCC), which is higher than the 0.75 ± 0.07 found here. 
However, the results cannot be compared directly due dif-
ferences in the data. In particular, they used a higher num-
ber of atlases, which were obtained by intensity thresholding 
whole‐body CT images, leading to detailed skeleton atlases 
including the ribs. Therefore, to provide a fair comparison 
between the methods, the state‐of‐the‐art whole‐body image 
registration was reimplemented and applied on the type of 
skeleton atlas used in this work.

We proposed an extension to a previously proposed regis-
tration scheme, which significantly improved both: the regis-
tration performance and obtained atlas segmentation quality 
without large increase in computational complexity. By add-
ing the third stage to the registration scheme, the optimiza-
tion is focused on the structures of interest (skeleton atlas 
label). The method provided higher stability with only a few 
low accuracy registration results (see Figure 3), which were 
primarily caused by large spatial deformation errors after the 
B‐Spline deformable unmasked stage. The failure in the atlas 
pair V3 and P5 was probably caused by differences in femur 
bones positioning during scanning in V3; and multiple focal 
metastases in upper pelvis with thin pelvic ilium in P5. The 
result could not be further improved by iterative background 
masking due to too large initial position differences.

The registration accuracy was visually assessed in three 
separate skeleton regions (spine, pelvis, and femur bone). 
The pelvic region showed low inter‐patient variations in 
shape and pose, and was usually aligned with high accuracy 
providing a precise atlas‐based segmentation. Femur bones 
showed high registration accuracy for most cases. However, 
in some subject pairs, large differences in positioning of the 
legs during MR acquisition resulted in failed registrations. In 
our study, the label fusion procedure was able to eliminate 
these case. Spine registration proved to be a challenging task, 

F I G U R E  4  Left: Plot of Dice coefficient vs. the number of the highest ranked atlases parameter r for a fixed kernel size k equal to 5 voxels. 
STEPS label fusion method shows higher stability across a varying number of atlases used. Middle: Plot of Dice coefficient vs. size of the kernel 
parameter k, for a fixed r equal to 4. The influence of a kernel size and number of atlases has less influence when using the proposed registration 
methodology, showing higher robustness of the method. Right: Aggregated values of Dice coefficients: average with SD per number of atlases used 
for the best performing label fusion technique (STEPS) for the state‐of‐the‐art and proposed registration methods
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with inter‐patient spinal deformations and initial misalign-
ment of vertebra along craniocaudal direction. The iterative 
background masking stage had the highest impact on the ver-
tebral registration and segmentation accuracy.

Latter results lead us to believe the increase in registration 
accuracy is due to excluding the neighboring tissue from the 
registration. Skeletal structures may appear in different rel-
ative position with respect to surrounding organs from one 
patient to another. Jointly registering skeleton and neighbor-
ing tissues leads to a compromise in alignment of both types 
of structures. Registration with a background masking allows 
for partly independent deformations between the masked out 
region (organs, fat, muscle) and skeleton, compensating for 
differences in inter‐patient posture, skeleton size, and body 
composition (see Figure 7).

A choice of the dilation radius in registration mask plays 
an important role in registration performance and should be 
individually optimized for specific atlas‐based segmentation 
application. In the case of investigated dataset, the dilation 
of 20 mm gave the best registration accuracy in terms of 
mean Dice coefficient for all independent registration pairs. 
The further dilation of the registration mask lead to a worse 
result since less registration points were sampled from the 
direct proximity of the skeleton. Excessive dilation of the 
mask leads to further deterioration of the registration pairs 
mean Dice score, finally becoming equivalent to the state‐of‐ 
the‐art result.

For this study, using additional iterations of background 
masking did not lead to a significant improvement in reg-
istration mean Dice coefficient nor segmentation accuracy 

    Registration

Label‐fusion Validation criterion State‐Of‐The‐Art Proposed P value

STEPS DC 0.746 ± 0.069 0.887 ± 0.011 <.001

r = 4a FP 0.283 ± 0.083 0.132 ± 0.025 <.001

k = 5b FN 0.214 ± 0.095 0.093 ± 0.023 <.001

  H
mean

2.986 ± 1.378 0.989 ± 0.189 <.001

  H
max

49.75 ± 19.47 32.23 ± 19.67 .075

  H
SD

4.328 ± 2.164 1.598 ± 0.890 <.001

Note: Hausdorff distance criteria are presented in mm. P value between the proposed and state‐of‐the‐art method is given.
aNumber of highest ranked atlases. 
bSize of the kernel (voxels). 

T A B L E  3  Segmentation evaluation criteria averaged over leave‐one‐out cross‐validation results for the state‐of‐the‐art and proposed 
registration strategies (±SD), STEPS label fusion

F I G U R E  5  Comparison of the 3D volume rendering (gray) and Hausdorff distance between the ground truth manual skeleton segmentation, 
state‐of‐the‐art method and proposed method with the best performing label fusion strategy (STEPS). Green indicates true positive voxels,  
red—false positive, and yellow—false negative. The proposed registration method visibly improves vertebral separation
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F I G U R E  6  Coronal view of a whole‐body T
1
 image of subject V

2
 in overlay with a skeleton segmentation result for different atlas registration 

and label fusion algorithms, indicating the true positive, false positive, and false negative segmentation fraction. Top row: State‐of‐the‐art 
registration scheme. Bottom row: Proposed registration scheme with the best Dice coefficient of 0.894 (STEPS)

F I G U R E  7  Example of a registration result between P
3
 reference image (left) and warped target image V

3
 for the state‐of‐the‐art (middle) 

and proposed (right) methodologies with background masking (red volume). State‐of‐the‐art registration led to an overall approximate alignment 
of bones and soft tissues (kidneys, fat, green arrows). The background masking procedure allowed for further improvement of the alignment of the 
skeletal structures (red arrows) without the negative effect of the surrounding soft tissue
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in terms of Dice coefficient. Additional stages provided 
improvement for some segmentation evaluation metrics 
(P > .05) but the benefit was marginal and not deemed to out-
weigh the additional processing time (see Table 2). However, 
for other structures of interest, additional iterations with a 
decreased sampling mask dilation could provide a better seg-
mentation accuracy.

Strand et al11 proposed a piecewise affine registration 
of each of the nine independent body regions. The method, 
shows accurate whole‐body MR inter‐subject registration re-
sults, however, requires a series of additional preprocessing 
steps (multi‐atlas body part segmentation, bone anatomical 
landmarks location). The approach is specifically tuned to 
whole‐body image applications, potentially rendering it more 
robust. Background masking, however, is a simple and generic 
approach which can be applied to any multi‐atlas segmentation 
task.

An increased number of atlases may improve the seg-
mentation accuracy for the baseline method. The number 
of atlases used to build the skeleton atlas was, however, 
sufficient for the proposed method with Dice coefficient 
plateauing around 0.88, with only a marginal improvement 
between six and nine atlases (Figure 4). The behavior of 
different registration approaches has been additionally 
compared using four common label fusion strategies. 
STEPS showed the highest accuracy, provided a smooth 
result segmentation image (see Figure 5) and was stable 
across to the number of highest ranked atlases and the ker-
nel size used (see Figure 4).

The atlas to reference image registration accuracy showed 
to have a key influence on the performance of the label fusion  
algorithms. It is clearly seen that the influence of atlas‐fusion 
parameters r and k have less impact on the result when applied to 
an accurately registered atlas‐label maps. Out of the two inves-
tigated label fusion parameters, the influence of the parameter  
r was more important for the performance of weighted label fu-
sion strategies, showing higher accuracy variations across differ-
ent values of r. The influence of the kernel size was found to have 
less impact on the segmentation accuracy (deviations of ±1%  
in Dice coefficient for the proposed registration scheme). A 
different choice of a label fusion strategy and voxel fusion sim-
ilarity metric could possibly further improve the atlas‐based 
skeleton segmentation algorithm accuracy. However, a broad 
investigation of the performance of the label fusion techniques 
was not the main scope of this work and has been already pre-
sented in the past.13 Our label fusion results are inline with the 
work of Arabi et al, showing superior performance of locally 
weighted fusion techniques (LNCC) and techniques using mod-
ification of a locally weighted approach (STEPS), over globally 
weighted techniques (GNCC) and straightforward majority vot-
ing for multi‐atlas skeleton segmentation.

Composition of an atlas is an important factor in multi‐atlas 
segmentation. Atlas should be represented by images showing 

high statistical diversity, representing subjects of different size, 
body weight, and positioning during image acquisition. Such 
atlas, is less prone to large registration errors happening mu-
tually for all atlas images, however, the registration between 
some atlas—target image pairs may fail due to large anatomical 
differences or present abnormalities. In the presented study, a 
registration between a volunteer (V3)—patient (P5) pair failed, 
resulting in a low Dice coefficient equal to 0.22. It was caused 
by large positioning differences of femur bones, anatomical 
differences in pelvis ilium thickness and several focal bone 
metastases present in the patient image. The low Dice was, 
however, compensated by label fusion techniques and should 
have a marginal influence on the segmentation result.

In conclusion, we have presented a modified registration 
protocol for atlas‐based segmentation of the skeleton from 
whole‐body MRI using background masking. The method 
outperformed existing state of the art, providing a robust 
solution for accurate whole‐body bone segmentation.
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SUPPORTING INFORMATION

Additional supporting information may be found online in 
the Supporting Information section.

TABLE S1 Evaluation criteria averaged over leave‐one‐
out cross‐validation results for the state‐of‐the‐art and 
proposed registration strategies (±SD). Hausdorff distance 
criteria are presented in mm. The best performing method 
parameters are highlighted for each label fusion method.  
P value between the proposed and state‐of‐the‐art methods 
is given
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