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Introduction

Since their introduction in 1988, Macdonald polynomials (described in [39]) have played a central
role in algebraic combinatorics. These polynomials are actually symmetric functions with coe�-
cients in Q(q, t), and for appropriate specialisations of q and t they reduce to many well-known
families of symmetric functions, such as Schur functions, Hall-Littlewood polynomials, Jack poly-
nomials, and much more. Immediately after their introduction, a slightly modi�ed version of the
Macdonald polynomials has been conjectured to be Schur positive, i.e. to be a linear combination
of Schur functions with coe�cients in N[q, t].

Motivated by this conjecture, in the 90's Garsia and Haiman introduced the Sn-module of diagonal
harmonics, i.e. the coinvariants of the diagonal action of Sn on polynomials in two sets of n variables,
and they conjectured that its Frobenius characteristic was given by ∇en, where ∇ is the nabla
operator on symmetric functions introduced in [3]. This conjecture was known as (n + 1)n−1

conjecture, the name coming from the dimension of the module. In 2001 Haiman proved the famous
n! conjecture, (now n! theorem) in [33], and in 2002 he showed how this results implies the (n+1)n−1

conjecture in [34]. Later the authors of [26] formulated the so called shu�e conjecture, i.e. they
predicted a combinatorial formula for ∇en in terms of labelled Dyck paths, which re�nes the famous
q, t-Catalan formulated by Haglund in [23] and then proved by Garsia and Haglund in [18]. Several
years later in [28] Haglund, Morse and Zabrocki conjectured a compositional re�nement of the
shu�e conjecture, which speci�ed also the points where the Dyck paths touched the main diagonal.
Recently Carlsson and Mellit in [6] proved precisely this re�nement, thanks to the introduction of
what they called the Dyck path algebra.

In [29], Haglund, Remmel and Wilson conjectured a combinatorial formula for ∆′en−k−1
en in terms

of decorated labelled Dyck paths, which they called Delta conjecture, after the so called Delta
operators ∆f (and their slightly modi�ed version ∆′f ), de�ned for any symmetric function f , which
have been introduced by Bergeron, Garsia, Haiman, and Tesler in [3]. In fact in the same article
[29] the authors conjectured a combinatorial formula for the more general ∆hm∆′en−k−1

en in terms
of decorated partially labelled Dyck paths, which we call generalised Delta conjecture.

These problems have attracted considerable attention since their formulation: a partial list of works
about the Delta conjecture is [8, 16, 29, 30, 40, 41, 42, 45, 46]. One of the two results that we will
present in this thesis is an important special case of the generalised Delta conjecture, the Schröder
case, i.e. the case 〈·, en−dhd〉, which we proved in [11] by generalising some families of symmetric
functions introduced in [8].

In [38] Loehr and Warrington conjectured a combinatorial formula for ∇ω(pn) in terms of labelled
square paths (ending East), called square conjecture. The special case 〈·, en〉 of this conjecture,
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vi INTRODUCTION

known as q, t-square, has been proved earlier by Can and Loehr in [5]. Recently the full square
conjecture has been proved by Sergel in [43] after the breakthrough of Carlsson and Mellit in [6].

The other main result that we will state in this thesis is the Schröder case of a new conjecture of
ours, which extends the square conjecture of Loehr and Warrington. In fact, in [9], we conjectured

a combinatorial formula for [n−k]t
[n]t

∆hm∆en−kω(pn) in terms of decorated partially labelled square

paths that we call generalised Delta square conjecture. This reduces to the conjecture of Loehr and
Warrington for m = k = 0. Moreover, it extends the generalised Delta conjecture in the sense that
on decorated partially labelled Dyck paths it gives the same combinatorial statistics. Notice that
our conjecture answers a question in [29]. In the same work, we also prove the Schröder case, i.e.
the case 〈·, en−dhd〉; the proof, as we already mentioned, will be presented in this thesis.

Some of the results regarding the Delta conjectures, expression by which we mean all the formu-
lations and variants provided so far, are also related to parallelogram polyominoes. These objects
and their relevant statistics will also be presented in this thesis, as they provide interesting material
to understand the combinatorics behind the Delta operators. The combinatorics of lattice paths
and parallelogram polyominoes, and the proofs of the Schröder cases of the two aforementioned
conjectures, will constitute the body of this thesis.

The statistics for parallelogram polyominoes have been �rst introduced in [1], then extended in [8]
and [11] to decorated objects. These extensions happen to match several q, t-enumerators for some
special cases of the Delta conjectures, and are especially useful in understanding some intermediate
steps in the algebraic recursions we use in the proofs, which are otherwise lacking a combinatorial
interpretation in terms of Dyck paths.

More results about these conjectures include the case t = 0 of the generalised Delta conjecture,
which we proved in [10]; this case happens to coincide with the case q = 0 of both the generalised
Delta conjecture and generalised Delta square conjecture, which extends the result form = 0 proved
in [16]. In [7] we also provided a non-compositional proof of the 〈·, en−j−khjhk〉 case of the shu�e
conjecture, and a connection between the newdinv statistic introduced in [13] (further discussed in
[35]) and a more natural statistic on partially labelled Dyck paths.

This thesis is organised in the following way. In the �rst chapter, we are going to introduce all the
symmetric functions background needed to understand the setting, and then we prove an important
algebraic identity that will be crucial later on. In the second chapter we deal with the combinatorics,
giving all the relevant de�nitions of lattice paths, polyominoes, and their statistics; we also show
some interesting bijections which we can use to switch from a bistatistic to another. In the third
chapter we give the statement of the Delta conjectures, of which some are now theorems, and a
brief explanation about how to interpret the scalar products combinatorially. In the fourth and the
�fth chapter we state and prove the combinatorial and algebraic recursions respectively, show that
they coincide, and deduce the desired identities for the the Schröder case of both the Delta and
Delta square conjectures. In the sixth and last chapter we give an overview of the state of the art
for this family of conjectures, as well as some open problems and ideas on how to approach them.



CHAPTER1
Symmetric functions

The goal of this chapter is to introduce all the algebraic structures needed to state and prove the
results. The background setting of this thesis is the algebra of symmetric functions.

1.1 Basics

Let K be a �eld, and let K[x1, . . . , xn] be the polynomial algebra on n variables over K The
symmetric group Sn acts naturally on this algebra by σ · xi := xσi , where the action is de�ned on
the generators x1, . . . , xn and extended as an algebra morphism. The �xed points of this action
form a subalgebra known as symmetric polynomials. In order not to be limited by the number of
variables, we introduce a bigger algebra that shares many relevant properties with the symmetric
polynomials.

For m > n we have a projection map ρmn : K[x1, . . . , xm] → K[x1, . . . , xn] de�ned by ρmn(xi) =
δi≤nxi, i.e. it is the identity if i ≤ n, and 0 otherwise. These projections naturally restrict to the
symmetric polynomials and allow us to de�ne the projective limit algebra Λ.

De�nition 1.1. We de�ne the symmetric functions algebra as

Λ := lim←−
n

K[x1, . . . , xn]Sn

in the category of graded rings, meaning that it is the direct sum (over the degree) of the inverse
limits of the homogeneous components in �xed degree.

We need to take the projective limit in the category of graded rings in order to only have formal
power series of bounded degree. The symmetric functions algebra Λ is endowed with an extremely
rich structure. In fact, it is graded, it has a non-degenerate scalar product, and it also has a Hopf
algebra structure.

1



2 CHAPTER 1. SYMMETRIC FUNCTIONS

The grading is the natural one inherited from the polynomial algebras, and it is well de�ned as
every element is a formal power series of bounded degree. We denote by Λ(d) the vector space of
symmetric functions that are homogeneous of degree d. The Hopf algebra structure is more easily
de�ned in terms of plethystic notation, which we will introduce later in this chapter. From now on
we are going to assume K to be a �eld of characteristic 0.

There are three well-known families of symmetric functions that generate Λ as a K-algebra, de�ned
as follows.

De�nition 1.2. For n ∈ N, we de�ne e0 = h0 = p0 = 1, and for n > 0 we de�ne

• en =
∑
i1<i2<···<in xi1xi2 · · ·xin to be the n-th elementary symmetric function,

• hn =
∑
i1≤i2≤···≤in xi1xi2 · · ·xin to be the n-th complete homogeneous symmetric function,

• pn =
∑
i≥1 xi

n to be the n-th power symmetric function.

In other words, en is the sum of all the squarefree monomials of degree n, hn is the sum of all the
monomials of degree n, and pn is the sum of all the n-th powers of the variables. It turns out that
all these three families generate Λ as an algebra, as per the following theorem.

Theorem 1.3 ([44, Theorem 7.4.4, Corollary 7.6.2, Corollary 7.7.2]).

Λ = K[e1, e2, . . . ] = K[h1, h2, . . . ] = K[p1, p2, . . . ].

Now we can look for bases of Λ as vector space.

De�nition 1.4. A partition λ ` n of n ∈ N is an element λ = (λ1, λ2, . . . ) ∈ NN such that
λi ≥ λj for i ≥ j (i.e. the sequence is weakly decreasing) and

∑
λi = n.

Its length is the minimum index `(λ) such that λ`(λ)+1 = 0.

Since all the three families {en | n ∈ N}, {hn | n ∈ N}, {pn | n ∈ N} generate Λ as an algebra, the
monomials eλ := eλ1eλ2 · · · eλ`(λ) for λ ` n (and the analogously de�ned hλ and pλ) generate Λ(n)

as a vector space. Thus we have three bases of Λ indexed by partitions.

De�nition 1.5. For λ ` n, we de�ne its Ferrers diagram to be the set of cells

F (λ) := {(i, j) | 1 ≤ i ≤ λi, 1 ≤ j ≤ `(λ)}.

De�nition 1.6. For any partition λ, we de�ne its transpose λ′ by λ′i := #{j | λj ≥ i}, i.e. the
partition whose Ferrers diagram is the transpose of the one of λ.
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It is convenient to also introduce the multiplicity of i in λ, de�ned as mi(λ) := #{j | λj = i}. It
is immediate that mi(λ) = λ′i − λ′i+1. Let zλ =

∏
kmk(λ)mk(λ)!, which is the size of the conjugacy

class of a cycle of type λ in S|λ|. One can show the following.

Proposition 1.7 ([44, Proposition 7.7.6]). For n ∈ N, we have

hn =
∑
λ`n

1

zλ
pλ.

The space Λ has two other notable bases, also indexed by partitions. We need a few preliminary
de�nitions.

De�nition 1.8. A weak composition α � n of n ∈ N is an element α = (α1, α2, . . . ) ∈ NN

such that
∑
αi = n. Its underlying partition λ(α) ` n is the partition of n obtained from α by

rearranging the αi's in decreasing order.

We can now introduce the �rst of the two bases.

De�nition 1.9. For λ ` n, we de�ne

mλ =
∑
α�n

λ(α)=λ

x1
α1x2

α2 · · ·

to be the monomial symmetric function indexed by λ.

In other words, mλ is the sum of all the monomials whose exponents are exactly the parts of λ. It
is clear that these elements form a basis of Λ(n).

Partitions admit two natural partial orderings.

De�nition 1.10. The containment order on partitions is de�ned as

µ ⊆ λ ⇐⇒ µi ≤ λi for all i ≥ 1.

De�nition 1.11. The dominance order on partitions is de�ned as

µ ≤ λ ⇐⇒
k∑
i=1

µi ≤
k∑
i=1

λi for all k ≥ 1.
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De�nition 1.12. Let λ ` n and let F = F (λ) be its Ferrers diagram.

A semi-standard �lling of F is a function f : F → N \ {0} that is weakly increasing along rows
and strictly increasing along columns.

A standard �lling of F is a bijective function f : F → [n] that is strictly increasing along rows
and columns, i.e. a semi-standard �lling whose entries form the set [n].

A standard (resp. semi-standard) Young tableau is a Ferrers diagram together with a standard
(resp. semi-standard) �lling.

6

4 6

2 5 5 8

1 3 4 7 7

Figure 1.1: A semi-standard Young tableau of shape λ = (5, 4, 2, 1).

The underlying partition of a Ferrers diagram is called shape of the diagram. We denote by SYT(λ)
(resp. SSYT(λ)) the set of standard (resp. semi-standard) Young tableaux of shape λ. It is now
possible to introduce the second basis.

De�nition 1.13. For λ ` n, we de�ne

sλ =
∑

(F,f)∈SSYT(λ)

∏
c∈F

xf(c)

to be the Schur symmetric function indexed by λ.

It is not obvious a priori that sλ is a symmetric function, but in fact the Schur functions form
a basis of Λ. To show that they are symmetric functions, the traditional argument is to give
a di�erent de�nition and then show that the two are equivalent by using a known lemma by
Lindström�Gessel�Viennot. More details can be found in [44, Section 7.15-7.16], we will only
restate a theorem we need, which is [44, Theorem 7.16.1].

Theorem 1.14 (Jacobi-Trudi identity). For λ ` n, we have

sλ = det
(

(hλi+j−i)
`(λ)×`(λ)
i,j

)
.

The easiest way to show that the Schur functions are, in fact, a basis of Λ is the following combi-
natorial formula, which gives a unitriangular relation.
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Proposition 1.15. For λ ` n, we have

sλ =
∑
µ`n

Kλµmµ

where Kλµ is the number of semi-standard Young tableaux of shape λ and content µ (i.e. the
�lling has µ1 1's, µ2 2's, and so on).

Furthermore, Kλλ = 1 and Kλµ = 0 unless µ ≤ λ in the dominance order.

Proof. The combinatorial identity is trivial once we know that the Schur functions are symmetric.

It is easy to see that Kλλ = 1, as the only way to �ll a diagram of shape λ with content λ is to
have all the 1's in the �rst row, all the 2's in the second row, and so on.

Finally, if µ 6≤ λ in the dominance order, there exists k such that µ1 + · · ·+ µk > λ1 + · · ·+ λk; by
pigeonhole in a diagram of shape λ and content µ there must be a number lesser or equal than k
in a cell (i, j) with j > k, which is impossible because the columns have to be strictly increasing.
Thus Kλµ = 0 unless µ ≤ λ in the dominance order.

We can introduce a notable endomorphism of Λ.

De�nition 1.16. We de�ne an algebra morphism ω : Λ→ Λ on the generators en by ω(en) = hn.

Proposition 1.17. The morphism ω is an involution. Moreover, ω(pn) = (−1)n−1pn and
ω(sλ) = sλ′ .

Proof. First of all, let us write the generating functions for en, hn, and pn.

E(t) :=
∑
n∈N

ent
n =

∏
i>0

(1 + xit)

H(t) :=
∑
n∈N

hnt
n =

∏
i>0

1

1− xit

P (t) :=
∑
n∈N

pnt
n =

∑
i>0

1

1− xit

We have the identities

t
d

dt
H(t) =

(∑
i>0

xit

1− xit

)(∏
i>0

1

1− xit

)
= (P (t)− 1)H(t)

t
d

dt
E(t) =

(∑
i>0

xit

1 + xit

)(∏
i>0

(1 + xit)

)
= (1− P (−t))E(t).
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Equating the coe�cients, we have

nhn =

n∑
i=1

pihn−i and nen =

n∑
i=1

(−1)i−1pien−i.

Applying ω to the second identity and equating the coe�cients again, we get ω(pn) = (−1)n−1pn,
as desired. This implies that ω is an involution.

Now, notice that H(t)E(−t) = 1. We have the identity

n∑
i=0

(−1)ieihn−i = δn,0

which is equivalent to saying that, given n ∈ N, the matrices (hi−j)
n×n
i,j and ((−1)i−jei−j)

n×n
i,j are

inverses of each other. If λ is any partition such that `(λ) + `(λ′) ≤ n, looking at the appropriate
minors one can show that

det
(

(hλi+j−i)
`(λ)×`(λ)
i,j

)
= det

(
(eλ′i+j−i)

`(λ)×`(λ)
i,j

)
.

Applying ω and recalling Theorem 1.14, we have ω(sλ) = sλ′ , as desired.

The Hall scalar product

We can now de�ne a scalar product on Λ.

De�nition 1.18. We de�ne the Hall scalar product on Λ by declaring that the Schur functions
form an orthonormal basis, i.e.

〈sλ, sµ〉 = δλ,µ.

This scalar product has several nice properties. First of all, notice that ω maps an orthonormal
basis to itself, and thus it is an isometry. We also have that 〈hλ,mµ〉 = δλ,µ and 〈pλ, pµ〉 = δλ,µzλ.

It is also worth noticing that the Hall scalar product is homogeneous, i.e. Λ(i) ⊥ Λ(j) for i 6= j.
This means that, when taking a scalar product, we can only look at the parts that are homogeneous
of the same degree.

De�nition 1.19. For f ∈ Λ, we de�ne the operator f⊥ as the adjoint of the multiplication by
f . Namely, for every g, h ∈ Λ, we have 〈f⊥g, h〉 := 〈g, fh〉.

Using the Hall scalar product, we can derive the following.

Corollary 1.20. For µ ` n, we have

hµ =
∑
λ`n

Kλµsλ.



1.2. PLETHYSTIC NOTATION 7

Proof. From Proposition 1.15, we have 〈hλ, sµ〉 = Kλµ. The statement follows immediately.

De�nition 1.21. We de�ne the classical statistic on partitions n : {µ | µ ` m,m ∈ N} → N as

n(µ) :=

`(µ)∑
i=1

(i− 1)µi.

If we identify the partition µ with its Ferrers diagram, i.e. with the collection of cells

{(i, j) | 1 ≤ i ≤ µi, 1 ≤ j ≤ `(µ)},

then for each cell c ∈ µ we refer to the arm, leg, co-arm and co-leg (denoted respectively as
aµ(c), lµ(c), aµ(c)′, lµ(c)′) as the number of cells in µ that are strictly to the right, above, to the
left, and below c in µ, respectively (see Figure 1.2).

Arm

Leg

Co-leg

Co-arm

Figure 1.2: Statistics on a Ferrer diagram.

1.2 Plethystic notation

The algebra Λ is endowed with yet another operation, the composition (or plethysm). We need to
introduce the plethystic notation �rst. See for example [37] for further details.

From now on, our base �eld will the �eld K := Q(q, t) of rational functions in two variables with
rational coe�cients. Let Q(q, t)((x1, x2, . . . )) be the �eld of formal Laurent series in the indetermi-
nates x1, x2, . . . with coe�cients in Q(q, t). Recall that Λ = Q(q, t)[p1, p2, . . . ] as algebra. Let

f =
∑
λ

fλ(q, t)pλ ∈ Λ

with fλ(q, t) ∈ Q(q, t), and let A(x1, x2, . . . ; q, t) ∈ Q(q, t)((x1, x2, . . . )).

De�nition 1.22. The plethystic evaluation of f in A is

f [A] :=
∑
λ

fλ(q, t)

`(λ)∏
i=1

A(x1
λi , x2

λi , . . . ; qλi , tλi) ∈ Q(q, t)((x1, x2, . . . )).



8 CHAPTER 1. SYMMETRIC FUNCTIONS

Equivalently, f [A] is the image of the Q(q, t)-algebra homomorphism mapping pn to the formal
Laurent series obtained from A by rising every variable (including q, t) to the n-th power.

It is easy to check that f [x1 + x2 + . . . ] = f(x1, x2, . . . ). More generally, if A has an expression as
sum of monomials (possibly containing q, t, but all with coe�cient 1), then f [A] is the expression
obtained by replacing the xi's with such monomials. In this sense, we can interpret a sum of
monomials as an alphabet, and a sum of expressions as concatenation of alphabets. We will write

X := x1 + x2 + . . .

(and the same for Y, Z) as a shorthand for a sum of variables.

The plethystic evaluation has several nice properties.

• If g ∈ Λ ⊆ Q(q, t)((x1, x2, . . . )), then f [g] ∈ Λ. This operation, called plethysm, is associative.

• If f ∈ Λ(d), then f [uX] = udf [X] for any indeterminate u, and f [−X] = (−1)dωf [X]. Notice
that evaluating the indeterminates does not commute with the plethystic evaluation.

• The coproduct ∆(f [X]) = f [X + Y ] and the antipodal map S(f [X]) = f [−X] de�ne a Hopf
algebra structure on Λ.

• Let ε be the automorphism de�ned by f [εX] := ωf [−X]. It corresponds to the substitution
xi 7→ −xi (which is not the same as X 7→ −X).

Since the sum of two alphabets can be seen as the concatenation, we can easily derive the following
summation formulae.

Proposition 1.23. For n ∈ N, the following summation formulae hold.

en[X + Y ] =

n∑
i=0

ei[X]en−i[Y ] and hn[X + Y ] =

n∑
i=0

hi[X]hn−i[Y ].

A detailed proof of this statement can be found in [37]. Now recalling that, if f ∈ Λ(n), then
f [−X] = (−1)nωf [X], we immediately get the following corollary.

Corollary 1.24. For n ∈ N, the following subtraction formula holds.

en[X − Y ] =

n∑
i=0

(−1)n−iei[X]hn−i[Y ]

To deal with the products, we need the Cauchy identity.
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Theorem 1.25 (Cauchy identity). Let {uλ | λ ` n, n ∈ N}, {vλ | λ ` n, n ∈ N} be a pair of
dual bases of Λ with respect to the Hall scalar product. Then for n ∈ N,

hn[XY ] =
∑
λ`n

uλ[X]vλ[Y ].

Proof. First of all, notice that the following are equivalent:

1. There exists a pair of dual bases {uλ}, {vλ} such that hn[XY ] =
∑
λ`n uλ[X]vλ[Y ];

2. For every pair of dual bases {uλ}, {vλ} the identity hn[XY ] =
∑
λ`n uλ[X]vλ[Y ] holds;

3. For every f ∈ Λ, 〈hn[XY ], f [X]〉 = f [Y ].

It is immediate that (3.) =⇒ (2.) =⇒ (1.) =⇒ (3.), hence the statements are all equivalent. To
prove the statement is therefore su�cient to show (1.) for a pair of dual bases of our choice; we will
do that for {pλ} and {pλzλ }.
In particular, we will show that∑

n∈N
hn[XY ] =

∞∏
i,j=1

1

1− xiyj
=
∑
λ

1

zλ
pλ[X]pλ[Y ]

and the statement will follow by isolating the part in degree n (because Λ is graded).

The �rst equality is trivial as XY =
∑
xiyj and the in�nite product is precisely the generating

function for the complete homogeneous symmetric functions. The second equality requires a little
more work. We have

∏
i,j

1

1− xiyj
=
∏
i,j

exp(− log(1− xiyj))

=
∏
i,j

exp

(∑
k

(xiyj)
k

k

)
= exp

∑
i,j,k

(xiyj)
k

k


= exp

(∑
k

pk[X]pk[Y ]

k

)
=
∑
n

1

n!

(∑
k

pk[X]pk[Y ]

k

)n

=
∑
n

1

n!

∑
∑
αk=n

(
n

α1, . . . , α`

) ∏̀
k=0

(
pk[X]pk[Y ]

k

)αk
=
∑
λ

1

zλ
pλ[X]pλ[Y ]

where in the last step we collect the compositions with the same parts sizes. This proves the
theorem.
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We introduce a translation operator.

De�nition 1.26. We de�ne the translation operator τz : Λ[[z]]→ Λ[[z]] as τz(f [X]) = f [X+ z].

This operator can be computed using the following formula.

Proposition 1.27 ([20, Theorem 1.1]). For z any variable, we have

τz =
∑
r∈N

zrhr
⊥.

1.3 q-notation

Before moving to the next family of symmetric functions, it is convenient to introduce the so called
q-notation. In general, a q-analogue of an expression is a generalisation involving a parameter q
that reduces to the original one for q → 1.

De�nition 1.28. For a natural number n ∈ N, we de�ne its q-analogue as

[n]q :=
1− qn

1− q
= 1 + q + q2 + · · ·+ qn−1.

Given this de�nition, one can de�ne the q-factorial and the q-binomial as follows.

De�nition 1.29. For 0 ≤ k ≤ n ∈ N, we de�ne

[n]q! :=

n∏
k=1

[k]q and

[
n

k

]
q

:=
[n]q!

[k]q![n− k]q!

Many results about binomials naturally generalise to their q-analogues. For example, we have the
following.

Proposition 1.30 (q-Pascal identities). For 0 < k < n ∈ N, we have the two identities[
n

k

]
q

= qk
[
n− 1

k

]
q

+

[
n− 1

k − 1

]
q

and

[
n

k

]
q

=

[
n− 1

k

]
q

+ qn−k
[
n− 1

k − 1

]
q

.
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Proof. We have [
n

k

]
q

=
[n]q
[k]q

[
n− 1

k − 1

]
q

=
qk[n− k]q + [k]q

[k]q

[
n− 1

k − 1

]
q

=
qk[n− k]q

[k]q

[
n− 1

k − 1

]
q

+

[
n− 1

k − 1

]
q

= qk
[
n− 1

k

]
q

+

[
n− 1

k − 1

]
q

as desired. The second identity follows immediately by swapping k and n− k.
Using this identities, which generalise the standard Pascal identities for binomial coe�cients, it is
easy to show by induction that the q-binomials are actually polynomials with non-negative integer
coe�cients.

It is convenient to introduce another notation, namely the q-Pochhammer symbol.

De�nition 1.31. For x any variable and n ∈ N∪ {∞}, we de�ne the q-Pochhammer symbol as

(x; q)n :=

n−1∏
k=0

(1− xqk) = (1− x)(1− xq)(1− xq2) · · · (1− xqn−1).

This notation is often handy. For example, we have the obvious identity [n]q! = (q;q)n
(1−q)n , or the

following theorem due to Cauchy.

Theorem 1.32 (q-binomial theorem). For x any variable and n ∈ N, we have

(x; q)n =

n∑
k=0

(−1)kq(
k
2)
[
n

k

]
q

xk.

We also have the following plethystic expansions for the elementary and complete homogeneous
symmetric functions.

Proposition 1.33. For k, n ∈ N we have

ek[[n]q] = q(
k
2)
[
n

k

]
q

and hk[[n]q] =

[
n+ k − 1

k

]
q

.

Furthermore we have the extension for n =∞, namely

ek

[
1

1− q

]
= q(

k
2) 1

(q; q)k
and hk

[
1

1− q

]
=

1

(q; q)k
.
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See [44, Theorem 7.21.2, Corollary 7.21.3] for a proof of these statements.

Before moving on, we need to extend the de�nitions of q-binomial, as we will need a slightly stronger
version of Proposition 1.30 later.

De�nition 1.34. For n, k ∈ Z we de�ne the q-binomial as[
n

k

]
q

:= δk≥0
(qn−k+1; q)k

(q; q)k
,

which agrees with De�nition 1.29 for 0 ≤ k ≤ n.

This modi�ed de�nition is not necessarily symmetric in k and n− k unless 0 ≤ k ≤ n. Also notice
that, since (x; q)0 = 1 as the q-Pochhammer symbol yields an empty product, then

[
n

0

]
q

= 1 for any n ∈ Z.

Proposition 1.35. The �rst q-Pascal identity[
n

k

]
q

= qk
[
n− 1

k

]
q

+

[
n− 1

k − 1

]
q

holds for any n, k ∈ Z.

Proof. For k < 0 and any n the statement reduces to 0 = 0 + 0; for k = 0 and any n the statement
reduces to 1 = 1 + 0; for k > 0 and n = 0 the statement reduces to

0 = δk,1 · q
1− q−1

1− q
+ δk,1

(which is true); �nally for k > 0 and n 6= 0 we have[
n

k

]
q

=
(qn−k+1; q)k

(q; q)k

=
qk

1− qn
(qn−k+1; q)k

(q; q)k
+

1− qk

1− qn
(qn−k+1; q)k

(q; q)k

= qk
(qn−k; q)k

(q; q)k
+

(qn−k+1; q)k−1

(q; q)k−1

= qk
[
n− 1

k

]
q

+

[
n− 1

k − 1

]
q

as desired.
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1.4 Macdonald polynomials

The Macdonald polynomials form another basis of the symmetric functions. They have been in-
troduced by Ian Macdonald in [39], and since then they played an important role in algebraic
combinatorics.

Remark 1.36. Macdonald polynomials can be de�ned in abstract starting from any root system. We
will only consider the one associated to the symmetric group, and we will actually use a modi�ed
version that �ts our purposes better.

As all the bases of Λ that we already introduced, Macdonald polynomials are also indexed by
partitions. Unlike the other bases, though, the de�nition of Macdonald polynomials relies on the
fact that the base �eld is Q(q, t).

De�nition 1.37 ([32, Proposition 2.6]). The (modi�ed) Macdonald polynomials H̃µ[X; q, t] are
de�ned by the triangularity and normalization axioms

(T1) H̃µ[X(1− q); q, t] =
∑
λ≥µ

aλµ(q, t)sλ[X]

(T2) H̃µ[X(1− t); q, t] =
∑
λ≥µ′

bλµ(q, t)sλ[X]

(N) 〈H̃µ[X; q, t], s(n)[X]〉 = 1

for suitable coe�cients aλµ(q, t), bλµ(q, t) ∈ Q(q, t).

The modi�ed Macdonald polynomials were actually �rst de�ned in terms of the original ones, but
since these properties characterise them uniquely, we will use this result as de�nition to avoid
introducing other families of symmetric functions that we are not going to use.

Let M := (1− q)(1− t). For every partition µ, we de�ne the following constants:

Bµ := Bµ(q, t) =
∑
c∈µ

qa
′
µ(c)tl

′
µ(c),

Dµ := Dµ(q, t) = MBµ(q, t)− 1,

Tµ := Tµ(q, t) =
∏
c∈µ

qa
′
µ(c)tl

′
µ(c) = qn(µ′)tn(µ) = e|µ|[Bµ],

Πµ := Πµ(q, t) =
∏

c∈µ/(1,1)

(1− qa
′
µ(c)tl

′
µ(c)),

wµ := wµ(q, t) =
∏
c∈µ

(qaµ(c) − tlµ(c)+1)(tlµ(c) − qaµ(c)+1).

We need to introduce a new scalar product on Λ.
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De�nition 1.38. We de�ne the star scalar product on Λ as

〈f, g〉∗ := 〈ωf [MX], g〉.

It turns out that the Macdonald polynomials are orthogonal with respect to the star scalar product.
More precisely,

〈H̃λ, H̃µ〉∗ = wµ(q, t)δλ,µ.

Macdonals polynomials are needed to de�ne some linear operators that will be crucial later.

De�nition 1.39 ([2, 3.11]). We de�ne the linear operator ∇ : Λ → Λ on the eigenbasis of
Macdonald polynomials as

∇H̃µ = TµH̃µ.

De�nition 1.40. We de�ne the linear operator Π : Λ → Λ on the eigenbasis of Macdonald
polynomials as

ΠH̃µ = ΠµH̃µ

where we conventionally set Π∅ := 1.

The following result is extremely powerful, and it can be used to derive many of the identities in
the remainder of this chapter.

Theorem 1.41 ([20, Theorem I.2]). For every f ∈ Λ, µ ` n, we have

〈f [X], H̃µ[X + 1]〉∗ = ∇−1τ−εf [X]
∣∣
X=Dµ

.

We will need some classical identities involving the Macdonald polynomials. The �rst one is the
Macdonald-Koorwinder reciprocity [39, VI (6.6)] (see also [25, Theorem 2.16])

Theorem 1.42 (Macdonald-Koorwinder reciprocity). Let µ ` m, ν ` n. Then

ΠνH̃µ[MBν ] = ΠµH̃ν [MBµ].

The Cauchy identity holds for any scalar product and any pair of dual bases. In particular, using the
star scalar product and the Macdonald polynomials (adequately normalised), we have the following.
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Proposition 1.43. For n ∈ N, we have

en

[
XY

M

]
=
∑
µ`n

H̃µ[X]H̃µ[Y ]

wµ
.

Proof. We can rewrite 〈hn[XY ], f [X]〉 = f [Y ] as 〈en
[
XY
M

]
, f [X]〉∗ = f [Y ]. Since {H̃µ} and { H̃µwµ }

are dual with respect to the star scalar product, we can use the same argument as Theorem 1.25
and the statement follows immediately.

We need a small lemma.

Lemma 1.44. For n ∈ N, we have

H̃(n)[(1− q)X] = (q; q)nhn[X].

Proof. By de�nition is immediate that (n) is maximal in the dominance order, i.e. λ ` n, λ ≥
(n) =⇒ λ = (n); now from De�nition 1.37 (T1) we have H̃(n)[(1 − q)X] = a(n)(n)(q, t)s(n)[X] as
the sum is composed of one term only.

Making the substitution X 7→ X/(1− q), we get

H̃(n)[X] = a(n)(n)(q, t)s(n)

[
X

1− q

]
,

and now, since by De�nition 1.37 (N) we have that 〈H̃(n)[X], s(n)[X]〉 = 1, we can take the scalar
product with s(n) and get

a(n)(n)(q, t)

〈
s(n)[X], s(n)

[
X

1− q

]〉
= 1.

We have

a(n)(n)(q, t)
−1 =

〈
s(n)[X], s(n)

[
X

1− q

]〉
(as s(n) = hn) =

〈
hn[X], hn

[
X

1− q

]〉
(by 1.25) =

〈
hn[X],

∑
λ`n

sλ[X]sλ

[
1

1− q

]〉

(by orthogonality) = hn

[
1

1− q

]
(by 1.33) =

1

(q; q)n

thus a(n)(n)(q, t) = (q; q)n and the statement follows immediately.

As a corollary of Proposition 1.43, we get the following expansion.
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Corollary 1.45. For n, j ∈ N, we have

en[X[j]q] = (1− qj)
∑
µ`n

hj [(1− t)Bµ]
ΠµH̃µ[X]

wµ
.

Proof. We have

en[X[j]q] = en

[
XM [j]q
M

]
(by 1.43) =

∑
µ`n

H̃µ[M [j]q]H̃µ[X]

wµ

(as B(j) = [j]q) =
∑
µ`n

H̃µ[MB(j)]

Πµ

ΠµH̃µ[X]

wµ

(by 1.42) =
∑
µ`n

H̃(j)[MBµ]

Π(j)

ΠµH̃µ[X]

wµ

(by 1.44) =
∑
µ`n

hj [(1− t)Bµ]
(q; q)j
Π(j)

ΠµH̃µ[X]

wµ

(as Π(j) = (q; q)j−1) = (1− qj)
∑
µ`n

hj [(1− t)Bµ]
ΠµH̃µ[X]

wµ

as desired.

Evaluating at j = 1, we get the following.

Corollary 1.46. For n ∈ N, we have

en[X] =
∑
µ`n

MBµΠµH̃µ[X]

wµ
.

We actually have a stronger result, but to prove it we need a lemma.

Lemma 1.47 ([39, Ex.2 p.362]). For every µ ` n, we have

〈H̃µ[X], s(n−k,1k)〉 = ek[Bµ − 1],

or equivalently
〈H̃µ[X], ekhn−k〉 = ek[Bµ].
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Now we can state another expansion.

Proposition 1.48. For k ∈ Z and n ∈ N, we have

hk

[
X

M

]
en−k

[
X

M

]
=
∑
µ`n

ek[Bµ]H̃µ[X]

wµ
.

Proof. The expression is equivalent to〈
hk

[
X

M

]
en−k

[
X

M

]
, H̃µ[X]

〉
∗

= ek[Bµ].

By De�nition 1.38 and Lemma 1.47 both terms are equal to 〈H̃µ, ekhn−k〉. The statement follows.

Finally, we de�ne the Pieri coe�cients as follows.

De�nition 1.49. For k ∈ N and f ∈ Λ(k), we de�ne the Pieri coe�cients cf
⊥

µν , d
f
µν by

f [X]⊥H̃µ[X] =
∑
ν⊂kµ

cf
⊥

µν H̃ν [X],

f [X]H̃ν [X] =
∑
µ⊃kν

dfµνH̃µ[X].

where ν ⊂k µ means that ν ⊂ µ and |µ| − |ν| = k.

While the existence of the coe�cients is a trivial because of linear algebra, the fact that the con-
tainments hold follows from [39, VI (6.7)] (see also [19]).

We can immediately derive that

wνc
f⊥

µν =
〈
f⊥H̃µ[X], H̃ν

〉
∗

=

〈
H̃µ[X], ωf

[
X

M

]
H̃ν [X]

〉
∗

= wµd
ωf [X/M ]
µν

so these two families of coe�cients determine each other. It is convenient to de�ne c
(k)
µν , d

(k)
µν by

hk
⊥H̃µ[X] =

∑
ν⊂kµ

c(k)
µν H̃ν [X] and ek

[
X

M

]
H̃ν [X] =

∑
µ⊃kν

d(k)
µν H̃µ[X].

We have the following expansion.

Proposition 1.50. For any µ ` n, we have

Bµ =
∑
ν⊂1µ

c(1)
µν .
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Proof. We have

Bµ = e1[Bµ]

(by 1.47) = 〈H̃µ, e1hn−1〉

(e1 = h1) = 〈H̃µ, h1hn−1〉

(by 1.19) = 〈h1
⊥H̃µ, hn−1〉

(by 1.49) =
∑
ν⊂1µ

c(1)
µν 〈H̃ν , hn−1〉

(by 1.47) =
∑
ν⊂1µ

c(1)
µν

as desired.

This concludes the section. More results involving Macdonald polynomials will be stated after the
introduction of the Delta operators.

Delta operators

The study of the Delta operators began with the Nabla operator (see De�nition 1.39), introduced
by F. Bergeron and A. Garsia in [2], which shows a surprising amount of positivity properties.

A key role in the theory is played by ∇en. This symmetric function is Schur positive (i.e. its
expansion in the Schur basis has coe�cients in N[q, t]), and in fact it does more: it is the Frobenius
characteristic of the bigraded Sn module called diagonal harmonics (see [34]) and it q, t-counts
parking functions with respect to two statistics (see [26], [6]). We will show more of this later.

The Delta operators generalise, in some sense, the Nabla operator. Many of the Delta operators
show positivity properties as well, which lead to new conjectures about possible combinatorial
interpretations for these symmetric functions.

De�nition 1.51. For f ∈ Λ, we de�ne the linear operators ∆f ,∆
′
f : Λ → Λ on the eigenbasis

of Macdonald polynomials as

∆f H̃µ = f [Bµ]H̃µ, ∆′f H̃µ = f [Bµ − 1]H̃µ.

Notice that, since en[Bµ] = Tµ for µ ` n, we have ∇ =
⊕

n ∆en |Λ(n) . So, while the Nabla operator
is not strictly a Delta operator, it can be obtained by gluing Delta operators on the homogeneous
subspaces. In this sense the Delta operators generalise the Nabla operator.

Proposition 1.52. We have that

Π =
∑
k∈N

(−1)k∆′ek ,

where, since ∆′ekf = 0 for f ∈ Λ(n), n ≥ k, the sum is locally �nite (i.e. it has a �nite number
of non-zero addenda).
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Proof. Since Macdonald polynomials form an eigenbasis for both Π and ∆f for any f ∈ Λ, it is
enough to check that the corresponding eigenvalues match. Let µ ` n, let us identify it with its
Ferrer's diagram, and for c ∈ µ let p(c) = qa

′
µ(c)tl

′
µ(c). We have

Πµ =
∏

c∈µ/(1,1)

(1− qa
′
µ(c)tl

′
µ(c))

(expanding the product) =

n∑
k=0

(−1)k
∑

S⊆µ/(1,1)
#S=k

∏
c∈S

qa
′
µ(c)tl

′
µ(c)

(by de�nition of Bµ and plethysm) =

n∑
k=0

(−1)kek[Bµ − 1]

(as Bµ − 1 has n−1 terms) =
∑
k∈N

(−1)kek[Bµ − 1]

so the corresponding eigenvalues are equal, as desired.

De�nition 1.53. For 0 ≤ k ≤ n, we de�ne the symmetric function En,k by the expansion

en

[
X

1− z
1− q

]
=

n∑
k=0

(z; q)k
(q; q)k

En,k.

Notice that setting z = qj we get

en

[
X

1− qj

1− q

]
=

n∑
k=0

(qj ; q)k
(q; q)k

En,k =

n∑
k=0

[
k + j − 1

k

]
q

En,k

and in particular, for j = 1, we get

en = En,0 + En,1 + En,2 + · · ·+ En,n,

so these symmetric functions split en, in some sense. Notice that En,0 = δn,0.

The following results will be useful later.

Lemma 1.54. For any symmetric function f ∈ Λ, we have

〈∆ekf, hn〉 = 〈f, ekhn−k〉.

Proof. Since the Macdonald polynomials are a basis, and the identity is linear in f , it is enough
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to show it for f = H̃µ, µ ` n.

〈∆ekH̃µ[X], hn〉 = 〈ek[Bµ]H̃µ, hn〉

(by linearity) = ek[Bµ]〈H̃µ, hn〉
(by 1.47) = ek[Bµ]

(by 1.47) = 〈H̃µ, ekhn−k〉

as desired.

1.5 A summation formula

The goal of this section is to prove the following theorem.

Theorem 1.55 ([8, Theorem 4.6]). For m,n, s ∈ N, we have

∑
µ`m+n

H̃µ[X]

wµ
hs[(1− t)Bµ]em[Bµ]

=

m∑
r=0

tm−r
s∑
z=0

q(
z
2)
[
r + z

z

]
q

[
r + s− 1

s− z

]
q

hr+z

[
X

1− q

]
hm−r

[
X

M

]
en−z

[
X

M

]
.

We start with a lemma, which is the case n = 0.

Lemma 1.56 ([8, Theorem 4.8]). For m, s ∈ N, we have

∑
µ`m

TµH̃µ[X]

wµ
hs[(1− t)Bµ] =

m∑
r=0

tm−r
[
r + s− 1

s

]
q

hr

[
X

1− q

]
hm−r

[
X

M

]
.

Proof. By De�nition 1.53 and by linearity of ∇, we have

∇en [X[s]q] =

n∑
r=0

[
r + s− 1

s− 1

]
q

∇En,r.

By [25, Theorem 7.2] we have

∇En,r = tn−r(1− qr)
∑
ν`n−r

Tν
wν

∑
µ⊃rν

ΠµH̃µd
hr[X/(1−q)]
µν ,

which can easily be rewritten as [25, Equation (7.86)], namely

∇En,r = tn−r(1− qr)Π
(
hn−r

[
X

M

]
hr

[
X

1− q

])
.
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It follows that

∇em [X[s]q] =

m∑
r=0

[
r + s− 1

s− 1

]
q

tm−r(1− qr)Π
(
hm−r

[
X

M

]
hr

[
X

1− q

])

= (1− qs)
m∑
r=0

[
r + s− 1

s

]
q

tm−rΠ

(
hm−r

[
X

M

]
hr

[
X

1− q

])
.

By Corollary 1.45 we have

∇em[X[s]q] = ∇(1− qs)
∑
µ`m

hs[(1− t)Bµ]
ΠµH̃µ[X]

wµ

which we can rewrite, using De�nitions 1.39 and 1.40 as

∇em[X[s]q] = (1− qs)
∑
µ`m

hs[(1− t)Bµ]
TµΠH̃µ[X]

wµ

and now, equating the two expressions and applying Π−1, we get

∑
µ`m

TµH̃µ[X]

wµ
hs[(1− t)Bµ] =

m∑
r=0

tm−r
[
r + s− 1

s

]
q

hr

[
X

1− q

]
hm−r

[
X

M

]

as desired.

Now we need another lemma, which is due to J. Haglund. The ideas behind the proof of this lemma
are extremely important, and following the steps carefully one can infer the general strategy we
used to prove our summation formula, which is the core result behind the algebraic recursions that
will appear later in the thesis.

Lemma 1.57. Let f ∈ Λ such that ∇−1τ−εf [X]
∣∣
X=Dµ

= hs[(1− t)Bµ]em[Bµ]. Then

∑
µ`n

H̃µ[X]

wµ
hs[(1− t)Bµ]em[Bµ] =

n∑
z=0

en−z

[
X

M

]
(f [X])z

where (f [X])z denotes the homogeneous component of f [X] in degree z.

Proof. We know by Theorem 1.41 that

〈f [X], H̃µ[X + 1]〉∗ = ∇−1τ−εf [X]
∣∣
X=Dµ

,

so we can rewrite the condition as

hs[(1− t)Bµ]em[Bµ] = 〈f [X], H̃µ[X + 1]〉∗.
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Now,

∑
µ`n

H̃µ[X]

wµ
hs[(1− t)Bµ]em[Bµ] =

∑
µ`n

H̃µ[X]

wµ
〈f [X], H̃µ[X + 1]〉∗

=
∑
µ`n

H̃µ[X]

wµ
〈f [X], τ1H̃µ[X]〉∗

=
∑
µ`n

H̃µ[X]

wµ

〈
f [X],

n∑
r=0

h⊥r H̃µ[X]

〉
∗

=
∑
µ`n

H̃µ[X]

wµ

〈
n∑
r=0

er

[
X

M

]
f [X], H̃µ[X]

〉
∗

=
∑
µ`n

H̃µ[X]

wµ

〈
n∑
r=0

er

[
X

M

]
(f [X])n−r, H̃µ[X]

〉
∗

=

n∑
r=0

er

[
X

M

]
(f [X])n−r

as desired.

Now we need a couple elementary but technical lemmas about q-binomials.

Lemma 1.58 ([8, Lemma 4.11]). For s, i ∈ N we have

qi(i−1)

[
s

i

]
q

=

i∑
k=0

(−1)i−kq(
i−k
2 )
[
i− 1

i− k

]
q

[
k + s− 1

k

]
q

.

Proof. We have

qi(i−1)

[
s

i

]
q

= qi(i−1)hi[[s− i+ 1]q]

= hi[q
i−1[s− i+ 1]q]

= hi

[
qi−1 − qs

1− q

]
(by 1.23) =

i∑
k=0

hi−k

[
−1− qi−1

1− q

]
hk

[
1− qs

1− q

]

=

i∑
k=0

(−1)i−kei−k[[i− 1]q]hk[[s]q]

(by 1.33) =

i∑
k=0

(−1)i−kq(
i−k
2 )
[
i− 1

i− k

]
q

[
k + s− 1

k

]
q
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as desired.

Lemma 1.59 ([8, Lemma 4.12]). For r, s, z ∈ N, we have

q(
z
2)
[
r + z

z

]
q

[
r + s− 1

s− z

]
q

=

s∑
i=0

r∑
j=0

q(
i
2)
[
i+ j

i

]
q

hs−i

[
1

1− q

]
ei−z+j−r

[
− 1

1− q

]
er−j

[
1

1− q

]
.

Proof of Lemma 1.59. We prove the identity for z ∈ Z, r + z ≥ 0, by induction on s and r + z.
This clearly implies that it holds for r, s, z ∈ N.
Since we require r ≥ 0, we need the extra base case r = 0. In this case, the statement reduces to

q(
z
2)
[
s− 1

s− z

]
q

=

s∑
i=0

q(
i
2)hs−i

[
1

1− q

]
ei−z

[
− 1

1− q

]
,

and we have

q(
z
2)
[
s− 1

s− z

]
q

= q(
z
2)
s−z∏
i=1

(1− qz+i−1)

(1− qi)

= q(
z
2)hs−z

[
1

1− q

] s−z∏
i=1

(1− qz+i−1)

= q(
z
2)hs−z

[
1

1− q

] s−z∑
i=0

(−qz)iq(
i
2)
[
s− z
i

]
q

= hs−z

[
1

1− q

] s−z∑
i=0

(−1)iq(
i+z
2 )
[
s− z
i

]
q

(i 7→ i− z) = hs−z

[
1

1− q

] s∑
i=0

(−1)i−zq(
i
2)
[
s− z
i− z

]
q

= hs−z

[
1

1− q

] s∑
i=0

(−1)i−zq(
i
2) [s− z]q!

[s− i]q![i− z]q!

=

s∑
i=0

(−1)i−zq(
i
2) (1− q)s−z

[s− i]q![i− z]q!

=

s∑
i=0

q(
i
2)hs−z

[
1

1− q

]
ei−z

[
1

1− q

]
as desired. For s = 0, the statement reduces to

δz,0 =

r∑
j=0

e−z+j−r

[
− 1

1− q

]
er−j

[
1

1− q

]
,
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and we have

δz,0 = e−z[0] = e−z

[
1

1− q
− 1

1− q

]
(by 1.23) =

r∑
j=0

e−z−j

[
− 1

1− q

]
ej

[
1

1− q

]

(j 7→ r − j) =

r∑
j=0

e−z+j−r

[
− 1

1− q

]
er−j

[
1

1− q

]
as desired. For r + z = 0 the statement reduces to

δr,0δs,0 =

s∑
i=0

r∑
j=0

q(
i
2)
[
i+ j

i

]
q

hs−i

[
1

1− q

]
ei+j

[
− 1

1− q

]
er−j

[
1

1− q

]
and we have

δr,0δs,0 = er

[
1

1− q
− 1

1− q

](
hs

[
1

1− q

]
(1; q)s

)

(by 1.23, 1.32) =

 r∑
j=0

ej

[
1

1− q

]
er−j

[
1

1− q

](hs [ 1

1− q

] s∑
i=0

(−1)iq(
i
2)
[
s

i

]
q

)

=

s∑
i=0

r∑
j=0

(−1)iq(
i
2)hs−i

[
1

1− q

]
hi

[
1

1− q

]
ej

[
1

1− q

]
er−j

[
1

1− q

]

=

s∑
i=0

r∑
j=0

(−1)i+jq(
i
2)hs−i

[
1

1− q

]
hi

[
1

1− q

]
hj

[
1

1− q

]
er−j

[
1

1− q

]

=

s∑
i=0

r∑
j=0

q(
i
2)
[
i+ j

i

]
q

hs−i

[
1

1− q

]
ei+j

[
− 1

1− q

]
er−j

[
1

1− q

]
as desired. Finally, if s > 0 and r + z > 0 we have

q(
z
2)
[
r + z

z

]
q

[
r + s− 1

s− z

]
q

(by 1.35) = q(
z
2)
[
r + z

z

]
q

(
qs−z

[
r + s− 2

s− z

]
q

+

[
r + s− 2

s− z − 1

]
q

)

(by 1.35) = q(
z
2)
[
r + z

z

]
q

[
r + s− 2

s− z − 1

]
q

+ qsq(
z−1
2 )

(
qz
[
r + z − 1

z

]
q

+

[
r + z − 1

z − 1

]
q

)[
r + s− 2

s− z

]
q

= q(
z
2)
[
r + z

z

]
q

[
r + (s− 1)− 1

(s− 1)− z

]
q

+ qsq(
z
2)
[
(r − 1) + z

z

]
q

[
(r − 1) + s− 1

s− z

]
q

+ qsq(
z−1
2 )
[
r + (z − 1)

z − 1

]
q

[
r + (s− 1)− 1

(s− 1)− (z − 1)

]
q

,
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so now we can use the inductive hypothesis and get

. . . =

s−1∑
i=0

r∑
j=0

q(
i
2)
[
i+ j

i

]
q

hs−i−1

[
1

1− q

]
ei−z+j−r

[
− 1

1− q

]
er−j

[
1

1− q

]

+ qs
s∑
i=0

r−1∑
j=0

q(
i
2)
[
i+ j

i

]
q

hs−i

[
1

1− q

]
ei−z+j−r+1

[
− 1

1− q

]
er−j−1

[
1

1− q

]

+ qs
s−1∑
i=0

r∑
j=0

q(
i
2)
[
i+ j

i

]
q

hs−i−1

[
1

1− q

]
ei−z+j−r+1

[
− 1

1− q

]
er−j

[
1

1− q

]
and since as r + z > 0 then either r > 0 or z > 0 we can shift the indices of the sums and get

. . . =

s∑
i=0

r∑
j=0

q(
i
2)
[
i+ j

i

]
q

(1− qs−i)hs−i
[

1

1− q

]
ei−z+j−r

[
− 1

1− q

]
er−j

[
1

1− q

]

(h 7→ h− 1) + qs
s∑
i=0

r∑
j=0

q(
i
2)
[
i+ j − 1

i

]
q

hs−i

[
1

1− q

]
ei−z+j−r

[
− 1

1− q

]
er−j

[
1

1− q

]

(i 7→ i− 1) + qs
s∑
i=0

r∑
j=0

q(
i−1
2 )
[
i+ j − 1

i− 1

]
q

hs−i

[
1

1− q

]
ei−z+j−r

[
− 1

1− q

]
er−j

[
1

1− q

]

= (1− qs−i)
s∑
i=0

r∑
j=0

q(
i
2)
[
i+ j

i

]
q

hs−i

[
1

1− q

]
ei−z+j−r

[
− 1

1− q

]
er−j

[
1

1− q

]

(by 1.35) + qs−i
s∑
i=0

r∑
j=0

q(
i
2)
[
i+ j

i

]
q

hs−i

[
1

1− q

]
ei−z+j−r

[
− 1

1− q

]
er−j

[
1

1− q

]

=

s∑
i=0

r∑
j=0

q(
i
2)
[
i+ j

i

]
q

hs−i

[
1

1− q

]
ei−z+j−r

[
− 1

1− q

]
er−j

[
1

1− q

]
as desired.

We need just two more results before being ready to prove our summation formula. The �rst one
is due to A. Garsia, A. Hicks, and A. Stout. The second one is a consequence we proved.

Proposition 1.60 ([17, Proposition 2.6]). For i, j ∈ N we have

hi

[
X

1− q

]
ej

[
X

M

]
=
∑
µ`i+j

H̃µ[X]

wµ
q−(i2)

i∑
k=0

(−1)i−kq(
i−k
2 )
[
i− 1

i− k

]
q

hk[(1− t)Bµ].

Proposition 1.61 ([8, Proposition 4.9]). For i, j ∈ N, we have

∇
(
hi

[
X

1− q

]
ej

[
X

M

])
=

j∑
r=0

tj−rq(
i
2)
[
i+ r

i

]
q

hi+r

[
X

1− q

]
hj−r

[
X

M

]
.
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Proof. Using 1.60, we have

∇
(
hi

[
X

1− q

]
ej

[
X

M

])
=
∑
µ`i+j

TµH̃µ[X]

wµ
q−(i2)

i∑
k=0

(−1)i−kq(
i−k
2 )
[
i− 1

i− k

]
q

hk[(1− t)Bµ]

(by 1.56) = q−(i2)
i∑

k=0

(−1)i−kq(
i−k
2 )
[
i− 1

i− k

]
q

i+j∑
r=0

ti+j−r
[
r + k − 1

r − 1

]
q

× hr
[
X

1− q

]
hi+j−r

[
X

M

]
(by 1.58) =

i+j∑
r=0

ti+j−rq(
i
2)
[
r

i

]
q

hr

[
X

1− q

]
hi+j−r

[
X

M

]

(r 7→ i+ r) =

j∑
r=0

tj−rq(
i
2)
[
i+ r

i

]
q

hi+r

[
X

1− q

]
hj−r

[
X

M

]

as desired.

Proof of Theorem 1.55. We want to �nd a symmetric function f ∈ Λ such that

∇−1τ−εf [X] = hs

[
X + 1

1− q

]
em

[
X + 1

M

]
as evaluating the expression at X = Dµ yields the hypothesis of Lemma 1.57.

f [X] = τε∇hs
[
X + 1

1− q

]
em

[
X + 1

M

]
(by 1.23) = τε∇

s∑
i=0

m∑
j=0

hs−i

[
1

1− q

]
em−j

[
1

M

]
hi

[
X

1− q

]
ej

[
X

M

]

(by 1.61) = τε

s∑
i=0

m∑
j=0

hs−i

[
1

1− q

]
em−j

[
1

M

] j∑
k=0

tj−kq(
i
2)
[
i+ k

i

]
q

hi+k

[
X

1− q

]
hj−k

[
X

M

]

(by 1.26) =

s∑
i=0

m∑
j=0

hs−i

[
1

1− q

]
em−j

[
1

M

] j∑
k=0

tj−kq(
i
2)
[
i+ k

i

]
q

hi+k

[
X + ε

1− q

]
hj−k

[
X + ε

M

]

(by 1.23) =

s∑
i=0

m∑
j=0

hs−i

[
1

1− q

]
em−j

[
1

M

] j∑
k=0

tj−kq(
i
2)
[
i+ k

i

]
q

×
i+k∑
u=0

ei+k−u

[
− 1

1− q

]
hu

[
X

1− q

] j−k∑
v=0

ej−k−v

[
− 1

M

]
hv

[
X

M

]
.
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Isolating the part homogeneous in degree d, i.e. �xing u+ v = d, we have

(f [X])d =

s∑
i=0

m∑
j=0

hs−i

[
1

1− q

]
em−j

[
1

M

] j∑
k=0

tj−kq(
i
2)
[
i+ k

i

]
q

×
i+k∑
u=0

ei+k−u

[
− 1

1− q

]
hu

[
X

1− q

]
ej−k−d+u

[
− 1

M

]
hd−u

[
X

M

]
Now, making the substitutions d = m+ z and u = r + z, we have

(f [X])m+z =

s∑
i=0

m∑
j=0

hs−i

[
1

1− q

]
em−j

[
1

M

] j∑
k=0

tj−kq(
i
2)
[
i+ k

i

]
q

×
i+k∑

r+z=0

ei+k−r−z

[
− 1

1− q

]
ej−k−m+r

[
− 1

M

]
hr+z

[
X

1− q

]
hm−r

[
X

M

]

(r ≤ i+ k − z) =

s∑
i=0

m∑
j=0

j∑
k=0

m∑
r=−z

hs−i

[
1

1− q

]
q(
i
2)
[
i+ k

i

]
q

ei+k−r−z

[
− 1

1− q

]

× em−j
[

1

M

]
tj−kej−k−m+r

[
− 1

M

]
hr+z

[
X

1− q

]
hm−r

[
X

M

]
(j 7→ m− j) =

s∑
i=0

m∑
j=0

m−j∑
k=0

m∑
r=−z

hs−i

[
1

1− q

]
q(
i
2)
[
i+ k

i

]
q

ei+k−r−z

[
− 1

1− q

]

× ej
[

1

M

]
tm−k−jer−k−j

[
− 1

M

]
hr+z

[
X

1− q

]
hm−r

[
X

M

]
=

s∑
i=0

m∑
k=0

m∑
r=−z

tm−rhs−i

[
1

1− q

]
q(
i
2)
[
i+ k

i

]
q

ei+k−r−z

[
− 1

1− q

]

×

r−k∑
j=0

ej

[
1

M

]
tr−k−jer−k−j

[
− 1

M

]hr+z

[
X

1− q

]
hm−r

[
X

M

]

(by 1.23) =

s∑
i=0

m∑
k=0

m∑
r=−z

tm−rhs−i

[
1

1− q

]
q(
i
2)
[
i+ k

i

]
q

ei+k−r−z

[
− 1

1− q

]
× er−k

[
1− t
M

]
hr+z

[
X

1− q

]
hm−r

[
X

M

]
(as r ≥ k ≥ 0) =

m∑
r=0

tm−rhr+z

[
X

1− q

]
hm−r

[
X

M

]

×
s∑
i=0

r∑
k=0

hs−i

[
1

1− q

]
q(
i
2)
[
i+ k

i

]
q

ei+k−r−z

[
− 1

1− q

]
er−k

[
1

1− q

]

(by 1.59) =

m∑
r=0

tm−rq(
z
2)
[
r + z

z

]
q

[
r + s− 1

s− z

]
q

hr+z

[
X

1− q

]
hm−r

[
X

M

]
.
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We showed that our function f satis�es

(f [X])m+z =

m∑
r=0

tm−rq(
z
2)
[
r + z

z

]
q

[
r + s− 1

s− z

]
q

hr+z

[
X

1− q

]
hm−r

[
X

M

]
.

Notice that the expression equals 0 for z > s. Now multiplying by en−z[X/M ] and summing over
z we get

n∑
z=0

en−z

[
X

M

]
(f [X])m+z

=

m∑
r=0

tm−r
s∑
z=0

q(
z
2)
[
r + z

z

]
q

[
r + s− 1

s− z

]
q

hr+z

[
X

1− q

]
hm−r

[
X

M

]
en−z

[
X

M

]
.

The statement now follows by Lemma 1.57.



CHAPTER2
Combinatorial de�nitions

In this chapter we are going to introduce the combinatorial objects and their statistics that are
relevant to the Delta conjectures.

2.1 Lattice paths

The various Delta conjectures can be stated in terms of certain sets lattice paths composed of North
and East steps only, such as Dyck paths and square paths.

De�nition 2.1. A Dyck path of size n ∈ N is a lattice path from (0, 0) to (n, n), composed of
North and East steps only, that lies weakly above the diagonal x = y (the main diagonal).

We denote by D(n) the set of Dyck paths of size n.

Dyck paths of size n are one of the many instances of objects counted by the Catalan numbers

Cn :=
1

n+ 1

(
2n

n

)
.

De�nition 2.2. An area word of length n in a well ordered alphabet A with successor function
S : A→ A is a sequence of letters a1, . . . , an such that for 1 ≤ i ≤ n− 1, we have ai+1 ≤ S(ai).

Dyck paths of size n are in bijective correspondence with area words of length n in the alphabet N
starting with 0, where the correspondence is given by de�ning ai as the number of whole squares
in the i-th row of the path that lie between the path and the main diagonal. Equivalently, ai is the
di�erence between the number of North steps and the number of East steps that occur strictly before
the i-th North step. For example, the area word of the Dyck path in Figure 2.1 is (0, 1, 2, 1, 2, 0, 1, 1).

29
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Figure 2.1: A Dyck path of size 8.

De�nition 2.3. A square path of size n ∈ N is a lattice path from (0, 0) to (n, n), composed of
North and East steps only, ending with an East step.

We denote by SQ(n) the set of square paths of size n. These paths are rightfully called square paths
ending East in the literature, but since we are not going to deal with square paths ending North,
we omit the speci�cation for brevity.

De�nition 2.4. The shift of a square path is the maximum integer s such that the path intersects
the diagonal x = y+s. If a square path has shift s, the diagonal x = y+s is called base diagonal.

Dyck paths are precisely the subset of square paths with shift 0. Square paths of size n and shift
s are in bijective correspondence with area words of length n in the alphabet [−s] ∪ N such that
the �rst letter is non-positive and the last letter is non-negative. The correspondence is the same
as the one described for Dyck paths. Notice that we keep referring to the main diagonal (not the
base diagonal), hence the letters of the area word can be negative (but not smaller than −s).
We now need to introduce (partial) labellings and decorations, which allow us to de�ne more general
objects. The following de�nitions are stated for square paths, but since Dyck paths are special cases
of square paths, they are meant for both.

De�nition 2.5. A (partial) labelling of a square path of size n is a sequence l1, . . . , ln of (non-
negative) positive integers such that ai < ai+1 =⇒ li < li+1 (for a partial labelling, we also
require a1 = 0 =⇒ l1 6= 0 and {li | ai = −s} 6= {0}). A (partially) labelled square path is a
square path with a (partial) labelling.
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More visually, a (partial) labelling of a square path is an assignment of (non-negative) positive
integer labels to each North step of the path such that the labels are strictly increasing along
columns (for a partial labelling, we also require that there is no 0 in the bottom-left corner, and
that at least one of the steps starting from the base diagonal has a non-zero label).

We denote by LD(m,n) (resp. LSQ(m,n)) the set of partially labelled Dyck (resp. square) paths
of size m + n with m 0 labels and n positive labels. We might omit the value of m if it is 0 (es.
LD(n) or LSQ(n)).

Partially labelled square paths have been introduced in [9], but the other de�nitions are prior
(labelled Dyck paths in [26], labelled square paths in [38], partially labelled Dyck paths in [29]).

De�nition 2.6. Let π be a (partially) labelled square path of size n. Its associated monomial
is

xπ =

n∏
i=1

xli

∣∣∣∣
x0=1

.

Notice that the evaluation at x0 = 1 makes the 0 labels not contributing to the monomial (nor to
the degree), which explains why the word partially is used for labellings where 0 is allowed. When
dealing with partially labelled paths, it will be convenient to have two di�erent parameters for the
number of 0 labels and the number of positive ones.
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Figure 2.2: A partially labelled square path in LSQ(2, 6) with shift 3 and monomial x1
2x2

2x3x4.

The paths whose set of labels is exactly [n], with n being their size, are in some sense a (�nite) set
of representatives for the whole (in�nite) set of labelled paths, so it will be useful to give a special
name to them. We do so in terms of preference functions and parking functions.
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De�nition 2.7. A preference function is a function f : [n] → [n]. A parking function is a
preference function such that #{1 ≤ j ≤ n | f(j) ≥ i} ≤ n+ 1− i.

We denote by PF(n) (resp. PR(n)) the set of parking (resp. preference) functions of size n.

Given a square path whose set of labels is exactly [n], we can determine a preference function by
de�ning f(j) = i if the label j appears in the i-th column. It is easy to check that the correspondence
is bijective, and that f is a parking function if and only if it comes from a Dyck path. From now on,
we will identify preference functions and parking functions with the corresponding labelled paths.

Other than (partial) labellings, we need to extend our sets of objects by introducing decorated rises.

De�nition 2.8. A rise of a square path is a North step preceded by another North step. A
decorated square path is a square path together with a set of decorated rises.

We denote by LD(m,n)∗k (resp. LSQ(m,n)∗k) the set of partially labelled Dyck (resp. square)
paths of size m+ n with m 0 labels, n positive labels, and k decorated rises.
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Figure 2.3: The Dyck path in Figure 2.1, with a partial labelling and two decorated rises.

Dyck paths and square paths can be both (partially) labelled and decorated. In fact, these objects
will be relevant in the statement of the so called generalised Delta conjecture and generalised Delta
square conjecture.

In order to get there, we need to introduce three statistics on these objects, which are extensions
of the area (which is classical), the dinv (introduced by M. Haiman), and the bounce (introduced
by J. Haglund).
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De�nition 2.9. The area of a (decorated) square path is the number∑
i 6∈R

(ai + s),

where s is the shift of the path and R is the set of the indices of its decorated rises.

More visually, the area of a square path is the number of whole squares between the path and
the base diagonal that do not lie in rows containing a decorated rise. The presence of a (partial)
labelling does not in�uence the area in any way.

De�nition 2.10. The dinv of a (partially) labelled square path of size n is the number of
diagonal inversions of the path, where for 1 ≤ i ≤ j ≤ n the pair (i, j) is a diagonal inversion if
one of the following holds:

• ai = aj and li < lj (primary inversion),

• ai = aj + 1 and li > lj (secondary inversion),

• i = j, ai < 0, and li > 0 (tertiary or bonus inversion).

The presence of decorated rises does not in�uence the dinv in any way. Notice that a square path
is a Dyck path if and only if it has no tertiary inversions.
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Figure 2.4: The square path in Figure 2.2 with 2 decorated rises. It has area = 9, dinv = 6 (2
primary, 1 secondary, 3 tertiary), and dinv reading word 241231.
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De�nition 2.11. The dinv reading word of a square path is the sequence of its non-zero labels
read starting from the ones in the base diagonal going bottom to top, left to right; next the
ones in the diagonal x = y + s − 1 bottom to top, left to right; then the ones in the diagonal
x = y + s− 2 and so on.

This convention for the reading word is the inverse of the one that is commonly used in the literature.

If the path is not labelled, we de�ne its dinv as the dinv of the path together with the labelling
whose dinv reading word is 1, . . . , n, i.e. the one such that all the inequalities appearing in the
de�nition of diagonal inversion hold.

The third statistic it the bounce, introduced in [23], and its labelled extension pmaj. Unfortunately,
a further generalisation to square paths is yet to be found, so we will only de�ne it for Dyck paths.

De�nition 2.12. The bounce path of a Dyck path is the lattice path from (0, 0) to (n, n)
computed in the following way: it starts in (0, 0) and travels North until it encounters the
beginning of an East step of the Dyck path, then it turns East until it hits the main diagonal,
then it turns North again, and so on; thus it continues until it reaches (n, n).

We label the North steps of the bounce path starting from 0 and increasing the labels by 1 every
time the path hits the main diagonal (so the steps in the �rst vertical segment of the path are
labelled with 0, the ones in the next vertical segment are labelled with 1, and so on). We de�ne
the bounce word of the Dyck path to be the sequence of integers b1, . . . , bn, where bi is the label
attached to the i-th North step of the bounce path. See Figure 2.5 for an example.
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Figure 2.5: Construction of the bounce path (dashed) and the bounce word (left).
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De�nition 2.13. The bounce of a Dyck path is the sum of the values of the labels of its bounce
word.

The bounce statistic actually has a generalisation for square paths, but it is rather complicated to
describe, it does not generalise to labelled objects, and it is not very useful for our purposes. We
will skip it.

Before introducing the pmaj, we need to recall what the major index of a word is.

De�nition 2.14. Let p1, . . . , pk be a sequence of integers. We de�ne its descent set

Des(p1, . . . , pk) := {1 ≤ i ≤ k − 1 | pi > pi+1}

and its major index maj(p1, . . . , pk) as the sum of the elements of the descent set.

De�nition 2.15. The pmaj of a (partially) labelled Dyck path is the major index of its parking
word, which is de�ned as follows.

Let C1 be the set containing the labels appearing in the �rst column of D, and let p1 := maxC1.
At step i, let Ci be the multiset obtained from Ci−1 by removing pi−1 and adding all the labels
in the i-th column of the Dyck path; let

pi := max {x ∈ Ci | x ≤ pi−1}

if this last multiset is non-empty, and pi := max Ci otherwise. The parking word is p1, . . . , pn.

As it happened for the dinv, the pmaj is also not in�uenced by the presence of decorated rises. It
also has its own reading word (which is not the parking word).

De�nition 2.16. The pmaj reading word of a Dyck path is the sequence of its non-zero labels
read bottom to top.

It is not di�cult to check that the bounce of a Dyck path agrees with the pmaj of the same path
with the standard labelling li = i. As an example, the Dyck path in Figure 2.3 has parking word
54321061, pmaj = 2, and pmaj reading word 2451361.

The Loehr-Remmel bijection

In [27], J. Haglund and N. Loehr describe a bijection ζ : D(n) → D(n) mapping (dinv, area) to
(area, bounce). In a subsequent paper [36], N. Loehr and J. Remmel extended the bijection to the
set of parking functions of size n mapping (dinv, area) to (area, pmaj). We will describe the bijection
passing through several intermediate steps.



36 CHAPTER 2. COMBINATORIAL DEFINITIONS

De�nition 2.17. Let σ ∈ Sn. A run of σ is a maximal decreasing sequence in the 1-line notation
of σ.

For example, if σ = 716429583, its runs are 71, 642, 95, 83. We now de�ne a function w : Sn → Nn
by saying that wi(σ) is the number of elements greater than σi in the run containing σi, plus the
number of elements lesser than σi in the previous run (or plus 1 if σi is in the �rst run). In our
case, w(σ) = (1, 2, 1, 2, 3, 3, 3, 1, 1). Notice that w1 ≡ 1.

Proposition 2.18. There is a bijection between PF(n) and the pairs (σ, u) with σ ∈ Sn and
u ≤ w(σ) ∈ Nn, where the inequality is componentwise.

We will actually show two such bijections, and the composition of the second one with the inverse
of the �rst one will be the desired bijection of PF(n) with itself mapping (dinv, area) to (area, pmaj).

First bijection Let f ∈ PF(n), π its corresponding element in LD(n). We want to de�ne a pair
(σ, u) as in 2.18, such that area(π) =

∑n
i=1 ui and pmaj(π) = maj(σn · · ·σ1). Let σ := p(π) (the

parking word of π), and ui := i− f(pi(π)).

Lemma 2.19. The map is well de�ned, i.e. 0 ≤ ui < wi(σ).

Proof. Recall that f(i) is the number of the column containing the label i. It is clear that
f(pi(D)) ≤ i, because the label pi(D) must be in the �rst i columns by construction of the parking
word. This implies that ui = i− f(pi(D)) ≥ 0.

The number i−f(pi(π)) is the delay between the moment in which pi(π) is scanned and the moment
in which it appears in the parking word. In fact, since f(pi(π)) is the column containing the label
pi(π), then it is also the minimum among the indices j such that pi(π) ∈ Cj ; since it appears as
i-th letter in the parking word, then i is the maximum among these indices. By construction of
the parking word, for f(pi(π)) − 1 ≤ j < i the label pj(π) must be either lesser than pi(π) and
belonging to the previous run, or greater than pi(π) and belonging to the same run. The number
of such labels at most wi(σ), hence i− f(pi(π)) < wi(σ).

Since f(i) = (σ−1)i− u(σ−1)i , the permutation σ and the sequence u completely determine f . This
implies that the map is injective. To prove that it is actually a bijection, we have to show the
following.

Lemma 2.20. For (σ, u) as in 2.18, f : i 7→ (σ−1)i − u(σ−1)i is a parking function with parking
word σ.

Proof. Recall that f : [n]→ [n] is a parking function if and only if

# {1 ≤ j ≤ n | f(j) ≥ i} ≤ n+ 1− i.
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Since ui ≥ 0, then f(σi) = i− ui ≤ i, so we have f(j) ≥ i =⇒ j = σh for some h ≥ i. There are
n+ 1− i such h's, thus f is a parking function.

Since the map is the inverse of the one we just de�ned, then the parking word of f must be σ.

Lemma 2.21. area(π) =
∑n
i=1 ui and pmaj(π) = maj(σn · · ·σ1).

Proof. The equality pmaj(π) = maj(σn · · ·σ1) is trivial by construction.

We will now prove that
∑n
i=1 ui = area(π). If f(i) is the column containing the label i, then

n + 1 − f(i) is the number of whole squares in the row containing the label i between the path
and the right edge of the square containing the path. The total number of squares below the path
is also equal to the number of squares between the path and the main diagonal, which is area(π),
plus the number of squares weakly below the main diagonal (including the ones containing it). It
follows that

n∑
i=1

(n+ 1− f(i)) = area(π) +

(
n+ 1

2

)
and so

area(π) =

n∑
i=1

(n+ 1− f(i))−
(
n+ 1

2

)
= n(n+ 1)−

(
n+ 1

2

)
−

n∑
i=1

f(i)

=

(
n+ 1

2

)
−

n∑
i=1

f(i) =

n∑
i=1

i−
n∑
i=1

f(i) =

n∑
i=1

(i− f(i)) =

n∑
i=1

ui

as desired.
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Figure 2.6: The Dyck path to the left is mapped to σ = 74321658, u = 01032011 by the �rst
bijection, which is mapped to the path to the right by the inverse of the second one.
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Second bijection Let f ∈ PF(n), π its corresponding element in LD(n). We want to de�ne a
pair (σ, u) as in 2.18, such that dinv(π) =

∑n
i=1 ui and area(π) = maj(σn · · ·σ1). Let σ be the

permutation whose i-th run is given by the labels in the diagonal x+ y = i− 1 in π, in decreasing
order. Let ui be the number of inversions involving σi and any σj with j ≤ i.

Lemma 2.22. The map is well de�ned, i.e. 0 ≤ ui < wi(σ).

Proof. By construction ui ≥ 0. Furthermore, if the labels σj , σi form an inversion and j ≤ i,
then σj is counted by wi(σ). In fact, if σi and σj are in the same diagonal (i.e. the same run), by
construction of σ we have that j ≤ i implies σj > σi, hence σj contributes to wi(σ) whether they
form an inversion or not. For the same reason, if σi and σj are in two consecutive diagonals and
j ≤ i, then by construction of σ we must have σj in the lower diagonal (i.e. the previous run), so
if they form an inversion then σj < σi, which means that σj contributes to wi(σ). It follows that
ui ≤ wi(σ), but the inequality is strict because of we have to add 1 to wi(σ) if i is in the �rst run,
and if it is not then before any label in the diagonal x+ y = i− 1 there must be some label in the
diagonal x+ y = i− 2, and they cannot possibly form an inversion.

Lemma 2.23. The map is bijective.

Proof. Given (σ, u) as in 2.18, we can build a labelled Dyck path π recursively. More precisely,
we can build a sequence of labelled Dyck paths of size k with labels in {σ1, . . . , σk} such that the
number of inversions involving σi and some σj with j ≤ i is exactly ui.
For k = 1 the path is trivial. Supposing to have already built the path of size k − 1, then one has
wk(σ) possibilities for the position of σk: since it must be in a �xed diagonal, it can be either one
step North-East after any other label in the same diagonal (i.e. the number of elements in the same
run that we already used, which are the ones greater than σk), or immediately on top any other
label in the previous diagonal (i.e. the previous run), that must be strictly smaller by de�nition of
labelled Dyck path (so, there are as many as the number of elements lesser than σk in the previous
run), possibly moving one step towards North-East any label that were there before; if σk belongs
to the �rst run, we have the extra option of putting it at the very beginning of the path.

This proves that the number of options we have is exactly wk(σ). It is easy to check that the
contribution to the dinv of each of these options is di�erent, and in particular it is 0 for the option
that puts σk in the highest possible row, and increases by 1 every time we move down to the next
possible spot (since we are adding exactly one inversion).

We can thus reconstruct π from (σ, u), hence the map is bijective.

Lemma 2.24. dinv(π) =
∑n
i=1 ui and area(π) = maj(σn · · ·σ1).

Proof. The equality area(π) = maj(σn · · ·σ1) is trivial because the elements in the i-th run of σ
contribute by i− 1 units each to maj(σn · · ·σ1), and they correspond to the labels in the diagonal
x+ y = i− 1, which contribute by i− 1 units each to area(π).
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The equality dinv(π) =
∑n
i=1 ui is also trivial because both the left and the right hand side count

the total number of diagonal inversions of π.

We can now conclude our proof.

Theorem 2.25. The composition of the second bijection with the inverse of the �rst bijection
yields a map ζ : PF(n)→ PF(n) mapping (dinv, area) to (area, pmaj)

Proof. It follows immediately by all the lemmas in this subsection.

2.2 Polyominoes

While most of the statements can be expressed in terms of lattice paths, in some cases polyominoes
give more insight, for example when dealing with iterated recursions or complicated bijections.

De�nition 2.26. A reduced (resp. standard) parallelogram polyomino of size m × n is a pair
of lattice paths from (0, 0) to (m,n), composed of North and East steps only, such that the �rst
one, called red path, lies always weakly (resp. strictly) above the second one, called green path.

Figure 2.7: A 10× 6 reduced polyomino.

We denote by RP(m,n) (resp. PP(m,n)) the set of reduced (resp. standard) parallelogram poly-
ominoes of size m× n.
There is an obvious bijection between reduced parallelogram polyominoes of sizem×n and standard
parallelogram polyominoes of size (n + 1) × (m + 1), consisting of adding one North step at the
beginning and one East step at the end of the red path, adding one East step at the beginning and
one North step at the end of the green path, and then taking the symmetry with respect to the
diagonal x = y (thus swapping the red and the green path).

From now on, unless di�erently speci�ed, the word polyomino has to be intended as reduced par-
allelogram polyomino. Details about the properties and the statistics on standard parallelogram
polyominoes can be found in [1]. The bistatistics we are going to introduce are preserved (up to a
normalisation) by either the bijection described above or its conjugate by another bijection we will
describe later, hence the two descriptions are completely equivalent.
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Reduced parallelogram polyominoes of size m× n are in bijective correspondence with area words
a0, a1, . . . , am+n in the alphabet N := 0 < 0̄ < 1 < 1̄ < 2 < 2̄ < . . . starting with 0, with m + 1
unbarred letters and n barred letters. The area word can be computed in two equivalent ways.

The �rst one consists of drawing a diagonal of slope −1 from the end of every horizontal green step,
and attaching to that step the length of that diagonal (i.e. the number of squares it crosses). Then,
one puts a dot in every square not crossed by any of those diagonals, and attaches to each vertical
red step the number of dots in the corresponding row. Next, one bars the numbers attached to
vertical red steps, and �nally one reads those numbers following the diagonals of slope −1, reading
the labels when encountering the end of its step and the red label before the green one. An arti�cial
0 is added at the beginning. See Figure 2.8 for an example.

1 2

1 1

0 1

0 1

1 1

0̄

1̄

1̄

0̄

0̄

1̄

Figure 2.8: The area word for the polyomino in Figure 2.7 is 00̄11̄2111̄00̄100̄11̄11.

Equivalently, we can build a Dyck path of size m+ n+ 1 from the polyomino in the following way.
First we draw a North step; then, running over red and green steps alternatively, we draw a North
step in our Dyck path if the corresponding step in the polyomino was either a red North step or
a green East step, and we draw an East step in our Dyck path otherwise; �nally we draw an East
step. Now we take the area word of the Dyck path and replace the alphabet N with N. Notice that
this gives a bijective correspondence between polyominoes with semi-perimeter m + n and Dyck
paths of size m+ n+ 1.

It is not hard to check that those de�nitions are equivalent (see [1] and [8, Section 1.2] for detailed
proofs and examples).

For a ∈ N let |a| = n ∈ N if a ∈ {n, n̄} (i.e. its value disregarding the bar).

De�nition 2.27. A rise of a polyomino is an index i such that ai > ai−1 in the alphabet N. A
rise is unbarred if |ai| > |ai−1| (i.e. if ai ∈ N) and it is barred if |ai| = |ai−1| (i.e. if ai ∈ N\N). A
rise-decorated polyomino is a polyomino together with a set of decorated unbarred rises. A doubly
rise-decorated polyomino is a polyomino together with a set of decorated rises (either barred or
not).

Unbarred rises correspond in the picture to diagonals of slope −1 connecting the end point of a red
North step with the end point of a green East step, with the value of the unbarred letter being the
length of the diagonal. Barred rises correspond in the picture to to diagonals of slope −1 connecting
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the starting point of a red North step with the end point of a green East step, with the value of the
unbarred letter being the length of the diagonal; this can be 0 (the two points may coincide) in the
case of a 00̄ rise.

De�nition 2.28. The area of a (doubly rise-decorated) polyomino is the number∑
i 6∈R

|ai|,

where R is the set of the indices of its decorated rises.

More visually, the area of a (doubly rise-decorated) polyomino is the number of squares between
the red path and the green path that are neither crossed by a diagonal corresponding to a decorated
unbarred rise, nor contain a dot in a row whose matching red North step is a decorated barred rise.
For example, the area of the polyomino in Figure 2.7 (that has no decorated rises) is 12.

We denote by RP(m,n)∗k,j the set of doubly rise-decorated reduced polyominoes of size m×n with
k decorated unbarred rises and j decorated barred rises.

De�nition 2.29. The dinv of a polyomino of size m×n is the number of diagonal inversions of
the polyomino, where for 0 ≤ i < j ≤ m+n the pair (i, j) is a diagonal inversion if ai = S(aj) ∈ N
and S : N→ N is the successor function.

For example, the dinv of the polyomino in Figure 2.7 is 24.

De�nition 2.30. A corner of a polyomino is an index i such that neither ai = ai−1 nor
ai−2 < ai−1 < ai. A green peak of a polyomino is a corner such that ai is unbarred, i.e the
corresponding green step is an East step preceded by a North step. A red valley of a polyomino
is a corner such that ai is barred, i.e. the corresponding red step of the polyomino is a North
step preceded by an East step. A corner-decorated polyomino is a polyomino together with a set
of decorated green peaks. A doubly corner-decorated polyomino is a polyomino together with a
set of decorated corners (either green peaks or red valleys).

We denote by RP(m,n)◦k,j the set of doubly rise-decorated reduced polyominoes of size m×n with
k decorated green peaks and j decorated red valleys.

De�nition 2.31. The bounce path of a polyomino path is the lattice path from (0, 0) to (m,n)
computed in the following way: it starts in (0, 0) and travels East until it encounters the beginning
of a green North step of the polyomino (which can happen immediately, after zero steps), then
it turns North until it encounters the beginning of a red East step, then it turns East again, and
so on; thus it continues until it reaches (m,n).
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We label the steps of the bounce path starting from 0 and increasing the labels by taking the
successor in N every time the path hits changes directions (so the steps in the �rst horizontal
segment of the bounce path - which is the only one that can be empty - are labelled with 0, the
ones in the next vertical segment are labelled with 0̄, and so on). We de�ne the bounce word of the
polyomino to be the sequence of integers b0, b1, . . . , bn, where b0 := 0 and bi is the label attached
to the i-th step of the bounce path for i > 0. See Figure 2.9 for an example.

0 0 0̄

0̄

1 1 1̄

2 2 2̄

3 3 3̄

3̄

4 4

Figure 2.9: The polyomino in Figure 2.7 with a decorated green peak, a decorated red valley, and
the bounce path (dotted) shown.

De�nition 2.32. The bounce of a (doubly corner-decorated) polyomino is the number∑
i 6∈C

|bi|,

where C is the set of the indices of its decorated corners.

For example, the bounce of the polyomino in Figure 2.9 is 25. The labels corresponding to decorated
corners are highlighted and disregarded.

Decorated polyominoes and their statistics �rst appeared in [8] with one set of decorations, and in
[11] with two.

Finally, we introduce a pmaj statistic for polyominoes. Here we switch to standard parallelogram
polyominoes because the combinatorics of the labellings is more natural.

De�nition 2.33. A labelled parallelogram polyomino is a parallelogram polyomino where the
vertical steps of the �rst path are labelled with (not necessarily distinct) positive integers such
that the labels appearing in each column are strictly increasing from bottom to top.

We denote byLPP(m,n) the set of labelled standard parallelogram polyominoes of size m× n. For
π ∈ LPP(m,n) we set li(π) to be the label of the i-th vertical step. We de�ne the associated
monomial xπ as we did for the labelled square paths.
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Figure 2.10: A 11× 7 labelled standard parallelogram polyomino.

De�nition 2.34. The pmaj of a labelled standard parallelogram polyomino is the major index
of its parking word, which is de�ned as follows.

Let C1 be the multiset containing the labels appearing in the �rst column of π, and let p1 :=
maxC1. For i > 1, at step i, if the i-th step of the green path is a North step let Ci =
Ci−1 \ {pi−1}; if the i-th step of the green path is an East step let Ci be the multiset obtained
from Ci−1 by replacing pi−1 with a 0, and then adding all the labels in the column of π containing
the i-th green step (which we recall being an East step). Next, let pi := max {a ∈ Ci | a ≤ pi−1}
if this set is non-empty, and pi := max Ci otherwise. The parking word is p1 · · · pm+n−1.

For example, the parking word of the polyomino in Figure 2.10 is 54200003100000620 and hence
its pmaj is 13. It is not hard to see that it the polyomino has the standard labelling li = i then its
pmaj agrees with the bounce of the corresponding reduced parallelogram polyomino.

The pmaj statistic for polyominoes has been introduced in [8].

The ζ bijection for polyominoes

In [1], the authors describe a bijection between the set of m×n standard parallelogram polyominoes
to the set of n×m standard parallelogram polyominoes, mapping (dinv, area) to (area, bounce). In
[11] we slightly modi�ed this bijection to suit reduced parallelogram polyominoes, and showed that
it actually extends to doubly decorated objects.

Proposition 2.35. For m,n, k, j ∈ N, there exists a bijection ζ : RP(m,n)∗k,j → RP(m,n)◦k,j

mapping (dinv, area) to (area, bounce).

Proof. The map is essentially the same one described in [1, Section 4], adjusted to �t reduced
polyominoes as in [8, Theorem 7.5]. We will actually describe its inverse.

Pick a reduced polyomino with some decorated red valleys and green peaks and draw its bounce
path; then, project the labels of the bounce path on both the red and the green path. Let us
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Figure 2.11: The �rst step needed to compute ζ, giving the partial word 00̄0̄0
∗
0̄0. The �nal image

will be the polyomino with area word 00̄0̄0
∗
0̄
∗
11̄
∗
22̄2211

∗
1̄22̄110

call bounce point a vertex of the bounce path in which it changes direction. Now, build the area
word of the image as follows: start with a 0, then pick the �rst bounce point on the red path, and
write down the 0's and the 0̄'s as they appear going upwards along the red path up to that point
(in this case, the relative order will always be with the 0̄ �rst, and all the 1's next). Then, go to
the �rst bounce point on the green path, and insert the 1's after the correct number of 0̄'s, in the
same relative order in which they appear going upwards to the previous bounce point. If a letter
is decorated, keep the decoration. Now, move to the second bounce point on the red path, and
repeat. See Figure 2.11 for an example.

By construction the result will be the area word of a m × n reduced polyomino. It is also easy
to see that the area is mapped to the dinv, since the squares of the starting reduced polyomino
correspond to the inversions on the image.

Red valleys are mapped into barred rises, because when reading the red path bottom to top, one
reads the horizontal step �rst, which corresponds to an unbarred letter, and the vertical step next,
which correspond to the next barred letter. Moreover, the decoration is kept on a letter with the
same value. The same argument applies to green peaks being mapped to unbarred rises. This
implies that bounce is mapped to area.

Remark 2.36. Given a polyomino π, by construction we have that the area word of π is an anagram
of the bounce word of ζ(π). In particular, the number of 0's is preserved.



CHAPTER3
Delta conjectures

One of the main reasons that motivates the study of the Delta operators is the surprising amount
of conjectured positivity results related to them. While some have been proven over the years, most
of them are still open.

3.1 The shu�e conjecture

The �rst one to have ever been introduced is known as shu�e conjecture, now a theorem by E.
Carlsson and A. Mellit (see [6]).

Theorem 3.1 (Shu�e Theorem). For n ∈ N, we have

∇en =
∑

π∈LD(n)

qdinv(π)tarea(π)xπ.

In [36] the authors describe a bijection of PF(n) with itself mapping the bistatistic (dinv, area) to
(area, pmaj). As a corollary, the following holds.

Corollary 3.2. For n ∈ N, we have

∇en =
∑

π∈LD(n)

qarea(π)tpmaj(π)xπ.

The shu�e conjecture is especially important because ∇en has another interpretation, as the bi-
graded Frobenius characteristic of the Sn module known as diagonal harmonics. This is one of
the facts that �rst motivated the study of Macdonald polynomials, and it has been proved by M.
Haiman in [34]. See also [33] for further details.
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3.2 The Delta conjecture

The Delta conjecture is a generalisation of the shu�e conjecture, introduced by J. Haglund, J.
Remmel, and A. Wilson in [29]. In the same paper, the authors suggest that an even more general
conjecture should hold, which we call generalised Delta conjecture. It reads as follows.

Conjecture 3.3 (Generalised Delta conjecture). For m,n, k ∈ N, we have

∆hm∆′en−k−1
en =

∑
π∈LD(m,n)∗k

qdinv(π)tarea(π)xπ.

The Delta conjecture is simply the case m = 0 of the general case. Recalling that ∇|Λ(n) =
∆′en−1

|Λ(n) , it is clear that for k = 0 the Delta conjecture reduces to the shu�e conjecture.

In analogy with the shu�e conjecture, the generalised Delta conjecture also has a version in terms
of (area, pmaj). Unfortunately the bijection by N. Loehr and J. Remmel does not generalise for
k > 0 (but it does for m > 0), so in the general case it is not proved that the two conjectures are
equivalent.

Conjecture 3.4. For m,n, k ∈ N, we have

∆hm∆′en−k−1
en =

∑
π∈LD(m,n)∗k

qarea(π)tpmaj(π)xπ.

We want to emphasise the (area, pmaj) version, despite it being less popular in the literature, because
certain symmetric functions are easier to interpret in this case.

3.3 The square conjecture

The square conjecture was �rst suggested by N. Loehr and G. Warrington in [38], and it was then
proved by E. Sergel in [43] using the shu�e theorem.

Theorem 3.5 (Square Theorem). For n ∈ N, we have

∇ω(pn) =
∑

π∈LSQ(n)

qdinv(π)tarea(π)xπ.

Unfortunately, adding zero labels and decorated rises to square paths in the trivial way and q, t-
counting the resulting objects with respect to the bistatistic (dinv, area) gives a polynomial that
does not match the expected symmetric function. This issue has been addressed by M. D'Adderio,
A. Iraci, and A. Vanden Wyngaerd, who stated the generalised Delta square conjecture in [9].
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Conjecture 3.6 (Generalised Delta square conjecture). For m,n, k ∈ N, we have

[n− k]t
[n]t

∆hm∆en−kω(pn) =
∑

π∈LSQ(m,n)∗k

qdinv(π)tarea(π)xπ.

The square conjectures lack a (area, pmaj) version. The reason is that there is currently no extension
of the pmaj statistic to square paths.

3.4 The polyominoes conjecture

For the sake of completeness, we also state the polyominoes conjecture, �rst introduced in [8].

Conjecture 3.7 (Polyominoes conjecture). For m,n ∈ N, we have

∆hmen+1 =
∑

π∈LPP(m+1,n+1)

qarea(π)tpmaj(π)xπ

where the area of a standard parallelogram polyomino is the area of the corresponding reduced
parallelogram polyomino (or equivalently, it is the number of squares between the two paths minus
a normalisation factor m+ n+ 1).

Unlike the square conjectures, this conjecture lacks a (dinv, area) version instead. From some partial
results that we have, it is plausible that the introduction of a pmaj statistic on partially labelled
square paths will also enable the statement of a conjecture for ∆hmω(pn+1) in terms of pairs of
paths from (0, 0) to (m,n). This would allow for a generalisation of the polyominoes framework in
the same way as square paths generalise the Dyck paths framework.

3.5 Shu�e theory

To prove any of these conjectures, it is enough to show that the scalar product of the corresponding
symmetric function with any element of a given base agrees with the q, t-enumerator of the corre-
sponding set. If we choose the basis of complete homogeneous symmetric functions {hλ | λ ` n},
the Delta conjectures predict that the scalar product of the corresponding symmetric function with
hλ is the q, t-enumerator of the subset of the relevant paths whose elements have a reading word
that is a ∅, λ-shu�e. The goal of this section is to give the relevant de�nitions and prove this result.

First of all, recall that∑
π∈LD(m,n)∗k

qdinv(π)tarea(π) and
∑

π∈LSQ(m,n)∗k

qdinv(π)tarea(π)xπ

are both symmetric functions, as it is immediate that they are positive sums of LLT polynomials.
We also need to recall that 〈mλ, hµ〉 = δλ,µ, that is, the monomial and the complete homogeneous
symmetric functions are dual bases. With that in mind, we can isolate the coe�cient of mλ by
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taking the scalar product with hλ. But the coe�cient of mλ is the q, t-enumerator of the subset of
the relevant lattice paths whose set of labels is composed of λ1 1's, λ2 2's, and so on (we are using
the fact that the full series are symmetric functions). We can restate this result in term of shu�es.

De�nition 3.8. Given two sequences (a1, . . . , am), (b1, . . . , bn) two sequences of pairwise distinct
elements, their shu�e (a1, . . . , am)� (b1, . . . , bn) is the set of sequences (c1, . . . , cm+n) such that

• {ck | 1 ≤ k ≤ m+ n} = {ai, bj | 1 ≤ i ≤ m, 1 ≤ j ≤ n},

• cr = ai, cs = aj , i < j =⇒ r < s,

• cr = bi, cs = bj , i < j =⇒ r < s,

i.e. it is the set of sequences obtained by interlacing of the starting two sequences while preserving
the relative order.

De�nition 3.9. Given µ ` n− d and ν ` d, a µ, ν-shu�e is a sequence of numbers from 1 to n
in

(1, . . . , µ1)� · · ·� (n− µ`(µ) + 1, . . . , n− d)

� (n− d+ ν1, . . . , n− d+ 1)� · · ·� (n, . . . , n− ν`(ν) + 1)

i.e. a shu�e of `(µ) increasing sequences of length µ1, . . . , µ`(µ), and `(ν) decreasing sequences
of length ν1, . . . , ν`(ν), obtained by picking every time the smallest available positive integers.

We will write λ-shu�e as a short for ∅, λ-shu�e. As we did for the reading word, this is the inverse
of the convention commonly used in the literature.

Notice that, for any λ ` n, the q, t-enumerator of the subset of any of the combinatorial sets de�ned
in Chapter 2 whose objects have a set of labels composed of λ1 1's, λ2 2's, and so on, is the same as
the q, t-enumerator, with respect to the bistatistic (dinv, area), of the set of the objects of the same
kind whose dinv reading word is a λ-shu�e. This is immediate, as replacing the 1's with the �rst
decreasing sequence, the 2's with the second, and so on, preserves both the area (trivially) and the
dinv (because the strict inequalities are preserved).

It follows that, to prove any of these conjectures, it is enough to show that the scalar product of the
corresponding symmetric function with any hλ yields the q, t-enumerator of the set of the objects
of the right kind whose dinv reading word is a λ-shu�e. For this reason the �rst conjectured result
was called shu�e conjecture.

From [25, Theorem 6.10] we have that if we take the scalar product with eµhν instead, we get
the q, t-enumerator, with respect to the bistatistic (dinv, area), of the set of the objects whose dinv
reading word is a µ, ν-shu�e. We omit the proof, as it would require introducing some extra
background theory about quasisymmetric functions.



CHAPTER4
Combinatorial recursions

In this chapter we are going to show the two combinatorial recursions that are needed to prove the
so called Schröder case of the generalised Delta and Delta square conjectures, i.e. the 〈 · , en−jhj〉
case. These are at the moment the most general results that don't require any specialization of the
variables q, t.

4.1 Partially labelled Dyck paths

For further details on the content of this Section, see [11].

As it often happens when dealing with these recursions, it is convenient to split our set into smaller
subsets and �nd a recursion for those. De�ne the subset

LD(m,n\s)∗k,◦j ⊆ LD(m,n)∗k

to consist of the paths π ∈ LD(m,n)∗k such that

dr(π) ∈ (1, 2, . . . , n− j)� (n, n− 1, . . . , n− j + 1) and #{1 ≤ i ≤ m+ n | ai = 0 ∧ li 6= 0} = s.

Let labels from 1 to n− j be small, and the labels from n− j + 1 to n be big. We set

LDq,t(m,n\s)∗k,◦j :=
∑

π∈LD(m,n\s)∗k,◦j
qdinv(π)tarea(π).

The generalised Delta conjecture predicts that

n∑
s=1

LDq,t(m,n\s)∗k,◦j = 〈∆hm∆′en−k−1
en, en−jhj〉

and our goal is to prove this result.
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Theorem 4.1. For 0 ≤ j, k, s ≤ n, 0 ≤ m, the polynomials LDq,t(m,n\s)∗k,◦j satisfy the
recursion

LDq,t(m,n\s)∗k,◦j = tn−s−k
m∑
r=0

s∑
z=0

q(
z
2)
[
s

z

]
q

[
r + s− 1

r

]
q

× tm−r
n−s−k∑
u=0

r+z∑
h=0

q(
h
2)
[
r + z

h

]
q

[
r + z + u− 1

u

]
q

LDq,t(m− r, n− s\u+ h)∗k−h,◦j−(s−z)

with initial conditions

LDq,t(m,n\n)∗k,◦j = δk,0 · q(
n−j
2 )
[
n

j

]
q

[
m+ n− 1

m

]
q

.

Proof. Let us start with the initial conditions. The set LD(m,n\n)∗k,◦j consists of the paths whose
non-zero labels all lie on the main diagonal, namely li 6= 0 =⇒ ai = 0. Therefore, it must also
hold that li = 0 =⇒ ai = 0, because the bottom-most label not on the main diagonal must be
a rise, and hence it can't be a 0. It follows that all the ai's must be 0, thus the area must be
zero. Furthermore there can be no rises, which explains δa,0. The primary dinv among small labels

is counted by q(
n−j
2 ). The primary dinv between small labels and big labels is taken into account

by
[
n
j

]
q
. Finally, the primary dinv between 0 labels and non-zero labels is counted by

[
m+n−1

m

]
q

because l1 6= 0.

For the recursive step, we �rst give an overview of the combinatorial interpretations of all the
variables appearing in this formula. We say that a vertical step of a path is at height i if its
corresponding letter in the area word equals i.

• z is the number of small labels on the main diagonal.

• s− z is the number of big labels on the main diagonal.

• r is the number of zero labels on the main diagonal.

• h is the number of i's such that ai = 1 and i is a decorated rise.

• u is the number of i's such that ai = 1, i is not a decorated rise, and li 6= 0.

The strategy of this recursion is the following. Start from a path π in LD(m,n\s)∗k,◦j . Remove all
the 0's from the area word (with the corresponding labels), and remove the decorations on rises at
height one (which are not rises any more). Then decrease all the remaining letters by 1. In this
way we obtain a path in

LD(m− r, n− s\u+ h)∗k−h,◦j−(s−z).

Let us look at what happens to the statistics of the path (see Figure 4.1).
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The area goes down by the size (i.e. m+n), minus the number of zeros in the area word (i.e. r+s),
minus the number of decorated rises (i.e. k), since these letters did not contribute to the area to
begin with. This explains the term tm+n−(r+s+k).

The factor q(
r
2) takes into account the primary dinv among 0's that have a small label. The factor[

s
z

]
q
takes into account the primary dinv among 0's that have a small label, and 0's that have a big

label. Indeed, each time a one of the former precedes one of the latter one unit of primary dinv is
created. The factor

[
r+s−1
r

]
q
takes into account the primary dinv among 0's that have a zero labels

and the other 0's, where we get s− 1 because l1 6= 0.

The factor q(
h
2) takes into account the secondary dinv between 1's that are decorated rises and

0's that are directly below a decorated rise. The factor
[
r+z
h

]
q
takes into account the secondary

dinv between those 1's, and the remaining 0's that have either a zero or a small label. The factor[
r+z+u−1

u

]
q
takes into account the secondary between the remaining 1's and the 0's that have either

a zero or a small label, where we get s − 1 because the �rst 0 that has a non-big label must be
before the �rst 1.

Summing over all the possible values of h, r, u, z, we obtain the stated recursion.
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Figure 4.1: A Dyck path in LD(2, 11\3)∗2,◦4 (left) and the resulting Dyck path in LD(1, 8\6)∗1,◦3

after one step of the recursion (right).

The parameters for the recursive step of Theorem 4.1 shown in Figure 4.1 (left) are n = 11, m = 2
(blue/cyan), j = 4 (red/orange), s = z + (s− z) = 2 + 1 (grey/orange), r = 1 (cyan), h = 1 (label
4), u = 5 (labels 3, 5, 8, 9, 10). In Figure 4.1 (right), the labels have been rescaled to make it a
parking function.
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This recursion is actually an iterated version of another one that is better explained in terms of
polyominoes. Let

RP(m\r, n)∗k,j ⊆ RP(m,n)∗k,j

be the subset of m×n reduced polyominoes with k unbarred and j barred decorated rises such that
the area word has exactly r (unbarred) 0's, including the �rst one (hence 1 ≤ r ≤ m+ 1). We set

RPq,t(m\r, n)∗k,j :=
∑

π∈RP(m\r,n)∗k,◦j

qdinv(π)tarea(π).

Theorem 4.2. For 0 ≤ j, k ≤ m,n, 1 ≤ r ≤ m + 1, the polynomials RPq,t(m\r, n)∗k,j satisfy
the recursion

RPq,t(m\r, n)∗k,j = tm−r−k+1
r∑

w=0

n∑
s=0

q(
w
2)
[
r

w

]
q

[
r + s− w − 1

s− w

]
q

RPq,t(n−1\s, m−r+1)∗j−w,k

with initial conditions

RPq,t(m\m+ 1, n)∗k,j = δk,0 · q(
j
2)
[
m+ 1

j

]
q

[
m+ n− j

m

]
q

.

Proof. Let us start with the initial conditions. The set RPq,t(m\m+ 1, n)∗k,j consists of the paths
whose unbarred letters in the area word are all equal to 0. This implies that all the barred letters
must be equal to 0̄, and also that there are no unbarred rises, hence the factor δk,0. The dinv among

the 0's and the decorated 0̄'s is counted by q(
j
2)
[
m+1
j

]
q
, while the dinv between the 0's and the non

decorated 0̄'s is counted by
[
m+n−j
m

]
q
.

The recursive step consists of removing all the 0's, and going down by one step in the alphabet
0 < 0̄ < 1 < . . . . The area drops by m+ 1− k− r (the number of unbarred, non decorated letters,

minus the number of 0's). The factor q(
w
2)[r

w

]
q
takes care of the inversions formed by the the r 0's

and the w decorated 0̄'s. The factor
[
r+s−w−1
s−w

]
q
takes care of the inversions between the r 0's and

the remaining s− w 0̄'s, where s is the number of total 0̄'s.

Now, barred and unbarred letters switch roles, and the w decorations of rises of type 00̄ disappear.
The remaining letters form the area word of a polyomino in RP(n− 1 \ s, m− r+ 1)∗j−w,k, and the
statement follows.

Using the map ζ, thanks to Remark 2.36 we can translate this recursion into one for doubly corner-
decorated polyominoes in terms of (area, bounce). Let

RP(m\r, n)◦k,j ⊆ RP(m,n)◦k,j

be the subset of m × n reduced polyominoes with k decorated green peaks and j decorated red
valleys such that the bounce word has exactly r (unbarred) 0's, including the �rst one (hence
1 ≤ r ≤ m+ 1). We set

RPq,t(m\r, n)◦k,j :=
∑

π∈RP(m\r,n)◦k,◦j

qarea(π)tbounce(π).
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Theorem 4.3. For 0 ≤ j, k ≤ m,n, 1 ≤ r ≤ m + 1, the polynomials RPq,t(m\r, n)◦k,j satisfy
the recursion

RPq,t(m\r, n)◦k,j = tm−r−k+1
r∑

w=0

n∑
s=0

q(
w
2)
[
r

w

]
q

[
r + s− w − 1

s− w

]
q

RPq,t(n−1\s, m−r+1)◦j−w,k

with initial conditions

RPq,t(m\m+ 1, n)◦k,j = δk,0 · q(
j
2)
[
m+ 1

j

]
q

[
m+ n− j

m

]
q

.

Proof. This is a direct consequence of Theorem 4.2 and Proposition 2.35. We will, however, give
a combinatorial interpretation.

Let us start with the initial conditions. The set RPq,t(m\m+ 1, n)◦k,j consists of the paths whose
unbarred letters in the bounce word are all equal to 0. This implies that all the barred letters must
be equal to 0̄, and also that the green path is a horizontal streak followed by a vertical streak,
hence there are no green peaks, which explains the factor δk,0. The area in the rows containing a

decorated red valley is counted by q(
j
2)
[
m+1
j

]
q
, while the area in the remaining rows is counted by[

m+n−j
m

]
q
.

The recursive step (see Figure 4.2) consists of removing the �rst horizontal streak of the bounce
path and its �rst vertical step, i.e. taking the intersection with the rectangle going from (r − 1, 1)

to (m,n) (orange in the picture). The factor q(
w
2)[r

w

]
q
takes care of the area outside the rectangle

in the w rows containing a decorated red valley with horizontal coordinate from 0 to r − 1. The
factor

[
r+s−w−1
s−w

]
q
takes care of the area outside the rectangle in the remaining s− w rows, where

s is the number of total 0̄'s in the bounce word. We then re�ect along the line x = y. The bounce
drops by m − r − k + 1, because every unbarred letter decreases by one in the alphabet (so its
value drops by 1), except the r − 1 0's, that are just removed, and the k letters corresponding to
decorated green peaks, whose value actually decrease, but they are not counted while computing
bounce and so they should be ignored. After one step of the recursion, the polyomino will be the
one delimited by the orange rectangle, �ipped along the line x = y.

Now, the green and the red path switch roles, and the w decorations in the �rst r − 1 columns
disappear. We are left with a polyomino in RP(n − 1 \ s, m − r + 1)◦j−w,k, and the statement
follows.

Iterating the recursion for (dinv, area) and making a suitable change of variables, we get the recursion
in Theorem 4.1, hence the two families of polynomials are equal. We will show a bijective proof of
this fact.

Theorem 4.4. For 0 ≤ j, k, s ≤ n, 0 ≤ m, we have

LDq,t(m,n\s)∗k,◦j = RPq,t(n− 1\s,m+ n− j)∗k,n−j
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Figure 4.2: One step of the recursion for reduced polyominoes.

Proof. We prove this theorem by showing a bijection

LD(m,n\s)∗k,◦j → RP(n− 1\s,m+ n− j)∗k,n−j

that preserves the bistatistic (dinv, area).

Given the area word of such a decorated Dyck path, the �rst step of the bijection consists of putting
bars on letters corresponding to 0 labels (of which there are m); notice that since 0 labels can only
be assigned to valleys, and valleys are not rises, the word becomes an area word in the alphabet N
(i.e. we can't have jumps like 01̄). The k decorations on the rises are kept as they are; notice that
all these rises are unbarred, since all the barred letters are valleys and hence they can't be rises.
Finally one adds a decorated barred letter after each unbarred letter who has a small label assigned
(of which we have n− j). It is easy to check that in this way one obtains the area word of a doubly
rise-decorated polyomino in the expected set. See Example 4.5 for an example.

This maps obviously preserves the area. The primary and the secondary dinv between 0 labels and
positive ones is trivially preserved (the corresponding letters in the area word still form a diagonal
inversion). The primary diagonal inversions among the small labels are replaced by the inversions
between the decorated barred letters and the unbarred letters that are followed by a decorated
barred one. The primary and secondary diagonal inversions between the small labels and the big
labels are now replaced by inversions formed by decorated barred letters followed by unbarred letters
that are not followed by a decorated barred letter (primary) or vice versa (secondary).

To build the inverse map, one proceeds as follows. Given the area word of such a polyomino, ignore
the barred decorated letters. The remaining ones, disregarding bars, still form the area word of a
Dyck path. This will be the actual path. If an unbarred letter is a decorated rise, then its image is
still a rise, and we decorate it. We put zero labels on the steps corresponding to (non decorated)
barred letters; those must be valleys, since there can't be a letter of strictly smaller value in the
original area word of the polyomino, hence there is no restriction on their label (that can thus be
0). Next, we put a big label in all the rows, except those whose corresponding letter of the area
word of a polyomino is an unbarred letter followed by a decorated rise. Notice that all the steps
that are assigned a small label (i.e. a non-zero, non-big label) in the image must have this property
(i.e. coming from an unbarred letter followed by a decorated rise).
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It is clear that these two bijections are one the inverse of the other, and so the statement follows.

Example 4.5. Figure 4.3 shows a partially labelled decorated Dyck path in LD(2, 11\3)∗2,◦7 and

its image through the bijection. Its area word is (0, 0, 1,
∗
2, 1, 1, 1, 0, 1, 0,

∗
1, 1, 1), where the asterisks

denote decorated rises.

First we add bars to letters corresponding to 0 labels, getting (0, 0̄, 1,
∗
2, 1, 1, 1̄, 0, 1, 0,

∗
1, 1, 1). Then

we add a decorated barred letter after every letter corresponding to a small label, i.e. labels with

value lesser or equal than 11− 7 = 4, getting (0, 0̄, 1,
∗
1̄,
∗
2, 1, 1, 1̄, 0,

∗
0̄, 1, 0,

∗
0̄,
∗
1,
∗
1̄, 1, 1).

This is the area word of a polyomino in RP(10\3, 6)∗2,4, as expected.

11

0

3

5

10

9

0

1

8

2

4

7

6

∗

∗

1 ∗2
1 1

0 1

0 ∗1
1 1

0̄

∗1̄
1̄

∗0̄
∗0̄
∗1̄

Figure 4.3: A Dyck path in LD(2, 11\3)∗2,◦7 (left) and the polyomino that is its image through the

bijection (right). The area word of the polyomino is (0, 0̄, 1,
∗
1̄,
∗
2, 1, 1, 1̄, 0,

∗
0̄, 1, 0,

∗
0̄,
∗
1,
∗
1̄, 1, 1).

4.2 Partially labelled square paths

For further details on the content of this Section, see [9].

As we did for Dyck paths, it is convenient to split our set into smaller subsets and �nd a recursion
for those. De�ne the subset

SQ(m,n\s)∗k,◦j ⊆ LSQ(m,n)∗k

to consist of the paths π ∈ LSQ(m,n)∗k such that

dr(π) ∈ (1, 2, . . . , n− j)� (n, n− 1, . . . , n− j + 1) and #{1 ≤ i ≤ m+ n | ai = −a∧ li 6= 0} = s,

where a is the shift of the path. Let labels from 1 to n− j be small, and the labels from n− j + 1
to n be big. We set

SQq,t(m,n\s)∗k,◦j :=
∑

π∈SQ(m,n\s)∗k,◦j
qdinv(π)tarea(π).
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Theorem 4.6. For 0 ≤ j, k, s ≤ n, 0 ≤ m, the polynomials SQq,t(m,n\s)∗k,◦j satisfy the
recursion

SQq,t(m,n\s)∗k,◦j = LDq,t(m,n\s)∗k,◦j + qstn−k−s
m∑
r=0

s∑
z=0

q(
z
2)
[
r + z

z

]
q

[
r + s− 1

s− z

]
q

× tm−r
n−k−s∑
u=0

r+z∑
h=0

q(
h
2)
[
u+ h

h

]
q

[
r + z + u− 1

u+ h− 1

]
q

SQq,t(m− r, n− s\u+ h)∗k−h,◦j−(s−z)

with initial conditions

SQq,t(m,n\n)∗k,◦j = LDq,t(m,n\n)∗k,◦j = δk,0 · q(
n−j
2 )
[
n

j

]
q

[
m+ n− 1

m

]
q

.

Proof. The initial conditions are straightforward: if all the letters of the area word with a positive
label are minima, since the condition of ending East implies that one of them must be on the main
diagonal (i.e. the corresponding letter of the area word is 0), then all of them are on the main
diagonal, hence the minimum of the area word is 0 and the path is actually a Dyck path.

For the recursive step, we �rst give an overview of the combinatorial interpretations of all the
variables appearing in this formula. We say that a vertical step of a path is at height i if its
corresponding letter in the area word equals i − a, where a is the shift of the path (i.e. the steps
on the base diagonal are at height 0).

We have that

• z is the number of small labels on the base diagonal.

• s− z is the number of big labels on the base diagonal.

• r is the number of zero labels on the base diagonal.

• h is the number of i's such that ai = 1− a and i is a decorated rise.

• u is the number of i's such that ai = 1− a, i is not a decorated rise, and li 6= 0.

The strategy of this recursion is the following. Start from a path π in SQ(m,n\s)∗k,◦j . If it is a
Dyck path, it is counted by LDq,t(m,n\s)∗k,◦j . If it is not, remove all the minima from the area
word (with the corresponding labels), and remove the decorations on rises at height one (which are
not rises any more). In this way we obtain a path in

SQ(m− r, n− s\u+ h)∗k−h,◦j−(s−z).

Let us look at what happens to the statistics of the path.

The area goes down by the size (i.e. m+n), minus the number of zeros in the area word (i.e. r+s),
minus the number of decorated rises (i.e. k), since these letters did not contribute to the area to
begin with. This explains the term tm+n−(r+s+k).
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The factor qs takes into account the tertiary dinv that the minima generated (being them negative

letters with a positive label). The factor q(
r
2) takes into account the primary dinv among the minima

that have a small label. The factor
[
r+z
z

]
q
takes into account the primary dinv among the minima

that have a small label, and the minima that have a 0 label. Indeed, each time a one of the former
precedes one of the latter one unit of primary dinv is created. The factor

[
r+s−1
s−z

]
q
takes into account

the primary dinv among the minima that have a big label (which are s− z) and the other minima
(which are r + z), where we get r + z − 1 because the last minimum cannot have a big label (it
must be followed by a rise).

The factor q(
h
2) takes into account the secondary dinv betweensteps at height 1 that are decorated

rises and steps at height 0 that are directly below a decorated rise. The factor
[
u+h
h

]
q
takes into

account the secondary dinv among small labels at height 1, and 0 or small labels below a decorated
rise. The factor

[
r+z+u−1
u+h−1

]
q
takes into account the secondary among all the non-zero labels at height

1 (of which we have u + h), and the 0 or small labels at height 0 that are not below a decorated
rise (of which we have r + z − h), where we get u+ h− 1 because the last rise comes after all the
minima (because the last letter of the area word is non-negative).

Summing over all the possible values of h, r, u, z, we obtain the stated recursion.





CHAPTER5
Algebraic recursions

In this chapter we are going to show the two combinatorial recursions that are needed to prove the so
called Schröder case of the generalised Delta and Delta square conjectures, i.e. the 〈 · , en−jhj〉 case.
We are going to show that they match the combinatorial ones, thus proving that the q, t-enumerators
of the relevant agree with the symmetric functions as predicted by the Delta conjectures.

5.1 The family F (m,n\s)∗k,◦j

We now introduce the �rst of the families of symmetric functions that match our combinatorial
q, t-enumerators. Let

F (m,n\s)∗k,◦j := tn−k−s〈∆hn−k−s∆ekem+n−j [X[s]q] , emhn−j〉,

which is the family F
(j,k)
n,s;m described in [11, Section 5]. We want to show the following.

Theorem 5.1. For 0 ≤ j, k, s ≤ n, 0 ≤ m, we have

F (m,n\s)∗k,◦j = LDq,t(m,n\s)∗k,◦j .

We start with a lemma.

Lemma 5.2. For 0 ≤ j, k, s ≤ n, 0 ≤ m, we have

F (m,n\s)∗k,◦j = tn−k−s(1− qs)
∑

µ`m+n−j

Πµ

wµ
hn−k−s[Bµ]hs[(1− t)Bµ]ek[Bµ]em[Bµ]

=
∑

µ`m+n−j

(Π−1∇En−k,s[X])
∣∣
X=MBµ

Πµ

wµ
ek[Bµ]em[Bµ].

59
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Proof. We have

F (m,n\s)∗k,◦j = tn−k−s〈∆hn−k−s∆ekem+n−j [X[s]q] , emhn−j〉

(by 1.45) = tn−k−s(1− qs)

〈
∆hn−k−s∆ek

∑
µ`m+n−j

hs[(1− t)Bµ]
ΠµH̃µ[X]

wµ
, emhn−j

〉

(by 1.51) = tn−k−s(1− qs)
∑

µ`m+n−j

Πµ

wµ
hn−k−s[Bµ]hs[(1− t)Bµ]ek[Bµ]〈H̃µ[X], emhn−j〉

(by 1.38) = tn−k−s(1− qs)
∑

µ`m+n−j

Πµ

wµ
hn−k−s[Bµ]hs[(1− t)Bµ]ek[Bµ]

×
〈
H̃µ[X], hm

[
X

M

]
en−j

[
X

M

]〉
∗

(by 1.48) = tn−k−s(1− qs)
∑

µ`m+n−j

Πµ

wµ
hn−k−s[Bµ]hs[(1− t)Bµ]ek[Bµ]em[Bµ]

which proves the �rst equality. Now,

(∗) = tn−k−s(1− qs)
∑

µ`m+n−j

(
hn−k−s

[
X

M

]
hs

[
X

1− q

])∣∣∣∣
X=MBµ

Πµ

wµ
ek[Bµ]em[Bµ]

(by [25, (7.86)]) =
∑

µ`m+n−j

(
Π−1∇En−k,s

)∣∣
X=MBµ

Πµ

wµ
ek[Bµ]em[Bµ]

as desired.

Proof of Theorem 5.1. We prove the theorem by showing that F (m,n\s)∗k,◦j satis�es the same
recursion with the same initial conditions as LDq,t(m,n\s)∗k,◦j , stated in Theorem 4.1. In order to
prove this, we show that it satis�es the recursion

F (m,n\s)∗k,◦j = tn−k−s
m∑
r=0

s∑
z=0

q(
z
2)
[
s

z

]
q

[
r + s− 1

r

]
q

× F (n− k − s,m+ n− j\r + z)∗n−j−z,◦m+n−j−k

with initial conditions

F (m,n\n)∗k,◦j = δk,0 · q(
n−j
2 )
[
n

j

]
q

[
m+ n− 1

m

]
q

.

This recursion is the one in Theorem 4.2 up to a change of variables. It is straightforward to check
that iterating it we get the one in Theorem 4.1, which is exactly our statement.

Let us start with the initial conditions. We need to evaluate

〈∆h−k∆ekem+n−j [X[n]q] , emhn−j〉
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which is clearly 0 if k 6= 0, as in that case either ∆h−k or ∆ek is the null operator. For k = 0 we
have

F (m,n\n)∗k,◦j = δk,0〈em+n−j [X[n]q], emhn−j〉

(by 1.38) = δk,0

〈
em+n−j [X[n]q], hm

[
X

M

]
en−j

[
X

M

]〉
∗

(by 1.45) = δk,0

〈 ∑
µ`m+n−j

H̃µ[X]H̃µ[M [n]q]

wµ
, hm

[
X

M

]
en−j

[
X

M

]〉
∗

(by 1.48) = δk,0
∑

µ`m+n−j

em[Bµ]H̃µ[M [n]q]

wµ

(by 1.48) = δk,0en−j [[n]q]hm[[n]q] = δk,0q
(n−j2 )

[
n

j

]
q

[
m+ n− 1

m

]
q

as desired. Now we have to deal with the recursive step. We have

F (m,n\s)∗k,◦j = tn−k−s〈∆hn−k−s∆ekem+n−j [X[s]q] , emhn−j〉

(by 5.2) = tn−k−s(1− qs)
∑

µ`m+n−j

Πµ

wµ
hn−k−s[Bµ]hs[(1− t)Bµ]ek[Bµ]em[Bµ]

(by 1.48) = tn−k−s(1− qs)
∑

µ`m+n−j

Πµ

wµ
hs[(1− t)Bµ]em[Bµ]

∑
ν`n−s

en−k−s[Bν ]
H̃ν [MBµ]

wν

(by 1.42) = tn−k−s
∑
ν`n−s

en−k−s[Bν ]
Πν

wν
(1− qs)

∑
µ`m+n−j

H̃µ[MBν ]

wµ
hs[(1− t)Bµ]em[Bµ]

(by 1.55) = tn−k−s
∑
ν`n−s

en−k−s[Bν ]
Πν

wν
(1− qs)

m∑
r=0

tm−r
s∑
z=0

q(
z
2)
[
r + z

z

]
q

×
[
r + s− 1

s− z

]
q

hr+z[(1− t)Bν ]hm−r[Bν ]en−j−z[Bν ]

(-) = tn−k−s
m∑
r=0

s∑
z=0

q(
z
2)
[
s

z

]
q

[
r + s− 1

r

]
q

× tm−r(1− qr+z)
∑
ν`n−s

Πν

wν
hm−r[Bν ]hr+z[(1− t)Bν ]en−k−s[Bν ]en−j−z[Bν ]

(by 5.2) = tn−k−s
m∑
r=0

s∑
z=0

q(
z
2)
[
s

z

]
q

[
r + s− 1

r

]
q

× F (n− k − s,m+ n− j\r + z)∗n−j−z,◦m+n−j−k

as desired.
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We are left to prove that the sum over s of these polynomials yields 〈∆hm∆′en−k−1
en, en−jhj〉, as

predicted by the Delta conjecture. We need another lemma.

Lemma 5.3. For every n ≥ k ≥ 0 and λ ` n, we have

Bλen−k−1[Bλ − 1] =
∑
µ⊂kλ

c
(k)
λµBµTµ.

Proof. We prove the result by induction on n− k. If n− k = 0 the statement holds trivially (we
get 0 = 0). Otherwise, we have

Bλen−k−1[Bλ − 1] = Bλen−k−1[Bλ]−Bλen−k−2[Bλ − 1]

(by 1.48) = Bλ〈Hλ, en−k−1hk+1〉 −Bλen−k−2[Bλ − 1]

(by 1.19) = Bλ〈h⊥k+1Hλ, en−k−1〉 −Bλen−k−2[Bλ − 1]

(by 1.49) = Bλ
∑

ν⊂k+1λ

c
(k+1)
λν 〈Hν , en−k−1〉 −Bλen−k−2[Bλ − 1]

(by 1.48) = Bλ
∑

ν⊂k+1λ

Tνc
(k+1)
λν −Bλen−k−2[Bλ − 1]

(by induction) =
∑

ν⊂k+1λ

(Bλ −Bν)Tνc
(k+1)
λν

(by [4, Proposition 5]) =
∑

ν⊂k+1λ

(Bλ −Bν)Tν
1

Bλ −Bν

∑
ν⊂1µ⊂kλ

c
(k)
λµ c

(1)
µν

Tµ
Tν

(-) =
∑

ν⊂k+1λ

∑
ν⊂1µ⊂kλ

c
(k)
λµ c

(1)
µν Tµ

(-) =
∑
µ⊂kλ

c
(k)
λµ

∑
ν⊂1µ

c(1)
µν Tµ

(by 1.50) =
∑
µ⊂kλ

c
(k)
λµBµTµ

as desired.

Now we can �nally show the last theorem.

Theorem 5.4. For 0 ≤ j, k, s ≤ n, 0 ≤ m, we have

n∑
s=0

F (m,n\s)∗k,◦j = 〈∆hm∆′en−k−1
en, en−jhj〉.
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Proof. We have

n∑
s=0

F (m,n\s)∗k,◦j =

n∑
s=0

tn−k−s〈∆hn−k−s∆ekem+n−j [X[s]q], emhn−j〉

(by 5.2) =

n∑
s=0

∑
µ`m+n−j

(Π−1∇En−k,s[X])
∣∣
X=MBµ

Πµ

wµ
ek[Bµ]em[Bµ]

(by 1.53) =
∑

µ`m+n−j

(Π−1∇en−k[X])
∣∣
X=MBµ

Πµ

wµ
ek[Bµ]em[Bµ]

(by 1.46) =
∑

µ`m+n−j

(
Π−1

∑
ν`n−k

∇MBνΠνH̃ν [X]

wν

)∣∣∣∣∣
X=MBµ

Πµ

wµ
ek[Bµ]em[Bµ]

(by 1.51) =
∑

µ`m+n−j

∑
ν`n−k

MBνTν
wν

Πµem[Bµ]

wµ
ek[Bµ]H̃ν [MBµ]

(by 1.49) =
∑

µ`m+n−j

∑
ν`n−k

∑
λ⊃kν

d
(k)
λν

MBνTν
wν

Πµem[Bµ]H̃λ[MBµ]

wµ

(by 1.49) =
∑

µ`m+n−j

∑
ν`n−k

∑
λ⊃kν

c
(k)
λν

MBνTν
wλ

Πµem[Bµ]H̃λ[MBµ]

wµ

(by 1.42) =
∑

µ`m+n−j

∑
ν`n−k

∑
λ⊃kν

c
(k)
λν

MBνTνΠλ

wλ

em[Bµ]H̃µ[MBλ]

wµ

(by 1.48) =
∑
λ`n

∑
ν⊂kλ

c
(k)
λν

MBνTνΠλ

wλ
hm[Bλ]en−j [Bλ]

(by 5.3) =
∑
λ`n

MBλΠλ

wλ
en−k−1[Bλ − 1]hm[Bλ]en−j [Bλ]

(by 1.48) =
∑
λ`n

MBλΠλ

wλ
hm[Bλ]en−k−1[Bλ − 1]〈H̃λ, en−jhj〉

(by 1.51) = 〈∆hm∆′en−k−1

∑
λ`n

MBλΠλH̃λ[X]

wλ
, en−jhj〉

(by 1.46) = 〈∆hm∆′en−k−1
en, en−jhj〉

as desired.

5.2 The family S(m,n\s)∗k,◦j

The second family of symmetric functions that match our combinatorial q, t-enumerators is very
similar to the �rst. Let

S(m,n\s)∗k,◦j :=
[n]q
[s]q

F (m,n\s)∗k,◦j =
[n]q
[s]q

tn−k−s〈∆hn−k−s∆ekem+n−j [X[s]q] , emhn−j〉,
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which is the family S
(j,k)
n,s;m described in [9, Section 4]. We want to show the following.

Theorem 5.5. For 0 ≤ j, k, s ≤ n, 0 ≤ m, we have

S(m,n\s)∗k,◦j = SQq,t(m,n\s)∗k,◦j .

Proof. We will show this using the recursion for F (m,n\s)∗k,◦j and manipulating it slightly. The
iterated version suits our needs better. Recall that F (m,n\s)∗k,◦j satis�es the recursion

F (m,n\s)∗k,◦j = tn−k−s
m∑
r=0

s∑
z=0

q(
z
2)
[
s

z

]
q

[
r + s− 1

r

]
q

× tm−r
n−k−s∑
u=0

r+z∑
h=0

q(
h
2)
[
r + z

h

]
q

[
r + z + u− 1

u

]
q

F (m− r, n− s\u+ h)∗k−h,◦j−(s−z)

with initial conditions

F (m,n\n)∗k,◦j = δk,0 · q(
n−j
2 )
[
n

j

]
q

[
m+ n− 1

m

]
q

.

If s = n the two families of polynomials agree, hence the initial conditions are the same, as expected.

If s < n, replacing F with S (i.e. multiplying both sides by
[n]q
[s]q

) we get

S(m,n\s)∗k,◦j =
[n]q
[s]q

tn−k−s
m∑
r=0

s∑
z=0

q(
z
2)
[
s

z

]
q

[
r + s− 1

r

]
q

× tm−r
n−k−s∑
u=0

r+z∑
h=0

q(
h
2)
[
r + z

h

]
q

[
r + z + u− 1

u

]
q

F (m− r, n− s\u+ h)∗k−h,◦j−(s−z)

=

(
1 + qs

[n− s]q
[s]q

)
tn−k−s

m∑
r=0

s∑
z=0

q(
z
2)
[
s

z

]
q

[
r + s− 1

r

]
q

× tm−r
n−k−s∑
u=0

r+z∑
h=0

q(
h
2)
[
r + z

h

]
q

[
r + z + u− 1

u

]
q

F (m− r, n− s\u+ h)∗k−h,◦j−(s−z)

= F (m,n\s)∗k,◦j + qs
[n− s]q

[s]q
tn−k−s

m∑
r=0

s∑
z=0

q(
z
2)
[
s

z

]
q

[
r + s− 1

r

]
q

× tm−r
n−k−s∑
u=0

r+z∑
h=0

q(
h
2)
[
r + z

h

]
q

[
r + z + u− 1

u

]
q

[u+ h]q
[n− s]q

S(m− r, n− s\u+ h)∗k−h,◦j−(s−z)
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= F (m,n\s)∗k,◦j + qstn−k−s
m∑
r=0

s∑
z=0

q(
z
2) · tm−r

n−k−s∑
u=0

r+z∑
h=0

q(
h
2)

× [s]q!

[z]q![s− z]q!
[r + s− 1]q!

[r]q![s− 1]q!

[r + z]q!

[h]q![r + z − h]q!

[r + z + u− 1]q!

[u]q![r + z − 1]q! q

[u+ h]q
[s]q

[u+ h− 1]q!

[u+ h− 1]q!

× S(m− r, n− s\u+ h)∗k−h,◦j−(s−z)

= F (m,n\s)∗k,◦j + qstn−k−s
m∑
r=0

s∑
z=0

q(
z
2) · tm−r

n−k−s∑
u=0

r+z∑
h=0

q(
h
2)

× [r + z]q!

[r]q![z]q!

[r + s− 1]q!

[r + z − 1]q![s− z]q!
[u+ h]q[u+ h− 1]q!

[h]q![u]q!

[r + z + u− 1]q!

[u+ h− 1]q![r + z − h]q! q

[s]q!

[s]q[s− 1]q!

× S(m− r, n− s\u+ h)∗k−h,◦j−(s−z)

= F (m,n\s)∗k,◦j + qstn−k−s
m∑
r=0

s∑
z=0

q(
z
2)
[
r + z

z

]
q

[
r + s− 1

s− z

]
q

× tm−r
n−k−s∑
u=0

r+z∑
h=0

q(
h
2)
[
u+ h

h

]
q

[
r + z + u− 1

u+ h− 1

]
q

S(m− r, n− s\u+ h)∗k−h,◦j−(s−z)

which is the same recursion of Theorem 4.6. The statement follows.





CHAPTER6
State of the art

To conclude this thesis, we will give an overview on the available results on the Delta conjectures,
the open problems, and possible directions for future research.

6.1 The q, t-Catalan

One of the �rst remarks made after the introduction of the nabla operator by Bergeron, Garsia,
Haiman, and Tesler in [3], is that the scalar products 〈∇en, en〉, when evaluated at q = t = 1,
yield the ubiquitous Catalan numbers. Since the possibly most iconic set counted by the Catalan
numbers, the set of Dyck paths of size n, has a natural statistic given by the area, it was pretty
soon clear that the identity

〈∇en, en〉|t=1 =
∑

π∈D(n)

qarea(π)

held. Moreover, this scalar product actually gives a polynomial which is symmetrical in q, t. Shortly
after, people started chasing a second statistic tstat : D(n)→ N, equidistributed with the area, such
that

〈∇en, en〉 =
∑

π∈D(n)

qarea(π)ttstat(π).

In the meanwhile, Haiman proved the Schur positivity of the Macdonald polynomials [33] and
∇en [34], making the hunt even more interesting. After several years of failed attempts, almost
simultaneously two statistics with that property have been found: the bounce, by Haglund, and
the dinv, by Haiman. The conjectural identity

〈∇en, en〉 =
∑

π∈D(n)

qarea(π)tbounce(π)

has been proved by Garsia and Haglund in [18], where they showed that bounce is indeed a valid
choice for tstat; shortly afterwards, Haglund and Loehr in [27] found a bijection ζ : D(n) → D(n)
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mapping (area, bounce) to (dinv, area), thus proving that

〈∇en, en〉 =
∑

π∈D(n)

qdinv(π)tarea(π)

also held. Notice that, while we know by using the symmetric functions that 〈∇en, en〉 is symmetric
in q, t, neither of those combinatorial results implies this symmetry, and in fact, up to today, we
still lack a combinatorial interpretation of this apparently simple fact.

The so called q, t-Catalan is just the �rst chapter of the story. In [15], Egge, Haglund, Killpatrick,
and Kremer extended the statistics area, bounce, and dinv to Schröder paths, i.e. Dyck paths in
which diagonal steps are also allowed. In this thesis and in several other works in the literature,
Schröder paths have been replaced by Dyck paths with decorated peaks, the identi�cation being
just replacing the diagonal steps with a North step followed by an East step, decorating the peak
they form. They extended the bijection ζ to these Schröder paths, and conjectured the identity
that, in our notation, states

〈∇en, hjen−j〉 =
∑

π∈D(n)◦j

qarea(π)tbounce(π) =
∑

π∈D(n)◦j

qdinv(π)tarea(π).

Shortly thereafter, Haglund proved the so called q, t-Schröder conjecture in [24].

6.2 The shu�e conjecture

In [26] we �nally get the statement of the shu�e conjecture by Haiman, Haglund, Loehr, Remmel,
and Ulyanov, in terms of labelled Dyck paths. They extended the de�nition of the dinv statistic to
labelled objects, giving an interpretation of the full symmetric function∇en. The original statement
involved quasisymmetric functions and the scalar product with hµ; without going into details, we
restate it as

∇en =
∑

π∈LD(n)

qdinv(π)tarea(π)xπ.

In his work [24], Haglund actually proved not only the Schröder case 〈∇en, hjen−j〉, but also the
two-shu�e case 〈∇en, hjhn−j〉. In [36], Loehr and Remmel described the pmaj statistic, thus
extending the bounce to labelled objects. They also generalised the previously known bijections to
a map ζ : LD(n)→ LD(n) sending (area, pmaj) to (dinv, area). As a result, we got the pmaj version
of the shu�e conjecture, equivalent to the dinv one, stating

∇en =
∑

π∈LD(n)

qarea(π)tpmaj(π)xπ.

It is now 2007 when Loehr and Warrington, in [38], introduce the square paths conjecture. They
removed the restriction of the path lying above the diagonal x = y, replacing it with the weaker
condition of the path having to end with an East step. On this new set of objects, of which the Dyck
paths form a subset, they extended the de�nitions of dinv and area and suggested a combinatorial
interpretation of ∇ω(pn) in terms of labelled square paths, which in our notation reads

∇ω(pn) =
∑

π∈LSQ(n)

qdinv(π)tarea(π)xπ.
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The 〈∇ω(pn), en〉 case of this conjecture, known as q, t-square, has been previously proved by Can
and Loehr in [5].

Several years passes before the next big step towards a proof of the shu�e conjecture. It is only
in 2012 that Haglund, Morse, and Zabrocki introduce the compositional shu�e conjecture in [28],
which later on turned out to be a key tool in the proof. In that paper, the authors introduce
a family of operators on the symmetric functions, called Cα for α � n, which with an abuse of
notation we identify with Cα(1). These operators have the notable properties that

∑
α�n Cα = en

and that ∇Cα is Schur positive. A natural composition of n is associated to every Dyck path,
namely the one given by the lengths of the segments between every pair of consecutive points in
which the Dyck path touches the main diagonal. If we call LD(α) the subset of Dyck paths whose
diagonal composition is exactly α, then the compositional shu�e conjecture states that

∇Cα =
∑

π∈LD(α)

qdinv(π)tarea(π)xπ.

In [13], Duane, Garsia, and Zabrocki introduce a newdinv statistic, recursively de�ned, which they
show that satisfy some two-shu�e compositional identity. Later on, in [35], Hicks and Kim gave a
direct, but still algorithmic, de�nition of the newdinv statistic. Later on, thanks to this composi-
tional re�nement, Garsia, Xin, and Zabrocki managed to prove the two-shu�e 〈∇Cα, hjhn−j〉 case
of the compositional shu�e conjecture in [21], and then the case 〈∇Cα, hjhken−j−k〉 in [22], which
was the �rst result that was not known in the non-compositional case. Their result remained the
most general available one before the conjecture was fully proved.

In the meanwhile, in an apparently unrelated subject, Dukes and Le Borgne introduced in [14] a
q, t-analogue of the Narayana numbers, that re�ne the Catalan numbers. Later on, Aval, D'Adderio,
Dukes, Hicks, and Le Borgne, in [1], extended the story to parallelogram polyominoes. They de�ned
three statistics area, bounce, and dinv on these objects, found a bijection sending (area, bounce) to
(dinv, area), and gave a combinatorial interpretation of 〈∆hm−1

en, en〉 in terms of m × n standard
parallelogram polyominoes.

6.3 From the shu�e to the Delta

The year 2015 features not one, but two milestones in this �eld. The �rst one is the long awaited
proof of the shu�e conjecture: Carlsson and Mellit, in [6] (see also [31]), introduce the Dyck path
algebra, an algebra of operators which they use to prove the compositional re�nement of the shu�e
conjecture. The re�nement is crucial, as without it there is no way to write the needed recursions
for the symmetric functions side of the identity. The second milestone is the statement of the
generalised Delta conjecture by Haglund, Remmel, and Wilson in [29], in terms of partially labelled
decorated Dyck paths. In our notation, it reads

∆hm∆′en−k−1
en =

∑
π∈LD(m,n)∗k

qdinv(π)tarea(π)xπ.

While the result by Carlsson and Mellit alone seemed to put an end to the story, if combined with
the conjecture by Haglund, Remmel, and Wilson, it opened more questions than it closed. Can
it be used to prove the square paths conjecture? Is there a compositional re�nement of the Delta
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conjecture as well? What can we say about the Delta conjecture? Several people tried to answer
these questions, and this is the setting we've been working in. The �rst question, regarding the
square paths, was immediately answered by Sergel in [43], who showed that the shu�e theorem
implies the square paths conjecture, thus proving it. A �rst result heading towards an answer to
the second question, about a compositional Delta conjecture, has been shown by Zabrocki in [46],
who proved a compositional re�nement of the Schröder case of the Delta conjecture.

6.4 Our results

This is where our work starts. Together with D'Adderio and Vanden Wyngaerd, in [8] we proved
the Schröder case 〈∆′en−k−1

en, hjen−j〉, and the two-shu�e case 〈∆′en−k−1
en, hjhn−j〉 of the Delta

conjecture. We also extended the statistics and the bijections in [1] to decorated polyominoes,
proved the Schröder case 〈∆hm−1

en, hken−k〉, and gave a bijection between the two-shu�e decorated
Dyck paths and the Schröder rise-decorated polyominoes. We also introduced a pmaj statistic on
labelled parallelogram polyominoes, stating the polyominoes conjecture

∆hmen+1 =
∑

π∈LPP(m+1,n+1)

qarea(π)tpmaj(π)xπ.

Finally, we showed that a special case of the Delta conjecture can be used to introduce new statistics
on square paths that match a di�erent q, t-square.

Later on, in [11] we proved the Schröder case 〈∆hm∆′en−k−1
en, hjen−j〉 of the generalised Delta

conjecture, and gave another interpretation in terms of doubly decorated parallelogram polyomi-
noes, bijectively showing that the two are equivalent; in [9] we stated the generalised Delta square
conjecture

[n− k]t
[n]t

∆hm∆en−kω(pn) =
∑

π∈LSQ(m,n)∗k

qdinv(π)tarea(π)xπ

in terms of partially labelled decorated square paths, and proved the Schröder case

[n− k]t
[n]t

〈∆hm∆en−kω(pn), hjen−j〉.

These results are the ones showed with full details in this thesis.

In the meanwhile, in [16] Garsia, Haglund, Remmel, and Yoo managed to prove the Delta conjecture
at q = 0, and Romero in [42] did the same at q = 1. In [10], again together with D'Adderio and
Vanden Wyngaerd, we proved the generalised Delta conjecture at q = 0 (or equivalently t = 0) and,
as a corollary, the generalised Delta square conjecture at q = 0, since they happen to coincide.

Together with D'Adderio, in [7] we managed to give a proof of the 〈∇en, hjhken−j−k〉 case of the
shu�e conjecture that does not rely on the compositional re�nement. In the same paper we showed,
using a bijection, that the newdinv statistic in [13] coincides with the natural dinv statistics on a
certain subset of decorated partially labelled Dyck paths.

In early 2019, Zabrocki conjectured in [47] a module, called super-diagonal coinvariants, that plays
for the Delta conjecture the role that the module of the diagonal harmonics played for the shu�e
conjecture, featuring a set of Grassmannian variables.



6.5. FUTURE DIRECTIONS 71

Finally, again together with D'Adderio and Vanden Wyngaerd, we introduced in [12] the Θf oper-
ators, which we used to state a compositional re�nement of the Delta conjecture

Θek∇Cα =
∑

π∈LD(α)∗k

qdinv(π)tarea(π)xπ.

We also proved a touching re�nement of the generalised shu�e conjecture (i.e. the case k = 0 of
the generalised Delta conjecture) and showed that it implies the generalised square conjecture (i.e.
the case k = 0 of the generalised Delta square conjecture). Furthermore, the Θek operators provide
a conjectural formula for the Frobenius characteristic of super-diagonal coinvariants with two sets
of Grassmanian variables, extending the one of Zabrocki in [47] for the case with one set of such
variables.

6.5 Future directions

The game is far from being over. The obvious next step would be to �nd a way to generalise the
tools provided by Carlsson and Mellit in order to prove the compositional Delta conjecture, and
then show that it implies the Delta square conjecture. In the same framework, a dinv statistic for
the generalised compositional versions of these two conjectures is still missing.

Even if the Delta conjectures were to be fully solved, there are still several other open questions.
∆hm−1

ω(pn) is conjecturally Schur positive, and computational evidence suggests that it has an
interpretation in terms of pairs of rectangular paths. This would generalise the polyominoes frame-
work in the same way as square paths generalise Dyck paths, but the natural bistatistics we have
do not match the symmetric functions unless we set q = 1 or t = 1. Notice that this is not a special
case of the generalised Delta square conjecture, as it only holds for k < n.

For λ ` m and α � n, computational evidence suggests that Θeλ∇Cα is Schur positive as well.
While the part in low degree conjecturally agrees with the Frobenius characteristic of super-diagonal
coinvariants with `(λ) sets of Grassmanian variables (according to limited computational evidence),
there is no interpretation for the full symmetric function. Moreover, there is no combinatorial
interpretation whatsoever for `(λ) > 2, and even for `(λ) = 2 we only have conjectures for q = 1
or t = 1. The hope is that there exists a more general framework that explains all of these Schur
positivity results, but it is yet to be found.
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