
UNIVERSITÉ LIBRE DE BRUXELLES

Faculté des Sciences

Département d’Informatique

Année Académique 2019/2020

Thèse présentée en vue de l’obtention du grade de Docteur en Sciences

Algorithms and Data Structures

for

3SUM and Friends

by

Aurélien Ooms

Jury de thèse:

Prof. Stefan Langerman (Université libre de Bruxelles, Président)

Prof. Samuel Fiorini (Université libre de Bruxelles, Secrétaire)

Prof. Jean Cardinal (Université libre de Bruxelles, Promoteur)

Prof. John Iacono (Université libre de Bruxelles)

Prof. Moshe Lewenstein (Bar Ilan University)

Prof. Nabil Mustafa (ESIEE Paris)

To the Profane

Solving a problem consists in mapping a given data to an output in some

automated way. In Computer Science, we solve problems with computers:

we organize the data with data structures, and process those structures

with algorithms. Solving problems consumes resources, for example, time.

Problems are considered harder if they take more resources to solve.

We, computer scientists, are lazy. We do not want to solve the same

problem over and over with ad-hoc solutions depending on the data. By

automated we mean that the solutions we design work for any data, and in

particular, they work for any data size “n”. Ideally, the resource consumption

of our solutions should scale well with this parameter. This is why we study

the behaviour of such solutions when applied to large1 inputs.

Geometry is about space, points, curves, surfaces. . . We study geometric

problems: The given data is geometric, and the question about the data is

geometric. The proposed algorithms and data structures therefore exploit

geometry.

This thesis studies simple-to-formulate questions about simple-to-define

geometric problems. However simple the questions are to express, nobody

has managed to answer them. One of the studied problems asks to decide,

given points in the plane, whether three of them lie on a common line. Of

course, we can solve this problem. The question of interest here is how fast

it can be solved.

It is easy to solve this problem by testing all possible candidates but that

is inefficient. There is a more involved but standard construction that takes

significantly less time to execute but that is also considered inefficient. As

of today, we do not know of any reason why this problem would be much

harder than simply reading the data from begin to end.

Does this matter at all? It turns out simple problems appear to be

1 Gigantic multiplied by colossal multiplied by staggeringly huge is the sort of concept

we’re trying to get across here. – Douglas Adams, The Restaurant at the End of the

Universe.

ii

bottlenecks of more complex ones: unless we manage to improve our under-

standing of the simple ones, we are stuck with inefficient solutions for all of

them.

In this thesis, we expose novel algorithms and data structures related to

the problem stated above. Hopefully, this contribution will one day, directly

or indirectly, help us solve some of the interesting open questions about this

problem.

Token of Appreciation

First, I wish to thank the FNRS for funding my four years of PhD with

a FRIA grant2, and ULB for providing the environment.

Second, I wish to thank my mentors, colleagues, and friends: my advisor,

Jean Cardinal, my professors, Michele D’Adderio, Samuel Fiorini, John

Iacono, Gwenaël Joret, Stefan Langerman, and Guy Louchard, my colleagues

at ULB, Pierre Aboulker, Manuel Aprile , Elena Arseneva , Luis Barba,

Yann Barsamian, Wouter Cames van Batenburg, Mitch Buckley, Matthew

Drescher , Vissarion Fisikopoulos, Krystal Guo , Udo Hoffmann ,

Tony Huynh , Alessandro Iraci, Varunkumar Jayapaul, Seungbum Jo,

Ben Karsin, Irina Kostitsyna , Grigorios Koumoutsos, Marco Macchia ,

Keno Merckx, Tillmann Miltzow, Carole Muller, Johanna Seif , Andrew

Winslow, and Anna Vanden Wyngaerd, my coauthors, Boris Aronov, Ahmad

Biniaz, Jit Bose, Sergio Cabello, Timothy Chan, Man-Kwun Chiu , Vida

Dujmović, Darryl Hill, Matias Korman, Aleksandar Markovic, Pat Morin,

Yoshio Okamoto, André van Renssen, Marcel Roeloffzen, Lúıs Fernando

Schultz Xavier da Silveira, Noam Solomon, and Sander Verdonschot, and

totally random and awesome people like Anthony D’Angelo , Roberta

Bennato , Édouard Bonnet , Radu Curticapean , Daniel Gonçalves ,

Azusa Katsumizu , Rory Leisegang , and Jules Wulms . It is easy to

see that I owe each and every one of you.

Finally, I wish to thank my family: my brother, Adrien Ooms, my father,

Pierre Ooms, my mother, Nathalie Rooseleer, and my cute little pumpkin,

Estelle Chasseloup, for their support and love.

GRATITUDE!

2Grants 5112416F and 5203818F.

This thesis is dedicated to Marco who left us too early.

Contents

To the Profane i

Token of Appreciation iii

Table of Contents vii

On Notation xi

0 In a Dozen Pages 1

I Without Proof 15

1 Models of Computation 17

1.1 Algorithms . 17

1.1.1 Random Access Machines 18

1.1.2 Computation and Decision Trees 18

1.2 Data Structures . 21

1.2.1 Encodings . 21

2 History 23

2.1 3SUM & k-SUM . 23

2.1.1 Variants . 24

2.1.2 Point Location . 25

2.1.3 Information Theoretic Lower Bound 25

2.1.4 Higher Lower Bounds 26

2.1.5 Uniform Algorithms 27

2.1.6 Nonuniform Algorithms 29

2.2 GPT & 3POL . 30

2.2.1 Variants . 31

2.2.2 Reductions from k-SUM 31

viii

2.2.3 Lower Bounds and Order Types 34

2.2.4 Algorithms . 36

2.2.5 More on Order Types 36

2.2.6 Encodings . 37

2.2.7 The Intermediate Problem 39

2.2.8 Combinatorics . 39

3 Contributions 41

3.1 Meiser Applied to k-SUM . 41

3.2 Grønlund and Pettie Applied to 3POL 43

3.3 Slightly Subquadratic Encodings for GPT 46

3.4 Better Encodings for 3SUM 48

4 Developments 51

4.1 Better Nonuniform Algorithms for k-SUM 51

4.1.1 Using Vertical Decomposition 51

4.1.2 Using Inference Dimension 52

4.2 Timothy Chan Strikes Again 53

5 Open Questions 55

5.1 About Algorithms . 55

5.2 About Encodings . 57

II The Computational Geometer’s Toolbox 59

6 Arrangements 61

6.1 Counting Cells . 61

6.2 Pseudolines . 62

6.3 Zone Theorem . 63

6.4 Cell Decomposition . 64

6.4.1 Bottom Vertex Triangulation 64

6.4.2 Vertical Decomposition 65

7 Chirotopes 67

7.1 Duality . 67

7.2 Canonical Labelings . 69

Contents ix

8 Divide and Conquer 71

8.1 Epsilon Nets and Cuttings . 71

8.1.1 Range Spaces . 72

8.1.2 VC-dimension . 72

8.1.3 Epsilon Nets . 73

8.1.4 Hyperplanes in Linear Dimension 74

8.1.5 Cuttings . 74

8.1.6 Algebraic Range Spaces 75

8.1.7 Derandomization . 75

8.2 Hierarchical Cuttings . 76

9 Existential Theory of the Reals 79

9.1 Cylindrical Algebraic Decomposition 79

III Algorithms 81

A Solving k-SUM using Few Linear Queries 83

A.1 Meiser Solves k-SUM . 84

A.1.1 Query Complexity . 84

A.1.2 Time Complexity . 89

A.1.3 Query Size . 93

A.2 Missing Details . 94

A.2.1 Keeping Queries Linear in Algorithm 1 94

A.2.2 Algebraic Computation Trees 96

A.2.3 Uniform Random Sampling 96

A.2.4 Proof of Lemma A.7 98

B Subquadratic Algorithms for Algebraic 3SUM 101

B.1 First Subquadratic Algorithms for 3POL 101

B.1.1 Nonuniform Algorithm for Explicit 3POL 102

B.1.2 Uniform Algorithm for Explicit 3POL 109

B.1.3 Nonuniform Algorithm for 3POL 112

B.1.4 Uniform Algorithm for 3POL 118

B.2 Subproblems . 123

B.2.1 Offline Polynomial Range Searching 123

B.2.2 Offline Polynomial Dominance Reporting 126

x

B.3 Applications . 131

B.3.1 GPT for Points on Curves 132

B.3.2 Incidences on Unit Circles 134

B.3.3 Points Spanning Unit Triangles 136

IV Data Structures 137

C Subquadratic Encodings for Point Configurations 139

C.1 Encoding Order Types via Hierarchical Cuttings 140

C.2 Sublogarithmic Query Complexity 151

C.3 Higher-Dimensional Encodings 158

D Encoding 3SUM 165

D.1 Representation by Numbers 165

D.2 Space-Optimal Representation 168

D.3 Subquadratic Space and Constant Query Time 168

Bibliography 171

List of Contributions 187

On Notation

This short chapter hopes to lift any ambiguity in the notation used.

Big-Oh

To express the asymptotic behaviour of functions representing resource

complexities (time and space) we use the standard big-oh notation (see for

instance [55, Chapter 3]). For brevity, we add a few tweaks:

• The notation Õ(·) ignores polylogarithmic factors. For instance, we

have n3 log2 n = Õ(n3).

• The symbol ε (not to be mistaken for ε) denotes a positive real number

that can be made as small as desired. Writing T (n) = O(n12/7+ε)

means that for any fixed δ > 0, T (n) = O(n12/7+δ), where the constant

of proportionality may depend on δ. In particular, n2 log2 n = O(n2+ε).

• The notation Op1,p2,...(f(n)) means that the constant of proportionality

depends on the parameters pi.

• When we write O(f(n1, n2, . . .)) we assume that one of the variables

ni is the one going towards infinity in the big-oh definition, while the

others are monotone functions of ni (increasing or decreasing depending

on the context).

Because this asymptotic notation takes little care of constant factors,

logarithms are in base two unless otherwise indicated.

Sets

We denote by Rd the d-dimensional Euclidean space and try to be

consistent with the set notation used to represent the subsets of this space.

• A point is indicated by a lowercase letter, for instance a vertex p.

xii

• An algebraic curve is indicated by a greek letter, for instance a planar

algebraic curve γ.

• Other sets of points are indicated by an uppercase letter, for instance

a line or a pseudoline L, an hyperplane H, a cell C (sometimes also C
to avoid ambiguity), or a simplex S.

• Sets of curves are indicated by an uppercase greek letter, for instance

a set of curves Γ.

• Other sets of sets of points are indicated by a calligraphic uppercase

letter, for instance a set of hyperplanes H, a net N , or an arrangement

A(H).

For finite sets, we sometimes use the short notation [n] = { 1, 2, . . . , n }
and describe a set of cardinality n as a n-set.

0
In a Dozen Pages

This thesis is a compilation of the contributions from four papers:

A “Solving k-SUM Using Few Linear Queries” with Jean Cardinal and

John Iacono [41].

B “Subquadratic Algorithms for Algebraic 3SUM ” with Luis Barba, Jean

Cardinal, John Iacono, Stefan Langerman, and Noam Solomon [20].

C “Subquadratic Encodings for Point Configurations” with Jean Cardinal,

Timothy Chan, John Iacono, and Stefan Langerman [38].

D “Encoding 3SUM ” with Sergio Cabello, Jean Cardinal, John Iacono,

Stefan Langerman, and Pat Morin [37].

Those contributions have been presented at the European Symposium on Al-

gorithms (ESA), the International Symposium on Computational Geometry

(SoCG), the Computational Geometry’s Young Researchers Forum (CG:YRF,

a satellite event of SoCG), the European Workshop on Computational Geom-

etry (EuroCG), and, the Annual Fall Workshop on Computational Geometry

(FWCG).

Paper A was presented at CG:YRF 16 and ESA 16. Paper B was

presented at EuroCG 17 and SoCG 17. It is published in Discrete &

Computational Geometry (DCG). Paper C was presented at FWCG 17,

EuroCG 18, and SoCG 18. It is published in the Journal of Computational

Geometry (JoCG). Paper D was presented at EuroCG 19.

We begin with an overview of the studied topic. We explain the context

in which those papers were written and expose the contributions contained

in each of them.

2

Degeneracy Testing Problems

We study Degeneracy Testing Problems: an instance of size n of such

a problem is a single point in high-dimensional euclidean space q ∈ RO(n).

Such an instance is called general if and only if it passes a series of algebraic

tests (usually nO(1) of them). If it fails one of the tests, it is called degenerate.

Our goal is to determine how fast an instance can be classified as general or

degenerate.

The terminology is justified because most instances are general: the set

of degenerate instances is a zero-measure subset of the input space. It also

makes sense to visualize the input space as the euclidean space: the algebraic

tests naturally induce a partition of the input space into semialgebraic sets.

Solving the problem therefore amounts to locate the input point q in this

partition of space. Our goal is thus to determine how fast this input point

can be located.

Degeneracy testing problems are easy decision problems because there

are only a finite number of candidate tests to try. The ones we study can all

be solved by brute-force in polynomial time because the number of tests is

polynomial. We show how, in some cases, this naive approach is definitely

subsumed by divide and conquer techniques exploiting the geometry of the

setting.

GPT

Let us illustrate by giving a first example of a degeneracy testing problem.

We begin with a definition:

Definition 1. A set of n points in Rd is in general position if and only if

every (d+ 1)-subset spans the entire space. A point set that is not in general

position is called degenerate.

The General Position Testing problem (GPT) is to decide if a given set

of n point is in general position. We can solve this problem by brute-force

in O(nd+1) time. We can do it an order of magnitude faster by constructing

the dual arrangement of hyperplanes in O(nd) time [97, Theorem 24.4.1].

On the one hand, improving on this slightly better solution appears to be

non-trivial: there exists a class of algorithms that cannot do better even

though they exploit one of the core structures of the problem, the chirotope

0. In a Dozen Pages 3

axioms [28]. On the other hand, Information Theory only gives a decision

tree lower bound of Ω(n log n). A popular conjecture is that no o(nd) time

real-RAM algorithm exists for this problem.

Nonuniform Algorithms

Another model of computation in which no o(nd)-time algorithm for

GPT is known is the algebraic computation tree model. In this model,

an algorithm is a rooted tree whose internal nodes are either arithmetic

operations or sign tests on real variables, and whose leaves are the result of

the computation. An execution of such an algorithm is a root-to-leaf path in

the corresponding tree. The time complexity of this execution is the length

of the path.

This model is more generous than the real-RAM model in the sense that

all computations that can be carried out by only knowing the input size incur

no cost. Because a computation tree has a fixed size, we need a different

tree for each input size. Therefore, we say that this model is nonuniform

since it allows to have a distinct algorithm for each input size.

This thesis considers both uniform algorithms in the real-RAM [148,

Section 2.3] and word-RAM [82] models of computation and nonuniform

algorithms in the algebraic computation tree [25, Section 2], bounded-degree

algebraic decision tree [152, Section 2], and linear decision tree [60, Section 2]

models of computation. For a given task, the complexity of the nonuniform

algorithm is less than the complexity of the uniform algorithm. While a

nonuniform algorithm is rarely practical, designing those at least means

making progress on the question of whether a sensible computation tree

lower bound can be derived.

3SUM

The 3SUM problem also falls in the category of degeneracy testing

problems. This problem asks to decide whether a given set of n numbers

contains a triple whose sum is zero. We can solve this problem by brute-force

in O(n3) time, and in O(n2) time with a slightly more clever algorithm.

However toyish 3SUM may look like, it is considered one of several key

problems in P: many geometric problems reduce from it in subquadratic time.

Hence, a conjectured quadratic lower bound on 3SUM implies a conditional

4

lower bound on all those more practical problems [84].

Like for GPT, there exist lower bounds for 3SUM in restricted models

of computation: 3SUM cannot be decided in o(n2) time if the only way we

inspect the input is by testing for the sign of weighted sums of three input

numbers [71].

Even before this lower bound was known, it was conjectured that a

quadratic lower bound would hold in other models of computation like the

real-RAM model.

A first stab at the conjecture was made when it was proven that for

integer input numbers, it is possible to beat the conjectured lower bound

by a few logarithmic factors [19]. However, it remained open whether such

improvements were possible for real inputs.

Eventually, in a breakthrough paper, Grønlund and Pettie gave a sub-

quadratic uniform algorithm that shaves a root of a logarithmic factor from

quadratic time [95]. Since then more roots of logarithmic factors have been

shaved [83, 85]. To this day, it is still conjectured that, for all δ > 0, 3SUM

requires Ω(n2−δ) time to solve in the real-RAM model.

k-SUM

The paper of Grønlund and Pettie also discusses the following general-

ization of the 3SUM problem: “For a fixed k, given a set of n real numbers,

decide whether there exists a k-subset whose elements sum to zero.” This

problem is called the k-SUM problem.

Obviously, the 3SUM problem is the k-SUM problem where k = 3.

Moreover, there is a simple reduction from k-SUM to 2SUM when k is even

and to 3SUM when k is odd. Those reductions yield a O(n
k
2 log n) time

real-RAM algorithm for k even and a O(n
k+1

2) time real-RAM algorithm for

k odd.

In their paper, in addition to the slightly subquadratic uniform algorithm

for 3SUM, Grønlund and Pettie give a strongly subquadratic nonuniform

algorithm for 3SUM. The algorithms runs in time Õ(n3/2), and, together

with the aforementioned reduction, immediately yields an improved Õ(n
k
2)

nonuniform time complexity for k-SUM when k is odd.1

1Gold and Sharir [85] give an improvement on the polylogarithmic factors hidden by

the Õ(·) notation.

0. In a Dozen Pages 5

As for uniform time complexity we do not know whether this nonuniform

improvement can be transferred to the real-RAM model: we do not know of

any real-RAM o(n
k+1

2) time algorithm for k-SUM when k is odd.

Shallower linear decision trees exist for k-SUM. The k-SUM problem

reduces to the following point location problem: “Given a input point q ∈ Rn,

locate q in the arrangement of
(
n
k

)
hyperplanes of equation xi1 + xi2 + · · ·+

xik = 0.” Applying the best nonuniform algorithms for point location in

arrangements of hyperplanes by Meyer auf der Heide [119] and Meiser [118]

yields linear decision trees of depth nO(1) for k-SUM, where the constant of

proportionality in the big-oh does not depend on k.

Paper A Our first contribution is a finer analysis of Meiser’s algorithm

that shows that the depth of his decision tree when applied to k-SUM is

actually O(n3 log2 n). On top of that, we show how to implement a variant

of this decision tree in the real-RAM model so that its uniform running time

is n
k
2

+O(1) while keeping the nonuniform running time unchanged. Note that

a naive implementation of Meiser’s algorithm has a uniform running time of

nk+O(1).

The approach taken by Meiser’s algorithm follows the prune and search

method: Take a sample of the hyperplanes for which we do not yet know

the relative location of the input point. Locate the input point with respect

to this sample by brute-force. This amounts to identifying the cell of the

sample’s arrangement which contains the input point. Refine the location

of the input point in the sample by partitioning the containing cell into

low complexity subcells. Whenever this low complexity subcell is located

completely on one side of an hyperplane, the input point is located on the

same side, and so we can discard this hyperplane without a single query to

the input point. Since some hyperplanes may intersect the low complexity

subcell, rince and repeat.

The location refinement is necessary because this is the only way we can

guarantee a bound on the number of hyperplanes we have to recurse on.

Using the theory of ε-nets, we can show that, for a sample of reasonable size,

any simplex that is not intersected by a sample hyperplane is not intersected

by more than a constant fraction of the set of hyperplanes from which

the sample is drawn (with high probability). We define the refined subcell

of the algorithm presented above to be the simplex of the bottom-vertex

6

triangulation of the sample’s arrangement that contains the input point.

Sorting

Before continuing, let us go back to the origins of those different problems.

The link between them will be made even clearer.

Sorting is one of the oldest and most relevant data management problems.

It is the archetypal computation tree problem. Usually presented, sorting is

about permutations in arrays, but we do not like that. We use a different

abstraction:

Problem 1 (Sorting). Given n numbers q1, q2, . . . , qn ∈ R, for each pair 1 ≤
i < j ≤ n, decide whether qi < qj .

In other words, we see the sorting problem as an information retrieval

problem: how many comparisons do we need to make in order to know the

answer to all comparisons. The usual sorting algorithms rearrange an array

of input numbers into sorted order. Another way to think about it is that

they compute the permutation that sends the input array to a sorted version

of itself. This permutation is a data structure such that given any index in

the input array, we can query for the corresponding index in the sorted array

called the rank of the element). To retrieve the result of a comparison of two

elements of the input array we can compare their ranks in this permutation.

The usual way of defining the sorting problem restricts the data structure

that should be used to encode the
(
n
2

)
comparisons. The way we model the

sorting problem lifts this restriction because it does not ask to structure this

information in a nice way.

The sorting problem also has its decision problem variant: Element

Uniqueness.

Problem 2 (Element Uniqueness). Given n numbers q1, q2, . . . , qn ∈ R, decide

whether there exists 1 ≤ i < j ≤ n, such that qi = qj .

It is easy to see that Sorting amounts to locating the point q in the

arrangement of hyperplanes of equations xi − xj = 0, and that Element

Uniqueness reduces both to and from the 2SUM problem in linear time.

Actually, under reasonable assumptions on the computation model, sorting

and element uniqueness are the same problems: if all questions we ask about

0. In a Dozen Pages 7

the input are linear in the input numbers, then proving that the input

does not contain any duplicate entries requires to sort the input (see for

instance [61, Section 4]). The same statement carries over to the k-SUM

with respect to its “sorting version”: computing the sign of all
(
n
k

)
sums of

k input numbers. Therefore, in those models of computation, the sorting

problem is equivalent to 2SUM. Because of this relationship between Sorting

and the k-SUM problem, we see why the better understanding of k-SUM is

a natural next move.

Among all the problems this thesis touches on, Sorting and Element

Uniqueness are the simplest and best understood. We know Ω(n log n) lower

bounds in many nonuniform models of computation and we also know a long

list of simple real-RAM algorithms for those problems whose running times

match those lower bounds. For all that matters here, those problems are

solved.

A Zoo of Generalizations

Obviously, the k-SUM problem is not the only possible way to generalize

Sorting.

Hopcroft’s problem [70, Section 1] asks whether given n points and

n hyperplanes in Rd, one of the points lies on one of the hyperplanes.

When d = 1, this problem is Element Uniqueness. Finding the location

(“above”/“below”) of each point with respect to each hyperplane generalizes

Sorting.

Orthogonal Vectors (OV) is a problem that has gained popularity in

the emerging field of fine grained complexity theory [160, Section 5.1]. The

problem is to decide whether a set of n d-dimensional vectors contains an

orthogonal pair. It is easy to see that this problem is equivalent to Hopcroft’s

problem in Rd−1.

The offline dominance reporting problem [44, Section 2] asks, given n

points in Rd, to report all pairs of points such that the first dominates the

other in all dimensions. Once again, for d = 1, this problem is Sorting

because it asks for the answer to all comparisons of the type pi ≤ qi.
Sorting X + Y is also a canonical problem in P [80, 99]: given two sets

X and Y of n numbers each, sort the set {x + y : x ∈ X, y ∈ Y }. Sorting

X + Y reduces linearly to the sorting version of 4SUM because it asks for

8

GPT in the plane

3SUM

(d + 1)-SUM

3POL

2D-Hopcroft

2D-2POLElement Uniqueness 2POL

2D-3POL

2SUM

= 1D-Hopcroft

4SUM

= 3D-OV

= 2D-OV

GPT in Rd

O(n log n) O(n log n) O(n4/3+ε)

O(n12/7+ε)O(n log2 n)

O(n log2 n)

O(n log2 n) O(nd)

O(n2)

o(n2) o(n2)

O(n2 log n)

Õ(nd d+1
2

e)

Figure 1. The decision problems surrounding GPT. Arrows indicate linear

time reductions. Known upper bounds are indicated next to the problem’s

name. When the uniform and nonuniform upper bounds differ, we place the best

uniform upper bound on the left. Solid lines indicate time-complexity differences

between the best known nonuniform algorithms. Dotted lines indicate time-

complexity differences between the best known uniform algorithms.

the sign of all comparisons of the type x+ y ≤ x′ + y′.

We already saw that GPT and Sorting belong to the same family of

high-dimensional point location problems. There is a good reason for that:

when d = 1, GPT is Element Uniqueness. In one-dimensional space, GPT

asks whether any two points are the same. Picturing this space as the

(horizontal) real line, we see that the “sorting version” of GPT asks to

compute for each pair of points which one is on the “left” of the other which

simply amounts to Sorting the one-dimensional input points.

Intermediate Problems

A perspicacious reader may have frowned at the previous paragraphs

wondering whether this embryo of classification brings more insight than

0. In a Dozen Pages 9

confusion. “Sure!”, one may say, “Many problems involve sorting, and

therefore, according to this dubious definition, are generalizations of it.”

However, the author begs to differ.

As a first example, take one of the best known algorithms for 3SUM. This

algorithm reduces an instance of 3SUM to a sorting phase and a searching

phase [95]. The sorting phase consists in answering all questions of the type

xi + xi′ ≤ xj + xj′ with some restriction on the indices. Well, it turns out

that this phase is exactly an instance of the sorting version of the 2SUM

problem where the input numbers are the differences xi − xj .2 Moreover,

to make the uniform algorithm practical, they implement the resolution of

the 2SUM instance via offline dominance reporting. Note that this sorting

problem is similar to the Sorting X + Y problem where the answers to most

questions are not cared for.

As a second example, we have the GPT problem. For this problem,

the fact that the one-dimensional version is Sorting does not seem to give

any insight on how to apprehend the more general problem, even in two

dimensions. In order to make some progress in that direction, we need to

capture more precisely to which family of problems GPT belongs. For that,

we look at the algebra behind the problem.

GPT asks whether for any choice of
(
n
d+1

)
input points pi with coordinates

(pi,1, pi,2, . . . , pi,d), the determinant

det


1 p1,1 p1,2 . . . p1,d

1 p2,1 p2,2 . . . p2,d
...

...
...

. . .
...

1 pd+1,1 pd+1,2 . . . pd+1,d


is zero. This determinant is a degree-d (d2 + d)-variate polynomial. In

particular, when d = 2, the determinant is a degree-2 6-variate polynomial.

The GPT problem then amounts to deciding whether the coordinates of any

combination of the input points yields a root of that polynomial. We there-

fore consider the more general d-dimensional-k-POL (dD-k-POL) problem:

Given a dk-variate constant degree polynomial F and a set S of n points

in Rd, decide whether F (Sk) contains any zeroes. For instance, 2D-3POL

2This observation generalizes to the k-SUM problem: any k-SUM instance can be

reduced to a larger (k − 1)-SUM instance followed by a searching phase.

10

generalizes GPT with d = 2 where the constant degree polynomial is the

3× 3 determinant mentioned above. Moreover, 1D-3POL generalizes 3SUM

where the polynomial is simply the sum function. Equally interesting is the

fact that 2D-2POL generalizes Hopcroft’s problem with d = 2 where the

polynomial is the dot product.

Paper B We generalize Grønlund and Pettie’s approach to solve 1D-3POL

(or more simply, 3POL) in subquadratic time. Our approach is essentially the

same in that it reduces 3POL to a sorting phase and a searching phase, the

sorting phase being an instance of 2D-2POL.3 Again, the implementation

of the uniform algorithm solves this instance of 2D-2POL using offline

dominance reporting (a generalization of it).

This result illustrates why a better understanding of the landscape of

problems surrounding GPT helps to identify intermediate problems whose

resolution marks progress towards the question of whether GPT admits

subquadratic algorithms. Figure 1 depicts this landscape.

Encodings

Naive algorithms for Element Uniqueness, 3SUM, and k-SUM would

search all possible combinations of 2, 3, or k input numbers for a match and

reach horrible running times: respectively O(n2), O(n3), and O(nk).

The way better uniform algorithms for those problems work is by a

combination of sorting and searching. The sorting part constructs a data

structure and the searching part uses this data structure to answer the

question at hand. The achieved running time is a balance between the cost

of sorting and the cost of searching. This results in better running times

than the naive “search only” solutions.

For instance, an efficient algorithm for the Element Uniqueness problem

would first sort the input, then scan it for duplicates among adjacent numbers

in this sorted order. The data structure that is constructed is the permutation

we talked about earlier. This structure achieves a good compressing ratio by

encoding the answer to all O(n2) pairwise comparisons of two input numbers

3Note that according to the implied definition, dD-k-SUM is equivalent to k-SUM.

Therefore, the 2SUM instance in the sorting phase of their 3SUM algorithm is an instance

of 2D-2SUM in disguise.

0. In a Dozen Pages 11

in O(n log n) bits.

For this reason Element Uniqueness is comparatively simpler than the

3SUM and k-SUM problems. For a nonuniform algorithm, constructing this

structure is sufficient to solve the problem: Once the construction is over, we

can discard the input because all the information we need is encoded in the

data structure. Since the nonuniform models of computation we consider

do not care about computations not involving the input, the searching part

does not cost anything.

The case of 3SUM and k-SUM is more complex [95]: The sorting phase

only encodes a fraction of all possible queries. This leaves a significant amount

of work for the searching phase. Therefore, both the sorting phase and the

searching phase contribute to the nonuniform cost of those algorithms.

The case of GPT is also interesting. The naive algorithm queries O(nd+1)

input tuples while the better algorithm constructs the dual arrangement

in O(nd) time [97, Theorem 24.4.1]. As in the case of Element Uniqueness,

this dual arrangement is the data structure that encodes the answer to all

O(nd+1) queries while achieving a significant space gain.

While the goal sought in the design of algorithms is to find the best

possible balance between those sorting and searching phases, a different

question becomes evident: “What is the most resource efficient data structure

encoding all the combinatorial information carried by the input?”. For

this question, resource efficiency can be measured in three ways: space

requirements, construction time, and query time. If one only cares about

space, a trivial answer points its head out: if there are only X combinatorial

types then each type can be encoded with dlogXe bits. However, this solution

is unlikely to yield good construction time or good query time.

In the case of Element Uniqueness, this question has been answered long

ago. Sorting the input in O(n log n) time will construct a permutation using

O(n log n) bits that can be queried for any pairwise comparison in O(1) time.

However, the question is still widely open for 3SUM, k-SUM, and GPT.

Papers C & D In Paper C we design the first subquadratic space data

structure for encoding the combinatorial type of a two-dimensional GPT

instance. This data structure can be constructed in quadratic time and

queries are answered in sublogarithmic time. Those results can be adapted

to work for higher-dimensional GPT to yield o(nd)-space data structures

12

with good construction and query times.

Since 3SUM reduces to GPT, the results of Paper C can be applied to

encode the combinatorial type of 3SUM instances. However, since 3SUM

is much better understood than GPT we should aim for better encodings.

This is exactly what we do in Paper D. By filling the gaps in the partial

data structure used in Grønlund and Pettie’s algorithm [95], we design an

encoding that uses O(n3/2 log n) bits, can be constructed in O(n2) time and

answers queries in constant time.

The Secret Ingredient

What makes the success of our methods are now-standard geometric

divide-and-conquer tools: ε-nets and cuttings (see [52, Sections 40.1and 40.4]).

The idea of an ε-net is simple, yet powerful. Given a set of m hyperplanes

in Rd, construct a sample of those hyperplanes of size f(d, ε) uniformly at

random. Then, with high probability, any simplex that is not intersected

by an hyperplane of the sample is intersected by at most εm hyperplanes of

the original set. The sample is called a net because it does not let the fat

simplices through: a simplex intersected by more than εm hyperplanes must

be intersected by one of the sample. This yields an efficient point location

tool: construct a sample, find the cell of its arrangement that contains the

query point, find the simplex of its triangulation that contains the query

point, and recurse on the fraction of hyperplanes that intersect it.

Triangulate the whole arrangement of the sample and you get an ε-cutting:

a partition of space into simplices such that each simplex is intersected by at

most εm hyperplanes. We use cuttings in applications where multiple point

location queries are made on the same set of hyperplanes.

Wrapping it up

Since publication of those papers, a few developments have surfaced.

Ezra and Sharir [75] show how trading simplices of the bottom-vertex

triangulation for prisms of the vertical decomposition in Meiser’s algorithm

yields a shallower decision tree of depth O(n2 log n). Essentially, the im-

provement over our result in Paper A lies in the fact that, for vertical

decomposition, the sample size can be taken to be an order of magnitude

smaller.

0. In a Dozen Pages 13

In a breakthrough paper, Kane, Lovett, and Moran [108] give a linear

decision tree of depth O(n log2 n) for k-SUM, almost matching the Ω(n log n)

lower bound. This improves both on Paper A and Ezra and Sharir [75].

In [46], Chan shaves more logarithmic factors from the time complexity of

uniform algorithms for 3SUM and 3POL. While we focused on applications

that solve 3SUM-hard geometric problems with one-dimensional input in

Paper B, he shows how the ideas that work for 3POL also work for some

3SUM-hard geometric problems with two-dimensional data.

I
Without Proof

1
Models of Computation

In Theoretical Computer Science, we simplify reality in order to make

our job easier: we create models of what we think computers are and use

mathematics to reason about them. This allows us, not only to show, but to

prove that our algorithms are correct and efficient, according to those models.

Hopefully we manage to capture the essence of what practical computation

is about, making our lemmas and theorems relevant in practice.

We have to start this thesis somewhere, and, for our results to make

sense, it is only natural that we begin by defining the models we use.

1.1 Algorithms

We study two classes of algorithms: uniform and nonuniform.

Uniform algorithms are considered practical. They can be implemented

on a real computer because they take care of data management issues in an

automated way.

Nonuniform algorithms ignore the data management aspect of practical

computation. They do not give details on how to structure the intermediate

results of their computation. Those results are assumed to be instantly

accessible without any organization. Since we consider problem instances

of arbitrarily large size, this is not possible in practice: processor units can

only hold a fixed amount of data at any given time. The data has to be

stored somewhere in some structured way.

The naming uniform simply means that the algorithm (its description) is

the same for all input sizes. This is what is generally expected from algorithm

design: to output a finite size description of an automated problem solving

method that works for any instance size. Nonuniform algorithms on the

18 1.1. Algorithms

other hand are allowed to have distinct descriptions for each input size.

Each nonuniform algorithm can be seen as an infinite sequence of uniform

algorithms A = A1, A2, . . ., each An hardcoding the data management part

in its description. This description therefore is allowed to grow with n.

Designing a nonuniform algorithm A amounts to describing a method that

given n outputs An.

In this thesis, we study uniform random access machine (RAM) models,

the real-RAM and the word-RAM models, and nonuniform decision tree

models, the algebraic computation tree, algebraic decision tree, and linear

decision tree models. Those are described in the following paragraphs.

1.1.1 Random Access Machines

The real-RAM and word-RAM models have the RAM in common. They

both assume a memory storing numbers whose access cost is constant and a

constant number of standard operations on the numbers they manipulate.

Defined in 1978 by Shamos in his PhD thesis [148, Section 2.3], the

real-RAM model is a classic of Computational Geometry. The input is

assumed to consist of n real numbers and those numbers can be manipulated

exactly at constant cost using arithmetic and comparison operators. This

makes sense from the geometer’s point of view since geometric data is best

abstracted as real numbers. For data management purposes, the model also

allows to manipulate log n-bits integers with arithmetic, comparison, and

bitwise operators but does not allow the conversion from a real number to

an integer.

Defined in 1990 by Fredman and Willard [82], the word-RAM model

models computers as we know them more closely. It considers an input

consisting of n w-bits integers called words and allows a constant number

of standard unary or binary operators to be executed in constant time.

Because of practical considerations, those words can be assumed to have

bitsize w ≥ log n (also called the transdichotomous model).

1.1.2 Computation and Decision Trees

A decision tree is a constant-degree rooted tree whose internal nodes

encode binary queries to an omniscient oracle and whose leaves encode the

result of the computation. The complexity of the tree is defined to be the

1. Models of Computation 19

length of its longest root to leaf path called the depth of the tree.

A decision tree cannot inspect the input directly. To make progress, it

inquires about the input through “yes/no” questions asked to the oracle.

The oracle answers those questions by “yes” or “no” honestly and accurately.

An identification problem consists in, given an input of size n, distin-

guishing among f(n) input classes, that is, to put the instance in the right

box. A decision problem is an identification where f(n) = 2.

Of course, for every identification problem with f(n) input classes, there

is a decision tree that solves the problem by asking O(log f(n)) “yes/no”

questions of the form: “Is the input in the following range of input classes?”

This is best possible: every query carries at most one additional bit of

information, and there are at least dlog f(n)e bits necessary to label each

input class. This lower bound is called the Information Theoretic Lower

Bound, or ITLB, and holds for any decision tree model.

The queries the above decision tree makes are too powerful to make the

study of this kind of model interesting in general. Moreover, practically,

those queries have no structure a priori and it is not at all obvious how they

can be encoded. For a decision tree model to make sense, we have to restrict

the kind of queries that can be made.

Linear Decision Trees

A first natural way to restrict the complexity of the queries of our decision

tree model is to only allow linear queries on the input (see for instance [58,

Section 1], [60, Section 2], and [61, Section 4]). This will be sufficient to

solve problems such as Sorting, Element Uniqueness, 3SUM, k-SUM, and

subset-sum.

In the s-linear decision tree model, queries consists in testing the sign

of a linear function on at most s numbers qi1 , . . . , qis of the input q1, . . . , qn.

Such a query is called a s-linear query and can be written as

α1qi1 + · · ·+ αsqis
?
≤α0

Each question is defined to cost a single unit. All other operations can be

carried out for free but may not examine the input vector q. We refer to

n-linear decision trees simply as linear decision trees.

20 1.1. Algorithms

Note that this model generalizes the Comparison Tree Model commonly

used for Sorting and Element Uniqueness, where queries have the form

qi≤? qj .

Algebraic Decision Trees

The linear decision tree model is not powerful enough for more complicated

problems. General Position Testing for instance involves discovering the sign

of quadratic polynomials of the input, which is impossible in general with

linear queries only.

The (bounded-degree) algebraic decision tree (ADT) [133, 152, 161] is

an algebraic generalization of linear decision trees. An algebraic decision

tree performs constant-cost branching operations that amount to testing the

sign of a constant-degree polynomial of the input numbers.

In this model, for an input q1, . . . , qn, a query can be written as

p(q1, . . . , qn)
?
≤ 0,

where p ∈ R[x1, . . . , xn] is a polynomial of constant degree. Again, operations

not involving the input are free.

Algebraic Computation Trees

Computation trees differ from decision trees in that instead of exclusively

asking “yes/no” questions, they perform arithmetic operations on variables

whose results can be remembered and reused as operands, but only inspected

using comparison queries. In the case of algebraic computation trees [25],

this allows, for instance, to make decisions based on arbitrary polynomial

expressions of the input with a sane way of counting the complexity of

constructing such an expression. This would not be allowed in the algebraic

decision tree model.

The internal nodes of an algebraic computation tree are labeled with

arithmetic (r ← o1 op o2, op ∈ {+,−,×,÷}) and branching (z : 0) operations.

Any internal node labeled r ← o1 op o2 has outdegree one and is such that

either ok = qi for some i or there exists an ancestor ok ← x op y of this node,

and any internal node labeled z : 0 has outdegree three and is such that

either z = qi for some i or there exists an ancestor z ← x op y of this node.

1. Models of Computation 21

Similarly to the previously described decision tree models, leafs of the tree

correspond to input classes.

Using this model can be interpreted as only counting the operations

that involve the input, that is, members of the input or results of previous

operations involving the input. All other arithmetic operations are for free.

1.2 Data Structures

Data Structures are ubiquitous in algorithmics. Given some data, we

want to store it in computer memory in a way that 1) allows us to efficiently

access the information we want to extract from this data and 2) does not

require too much storage space. The term structure is by opposition to a

randomly ordered stream of data.

Usually, a third important feature of those structures is that they can

be also updated efficiently if the underlying data changes. We do not

study or use that aspect in this thesis, instead we only require that those

data structures can be constructed from scratch in an efficient way. Data

structures allowing efficient updates are usually named dynamic while the

ones we study are static data structures.

Those intuitive concepts are summarized as follows:

Preprocessing time Given some data, the time it takes to construct the

corresponding data structure in the given computation model.

Space The amount of space the data structure consumes in the given

computation model. Can be expressed in bits, words, memory cells, . . .

Query time Given a data structure, the time consumed by a single query

in the given computation model.

In §1.2.1 we give a precise definition of a particular type of data structure

we study: encodings.

1.2.1 Encodings

A data structure is called succinct if its space usage is close to the

ITLB (see §1.1.2). This concept was first introduced by Jacobson in his PhD

22 1.2. Data Structures

thesis [106]. Since then, it has been extensively studied. Raman, Raman, and

Satti studied the dynamic implementation of such data structures and gave

the first rank-select succinct data structures [135, 136]. Those data structures

are efficient in practice as show by Vigna with their implementations [159].

In this thesis, we try to get good bounds on the space used by the data

structures we design. However, in most cases we are still very far from

the ITLB. We make all our data structure design problems fit in a single

framework dubbed instance encoding so that their space and query time

requirements can be easily compared.

Definition 2. For fixed k and given a function f : [n]k → [O(1)], we define

a (S(n),Q(n))-encoding of f to be a string of S(n) bits such that, given this

string and any i ∈ [n]k, we can compute f(i) in Q(n) time in the word-RAM

model with word size w ≥ log n.

2
History

In this chapter we define and recount the history of the different problems

on which we made progress: 3SUM and k-SUM (§2.1), and GPT and 3POL

(§2.2).

Note that we only consider knowledge predating the publication of our

results. For later developments see §4.

2.1 3SUM & k-SUM

The 3SUM problem is defined as follows: given n distinct real numbers,

decide whether any three of them sum to zero.

Problem 3 (3SUM). Given n numbers q1 < q2 < . . . < qn ∈ R, decide

whether there exist i < j < k ∈ [n] such that qi + qj + qk = 0.

The seminal paper by Gajentaan and Overmars showed the crucial role of

3SUM in understanding the complexity of several problems in computational

geometry [84].

A popular conjecture is that no n2−Ω(1)-time real-RAM algorithm solves

3SUM.

Conjecture 2.1. There is no n2−Ω(1)-time real-RAM algorithm for 3SUM.

This conjecture has been used to show conditional lower bounds for

problems in P, notably in computational geometry with problems such

as GeomBase, general position testing (GPT) [84] and Polygonal Contain-

ment [21], and more recently for string problems such as Local Alignment [3]

and Jumbled Indexing [18], as well as dynamic versions of graph prob-

lems [2, 110, 130], triangle enumeration and Set Disjointness [110].

24 2.1. 3SUM & k-SUM

The k-SUM problem is a straightforward generalization of the 3SUM

problem: given n distinct real numbers, decide whether k of them sum to

zero.

Problem 4 (k-SUM). Given n numbers q1 < q2 < . . . < qn ∈ R, decide

whether there exist i1 < i2 < · · · < ik ∈ [n] such that
∑k

j=1 qij = 0.

It has been known for long that k-SUM is W[1]-hard and proved recently

to be W[1]-complete [1]. The k-SUM problem is also a fixed-parameter

version of the subset-sum problem, a standard NP -complete problem.

Similarly to 3SUM, the k-SUM problem has proved to be a computational

bottleneck in high dimensional convex hull construction or general position

testing [72].

For all those reasons, 3SUM and k-SUM are considered as key subjects of

an emerging theory of complexity-within-P (or “fine-grained” complexity), on

par with other problems such as all-pairs shortest paths (APSP), orthogonal

vectors (OV), boolean matrix multiplication (BMM), and conjectures such

as the Strong Exponential Time Hypothesis (SETH) [4, 42, 103, 122, 131].

2.1.1 Variants

For the sake of simplicity, we will sometimes consider the following

definition of 3SUM:

Problem 5 (3SUM variant). Given three sets A, B, and C of n real numbers,

decide whether any triple of numbers in A×B × C sums to zero.

A similar variant can be defined for k-SUM:

Problem 6 (k-SUM variant). Given k sets Si of n real numbers, decide

whether there exists (s1, s2, . . . , sk) ∈ S1×S2×· · ·×Sk such that
∑k

i=1 si = 0.

The k-SUM problem can be further generalized to the linear degeneracy

testing problem (k-LDT) where we allow coefficients other than zero and

one.

Problem 7 (k-LDT). Given n input numbers q1 < · · · < qn ∈ R and con-

stants p0, . . . , pn ∈ R decide whether there exists i1, i2, . . . , ik ∈ [n] such that∑k
j=1 pjqij = p0.

Our algorithms apply to this more general problem with only minor

changes.

2. History 25

2.1.2 Point Location

The Point Location problem is a classic problem in Computational

Geometry.

Problem 8 (Point Location). Given a set H of m hyperplanes and a query

point q ∈ Rd, find the cell C ∈ A(H) such that q ∈ C.

Because the bounds in Theorem 6.1 are attained when H is in general

position, there is a lower bound of Ω(d logm) on the depth of decision trees

solving this problem.

For our purpose, it is useful to see the k-SUM problem as a point location

problem in Rn where the coordinates of q are the input numbers and where

H is the set of all
(
n
k

)
hyperplanes of equation

∑k
j=1 xij = 0. Locating q

in A(H) amounts to deciding in n-dimensional space, for each hyperplane

H ∈ H, whether q lies on, above, or below H. Since q lies on some H if and

only if the k-SUM instance is degenerate, this constitutes a valid reduction.

We emphasize that in this reduction the set of hyperplanes depends only on

k and n and not on the actual input vector q.

Sorting can also be seen as a point location problem in Rn. In this case H
is the set of all

(
n
2

)
hyperplanes of equation xi = xj . The arrangement A(H)

has exactly n! n-dimensional cell that correspond to the n! permutations the

input might have. Identifying the cell containing the input point reveals its

permutation, hence solving the sorting problem.

See [150, Section 34.6] for more on point location in high dimensions.

2.1.3 Information Theoretic Lower Bound

The ITLB for Sorting is the logarithm of the number of possible permu-

tations of the input, that is dlog n!e = Ω(n log n), for any decision tree. This

does not hold for element uniqueness: in an arbitrarily powerful decision

tree model, using a single query, we can find out whether the input contains

duplicates. This matches the useless lower bound of log 2 = 1.

This observation holds for any decision problem: if the problem amounts

to retrieve a single bit of information, the “yes/no” answer, we cannot derive

a useful lower bound for arbitrary decision tree models.

Restricting our model to only allow linear queries, we can derive a more

useful lower bound for element uniqueness.

26 2.1. 3SUM & k-SUM

Lemma 2.1 (Dobkin and Lipton [61, Section 4]). In the linear decision tree

model, any algorithm solving the Element Uniqueness problem must sort its

input (if it has no duplicates).

Proof. Assume that the input q has no duplicates. Then, looking at q as a point

in Rn, q is contained in a d-cell of the arrangement of hyperplanes of equation

xi = xj . Sorting the input amounts to identifying this cell. Assume we have

solved the element uniqueness problem for this instance and further assume, by

contradiction, that we have not identified the cell containing q. In the model

we consider, each query/answer pair corresponds to a halfspace containing q.

Because we have not identified the d-cell containing q, it must be that points

from at least two d-cells of the arrangement are contained in the intersection of

the halfspaces. Because halfspaces are convex sets, their intersection is convex

too, and thus connected. In this connected set, a path from q to any point from

the other d-cell must at some point intersect one of the hyperplanes xi = xj

that separates the two cells. An adversary can therefore update q to be this

intersection point without changing any of the previous answers, even though

this new point contains duplicates, a contradiction.

Because of the decision tree lower bound on Sorting, we have the following,

Corollary 2.2. Any linear decision tree solving the Element Uniqueness

problem has depth Ω(n log n).

The same conclusion can be drawn for the 3SUM and k-SUM problems

since Element Uniqueness reduces to them.

Corollary 2.3. Any linear decision tree solving the k-SUM problem has

depth Ω(n log n).

2.1.4 Higher Lower Bounds

In 1999, Erickson showed that we cannot solve k-SUM or k-LDT in

o(nd
k
2
e) time in the k-linear decision tree model [71]:

Theorem 2.4 (Erickson [71]). The depth of a k-linear decision tree solving

the k-LDT problem is Ω(nd
k
2
e).

2. History 27

The proof uses an adversary argument which can be explained geometri-

cally. As we already observed, we can solve k-LDT problems by modeling

them as point location problems in an arrangement of hyperplanes. Solving

one such problem amounts to determining which cell of the arrangement

contains the input point. The adversary argument of Erickson [71] is that

there exists a cell having Ω(nd
k
2
e) boundary facets and in this model point

location in such a cell requires testing each facet.

In 2005, Ailon and Chazelle slightly extended the range of query sizes

for which a nontrivial lower bound could be established, elaborating on

Erickson’s technique [15]. They study s-linear decision trees to solve the

k-SUM problem when s > k. In particular, they give an additional proof for

the Ω(nd
k
2
e) lower bound of Erickson and generalize the lower bound for the

s-linear decision tree model when s > k. Note that the exact lower bound

given by Erickson for s = k is Ω((nk−k)
d k

2
e
) while the one given by Ailon and

Chazelle is Ω((nk−3)
d k

2
e
). Their result improves therefore the lower bound

for s = k when k is large. The lower bound they prove for s > k is the

following

Theorem 2.5 (Ailon and Chazelle [15]). The depth of a s-linear decision

tree solving the k-LDT problem is

Ω
(
nk−3

)(1−εk) (2k−s
2)/d s−k+1

2 e
,

where εk > 0 tends to 0 as k →∞.

This lower bound breaks down when k = Ω(n
1
3) or s ≥ 2k and the cases

where k < 6 give trivial lower bounds. For example, in the case of 3SUM

with s = 4 we only get an Ω(n) lower bound.

2.1.5 Uniform Algorithms

On the real-RAM and word-RAM, it is easy to solve any k-SUM instance

in time O(nk/2 log n) for k even and O(n
k+1

2) for k odd, and hence 3SUM

in time O(n2). Those algorithms inspect the input using k-linear queries

exclusively and the lower bounds of Erickson and Ailon and Chazelle in this

model of computation essentially match their complexity.

Because fixing two of the numbers a and b in a triple only allows for one

solution to the equation a + b + x = 0, an instance of 3SUM has at most

28 2.1. 3SUM & k-SUM

n2 degenerate triples. An instance giving a matching lower bound is for

example the set of n integers { 1−n
2 , 3−n

2 , . . . , n−1
2 } (for odd n) with 3

4n
2 + 1

4

degenerate triples. One might be tempted to think that the number of

“solutions” to the problem would lower bound the complexity of algorithms

for the decision version of the problem, as it is the case for this problem, and

other problems, in restricted models of computation [70, 71]. This intuition

is incorrect.

In 2005, Baran, Demaine, and Pătras,cu gave the first subquadratic

algorithms for 3SUM [19]. They design subquadratic Las Vegas algorithms

for 3SUM on integer and rational numbers in the circuit RAM, word RAM,

external memory, and cache-oblivious models of computation. The idea of

their approach is to exploit the parallelism of the models, using linear and

universal hashing. However, since their algorithms do not handle real inputs,

this did not settle the question of subquadratic algorithms in full generality.

In 2014, Grønlund and Pettie gave the first subquadratic algorithms for

real-input 3SUM [95]. Using an old trick due to Fredman [80], they prove the

existence of a linear decision tree solving the 3SUM problem using a strongly

subquadratic number of linear queries. The classical quadratic algorithm for

3SUM uses 3-linear queries while the decision tree of Grønlund and Pettie

uses 4-linear queries and requires O(n
3
2
√

log n) of them.

Theorem 2.6 (Grønlund and Pettie [95]). There is a 4-linear decision tree

of depth O(n3/2
√

log n) for 3SUM.

They show how to adapt this decision tree to run in subquadratic time

in the real-RAM model. They design two subquadratic 3SUM real-RAM

algorithms. A deterministic one running in O(n2/(log n/ log log n)
2
3) time

and a randomized one running in O(n2(log log n)2/ log n) time with high

probability.

In 2015, Chan and Lewenstein designed strongly subquadratic word-RAM

algorithms for a high-dimensional variant of integer 3SUM with applications

to jumbled indexing [47]. This result generalizes the folk wisdom that 3SUM

on small integers can be solved in nearlinear time using FFT’s.

The same year, Freund [83] and Gold and Sharir [85] improved on the

results of Grønlund and Pettie [95]. Freund [83] gave a deterministic algo-

rithm for 3SUM running in O(n2 log log n/log n) time. Gold and Sharir [85]

gave another deterministic algorithm for 3SUM with the same running time

2. History 29

and shaved off the
√

log n factor in the decision tree complexities of 3SUM

and k-SUM given by Grønlund and Pettie.

Theorem 2.7 (Freund [83], Gold and Sharir [85]). There is a O(n
2 log logn

logn)-

time real-RAM algorithm for 3SUM.

2.1.6 Nonuniform Algorithms

The nonuniform algorithm of Grønlund and Pettie for 3SUM in the

4-linear decision tree model generalizes to k-SUM [95]. In the (2k− 2)-linear

decision tree model, only O(n
k
2
√

log n) queries are required for odd values

of k. Putting this in perspective with the lower bounds of Erickson and

Ailon and Chazelle, this indicates that increasing the size of the queries, thus

making the model more powerful, does yield improvements on the depth of

the minimal-height decision tree.

It has been well established that there exist nonuniform polynomial-time

algorithms for the subset-sum and knapsack problems, even though those

problems are NP-complete. In 1984, Meyer auf der Heide was the first to

use a point location algorithm to solve the knapsack problem in the linear

decision tree model in polynomial time [119]. He thereby answered a question

raised by Dobkin and Lipton [59, 60], Yao [162] and others. However, if

one uses this algorithm to locate a point in an arbitrary arrangement of

hyperplanes the running time is increased by a factor linear in the greatest

coefficient in the equations of all hyperplanes. In 1993, a second algorithm

was described by Meiser [118], and is derived from a point location data

structure for arrangements of hyperplanes using bottom vertex triangulation

and ε-nets (see §6.4.1 and §8.1.3). The complexity of Meiser’s point location

algorithm is polynomial in the dimension, logarithmic in the number of

hyperplanes and does not depend on the coefficients in the equations of the

hyperplanes. A useful complete description of this algorithm is given by

Bürgisser et al. [36, Section 3.4].

When applied to k-SUM, those algorithms can be cast as the construction

of a n-linear decision tree, even though k is constant. They both yield nO(1)-

time nonuniform algorithms for k-SUM where the constant of proportionality

does not depend on k, thus exhibiting the potential superiority of n-linear

queries.

30 2.2. GPT & 3POL

2.2 GPT & 3POL

In the plane, the General Position Testing problem (GPT) asks whether,

given n points, three of them are collinear (this problem is also called 3-

POINTS-ON-LINE [84]). Because of some elementary algebra, the following

form is equivalent:

Problem 9 (GPT in the plane). Given n points (x1, y1), . . . , (xn, yn) ∈ R2,

decide whether there exist i < j < k ∈ [n] such that

det

1 xi yi

1 xj yj

1 xk yk

 = 0.

Note that this determinant is a degree-two polynomial in six variables

xiyj − yixj − xiyk + yixk + xjyk − yjxk.

In Computational Geometry this determinant is better known as the

(counterclockwise) orientation ∇(i, j, k) ∈ {−, 0,+ } of the points i, j, and

k with coordinates (xi, yi), (xj , yj), and (xk, yk) and is defined as the sign

of this determinant. It is called orientation or sidedness because for three

given points this sign gives the orientation of the triangle those points define.

It is often written as

∇(i, j, k) = sign((xj − xi)(yk − yi)− (yj − yi)(xk − xi)),

with only five subtractions and two multiplications.

The problem generalizes to higher dimension: given n points in Rd, decide

whether any d+1 of them lie on a common hyperplane. Again, using algebra:

Problem 10 (GPT in Rd). Given n points pi = (pi,1, pi,2, . . . , pi,d) ∈ Rd,
decide whether there exist i1 < i2 < · · · < id+1 ∈ [n] such that

det


1 pi1,1 pi1,2 . . . pi1,d
1 pi2,1 pi2,2 . . . pi2,d
...

...
...

. . .
...

1 pid+1,1 pid+1,2 . . . pid+1,d

 = 0.

2. History 31

Again, this determinant is a degree d polynomial in d2 + d variables.

Later in this document we mention GPT without specifying the dimension.

The problem is then assumed to be in the plane. When we consider a different

parameterization we explicitly mention it.

2.2.1 Variants

Similarly to the 3SUM problem, we can study a variant of GPT where

the tested triples come from different sets.

Problem 11 (GPT variant in the plane). Given three sets A, B, and C of n

points in R2, decide whether any triple of points in A×B × C is collinear.

This variant is useful for a particular reduction from 3SUM. A similar

variant can be defined for the d-dimensional problem.

2.2.2 Reductions from k-SUM

This section is divided into two parts. The first part exposes a folk

reduction from k-SUM to GPT showing GPT in Rd is as hard as (d + 1)-

SUM. The second part exposes other interesting connections between k-SUM

and GPT that can be drawn through Vandermonde determinants, yielding

equivalent hardness proofs for GPT [72].

Folklore

Given an instance of the three-set variant of 3SUM, we can reduce it to an

instance of GPT where the input sets are on three horizontal lines.

Observation 2.8. Given three sets A, B, and C of n real numbers, let

A′ = { a′ = (a, 0) : a ∈ A },

B′ = { b′ = (b, 2) : b ∈ B },

C ′ = { c′ = (−c/2, 1) : c ∈ C }.

Then for any a ∈ A, b ∈ B, and c ∈ C, we have that a+ b+ c = 0 if and only

if a′, b′, and c′ are collinear.

32 2.2. GPT & 3POL

Proof. The equation of a line defined by points a′ ∈ A′ and b′ ∈ B′ is

y =
2

b− a
x− 2

b− a
a

⇐⇒ x = a+
y(b− a)

2
,

which simplifies to x = a+b
2 when y = 1.

Therefore, solving GPT is at least as hard as solving 3SUM.

In the dual (see §7.1), this reduction is even easier to apprehend and

trivially generalizes to d-dimensional GPT.

Observation 2.9. Given k sets Si of n real numbers, in Rk−1 let S′i, 1 ≤ i ≤
k − 1, be the set of n hyperplanes xi = s for s ∈ Si and let S′k be the set of n

hyperplanes
∑k−1

i=1 xi + s = 0 for s ∈ Sk. Then for any si ∈ Si, 1 ≤ i ≤ k, we

have that
∑k

i=1 si = 0 if and only if the corresponding hyperplanes intersect.

Proof. Trivially.

This proves that GPT in Rd is as hard as (d+ 1)-SUM.

Points on the Weird Moment Curve

When d = 1, GPT is exactly the element uniqueness problem.

Problem 12 (GPT on the real line). Given n points q1, . . . , qn ∈ R, decide

whether there exist i < j ∈ [n] such that

det

(
1 qi

1 qj

)
= qj − qi = 0.

One seemingly stupid way to solve this problem is to consider the Van-

dermonde matrix

V (x) =


1 x1 x2

1 . . . xn−1
1

1 x2 x2
2 . . . xn−1

2
...

...
...

. . .
...

1 xn x2
n . . . xn−1

n

 ,

2. History 33

and to compute its determinant

|V (q)| = det


1 q1 q2

1 . . . qn−1
1

1 q2 q2
2 . . . qn−1

2
...

...
...

. . .
...

1 qn q2
n . . . qn−1

n

 =
∏

1≤i<j≤n
(qj − qi).

This can be done in O(n log n) ring multiplications by defining p(x) =∏n−1
i=0 (x− qi) and computing

det(V (q))2 = discx(p(x))

= (−1)(
n
2)resx(p(x),diffx(p(x)))

= (−1)(
n
2)
n−1∏
i=0

diffx(p(x))(qi),

using fast polynomial interpolation to first find the coefficients of p(x)

and then using fast polynomial evaluation to evaluate diffx(p(x)) at all

qi [6, 111, 112, 154].

Consider points on the moment curve md(t) = (t, t2, . . . , td). Given a

GPT instance consisting of points md(qi) on this curve the determinant in

Problem 10 becomes

det


1 q1

1 q2
1 · · · qd1

1 q1
2 q2

2 · · · qd2
...

...
...

. . .
...

1 q1
d+1 q2

d+1 · · · qdd+1

 = |V (q)|,

and solving the problem amounts to deciding Element Uniqueness.

Consider points on the weird moment curve ωd(t) = (t, t2, . . . , td−1, td+1).

If our input only consists of points ωd(qi) on this curve then the determinant

becomes

det


1 q1

0 q2
0 · · · qd−1

0 qd+1
0

1 q1
1 q2

1 · · · qd−1
1 qd+1

1
...

...
...

. . .
...

...

1 q1
d q2

d · · · qd−1
d qd+1

d

 = |V (q)| ·
d+1∑
i=1

qi,

34 2.2. GPT & 3POL

which is the predicate we want to test for (d + 1)-SUM [72] (modulo the

|V (q)| factor which is nonzero for distinct input numbers).

In the plane, this reduction from instances of 3SUM to points on the

cubic curve ω2(t) = (t, t3) is also part of folklore.

2.2.3 Lower Bounds and Order Types

Even though 3SUM and k-SUM reduce to GPT, it does not necessarily

mean that the lower bounds for those problems carry over. The lower bounds

in §2.1.3 are in the linear decision tree model and we cannot hope to solve

GPT in those models because they do not allow us to answer quadratic

polynomial queries on the input. That being said, solving an instance of GPT

as in Observation 2.8 with orientation predicates is the same as trying to

solve the original 3SUM instance with 3-linear queries. Hence, the quadratic

lower bound of Erickson [71] carries over and GPT requires Ω(n2) time in a

model where one is only allowed orientation queries. More generally, GPT

in Rd requires Ω(nd
d+1

2
e) time in a model where one is only allowed to query

the orientation of d-simplexes of the input points. A stronger lower bound

of Ω(nd) is derived by Erickson using the weird moment curve.

Lemma 2.10 (Erickson [72, Theorem 7.1]). Any decision tree that decides

whether a set of n points in Rd is affinely nondegenerate, using only sidedness

queries, must have depth Ω(nd).

However, neither those lower bounds, nor the weaker ones in the n-linear

decision tree model, carry over in the more generous algebraic decision tree

model and algebraic computation tree model. To get a superlinear lower

bound for GPT in those models we need work a little bit harder.

Given an instance of GPT, its order type is defined to be the map that

sends each triple of input points to its orientation.

Definition 3 (Order Type of a Point Set). Given a set of n labeled points P =

{ p1, p2, . . . , pn }, we define the order type of P to be the function χ : [n]3 →
{−, 0,+ } : (a, b, c) 7→ ∇(pa, pb, pc) that maps each triple of point labels to the

orientation of the corresponding points, up to isomorphism.

Definition 4 (Realizable Order Type). When considering an arbitrary func-

tion f : [n]3 → {−, 0,+ } we say that f is a realizable order type if there is a

n-set P ⊂ R2 such that its order type is f .

2. History 35

If we consider the problem of identifying the order type of a set of points,

we can achieve a lower bound that holds in any arbitrary decision tree model.

It suffices to bound the number of possible order types.

Theorem 2.11 (Goodman and Pollack [91], Alon [16]). There are 2Θ(n logn)

realizable order types.

With the following corollary

Corollary 2.12. A decision tree identifying the order type of a point sets

has depth Ω(n log n).

The question now is whether we can do the same as in the Element

Uniqueness versus Sorting case: show that the decision problem is as hard

as the identification problem. Ben-Or [25] shows exactly that.

Theorem 2.13 (Ben-Or [25]). Given a set W ⊂ Rd having N connected

components, the depth of any algebraic computation tree or bounded-degree

algebraic decision tree deciding whether an input point q ∈ Rd is in W is

Ω(logN − d).

Because this Theorem applies to both W and its complement, we can

replace N by max{#W,#(Rd −W) } in the statement, where #X denote

the number of connected components of the set X.

Corollary 2.14. Any algebraic computation tree or bounded-degree algebraic

decision tree that solves GPT has depth Ω(n log n).

Proof. Let W ⊂ R2n be the set defined by the union of the
(
n
3

)
algebraic

varieties of equation

(xj − xi)(yk − yi)− (yj − yi)(xk − xi) = 0.

Solving GPT on input q ∈ R2n amounts to deciding whether q ∈ W . The set

R2n −W has 2Ω(n logn) connected components by Theorem 2.11.

Note that both Theorem 2.11 and Theorem 2.13 rely on the Petro-

vskĭı-Olĕınik-Thom-Milnor (POTM) Theorem that bounds the number of

connected components of algebraic varieties [23, 120, 157].

36 2.2. GPT & 3POL

2.2.4 Algorithms

By brute-force, GPT can be solved in O(n3) time. Quadratic time can

be achieved by constructing the dual arrangement [97, Theorem 24.4.1]. For

integer input, the techniques in [19] can be adapted to yield slightly sub-

quadratic word-RAM algorithms for GPT1. For real input, no subquadratic

uniform or nonuniform algorithm is known.

2.2.5 More on Order Types

A great deal of the literature in computational geometry deals with

the notion of order type [7–14, 16, 17, 28, 30, 31, 69, 73, 76–78, 86, 89–

94, 98, 105, 109, 113, 117, 126, 143–145, 155]. The order type of a point set

has been further abstracted into combinatorial objects known as (rank-three)

oriented matroids [78]. The chirotope axioms define consistent systems of

signs of triples [28]. From the topological representation theorem [30], all

such abstract order types correspond to pseudoline arrangements, while,

from the standard projective duality, order types of point sets correspond

to straight line arrangements. See Chapter 6 of The Handbook for more

details [144].

When the order type of a pseudoline arrangement can be realized by an

arrangement of straight lines, we call the pseudoline arrangement stretchable.

As an example of a nonstretchable arrangement, Levi gives Pappus’s configu-

ration where eight triples of concurrent straight lines force a ninth, whereas

the ninth triple cannot be enforced by pseudolines [113] (see Figure 2.1).

Ringel shows how to convert the so-called “non-Pappus” arrangement of Fig-

ure 2.1 (b) to a simple arrangement while preserving nonstretchability [145].

All arrangements of eight or fewer pseudolines are stretchable [88], and the

only nonstretchable simple arrangement of nine pseudolines is the one given

by Ringel [143]. More information on pseudoline arrangements is available

in Chapter 5 of The Handbook [87].

Figure 2.1 shows that not all pseudoline arrangements are stretchable.

Indeed, most are not: there are 2Θ(n2) abstract order types [76] and only

2Θ(n logn) realizable order types (Theorem 2.11).

Theorem 2.15 (Felsner [76]). There are 2Θ(n2) abstract order types.

1See Timothy Chan’s talk on The Art of Shaving Logs.

2. History 37

a. Realizable order type. b. Abstract order type which is not re-

alizable.

Figure 2.1. Pappus’s configuration.

This discrepancy stems from the algebraic nature of realizable order

types, as illustrated by the main tool used in the upper bound proofs (the

POTM Theorem [23, 120, 157]).

2.2.6 Encodings

At SoCG’86, Bernard Chazelle asked [93]:

“How many bits does it take to know an order type?”

This question is of importance in Computational Geometry for the

following two reasons: First, in many algorithms dealing with sets of points

in the plane, the only relevant information carried by the input is the

combinatorial configuration of the points given by the orientation of each

triple of points in the set (clockwise, counterclockwise, or collinear) [63, 69,

109]. Second, computers as we know them can only handle numbers with

finite description and we cannot assume that they can handle arbitrary real

numbers without some sort of encoding. The study of robust algorithms

is focused on ensuring the correct solution of problems on finite precision

machines. Chapter 41 of The Handbook of Discrete and Computational

Geometry is dedicated to this issue [164].

Regarding encoding the function χ of Definition 3 (as in Definition 2),

Theorem 2.15 together with information theory imply that Θ(n2) bits are

necessary and sufficient for abstract order types whereas Θ(n log n) bits

are necessary and sufficient for realizable order types. Optimal encodings

matching those bounds can be produced by a simple enumeration algo-

rithm. However, it is unclear how the original information can be efficiently

reconstructed from those encodings. On the other hand, storing all
(
n
3

)

38 2.2. GPT & 3POL

Figure 2.2. Perles’s configuration.

orientations in a lookup table to render this information accessible seems

wasteful.

Another obvious idea for encoding the order type of a point set is to store

the coordinates of the points, and answer orientation queries by computing

the corresponding determinant. While this should work in many practical

settings, it cannot work for all point sets. Perles’s configuration shows that

some configuration of points, containing collinear triples, forces at least one

coordinate to be irrational [96] (see Figure 2.2). It is easy to see that order

types of points in general position can always be represented by rational (or

integer) coordinates. However, it is well known that some configurations

require doubly exponential coordinates, hence coordinates with exponential

bitsizes if represented in the binary numeral system [94].

Goodman and Pollack defined λ-matrices which can encode abstract

order types using O(n2 log n) bits [89] and can be constructed in O(n2)

time [65]. They asked if the space requirements could be moved closer to the

information-theoretic lower bounds. Everett, Hurtado, and Noy complained

that this encoding does not allow a fast decoding for individual triples [73].

Knuth and Streinu independently gave new encodings of size O(n2 log n)

that allow orientation queries in constant time [109, 155].2 Felsner and Valtr

showed how to encode abstract order types optimally in O(n2) bits via the

wiring diagram of their corresponding allowable sequence [76, 77] (as defined

in [86]). Aloupis, Iacono, Langerman, Özkan, and Wuhrer gave an encoding

of size O(n2) that can be computed in O(n2) time and that can be used to

2We attract the attention of the reader on the fact that we express size in bits. Other

authors, [73] and [155] in particular, express size in number of words, which is off by at

least a logarithmic factor.

2. History 39

test for the isomorphism of two distinct point sets in the same amount of

time [17].

2.2.7 The Intermediate Problem

On par with GPT we consider an algebraic generalization of the 3SUM

problem: we replace the sum function by a constant-degree polynomial in

three variables F ∈ R[x, y, z] and ask to determine whether there exists a

degenerate triple (a, b, c) of input numbers such that F (a, b, c) = 0. We call

this problem the 3POL problem.

Problem 13 (3POL). Let F ∈ R[x, y, z] be a trivariate polynomial of constant

degree, given three sets A, B, and C, each containing n real numbers, decide

whether there exist a ∈ A, b ∈ B, and c ∈ C such that F (a, b, c) = 0.

In addition to generalizing 3SUM, this problem can model particular

instances of GPT: consider points in the plane that are constrained to lie on

three parameterized polynomial curves of constant degree, then an algorithm

for 3POL can determine whether any three of those points are collinear.

Note that this generalizes the reductions from 3SUM found in §2.2.2, where

the input points either lie on three horizontal lines or on a single cubic curve.

In fact, this problem is not new: it has already been studied before from a

combinatorics point of view as exposed in the next section.

2.2.8 Combinatorics

In a series of results spanning fifteen years, Elekes and Rónyai [67], Elekes

and Szabó [68], Raz, Sharir and Solymosi [141], and Raz, Sharir and de

Zeeuw [138] give upper bounds on the number of degenerate triples for

the 3POL problem. For the particular case F (x, y, z) = f(x, y) − z where

f ∈ R[x, y] is a constant-degree bivariate polynomial, Elekes and Rónyai [67]

show that the number of degenerate triples is o(n2) unless f is special. Special

for f means that f has one of the two special forms

f(u, v) = h(ϕ(u) + ψ(v)) or f(u, v) = h(ϕ(u) · ψ(v)),

where h, ϕ, ψ are univariate polynomials of constant degree. It must be noted

that the 3SUM problem falls in the special category since, in that case, f is

the sum function. Elekes and Szabó [68] later generalized this result to a

40 2.2. GPT & 3POL

broader range of functions F using a wider definition of specialness. Raz,

Sharir and Solymosi [141] and Raz, Sharir and de Zeeuw [138] improved

both bounds to O(n11/6). They translated the problem into an incidence

problem between points and constant-degree algebraic curves. Then, they

showed that unless f (or F) is special, these curves have low multiplicities.

Finally, they applied a theorem due to Pach and Sharir [127] bounding the

number of incidences between the points and the curves.

Theorem 2.16 (Raz, Sharir and de Zeeuw [138]). Let A, B, C be n-sets of

real numbers and F ∈ R[x, y, z] be a polynomial of constant degree, then

|Z(F) ∩ (A×B × C)| = O(n11/6),

unless F has some group related form.3

Raz, Sharir and de Zeeuw [138] also look at the number of degenerate

triples for the General Position Testing problem when the input is restricted

to points lying on a constant number of constant-degree algebraic curves.

Theorem 2.17 (Raz, Sharir and de Zeeuw [138]). Let C1, C2, C3 be three

(not necessarily distinct) irreducible algebraic curves of degree at most d in

C2, and let S1 ⊂ C1, S2 ⊂ C2, S3 ⊂ C3 be finite subsets. Then the number of

proper collinear triples in S1 × S2 × S3 is

Od(|S1|1/2|S2|2/3|S3|2/3 + |S1|1/2(|S1|1/2 + |S2|+ |S3|)),

unless C1 ∪ C2 ∪ C3 is a line or a cubic curve.

Nassajian Mojarrad, Pham, Valculescu and de Zeeuw [125] and Raz,

Sharir and de Zeeuw [139] proved bounds for versions of the problem where

F is a 4-variate polynomial.

3Because our results do not depend on the meaning of group related form, we do not

bother defining it here. We refer the reader to Raz, Sharir and de Zeeuw [138] for the

exact definition.

3
Contributions

In this chapter we expose our contributions. All sections have ta-

bles that list past results and our contributions together with a

reference. When the result is a contribution from this thesis, this

reference has the format Section(Contribution). The section ref-

erence points to the details and proofs to attain the result and

the contribution reference points to the theorem statement.

3.1 Meiser Applied to k-SUM

In Paper A we focus on the computational complexity of k-SUM. We

recall its definition.

Problem 4 (k-SUM). Given n numbers q1 < q2 < . . . < qn ∈ R, decide

whether there exist i1 < i2 < · · · < ik ∈ [n] such that
∑k

j=1 qij = 0.

In §A.1.1, we show the existence of an n-linear decision tree of depth

Õ(n3) for k-SUM using a careful implementation of Meiser’s algorithm [118].

Although the high-level algorithm itself is not new, we refine the implemen-

tation and analysis for the k-SUM problem.1 Meiser presented his algorithm

as a general method of d-dimensional point location in the arrangement of

m hyperplanes that yielded a Õ(d4 logm)-depth algebraic computation tree;

when viewing the k-SUM problem as a point location problem, with d = n

and m = O(nk), Meiser’s algorithm can be applied to this problem, yielding

a Õ(n4)-depth algebraic computation tree (or a Õ(n3)-depth linear decision

1After submitting our results, we learned from a personal communication with Hervé

Fournier that a similar analysis for arbitrary hyperplanes appears in his PhD thesis [79]

(in French).

42 3.1. Meiser Applied to k-SUM

tree). In §A.2.2, we give a better analysis of this algorithm that improves

the depth of the algebraic computation tree to Õ(n3) for the k-SUM problem

There are two subtleties to this result. The first is inherent to the

chosen complexity model: even if the number of queries to the input is

small (in particular, the degree of the polynomial complexity is invariant on

k), the time required to determine which queries should be performed may

be arbitrary. In a näıve analysis, we show it can be trivially bounded by

Õ(nk+2). In §A.1.2 we improve on this and present an algorithm to choose

which decisions to perform whereby the running time can be reduced to

Õ(n
k
2

+8). Hence, we obtain an Õ(n
k
2

+8) time randomized algorithm in the

RAM model expected to perform Õ(n3) linear queries on the input.

Contribution 1. There exist linear decision trees of depth O(n3 log2 n) solv-

ing the k-SUM and the k-LDT problems. Furthermore, for the k-SUM problem

there exists an Õ(nd
k
2
e+8) Las Vegas algorithm in the word-RAM model ex-

pected to perform O(n3 log2 n) linear queries on the input. This algorithm also

solves the k-LDT problem within the same time bounds provided the coeffi-

cients of the underlying linear equation are constant rational numbers.

For those analyses, we consider algorithms in the standard word-RAM

model with Θ(log n)-size words, but in which the input q ∈ Rn is accessible

only via a linear query oracle. Hence we are not allowed to manipulate the

input numbers directly. The complexity is measured in two ways: by counting

the total number of queries, just as in the linear decision tree model, and by

measuring the overall running time, taking into account the time required

to determine the sequence of linear queries. This two-track computation

model, in which the running time is distinguished from the query complexity,

is commonly used in results on comparison-based sorting problems where

analyses of both runtime and comparisons are of interest [39, 40, 153].

The second issue we address is that the linear queries in the above

algorithm may have size n, that is, they may use all the components of the

input. The lower bound of Erickson [71] shows that if the queries are of

minimal size, the number of queries cannot be a polynomial independent of

k such as what we obtain, so non-minimal query size is clearly essential to

a drastic reduction in the number of queries needed. This gives rise to the

natural question as to what is the relation between query size and number

of queries. In particular, one natural question is whether queries of size

3. Contributions 43

Table 3.1. Complexities of past and new algorithms for the k-SUM problem.

For our new algorithms, the number of blocks is a parameter that allows us to

change the query size (see §A.1.3). The origin of the constant in the exponent

of the time complexity is due to Lemma A.7. We conjecture it can be reduced,

though substantial changes in the analysis will likely be needed to do so.

Reference Blocks Query Size Queries Time

Folklore – k Õ(nd
k
2
e) Õ(nd

k
2
e)

Meiser [118] – n Õ(n3) §A.1.1 Õ(nk+2) §A.1.1

[85, 95] – 2k − 2 Õ(n
k
2) Õ(n

k
2)

· (1) 1 n Õ(n3) §A.1.1 Õ(nd
k
2

+8e) §A.1.2

§A.1.3 (2) b kdnb e Õ(bk−4n3) Õ(bb
k
2
−9cnd

k
2

+8e)

§A.1.3 (A.9) b = nΘ(1) o(n) Õ(n3) Õ(nd
k
2

+8e)

§A.1.3 (A.10) b = Θ(nα) O(n1−α) Õ(n3+(k−4)α) Õ(n(1+α) k
2

+8.5)

less than n would still allow the problem to be solved using a number of

queries that is a polynomial independent of k. We show that this is possible;

in §A.1.3, using a blocking scheme, we introduce a family of algorithms

exhibiting an explicit tradeoff between the number of queries and their size.

Contribution 2. For any integer b > 0, there exists a kdnb e-linear decision tree

of depth Õ(bk−4n3) solving the k-SUM problem. Moreover, this decision tree

can be implemented as an Õ(bb
k
2
c−9nd

k
2
e+8) Las Vegas word-RAM algorithm.

We expose two corollaries of this contribution: We show that we can

restrict our algorithms to use o(n)-linear queries while keeping the same

complexity bounds, up to polylogarithmic factors. We also give a range of

tradeoffs for O(n1−α)-linear decision trees. Although the proposed algorithms

still involve nonconstant-size queries, this is the first time such tradeoffs are

explicitly tackled. Table 3.1 summarizes our results.

3.2 Grønlund and Pettie Applied to 3POL

In Paper B we focus on the computational complexity of 3POL. Since

3POL contains 3SUM, an interesting question is whether a generalization

of Grønlund and Pettie’s 3SUM algorithm exists for 3POL. If this is true,

then we might wonder whether we can “beat” the O(n11/6) = O(n1.833...)

44 3.2. Grønlund and Pettie Applied to 3POL

combinatorial bound of Raz, Sharir and de Zeeuw [138] with nonuniform algo-

rithms (see §2.2.8). We give a positive answer to both questions: we design

a uniform O(n2(log log n)3/2/(log n)1/2)-time algorithm and a nonuniform

O(n12/7+ε) = O(n1.7143)-time algorithm for 3POL. To prove our uniform

result, we present a fast algorithm for the Polynomial Dominance Reporting

(PDR) problem, a far reaching generalization of the Offline Dominance Re-

porting problem. As the algorithm for Offline Dominance Reporting and its

analysis by Chan [44] is used in fast algorithms for all-pairs shortest paths,

(min,+)-convolutions, and 3SUM, we expect this new algorithm will have

more applications.

To make the exposition of our results simpler, we study two different

variants of the 3POL problem. The first variant is the 3POL problem as

defined in the previous chapter (§2.2.7). We recall its definition here.

Problem 13 (3POL). Let F ∈ R[x, y, z] be a trivariate polynomial of constant

degree, given three sets A, B, and C, each containing n real numbers, decide

whether there exist a ∈ A, b ∈ B, and c ∈ C such that F (a, b, c) = 0.

The second variant is a special case of the 3POL problem where we

restrict the trivariate polynomial F to have the form F (a, b, c) = f(a, b)− c.
We call it the explicit 3POL problem because the dependency on the third

variable is explicitly given:

Problem 14 (explicit 3POL). Let f ∈ R[x, y] be a bivariate polynomial of

constant degree, given three sets A, B, and C, each containing n real numbers,

decide whether there exist a ∈ A, b ∈ B, and c ∈ C such that c = f(a, b).

Similarly to Grønlund and Pettie [95], we consider both nonuniform

and uniform models of computation. For the nonuniform model, Grønlund

and Pettie consider linear decision trees. Because linear decision trees

are not powerful enough to even solve the problems we are looking at,

in this contribution, we consider bounded-degree algebraic decision trees

(ADT), an algebraic generalization of linear decision trees (see §1.1.2). For

the uniform model we consider the real-RAM model with only the four

arithmetic operators (see §1.1.1), the same model as in [95].

In §B.1.1 and §B.1.2, we first design uniform and nonuniform algorithms

for explicit 3POL.

3. Contributions 45

Table 3.2. Algorithmic results for 3POL and its explicit variant.

Reference Model Complexity

§B.1.1 (3), §B.1.3 (5) ADT O(n12/7+ε)

§B.1.2(4), §B.1.4(6) real-RAM O(n2(log log n)3/2/(log n)1/2)

Contribution 3. Explicit 3POL can be solved in O(n12/7+ε) time in the

bounded-degree algebraic decision tree model.

Contribution 4. Explicit 3POL can be solved in O(
n2(log logn)3/2

(logn)1/2) time in

the real-RAM model.

In §B.1.3 and §B.1.4, we show that those algorithms can be adapted to

solve the more general 3POL problem.

Contribution 5. 3POL can be solved in O(n12/7+ε) time in the bounded-

degree algebraic decision tree model.

Contribution 6. 3POL can be solved in O
(
n2(log logn)3/2

(logn)1/2

)
time in the real-

RAM model.

Table 3.2 gives a summary of our results.

Applications Our results can be applied to many algebraic degeneracy

testing problems, such as GPT, a well known 3SUM-hard problem for

which no subquadratic algorithm is known (see §2.2). Raz, Sharir and

de Zeeuw results on the 3POL problem [138] can be applied to obtain a

combinatorial bound of O(n11/6) on the number of collinear triples when

the input points are known to be lying on a constant number of polynomial

curves, provided those curves are neither lines nor cubic curves. A corollary

of our first result is that GPT where the input points are constrained to lie

on o((log n)1/6/(log log n)1/2) constant-degree polynomial curves (including

lines and cubic curves) admits a subquadratic real-RAM algorithm and a

strongly subquadratic bounded-degree algebraic decision tree. Interestingly,

both reductions from 3SUM to GPT on 3 lines (map a to (a, 0), b to (b, 2),

and c to (− c
2 , 1)) and from 3SUM to GPT on a cubic curve (map a to

(a3, a), b to (b3, b), and c to (c3, c)) construct such special instances of GPT

(see §2.2.2 for details on those reductions). This constitutes the first step

46 3.3. Slightly Subquadratic Encodings for GPT

towards closing the major open question of whether GPT can be solved in

subquadratic time. To further convince the reader of the expressive power

of the 3POL problem, we also give reductions from the problem of counting

triples of points spanning unit circles (§B.3.2), from the problem of counting

triples of points spanning unit area triangles (§B.3.3), and from the problem

of counting collinear triples in any dimension (§B.3.1).

A Remark The algorithms we present manipulate polynomial expressions.

In computational geometry, it is customary to assume the real-RAM model

can be extended to allow the computation of roots of constant degree

polynomials. We distance ourselves from this practice and take particular

care of using the real-RAM model and the bounded-degree algebraic decision

tree model with only the four arithmetic operators (see Chapter 9 on the

Existential Theory of the Reals).

3.3 Slightly Subquadratic Encodings for GPT

In Paper C, we are interested in compact encodings for order types: we

wish to design data structures using as few bits as possible that can be used

to quickly answer orientation queries of a given abstract or realizable order

type. There exist various ways to encode abstract order types optimally

(see §2.2.6). However, it is not known how to decode the orientation of

one triple from any of those optimal encodings in, say, sublinear time.

Moreover, since the information-theoretic lower bound for realizable order

types is only Ω(n log n), we must ask if this space bound is approachable

for those order types while keeping orientation queries reasonably efficient.

Our contributions rely heavily on the hierarchical cuttings of Chazelle [48]

described in detail in §8.2.

For ease of presentation, we state our results in terms of the encoding

definition of §1.2.1 that we restate here.

Definition 2. For fixed k and given a function f : [n]k → [O(1)], we define

a (S(n),Q(n))-encoding of f to be a string of S(n) bits such that, given this

string and any i ∈ [n]k, we can compute f(i) in Q(n) time in the word-RAM

model with word size w ≥ log n.

In §C.1, we give the first optimal encoding for abstract order types that

allows efficient query of the orientation of any triple: the encoding is a data

3. Contributions 47

structure that uses O(n2) bits of space with queries taking O(log n) time in

the word-RAM model with word size w ≥ log n.

Contribution 7. All abstract order types have an encoding using O(n2) bits

of space and allowing for queries in O(log n) time.

Our encoding is far from being space-optimal for realizable order types.

We show that its construction can be easily tuned to only require slightly

subquadratic space in this case.

Contribution 8. All realizable order types have a O(
n2(log logn)2

logn)-bits encod-

ing allowing for queries in O(log n) time.

In §C.2, we further refine our encoding to reduce the query time to

O(log n/ log log n).

Contribution 9. All abstract order types have an encoding using O(n2) bits

of space and allowing for queries in O(logn
log logn) time.

Contribution 10. All realizable order types have a O(n
2 logε n
logn)-bits encoding

allowing for queries in O(logn
log logn) time.

In the realizable case, we give quadratic upper bounds on the preprocess-

ing time required to compute an encoding in the real-RAM model.

Contribution 11. In the real-RAM model and the constant-degree algebraic

decision tree model, given n real-coordinate input points in R2 we can compute

the encoding of their order type as in Contributions 7, 8, 9, and 10 in O(n2)

time.

In §C.3 we generalize our encodings to chirotopes of point sets in higher

dimension.

Contribution 12. All realizable chirotopes of rank k ≥ 4 have an encoding

using O(
nk−1(log logn)2

logn) bits of space and allowing for queries in O(logn
log logn)

time.

Contribution 13. In the real-RAM model and the constant-degree algebraic

decision tree model, given n real-coordinate input points in Rd we can compute

the encoding of their chirotope as in Theorem 12 in O(nd) time.

Table 3.3 gives a summary of our results.

48 3.4. Better Encodings for 3SUM

Table 3.3. Past results and new contributions on order type encoding.

Reference Query Time Space (bits) Preprocessing

Trivial O(1) O(n3) O(n3)

Enumeration 2Ω(n logn) O(n log n) 2Ω(n logn)

λ-matrices [89] ? O(n2 log n) O(n2)

Numerical [94] O(n) 2Θ(n) ?

Permutations [109, 155] O(1) O(n2 log n) O(n2)

Wiring diagrams [76, 77] O(n2) O(n2) O(n2)

Canonical Labeling [17] ? O(n2) O(n2)

Abstract §C.1,§C.2 (9) O(logn
log logn) O(n2) O(n2)

Realizable §C.1,§C.2 (8) O(log n) O(n
2 log2 logn

logn) O(n2)

Realizable §C.1,§C.2 (10) O(logn
log logn) O(n2

log1−ε n
) O(n2)

Realizable in Rd §C.3 (12) O(logn
log logn) O(n

d log2 logn
logn) O(nd)

A Remark Our data structure is the first subquadratic encoding for

realizable order types that allows efficient query of the orientation of any

triple. It is not known whether a subquadratic algebraic computation

tree exists for identifying the order type of a given point set. Any such

computation tree would yield another subquadratic encoding for realizable

order types, although the obtained encoding might not be query-efficient. We

see the design of compact encodings for realizable order types as a subgoal

towards subquadratic nonuniform algorithms for this related problem, a

major open problem in Computational Geometry. Note that pushing the

preprocessing time below quadratic would yield such an algorithm.

3.4 Better Encodings for 3SUM

In Paper D, we consider the following problem: given three sets of real

numbers, output a word-RAM data structure from which we can efficiently

recover the sign of the sum of any triple of numbers, one in each set.

This problem is similar to the problem of encoding the order type of a

finite set of points studied in Paper C. While this contribution showed that

it was possible to achieve slightly subquadratic space and logarithmic query

time, we show here that we can encode the 3SUM type of n numbers using

3. Contributions 49

Õ(n3/2) bits to allow for constant time queries in the word-RAM. We also

study lower and upper bounds of other natural 3SUM type encodings.

As there are only O(n3) queries, a table of size n3 log2 3 + O(1) bits

suffices to give constant query time [62]. This can be improved to O(n2 log n)

bits of space by storing for each pair (i, j) the values k<(i, j) = max{0} ∪
{k : ai + bj + ck < 0} and k>(i, j) = min{n+ 1}∪ {k : ai + bj + ck > 0}. For a

query (i, j, k), we compare k against the values k<(i, j) and k>(i, j) to recover

χ(i, j, k) in O(1) time. All k<(i, j) and k>(i, j) can be computed in O(n2)

time via the classic quadratic time algorithm for 3SUM.

One seemingly simple representation is to store the numbers in A, B and

C; however these are reals and thus we need to make them representable

using a finite number of bits. In §D.1 we show that a minimal integer

representation of a 3SUM instance may require Θ(n) bits per value, which

would give rise to a O(n) query time and O(n2) space, which is far from

impressive.

Contribution 14. Every 3SUM instance has an equivalent integer instance

where all values have absolute value at most 2O(n). Furthermore, there exists

an instance of 3SUM where all equivalent integer instances require numbers

at least as large as the nth Fibonacci number and where the standard binary

representation of the instance requires Ω(n2) bits.

In Paper C we studied the problem of given a set of n lines, to create

an encoding of them so that the orientation of any triple (the order type)

can be determined; our problem is a special case of this where the lines only

have three slopes. Can we do better for the case of 3SUM? We answer this

in the affirmative.

Again, for ease of presentation, we state our results in terms of the

encoding definition of §1.2.1 that we restate here.

Definition 2. For fixed k and given a function f : [n]k → [O(1)], we define

a (S(n),Q(n))-encoding of f to be a string of S(n) bits such that, given this

string and any i ∈ [n]k, we can compute f(i) in Q(n) time in the word-RAM

model with word size w ≥ log n.

In §D.2 we show how to use an optimal O(n log n) bits of space with a

polynomial query time.

50 3.4. Better Encodings for 3SUM

Table 3.4. Past results and new contributions on 3SUM type encoding.

Reference Query time Space (bits) Preprocessing

Trivial O(1) O(n3) O(n3)

Almost trivial O(1) O(n2 log n) O(n2)

Order type (Paper C) O(log n) O(n
2 log2 logn

logn) O(n2)

Order type (Paper C) O(logn
log logn) O(n2

log1−ε n
) O(n2)

Numerical §D.1(14) O(n) O(n2) nO(1)

Space-optimal §D.2(15) nO(1) O(n log n) nO(1)

Query-optimal §D.3(16) O(1) Õ(n3/2) O(n2)

Contribution 15. All 3SUM types have a O(n log n)-bits nO(1)-querytime

encoding.

Finally, in §D.3 we show how to use Õ(n3/2) space to achieve O(1)-time

queries.

Contribution 16. All 3SUM types have a Õ(n3/2)-bits O(1)-querytime en-

coding.

Table 3.4 gives a summary of past and new results.

4
Developments

Since the publication of our results, new developments have surfaced.

4.1 Better Nonuniform Algorithms for k-SUM

Meiser’s algorithm solves a broader class of problems than the k-SUM

problems. In its general formulation, this algorithm solves the point location

problem (Problem 8): to locate an input point in a fixed arrangement of m

hyperplanes in Rd.

Our analysis of Meiser’s algorithm yields a nonuniform upper bound

of O(d3 log d logm) for this problem. However, this is far from optimal.

The information theoretic lower bound obtained through Buck’s theorem

(Theorem 6.1) is only Ω(d logm).

Two new developments have surfaced. The first reduces the nonuni-

form complexity of Meiser’s algorithm for the point location problem from

O(d3 log d logm) down to O(d2 logm). The second invents a completely novel

technique to reduce the nonuniform complexity of the same problem down to

O(d log d logm), provided the coefficients of the hyperplanes are constants.

We briefly sketch those two developments in the next subsections.

4.1.1 Using Vertical Decomposition

In 2016, Ezra and Sharir [75] improve the decision tree depth of Meiser’s

algorithm by using vertical decomposition (see §6.4.2) as the cell refinement

subroutine.

A big player in the complexity of our algorithm is the size of the sample

needed for the ε-net. It turns out that with vertical decomposition the sample

size can be significantly reduced: O(d) instead of O(d2 log d) for simplices. A

52 4.2. Better Nonuniform Algorithms for k-SUM

sample size of O(d log d) can easily be attained using existing results on the

VC-dimension of certain range spaces. One of the key results in [75] is to

get the sample size down to O(d).

For instance, when applying this improved algorithm to the k-SUM

problem or the subset-sum problem, the change in the sample size causes

Meiser’s decision tree to be much shallower than our implementation: the

depth of the tree is reduced by a n log n factor in both cases leading to overall

complexities of O(n2 log n) and O(n3) respectively.

4.1.2 Using Inference Dimension

In 2017, Kane, Lovett, and Moran [108] proved that the point location

problem can be solved in O(d log d logm) linear queries.

Their decision tree is also a prune and search algorithm following the

generic approach of Meiser: sample, locate, prune, recurse. The key ingre-

dient is a new tool dubbed inference dimension that takes the role of the

VC-dimension in Meiser’s algorithm.

The major catch with this new decision tree is that it will only work

for sparse hyperplanes: hyperplanes with a small hamming weight. This is

precisely the case for the application of point location to the k-SUM and

subset-sum problems. For those applications, the decision trees in [108] are

shallower than the decision trees in [75] by a factor of n/ log n: O(n log2 n)

for k-SUM and O(n2 log n) for subset-sum.

Another feature of this algorithm is that it only uses comparison queries.

When applied to k-SUM, our algorithm and the one in [75] are n-linear

decision trees, while the one in [108] is a 2k-linear decision tree.

In 2018, the authors of [108] published another paper generalizing their

decision tree to work for arbitrary hyperplanes [107]. However, the depth they

obtain is much worse in that case: O(d4 log d logm) for arbitrary hyperplanes.

Moreover, it requires the use of generalized comparison queries which are

more complex than the comparison queries in [108].

In 2019, Hopkins, Kane, and Lovett [104] provide another decision tree

for point location of depth O(d log2m) when the set of hyperplanes is drawn

from a distribution with weak restrictions. This new algorithm only uses

comparison queries.

4. Developments 53

4.2 Timothy Chan Strikes Again

In 2017, Timothy Chan presented a O((n2/ log2 n)(log log n)O(1))-time

real-RAM algorithm for 3SUM [46], shaving a logarithmic factor from previ-

ous solutions [83, 85].

His technique relies on cuttings in near-logarithmic dimension on an

augmented real-RAM model with constant time nonstandard operations on

Θ(log n) bits words. Cuttings essentially replace offline dominance reporting

in Grønlund and Pettie’s algorithm [95]. This is inspired by another one of

his papers on APSP [45].

This new technique for shaving off logarithmic factors can be applied to

other problems, such as (median,+)-convolution, (median,+)-matrix multi-

plication, and 3SUM-hard problems in computational geometry including

explicit 3POL.

54 4.2. Timothy Chan Strikes Again

5
Open Questions

These are a few interesting questions that are left unanswered.

5.1 About Algorithms

The best known linear decision tree for k-SUM has depth Ok(n log2 n)

while the lower bound is Ωk(n log n) [108] (see §4.1.2). Can we match the

information theoretic lower bound for k-SUM with linear decision trees?

Open Question 1. Is there a Ok(n log n)-depth LDT for k-SUM?

The same question can be asked about the point location problem. The

best linear decision tree for arbitrary hyperplanes has depth O(d2 logm) and

the lower bound is Ω(d logm) [75] (see §4.1.1).

Open Question 2. Is there a O(d logm)-depth LDT for point location?

In Paper A we show how to efficiently implement Meiser’s algorithm in

the word-RAM model when applied to k-SUM. Can the same be done for

the algorithms of Ezra and Sharir [75] and Kane, Lovett, and Moran [108]?

Open Question 3. Is there a word-RAM algorithm for k-SUM running in

time n
k
2

+O(1) accessing the input through n3−Ω(1) n-linear queries only?

We also have not managed to match the running time of the best known

uniform algorithm (see §2.1.5).

Open Question 4. Is there a word-RAM algorithm for k-SUM running in

time Õ(nd
k
2
e) accessing the input through no(k) n-linear queries only?

56 5.1. About Algorithms

Grønlund and Pettie [95] showed how to solve 3SUM in subquadratic time

in the real-RAM model. However, so far, their technique and its subsequent

improvements [46, 83, 85], have failed to generalize to uniform algorithms

for k-SUM.

Open Question 5. Is there a o(nd
k
2
e)-time real-RAM algorithm for k-SUM

with k ≥ 4?

The best known algorithms for 3SUM are only slightly subquadratic,

shaving a polylogarithmic factor from quadratic runtime. In Paper B, we

show how to adapt one of those algorithms to solve the 3POL problem within

the same time bound. The best lower bound we have for those problems is

Ω(n log n). The current conjecture is that no significant improvement can be

made with respect to known algorithms (see §2.1). We have to ask if this is

indeed true.

Open Question 6. Is there a n2−Ω(1)-time real-RAM algorithm for 3SUM?

The question can also be asked more generally for 3POL.

Open Question 7. Is there a n2−Ω(1)-time real-RAM algorithm for 3POL?

The best known nonuniform algorithm for 3SUM is a 6-linear decision tree

of depth O(n log2 n) (see §4.1.2), the nonuniform algorithms in [83, 85, 95]

are 4-linear decision trees of depth Õ(n3/2), and we know that there is no

3-linear decision tree of depth o(n2) for 3SUM [71] (see §2.1). We want to

know whether better 4-linear decision trees exists for 3SUM.

Open Question 8. Is there a o(n
3
2)-depth 4-linear decision tree for 3SUM?

If this is the case, then we would also like to know if this model of

computation suffers from more severe limitations than the 6-linear decision

tree model.

Open Question 9. Is there a n logO(1) n-depth 4-linear decision tree for

3SUM?

The inference dimension method introduced in [108] is essentially a

pigeon hole argument applied to linear combinations of linear equations with

small coefficients. At first sight, this kind of argument does not seem to

5. Open Questions 57

apply to polynomial equations, even when the polynomials are of degree two.

One can of course apply a Veronese embedding [100, 101] to linearize the

equations but this has the effect of blowing up the dimension which directly

impacts the efficiency of the method. Could some generalization of inference

dimension, or any other method, improve on the O(n12/7+ε) nonuniform

time bound we obtain in Paper B?

Open Question 10. Is there a o(n12/7)-depth bounded-degree algebraic

decision tree or algebraic computation tree for 3POL?

In §B.3.1 we show how 3POL algorithms can be used to solve particular

instances of GPT in subquadratic time. Despite all our efforts, we still lack

a subquadratic algorithm for GPT in the general case, even a nonuniform

one. Like 3SUM and 3POL, the best known lower bound is Ω(n log n) (see

§2.2.3).

Open Question 11. Is there a o(n2)-depth bounded-degree algebraic decision

tree or algebraic computation tree for GPT?

5.2 About Encodings

In Paper C we show how to get compact encodings for abstract order

types with slightly sublogarithmic query time. Is it possible to bring this

query time down to constant, or event just strongly sublogarithmic?

Open Question 12. Is there a O(n2)-bits O(log1−ε n)-querytime encoding

for abstract order types?

In the same paper, we manage to get slightly subquadratic space encod-

ings for realizable order types. Is it possible to get this down to strongly

subquadratic while keeping the query time reasonable, say polynomial?

Open Question 13. Is there a n2−Ω(1)-bits nO(1)-querytime encoding for

realizable order types?

In Paper D we modify Grønlund and Pettie’s nonunifom algorithm to

obtain a 3SUM type encoding with a strongly subquadratic space requirement

and efficient queries. Is there any way to exploit the nearlinear decision tree

in [108] to obtain a better space bound while keeping query time efficient?

Open Question 14. Is there a o(n3/2)-bits logO(1) n-querytime encoding

for 3SUM types?

II
The Computational
Geometer’s Toolbox

6
Arrangements

An hyperplane in Rd is the set of points q ∈ Rd satisfying a linear

equation of the form
∑d

i=1 piqi = 0 for some tuple of coefficients p ∈ Rd. An

affine hyperplane has an additional independent term p0 to get the equation∑d
i=1 piqi = p0. In general we will drop the adjective “affine” and talk about

hyperplanes without specifying whether p0 = 0. In the plane an hyperplane

is a line. In R3 an hyperplane is a plane. On the real line an hyperplane is a

point.

An hyperplane H partitions the space Rd into two halfspaces, often

denoted by H− and H+. Naturally, H− is defined to be the set of points

such that
∑d

i=1 piqi < p0 and H+ is defined to be the set of points such

that
∑d

i=1 piqi > p0. When we want to be more precise as to whether the

inequality is strict we can write H<, H≤, H>, or H≥. We also define H0

and H= as synonyms of H.

A set of hyperplanes H = {H1, H2, . . . ,Hm } partitions Rd into convex

regions called cells. This partition is denoted by A(H) and is called the

arrangement of H. Each sign vector σ ∈ {−, 0,+ }m corresponds to a

(potentially empty) cell of this arrangement defined as the set of points q

such that q ∈ Hσi
i for all Hi ∈ H.

6.1 Counting Cells

It is useful to understand the complexity of such an arrangement when

the number m of hyperplanes grows and the dimension d is fixed. The goal

is to bound the number of nonempty cells an arrangement can have. When

m ≤ d each of the 3m cells is nonempty, assuming general position. However,

when we fix d and make m grow, we get a more reasonable behavior.

62 6.3. Pseudolines

Theorem 6.1 (Buck [35], see also [97, Theorem 24.1.1 and Corollary 24.1.2]).

Consider the partition of space defined by an arrangement of m hyperplanes

in Rd. The number of regions of dimension k ≤ d is at most(
m

d− k

) k∑
i=0

(
m− d+ k

i

)
.

This bound is attained when the hyperplanes are in general position. The

number of regions of all dimensions is Θ(md) in that case.

This bound allows us to derive precise lower and upper bounds for

algorithms manipulating those arrangements. See [97] for more details and

generalizations.

6.2 Pseudolines

In the plane, line arrangements are generalized to pseudoline arrange-

ments by dropping the “straight” nature of lines. A pseudoline in R2 is a

simple curve connecting points at infinity. An arrangement of pseudolines is a

collection of pseudolines that pairwise intersect exactly once. This definition

can be made more formal by considering pairwise-intersecting simple closed

curves in the projective plane instead. Some important differences between

line and pseudoline arrangements have already been discussed in §2.2.5.

Putting those differences aside, pseudoline arrangements share sufficient

similarity with line arrangements as to allow a generic algorithmic treatment

of both kinds. For instance, their arrangement complexities (§6.1) are

asymptotically the same, the Zone Theorem (§6.3) holds in general, canonical

labelings (§7.2) can be constructed by looking at the order type only (see

§2.2.3 for a definition of order type), and generic cell decompositions (§6.4)

allow the use of the divide-and-conquer methods of Chapter 8 in both cases.

In Paper C we consider the problem of encoding order types of line

or pseudoline arrangements. Strictly speaking, an order type consists of

pure combinatorial information and does not require an embedding to be

known. In particular, given an order type, it is ∃R-complete to decide

whether a straigth embedding exists [123, 124]. For simplicity, the algorithms

constructing the encodings in Paper C assume an embedding is given.

For more on pseudoline arrangements see Chapter 5 of the Handbook

on the subject [87]. For more on equivalent representations of pseudoline

6. Arrangements 63

Figure 6.1. The zone defined by the dashed line in the two-dimensional ar-

rangement of the plain lines is emphasized in light grey.

arrangements see Chapter 6 of the Handbook on oriented matroids [144].

6.3 Zone Theorem

The zone of a given pseudoline of an arrangement is the set of cells of

the arrangement supported by that pseudoline. Figure 6.1 illustrates a zone

in a two-dimensional arrangement of lines.

We define the complexity of each cell to be the number of its sides. We

define the complexity of a zone to be the sum of the complexities of its cells.

The Zone Theorem states that the complexity of any zone is linear.

Theorem 6.2 (Zone Theorem in the plane [27]). Given an arrangement of

n+ 1 pseudolines, the sum of the numbers of sides in all the cells supported

by one of the pseudolines is at most b9.5nc − 1.1

This result is important because it allows optimal incremental construc-

tion of arrangements of line arrangements, a frequently used tool.

In [65] and in the first edition of [63], there were claims of generalization

of this result to arrangements of hyperplanes in higher dimension. However,

the proofs turned out to be flawed [66]. Edelsbrunner, Sturmfels, and Sharir

were the first to provide a valid proof of the generalized result [66].

Theorem 6.3 (Zone Theorem [66]). Given an arrangement of n hyperplanes

in Rd, the sum of the numbers of 0-faces, 1-faces, . . . , and (d− 1)-faces in

all the cells supported by one of the hyperplanes is O(nd−1).

They also cite valid proofs by Houle and Matoušek for a weaker version

of the theorem: The Zone Theorem bounds the sum of complexities of the

1Note that an earlier weaker (worse constant factor) linear bound is implied by a

theorem in [50].

64 6.4. Cell Decomposition

Figure 6.2. The bottom vertex triangulation of a cell in an arrangement of

lines.

cells in a zone. The full generalization of the theorem defines the complexity

of each cell to be the number of all 0-faces, 1-faces, . . . , and (d − 1)-faces

supporting the cell. The weak generalization only counts (d − 1)-faces.

However, no publication of those proofs is known to the author.

Note that the Zone Theorem implies the asymptotic upper bound of

O(nd) on the complexity of the arrangement (§6.1).

6.4 Cell Decomposition

Cells of arrangements may not behave nicely. In particular, they may have

arbitrary description complexity. In this section we give two decomposition

schemes that allow to partition cells into low-complexity subcells. Access to

such decompositions is an essential ingredient of divide-and-conquer methods

described in Chapter 8.

Lookup Ezra, Har-Peled, Kaplan, and Sharir [74] for a more detailed

explanation on those decompositions and the Handbook [97, §24.3.2], for a

more general overview of cell decomposition techniques.

6.4.1 Bottom Vertex Triangulation

Given an arrangement of hyperplanes in Rd, its bottom vertex triangu-

lation is the partition of space obtained by triangulating each cell of the

arrangement recursively as follows: taking d = 2 as the base case (because

edges are already simplices), let p be the bottom-most vertex of the cell,

for each facet of the cell not containing p, for each (d − 1)-dimensional

simplex S′ of the bottom vertex triangulation of the facet in Rd−1, construct

6. Arrangements 65

a. Some curves in R2. b. Vertical decomposition of the

curves in Figure 6.3a.

Figure 6.3. Vertical decomposition.

a d-dimensional simplex S that is the convex hull of S′ and p. The bottom

vertex triangulation of an arrangement of lines in the plane is illustrated in

Figure 6.2.

In Paper A we construct a simplex of the bottom vertex triangulation of a

ε-net as part of a point location procedure. In Paper B (§B.2.2) and Paper C

(all sections) we use hierarchical cuttings based on this decomposition in

order to construct an efficient point location data structure.

See also [53] for a more thorough description and an application to

nearest neighbour data structures.

6.4.2 Vertical Decomposition

Given an arrangement of curves in R2, its vertical decomposition is the

partition of space obtained by shooting a vertical segment from each vertex

of the arrangement until it hits a curve of the arrangement. The vertical

decomposition of an arrangement of two circles is illustrated in Figure 6.3.

We use this decomposition in Paper B (§B.2.1) in order to apply a divide-

and-conquer algorithm of Matoušek [114] to an arrangement of curves. This

algorithm was originally designed to work for an arrangement of hyperplanes

using bottom-vertex triangulation decomposition. In Paper C (§C.1, §C.2),

66 6.4. Cell Decomposition

we use this decomposition in order to encode the order type of an arrangement

of pseudolines.

Note that in the first application we only use vertical decomposition

on a constant number of bounded-degree polynomial curves. In the second

application we only care about the existence of such a decomposition. For

those reasons, we do not discuss efficient construction of this decomposition.

For the construction of the vertical decomposition of an arrangment

of polynomial curves in R2, we refer the reader to Pach and Sharir [128],

Chazelle et Edelsbrunner, Guibas, and Sharir [49], and Edelsbrunner, Guibas,

Pach, Pollack, Seidel, and Sharir [64].

A Remark This decomposition can be generalized to work for hypersur-

faces in Rd. Unfortunatly, the behaviour of such decompositions quickly

degenerates with d. While bottom vertex triangulation gives a bound of

O(nd) cells in Rd and vertical decomposition gives a bound of O(n2) cells

in R2, we only know of a few upper bounds in fixed dimensions and some

of them are worse than O(nd). This is why in our application of Meiser’s

algorithm we use the bottom vertex triangulation. However, as observed by

Ezra and Sharir [75], the bad behaviour of vertical decompositions is not a

bottleneck of Meiser’s algorithm since we only need to look at a single cell

of the decomposition. Moreover, the complexity of those cells is better than

that of simplicial ones: vertical decomposition yields prisms supported by at

most 2d hyperplanes of the arrangement whereas simplices of the bottom

vertex triangulation are supported by d2 + d hyperplanes in the worst case.

This has a direct impact on the VC-dimension of the range spaces defined

by those objects and makes vertical decomposition the winning strategy for

this particular algorithm.

7
Chirotopes

Chirotopes are the generalization of order types introduced in §2.2.3. We

generalize Definitions 3 and 4 to point sets in Rd.

Definition 5 (Chirotope of a Point Set in Rd). Given a set of n points pi =

(pi,1, pi,2, . . . , pi,d) ∈ Rd, its (rank-(d+1)) chirotope is the function χ : [n]d+1 →
{−, 0,+ } such that

χ(i1, i2, . . . , id+1) = det


1 pi1,1 pi1,2 . . . pi1,d
1 pi2,1 pi2,2 . . . pi2,d
...

...
...

. . .
...

1 pid+1,1 pid+1,2 . . . pid+1,d

 ,

up to isomorphism.

Definition 6 (Realizable Chirotope). When considering an arbitrary function

f : [n]d+1 → {−, 0,+ } we say that f is a realizable chirotope if there is a n-set

P ⊂ R2 such that its chirotope is f .

In this chapter, we give details on two essential ingredients of our data

structures in Paper C: the classic point-hyperplane duality and the canonical

labeling of order types and chirotopes. The first one is necessary to be able to

apply the encodings we obtain for line arrangements and hyperplane arrange-

ments to point configurations. The second is used to get the preprocessing

time of those encodings down to O(nd).

7.1 Duality

Technically speaking, the encoding we describe for realizable chirotopes in

Paper C encodes the chirotope of a given arrangement of lines or hyperplanes.

68 7.1. Duality

p = (a, b)

y = cx− d

←→
y = ax− b

L′ = (c, d)

L
p′

Figure 7.1. Order preserving duality: “p is above L” if and only if “L′ is above

p′”.

Moreover, for ease of presentation, we make the assumption that the vertices

of this arrangement have finite coordinates. In the two-dimensional case, this

is equivalent to having no two lines parallel. In these paragraphs, we give

the details necessary to rigorously handle all realizable chirotopes, including

degenerate ones. This is especially important in higher dimension, where

the situation is a bit more complicated than in two dimensions.

In two dimensions, we wish to encode order types of point configurations.

Since our encoding construction algorithm works with an arrangement of

lines as input, we need a mapping from those primal points to their dual

lines. This mapping should preserve the order type of the point configuration,

hence it needs to be order-preserving. One such order-preserving duality is

the mapping (a, b)↔ y = ax− b (see Figure 7.1).

To avoid parallel lines in the dual, it suffices to avoid intersection points

at infinity. In the primal, this translates to avoiding two points of the

configuration defining a vertical line, that is, with the same x coordinate.

This is easily done by performing a tiny rotation in the primal. This (proper)

rotation does not change the order type of the point set.

In higher dimension, the order-preserving point-line duality generalizes

to the following order-preserving point-hyperplane duality: We map each

d-dimensional point (x1, x2, . . . , xd) ∈ Rd to the hyperplane yd =
∑d−1

i=1 xiyi−
xd and the hyperplane xd =

∑d−1
i=1 yixi − yd to the d-dimensional point

(y1, y2, . . . , yd) ∈ Rd.
As before, we want hyperplanes to be non-parallel. In fact, we need

an even stronger assumption: We want all linearly independent subsets of

d hyperplanes to intersect in a point with finite coordinates. Having no

intersection points at infinity in the dual means having no d points spanning

a hyperplane parallel to the xd axis in the primal. This is easy to avoid by

applying tiny rotations in the primal. Again, those (proper) rotations do

7. Chirotopes 69

not change the chirotope of the point set.

In dimension three and higher, one would think degenerate arrangements

lead to annoying nongeneral situations. However, those situations are easy

to handle with our technique: Degenerate subsets of hyperplanes are linearly

dependent. The determinant corresponding to a query asking about a

degenerate d+ 1 subset is therefore zero. Our technique will identify those

degenerate queries and map them to the correct answer in a space-efficient

way.

7.2 Canonical Labelings

Given a point set, the composition of its order type χ with a permutation

ρ produces a new order type χ′ = χ ◦ ρ. This composition corresponds

to a relabeling of the point set. Aloupis, Iacono, Langerman, Özkan, and

Wuhrer [17] defined the canonical labeling ρ∗(χ) of an order type χ to be a

permutation such that for all permutations π we have ρ∗(χ◦π) = π−1 ◦ρ∗(χ).

In other words, given two isomorphic order types χ and χ′, we have χ◦ρ∗(χ) =

χ′ ◦ρ∗(χ′), and ρ∗(χ′)−1 ◦ρ∗(χ) is the isomorphism that sends χ to χ′.1 They

proved that the function ρ∗ is computable in O(n2) time. This first tool is

useful to identify isomorphic order types.

They also showed that given any order type χ, a string E(χ) of O(n2)

bits, called the representation of χ, can be computed in O(n2) time, such

that, if χ and χ′ are two isomorphic order types, then E(χ) = E(χ′). This

second tool is useful to quickly compare two order types (a naive solution

would take Θ(n3) time by first computing a canonical labeling, and then

comparing all triples).

Lemma 7.1 (Aloupis, Iacono, Langerman, Özkan, and Wuhrer [17]). Given

an order type presented as an oracle, its canonical labeling of O(n log n) bits

and its canonical representation of O(n2) bits can be computed in O(n2) time

in the word-RAM model.

Both tools generalize to chirotopes of point configurations in any dimen-

sion d and, more generally, to chirotopes of rank d+ 1.

1Sometimes, two order types χ and −χ are also considered to be isomorphic. See [17]

for more details.

70 7.2. Canonical Labelings

Lemma 7.2 (Aloupis, Iacono, Langerman, Özkan, and Wuhrer [17]). For all

d ≥ 2, given a rank-(d+ 1) chirotope presented as an oracle, its canonical

labeling of O(n log n) bits and its canonical representation of O(nd) bits can

be computed in O(nd) time in the word-RAM model.

8
Divide and Conquer

A general divide-and-conquer paradigm in algorithm design is, given an

instance of size n, to 1) divide it into at most a smaller instances of size at

most n
b in p(n) preprocessing time, 2) solve those instances recursively, solving

constant size instances by brute force, and 3) postprocess the solutions of

those smaller instances to obtain the solution to the original one in p(n)

time. An upper bound T (n) on the time complexity of such an algorithm is

the reccurence

T (n) = a T
(n
b

)
+ p(n).

The asymptotic behavior of such a recurrence can then be derived from the

Master Theorem [26, 55].

In this chapter we expose a couple standard divide-and-conquer tech-

niques in Computational Geometry that allow the implementation of this

paradigm (or variants of it). Papers A, B, and C explicitly rely on those

techniques. The subquadratic-space constant-querytime encoding in Paper D

can also be interpreted as an ad-hoc implementation of those concepts (see

§D.3).

8.1 Epsilon Nets and Cuttings

The efficient construction of ε-nets and cuttings is a necessary condition

for many divide-and-conquer schemes in Computational Geometry. Those

constructions are based on the concept of Vapnik-Chervonenkis dimension

(VC-dimension) of a range space.

72 8.1. Epsilon Nets and Cuttings

8.1.1 Range Spaces

A range space (or set system) consists of a ground set (or universe) and

a family of subsets of this ground set called ranges. A simple example of a

range space is to take a finite set of points on the real line as the ground

set and to take the subsets of points induced by intervals as the ranges. In

general, we have the following definition.

Definition 7 (Range Space). A pair (X,R) such that X is a set and R ⊆ 2X

is a family of subsets of X.

Note that, for simplicity, the examples, definitions, and lemmas we state

here consider the case of finite ground sets. Those can be generalized to

infinite universes.

In the worst case, R could be equal to 2X . If X is taken to be points

in Rd and the ranges are taken to be subsets induced by simple geometric

objects, as in most geometric applications, this is not possible.

For instance, consider points and intervals on the real line. For any set of

points, only O(|X|2) subsets can be induced by intervals. Another example

is that of points in the plane and subsets induced by halfplanes. Because any

halfplane can be moved to have exactly two points on its boundary, there

are O(|X|2) such subsets. Those observations can be generalized. For that

we need a few more definitions.

8.1.2 VC-dimension

A set is shattered by a family of ranges if each of its subsets can be

induced by a range of the family.

Definition 8 (Shattered Set). Let (X,R) be a range space. A subset of T ⊆ X
is said to be shattered by R if every subset T ′ ⊆ T is such that T ′ = T ∩R for

some R ∈ R.

In our points and intervals example it is easy to see that a set of two

distinct points can be shattered but a set of three points cannot. For the

points and halfplanes example sets of three noncollinear points are shattered

but not sets of four points.

The VC-dimension of a range space is defined to be the size of the largest

shattered subset.

8. Divide and Conquer 73

Definition 9 (VC-dimension). Let (X,R) be a range space. Let v be the size

of the largest T ⊆ X such that T is shattered by R. The VC-dimension of the

range space is defined to be v.

The Perles-Sauer-Shelah-Vapnik-Chervonenkis lemma gives a direct con-

nection between this parameter and the number of ranges.

Lemma 8.1 (Vapnik and Chervonenkis [158], Sauer [146], Shelah [149]). Let

(X,R) be a range space. If |R| >
∑k−1

i=0

(|X|
i

)
then the VC-dimension of the

range space is at least k. Conversely, if the VC-dimension of the range space

is v then |R| ≤
∑v−1

i=0

(|X|
i

)
= O(|X|v).

In our examples, note the discrepancy between the “identical” O(|X|2)

bounds on the number of ranges and the different VC-dimensions (two and

three respectively).

8.1.3 Epsilon Nets

A net is a subset of the ground set such that it hits every large range.

Definition 10 (ε-net). Let (X,R) be a range space and let ε be a real number

in the [0, 1) interval. A subset N ⊆ X is an ε-net for the range space if for

every R ∈ R such that |R| > ε|X| we have that N ∩R 6= ∅.

In our algorithms and data structures, we consider nets of range spaces

in Rd. They are used as follows: construct an ε-net, partition the space

into a small number of ranges so that no range of the partition is hit by the

net. Then we have the guarantee that none of those ranges is large. For

many problems, such partitions of space with a small number of small ranges

usually lead to practical divide-and-conquer schemes. These partitions are

called cuttings (see §8.1.5).

A very neat result is that, for constant VC-dimension, a reasonably small

ε-net can be constructed efficiently by random sampling.

Lemma 8.2. Let (X,R) be a range space with VC-dimension v. Let N be

a uniform random sample of X of size Ωv(r log r). Then N is a 1
r -net for

(X,R) with probability 1− r−Ω(1).

See [52, Section 40.4] for more on range spaces and ε-nets.

74 8.1. Epsilon Nets and Cuttings

8.1.4 Hyperplanes in Linear Dimension

Consider the range space where the ground set is a finite set of hyperplanes

H in Rn and where the ranges are the subsets of hyperplanes that can be

obtained by intersecting the ground set with a simplex.

By combining a theorem due to Blumer, Ehrenfeucht, Haussler, and

Warmuth [29] with the results of Meiser [118]1, it is possible to obtain good

bounds on ε-nets constructed by random sampling. In Paper A we are

interested in the dependency of those bounds on the ambiant dimension n.

This is not explicitly tackled in Lemma 8.2 since here the VC-dimension of

this range space depends on n.

Lemma 8.3. For all real numbers r > 1 and c ≥ 1, if we choose at least

cn2 log nr log r hyperplanes of H uniformly at random and denote this selec-

tion N then for any simplex intersected by more than |H|
r hyperplanes of

H, with probability 1− 2−Ω(c), at least one of the intersecting hyperplanes is

contained in N .

The contrapositive states that if no hyperplane in N intersects a given

simplex, then with high probability the number of hyperplanes of H inter-

secting the simplex is at most |H|r .

8.1.5 Cuttings

A cutting in Rd is a set of (possibly unbounded and/or non-full di-

mensional) bounded-complexity cells that together partition Rd. For our

purposes, a cell is of bounded complexity if its boundary is defined by a

number of lines, pseudolines, or hyperplanes of some arrangement that solely

depends on the dimension, and not on the size of the arrangement. A
1
c -cutting of a set of n elements is a cutting with the constraint that each of

its cells is intersected by at most n
c elements.

In constant dimension, a straightforward way to construct a 1
c -cutting for

a set of hyperplanes is to first contruct a 1
c -net for the range space consisting

of hyperplanes as elements and simplices as ranges and then triangulate its

arrangement as in §6.4.1. Because none of the simplices of the triangulation

intersect the net, each simplex is intersected by at most a 1
c -fraction of the

1Note that Meiser used an older result due to Haussler and Welzl [102] and got an

extra logn factor in the size of the ε-net. We thank Hervé Fournier for pointing this out.

8. Divide and Conquer 75

hyperplanes. Through this construction we obtain O(cd logd c) simplicial

cells each intersected by at most n
c hyperplanes.

For hyperplanes in constant dimension, there exist various ways of con-

structing 1
c -cuttings of size O(cd), thereby removing the polylogarithmic

factor overhead (see for instance §8.2).

8.1.6 Algebraic Range Spaces

In Paper B (§B.2.1) we use a a similar technique to obtain a partition of

R2 into O(c2 log2 c) pseudotrapezoidal cells so that each cell is intersected by

at most a 1
c -fraction of some input polynomial curves. Because those curves

have bounded degree, we can design a range space with finite VC-dimension

and exploit it.

In the same paper (§B.2.2) we use the technique of linearization [5, 163]

in order to tackle a more general problem in any constant dimension: given

a system of polynomial inequalities, we can define a single variable for each

monomial so that each inequality becomes linear. This has the effect of

greatly increasing the ambient dimension but allows to use the techniques

that normally only apply to linear ranges.

8.1.7 Derandomization

The ε-net construction based on sampling described above can be made

deterministic. Derandomization is usually achieved through the method of

conditional probabilities of Raghavan [134] and Spencer [151] (as in [48]).

This method yields a construction time that is linear in the size of the ground

set for ε-nets and ε-cuttings with constant ε.

Lemma 8.4 (Matoušek [115, Corollary 4.5]). Let (X,R) be a range space of

finite VC-dimension and let r > 1 be a constant. Under some reasonnable

assumptions, we can compute a 1
r -net for (X,R) of size O(r log r) in O(|X|)

time.

For other concrete examples of derandomization of nets and cuttings,

we refer the reader to Matoušek [116], Chazelle and Matoušek [51] and

Brönnimann, Chazelle, and Matoušek [34]. The Handbook has a nice

overview of the subject [52, Section 40.7]. See also [52, Section 40.1] for

more on randomized divide-and-conquer and [52, Section 40.6] for more on

derandomization.

76 8.2. Hierarchical Cuttings

8.2 Hierarchical Cuttings

Compared to standard cuttings, hierarchical cuttings have the additional

property that they can be composed without multiplying the hidden constant

factors in the big-O notation [48]. In particular, they allow for O(nd)-space

O(log n)-query d-dimensional point location data structures (for constant d).

This is exploited in Paper B (§B.2.2) and Paper C (all sections).

Definition 11 (Hierarchical Cutting). Given n hyperplanes in Rd, a `-levels

hierarchical cutting of parameter r > 1 for those hyperplanes is a sequence of

` levels labeled 0, 1, . . . , `− 1 such that2

• Level i has O(r2i) cells,

• Each of those cells is further partitioned into O(r2) subcells,

• The collection of subcells is a 1
ri+1 -cutting for the set of hyperplanes,

• The O(r2(i+1)) subcells of level i are the cells of level i+ 1.

It is clear from reading through the various references that those hier-

archical cuttings can be constructed for arrangements of pseudolines with

the same properties: In [48], Chazelle first proves a vertex-count estimation

lemma that only relies on incidence properties of line arrangements [48,

Lemma 2.1]. Then he summons a lemma from [114] that relies on the finite

VC-dimension of the range space at hand [48, Lemma 3.1]. Here the ground

set is the set of pseudolines and the ranges are the subsets induced by

intersections with pseudosegments. The VC-dimension of this range space is

easily shown to be finite and is known to be at most 8: every arrangement of

9 pseudolines contains a subset of 6 pseudolines in hexagonal formation [98],

which cannot be shattered.3 Finally, he proves a lemma for the efficient

construction of sparse ε-nets whose correctness again only relies on incidence

properties of line arrangements [48, Lemma 3.2]. Using those three lemmas

together with bottom vertex triangulation (§6.4.1) he is able to prove his

main result:

2In [48], Chazelle refers to this parameter as r0 and uses r to mean r`0. Here we drop

the subscript for ease of presentation.
3This a quote from [32]. We could not access the original paper.

8. Divide and Conquer 77

Lemma 8.5 (Chazelle [48, Theorem 3.3]). Given n hyperplanes in Rd, for

any real parameter r > 1, we can construct a `-levels hierarchical cutting of

parameter r for those hyperplanes in time O(nr`(d−1)).

For pseudoline arrangements, bottom vertex triangulation can be traded

for vertical decomposition (§6.4.2).

Lemma 8.6. Given n pseudolines, for any real parameter r > 1, we can

construct a `-levels hierarchical cutting of parameter r for those pseudolines

in time O(nr`).

In Paper C, we use those lemmas with ` = dlogr
n
t e, for some parameter

t, so that the last level of the hierarchy defines a t
n -cutting whose cells are

each intersected by at most t pseudolines (or hyperplanes). In Paper B, we

do the same and choose t = O(1).

Note that in [48] the construction is described for constant parameter

r. This restriction on the parameter is easily lifted: We can construct

a hierarchical cutting with superconstant parameter r by constructing a

hierarchical cutting with some appropriate constant parameter r′, and then

skip levels that we do not need. This is used in §C.2 to reduce the query

time from O(log n) to O(logn
log logn).

78 8.2. Hierarchical Cuttings

9
Existential Theory of the Reals

The problems we consider in Paper B require our algorithms to manip-

ulate polynomial expressions and, potentially, their real roots. For that

purpose, we rely on Collins’s cylindrical algebraic decomposition (CAD) [54].

To understand the power of this method, and why it is useful for us, we give

some background on the related concept of first-order theory of the reals.

Definition 12. A Tarski formula φ ∈ T is a grammatically correct formula

consisting of real variables (x ∈ R), universal and existential quantifiers on

those real variables (∀,∃ : R × T → T), the boolean operators of conjunction

and disjunction (∧,∨ : T2 → T), the six comparison operators (<,≤,=,≥, >
, 6=: R2 → T), the four arithmetic operators (+,−, ∗, / : R2 → R), the usual

parentheses that modify the priority of operators, and constant real numbers

(R). A Tarski sentence is a fully quantified Tarski formula. The first-order

theory of the reals (FOTR) is the set of true Tarski sentences.

Tarski [156] and Seidenberg [147] proved that FOTR is decidable. How-

ever, the algorithm resulting from their proof has nonelementary complexity.

This proof, as well as other known algorithms, are based on quantifier

elimination, that is, the translation of the input formula to a much longer

quantifier-free formula, whose validity can be checked. There exists a family

of formulas for which any method of quantifier elimination produces a doubly

exponential size quantifier-free formula [57].

9.1 Cylindrical Algebraic Decomposition

Collins’s CAD matches this doubly exponential complexity.

80 .0. Cylindrical Algebraic Decomposition

Theorem 9.1 (Collins [54]). FOTR can be solved in 22O(n)
time in the

real-RAM model, where n is the size of the input Tarski sentence.

See Basu, Pollack, and Roy [23] for additional details, Basu, Pollack,

and Roy [22] for a singly exponential algorithm when all quantifiers are

existential (existential theory of the reals, ∃R), Caviness and Johnson [43]

for an anthology of key papers on the subject, and Mishra [121] for a review

of techniques to compute with roots of polynomials.

Collins’s CAD solves any geometric decision problem that does not

involve quantification over the integers in time doubly exponential in the

problem size. This does not harm our results as we exclusively use this

algorithm to solve constant size subproblems. Geometric is to be understood

in the sense of Descartes and Fermat, that is, the geometry of objects that

can be expressed with polynomial equations. In particular, it allows us to

make the following computations in the real-RAM and bounded-degree ADT

models:

1. Given a constant-degree univariate polynomial, count its real roots in

O(1) operations,

2. Sort O(1) real numbers given implicitly as roots of some constant-degree

univariate polynomials in O(1) operations,

3. Given a point in the plane and an arrangement of a constant number

of constant-degree polynomial planar curves, locate the point in the

arrangement in O(1) operations.

Instead of bounded-degree algebraic decision trees as the nonuniform

model we could consider decision trees in which each decision involves a

constant-size instance of the decision problem in the first-order theory of

the reals. The depth of a bounded-degree algebraic decision tree simulating

such a tree would only be blown up by a constant factor.

III
Algorithms

A
Solving k-SUM using Few Linear

Queries

with Jean Cardinal and John Iacono

The k-SUM problem is given n input real numbers to determine whether

any k of them sum to zero. The problem is of tremendous importance in

the emerging field of complexity theory within P , and it is in particular

open whether it admits an algorithm of complexity O(nc) with c < dk2e.
Inspired by an algorithm due to Meiser (1993), we show that there exist linear

decision trees and algebraic computation trees of depth O(n3 log2 n) solving

k-SUM. Furthermore, we show that there exists a randomized algorithm

that runs in Õ(nd
k
2
e+8) time, and performs O(n3 log2 n) linear queries on

the input. Thus, we show that it is possible to have an algorithm with a

runtime almost identical (up to the +8) to the best known algorithm but

for the first time also with the number of queries on the input a polynomial

that is independent of k. The O(n3 log2 n) bound on the number of linear

queries is also a tighter bound than any known algorithm solving k-SUM,

even allowing unlimited total time outside of the queries. By simultaneously

achieving few queries to the input without significantly sacrificing runtime

vis-à-vis known algorithms, we deepen the understanding of this canonical

problem which is a cornerstone of complexity-within-P .

We also consider a range of tradeoffs between the number of terms

involved in the queries and the depth of the decision tree. In particular,

we prove that there exist o(n)-linear decision trees of depth Õ(n3) for the

k-SUM problem.

84 A.1. Meiser Solves k-SUM

A.1 Meiser Solves k-SUM

Our main contribution is an efficient implementation of an existing

algorithm by Meiser [118] when applied to the k-SUM and k-LDT problems.

We recall the definition of those problems:

Problem 4 (k-SUM). Given n numbers q1 < q2 < . . . < qn ∈ R, decide

whether there exist i1 < i2 < · · · < ik ∈ [n] such that
∑k

j=1 qij = 0.

Problem 7 (k-LDT). Given n input numbers q1 < · · · < qn ∈ R and

constants p0, . . . , pn ∈ R decide whether there exists i1, i2, . . . , ik ∈ [n] such

that
∑k

j=1 pjqij = p0.

This section is divided into three subsections: §A.1.1 gives the outline of

the algorithm and analyses its complexity in the linear decision tree model.

§A.1.2 gives a second slightly more complex implementation and analysis of

this algorithm in the word-RAM model. §A.1.3 gives a simple tweak that

can be applied to those algorithms in order to reduce the complexity of the

queries involved.

Missing details and the analysis of the algorithm in the algebraic compu-

tation tree model are found in §A.2.

A.1.1 Query Complexity

In this section and the next, we prove the following first result.

Contribution 1. There exist linear decision trees of depth O(n3 log2 n)

solving the k-SUM and the k-LDT problems. Furthermore, for the k-SUM

problem there exists an Õ(nd
k
2
e+8) Las Vegas algorithm in the word-RAM

model expected to perform O(n3 log2 n) linear queries on the input. This

algorithm also solves the k-LDT problem within the same time bounds pro-

vided the coefficients of the underlying linear equation are constant rational

numbers.

Algorithm outline For a fixed set of hyperplanes H and given input

vertex q in Rn, Meiser’s algorithm allows us to determine the cell of the

arrangement A(H) that contains q in its interior (or that is q if q is a 0-cell

of A(H)), that is, the location σ(H, q) ∈ {−, 0,+ } of q with respect to all

hyperplanes H ∈ H. In the k-SUM problem, the set H is the set of Θ(nk)

A. Solving k-SUM using Few Linear Queries 85

hyperplanes with equations of the form xi1 + xi2 + · · · + xik = 0. These

equations can be modified accordingly for k-LDT.

We design a prune and search algorithm for k-SUM relying on a lemma on

the size of ε-nets for the range-space consisting of the ground set H and the

ranges obtained by intersecting H with simplices (Lemma 8.3): (1) construct

an ε-net N for this range space, (2) compute the cell C of A(N) containing

the input point q in its interior, (3) construct a simplex S inscribed in C

and containing q in its interior (S need not be full-dimensional), (4) report

any hyperplane H ∈ H such that S ⊂ H, (5) recurse on the hyperplanes of

H intersecting the interior of S.

Proceeding this way with a constant ε guarantees that at most a constant

fraction ε of the hyperplanes remains after the pruning step, and thus the

cumulative number of queries made to determine the enclosing cell at each

step is O(|N | log |H|) when done in a brute-force way. However, we still

need to explain how to find a simplex S inscribed in C and containing q in

its interior. This procedure corresponds to the well-known bottom vertex

decomposition (or triangulation) of a hyperplane arrangement (see §6.4.1).

Finding a simplex In order to simplify the exposition of the algorithm,

we assume, without loss of generality, that the input numbers qi all lie in

the interval [−1, 1]. This assumption is justified by observing that we can

normalize all the input numbers by the largest absolute value of a component

of q. One can then see that every linear query on the normalized input

can be implemented as a linear query on the original input. A similar

transformation can be carried out for the k-LDT problem. This allows us

to use bounding hyperplanes of equations xi = ±1, i ∈ [n]. We denote by B
this set of hyperplanes. Hence, if we choose a subset N of the hyperplanes,

the input point is located in a bounded cell of the arrangement A(N ∪ B).

Note that |N ∪ B| = O(|N |) for all interesting values of ε.

We now explain how to construct S under this assumption. The algorithm

can be sketched as follows. (Recall that σ(H, p) denotes the location of p

with respect to the hyperplane H.)

Algorithm 1 (Constructing S).

input A point q in [−1, 1]n, a set I of hyperplanes not containing q, and

a set E of hyperplanes in general position containing q, such that the

86 A.1. Meiser Solves k-SUM

cell

C = { p : σ(H, p) = σ(H, q) or σ(H, p) = 0 for all H ∈ (I ∪ E) }

is a bounded polytope. The value σ(H, q) is known for all H ∈ (I∪E).

output A simplex S ∈ C that contains q in its interior (if it is not a

point), and all vertices of which are vertices of C.

0. If |E| = n, return ∩H∈EH = q.

1. Determine a vertex ν of C.

2. Let q′ be the projection of q along ~νq on the boundary of C. Compute

Iθ ⊆ I, the subset of hyperplanes in I containing q′. Compute

Iτ ⊆ Iθ, a maximal subset of those hyperplanes such that E ′ = E ∪Iτ
is a set of hyperplanes in general position.

3. Recurse on q′, I ′ = I \ Iθ, and E ′, and store the result in S′.

4. Return S, the convex hull of S′ ∪ { ν }.
Step 0 is the base case of the recursion: when there is only one point

left, just return that point. This step uses no query.

We can solve step 1 by using linear programming with the known values

of σ(H, q) as linear constraints. We arbitrarily choose an objective function

with a gradient non-orthogonal to all hyperplanes in I and look for the

optimal solution. The optimal solution being a vertex of the arrangement,

its coordinates are independent of q, and thus this step involves no query at

all.

Step 2 prepares the recursive step by finding the hyperplanes containing

q′. This can be implemented as a ray-shooting algorithm that performs a

number of comparisons between projections of q on different hyperplanes

of I without explicitly computing them. In §A.2.1, we prove that all such

comparisons can be implemented using O(|I|) linear queries. Constructing

E ′ can be done by solving systems of linear equations that do not involve q.

In step 3, the input conditions are satisfied, that is, q′ ∈ [−1, 1]n, I ′ is

a set of hyperplanes not containing q′, E ′ is a set of hyperplanes in general

position containing q′, C ′ is a face of C and is thus a bounded polytope.

The value σ(H, q′) differs from σ(H, q) only for hyperplanes that have been

removed from I, and for those σ(H, q′) = 0, hence we know all necessary

values σ(H, q′) in advance.

A. Solving k-SUM using Few Linear Queries 87

ν

~νq

S

N

q

q′

S ′
︸ ︷︷ ︸

C

Figure A.1. Illustration of a step of Algorithm 1.

Since |I ′| < |I|, |E ′| > |E|, and |I \ I ′| − |E ′ \ E| ≥ 0, the complexity of

the recursive call is no more than that of the parent call, and the maximal

depth of the recursion is n. Thus, the total number of linear queries made

to compute S is O(n|I|).

Lemma A.1. Algorithm 1 uses O(n|I|) n-linear queries.

With the following corollary:

Corollary A.2. Given an input point q ∈ [−1, 1], an arrangement of

hyperplanes A(N), and the value of σ(H, q) for all H ∈ (N ∪ B), we can

compute the desired simplex S by running Algorithm 1 on q, I = {H ∈
(N ∪ B) : σ(H, q) 6= 0 }, and E ⊆ (N ∪ B) \ I. This uses O(n|N |) linear

queries.

Figure A.1 illustrates a step of this algorithm.

Assembling the pieces Following the outline sketched earlier and plug-

ging in Lemma 8.3 and the results for Algorithm 1 we get the following

algorithm:

Algorithm 2.

input A point q ∈ [−1, 1]n and a set H of hyperplanes in Rn.

output All H ∈ H such that σ(H, q) = 0.1

1Note that it is easy to modify this decision tree to, with asymptotically the same

88 A.1. Meiser Solves k-SUM

0. Stop if |H| = 0.

1. Pick a sample N of H uniformly at random.

2. Locate q in the arrangement A(N). Call C the cell of A(N) containing

q.

3. Construct the simplex S containing q and inscribed in C, using Algo-

rithm 1.

4. For every hyperplane of H ∈ H with S ⊂ H, output H.

5. Recurse on hyperplanes of H intersecting the interior of S.

By Lemma 8.3, we can take |N | = O(n2 log n). Hence, the query complex-

ity of step 2 is O(n2 log n), and that of step 3 is O(n3 log n) by Corollary A.2.

Steps 1, 4 and 5 do not involve any query at all. The recursion depth is

O(log |H|), with |H| = O(nk), hence the total query complexity of this

algorithm is O(n3 log2 n). This proves the first part of Theorem 1.

A Remark We can also consider the overall complexity of the algorithm

in the RAM model, that is, taking into account the steps that do not require

any query, but for which we still have to process the set H. Note that, in

this model, the complexity bottleneck of the algorithm are steps 4-5, where

we need to prune the list of hyperplanes according to their location with

respect to S. For this purpose, we simply maintain explicitly the list of all

hyperplanes, starting with the initial set corresponding to all k-tuples. Then

the pruning step can be performed by looking at the location of each vertex

of S relative to each hyperplane of H. Because in our case hyperplanes

have only k nonzero coefficients, this uses a number of integer arithmetic

operations on Õ(n) bits integers that is proportional to the number of vertices

times the number of hyperplanes.2 Since we recurse on a fraction of the set,

the overall complexity is Õ(n2|H|) = Õ(nk+2). The next section is devoted

to improving this running time.

number of linear queries and in addition to deciding whether q lies on any H ∈ H, compute

the location σ(H, q) for all H ∈ H.
2For the justification of the bound on the number of bits needed to represent vertices

of the arrangement see §A.2.4.

A. Solving k-SUM using Few Linear Queries 89

A.1.2 Time Complexity

Proving the second part of Theorem 1 involves efficient implementations

of the two most time-consuming steps of Algorithm 2. In order to efficiently

implement the pruning step, we define an intermediate problem, that we call

the double k-SUM problem.

Problem 15 (double k-SUM). Given two vectors ν1, ν2 ∈ [−1, 1]n, where

the coordinates of νi can be written down as fractions whose numerator and

denominator lie in the interval [−M,M], enumerate all i ∈ [n]k such that k∑
j=1

ν1,ij

 k∑
j=1

ν2,ij

 < 0.

In other words, we wish to list all hyperplanes of H intersecting the open

line segment ν1ν2. We give an efficient output-sensitive algorithm for this

problem.

Lemma A.3. Double k-SUM can be solved in O(nd
k
2
e log n logM +Z) time

in the word-RAM model, where Z is the size of the solution.

Proof. If k is even, we consider all possible k
2 -tuples of numbers in ν1 and

ν2 and sort their sums in increasing order. This takes time O(n
k
2 log n) and

yields two permutations π1 and π2 of [n
k
2]. If k is odd, then we sort both

the dk2e-tuples and the bk2c-tuples. For simplicity, we will only consider the

even case in what follows. The odd case carries through.

We let N = n
k
2 . For i ∈ [N] and m ∈ {1, 2}, let Σm,i be the sum of the

k
2 components of the ith k

2 -tuple in νm, in the order prescribed by πm.

We now consider the two N×N matrices M1 and M2 giving all possible

sums of two k
2 -tuples, for both ν1 with the ordering π1 and ν2 with the

ordering π2.

We first solve the k-SUM problem on ν1, by finding the sign of all pairs

Σ1,i+Σ1,j , i, j ∈ [N]. This can be done in time O(N) by parsing the matrix

M1, just as in the standard k-SUM algorithm. We do the same with M2.

The set of all indices i, j ∈ [N] such that Σ1,i + Σ1,j is positive forms

a staircase in M1. We sweep M1 column by column in order of increasing

j ∈ [N], in such a way that the number of indices i such that Σ1,i+Σ1,j > 0

is growing. For each new such value i that is encountered during the sweep,

90 A.1. Meiser Solves k-SUM

we insert the corresponding i′ = π2(π−1
1 (i)) in a balanced binary search

tree.

After each sweep step in M1 — that is, after incrementing j and adding

the set of new indices i′ in the tree — we search the tree to identify all the

indices i′ such that Σ2,i′ + Σ2,j′ < 0, where j′ = π2(π−1
1 (j)). Since those

indices form an interval in the ordering π2 when restricted to the indices

in the tree, we can search for the largest i′0 such that Σ2,i′0
< −Σ2,j′ and

retain all indices i′ ≤ i′0 that are in the tree. If we denote by z the number

of such indices, this can be done in O(logN + z) = O(log n+ z) time. Now

all the pairs i′, j′ found in this way are such that Σ1,i + Σ1,j is positive and

Σ2,i′ + Σ2,j′ is negative, hence we can output the corresponding k-tuples.

To get all the pairs i′, j′ such that Σ1,i + Σ1,j is negative and Σ2,i′ + Σ2,j′

positive, we repeat the sweeping algorithm after swapping the roles of ν1

and ν2.

Every matching k-tuple is output exactly once, and every k
2 -tuple is

inserted at most once in the binary search tree. Hence the algorithm runs

in the claimed time.

Note that we only manipulate rational numbers that are the sum of at

most k rational numbers of size O(logM).

Now observe that a hyperplane intersects the interior of a simplex if and

only if it intersects the interior of one of its edges. Hence given a simplex S

we can find all hyperplanes of H intersecting its interior by running the above

algorithm
(
n
2

)
times, once for each pair of vertices (ν1, ν2) of S, and take the

union of the solutions. The overall running time for this implementation

will therefore be Õ(n2(nd
k
2
e logM + Z)), where Z is at most the number of

intersecting hyperplanes and M is to be determined later. This provides an

implementation of the pruning step in Meiser’s algorithm, that is, step 5 of

Algorithm 2.

Corollary A.4. In the word-RAM model, given a simplex S, we can compute

the Z k-SUM hyperplanes intersecting its interior in Õ(n2(nd
k
2
e logM +Z))

time, where logM is proportional to the number of bits necessary to represent

S.

In order to detect solutions in step 4 of Algorithm 2, we also need to be

able to quickly solve the following problem.

A. Solving k-SUM using Few Linear Queries 91

Problem 16 (multiple k-SUM). Given d points ν1, ν2, . . . , νd ∈ Rn, where

the coordinates of νi can be written down as fractions whose numerator

and denominator lie in the interval [−M,M], decide whether there exists a

hyperplane with equation of the form xi1 + xi2 + · · · + xik = 0 containing

all of them.

Here the standard k-SUM algorithm can be applied, taking advantage of

the fact that the coordinates lie in a small discrete set.

Lemma A.5. In the word-RAM model, k-SUM on n integers ∈ [−V, V] can

be solved in time Õ(nd
k
2
e log V).

Lemma A.6. In the word-RAM model, multiple k-SUM can be solved in

time Õ(dnd
k
2
e+2 logM).

Proof. Let µi,j and δi,j be the numerator and denominator of νi,j when

written as an irreducible fraction. We define

ζi,j = νi,j
∏

(i,j)∈[d]×[n]

δi,j =

µi,j
∏

(i′,j′)∈[d]×[n]

δi′,j′

δi,j
.

By definition ζi,j is an integer and its absolute value is bounded by U =

Mn2
, that is, it can be represented using O(n2 logM) bits. Moreover, if one

of the hyperplanes contains the point (ζi,1, ζi,2, . . . , ζi,n), then it contains νi.

Construct n integers of O(dn2 logM) bits that can be written ζ1,j+U, ζ2,j+

U, . . . , ζd,j+U in base 2Uk+1. The answer to our decision problem is “yes”

if and only if there exists k of those numbers whose sum is kU, kU, . . . , kU .

We simply subtract the number U,U, . . . , U to all n input numbers to obtain

a standard k-SUM instance on n integers of O(dn2 logM) bits.

We now have efficient implementations of steps 4 and 5 of Algorithm 2

and can proceed to the proof of the second part of Theorem 1.

Proof. The main idea consists in modifying the first iteration of Algo-

rithm 2, by letting ε = Θ(n−
k
2). Hence we pick a random subset N of

O(nk/2+2 log n) hyperplanes in H and use this as an ε-net. This can be

done efficiently, as shown in §A.2.3.

92 A.1. Meiser Solves k-SUM

Next, we need to locate the input q in the arrangement induced by N .

This can be done by running Algorithm 2 on the set N . From the previous

considerations on Algorithm 2, the running time of this step is

O(n|N |) = Õ(nk/2+4),

and the number of queries is O(n3 log2 n).

Then, in order to prune the hyperplanes in H, we have to compute a

simplex S that does not intersect any hyperplane of N . For this, we ob-

serve that the above call to Algorithm 2 involves computing a sequence of

simplices for the successive pruning steps. We store the description of those

simplices. Recall that there are O(log n) of them, all of them contain the

input q and have vertices coinciding with vertices of the original arrange-

ment A(H). In order to compute a simplex S avoiding all hyperplanes of

N , we can simply apply Algorithm 1 on the set of hyperplanes bounding

the intersection of these simplices. The running time and number of queries

for this step are bounded respectively by nO(1) and O(n2 log n).

Note that the vertices of S are not vertices of A(H) anymore. However,

their coordinates lie in a finite set (see §A.2.4)

Lemma A.7. Vertices of S have rational coordinates whose fraction repre-

sentations have their numerators and denominators absolute values bounded

above by C4n5
n2n5+n3+n

2 , where C is a constant.

We now are in position to perform the pruning of the hyperplanes in H
with respect to S. The number of remaining hyperplanes after the pruning

is at most εnk = O(nk/2). Hence from Corollary A.4, the pruning can be

performed in time proportional to Õ(ndk/2e+7).

Similarly, we can detect any hyperplane of H containing S using the

result of Lemma A.6 in time Õ(ndk/2e+8). Note that those last two steps

do not require any query.

Finally, it remains to detect any solution that may lie in the remaining

set of hyperplanes of size O(nk/2). We can again fall back to Algorithm 2,

restricted to those hyperplanes. The running time is Õ(nk/2+2), and the

number of queries is still O(n3 log2 n).

Overall, the maximum running time of a step is Õ(nd
k
2
e+8), while the

number of queries is always bounded by O(n3 log2 n).

A. Solving k-SUM using Few Linear Queries 93

A.1.3 Query Size

In this section, we consider a simple blocking scheme that allows us to

explore a tradeoff between the number of queries and the size of the queries.

Lemma A.8. For any integer b > 0, an instance of the k-SUM problem on

n > b numbers can be split into O(bk−1) instances on at most kdnb e numbers,

so that every k-tuple forming a solution is found in exactly one of the

subproblems. The transformation can be carried out in time O(n log n+bk−1).

Proof. Given an instance on n numbers, we can sort them in O(n log n)

time. Partition the sorted sequence into b consecutive blocks B1, B2, . . . , Bb
of equal size. This partition can be associated with a partition of the real

line into b intervals, say I1, I2, . . . , Ib. Now consider the partition of Rk

into grid cells defined by the kth power of the partition I1, I2, . . . , Ib. The

hyperplane of equation x1 + x2 + · · ·+ xk = 0 hits O(bk−1) such grid cells.

Each grid cell Ii1 × Ii2 × · · · × Iik corresponds to a k-SUM problem on the

numbers in the set Bi1 ∪ Bi2 ∪ . . . ∪ Bik (note that the indices ij need not

be distinct). Hence each such instance has size at most kdnb e.

Combining Lemma A.8 and Theorem 1 directly yields our second contri-

bution.

Contribution 2. For any integer b > 0, there exists a kdnb e-linear decision

tree of depth Õ(bk−4n3) solving the k-SUM problem. Moreover, this deci-

sion tree can be implemented as an Õ(bb
k
2
c−9nd

k
2
e+8) Las Vegas word-RAM

algorithm.

The following two corollaries are obtained by taking b = Θ(polylog(n)),

and b = Θ(nα), respectively

Corollary A.9. There exists a o(n)-linear decision tree of depth Õ(n3)

solving the k-SUM problem. This decision tree can be implemented as a

Õ(nd
k
2
e+8) Las Vegas word-RAM algorithm.

Corollary A.10. For any α such that 0 < α < 1, there exists a O(n1−α)-

linear decision tree of depth Õ(n3+(k−4)α) solving the k-SUM problem. This

decision tree can be implemented as a Õ(n(1+α) k
2

+8.5) Las Vegas word-RAM

algorithm.

94 A.2. Missing Details

Note that the latter query complexity improves on Õ(n
k
2) whenever

α < k−6
2k−8 and k ≥ 7. By choosing α = k−6

2k−8−
β
k−4 we obtain O(n1− k−6

2k−8
+ β
k−4)-

linear decision trees of depth Õ(n
k
2
−β) for any k ≥ 7. Hence for instance,

we obtain O(n
3
4

+β
4)-linear decision trees of depth Õ(n4−β) for the 8SUM

problem.

A.2 Missing Details

This section regroups the missing details of the algorithms described in

the previous one (§A.1).

In §A.2.1 we show how to keep the queries linear even though it is not

evident at first sight that they are because of all the algebra generated

by the recursive steps of the simplex construction. In §A.2.2 we show

that our linear decision tree can be implemented in the same time on the

algebraic computation tree model, even though some linear queries may

involve all members of the input, and hence have superconstant cost. In

§A.2.3 we explain how to efficiently implement uniform random sampling for

the construction of large ε-nets. In §A.2.4 we bound the size of the numbers

manipulated by the word-RAM implementation of our k-SUM algorithm.

A.2.1 Keeping Queries Linear in Algorithm 1

In Algorithm 1, we want to ensure that the queries we make in step 2

are linear and that the queries we make in the recursion step remain linear

too.

Lemma A.11. Step 2 of Algorithm 1 can be implemented so that it uses

O(|I|) linear queries.

Proof. Let us first analyze what the queries of step 2 look like. In addition to

the input point q we are given a vertex ν and we want to find the projection

q′ of q in direction ~νq on the hyperplanes of Iθ. Let the equation of Hi be

Πi(x) = ci+di ·x = 0 where ci is a scalar and di is a vector. The projection

of q along ~νq on a hyperplane Hi can thus be written3 ρ(q, ν,Hi) = ν+λi ~νq

such that Πi(ν + λi ~νq) = ci + di · ν + λidi · ~νq = 0. Computing the closest

hyperplane amounts to finding λθ = minλi>0 λi. Since λi = − ci+di·ν
di· ~νq we

3Note that we project from ν instead of q. We are allowed to do this since ν + λi ~νq =

q + (λi − 1) ~νq and there is no hyperplane separating q from ν.

A. Solving k-SUM using Few Linear Queries 95

can test whether λi > 0 using the linear query4 − di· ~νq
ci+di·ν >

? 0. Moreover,

if λi > 0 and λj > 0 we can test whether λi < λj using the linear query
di· ~νq
ci+di·ν <

? dj · ~νq
cj+dj ·ν . Step 2 can thus be achieved using O(1) (2k)-linear queries

per hyperplane of N .

In step 4, the recursive step is carried out on

q′ = ν + λθ ~νq = ν − cθ + dθ · ν
dθ · ~νq

~νq,

hence, comparing λ′i to 0 amounts to performing the query − di· ~νq′
ci+di·ν′ >

? 0,

which is not linear in q. The same goes for comparing λ′i to λ′j with the

query di· ~νq′
ci+di·ν′ <

? dj · ~νq′
cj+dj ·ν′ .

However, we can multiply both sides of the inequality test by dθ ~νq to

keep the queries linear as shown below. We must be careful to take into

account the sign of the expression dθ ~νq, this costs us one additional linear

query.

This trick can be used at each step of the recursion. Let q(0) = q, then

we have

q(s+1) = ν(s) − cθs + dθs · ν(s)

dθs · ~νq(s)
~νq(s)

and (dθs · ~νq(s))q(s+1) yields a vector whose components are linear in q(s).

Hence, (
∏s
k=0 dθk · ~νq

(k))q(s+1) yields a vector whose components are linear

in q, and for all pairs of vectors di and ν(s+1) we have that (
∏s
k=0 dθk ·

~νq(k))(di · ~νq(s+1)) is linear in q.

Hence at the sth recursive step of the algorithm, we perform at most

|N | linear queries of the type

−
(
s−1∏
k=0

dθk · ~νq
(k)

)
di · ~νq(s)

ci + di · ν(s)

?
> 0

|N | − 1 linear queries of the type(
s−1∏
k=0

dθk · ~νq
(k)

)
di · ~νq(s)

ci + di · ν(s)

?
<

(
s−1∏
k=0

dθk · ~νq
(k)

)
dj · ~νq(s)

cj + dj · ν(s)

and a single linear query of the type

dθs−1 · ~νq
(s−1) ?

< 0.

4Note that if ci + di · ν = 0 then λi = 0, we can check this beforehand for free.

96 A.2. Missing Details

In order to detect all hyperplanes Hi such that λi = λθ we can afford

to compute the query f(q) > g(q) for all query f(q) < g(q) that we make,

and vice versa.

Note that, without further analysis, the queries can become n-linear as

soon as we enter the n
k

th recursive step.

A.2.2 Algebraic Computation Trees

The following theorem follows immediately from the analysis of the

linearity of queries

Theorem A.12. The algebraic computation tree complexity of k-LDT is

Õ(n3).

Proof. We go through each step of Algorithm 2. Indeed, each k-linear

query of step 2 can be implemented as O(k) arithmetic operations, so step

2 has complexity O(|N |). The construction of the simplex in step 3 must

be handled carefully. What we need to show is that each n-linear query

we use can be implemented using O(k) arithmetic operations. It is not

difficult to see from the expressions given in §A.2.1 that a constant number

of arithmetic operations and dot products suffice to compute the queries. A

dot product in this case involves a constant number of arithmetic operations

because the di are such that they each have exactly k non-zero components.

The only expression that involves a non-constant number of operations is

the product
∏s
k=0 dθk · ~νq

(k), but this is equivalent to (
∏s−1
k=0 dθk · ~νq

(k))(dθs ·
~νq(s)) where the first factor has already been computed during a previous

step and the second factor is of constant complexity. Since each query costs

a constant number of arithmetic operations and branching operations, step

3 has complexity O(n|N |). Finally, steps 1, 4 and 5 are free since they do

not involve the input. The complexity of Algorithm 2 in this model is thus

also O(n3 log n log |H|).

A.2.3 Uniform Random Sampling

Theorem 8.3 requires us to pick a sample of the hyperplanes uniformly

at random. Actually the theorem is a little stronger; we can draw each

element of N uniformly at random, only keeping distinct elements. This is

not too difficult to achieve for k-LDT when the αi, i ∈ [k] are all distinct:

to pick a hyperplane of the form α0 + α1xi1 + α2xi2 + · · · + αkxik = 0

A. Solving k-SUM using Few Linear Queries 97

uniformly at random, we can draw each ij ∈ [n] independently and there

are nk possible outcomes. However, in the case of k-SUM, we only have
(
n
k

)
distinct hyperplanes. A simple dynamic programming approach solves the

problem for k-SUM. For k-LDT we can use the same approach, once for

each class of equal αi.

Lemma A.13. Given n ∈ N and (α0, α1, . . . , αk) ∈ Rk+1, m independent

uniform random draws of hyperplanes in Rn with equations of the form

α0 + α1xi1 + α2xi2 + · · ·+ αkxik = 0 can be computed in time O(mk2 log n)

and preprocessing time O(k2n).

Proof. We want to pick an assignment a = { (α1, xi1), . . . , (αk, xik) } uni-

formly at random. Note that all xi are distinct while the αj can be equal.

Without loss of generality, suppose α1 ≤ α2 ≤ · · · ≤ αk. There

is a bijection between assignments and lexicographically sorted k-tuples

((α1, xi1), . . . , (αk, xik)).

Observe that xij can be drawn independently of xij′ whenever αj 6= αj′ .

Hence, it suffices to generate a lexicographically sorted |χ|-tuple of xi for

each class χ of equal αi.

Let ω(m, l) denote the number of lexicographically sorted l-tuples, where

each element comes from a set of m distinct xi. We have

ω(m, l) =

{
1 if l = 0∑m

i=1 ω(i, l − 1) otherwise.

To pick such a tuple (xi1 , xi2 , . . . , xil) uniformly at random we choose

xil = xo with probability

P (xil = xo) =

{
0 if o > m
ω(o,l−1)
ω(m,l) otherwise

that we append to a prefix (l − 1)-tuple (apply the procedure recursively),

whose elements come from a set of o symbols. If l = 0 we just return the

empty tuple.

Obviously, the probability for a given l-tuple to be picked is equal to
1

ω(m,l) .

Let X denote the partition of the αi into equivalence classes, then the

number of assignments is equal to
∏
χ∈X ω(n, |χ|). (Note that for k-SUM

98 A.2. Missing Details

this is simply ω(n, k) since there is only a single class of equivalence.) For

each equivalence class χ we draw independently a lexicographically sorted

|χ|-tuple on n symbols using the procedure above. This yields a given

assignment with probability 1∏
χ∈X ω(n,|χ|) . Hence, this corresponds to a

uniform random draw over the assignments.

It is a well known fact that ω(n, k) =
(
n+k−1
k−1

)
, hence each number we

manipulate fits in O(k log n) bits, that is, O(k) words. Moreover ω(n, k) =

ω(n− 1, k) +ω(n− 1, k− 1) so each ω(m, l) can be computed using a single

addition on numbers of O(k) words.

For given n and k, there are at most nk values ω(m, l) to compute,

and for a given k-LDT instance, it must be computed only once. One way

to perform the random draws is to compute the cumulative distribution

functions of the discrete distributions defined above, then to draw xil , we

use binary search to find a generated random integer of O(k) words in the

cumulative distribution function. Computing the values ω(m, l) and all

cumulative distributions functions can be done as a preprocessing step in

O(k2n) time. Assuming the generation of a random sequence of words takes

linear time, performing a random draw takes time O(k2 log n).

A.2.4 Proof of Lemma A.7

First a few relevant Theorems and Lemmas.

Theorem A.14 (Cramer’s rule). If a system of n linear equations for n

unknowns, represented in matrix multiplication form Ax = b, has a unique

solution x = (x1, x2, . . . , xn)T then, for all i ∈ [n],

xi =
det(Ai)

det(A)

where Ai is A with the ith column replaced by the column vector b.

Lemma A.15 (Meyer auf der Heide[119]). The absolute value of the deter-

minant of an n × n matrix M = Mi=1...n,j=1...n with integer entries is an

integer that is at most Cnn
n
2 , where C is the maximum absolute value in M .

Proof. The determinant of M must be an integer and is the volume of the

A. Solving k-SUM using Few Linear Queries 99

hyperparalleliped spanned by the row vectors of M , hence

|det(M)| ≤
n∏
i=1

√√√√ n∑
j=1

M2
i,j ≤ (

√
nC2)

n
≤ Cnn

n
2 .

Lemma A.16. The determinant of an n × n matrix M = Mi=1...n,j=1...n

with rational entries can be represented as a fraction whose numerators and

denominators absolute values are bounded above by (NDn−1)
n
n
n
2 and Dn2

respectively, where N and D are respectively the maximum absolute value of

a numerator and a denominator in M .

Proof. Le δi,j denote the denominator of Mi,j . Multiply each row Mi of M

by
∏
j δi,j . Apply Lemma A.15.

We can now proceed to the proof of Lemma A.7.

Proof. Coefficients of the hyperplanes of the arrangement are constant ra-

tional numbers, those can be changed to constant integers (because each

hyperplane has at most k nonzero coefficients). Let C denote the maximum

absolute value of those coefficients.

Because of Theorem A.14 and Lemma A.15, vertices of the arrangement

have rational coordinates whose numerators and denominators absolute val-

ues are bounded above by Cnn
n
2 .

Given simplices whose vertices are vertices of the arrangement, hyper-

planes that define the faces of those simplices have rational coefficients

whose numerators and denominators absolute values are bounded above by

C2n3
nn

3+n
2 by Theorem A.14 and Lemma A.16. (Note that some simplices

might be not fully dimensional, but we can handle those by adding vertices

with coordinates that are not much larger than that of already existing

vertices).

By applying Theorem A.14 and Lemma A.16 again, we obtain that

vertices of the arrangement of those new hyperplanes (and thus vertices of

S) have rational coefficients whose numerators and denominators absolute

values are bounded above by C4n5
n2n5+n3+n

2 .

100 A.2. Missing Details

B
Subquadratic Algorithms for

Algebraic 3SUM

with Luis Barba, Jean Cardinal, John Iacono, Stefan Langerman, and Noam Solomon

The 3SUM problem asks if an input n-set of real numbers contains a

triple whose sum is zero. We qualify such a triple as degenerate because

the probability of finding one in a random input is zero. We consider

the 3POL problem, an algebraic generalization of 3SUM where we replace

the sum function by a constant-degree polynomial in three variables. The

motivations are threefold. Raz, Sharir, and de Zeeuw gave an O(n11/6) upper

bound on the number of degenerate triples for the 3POL problem. We give

algorithms for the corresponding problem of counting them. Grønlund and

Pettie designed subquadratic algorithms for 3SUM. We prove that 3POL

admits bounded-degree algebraic decision trees of depth O(n12/7+ε), and we

prove that 3POL can be solved in O(n2(log logn)3/2/(log n)1/2) time in the

real-RAM model, generalizing their results. Finally, we shed light on the

General Position Testing (GPT) problem: “Given n points in the plane, do

three of them lie on a line?”, a key problem in computational geometry: we

show how to solve GPT in subquadratic time when the input points lie on a

small number of constant-degree polynomial curves. Many other geometric

degeneracy testing problems reduce to 3POL.

B.1 First Subquadratic Algorithms for 3POL

The results in this section have been published in Paper B. Our main

contribution in this paper is the first subquadratic algorithm for the 3POL

102 B.1. First Subquadratic Algorithms for 3POL

problem (Problem 13).

This section is divided into four subsections: In §B.1.1, we design a

bounded-degree algebraic decision tree of depth O(n12/7+ε) for explicit 3POL

(Contribution 3), and in §B.1.2, we adapt this decision tree to run in time

O(n2(log logn)3/2/(log n)1/2) in the real-RAM model (Contribution 4). In

§B.1.3, we generalize the decision tree from §B.1.1 to work for 3POL with

the same depth, up to constant factors (Contribution 5). Finally, in §B.1.4,

we give a real-RAM implementation of this second decision tree to solve

3POL as fast as explicit 3POL, up to constant factors (Contribution 6).

Details for the implementation of the two main subroutines, offline

polynomial dominance reporting and offline polynomial range searching, are

found in §B.2. Applications can be found in §B.3.

B.1.1 Nonuniform Algorithm for Explicit 3POL

We begin with the description of a nonuniform algorithm for explicit

3POL which we use later as a basis for other algorithms. We recall the

definition of the explicit 3POL problem.

Problem 14 (explicit 3POL). Let f ∈ R[x, y] be a bivariate polynomial

of constant degree, given three sets A, B, and C, each containing n real

numbers, decide whether there exist a ∈ A, b ∈ B, and c ∈ C such that

c = f(a, b).

We prove the following

Contribution 3. Explicit 3POL can be solved in O(n12/7+ε) time in the

bounded-degree algebraic decision tree model.

Idea We partition the sets A and B into small groups of consecutive

elements. That way, we can divide the A × B grid into cells with the

guarantee that each curve c = f(x, y) intersects a small number of those

cells. For each such curve and each cell it intersects, we search c among the

values f(a, b) for all (a, b) in a given intersected cell. We generalize Fredman’s

trick [80] — and how it is used in Grønlund and Pettie’s paper [95] — to

quickly obtain a sorted order on those values, which provides us a logarithmic

search time for each cell. Below is a sketch of the algorithm.

Algorithm 3 (Nonuniform algorithm for explicit 3POL).

B. Subquadratic Algorithms for Algebraic 3SUM 103

input A = { a1 < · · · < an }, B = { b1 < · · · < bn },
C = { c1 < · · · < cn } ⊂ R.

output accept if ∃ (a, b, c) ∈ A × B × C such that c = f(a, b), reject

otherwise.1

1. Partition the intervals [a1, an] and [b1, bn] into blocks A∗i and B∗j such

that Ai = A ∩A∗i and Bj = B ∩B∗j have size g.

2. Sort the sets f(Ai × Bj) = { f(a, b) : (a, b) ∈ Ai × Bj } for all Ai, Bj .

This is the only step that is nonuniform.

3. For each c ∈ C,

3.1. For each cell A∗i ×B∗j intersected by the curve c = f(x, y),

3.1.1. Binary search for c in the sorted set f(Ai×Bj). If c is found, accept

and halt.

4. reject and halt.

Like in Grønlund and Pettie’s Õ(n3/2) decision tree for 3SUM [95], the key

is to give an efficient implementation of step 2.

A × B grid partitioning Let A = { a1 < a2 < · · · < an } and B =

{ b1 < b2 < · · · < bn }. For some positive integer g to be determined later,

partition the interval [a1, an] into n/g blocks A∗1, A
∗
2, . . . , A

∗
n/g such that each

block contains g numbers in A. Do the same for the interval [b1, bn] with

the numbers in B and name the blocks of this partition B∗1 , B
∗
2 , . . . , B

∗
n/g.

For the sake of simplicity, and without loss of generality, we assume here

that g divides n. We continue to make this assumption in the following

sections. To each of the (n/g)2 pairs of blocks A∗i and B∗j corresponds

a cell A∗i × B∗j . By definition, each cell contains g2 pairs in A × B. For

the sake of notation, we define Ai = A ∩ A∗i = { ai,1 < ai,2 < · · · < ai,g }
and Bj = B ∩ B∗j = { bj,1 < bj,2 < · · · < bj,g }. Figure B.1 depicts this

construction.

The following two lemmas result from this construction:

Lemma B.1. For a fixed value c ∈ C, the curve c = f(x, y) intersects O(ng)

cells. Moreover, those cells can be found in O(ng) time.

1Note that it is easy to modify the algorithm to count or report the solutions. In the

latter case, the algorithm becomes output sensitive.

104 B.1. First Subquadratic Algorithms for 3POL

B

A

n
g

n
g

g

g

a1
b1

bn

an

A∗i ×B∗jB∗j

A∗i

Figure B.1. The partitioning of A×B. There are n/g columns A∗i , n/g rows

B∗j , and (n/g)2 cells A∗i × B∗j . There are n2 points in A × B. Each column

contains the ng points in Ai × B, each row contains the ng points in A × Bj ,

and each cell contains the g2 points in Ai ×Bj .

B

A

n
g

n
g

a1
b1

bn

an

c = f(x, y)

Figure B.2. An xy-monotone arc of the two-dimensional polynomial curve of

equation c = f(x, y). This arc intersects a staircase of at most 2n
g − 1 cells in

the grid. When f has constant degree, the defined curve can be partitioned into

O(1) such arcs.

B. Subquadratic Algorithms for Algebraic 3SUM 105

Proof. Since f has constant degree, the curve c = f(x, y) can be parti-

tioned into a constant number of xy-monotone arcs. Split the curve into

x-monotone pieces, then each x-monotone piece into y-monotone arcs. The

endpoints of the xy-monotone arcs are the intersections of f(x, y) = c with

its derivatives f ′x(x, y) = 0 and f ′y(x, y) = 0. By Bézout’s theorem, there

are O(deg(f)2) such intersections and so O(deg(f)2) xy-monotone arcs.

Figure B.2 shows that each such arc intersects O(ng) cells since the cells

intersected by a xy-monotone arc form a staircase in the grid. This proves

the first part of the lemma.

To prove the second part, observe that for each connected component of

c = f(x, y) intersecting at least one cell of the grid either: (1) it intersects a

boundary cell of the grid, or (2) it is a (singular) point or contains vertical

and horizontal tangency points.2 The cells intersected by c = f(x, y) are

computed by exploring the grid from O(ng) starting cells. Start with an

empty set. Find and add all boundary cells containing a point of the curve.

Finding those cells is achieved by solving the Tarski sentence ∃x∃y(c =

f(x, y) ∧ x ∈ A∗i ∧ y ∈ B∗j), for each cell A∗i × B∗j on the boundary. This

takes O(ng) time. Find and add the cells containing singular points and

tangency points of c = f(x, y). Finding those cells is achieved by first

finding the constant number of vertical and horizontal slabs A∗i × R and

R×B∗j containing such points:

∃x∃y(c = f(x, y) ∧ (f ′x(x, y) = 0 ∨ f ′y(x, y) = 0) ∧ x ∈ A∗i),
∃x∃y(c = f(x, y) ∧ (f ′x(x, y) = 0 ∨ f ′y(x, y) = 0) ∧ y ∈ B∗j).

This takes O(ng) time. Then for each pair of vertical and horizontal slab

containing such a point, check that the cell at the intersection of the slabs

also contains such a point:

∃x∃y(c = f(x, y) ∧ (f ′x(x, y) = 0 ∨ f ′y(x, y) = 0) ∧ x ∈ A∗i ∧ y ∈ B∗j).

This takes O(1) time. Note that we can always assume the constant-degree

polynomials we manipulate are square-free, as making them square-free

is trivial [165]: since R[x] and R[y] are unique factorization domains, let

Q = P/gcd(P, P ′x;x) and sf(P) = Q/gcd(P, P ′y; y), where gcd(P,Q; z) is the

greatest common divisor of P and Q when viewed as polynomials in R[z]

2Note that vertical and horizontal lines fall in both categories.

106 B.1. First Subquadratic Algorithms for 3POL

where R is a unique factorization domain and sf(P) is the square-free part

of P . The set now contains, for each component of each type, at least one

cell intersected by it. Initialize a list with the elements of the set. While

the list is not empty, remove any cell from the list, add each of the eight

neighbouring cells to the set and the list, if it contains a point of c = f(x, y)

— this can be checked with the same sentences as in the boundary case —

and if it is not already in the set. This costs O(1) per cell intersected. The

set now contains all cells of the grid intersected by c = f(x, y).

Lemma B.2. If the sets A,B,C can be preprocessed in Sg(n) time so

that, for any given cell A∗i × B∗j and any given c ∈ C, testing whether

c ∈ f(Ai ×Bj) = { f(a, b) : (a, b) ∈ Ai ×Bj } can be done in O(log g) time,

then, explicit 3POL can be solved in Sg(n) +O(n
2

g log g) time.

Proof. We need Sg(n) preprocessing time plus the time required to search

each of the n numbers c ∈ C in each of the O(ng) cells intersected by

c = f(x, y). Each search costs O(log g) time. We can compute the cells

intersected by c = f(x, y) in O(ng) time by Lemma B.1.

Remark We do not give a Sg(n)-time real-RAM algorithm for preprocess-

ing the input, but only a Sg(n)-depth bounded-degree ADT. In fact, this

preprocessing step is the only nonuniform part of Algorithm 3. A real-RAM

implementation of this step is given in §B.1.2.

Preprocessing All that is left to prove is that Sg(n) is subquadratic for

some choice of g. To achieve this we sort the points inside each cell using

Fredman’s trick [80]. Grønlund and Pettie [95] use this trick to sort the sets

Ai + Bj = { a + b : (a, b) ∈ Ai × Bj } with few comparisons: sort the set

D = (∪i[Ai−Ai])∪(∪j [Bj−Bj]), where Ai−Ai = { a−a′ : (a, a′) ∈ Ai×Ai }
and Bj−Bj = { b−b′ : (b, b′) ∈ Bj×Bj }, using O(n log n+|D|) comparisons,

then testing whether a + b ≤ a′ + b′ can be done using the free (already

computed) comparison a−a′ ≤ b′−b. We use a generalization of this trick to

sort the sets f(Ai ×Bj). For each Bj , for each pair (b, b′) ∈ Bj ×Bj , define

the curve γb,b′ = { (x, y) : f(x, b) = f(y, b′) }. Define the sets γ0
b,b′ = γb,b′ ,

γ−b,b′ = { (x, y) : f(x, b) < f(y, b′) }, and γ+
b,b′ = { (x, y) : f(x, b) > f(y, b′) }.

The following lemma — illustrated by Figures B.3 and B.4 — follows by

definition:

B. Subquadratic Algorithms for Algebraic 3SUM 107

B

A

n
g

n
g

a1
b1

bn

an
a a′

b′

b

Figure B.3. For each cell, we sort the points it contains with comparisons. The

points (a, b) and (a′, b′) are compared using the comparison f(a, b) ≤ f(a′, b′).

A

n
g

n
g

a1 an
a

a1

an

a′

A

(a, a′)

Figure B.4. The disk is the semi-algebraic set { (x, y) : f(x, b) ≤ f(y, b′) }.
Here (a, a′) lies outside this semi-algebraic set which implies that f(a, b) >

f(a′, b′).

108 B.1. First Subquadratic Algorithms for 3POL

Lemma B.3. Given a cell A∗i × B∗j and two pairs (a, b), (a′, b′) ∈ Ai ×
Bj, deciding whether f(a, b) < f(a′, b′) (respectively f(a, b) = f(a′, b′) and

f(a, b) > f(a′, b′)) amounts to deciding whether the point (a, a′) is contained

in γ−b,b′ (respectively γ0
b,b′ and γ+

b,b′).

There are N := n
g · g

2 = ng pairs (a, a′) ∈ ∪i[Ai × Ai] and there are N

pairs (b, b′) ∈ ∪j [Bj ×Bj]. Sorting the f(Ai ×Bj) for all (Ai, Bj) amounts

to solving the following problem:

Problem 17 (Offline Polynomial Range Searching). Given N points and

N polynomial curves in R2, locate each point with respect to each curve.

We can now refine the description of step 2 in Algorithm 3

Algorithm 4 (Sorting the f(Ai ×Bj) with a nonuniform algorithm).

input A = { a1 < a2 < · · · < an }, B = { b1 < b2 < · · · < bn } ⊂ R

output The sets f(Ai ×Bj), sorted.

2.1. Locate each point (a, a′) ∈ ∪i[Ai×Ai] with respect to each γb,b′ with

(b, b′) ∈ ∪j [Bj ×Bj].

2.2. Sort the sets f(Ai ×Bj) using the information retrieved in step 2.1.

Note that this algorithm is nonuniform: step 2.2 costs at least quadratic

time in the real-RAM model, however, this step does not need to query the

input at all, as all the information needed to sort is retrieved during step 2.1.

Step 2.2 incurs no cost in our nonuniform model.

To implement step 2.1, we use a modified3 version of the N
4
3 2O(log∗N)

algorithm of Matoušek [114] for Hopcroft’s problem. In § B.2.1, we prove

the following upper bound:

Lemma B.4. Offline Polynomial Range Searching can be solved in O(N4/3+ε)

time in the real-RAM model when the input curves are the γb,b′.

Analysis Combining Lemma B.2 and Lemma B.4 yields a O((ng)4/3+ε +

n2 log g/g)-depth bounded-degree ADT for explicit 3POL. By optimizing

over g, we get g = Θ(n2/7−ε), and the previous expression simplifies to

O(n12/7+ε), proving Contribution 3.

3The original algorithm relies on hierarchical cuttings which cannot be implemented in

the bounded-degree ADT model.

B. Subquadratic Algorithms for Algebraic 3SUM 109

B.1.2 Uniform Algorithm for Explicit 3POL

We again consider the explicit 3POL problem

Problem 14 (explicit 3POL). Let f ∈ R[x, y] be a bivariate polynomial

of constant degree, given three sets A, B, and C, each containing n real

numbers, decide whether there exist a ∈ A, b ∈ B, and c ∈ C such that

c = f(a, b).

We build on the nonuniform algorithm described in §B.1.1 to prove the

following

Contribution 4. Explicit 3POL can be solved in O(n
2(log logn)3/2

(logn)1/2) time in

the real-RAM model.

We generalize again Grønlund and Pettie [95]. The algorithm we present

is derived from the first subquadratic algorithm in their paper.

Idea We want the implementation of step 2 in Algorithm 3 to be uniform,

because then, the whole algorithm is. We use the same partitioning scheme

as before except we choose g to be much smaller. This allows to store

all permutations on g2 items in a lookup table, where g is chosen small

enough to make the size of the lookup table Θ(nε). The preprocessing

part of the previous algorithm is replaced by g2! calls to an algorithm that

determines for which cells a given permutation gives the correct sorted order.

This preprocessing step stores a constant-size4 pointer from each cell to the

corresponding permutation in the lookup table. Search can now be done

efficiently: when searching a value c in f(Ai×Bj), retrieve the corresponding

permutation on g2 items from the lookup table, then perform binary search

on the sorted order defined by that permutation. The sketch of the algorithm

is exactly Algorithm 3. The only differences with respect to §B.1.1 are the

choice of g and the implementation of step 2.

A×B grid partitioning We use the same partitioning scheme as before,

hence Lemma B.1 and Lemma B.2 hold. We just need to find a replacement

for Lemma B.4.

4A constant number of integer words in the real-RAM and word-RAM models.

110 B.1. First Subquadratic Algorithms for 3POL

Preprocessing For their simple subquadratic 3SUM algorithm, Grønlund

and Pettie [95] explain that for a permutation to give the correct sorted

order for a cell, that permutation defines a certificate — a set of inequalities

— that the cell must verify. They cleverly note — using Fredman’s trick [80]

as in Chan [44] and Bremner, Chan, Demaine, Erickson, Hurtado, Iacono,

Langerman, Pătras,cu, and Taslakian [33] — that the verification of a single

certificate by all cells amounts to solving a red/blue point offline dominance

reporting problem. We generalize their method. For each permutation

π : [g2] → [g]2, where π = (πr, πc) is decomposed into row and column

functions πr, πc : [g2] → [g], we enumerate all cells A∗i × B∗j for which the

following certificate holds:

f
(
ai,πr(1), bj,πc(1)

)
≤ f

(
ai,πr(2), bj,πc(2)

)
≤ · · · ≤ f

(
ai,πr(g2), bj,πc(g2)

)
.

Remark Since some entries may be equal, to make sure each cell cor-

responds to exactly one certificate, we replace ≤ symbols by choices of

g2 − 1 symbols in {=, < }. Each permutation π gets a certificate for each

of those choices. This adds a 2g
2−1 factor to the number of certificates to

test, which will eventually be negligible. Note that some of those 2g
2−1

certificates are equivalent. We need to skip some of them, as otherwise

we might output some cells more than once, and then there will be no

guarantee with respect to the output size. For example, the certificate

f(ai,9, bj,5) = f(ai,6, bj,7) < · · · < f(ai,4, bj,4) is equivalent to the certificate

f(ai,6, bj,7) = f(ai,9, bj,5) < · · · < f(ai,4, bj,4). Among equivalent certifi-

cates, we only consider the certificate whose permutation π precedes the

others lexicographically. In the previous example, ((6, 7), (9, 5), . . . , (4, 4)) ≺
((9, 5), (6, 7), . . . , (4, 4)) hence we would only process the second certificate.

For the sake of simplicity, we will write inequality when we mean either

strict inequality or equation, and “≤” when we mean either “<” or “=”.

Fredman’s trick This is where Fredman’s trick comes into play. By

Lemma B.3, each inequality f(ai,πr(t), bj,πc(t)) ≤ f(ai,πr(t+1), bj,πc(t+1)) of a

certificate can be checked by computing the relative position of the point

(ai,πr(t), ai,πr(t+1)) with respect to the curve γbj,πc(t),bj,πc(t+1)
in R2. For a

B. Subquadratic Algorithms for Algebraic 3SUM 111

given certificate, for each Ai and each Bj , define

pi =
((
ai,πr(1), ai,πr(2)

)
, . . . ,

(
ai,πr(g2−1), ai,πr(g2)

))
,

qj =
(
f
(
x, bj,πc(1)

)
≤ f

(
y, bj,πc(2)

)
, . . . , f

(
x, bj,πc(g2−1)

)
≤ f

(
y, bj,πc(g2)

))
.

A certificate is verified by a cell Ai×Bj if and only if, for all t ∈ [g2− 1], the

point pi,t verifies the inequality qj,t. Enumerating all cells Ai ×Bj for which

the certificate holds therefore amounts to solving the following problem:

Problem 18 (Offline Polynomial Dominance Reporting (offline PDR)).

Given N k-tuples pi of points in R2 and N k-tuples qj of bivariate polyno-

mial inequalities of degree at most ∆, output all pairs (pi, qj) where, for all

t ∈ [k], the point pi,t verifies the inequality qj,t.

In § B.2.2, we give an efficient output-sensitive real-RAM algorithm for

offline PDR.

Lemma B.5. Offline Polynomial Dominance Reporting can be solved in

2O(k)N
2− 4

∆2+3∆+2
+ε

+ O(`) time in the real-RAM model, where ` is the

number of output pairs.

We can now give a uniform implementation of step 2 in Algorithm 3:

Algorithm 5 (Sorting the f(Ai ×Bj) with a uniform algorithm).

input A = { a1 < a2 < · · · < an }, B = { b1 < b2 < · · · < bn } ⊂ R
output The sets f(Ai ×Bj), sorted.

2.1. Initialize a table that will contain all g2! permutations on g2 elements.

2.2. For each permutation π : [g2]→ [g]2,

2.2.1. Append permutation π to the table,

2.2.2. For each choice of g2 − 1 symbols in {=, < },
2.2.2.1. If there is any “=” symbol that corresponds to a lexicographically

decreasing pair of tuples of indices in π, skip this choice of symbols.

2.2.2.2. Solve the offline PDR instance associated with A,B, π and the

choice of symbols.

2.2.2.3. For each output pair (i, j) in the previous step, output a pointer

to the last entry in the table.5

5Those pointers have bit-size dlog g2!e = O(g2 log g). Later we choose g =

O(
√

logn/ log log n). Hence, those pointers fit in a constant number of machine words.

112 B.1. First Subquadratic Algorithms for 3POL

Analysis Plugging in k = g2 − 1, N = n
g , iterating over all permutations

(
∑

π ` = (n/g)2), and adding the binary search step we get that explicit

3POL can be solved in time

(g2!)2g
2
2O(g2)(n/g)

2− 4

deg(f)2+3 deg(f)+2
+ε

+O((n/g)2) +O(n2 log g/g).

The first two terms correspond to the complexity of step 2 in Algorithm 3, and

the last term corresponds to the complexity of step 3 in Algorithm 3. To get

subquadratic time we can set g = cdeg(f)

√
log n/ log log n, because then for

some appropriate choice of the constant factor cdeg(f), (g2)!2g
2
2O(g2) = nδ

where δ < 4/(deg(f)2 + 3 deg(f) + 2) − ε, making the first term negligi-

ble. The complexity of the algorithm is dominated by O(n2 log g/g) =

O(n2(log logn)3/2/(log n)1/2). This proves Theorem 4.

B.1.3 Nonuniform Algorithm for 3POL

In this section, we extend the nonuniform algorithm given for explicit

3POL in §B.1.1 to work for the more general 3POL problem.

We recall the definition of the 3POL problem.

Problem 13 (3POL). Let F ∈ R[x, y, z] be a trivariate polynomial of con-

stant degree, given three sets A, B, and C, each containing n real numbers,

decide whether there exist a ∈ A, b ∈ B, and c ∈ C such that F (a, b, c) = 0.

We prove the following:

Contribution 5. 3POL can be solved in O(n12/7+ε) time in the bounded-

degree algebraic decision tree model.

Idea The idea is the same as for explicit 3POL. Partition the plane into

A∗i × B∗j cells. Note that for a fixed c ∈ C, the curve F (x, y, c) intersects

O(ng) cells A∗i ×B∗j . The algorithm is the following: (1) for each cell A∗i ×B∗j ,

sort the real roots of the univariate polynomials F (a, b, z) ∈ R[z] taking the

union over all (a, b) ∈ Ai × Bj , (2) for each c ∈ C, for each cell A∗i × B∗j
intersected by F (x, y, c), binary search on the sorted order computed in step

(1) to find c. Step (2) costs O(n2 log g/g). It only remains to implement

step (1) efficiently.

B. Subquadratic Algorithms for Algebraic 3SUM 113

A×B partition We use the same partitioning scheme as before. Hence,

counterparts of Lemma B.1 and Lemma B.2 hold

Lemma B.6. For a fixed c ∈ C, the curve F (x, y, c) = 0 intersects O(ng)

cells. Moreover, those cells can be computed in O(ng) time.

Lemma B.7. If the sets A,B,C can be preprocessed in Sg(n) time so

that, for any given cell A∗i × B∗j and any given c ∈ C, testing whether

c ∈ { z : ∃(a, b) ∈ Ai ×Bj such that F (a, b, z) = 0 } can be done in O(log g)

time, then, 3POL can be solved in Sg(n) +O(n
2

g log g) time.

Interleavings Let P = (P1, P2, . . . , Pm) be a tuple of m (nonzero) uni-

variate polynomials. Let { pi,1 < · · · < pi,∆i } be the set of real roots of Pi
(without multiplicities). Let I = ((i1, j1), . . . , (i∆, j∆)) be a tuple of pairs of

positive integers. We say that P realizes I if and only if I is a permutation

of { (i, j) : i ∈ [m], j ∈ [∆i] }, and for all t ∈ [∆ − 1], pit,jt ≤ pit+1,jt+1 .

When used in this context, we call I an interleaving. Note that (1) the

first condition implies ∆ =
∑m

i=1 ∆i, (2) a tuple of polynomials realizes at

least one interleaving, (3) a tuple of polynomials realizes more than one

interleaving if some of the polynomials have common real roots. We denote

by I(P) the set of interleavings realized by P.

A×A (b, b′)-partitions For a fixed pair (b, b′) ∈ B ×B, we partition R2

into (b, b′)-cells that encode equivalence classes. Each cell C is mapped to

a unique interleaving I, and if we take any two points (a1, a
′
1) and (a2, a

′
2)

inside C, I is realized by both polynomial tuples (F (a1, b, z), F (a′1, b
′, z)) and

(F (a2, b, z), F (a′2, b
′, z)). It is possible that a degenerate case arises where

we cannot associate an interleaving to C because one of the polynomials is

the zero polynomial. We can easily tackle these degeneracies, because, if

any point (a, a′) is contained in such a cell, we can immediately answer the

3POL instance with the affirmative. Identifying the interleaving associated

with each cell of each (b, b′)-partition, then locating each (a, a′) inside each

(b, b′)-partition provides the answers to all questions of the form “Is the kth

real root of F (a, b, z) greater than the `th real root of F (a′, b′, z)?”, for some

(a, b), (a′, b′) ∈ Ai×Bj . Those answers are all we need to binary search for c

in the union of the real roots of the F (a, b, z) ∈ R[z] in time O(log g). Note

114 B.1. First Subquadratic Algorithms for 3POL

again that in the nonuniform setting, we do not sort the roots explicitly, but

we must be able to recover the order from the previous computation steps.

γb,b′ and δb curves We consider the set of interleavings I that the polyno-

mial tuple (F (x, b, z), F (y, b′, z)) realizes, where z is a variable, and x and y

are parameters. We identify four types of event that can happen when the

parameters x and y vary continuously (ignoring zero polynomials): (1) a real

root of Pi and a real root of Pj that were previously distinct become equal,

for some Pi and Pj in P , (2) a real root of Pi and a real root of Pj that were

previously equal become distinct, for some Pi and Pj in P, (3) a real root

appears in one of the polynomials, and (4) a real root disappears in one of

the polynomials. Note that many of those events can happen concurrently.

By definition of an interleaving, those events are the only ones that can

cause I to change.

To handle events of the types (1) and (2), we redefine the curves γb,b′

from §B.1.1:

γb,b′ = { (x, y) : ∃z such that F (x, b, z) = F (y, b′, z) = 0 },

that is, (a, a′) ∈ γb,b′ if and only if F (a, b, z) and F (a′, b′, z) have at least

one common root.6 Note that this curve is defined by the equation

res(F (x, b, z), F (y, b, z); z) = 0,

that is, the set of pairs (x, y) for which the resultant (in z) of F (x, b, z)

and F (y, b, z) vanishes. This resultant is a polynomial in R[x, y] of degree

O(deg(F)2) and can be computed in constant time [56]. The following

lemma follows by continuity of the manipulated curve:

Lemma B.8. Let (a1, a
′
1) and (a2, a

′
2) be two points in the plane such that

there does not exist an interleaving that both (F (a1, b, z), F (a′1, b
′, z)) and

(F (a2, b, z), F (a′2, b
′, z)) realize. Moreover, suppose that those two points

belong to a connected region in the plane such that for any point (a, a′) in

that region, the number of real roots of F (a, b, z) and F (a′, b′, z) is fixed (and

finite). Then the interior of any continuous path from (a1, a
′
1) to (a2, a

′
2)

lying in this connected region must intersect γb,b′.

6Note that Raz, Sharir, and de Zeeuw [138] use the same points and curves.

B. Subquadratic Algorithms for Algebraic 3SUM 115

Proof. Let I1 be an interleaving realized by (F (a1, b, z), F (a′1, b
′, z)) and

let I2 be an interleaving realized by (F (a2, b, z), F (a′2, b
′, z)). Because the

number of real roots of the polynomials F (x, b, z) and F (y, b′, z) is fixed

for any point (x, y) lying in the connected region, I1 and I2 differ by a

nonzero number of swaps. Moreover, by contradiction, there is a swap that

is common to every choice of I1 and I2. Since there is a common swap, for

some i, j ∈ [deg(F)] and without loss of generality, the ith root of F (a1, b, z)

is smaller than the jth root of F (a′1, b
′, z) whereas the ith root of F (a2, b, z)

is larger than the jth root of F (a′2, b
′, z). By continuity, on any continuous

path from (a1, a
′
1) and (a2, a

′
2) there is a point (a, a′) such that the ith root

of F (a, b, z) is equal to the jth root of F (a′, b′, z). This point cannot be an

endpoint of the path, hence, the interior of the path intersects γb,b′ .

The contrapositive states that, if there exists a continuous path from

(a1, a
′
1) to (a2, a

′
2) whose interior does not intersect the curve γb,b′ , then

there exists an interleaving realized by both (F (a1, b, z), F (a′1, b
′, z)) and

(F (a2, b, z), F (a′2, b
′, z)).

To handle events of the types (3) and (4), we define the curve

δb = { (x, z) : F (x, b, z) = 0 },

which lies in the xz-plane.

Lemma B.9. We can partition the x axis of the xz-plane into a constant

number of intervals so that for each interval the number of real roots of

F (a, b, z) is fixed for all a in this interval.

Proof. We partition the xz-plane into a constant number of vertical slabs

and lines. The x coordinates of vertical tangency points and singular points

of δb are the values a for which a real root of F (a, b, z) = 0 appears or

disappears. The number of singular and vertical tangency points of δb
is quadratic in deg(F). For each of those points, draw a vertical line that

contains the point. Those vertical lines partition the xz-plane into slabs and

lines. The number of vertical lines we draw is constant because the degree

of F is constant. Note that δb may contain vertical lines that correspond

to an infinite number of vertical tangency points. We refer to those as

degenerate lines. Figure B.5 depicts this drawing. The projection of the

vertical lines on the x axis produce the desired partition (with roughly half

116 B.1. First Subquadratic Algorithms for 3POL

C

n
g

a1 an
A

VTPSIP

0 1 2 1 2 1 0

of real roots of F (x, b, z) = 0

δb

0 0∞ ∞

DL DLVTP

Figure B.5. The vertical tangency points (VTP), self-intersection points (SIP)

and degenerate lines (DL) of δb partition the A axis into intervals. For all x of

the same interval, the polynomial F (x, b, z) ∈ R[z] has a fixed number of real

roots.

of the intervals being singletons). Let us name those lines δb-lines for further

reference.

We can do a symmetric construction for F (y, b′, z) in the zy-plane and

get horizontal δb′-lines.

Lemma B.10. We can partition the y axis of the zy-plane into a constant

number of intervals so that for each interval the number of real roots of

F (a′, b′, z) is fixed for all a′ in this interval.

Cells of the (b, b′)-partition For a given (b, b′) ∈ B2, let Γb,b′ be the

set containing the curve γb,b′ , the vertical δb-lines and the horizontal δb′-

lines. The arrangement A(Γb,b′) of those constant-degree polynomial curves

partitions R2 into a constant-size number of (b, b′)-cells.7 Those cells can

be connected regions, pieces of the curve γb,b′ , pieces of the δb- and δb′-lines

(vertical and horizontal line segments), and intersections and self-intersection

7Let P = ∪γ∈Γb,b′ γ and A = ∅. Add all intersection vertices of two curves in Γb,b′ to A.

Add each connected component of P \ A to A. Add each connected component of R2 \ P
to A. Finally A(Γb,b′) = A.

B. Subquadratic Algorithms for Algebraic 3SUM 117

A

n
g

n
g

a1 an

a1

an

A

γb,b′

Figure B.6. Cells obtained after partitioning the plane using the curve γb,b′

and the δb and δb′ -lines. The five darkened regions highlight examples of (b, b′)-

cells.

of those curves (vertices). This partitioning scheme is depicted in figure B.6.

By construction, all (b, b′)-cells have the following invariant property

Definition 13. A (b, b′)-cell has the invariant property if, for all points

(a, a′) in that cell, (1) the number of real roots of F (a, b, z) is fixed, (2) the

number of real roots of F (a′, b′, z) is fixed, and (3) either, at least one of

F (a, b, z) or F (a′, b′, z) is the zero polynomial, or the sorted order of the real

roots of F (a, b, z) and F (a′, b′, z) is fixed, that is, I((F (a, b, z), F (a′, b′, z)))

is fixed.

Lemma B.11. All (b, b′)-cells have the invariant property.

Proof. First, (1) and (2) hold for all (b, b′)-cells because of the partition

induced by the δb-lines and the δb′-lines. Second, (3) holds for all (b, b′)-

cells that are not contained in γb,b′ since (1) and (2) hold for those cells and

because of the partition induced by γb,b′ (see Lemma B.8). Third, (3) holds

for all (b, b′)-cells that are both contained in γb,b′ and some δb- or δb′-line

because one of the associated polynomials must be the zero polynomial.

Finally, if a (b, b′)-cell is contained in γb,b′ but not in any of the δb- or δb′-

lines, we make a simple observation. This cell has two distinct neighbouring

connected regions lying on each of its sides. We just showed that those two

118 B.1. First Subquadratic Algorithms for 3POL

neighbouring cells have the invariant property. The union of this piece of

γb,b′ with its two neighbouring cells is a connected region as in Lemma B.8.

Hence, the ordering of any two real roots cannot swap along the piece of

γb,b′ , as this would otherwise contradict Lemma B.8. Hence, (3) holds for

those pieces of γb,b′ .

This lemma implies that, provided we compute in which (b, b′)-cells each

(a, a′) point lies, we only need to probe a single point per (b, b′)-cell to reveal

the sorted permutation associated with each cell of the A×B partition.

Preprocessing Locate all points (a, a′) ∈ Ai ×Ai for all Ai with respect

to all γb,b′ curves, all vertical lines derived from δb and all horizontal lines

derived from δb′ for all (b, b′) ∈ Bj × Bj for all Bj . As in §B.1.1, this can

be done in a single batch using the algorithm described in §B.2.1, and the

following generalization of Lemma B.13:

Lemma B.12. Define

γ̂a,a′ = { (x, y) : res(F (a, x, z), F (a′, y, z); z) = 0 },

δ̂a-lines = { (x, y) : res(F (a, x, z), F ′x(a, x, z); z) = 0 },

δ̂a′-lines = { (x, y) : res(F (a′, y, z), F ′y(a
′, y, z); z) = 0 },

Γ̂a,a′ = γ̂a,a′ ∪ δ̂a-lines ∪ δ̂a′-lines.

Locating (a, a′) with respect to Γb,b′ amounts to locating (b, b′) with respect

to Γ̂a,a′.

This gives us the information needed for the binary search in step (2).

Analysis The analysis mirrors the explicit case (described immediately

after Lemma B.4). Combining Lemma B.7 and Lemma B.4 yields a bounded-

degree ADT of depth O((ng)4/3+ε + n2 log g/g) for 3POL. By optimizing

over g, we get g = Θ(n2/7−ε), and the previous expression simplifies to

O(n12/7+ε), proving Theorem 5.

B.1.4 Uniform Algorithm for 3POL

In this section, we combine the uniform algorithm for explicit 3POL

given in §B.1.2 with the nonuniform algorithm for 3POL given in §B.1.3 to

obtain a uniform subquadratic algorithm for 3POL.

B. Subquadratic Algorithms for Algebraic 3SUM 119

We recall the definition of the 3POL problem.

Problem 13 (3POL). Let F ∈ R[x, y, z] be a trivariate polynomial of con-

stant degree, given three sets A, B, and C, each containing n real numbers,

decide whether there exist a ∈ A, b ∈ B, and c ∈ C such that F (a, b, c) = 0.

We prove the following:

Contribution 6. 3POL can be solved in O
(
n2(log logn)3/2

(logn)1/2

)
time in the real-

RAM model.

Idea In the uniform algorithm for explicit 3POL of §B.1.2, we partition

the set A×B into very small sets Ai ×Bj , sort the sets f(Ai ×Bj) using

the dominance reporting algorithm of §B.2.2 then binary search on those

sorted sets in order to find a matching c. Here we devise a similar scheme

with the only difference that the sets to sort are the unions of the real roots

of the univariate polynomials F (a, b, z) ∈ R[z] over all (a, b) ∈ Ai ×Bj . The

main difficulty resides in implementing the equivalent of the certificates of

§B.1.2 to reuse the dominance reporting algorithm of §B.2.2. We show how

to implement those certificates using the γb,b′ and δb curves defined in §B.1.3.

A × B partition We use the same partitioning scheme as all previous

algorithms, hence Lemma B.6 and Lemma B.7 hold. We apply the same

certificate verification scheme as in §B.1.2, hence, the dominance reporting

algorithm of §B.2.2 and the analysis in §B.1.2 still apply.

Preprocessing The preprocessing algorithm is essentially the same as Al-

gorithm 5 with more complex certificates. We explain how to construct those

new certificates. The first part of the explanation consists in generalizing

the definition of a certificate. The rest of the explanation focuses on the

implementation of the verification of those certificates via offline Polynomial

Dominance Reporting.

The certificates For a fixed pair (a, b), F (a, b, z) ∈ R[z] is a univariate

polynomial in z of degree at most deg(F). Hence, F (a, b, z) has at most

deg(F) real roots. For each cell A∗i ×B∗j , let

Ai ×Bj = { (ai,1, bj,1), (ai,1, bj,2), . . . , (ai,2, bj,1), (ai,2, bj,2), . . . , (ai,g, bj,g) }.

120 B.1. First Subquadratic Algorithms for 3POL

Let ρ : [g]2 → { 0, 1, . . . ,deg(F) } be a function that maps a pair (k, l) to

the number of real roots of F (ai,k, bj,l, z). Let Σρ =
∑

(i,j)∈[g]2 ρ(i, j) ≤
g2 deg(F). Given a function ρ, let π : [Σρ]→ [g]2 × { 1, 2, . . . ,deg(F) } be a

permutation of the union of the real roots of all g2 polynomials

F (ai,1, bj,1, z), F (ai,1, bj,2, z), . . . , F (ai,2, bj,1, z), . . . , F (ai,g, bj,g, z),

where the number of real roots of each polynomial is prescribed by ρ. De-

compose π = (πr, πc, πs) into row, column and real root number functions

πr, πc : [Σρ]→ [g], and πs : [Σρ]→ { 1, 2, . . . ,deg(F) }. Let �(a, b, s) denote

the sth real root of F (a, b, z). To fix the permutation of the union of the real

roots of all g2 polynomials, we define the following interleaving certificate

with Σρ − 1 inequalities, for each possible function ρ and permutation π

Φρ,π = �(ai,πr(1), bj,πc(1), πs(1)) ≤ · · · ≤ �(ai,πr(Σρ), bj,πc(Σρ), πs(Σρ)).

To fix the number of real roots each of the g2 polynomials can have, we

define the following cardinality certificate for each function ρ

Ψρ =
∧

(k,l)∈[g]2

F (ai,k, bj,l, z) has ρ(k, l) real roots.

For each possible function ρ and permutation π we define the certificate

Υρ,π = Ψρ ∧ Φρ,π that fixes both the number of real roots each polynomial

has and the permutation of those real roots. The total number of certificates

Υρ,π is
∑

ρ : [g]2→{ 0,1,...,deg(F) }Σρ! which is of the order of (g2)
O(g2)

.

Finally, we need to handle the edge cases where a polynomial F (a, b, z)

is the zero polynomial. In that case, F (a, b, z) cancels for all z ∈ R. Hence,

all planar curves F (x, y, c) = 0 go through (a, b) and we can immediately

accept the 3POL instance. To capture those edge cases, we will check the

following certificate before running the main algorithm

ℵ =
∨

(k,l)∈[g]2

F (ai,k, bj,l, z) is the zero polynomial.

We can check if ℵ holds for any cell Ai×Bj in O(n log n) time. For each

b ∈ B binary search for a a ∈ A that lies on a vertical line component of δb.

If this certificate is verified we accept and halt. Otherwise we can safely

run the main algorithm.

B. Subquadratic Algorithms for Algebraic 3SUM 121

A×A (b, b′)-partitions For each Bj and for each (b, b′) ∈ B2
j compute a

partition of the A× A grid according to the (b, b′)-cells defined by Γb,b′ —

see §B.1.3. For each (b, b′)-cell of that partition, pick a sample point (a, a′),

compute the interleaving I((F (a, b, z), F (a′, b′, z))). Store that information

for future lookup. All this takes O(ng) time.

Offline PDR instance for Ψρ For a fixed pair (a, b), suppose F (a, b, z)

has r real roots. Then a must lie in one of the open intervals or be one of

the breaking points defined by the VTP, SIP and DL of δb that fixes the

number of real roots of F (a, b, z) to r. Hence Ψρ can be rewritten as follows

Ψρ =
∧

(k,l)∈[g]2

 ∨
[u,v]∈Iρ(k,l)

u < ai,k < v

∨ ∨
w∈Bρ(k,l)

ai,k = w


where Iρ(k,l) denotes the set of intervals fixing the number of real roots of

F (ai,k, bj,l, z) to ρ(k, l), and Bρ(k,l) denotes the set of breaking points fixing

the number of real roots of F (ai,k, bj,l, z) to ρ(k, l).

The offline PDR algorithm can only check conjunctions of polynomial in-

equalities. However, we can transform Ψρ into disjunctive normal form (DNF)

by splitting the certificate into distinct branches, each consisting of a con-

junction of polynomial inequalities. Since the number of intervals and

breaking points considered above is constant for each pair (k, l), the number

of branches to test is 2O(g2).

For each Ai we have thus a single vector of reals

pi = (ai,1, ai,1, ai,2, ai,2, . . . , ai,g, ai,g),

and for each Bj we have 2O(g2) vectors of linear inequalities

qj = (x ./u1,1 u1,1, x ./v1,1 v1,1, x ./u1,2 u1,2, x ./v1,2 v1,2, . . .

. . . , x ./ug,g ug,g, x ./vg,g vg,g,),

where each (./uk,l , uk,l, ./vk,l , vk,l) is an element of

{ (>, u,<, v) : (u, v) ∈ Iρ(k,l) } ∪ { (=, w,=, w) : w ∈ Bρ(k,l) }.

For a fixed function ρ, the sets of vectors pi and qj is a valid offline PDR

instance of size N = (n/g) · 2O(g) = n2O(g) and with parameter k = 2g2

that will output all cells A∗i ×B∗j such that F (ai,k, bj,l, z) ∈ R[z] has exactly

ρ(k, l) real roots for all (ai,k, aj,l) ∈ Ai ×Bj .

122 B.1. First Subquadratic Algorithms for 3POL

Offline PDR instance for Φρ,π For fixed pairs (a, b) and (a′, b′), suppose

the s-th real root of F (a, b, z) is smaller or equal to the q-th real root of

F (a, b, z). Then, (a, a′) must lie in a (b, b′)-cell that orders the s-th root of

F (x, b, z) before the q-th root of F (y, b′, z) for all points (x, y) in that cell.

Hence Φρ,π can be rewritten as follows

Φρ,π =
∧

t∈[Σρ−1]

∨
C∈Cρ,π,t

(ai,πr(t), ai,πr(t+1)) ∈ C

where Cρ,π,t denotes the set of (b, b′)-cells fixing to ρ(πr(t), πc(t)) the number

of real roots of F (ai,πr(t), bj,πc(t), z), fixing to ρ(πr(t+1), πc(t+1)) the number

of real roots of F (ai,πr(t+1), bj,πc(t+1), z), and ordering the πs(t)-th root of

F (ai,πr(t), bj,πc(t), z) before the πs(t+ 1)-th root of F (ai,πr(t+1), bj,πc(t+1), z).

The offline PDR algorithm can only check conjunctions of polynomial

inequalities. However, we can transform Φρ,π in DNF as we did for Ψρ. Again

the number of cells considered above is constant for each t, the description

of each cell is constant, hence, the number of branches to test is 2O(g2).

For each Ai we have thus a single vector of 2-dimensional points

pi = (. . . , (ai,πr(1), ai,πr(2)), . . .︸ ︷︷ ︸
ω

, . . . , . . . , (ai,πr(Σρ−1), ai,πr(Σρ)), . . .︸ ︷︷ ︸
ω

),

where ω is the size of the largest description of a (b, b′)-cell C, and for each

Bj we have 2O(g2) vectors of polynomial inequalities,

qj = (. . . , h1,ϑ(x, y) ./1,ϑ 0, . . .︸ ︷︷ ︸
ϑ∈[ω]

, . . . , . . . , hΣρ−1,ϑ(x, y) ./Σρ−1,ϑ 0 . . .︸ ︷︷ ︸
ϑ∈[ω]

),

where each (. . . , ht,ϑ(x, y) ./t,ϑ 0, . . .) is an element of {desc(C) : C ∈ Cρ,π,t },
where desc(C) is the description of the cell C given as a certificate of

belonging to C in the form of a Tarski sentence. The description of each

(b, b′)-cell is padded with its last component so that it has length ω.

For a fixed function ρ, for a fixed function π, the sets of vectors pi
and qj is a valid offline PDR instance of size N = n2O(g) and with pa-

rameter k = Θ(g2) that will output all cells A∗i × B∗j such that the num-

ber of real roots of F (ai,πr(t), bj,πc(t), z) is ρ(πr(t), πc(t)), the number of

real roots of F (ai,πr(t+1), bj,πc(t+1), z) is ρ(πr(t + 1), πc(t + 1)), and the

πs(t)-th root of F (ai,πr(t), bj,πc(t), z) comes before the πs(t + 1)-th root of

F (ai,πr(t+1), bj,πc(t+1), z), for all t ∈ [Σρ − 1].

B. Subquadratic Algorithms for Algebraic 3SUM 123

Offline PDR instance for Υρ,π We can combine the certificates given

above for Ψρ and Φρ,π to obtain the ones for Υρ,π: concatenate the pi and

qj together (add a dummy y variable for the pi and qj of Ψρ). For a fixed

function ρ, for a fixed function π, the sets of vectors pi and qj is a valid offline

PDR instance of size N = n2O(g) and with parameter k = Θ(g2) that will

output all cells A∗i ×B∗j such that F (ai,k, bj,l, z) ∈ R[z] has exactly ρ(k, l) real

roots for all (ai,k, bj,l) ∈ Ai×Bj , and the πs(t)-th root of F (ai,πr(t), bj,πc(t), z)

comes before the πs(t + 1)-th root of F (ai,πr(t+1), bj,πc(t+1), z) for all t ∈
[Σρ − 1]. The rest of the analysis in §B.1.2 applies. This proves Theorem 6.

B.2 Subproblems

In §B.2.1 we prove Lemma B.4 necessary for the implementation of our

nonuniform algorithms. In §B.2.2 we prove Lemma B.5 necessary for the

implementation of our uniform algorithms.

B.2.1 Offline Polynomial Range Searching

In this section we present a uniform algorithm that computes the relative

position of M points with respect to N γb,b′ curves. We call such a problem

an (M,N)-problem. When M = N the complexity of the algorithm is

O(N4/3+ε). The algorithm gives the output in “concise form”: it outputs

a set of (Πα,Γβ, σ) triples where Πα is a subset of input points, Γβ is a

subset of input curves, and σ ∈ {−, 0,+ } indicates the relative position of

all points in Πα with respect to all curves in Γβ. Note that if one is only

interested in incident point-curve pairs, the algorithm can explicitly report

all of them in O(N4/3+ε) time, because there are at most O(N4/3) such pairs

and because they can easily be filtered from the output.

Tools The proof of Lemma B.4 involves stantard computational geometry

tools: vertical decomposition of an arrangement of polynomial curves (see

§6.4.2), ε-nets (see §8.1.3) and cuttings (see §8.1.5). cand derandomization.

Proof of Lemma B.4. Fix some constant r ≥ 2. If M < r2 or N < r, solve

by brute-force in O(M + N) time. Otherwise, consider the range space

defined by γb,b′ curves and y-axis aligned trapezoidal patches whose top

and bottom sides are pieces of γb,b′ curves. This range space has constant

124 B.2. Subproblems

VC-dimension. Compute an 1
r -net of sizeO(r log r) for the input curves with

respect to this range space. Compute the vertical decomposition Ξ of the

arrangement of this 1
r -net. This decomposition is a 1

r -cutting: it partitions

R2 into O(r2 log2 r) cells of constant complexity each of which intersects

at most N
r input curves. Note that some of those cells are degenerate

trapezoidal patches. The decomposition contains vertices, line segments,

and curve segments as cells, each of which could contain input points and

be intersected or contained by an input curve. Denote by ΠC the set of

points contained in the cell C ∈ Ξ. Partition each ΠC into
⌈
|ΠC |
Mr−2

⌉
disjoint

subsets of size at most M
r2 . All of this can be done in O(M +N) time. The

last step consists in solving O(r2 log2 r) (M
r2 ,

N
r)-problems, that is, solving

the problem recursively for the points and curves intersecting each cell.

Each recursive call is done by swapping the roles of the points and curves

using a form of duality to be described below. The whole algorithm can be

formally described as follows,

Algorithm 6 (Offline Polynomial Range Searching).

input A set Π of M points (a, a′), A set Γ of N curves γb,b′ .

output A set of triples (Πα,Γβ, σ) covering Π × Γ such that, for any

triple (Πα,Γβ, σ), for all points (a, a′) in Πα and all curves γ in Γβ,

(a, a′) ∈ γσ.

0. If M < r2 or N < r, solve the problem by brute force in O(M + N)

time.

1. Compute an 1
r -net of size O(r log r) for the input curves.

2. Compute the vertical decomposition Ξ of the arrangement of this 1
r -

net.

3. Denote by ΠC the set of points contained in the cell C ∈ Ξ. Partition

each ΠC into
⌈
|ΠC |
Mr−2

⌉
disjoint subsets ΠC,i of size at most M

r2 .

4. For each cell C of the vertical decomposition,

4.1. For each subset ΠC,i of points contained in that cell,

4.1.1. Solve an (Nr ,
M
r2)-problem on the curves intersecting that cell and

the points in ΠC,i, swapping the roles of lines and curves via duality.

4.2. For each curve γ not intersecting C,

4.2.1. Compute the location σC,γ of any point in C with respect to γ.

B. Subquadratic Algorithms for Algebraic 3SUM 125

4.3. Output ({ γ : σC,γ = −},ΠC ,−).

4.4. Output ({ γ : σC,γ = + },ΠC ,+).

4.5. Output ({ γ : σC,γ = 0 },ΠC , 0).

Correctness We want to locate each point with respect to each curve.

When considering a curve-cell pair, there are two cases: either the curve

intersects the cell, or it does not. For the first case we locate each point

in the cell with respect to the curve in one of the recursive steps. For the

second case, the relative position of all points in the cell with respect to

the curve is the same, it suffices thus to locate one of those points with

respect to the curve to get the location of all the points in O(1) time. Each

recursive call divides M and N by some constant strictly greater than one,

hence, the base case is reached in each of the paths of the recursion tree

and the algorithm always terminates.

Analysis For c1 some constant and bounding c1r
2 log2 r above by c2r

2+ε

for some large enough constant c2, the complexity T (M,N) of an (M,N)-

problem is thus

T (M,N) ≤ c2r
2+ε T

(
M

r2
,
N

r

)
+O(M +N).

The complexity T (N,M) of a (N,M)-problem is the same as the complexity

T (M,N) of an (M,N)-problem by the following point-curve duality result

whose proof is straightforward

Lemma B.13. Define

γ̂a,a′ = { (x, y) : f(a, x) = f(a′, y) },

then, locating (a, a′) with respect to γb,b′ amounts to locating (b, b′) with

respect to γ̂a,a′.

By doing alternately one step in the primal with the points (a, a′) and

the curves γb,b′ , then a second step with the dual points (b, b′) and the dual

126 B.2. Subproblems

curves γ̂a,a′ , we get the following recurrence

T (M,N) ≤ c2
2r

4+ε T

(
M

r3
,
N

r3

)
+ c2r

2+εO

(
M

r2
+
N

r

)
+O(M +N)

≤ c2
2r

4+ε T

(
M

r3
,
N

r3

)
+O(M +N)

Hence, for some large enough constant c3,

T (N,N) = T (N) ≤ c3r
4+ε T

(
N

r3

)
+O(N)

≤ O
(
N logr3 (c3r4+ε)

)
≤ O(N

4
3

+ε).

B.2.2 Offline Polynomial Dominance Reporting

We combine a standard dominance reporting algorithm [132] with Ma-

toušek’s algorithm [114] to prove Lemma B.5. For a pair of blue and red

points in Rk, we say that the blue point dominates the red point if for all

indices i ∈ [k] the ith coordinate of the blue point is greater or equal to the

ith coordinate of the red point. The standard algorithm in [132] solves the

following problem:

Problem 19 (Offline Dominance Reporting). Given N blue and M red

points in Rk, report all bichromatic dominating pairs.

Our problem is significantly more complicated and general. Instead of

blue points we have blue k-tuples pi of 2-dimensional points, instead of red

points we have red k-tuples qj of bivariate polynomial inequalities, and we

want to report all bichromatic pairs (pi, qj) such that, for all t ∈ [k], the point

pi,t verifies the inequality qj,t. The standard algorithm essentially works by

a combination of divide and conquer and prune and search, using a one-

dimensional cutting (median selection) to split a problem into subproblems.

We generalize the standard algorithm by using higher dimensional cuttings, in

a way similar to Matoušek’s algorithm [114]. For the analysis, we generalize

Chan’s analysis of the standard algorithm when k is not constant [44].

B. Subquadratic Algorithms for Algebraic 3SUM 127

Proof of Lemma B.5. We use the Veronese embedding [100, 101]. Since

the polynomials have constant degree, we can trade polynomial inequalities

for linear inequalities by lifting to a space of higher — but constant —

dimension. The degree of each polynomial is at most ∆. There are exactly

d =
(

∆+2
2

)
− 1 different bivariate monomials of degree at most ∆.8 To each

monomial we associate a variable in Rd. By this association, points in the

plane are mapped to points in Rd and bivariate polynomial inequalities are

mapped to d-variate linear inequalities.

By abuse of notation, let pi denote the tuple pi where each 2-dimensional

point has been replaced by its d-dimensional counterpart, and let qi denote

the tuple qi where each bivariate polynomial inequality has been replaced

by its d-variate linear counterpart. We have N k-tuples pi and M k-tuples

qj . The algorithm checks each of the k components of the tuples in turn

and can be described recursively as follows for some positive integer r > 1:

Algorithm 7 (Offline Polynomial Dominance Reporting).

input N k-tuples pi of d-dimensional points, M k-tuples qj of d-variate

linear inequalities.

output All (pi, qj) pairs such that, for all t ∈ [k], the point pi,t verifies

the inequality qj,t.

1. If k = 0, then output all pairs (pi, qj) and halt.

2. If N < rd or M < r, solve the problem by brute force in O((N +M)k)

time.

3. We now only consider the kth component of each input k-tuple and call

these active components. To each active d-variate linear inequality

corresponds a defining hyperplane in Rd. Construct, as in [114], a

hierarchical cutting of Rd using O(rd) simplicial cells such that each

simplicial cell is intersected by at most M
r of the defining hyperplanes.

This construction also gives us for each simplicial cell of the cutting

the list of defining hyperplanes intersecting it. This takes O(Mrd−1)

time. Locate each active point inside the hierarchical cutting in time

O(N log r). Let S be a simplicial cell of the hierarchical cutting.

Denote by ΠS the set of active points in S. Partition each ΠS into

8Not including the independent monomial, namely, 1.

128 B.2. Subproblems

⌈
|ΠS |
Nr−2

⌉
disjoint subsets of size at most N

rd
. For each simplicial cell,

find the active inequalities whose corresponding geometric object

(hyperplane, closed or open half-space) contains the cell. This takes

O(Mrd) time. The whole step takes O(N log r +Mrd) time.

4. For each of the O(rd) simplicial cells, recurse on the at most N
rd
k-tuples

pi whose active point is inside the simplicial cell and the at most M
r

k-tuples qj whose active inequality’s defining hyperplane intersects

the simplicial cell.

5. For each of the O(rd) simplicial cells, recurse on the at most N
rd

(k −
1)-prefixes of k-tuples pi whose active point is inside the simplicial

cell and the (k − 1)-prefixes of k-tuples qj whose active inequality’s

corresponding geometric object contains the simplicial cell.

Correctness In each recursive call, either k is decremented or M and N

are divided by some constant strictly greater than one, hence, one of the

conditions in steps 1 and 2 is met in each of the paths of the recursion

tree and the algorithm always terminates. Step 5 is correct because it only

recurses on (pi, qj) pairs whose suffix pairs are dominating. The base case

in step 1 is correct because the only way for a pair (pi, qj) to reach this

point is to have had all k components checked in step 5. The base case in

step 2 is correct by definition. Each dominating pair is output exactly once

because the recursive calls of step 4 and 5 partition the set of pairs (pi, qj)

that can still claim to be candidate dominating pairs.

Analysis For k,N,M ≥ 0, the total complexity Tk(N,M) of comput-

ing the inclusions for the first k components, excluding the output cost

(steps 1 and 2), is bounded, in general, by

Tk(N,M) ≤ O(rd)Tk−1(N,M)︸ ︷︷ ︸
Step 5

+O(rd)Tk

(
N

rd
,
M

r

)
︸ ︷︷ ︸

Step 4

+O(N +M)︸ ︷︷ ︸
Step 3

,

and, in particular, by Tk(N,M) = 0 when k = 0, Tk(N,M) = O(Nk) when

M < r, and Tk(N,M) = O(Mk) when N < rd.

By point-hyperplane duality, Tk(N,M) = Tk(M,N), hence, we can ex-

ecute step 4 on dual linear inequalities and dual points to balance the

B. Subquadratic Algorithms for Algebraic 3SUM 129

recurrence. For some constant c1 ≥ 1,

Tk(N,M) ≤ c1r
2d Tk−1(N,M) + c1r

2d Tk

(
N

rd+1
,
M

rd+1

)
+ c1(N +M).

For simplicity, we ignore some problem-size reductions occuring in this bal-

ancing step.

Let Tk(N) = Tk(N,N) denote the complexity of solving the problem

when M = N , excluding the output cost. Hence, we have

Tk(N) ≤ c1r
2d Tk−1(N) + c1r

2d Tk

(
N

rd+1

)
+ c1N, (B.1)

and, in particular, Tk(N) = 0 when k = 0, and Tk(N) = O(k) when

N < rd+1.

To get rid of the parameter k and progress into the analysis of the re-

currence, Chan makes an ingenious change of variable [44]. With hindsight,

choose b = rd+1 and let

T (N ′) = max
{
Tk(N) : k ≥ 0, N ≥ 1, and bkN ≤ N ′

}
. (B.2)

For the rest of the discussion, we shorten the notation to

T (N ′) = max
bkN≤N ′

Tk(N).

By combining (B.1) and (B.2) we obtain

T (N ′) = max
bkN≤N ′

Tk(N) ≤ c1 max
bkN≤N ′

[
r2d Tk−1(N) + r2d Tk

(
N

rd+1

)
+N

]
.

The maximum of a sum is always bounded by the sum of the maxima of

its terms, hence,

T (N ′) ≤ max
bkN≤N ′

[
c1r

2d Tk−1(N)
]

+ max
bkN≤N ′

[
c1r

2d Tk

(
N

rd+1

)]
+ max
bkN≤N ′

[c1N].

Looking at each term separately, by definition of T (N ′), we have

max
bkN≤N ′

Tk−1(N) = max
bk−1N≤N′

b

Tk−1(N) = T

(
N ′

b

)
= T

(
N ′

rd+1

)
,

max
bkN≤N ′

Tk

(
N

rd+1

)
= max

bk N

rd+1≤
N′
rd+1

Tk

(
N

rd+1

)
= T

(
N ′

rd+1

)
,

max
bkN≤N ′

N = max
N≤N′

bk

N =
N ′

bk
≤ N ′,

130 B.2. Subproblems

which, when combined with the previous inequality, produce the following

recurrence

T (N ′) ≤ 2c1r
2d T

(
N ′

rd+1

)
+ c1N

′.

Powers of rd+1 We claim that if N ′ is a power of rd+1, then T (N ′) ≤
c2[N ′α −N ′] for some constants α > 1 and c2 ≥ 1. We prove by induction

that this (educated) guess is indeed correct. For N ′ = 1, we have

T (1) = max
bkN≤1

Tk(N) = T0(1) = 0 ≤ c2[1α − 1].

For N ′ ≥ rd+1 a power of rd+1, and assuming the claim holds for all smaller

powers:

T (N ′) ≤ 2c1r
2dc2

[(
N ′

rd+1

)α
− N ′

rd+1

]
+ c1N

′

≤ c2N
′α
[

2c1r
2d

(rd+1)
α

]
− c2N

′
[
2c1r

d−1 − c1

c2

]
.

We want
c1r

2d

(rd+1)
α ≤

1

2
and 2c1r

d−1 − c1

c2
≥ 1.

For the first inequality, we can set the left hand side to be equal to c1r
−ε′ = 1

2

with some small ε′ = 1+log c1
log r . Hence, 2d− α(d+ 1) = −ε′, and for ε = ε′

d+1 ,

we get α = 2d
d+1 + ε. The second inequality is equivalent to 2rd−1 ≥ 1

c1
+ 1

c2
,

which always holds since r > 1, d ≥ 1, c1 ≥ 1, c2 ≥ 1.

We now have

T (N ′) = O
(
N ′

2d
d+1

+ε
)
,

where ε = 1+log c1
(d+1) log r can be chosen arbitrarily small by picking an arbitrarily

large r = (2c1)1/ε(d+1).

Remark The choice b = rd+1 gives a simpler analysis. Although giving

more freedom to the value of b — as in Chan’s paper — yields a slightly

better relation between ε and r, namely r > c
1/ε(d+1)
1 , it does not get rid of

the dependency of ε in r, unless c1 = 1.

B. Subquadratic Algorithms for Algebraic 3SUM 131

General case When N ′ ≥ 2 is not a power of rd+1, we use the fact that

T (N ′) ≤ T (N ′ + 1) by definition,

T (N ′) = T
(

(rd+1)
log

rd+1 N
′)

≤ T
(

(rd+1)
blog

rd+1 N
′c+1

)
= O

(
(rd+1)

(blog
rd+1 N

′c+1)(2d
d+1

+ε)
)

= O

(
(rd+1)

2d
d+1

+ε
(rd+1)

blog
rd+1 N

′c
2d
d+1

+ε
)

= O

(
(rd+1)

blog
rd+1 N

′c
2d
d+1

+ε
)

= O

(
(rd+1)

log
rd+1 N

′ 2d
d+1

+ε
)

= O
(
N ′

2d
d+1

+ε
)
.

Finally We can now bound Tk(N) using the upper bound for T (N ′),

Tk(N) ≤ max
bkiNi≤bkN

Tki(Ni) = T (bkN) = O

(
(bkN)

2d
d+1

+ε
)

= 2O(k)N
2d
d+1

+ε.

Hence, Tk(N) = 2O(k)N
2d
d+1

+εr , and since d =
(

∆+2
2

)
− 1, we have

Tk(N) = 2O(k)N
2− 4

∆2+3∆+2
+εr .

To that complexity we add a constant time unit for each output pair in

steps 1 and 2.

B.3 Applications

To illustrate the expressive power of 3POL, we give some geometric

applications in the sections that follow. We show the following:

1. GPT can be solved in subquadratic time provided the input points lie

on few parameterized constant-degree polynomial curves.

132 B.3. Applications

2. In the plane, given three sets Ci of n unit circles and three points pi
such that a circle c ∈ Ci contains pi, deciding whether there exists

(a, b, c) ∈ C1 × C2 × C3 such that a ∩ b ∩ c 6= ∅ can be done in

subquadratic time.

3. Given n input points in the plane, deciding whether any triple spans

a unit triangle can be done in subquadratic time, provided the input

points lie on few parameterized constant-degree polynomial curves.

B.3.1 GPT for Points on Curves

The following is a corollary of Theorem 2.17 in Raz, Sharir and de

Zeeuw [138]

Corollary B.14 (Raz, Sharir and de Zeeuw [138]). Any n points on an irre-

ducible algebraic curve of degree d in C2 determine Õd(n
11
6) proper collinear

triples, unless the curve is a line or a cubic.

An interesting application of our results is the existence of subquadratic

nonuniform and uniform algorithms for the computational version of this

corollary.

Problem 20 (GPT on curves). Let C1, C2, C3 be three (not necessarily

distinct) parameterized constant-degree polynomial curves in R2, so that

each Ci can be written (gi(t), hi(t)) for some polynomials of constant degree

gi, hi. Given three n-sets S1 ⊂ C1, S2 ⊂ C2, S3 ⊂ C3, decide whether there

exist any collinear triple of points in S1 × S2 × S3.

Theorem B.15. GPT on curves reduces linearily to 3POL.

Proof. For each set Si, construct the set Ti = { t : p ∈ Si, p = (gi(t), hi(t)) }.
Testing whether there exists a collinear triple in S1 × S2 × S3 amounts to

testing whether any determinant∣∣∣∣∣∣∣
g1(t1) h1(t1) 1

g2(t2) h2(t2) 1

g3(t3) h3(t3) 1

∣∣∣∣∣∣∣
equals zero. This determinant is a trivariate constant-degree polynomial in

R[t1, t2, t3]. Solving the original problem amounts thus to deciding whether

this polynomial cancels for any triple (t1, t2, t3) ∈ T1 × T2 × T3.

B. Subquadratic Algorithms for Algebraic 3SUM 133

Note that a similar polynomial predicate exists for testing collinearity in

higher dimension.

Lemma B.16. Let p = (p1, p2, . . . , pd), q = (q1, q2, . . . , qd), and r =

(r1, r2, . . . , rd) be three points in Rd, then p, q, and r are collinear if and

only if[
d∑
i=1

(pi − ri)(qi − pi)
]2

−
[

d∑
i=1

(pi − ri)2

][
d∑
i=1

(qi − pi)2

]
= 0.

Proof. Let a = (p1, p2, . . . , pd), b = (q1, q2, . . . , qd), and c = (r1, r2, . . . , rd)

be three points in Rd. The points p, q, and r are collinear if and only if

r = p+ λ(q − p) for some unique λ ∈ R, that is

(p− r) + λ(q − p) = 0,

⇒ ∀i ∈ [d] : (pi − ri) + λ(qi − pi) = 0,

⇒
d∑
i=1

[(pi − ri) + λ(qi − pi)]2 = 0,

⇒
d∑
i=1

[
(qi − pi)2λ2 + 2(pi − ri)(qi − pi)λ+ (pi − ri)2

]
= 0,

⇒
[

d∑
i=1

(qi − pi)2

]
︸ ︷︷ ︸

A

λ2 +

[
2

d∑
i=1

(pi − ri)(qi − pi)
]

︸ ︷︷ ︸
B

λ+

[
d∑
i=1

(pi − ri)2

]
︸ ︷︷ ︸

C

= 0,

⇒ λ =
−B ±

√
B2 − 4AC

2A
.

For λ to exist and be unique B2 − 4AC must be zero. Hence, p, q, and

r are collinear if and only if[
2

d∑
i=1

(pi − ri)(qi − pi)
]2

− 4

[
d∑
i=1

(pi − ri)2

][
d∑
i=1

(qi − pi)2

]
= 0.

Moreover, the improvement that we obtain in the time complexity of

3POL can be exploited to boost the number of curves we pick the points

from.

134 B.3. Applications

Theorem B.17. Let C1, C2, . . . , Ck be k = o
(

(log n)
1
6 /(log log n)

1
2

)
(not

necessarily distinct) constant-degree polynomial curves in Rd. Given k n-sets

Sij ⊂ Cij , deciding whether there exists any collinear triple of points in any

triple of sets Si1 × Si2 × Si3 can be solved in subquadratic time.

Proof. Solve a 3POL instance for each choice of Si1 ×Si2 ×Si3 . Since there

are o
(

(log n)
1
2 /(log log n)

3
2

)
such choices, the theorem follows.

B.3.2 Incidences on Unit Circles

Raz, Sharir and Solymosi [142] mention the following problem as a special

case of the framework they introduce. Let p1, p2, p3 be three distinct points

in the plane, and, for i = 1, 2, 3, let Ci be a family of n unit circles (a circle

of radius 1) that pass through pi. Their goal is to obtain an upper bound

on the number of triple points, which are points that are incident to a circle

of each family. They prove:

Theorem B.18. Let p1, p2, p3 be three distinct points in the plane, and, for

i = 1, 2, 3, let Ci be a family of n unit circles that pass through pi. Then the

number of points incident to a circle of each family is O(n11/6).

They observe that the following dual formulation is equivalent to their

original problem:

Theorem B.19. Let C1, C2, C3 be three unit circles in R2, and, for each

i = 1, 2, 3, let Si be a set of n points lying on Ci. Then the number of unit

circles, spanned by triples of points in S1 × S2 × S3, is O(n11/6).

Our new algorithms indeed allow us to solve the decision version of their

problems in subquadratic time.

Problem 21. Let C1, C2, C3 be three unit circles in R2 with centers ci, and,

for each i = 1, 2, 3, let Si = { (xi,1, yi,1), (xi,2, yi,2), . . . , (xi,n, yi,n) } be a set

of n points lying on Ci. Decide whether any triple of points (p1, p2, p3) ∈
S1 × S2 × S3 spans a unit circle.

Theorem B.20. Problem 21 can be solved in O(n2(log logn)
3
2 /(log n)

1
2)

time.

B. Subquadratic Algorithms for Algebraic 3SUM 135

Proof. Without loss of generality, assume all input points lie on the right

y-monotone arc of their respective circle. All other seven cases can be

handled similarly. We can also assume that no input point is the top or

bottom vertex of its circle, rotating the plane if necessary.

Given three points p1, p2, and p3, let

x = ‖p1 − p2‖, X = x2, y = ‖p1 − p3‖, Y = y2, z = ‖p2 − p3‖, Z = z2.

Testing if the three points p1, p2, and p3 span a unit circle amounts to

testing whether

X2 + Y 2 + Z2 − 2XY − 2XZ − 2Y Z +XY Z = 0.

The fact that the input points lie on the right y-monotone arc of unit

circles of centers c1, c2, c3 allows us to get down to a single variable per

point. Let ci = (cxi , c
y
i) and ti,j =

√
1−xi,j+cxi
1+xi,j−cxi

. Then the jth input point of

the ith circle can be expressed as

pi,j = (xi,j , yi,j) = ci +

(
1− t2i,j
1 + t2i,j

,
2ti,j

1 + t2i,j

)
.

Combining those two observations with some algebraic manipulations,

one can show that there exists some trivariate polynomial F of degree at

most 24 that cancels on t1, t2, t3 when the points c1 +
(

1−t21
1+t21

, 2t1
1+t21

)
, c2 +(

1−t22
1+t22

, 2t2
1+t22

)
, and c3 +

(
1−t23
1+t23

, 2t3
1+t23

)
span a unit circle.

Hence, the polynomial F together with the sets { t1,1, t1,2, . . . , t1,n },
{ t2,1, t2,2, . . . , t2,n }, and { t3,1, t3,2, . . . , t3,n } give an instance of 3POL we

can solve in subquadratic time with our new algorithms.

Unfortunately, the computation
√
· is not allowed in our model, and so,

we cannot compute ti,j . However, we can generalize the 3POL problem to

make it fit:

Problem 22 (Modified 3POL). Let F ∈ R[x, y, z] be a trivariate polyno-

mial of constant degree, given three sets A, B, and C, each containing n

real numbers, decide whether there exist a ∈ A, b ∈ B, and c ∈ C such that

∃t1, t2, t3(t21 = a ∧ t22 = b ∧ t23 = c ∧ F (t1, t2, t3) = 0).

136 B.3. Applications

Hence, the polynomial F together with the sets { t21,1, t21,2, . . . , t21,n },
{ t22,1, t22,2, . . . , t22,n }, and { t23,1, t23,2, . . . , t23,n } give an instance of this variant

of 3POL. Note that those sets are computable in our models.

We can tweak our algorithms so that they work for this new version of

3POL. We prefix each decision we make on the first-order theory of the

reals with an existential quantifier and a condition of the type t2i = x, with

x the square of ti, when we reference ti in the formula we test. This new

algorithm answers positively if and only if the original problem contains a

triple of points spanning a unit circle.

In general, any constant-degree polynomial curve can be decomposed

in a constant number of pieces as above. Each point on this curve can be

given a parameterization that might involve roots of its coordinates. Those

can be taken care of by appropriately augmenting the Tarski sentences in

our algorithm with equations that encode those roots for free.

B.3.3 Points Spanning Unit Triangles

A similar problem, namely counting the number of input point triples

spanning an area S triangle (provided they lie on a few curves), can also

easily be reduced to 3POL. The polynomial to look at in this case is

F (x, y, z) = X2 + Y 2 + Z2 − 2XY − 2XZ − 2Y Z + 16S2.

Note that when the input points lie in the plane, the number of solutions

is more than quadratic [137, 140].

IV
Data Structures

C
Subquadratic Encodings for

Point Configurations

with Jean Cardinal, Timothy Chan, John Iacono, and Stefan Langerman

For many algorithms dealing with sets of points in the plane, the only

relevant information carried by the input is the combinatorial configuration

of the points: the orientation of each triple of points in the set (clockwise,

counterclockwise, or collinear). This information is called the order type of

the point set. In the dual, realizable order types and abstract order types are

combinatorial analogues of line arrangements and pseudoline arrangements.

Too often in the literature we analyze algorithms in the real-RAM model for

simplicity, putting aside the fact that computers as we know them cannot

handle arbitrary real numbers without some sort of encoding. Encoding an

order type by the integer coordinates of a realizing point set is known to

yield doubly exponential coordinates in some cases. Other known encodings

can achieve quadratic space or fast orientation queries, but not both. In

§C.1, we give a compact encoding for abstract order types that allows an

efficient query of the orientation of any triple: the encoding uses O(n2)

bits and an orientation query takes O(log n) time in the word-RAM model

with word size w ≥ log n. This encoding is space-optimal for abstract order

types. We show how to shorten the encoding to O(n2(log log n)2/ log n)

bits for realizable order types, giving the first subquadratic encoding for

those order types with fast orientation queries. In §C.2, we further refine

our encoding to attain O(log n/ log logn) query time at the expense of a

negligibly larger space requirement. In the realizable case, we show that

140 C.1. Encoding Order Types via Hierarchical Cuttings

all those encodings can be computed efficiently. In §C.3, we generalize our

results to the encoding of point configurations in higher dimension.

C.1 Encoding Order Types via Hierarchical
Cuttings

To make our statements clear, we use the concept of an encoding (see

§1.2.1). We recall its definition:

Definition 2. For fixed k and given a function f : [n]k → [O(1)], we define

a (S(n),Q(n))-encoding of f to be a string of S(n) bits such that, given this

string and any i ∈ [n]k, we can compute f(i) in Q(n) time in the word-RAM

model with word size w ≥ log n.

In this section, we use this definition with f being some order type,1

k = 3 and the codomain of f being {−, 0,+ }. For the rest of the discussion,

we assume the word-RAM model with word size w ≥ log n and the standard

arithmetic and bitwise operators. We prove our main theorems for the

two-dimensional case:

Contribution 7. All abstract order types have an encoding using O(n2)

bits of space and allowing for queries in O(log n) time.

Contribution 8. All realizable order types have a O(n
2(log logn)2

logn)-bits en-

coding allowing for queries in O(log n) time.

Lemma C.1 (Construct the encodings in 7 and 8 in O(n2) time). In the

real-RAM model and the constant-degree algebraic decision tree model, given

n real-coordinate input points in R2 we can compute the encoding of their

order type as in Theorems 7 and 8 in O(n2) time.

For instance, Theorem 8 implies that for any set of points { p1, . . . , pn },
there exists a string of O(n2(log log n)2/ log n) bits such that given this

string and any triple of indices (a, b, c) ∈ [n]3 we can compute the value of

χ(a, b, c) = ∇(pa, pb, pc) in O(log n) time.

Throughout the rest of this paper, we assume that we can access some

arrangement of pairwise intersecting lines or pseudolines that realizes the

1Technically, we encode the orientation predicate of some realizing arrangement of the

order type and skip the isomorphism. If desired, a canonical labeling of the arrangement

can be produced in O(n2) time for abstract and realizable order types (see Lemma 7.1).

C. Subquadratic Encodings for Point Configurations 141

order type we want to encode. We thus exclusively focus on the problem

of encoding the order type of a given arrangement. This does not pose a

threat against the existence of an encoding. However, we have to be more

careful when we bound the preprocessing time required to compute such an

encoding. This is why, in Theorem C.1, we specify the model of computation

and how the input is given.

Idea We want to preprocess n pseudolines {L1, L2, . . . , Ln } in the plane

so that, given three indices a, b, and c, we can compute their orientation,

that is, whether the intersection La ∩ Lb lies above, below or on Lc. Our

data structure builds on cuttings as follows: Given a cutting Ξ and the three

indices, we can locate the intersection of La and Lb with respect to Ξ. The

location of this intersection is a cell of Ξ. The next step is to decide whether

Lc lies above, lies below, contains or intersects that cell. In the first three

cases, we are done. Otherwise, we can answer the query by recursing on the

subset of pseudolines intersecting the cell containing the intersection. We

build on hierarchical cuttings to control the size of each such subproblem.

Intersection Location When the arrangement consists of straight lines,

locating the intersection La∩Lb in Ξ is trivial if we know the real parameters

of La and Lb and of the descriptions of the subcells of Ξ. However, in our

model we are not allowed to store real numbers. To circumvent this annoy-

ance, and to handle arrangements of pseudolines, we make an observation

illustrated by Figure C.1.

Definition 14. Given a set of pseudolines, a pseudocircle is a simple closed

curve such that each pseudoline properly intersects it in exactly two points.

A pseudodisk is a region bounded by a pseudocircle.

Observation C.2. Two pseudolines La and Lb intersect in the interior of

a pseudodisk C if and only if the intersections of La and Lb with C alternate

on the boundary of C.

We construct Ξ so that its cells are pseudodisks for the pseudolines that

intersect them. Hence, this observation gives us a way to encode the location

of the intersection of La and Lb in Ξ using only bits. We formalize this

observation with the following definition:

142 C.1. Encoding Order Types via Hierarchical Cuttings

p′b

p′a

C

π

a. La ∩ Lb ∩ C = ∅.

C

p′bp′a

π

b. La ∩ Lb ∩ C 6= ∅.

Figure C.1. Cyclic permutations (π).

Definition 15 (Cyclic Permutation). The cyclic permutation of a full-

dimensional cell of a cutting is the cyclic ordering of the pseudolines crossing

its boundary.

For an arrangement of pseudolines, we use the standard vertical decompo-

sition (§6.4.2) to construct a hierarchical cutting (§8.2). This decomposition

partitions the space into trapezoidal cells. For an arrangement of lines, we

can use the standard bottom-vertex triangulation (§6.4.1) instead, which

allows us to generalize our results to higher dimensions in §C.3. In the plane,

the bottom-vertex triangulation partitions the space into triangular cells.

Note that non-full-dimensional cells are easier to encode. For a 0-dimensional

cell and a pseudoline, we store whether the pseudoline lies above, lies below,

or contains the 0-dimensional cell. For a 1-dimensional cell, a pseudoline

could also intersect the interior of the cell, but in only one point. The

pseudolines intersecting that cell define an (acyclic) permutation with poten-

tially several intersections at the same position. This information suffices to

answer location queries for those cells, and the space taken is not more than

that necessary for full-dimensional cells. When two pseudolines intersect

in a 1-dimensional cell or contain the same 0-dimensional cell, they appear

simultaneously in the cyclic permutation of an adjacent 2-dimensional cell if

they intersect its interior. If that is the case, the location of the intersection

of those two pseudolines in the cutting is the non-full-dimensional cell. A

constant number of bits can be added to the encoding each time we need to

C. Subquadratic Encodings for Point Configurations 143

know the dimension of the cell we encode.

Encoding We encode the order type of an arrangement via hierarchical

cuttings as defined in [48] (see §8.2). Given n pseudolines in the plane and

some fixed parameters r and `, compute a `-levels hierarchical cutting of

parameter r for those pseudolines as in Lemma 8.6. This hierarchical cutting

consists of ` levels labeled 0, 1, . . . , `− 1. Level i has O(r2i) cells. Each of

those cells is further partitioned into O(r2) subcells. The O(r2(i+1)) subcells

of level i are the cells of level i+ 1. Each cell of level i is intersected by at

most n
ri

pseudolines, and hence each subcell is intersected by at most n
ri+1

pseudolines.

We compute and store a combinatorial representation of the hierarchical

cutting as follows: For each level of the hierarchy, for each cell in that level,

for each pseudoline intersecting that cell, for each subcell of that cell, we

store two bits to indicate the location of the pseudoline with respect to

that subcell, that is, whether the pseudoline lies above (00), lies below (01),

intersects the interior of that subcell (10), or contains the subcell (11). When

a pseudoline intersects the interior of a 2-dimensional subcell, we also store

the two indices of that pseudoline in the cyclic permutation of that subcell,

beginning at an arbitrary location in, say, clockwise order. If the intersected

subcell is 1-dimensional instead, we store the index of the pseudoline in the

acyclic permutation of that subcell, beginning at an arbitrary endpoint. If

two pseudolines intersect in the interior of a 1-dimensional subcell or on

the boundary of a 2-dimensional subcell, they share the same index in the

permutation of that subcell.

This representation takes O(n
ri

+ n
ri+1 log n

ri+1) bits per subcell of level i by

storing for each pseudoline its location and, when needed, the permutation

indices of its intersections with the subcell. At the last level of the hierarchy,

let t = n
r`

denote an upper bound on the number of pseudolines intersecting

each subcell. For each of those O(r2`) = O(n
2

t2
) subcells we store a pointer to

a lookup table of size O(t3) that allows to answer the query of the orientation

of any triple of pseudolines intersecting that subcell.

Storing the permutation at each subcell would suffice to answer all queries

that do not reach the last level of the hierarchy. However, for those queries to

be answered efficiently, we need to have access to all bits belonging to a given

pseudoline without having to read the bits of the others. One solution is to

144 C.1. Encoding Order Types via Hierarchical Cuttings

00 10 10 1001 11 00 01000 011101 111010 110

Figure C.2. A trace Tr(C, L). The cell C has eight subcells. Each subcell

is intersected by at most four pseudolines. The pseudoline L lies above two of

them, lies below two of them, contains one of them, and intersects three of them

at indices (2, 6), (5, 7), and (0, 3).

augment each subcell with a hash table that translates pseudoline indices of

the parent cell into pseudoline indices of the subcell. Another cleaner solution

is to use the Zone Theorem (Theorem 6.2): by constructing the hierarchical

cutting via decompositions of subsets of the input pseudolines, we can bound

the number of subcells of a given cell a given pseudoline intersects by O(r).2

Hence, the number of bits stored for a single intersecting cell-pseudoline pair

at level i is bounded by |Tri| = O(r2 + r log n
ri+1). This bound allows us to

store all bits belonging to a given cell-pseudoline pair (C, L) in a contiguous

block of memory, denoted by Tr(C, L), whose address in memory is easy

to compute (as detailed later on). The overall number of bits stored stays

the same up to a constant factor. We call Tr(C, L) the trace of L in C.
Figure C.2 depicts an example trace.

For queries that reach the last level of the hierarchy, storing an individual

lookup table for each leaf would cost too much as soon as t = ω(1). However,

as long as t is small enough, each order type is shared by many leaves, and we

can thus save space. Formally, let ν(t) denote the number of order types of

size t, which is ν(t) = 2Θ(t2) for abstract order types [76] and ν(t) = 2Θ(t log t)

for realizable order types [16, 91]. At most ν(t) distinct lookup tables are

needed to answer the queries on the subcells of the last level of the hierarchy.

Hence, the pointers have size |Pointer| = O(log ν(t)) and the total space

needed for the lookup tables is O(t3ν(t)). For each leaf, we store a canonical

labeling of size |Labeling| = O(t log t) on the pseudolines that intersect it,

as in Lemma 7.1. We use that labeling to order the queries in the associated

lookup table.3

2A reason to prefer this solution is that it enables the query time reduction in the next

section.
3Note that the use of this canonical labeling is not necessary if t is constant, because

then we can afford to use one lookup table per leaf. For superconstant t, the canonical

labeling is necessary to get the construction time down to O(n2) as explained later. Space

C. Subquadratic Encodings for Point Configurations 145

Layout For completeness, we detail precisely how bits of the encoding are

laid out in memory to allow an efficient decoding. Indeed, the data structure

we encode is a tree and many space-efficient layouts exists for those when

their nodes each have the same size. Here however, node size shrinks as

we go down the hierarchy. We spend a few paragraphs showing it is still

possible to address all components in a time- and space-efficient way. As

this is fairly straightforward to adapt for the encodings in §C.2 and §C.3,

we do not give the details for those sections.

The encoding is the concatenation of the parameters n, r, and t, the

cells of the hierarchy, and the lookup tables. We order the cells of the

hierarchy in a depth-first manner: a cell of level i is denoted by C0,j1,j2,...,ji

with j1, j2, . . . , ji ∈ { 0, 1, . . . , O(r2) }. The root cell is C0 and the cell

C0,j1,j2,...,ji,ji+1 is the (ji+1 + 1)-th subcell of the cell C0,j1,j2,...,ji . Cells are

then ordered lexicographically. For each leaf cell we store its pointer and

canonical labeling. For each internal cell C we store the traces Tr(C, L) in a

certain permutation of the pseudolines L. To order the pseudolines, we use

the first index of each pseudoline in the cyclic permutation of the cell (for

the root cell C0 this is the index given by the input permutation). Note that

those indices are between 0 and 2bN
ri
c − 1 for a cell of level i. We allocate

twice the required space for traces and canonical labelings to avoid defining a

mapping between the indices of a cell and the indices of each of its subcells.

For the root cell of the hierarchy C0 representing the entire space and

containing all the intersections of the arrangement, Addr(C0) is the first

free address after the encoding of the parameters n, r, and t.

The address Addr(C0,j1,j2,...,ji−1,0) of the first subcell of C0,j1,j2,...,ji−1 is

offset by twice the space taken by the traces for that cell

Addr(C0,j1,j2,...,ji−1,0) = Addr(C0,j1,j2,...,ji−1)︸ ︷︷ ︸
Address of the parent cell

+ 2
⌊ n

ri−1

⌋
|Tri−1|︸ ︷︷ ︸

Traces of the parent cell

.

Let ch be the constant hidden by the O(r2) of the hierarchical cutting.

and query complexity are not affected by this design choice (other than constant factors).

146 C.1. Encoding Order Types via Hierarchical Cuttings

The space taken by a subtree rooted at a node of level i is bounded by

|Subtreei| =

Traces at the root︷ ︸︸ ︷
2
⌊ n
ri

⌋
|Tri| +

Traces of the subtrees︷ ︸︸ ︷
2ch

`−i−1∑
k=1

r2k
⌊ n

ri+k

⌋
|Tri+k|

+ chr
2(`−i)|Pointer|︸ ︷︷ ︸

Pointers

+ 2chr
2(`−i)|Labeling|︸ ︷︷ ︸

Canonical labelings

.

The address of any other subcell Addr(C0,j1,j2,...,ji−1,ji) is offset by the

space taken by the subtrees of its siblings 0, 1, . . . , ji − 1

Addr(C0,j1,j2,...,ji−1,ji) = Addr(C0,j1,j2,...,ji−1,0)︸ ︷︷ ︸
Address of the first sibling

+ ji · |Subtreei|︸ ︷︷ ︸
Left siblings subtrees

.

The address of the trace Tr(C, La), where 0 ≤ a ≤ 2bN
ri
c − 1 is the first

intersection index of La in the cyclic permutation of the level-i cell C, is

Addr(C, La) = Addr(C) + a · |Tri|.

Since we do not store any trace for the leaves, define |Tr`| = 0. The

pointer and canonical labeling of the leaf C0,j1,j2,...,j` are concatenated at po-

sition Addr(C0,j1,j2,...,j`) and the lookup tables are concatenated at position

Addr(C0) + |Subtree0|.
This layout makes traversing the hierarchy from root to leaf efficient:

The address of the root cell is discovered after parsing the parameters n,

r, and t. The address of the first subcell of a parent cell is computed in

constant time from the address of the parent cell. The size of the hierarchy is

computed in time proportional its height. The size of a subtree of level i+ 1

is derived in constant time from the size of a subtree of level i. The address

of any subcell of level i is computed in constant time from its index, the

address of the parent cell, and the size of a subtree of level i. The address

of a trace is computed in constant time from the address of its cell and the

index of its pseudoline. The address of the pointer and canonical labeling of

a leaf is the address of the corresponding cell. The address of a lookup table

is computed in constant time given the address of the root cell, the size of

the hierarchy, the size of a lookup table, and the leaf pointer.

During a traversal, pseudoline indices of the parent cell are mapped to

indices in the subcell in constant time by using the first intersection index

C. Subquadratic Encodings for Point Configurations 147

of each pseudoline in that subcell. A final index mapping happens when

translating leaf indices to lookup table indices using the canonical labeling

of the leaf.

Space Complexity We first prove a general bound on the space taken

by the encoding of a `-level hierarchical cutting of parameter r ≥ 2. For the

space taken by the lookup tables, their associated pointers and canonical

labelings at the leaves, and the parameters of the hierarchy n, r and t, the

analysis is immediate.

Let H`
r(n) ∈ N be the maximum amount of space (bits), over all ar-

rangements of n pseudolines, taken by the ` ∈ N levels of a hierarchy with

parameter r ∈ (1,+∞).

Lemma C.3. For r ≥ 2 and t = n
r`

we have

H`
r(n) = O

(
n2

t
(log t+ r)

)
.

Proof. By definition, summing over all subcells, we have

H`
r(n) = O

(
`−1∑
i=0

(
r2i · r2 ·

(n
ri

+
n

ri+1
log

n

ri+1

)))
.

Note that we obtain the same bound by summing over all traces (of inter-

secting cell-pseudoline pairs)

H`
r(n) = O

(
n
`−1∑
i=0

(
ri ·
(
r2 + r log

n

ri+1

)))
.

Multiply any of the previous equations by n
tr`

= 1 to obtain

H`
r(n) = O

(
n2

t

`−1∑
i=0

(
1

r`−i−1
·
(
r + log

n

ri+1

)))
.

We use the equivalence n
ri+1 = tr`−i−1 to replace the last term in the pre-

vious equation

H`
r(n) = O

(
n2

t

`−1∑
i=0

(
1

r`−i−1
· (r + log t+ (`− i− 1) log r)

))
.

148 C.1. Encoding Order Types via Hierarchical Cuttings

Level 0
of subcells = O(r2)
of lines intersecting a subcell ≤ n

r
Space = O(r2 · (n+ n

r log n
r))

Level i
of subcells = O(r2(i+1))
of lines intersecting a subcell ≤ n

ri+1

Space = O(r2(i+1) · (n
ri +

n
ri+1 log

n
ri+1))

Level `− 1
of subcells = O(n

2

t2)
of lines intersecting a subcell ≤ t
Space = O(r2` · (n

r`−1 + n
r`

log n
r`
))

Pointers and Canonical Labelings

of arrangements = O(n
2

t2)
Size of a pointer ≤ dlog ν(t)e
Space = O(n

2

t2 · (log ν(t) + t log t))

Lookup Tables
of tables ≤ ν(t)
Size of a lookup table = O(t3)
Space = O(t3ν(t))

Figure C.3. Space analysis.

We reverse the summation by redefining i← `− i− 1 and group the terms

H`
r(n) = O

(
n2

t

(
(log t+ r)

`−1∑
i=0

1

ri
+ log r

`−1∑
i=0

i

ri

))
.

Using the following inequalities (the geometric series and a multiple of its

derivative):

k∑
i=0

xi ≤ 1

1− x
and

k∑
i=0

ixi ≤ x

(1− x)2 , ∀k ∈ N,∀x ∈ (0, 1),

we conclude that

H`
r(n) = O

(
n2

t

((
1 +

1

r − 1

)
(log t+ r) +

(
1 +

2r − 1

r2 − 2r + 1

)
log r

r

))
,

and the statement follows from r ≥ 2.

Figure C.3 sketches the different components of the encoding and shows

the space taken by each of them. To that we must add the space taken by

C. Subquadratic Encodings for Point Configurations 149

the parameters of the hierarchy n, r and t if those are not implicitly known

(here we assume the dimension d = 2 is implicitly known). We have thus

the following bound:

Lemma C.4. The space taken by the encoding described in §C.1 is propor-

tional to

log ntr︸ ︷︷ ︸
Parameters

+
n2

t
(log t+ r)︸ ︷︷ ︸
Traces

+
n2

t2
(log ν(t) + t log t)︸ ︷︷ ︸

Pointers and Canonical Labelings

+ t3ν(t)︸ ︷︷ ︸
Lookup Tables

.

We pick r constant for both abstract and realizable order types. We

have ν(t) = 2Θ(n2) for abstract order types, hence we choose t =
√
δ log n

for small enough δ and the third term in Lemma C.4 dominates with n2.

Note how the quadratic bottleneck of this encoding is the storage of the

order type pointers at the leaves of the hierarchy. We have ν(t) = 2Θ(n logn)

for realizable order types, hence we choose t = δ log n/ log logn for small

enough δ and the second and third term in Lemma C.4 dominate with

n2(log logn)2/ log n. This proves the space constraints in Theorems 7 and 8.

Correctness and Query Complexity Given our encoding and three

pseudoline indices a, b, c we answer a query as follows: We start by decoding

the parameters n, r, and t. In our model, this can be done in O(log∗ n +

log∗ r + log∗ t) time, where log∗ is the iterated logarithm (as in [114]).4 Let

C = C0. First, find the subcell C′ of C containing La ∩ Lb by testing for

each subcell whether La and Lb alternate in its cyclic permutation. This

can be done in O(r2) time by scanning Tr(C, La) and Tr(C, Lb) in parallel.

Note that non-full dimensional cells and subcells are easier to test. Next, if

Lc does not properly intersect C′, answer the query accordingly. If on the

other hand Lc does properly intersect the subcell we recurse on C′. This

can be tested by scanning Tr(C, Lc) in O(r2) time. Note that in case that

4Logarithmic space and constant decoding time is trivial when w = Θ(logn). If w is

too large, encode n in binary using dlogn+ 1e bits, dlogn+ 1e using dlogdlogn+ 1e+ 1e
bits, dlogdlogn + 1e+ 1e using dlogdlogdlogn + 1e+ 1e+ 1e bits, etc. until the number

to encode is smaller than a constant which we encode in unary with 1’s. Prepend a 1 to

the largest number and 0 to all the others. Concatenate those numbers from smallest to

largest. Total space is O(logn) bits and decoding n can be done in O(log∗ n) time in the

word-RAM model with w ≥ logn. As an alternative, logarithmic space and logarithmic

decoding time is also trivially achievable with no constraint on w.

150 C.2. Encoding Order Types via Hierarchical Cuttings

the subcell is non-full-dimensional we can already answer the query. When

we reach the relative interior of a subcell of the last level of the hierarchy

without having found a satisfactory answer, we can answer the query by table

lookup in constant time. This works as long as each order type identifier

for at most t pseudolines fits in a constant number of words, which is the

case for the values of t we defined. The layout described earlier makes all

memory address computations of this query algorithm take constant time.

The total query time is thus proportional to r2 logr n in the worst case, which

is logarithmic since r is constant. This proves the query time constraints in

Theorems 7 and 8.

With the hope of getting faster queries we could pick r = Θ(log t) to

reduce the depth of the hierarchy, without changing the space requirements

by more than a constant factor. However, if no additional care is taken, this

would slow the queries down by a Θ(log2 t/ log log t) factor because of the

scanning approach taken when locating the intersection La ∩ Lb. We show

how to handle small but superconstant r properly in the next section.

Preprocessing Time For a set of n points in the plane, or an arrangement

of n lines in the dual, we can construct the encoding of their order type in

quadratic time in the real-RAM and constant-degree algebraic computation

tree models. We prove Lemma C.1.

Proof. Using Lemma 8.6, a hierarchical cutting can be computed in O(nr`)

time in the dual plane. All traces Tr(C, L) can be computed from the cut-

ting in the same time. The lookup tables and leaf-table pointers can be

computed in O(n2 + t3ν(t)) time as follows: For each subcell C among the
n2

t2
subcells of the last level of the hierarchy, compute a canonical labeling

and representation of the lines intersecting C in O(t2) time as in Lemma 7.1.

Insert the canonical representation in some trie in O(t2) time. If the canon-

ical representation was not already in the trie, create a lookup table with

the answers to all O(t3) queries on those lines and attach a pointer to that

table in the trie. This happens at most ν(t) times. In the encoding, store

the canonical labeling and this new pointer or the pointer that was already

in the trie for the subcell C. All parts of the encoding can be concatenated

together in time proportional to the size of the encoding.

C. Subquadratic Encodings for Point Configurations 151

C.2 Sublogarithmic Query Complexity

We further refine the encoding introduced in the previous section so as

to reduce the query time by a log logn factor. We do so using specificities of

the word-RAM model that allow us to preprocess computations on inputs of

small but superconstant size. This refinement is applicable to both abstract

and realizable order types, and leads to an improvement of our main theorems

for the two-dimensional case:

Contribution 9. All abstract order types have an encoding using O(n2)

bits of space and allowing for queries in O(logn
log logn) time.

Contribution 10. All realizable order types have a O(n
2 logε n
logn)-bits encod-

ing allowing for queries in O(logn
log logn) time.

Lemma C.5 (Construct the encodings in 9 and 10 in O(n2) time). In the

real-RAM model and the constant-degree algebraic decision tree model, given

n real-coordinate input points in R2 we can compute the encoding of their

order type as in Theorems 9 and 10 in O(n2) time.

Idea A natural idea is to pick r to be small but superconstant to reduce

the number of levels of the hierarchy and thus the query time. As already

pointed out, this has the drawback of increasing the time complexity of the

intersection location primitive from constant to Θ(r2). Since this primitive

is used at each level of the hierarchy, the Θ(log r) factor saved by having

less levels is lost.

To get past this difficulty, the trick is to encode approximations of the

traces Tr(C, L) to still allow constant intersection location. We call those

approximations signatures and denote them by Sig(C, L). We define those

signatures so that they approximately encode the cyclic permutation of the

intersections around each subcell. By carefully choosing some parameters,

we are able to fit two of those signatures in a single word of memory. We

can then precompute the output to all possible inputs for the intersection

location primitive and put them in a small table.

Because of this size reduction, distinct pseudolines could be mapped to

identical signatures. Those ambiguous situations can be deterministically

handled using an additional lookup table. Because those situations rarely

arise, this table also is small.

152 C.2. Sublogarithmic Query Complexity

Once we have located the intersection La ∩Lb, we still need to deal with

Lc. We change the layout of a trace to locate the subcell containing La ∩Lb
with respect to Lc in constant time. In case Lc properly intersects the

subcell, we need to recurse on the subcell. To do that, we need to map the

pseudoline indices a, b, and c to the indices those pseudolines have in that

subcell. This is done with one indirection: For each of the three pseudolines

we identify the index of the subcell in the list of subcells intersected by that

pseudoline. This is implemented as a rank operation on a list of O(r2) bits.

Given that index, we can find the intersection indices of that pseudoline in

the cyclic permutation of the subcell in constant time.

In what follows, we describe five new structures: the signatures, the

intersection oracle, the disambiguation table, the augmented traces, and

the subcell mapper. The first reduces the bitsize of the original traces so

that the second can be implemented in constant time. The third handles

bad cases that arise because of this size reduction. The fourth defines a

new layout for the traces that includes the signature. The fifth allows to

implement the parent-to-subcell pseudoline index mapping in constant time

using this new layout.

Signatures Fix a small constant α and define r = Θ(logα n).5 We encode

a `-levels hierarchical cutting of parameter r. Note that we can construct

a hierarchical cutting with superconstant r by constructing a hierarchical

cutting with some appropriate constant parameter r′, and then skip levels

that we do not need. As in §C.1, we store a combinatorial representation of

this hierarchical cutting. We make some tweaks to this representation.

We augment the traces of §C.1 with a signature. The trace Tr(C, L) of

a cell-pseudoline pair is composed of two parts: The incidence bits that tell

us for each subcell of the cell whether the pseudoline lies above, lies below,

intersects or contains it, and the cyclic permutation bits used to locate the

intersection of two pseudolines inside the cell. The first part uses Θ(r2) bits.

The second part uses Θ(r log n
ri+1) bits for a cell of level i.

To construct the signature Sig(C, L), we keep the Θ(r2) = Θ(log2α n)

incidence bits because they fit in sublogarithmic space for sufficiently small

5The exact bound for how small α must be depends on hidden constant factors in the

Zone Theorem and in the definition of the word size. In particular, we must have α ≤ 1
2

when w = Θ(logn).

C. Subquadratic Encodings for Point Configurations 153

α. The second part would use superlogarithmic space if handled as before.

We thus replace the Θ(r log n
ri+1) bits of the cyclic permutation by a well

chosen approximation.

Let β = 2Θ(logα n) and denote by ni = n/ri an upper bound on the

number of pseudolines intersecting a cell of level i. For each subcell of level

i, partition its cyclic permutation into βi ≤ min{β, ni+1 } blocks of at most

dni+1/βie intersections. For each pseudoline intersecting a cell we store

the block indices that that pseudoline touches instead of storing the cyclic

permutation indices.6 Hence, the second part of each signature only uses

O(r log β) = O(log2α) bits.

Intersection Oracle We construct a lookup table to compute in constant

time, for any given cell of any given level, the subcell in which La ∩ Lb lies.

For that we need a general observation on the precomputation of functions

on small universes.

Observation C.6. In the word-RAM model with word size w ≥ log n, for

any word-to-word function f : [2w] → [2w], we can build a lookup table of

total bitsize 2gh for all 2g inputs x ∈ [2g] of bitsize g ≤ w, mapping to images

y ∈ [2h] of bitsize h ≤ w, in time 2gT (g) where T (g) is the complexity of

computing f(x), x ∈ [2g]. The image of bitsize h of any input of bitsize g can

then be retrieved in O(1) time by a single lookup (since inputs and outputs

fit in a single word). In particular, the preprocessing time 2gT (g) and the

space 2gh are sublinear as long as T (g) = gO(1) and g + log h = o(log n).

In other words, any polynomial time computable word-to-word function

can be precomputed in sublinear time and space for all inputs and outputs

of sublogarithmic size.

Since each pseudoline signature fits in O(r2 + r log β) = O(log2α n)

bits, and since the number of subcells of each cell is O(log2α n), we can

choose an appropriate α so as to satisfy the requirements given above:

take α < 1
2 so that two pseudoline signatures have a combined bitsize of

g = o(log n). The output size is the bitsize of a subcell identifier, which is

h ≤ 2α log log n = o(log n). In some cases, the block indices stored in the

6For β a power of two, this can be implemented by truncating the original cyclic

permutation indices.

154 C.2. Sublogarithmic Query Complexity

signatures will not contain enough information to point to a unique output.

In those cases we store a special value that indicates ambiguity of the input.

We can thus precompute the function that sends two pseudoline signatures

to either the subcell containing their intersection or to some special value in

case of an ambiguous input. Since we compute the function for all members

of its universe, we can implement the lookup table using direct addressing

into an array.

Note that the output of this oracle is the same no matter what level or

cell we consider: for non-ambiguous inputs, all the information required to

locate La ∩ Lb is included in the input. We thus only need a single lookup

table, and the space needed is proportional to

2gh = 2Θ(log2α n).

Disambiguation An input for the intersection oracle is ambiguous if and

only if at least one boundary intersection of each input pseudoline appears in

the same cyclic permutation block of the cell that contains their intersection.

Thus, ambiguous inputs rarely occur: less than the number of blocks times

the number of pairs of boundary intersections in a block, that is, less than

β · (ni+1/β)2 = n2

r2(i+1) /β times per subcell of level i of the hierarchy. When

β ≥ ni+1 all ambiguity is lifted so we can ignore those cases.

The disambiguation table is a hash table storing the answer to all

ambiguous inputs for all cells of each level i ∈ { 0, 1, . . . , `− 1 }. This table

maps a triple of a cell C0,j1,j2,...,ji , a pseudoline La, and a pseudoline Lb to

the index ji+1 ∈ { 0, 1, . . . , O(r2) } of the subcell C0,j1,j2,...,ji,ji+1 containing

the intersection La ∩ Lb. Summing over all subcells of each level, we obtain

that the number of entries in this table is bounded above by

`−1∑
i=0

r2i · r2 · n2

r2(i+1)
/β =

n2`

2Θ(logα n)
.

The number of bits of each entry is at most `dlog cr2e+ 2 log n = O(log n)

for the key and dlog cr2e for the value. Both get absorbed by the 2−Θ(logα n)

factor in the number of entries, so we can keep the same expression for the

number of bits used by the disambiguation table.

Since the keys and values fit in a constant number of words, we can

guarantee worst case constant query time using cuckoo hashing [129] or

C. Subquadratic Encodings for Point Configurations 155

00 10 10 1001 11 00 01 00010101000 0110 1101 11

Incidence bits

Signature

Block indices Intersection indices

Figure C.4. An augmented trace Tr′(C, L) for the same cell-pseudoline pair

as in Figure C.2.

perfect hashing [81]. In both cases the construction of the table is randomized

and takes expected linear time in the number of entries. Perfect hashing

has the advantage that we can drop the entry keys since we only query this

table for existing entries. Note that this is the only part of the construction

that is randomized.

Augmented Traces The augmented traces are simply the concatenation

of the signature and the first intersection indices as depicted in Figure C.4.

This layout allows for constant time access to the signature. Given a subcell

index we can test its incidence bits in constant time. Given an intersected

subcell index we can access the first intersection index of the pseudoline in

that subcell in constant time.

As discussed earlier, the first part of the signature uses O(r2) bits.

We already noted that the second part of the signature uses O(r log β) =

O(log2α n) bits. However, a better bound to use for the analysis of the total

space is O(r log βi) = O(r log ni+1) bits, which is proportional to the number

of bits needed for the first intersection indices.

Summing over all pseudolines and all intersected cells of each level, the

space used for the augmented traces is proportional to

n
`−1∑
i=0

ri ·
(
r2 + r log ni+1

)
= O

(
n2

t
(log t+ r)

)
,

as in Lemma C.3. Since r = Θ(logα n) the bound becomes

O

(
n2

t
(log t+ logα n)

)
.

Subcell Mapper As before, let ch be the constant hidden by the O(r2)

of the hierarchical cutting, and let cz = 9.5 be the constant in Theorem 6.2.

156 C.2. Sublogarithmic Query Complexity

We need a way to map a subcell index 0 ≤ ji ≤ chr
2 − 1 to the index

0 ≤ j′i ≤ bczrc − 2 this subcell has in the list of subcells intersected by a

given pseudoline. If we can achieve this in constant time, then we can also

access the first intersection index this pseudoline has in this subcell.

It is not hard to see that this mapping operation boils down to computing

rank10(ji) where the data array is composed of the incidence bits of the given

pseudoline. Hence this can be solved by adding an auxiliary rank-select data

structure to each trace [24, 136]. Another solution is to reuse Observation C.6

to construct a lookup table for all 2Θ(r2) possible incidence vectors.

With the first solution, the space used by the traces stays the same up

to a constant factor. With the second solution, the space used is dominated

by the space taken by the intersection oracle. Hence, we do not bother

including it in the space analysis.

All that is left to do is to properly solve the subproblems spawned by the

last level of the hierarchy. This is done exactly as in the previous section.

Leaves of the Hierarchy As before, we have O(n
2

t2
) subproblems of size

t to encode. We follow the solution previously described to obtain: O(n
2

t2
)

pointers of size dlog ν(t)e, O(n
2

t2
) canonical labelings of size Θ(t log t), and

ν(t) lookup tables of size O(t3). This is sufficient to take care of each of

those subproblems in constant time. The total space usage for those leaves

is unchanged and stays proportional to

n2

t2
· (t log t+ log ν(t)) + t3ν(t).

Space Complexity Summing all terms together and adding the space

taken by the parameters of the hierarchy n, r and t, we obtain:

Lemma C.7. The space taken by the encoding described in §C.2 is propor-

tional to

Parameters︷ ︸︸ ︷
log ntr +

Traces︷ ︸︸ ︷
n2

t
(log t+ logα n) +

Intersection Oracle︷ ︸︸ ︷
2Θ(log2α n)

+
n2`

2Θ(logα n)︸ ︷︷ ︸
Disambiguation Table

+
n2

t2
(log ν(t) + t log t) + t3ν(t)︸ ︷︷ ︸

Leaves

.

C. Subquadratic Encodings for Point Configurations 157

As before, we take t =
√
δ log n for abstract order types and t =

δ log n/ log log n for realizable ones. Taking δ to be sufficiently small, the

space taken by the leaves of the hierarchy is thus Θ(n2) for abstract order

types and dominated by the term n2

t log t in the case of realizable order types.

Setting α < 1
2 guarantees that the space taken by the intersection oracle is

subpolynomial, and that the space taken by the traces is subquadratic. The

space taken by the disambiguation table is in O(n2

logc n) for all c and is thus

dominated by the other terms.

For abstract order types, all those terms are subquadratic, except for

the pointers at the leaves. The total space usage for abstract order types is

thus dominated by this term and is quadratic. For realizable order types,

the total space is dominated by the term n2

t logα n. Indeed, we can take α

as small as desired to make the factor logα n = O(logε n). This proves the

space constraints in Theorems 9 and 10. Unfortunately, the present solution

incurs a nonabsorbable extra logε n factor in the realizable case. Note that a

log log log n factor can be squeezed from the query time without increasing

the space usage by choosing r = Θ(log log n) instead.

Correctness and Query Complexity Given a query La, Lb, Lc and a

cell C, the subcell C′ containing La ∩ Lb is found in constant time via the

intersection oracle and, if necessary, the disambiguation table. The location

of that subcell with respect to Lc can then be retrieved by a single lookup

in the incidence bits of Tr′(C, Lc). In case of recursion, we can compute the

address of the traces Tr′(C′, La), Tr′(C′, Lb), and Tr′(C′, Lc) in constant

time using the subcell mapper. The base case is handled in constant time as

before: using the pointers, canonical labelings and order type lookup tables.

We now have a shallower decision tree of depth logr
n
t = Oα(logn

log logn)

and the work at each level takes constant time. This proves the query time

constraints in Theorems 9 and 10.

Preprocessing Time We prove Lemma C.5.

Proof. As before, the hierarchical cutting and all traces Tr′(C,L) can be

computed in O(nr`) time (with or without rank-select data structures).

The lookup tables and leaf-table pointers can be computed in O(n2) time.

158 C.3. Higher-Dimensional Encodings

The intersection oracle, the disambiguation table, and the optional subcell

mapper can be computed in subquadratic time.

C.3 Higher-Dimensional Encodings

We generalize our point configuration encoding to any dimension d. The

chirotope of a point set in Rd consists of all orientations of simplices defined

by d+ 1 points of the set [144]. The orientation of the simplex with d+ 1

ordered vertices pi with coordinates (pi,1, pi,2, . . . , pi,d) is given by the sign

of the determinant ∣∣∣∣∣∣∣∣∣∣
1 p1,1 p1,2 . . . p1,d

1 p2,1 p2,2 . . . p2,d
...

...
...

. . .
...

1 pd+1,1 pd+1,2 . . . pd+1,d

∣∣∣∣∣∣∣∣∣∣
.

We obtain the following generalized result:

Contribution 12. All realizable chirotopes of rank k ≥ 4 have an encoding

using O(n
k−1(log logn)2

logn) bits of space and allowing for queries in O(logn
log logn)

time.

Contribution 13. In the real-RAM model and the constant-degree alge-

braic decision tree model, given n real-coordinate input points in Rd we can

compute the encoding of their chirotope as in Theorem 12 in O(nd) time.

Idea In the primal, the orientation of a simplex whose vertices are ordered

can be interpreted as the location of its last vertex with respect to the

(oriented) hyperplane spanned by its first d vertices. In the dual, this

orientation corresponds to the location of the intersection of the first d

dual hyperplanes with respect to the last (oriented) dual hyperplane. In the

primal, degenerate simplices have orientation 0. In the dual, this corresponds

to linearly dependent subsets of d+ 1 hyperplanes.

We gave an encoding for the two-dimensional case in §C.1. With this

encoding, a query is answered by traversing the levels of some hierarchical

cutting, branching on the location of the intersection of two of the three

query lines. We generalize this idea to d dimensions. Now the cell considered

at the next level of the hierarchy depends on the location of the intersection

C. Subquadratic Encodings for Point Configurations 159

of d of the d + 1 query hyperplanes. We will also have to take care of

degenerate cases.

Intersection Location In §C.1, we solved the following two-dimensional

subproblem:

Problem 23. Given a triangle and n lines in the plane, build a data struc-

ture that, given two of those lines, allows to decide whether their intersec-

tion lies in the interior of the triangle.

In retrospect, we showed that there exists such a data structure using

O(n log n) bits that allows for queries in O(1) time. We generalize this result.

Consider the following generalization of the problem in d dimensions:

Problem 24. Given a convex body and n hyperplanes in Rd, build a data

structure that, given d of those hyperplanes, allows to decide whether their

intersection is a vertex that lies in the interior of the convex body.

Of course this problem can be solved using O(nd) space by explicitly

storing the answers to all possible queries. If the input hyperplanes are given

in an arbitrary order, this is best possible for d = 1. For d ≥ 2, we show how

to reduce the space to O(nd−1 log n) by recursing on the dimension, taking

d = 2 as the base case.

We encode the function IC,H that maps a d-tuple of indices of input dual

hyperplanes Hi to 1 if their intersection is a vertex that lies in the interior

of a fixed convex body C, and to 0 otherwise.

IC,H : [n]d → { 0, 1 } : (i1, i2, . . . , id) 7→ (Hi1 ∩Hi2 ∩ · · · ∩Hid) ∈ C.

We call this function the intersection function of (C,H). We prove the

following:

Lemma C.8. All intersection functions have a O(nd−1 log n)-bits O(d)-

querytime encoding.

Proof. Consider a convex body C and n hyperplanes Hi. At first, for sim-

plicity, assume C is d-dimensional and assume that any d hyperplanes Hij

meet in a single point. With those assumptions, we want a data structure

that can answer any query of the type

(Hi1 ∩Hi2 ∩Hi3 ∩Hi4 ∩ · · · ∩Hid−1
∩Hid) ∩ C 6= ∅.

160 C.3. Higher-Dimensional Encodings

Note that this is equivalent to deciding whether

(Hi1 ∩Hi2 ∩Hi3 ∩Hi4 ∩ · · · ∩Hid−1
) ∩ (Hid ∩ C) 6= ∅,

where Hid ∩ C is a convex body of dimension d − 1 (or empty), and the

number of hyperplanes we want to intersect it with is d− 1.

We unroll the recursion until the convex body is of dimension two (or

empty), and only two hyperplanes are left to intersect. We then observe

that the decision we are left with is equivalent to

(Hi1 ∩ (Hi3 ∩Hi4 ∩ · · · ∩Hid)) ∩ (Hi2 ∩ (Hi3 ∩Hi4 ∩ · · · ∩Hid))

∩ (C ∩ (Hi3 ∩Hi4 ∩ · · · ∩Hid)) 6= ∅,

which, if the three objects are non-empty, reads: “Given two lines and a

convex body in some plane, do they intersect?”. We can answer this query

if we have the encoding for d = 2 which is obtained by replacing triangle by

convex body in the two-dimensional original problem. The total space taken

is multiplied by n for each time we unroll the recursion times the space taken

in two dimensions, which is proportional to nd−2 · n log n = O(nd−1 log n).

Queries can then be answered in O(d) time.

Note that degenerate cases are likely to arise: empty convex bodies be-

cause of nonintersecting hyperplanes, convex bodies that are higher dimen-

sional because of linearly dependent hyperplanes, and convex bodies that

are lower dimensional because C was not full-dimensional to start with.

However, all those cases can be dealt with appropriately: If the query suffix

Hi3∩Hi4∩· · ·∩Hid leads to an empty convex body C∩(Hi3∩Hi4∩· · ·∩Hid)

then the query point is not in C and we encode 0 for all the queries in C

ending in this suffix. This information can be encoded in a table of size

O(nd−2). If the query suffix Hi3 ∩ Hi4 ∩ · · · ∩ Hid leads to a convex body

C∩(Hi3∩Hi4∩· · ·∩Hid) of dimension ≥ 3 then the intersection of all objects

is not a 0-flat and we encode a 0 to follow the definition of IC,H . Again,

this information can be encoded in a table of size O(nd−2). If the query

suffix Hi3 ∩Hi4 ∩· · ·∩Hid leads to a convex body C ∩ (Hi3 ∩Hi4 ∩· · ·∩Hid)

of dimension zero, one, or two, then we use the encoding of size O(n log n)

described in §C.1 as a base case.

In the paragraphs that follow, we show how to plug this result in those

C. Subquadratic Encodings for Point Configurations 161

of the previous sections to obtain analogous results for the d-dimensional

version of the problem (Contributions 12 and 13).

Encoding We build a hierarchical cutting as in §C.1 (this time in dimension

d). Given n hyperplanes in Rd and some fixed parameters r and `, compute

a `-levels hierarchical cutting of parameter r for those hyperplanes as in

Lemma 8.5. This hierarchical cutting consists of ` levels labeled 0, 1, . . . , `−1.

Level i has O(rdi) cells. Each of those cells is further partitioned into O(rd)

subcells. The O(rd(i+1)) subcells of level i are the cells of level i+ 1. Each

cell of level i is intersected by at most n
ri

hyperplanes, and hence each subcell

is intersected by at most n
ri+1 hyperplanes.

We compute and store a combinatorial representation of the hierarchical

cutting as follows: For each level of the hierarchy, for each cell in that level,

for each hyperplane intersecting that cell, for each subcell of that cell, we

store two bits to indicate the location of the hyperplane with respect to

that subcell, that is, whether the hyperplane lies above (00), lies below

(01), intersects the interior of that subcell (10), or contains the subcell (11).

When a hyperplane H intersects the interior of a subcell C′, we also store the

two O(log n
ri+1)-bits two-dimensional intersections indices this hyperplane

has in each of the O
((

n
ri+1

)d−2
)

query suffixes (Hi3 ∩Hi4 ∩ . . . ∩Hid) with

each of the Hij properly intersecting C′.
This representation takes O

(
n
ri

+
(

n
ri+1

)d−1
log n

ri+1

)
bits per subcell of

level i by storing for each hyperplane its location and, when needed, the bits

they hold in the encoding of the intersection function of the subcell. At the

last level of the hierarchy, let t = n
r`

denote an upper bound on the number

of hyperplanes intersecting each subcell. For each of those O(rd`) = O(n
d

td
)

subcells we store a pointer to a lookup table of size O(td+1) that allows to

answer the query of the orientation of any triple of hyperplanes intersecting

that subcell.

Using the Zone Theorem in higher dimensions (Theorem 6.3), we can

have all bits belonging to a single cell-hyperplane pair in a contiguous block

of memory with the same space bound.

Space Complexity As before, for the space taken by the lookup tables,

their associated pointers and canonical labelings at the leaves, and the

162 C.3. Higher-Dimensional Encodings

parameters of the hierarchy n, r and t, the analysis is immediate. If not

implicitly known, the dimension d can also trivially be added to the encoding.

For the space taken by the hierarchy, we generalize Lemma C.3 of

§C.1. Let H`
r(n, d) ∈ N be the maximum amount of space (bits), over all

arrangements of n hyperplanes in Rd, taken by the ` ∈ N levels of a hierarchy

with parameter r ∈ (1,+∞).

Lemma C.9. For r ≥ 2 we have

H`
r(n, d) = O

(
nd

t

(
log t+

r

td−2

))
.

Proof. By definition we have

H`
r(n, d) = O

(
`−1∑
i=0

(
rdi · rd ·

(
n

ri
+
(n

ri+1

)d−1
· log

n

ri+1

)))
.

Using t = n
r`

, reversing the summation with i← `− i− 1, and grouping the

terms, we have

H`
r(n, d) = O

(
nd

t

(
r

td−2

`−1∑
i=0

1

(rd−1)
i

+ log t
`−1∑
i=0

1

ri
+ log r

`−1∑
i=0

i

ri

))
.

Using the geometric inequalities (see the proof of Lemma C.3) the statement

follows from r ≥ 2.

The final picture is almost the same as in Figure C.3. Summing all terms,

we obtain

Lemma C.10. The space taken by the encoding described in §C.3 is pro-

portional to

log dntr︸ ︷︷ ︸
Parameters

+
nd

t

(
log t+

r

td−2

)
︸ ︷︷ ︸

Traces

+
nd

td
(log νd(t) + t log t)︸ ︷︷ ︸

Leaves

+ td+1νd(t)︸ ︷︷ ︸
Lookup Tables

,

where νd(t) = 2Θ(d2t log t) denotes the number of realizable rank-(d+ 1) chiro-

topes of size t.

We pick r constant and choose t = δ log n/ log log n for small enough δ.

The second term in Lemma C.10 dominates with nd(log logn)2/ log n. This

proves the space constraint in Theorem 12.

C. Subquadratic Encodings for Point Configurations 163

Correctness and Query Complexity As before, a query is answered by

traversing the hierarchy, which takes O(log n) time. The query time can be

further improved using the method from §C.2 with r = Θ(td−2 log t). This

proves the query time constraint in Theorem 12.

Preprocessing Time We prove Lemma 13.

Proof. The hierarchical cuttings can be computed in O(n(r`)
d−1

) time. The

lookup table and leaf-table pointers can be computed in O(nd) time using

the canonical labeling and representation for rank-(d+ 1) chirotopes given

in [17]. The intersection oracle, the disambiguation table, and the subcell

mapper can be computed in o(nd) time.

164 C.3. Higher-Dimensional Encodings

D
Encoding 3SUM

with Sergio Cabello, Jean Cardinal, John Iacono, Stefan Langerman, and Pat Morin

Given three sets of n real numbers A = { a1 < a2 < · · · < an }, B =

{ b1 < b2 < · · · < bn }, and C = { c1 < c2 < · · · < cn }, we wish to build a

discrete data structure (using bits, words, and pointers) such that, given any

triple (i, j, k) ∈ [n]3 it is possible to compute the sign of ai + bj + ck by only

inspecting the data structure (we cannot consult A, B, or C). We refer to

the map χ : [n]3 → {−, 0,+}, (i, j, k) 7→ sgn(ai + bi + ck) as the 3SUM type

of the instance 〈A,B,C〉.
Obviously, one can simply construct a lookup table of size O(n3), such

that triple queries can be answered in O(1) time. In §D.1 we show that a

minimal integer representation of a 3SUM instance may require Θ(n) bits

per value, yielding O(n) query time and O(n2) space. In §D.2 we show how

to use an optimal O(n log n) bits of space with a polynomial query time.

Finally, in §D.3 we show how to use Õ(n3/2) space to achieve O(1)-time

queries.

D.1 Representation by Numbers

A first natural idea is to encode the real 3SUM instance by rounding

its numbers to integers. We show a tight bound of Θ(n2) bits for this

representation.

Contribution 14. Every 3SUM instance has an equivalent integer instance

where all values have absolute value at most 2O(n). Furthermore, there ex-

ists an instance of 3SUM where all equivalent integer instances require num-

166 D.1. Representation by Numbers

bers at least as large as the nth Fibonacci number and where the standard

binary representation of the instance requires Ω(n2) bits.

Proof. Every 3SUM instance A = { a1 < a2 < . . . < an }, B = { b1 <

b2 < · · · < bn }, and C = { c1 < c2 < · · · < cn } can be interpreted as

the point (a1, . . . , an, b1, . . . , bn, c1, . . . , cn) in R3n. Let us use the variables

x1, . . . , xn to encode the first n dimensions of R3n, y1, . . . , yn to encode the

next n dimensions, and z1, . . . , zn for the remaining dimensions. Consider

the subset of R3n

∆ = {(x1, . . . , xn, y1, . . . , yn, z1, . . . , zn) :

xi < xi+1, yj < yj+1, zk < zk+1 ∀i, j, k ∈ [n− 1]}

and the set H of n3 hyperplanes xi + yj + zk = 0, where i, j, k ∈ [n]. Let A
be the arrangement defined by H inside ∆. Instances of 3SUM correspond

to points in ∆. Moreover, two 3SUM instances have the same 3SUM type

if and only if they are in the same cell of A.

Consider an instance 〈A,B,C〉 and let σ = σ(A,B,C) be the cell of A
that contains it. Then σ is the cell defined by the inequalities

∀i, j, k ∈ [n] :


xi + yj + zk > 0 if χ(i, j, k) = +1,

xi + yj + zk = 0 if χ(i, j, k) = 0,

xi + yj + zk < 0 if χ(i, j, k) = −1.

∀i, j, k ∈ [n− 1] :


xi − xi+1 < 0,

yj − yj+1 < 0,

zk − zk+1 < 0.

Let σ′ be the subset of R3n defined by the following inequalities:

∀i, j, k ∈ [n] :


xi + yj + zk ≥ 1 if χ(i, j, k) = +1,

xi + yj + zk = 0 if χ(i, j, k) = 0,

xi + yj + zk ≤ −1 if χ(i, j, k) = −1.

∀i, j, k ∈ [n− 1] :


xi − xi+1 ≤ 1,

yj − yj+1 ≤ 1,

zk − zk+1 ≤ 1.

D. Encoding 3SUM 167

Clearly σ′ is contained in σ. Moreover, for a sufficiently large λ > 0 the

scaled instance 〈λA, λB, λC〉 belongs to σ′. Therefore, σ′ is nonempty.

Since σ′ is defined by a collection of linear inequalities defining closed

halfspaces, there exists a point p in σ′ defined by a subset of at most 3n

inequalities, where the inequalities are actually equalities. Let us assume for

simplicity that exactly 3n equalities define the point p. Then, p = (x, y, z)

is the solution to a linear system of equations M [x y z]T = δ where M

and δ have their entries in {−1, 0, 1} and each row of M has at most three

non-zero entries. The solution p to this system of equations is an instance

equivalent to 〈λA, λB, λC〉.
Because of Cramer’s rule, the system of linear equations has solution

with entries det(Mi)/det(M), where Mi is the matrix obtained by replacing

the ith column of M by δ. We use the following simple bound on the de-

terminant. Since det(M) =
∑

π sgn(π)
∏
imi,π(i), where π iterates over the

permutations of [3n], there are at most 33n summands where π gives non-

zero product
∏
imi,π(i) (we have to select one non-zero entry per row), and

the product is always in {−1, 0, 1}. Therefore |det(M)| ≤ 33n. Similarly,

|det(Mi)| ≤ 43n because each row of Mi has at most 4 non-zero entries. We

conclude that the solution to the system M [x y z]T = δ are rationals that

can be expressed with O(n) bits. This solution gives a 3SUM instance with

rationals that is equivalent to 〈A,B,C〉. Since all the rationals have the

common denominator det(M), we can scale the result by det(M) and we

get an equivalent instance with integers, where each integer has O(n) bits.

The proof of the second statement is by implementing the Fibonacci

recurrence in each of the arrays A,B,C. This can be achieved by letting:

ai + b1 + cn−i+1 = 0, for i ∈ [n]

a1 + bi + cn−i+1 = 0, for i ∈ [n]

ai−1 + bi−2 + cn−i+1 < 0, for i ∈ {3, 4, . . . , n},

The first two sets of equations ensure that the two arrays A and B are

identical, while the array C contains the corresponding negated numbers,

in reverse order. From the inequalities in the third group, and depending

on the choice of the initial values a1, a2, each array contains a sequence

growing at least as fast as the Fibonacci sequence.

Note that this is a much smaller lower bound than for order types of

168 D.3. Space-Optimal Representation

points sets in the plane, the explicit representation of which can be shown

to require exponentially many bits per coordinate [94].

D.2 Space-Optimal Representation

By considering the arrangement of hyperplanes defining the 3SUM prob-

lem, we get an information-theoretic lower bound on the number of bits in a

3SUM type.

Lemma D.1. There are 2Θ(n logn) distinct 3SUM types of size n.

Proof. 3SUM types of size n are in one-to-one correspondence with cells

of the arrangement of n3 hyperplanes in R3n. The number of such cells is

O(n9n) and at least (n!)2.

In order to reach this lower bound, we can simply encode the label of the

cell of the arrangement in Θ(n log n) bits. However, decoding the information

requires to construct the whole arrangement which takes nO(n) time. An

alternative solution is to store a vertex of the arrangement of hyperplanes

ai + bj + ck ∈ {−1, 0, 1 }. There exists such a vertex that has the same

3SUM type as the input point, as shown in the proof of Contribution 14. To

answer any query, either recompute the vertex from the basis then answer

the query using arithmetic, or use linear programming. Hence we can build

a data structure of O(n log n) bits such that triple queries can be answered

in polynomial time.

Note that we do not exploit much of the 3SUM structure here. In

particular, the same essentially holds for k-SUM, and can also be generalized

to a subset-sum data structure of O(n2) bits, from which we can extract the

sign of the sum of any subset of numbers.

D.3 Subquadratic Space and Constant Query
Time

Our encoding is inspired by Grønlund and Pettie’s Õ(n3/2) non-uniform

algorithm for 3SUM [95]. Our data structure stores three components, which

we call the differences, the staircase and the square neighbors.

Differences. Partition A and B into blocks of
√
n consecutive elements.

Let D be the set of all differences of the form ai1−ai2 and bj1−bj2 where the

D. Encoding 3SUM 169

items come from the same block. There are O(n3/2) such differences. Sort

D and store a table indicating for each difference in D its rank among all

differences in D. This takes O(log n) bits for each of the O(n3/2) differences,

for a total of O(n3/2 log n) bits.

Staircase. Look at the table G formed by all sums of the form ai+bj . It is

monotonic in its rows and columns due to A and B being sorted. We view it

as being partitioned into a grid G′ of size
√
n×
√
n where each square of the

grid is also of size
√
n×
√
n. For each element ck ∈ C, for each i′ ∈ [1,

√
n]

we store the largest j′ such that some elements of the square G′[i′, j′] are < c,

denote this as L[k, i′]. We also store, for each ck ∈ C, for each i′ ∈ [1,
√
n]

the smallest j′ such that some elements of the square G′[i′, j′] are ≥ c, denote

this as U [k, i′]. We thus store, in L and U , 2
√
n values of size O(log n) for

each of the n elements of C, for a total space usage of O(n3/2 log n) bits. We

call this the staircase as this implicitly classifies, for each c ∈ C, whether

each square has elements larger than c, smaller than c, or some larger and

some smaller; only O(
√
n) can be in the last case, which we refer to as the

staircase of c.

Square neighbors. For each element ck ∈ C, for each of the O(
√
n)

squares on the staircase, we store the location of the predecessor and successor

of ck. Those squares are the G′[i′, j′] such that L[k, i′] ≤ j′ ≤ U [k, i′], for

i′, j′ ∈ [1,
√
n]. This takes space O(n3/2 log n).

To execute a query (ai, bj , ck), only a constant number of lookups in the

tables stored are needed. Let us define i′ = di/
√
ne and j′ = di/

√
ne to be

the indices of the cell of G′ containing the point (ai, bj). If j′ < L[k, i′], then

we know ai+bj < ck. If j′ > U [k, j′], then we know ai+bj > ck. If neither of

these is true, then the square G′[i′, j′] is on the staircase of ck and thus using

the square neighbors table we can determine the location of the predecessor

and successor of ck in this square; suppose they are at G[si, sj] and G[pi, pj]

and thus G[si, sj] ≤ ck ≤ G[pi, pj]. One need only determine how these two

compare to G[i, j] = ai + bj to answer the query. This can be done using the

differences as follows: to compare G[si, sj] to G[i, j] would be determining

the sign of (ai+ bj)− (asi + bsj) which is equivalent to determining the result

of comparing ai − asi and bj − bsj . Since both are in the same square, these

differences are in D and the comparison can be obtained by examining their

170 D.3. Subquadratic Space and Constant Query Time

1 2 10 14 17 22 32 33 40 91 92 97 98 110 120 127
1 2 3 11 15 18 23 33 34 41 92 93 98 99 111 121 128
11 12 13 21 25 28 33 43 44 51 102 103 108 109 121 131 138
13 14 15 23 27 30 35 45 46 53 104 105 110 111 123 133 140
19 20 21 29 33 36 41 51 52 59 110 111 116 117 129 139 146
24 25 26 34 38 41 46 56 57 64 115 116 121 122 134 144 151
34 35 36 44 48 51 56 66 67 74 125 126 131 132 144 154 161
51 52 53 61 65 68 73 83 84 91 142 143 148 149 161 171 178
57 58 59 67 71 74 79 89 90 97 148 149 154 155 167 177 184
59 60 61 69 73 76 81 91 92 99 150 151 156 157 169 179 186
114 115 116 124 128 131 136 146 147 154 205 206 211 212 224 234 241
119 120 121 129 133 136 141 151 152 159 210 211 216 217 229 239 246
127 128 129 137 141 144 149 159 160 167 218 219 224 225 237 247 254
128 129 130 138 142 145 150 160 161 168 219 220 225 226 238 248 255
133 134 135 143 147 150 155 165 166 173 224 225 230 231 243 253 260
138 139 140 148 152 155 160 170 171 178 229 230 235 236 248 258 265
142 143 144 152 156 159 164 174 175 182 233 234 239 240 252 262 269

Figure D.1. Illustration of the staircase and square neighbors of the constant

query time encoding. Here the 16 × 16 table is partitioned into a 4 × 4 grid of

squares of size 4× 4. If ck = 100, the grey illustrates the squares that form the

staircase, containing values both larger and smaller than 100. Predecessors and

successors within each staircase square are shown in red and blue.

stored ranks. By doing this for the predecessor and successor we determine

the relationship between ai + bj and ck.

Bibliography

[1] Amir Abboud, Kevin Lewi, and Ryan Williams. Losing weight by

gaining edges. In European Symposium on Algorithms (ESA 2014),

pages 1–12. Springer, 2014.

[2] Amir Abboud and Virginia Vassilevska Williams. Popular conjectures

imply strong lower bounds for dynamic problems. In FOCS, pages

434–443. IEEE Computer Society, 2014.

[3] Amir Abboud, Virginia Vassilevska Williams, and Oren Weimann.

Consequences of faster alignment of sequences. In ICALP (1), volume

8572 of LNCS, pages 39–51, 2014.

[4] Amir Abboud, Virginia Vassilevska Williams, and Huacheng Yu. Match-

ing triangles and basing hardness on an extremely popular conjecture.

In STOC, pages 41–50. ACM, 2015.

[5] Pankaj K. Agarwal and Jivr’i Matouvsek. On range searching with

semialgebraic sets. Discrete & Computational Geometry, 11:393–418,

1994.

[6] Alfred V. Aho, Kenneth Steiglitz, and Jeffrey D. Ullman. Evaluating

polynomials at fixed sets of points. SIAM Journal on Computing,

4(4):533–539, 1975.

[7] Oswin Aichholzer, Franz Aurenhammer, and Hannes Krasser. Enu-

merating order types for small point sets with applications. Order,

19(3):265–281, 2002.

[8] Oswin Aichholzer, Franz Aurenhammer, and Hannes Krasser. On the

crossing number of complete graphs. In SoCG, pages 19–24. ACM,

2002.

[9] Oswin Aichholzer, Jean Cardinal, Vincent Kusters, Stefan Langer-

man, and Pavel Valtr. Reconstructing point set order types from

172 Bibliography

radial orderings. International Journal of Computational Geometry &

Applications, 26(3-4):167–184, 2016.

[10] Oswin Aichholzer, Matias Korman, Alexander Pilz, and Birgit Vogten-

huber. Geodesic order types. Algorithmica, 70(1):112–128, 2014.

[11] Oswin Aichholzer and Hannes Krasser. The point set order type data

base: A collection of applications and results. In CCCG, pages 17–20,

2001.

[12] Oswin Aichholzer and Hannes Krasser. Abstract order type extension

and new results on the rectilinear crossing number. In SoCG, pages

91–98. ACM, 2005.

[13] Oswin Aichholzer, Vincent Kusters, Wolfgang Mulzer, Alexander Pilz,

and Manuel Wettstein. An optimal algorithm for reconstructing point

set order types from radial orderings. In ISAAC, pages 505–516.

Springer, 2015.

[14] Oswin Aichholzer, Tillmann Miltzow, and Alexander Pilz. Extreme

point and halving edge search in abstract order types. Computational

Geometry, 46(8):970–978, 2013.

[15] Nir Ailon and Bernard Chazelle. Lower bounds for linear degeneracy

testing. J. ACM, 52(2):157–171, 2005.

[16] Noga Alon. The number of polytopes configurations and real matroids.

Mathematika, 33(1):62–71, 1986.

[17] Greg Aloupis, John Iacono, Stefan Langerman, Özgür Özkan, and

Stefanie Wuhrer. The complexity of order type isomorphism. In

SODA, pages 405–415. SIAM, 2014.

[18] Amihood Amir, Timothy M. Chan, Moshe Lewenstein, and Noa Lewen-

stein. On hardness of jumbled indexing. In ICALP (1), volume 8572

of LNCS, pages 114–125, 2014.

[19] Ilya Baran, Erik D. Demaine, and Mihai Pătras,cu. Subquadratic

algorithms for 3SUM. Algorithmica, 50(4):584–596, 2008.

Bibliography 173

[20] Luis Barba, Jean Cardinal, John Iacono, Stefan Langerman, Aurélien

Ooms, and Noam Solomon. Subquadratic algorithms for alge-

braic 3SUM. Discrete & Computational Geometry, 61(4):698–734,

06 2019. URL: https://doi.org/10.1007/s00454-018-0040-y, doi:

10.1007/s00454-018-0040-y.

[21] Gill Barequet and Sariel Har-Peled. Polygon-containment and transla-

tional min-Hausdorff-distance between segments sets are 3SUM-hard.

International Journal of Computational Geometry & Applications,

11(04):465–474, 2001.

[22] Saugata Basu, Richard Pollack, and Marie-Françoise Roy. Computing

roadmaps of semi-algebraic sets (extended abstract). In STOC, pages

168–173. ACM, 1996.

[23] Saugata Basu, Richard Pollack, and Marie-Françoise Roy. Algorithms

in real algebraic geometry, volume 10 of Algorithms and Computation

in Mathematics. Springer, 2006.

[24] Tim Baumann and Torben Hagerup. Rank-select indices without tears.

In WADS, 2019.

[25] Michael Ben-Or. Lower bounds for algebraic computation trees. In

STOC, pages 80–86. ACM, 1983.

[26] Jon Louis Bentley, Dorothea Haken, and James B Saxe. A general

method for solving divide-and-conquer recurrences. ACM SIGACT

News, 12(3):36–44, 1980.

[27] Marshall W. Bern, David Eppstein, Paul E. Plassmann, and F. Frances

Yao. Horizon theorems for lines and polygons. In Discrete and Compu-

tational Geometry, volume 6 of DIMACS Series in Discrete Mathemat-

ics and Theoretical Computer Science, pages 45–66. DIMACS/AMS,

1990.

[28] Anders Björner, Michel Las Vergnas, Bernd Sturmfels, Neil White, and

Günter M Ziegler. Oriented matroids. In Encyclopedia of Mathematics,

volume 46. Cambridge University Press, 1993.

https://doi.org/10.1007/s00454-018-0040-y
http://dx.doi.org/10.1007/s00454-018-0040-y
http://dx.doi.org/10.1007/s00454-018-0040-y

174 Bibliography

[29] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K.

Warmuth. Learnability and the vapnik-chervonenkis dimension. J.

ACM, 36(4):929–965, 1989.

[30] Jürgen Bokowski, Susanne Mock, and Ileana Streinu. On the Folkman-

Lawrence topological representation theorem for oriented matroids of

rank 3. European Journal of Combinatorics, 22(5):601–615, 2001.

[31] Jürgen Bokowski, Jürgen Richter-Gebert, and Werner Schindler. On

the distribution of order types. Computational Geometry, 1(3):127–142,

1992.

[32] Peter Brass, William O. J. Moser, and János Pach. Research problems

in discrete geometry. Springer, 2005.

[33] David Bremner, Timothy M. Chan, Erik D. Demaine, Jeff Erickson,

Ferran Hurtado, John Iacono, Stefan Langerman, Mihai Pătras,cu, and

Perouz Taslakian. Necklaces, convolutions, and X+Y. Algorithmica,

69(2):294–314, 2014.

[34] Hervé Brönnimann, Bernard Chazelle, and Jiŕı Matoušek. Product

range spaces, sensitive sampling, and derandomization. SIAM J.

Comput., 28(5):1552–1575, 1999.

[35] Robert Creighton Buck. Partition of space. The American Mathemat-

ical Monthly, 50(9):541–544, 1943.

[36] Peter Bürgisser, Michael Clausen, and Mohammad Amin Shokrol-

lahi. Algebraic complexity theory, volume 315 of Grundlehren der

mathematischen Wissenschaften. Springer, 1997.

[37] Sergio Cabello, Jean Cardinal, John Iacono, Stefan Langerman, Pat

Morin, and Aurélien Ooms. Encoding 3SUM. ArXiv e-prints, 2019.

arXiv:1903.02645 [cs.DS].

[38] Jean Cardinal, Timothy M. Chan, John Iacono, Stefan Langerman,

and Aurélien Ooms. Subquadratic encodings for point configurations.

In Symposium on Computational Geometry, volume 99 of LIPIcs, pages

20:1–20:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018.

https://arxiv.org/abs/1903.02645

Bibliography 175

[39] Jean Cardinal, Samuel Fiorini, Gwenaël Joret, Raphaël M Jungers,

and J Ian Munro. An efficient algorithm for partial order production.

SIAM journal on computing, 39(7):2927–2940, 2010.

[40] Jean Cardinal, Samuel Fiorini, Gwenaël Joret, Raphaël M Jungers,

and J Ian Munro. Sorting under partial information (without the

ellipsoid algorithm). Combinatorica, 33(6):655–697, 2013.

[41] Jean Cardinal, John Iacono, and Aurélien Ooms. Solving k-SUM using

few linear queries. In ESA, volume 57 of LIPIcs, pages 25:1–25:17,

2016.

[42] Marco L. Carmosino, Jiawei Gao, Russell Impagliazzo, Ivan Mihajlin,

Ramamohan Paturi, and Stefan Schneider. Nondeterministic extensions

of the strong exponential time hypothesis and consequences for non-

reducibility. In ITCS, pages 261–270. ACM, 2016.

[43] Bob F Caviness and Jeremy R Johnson. Quantifier elimination and

cylindrical algebraic decomposition. Springer, 2012.

[44] Timothy M. Chan. All-pairs shortest paths with real weights in

O(n3/ log n) time. Algorithmica, 50(2):236–243, 2008.

[45] Timothy M. Chan. More algorithms for all-pairs shortest paths in

weighted graphs. SIAM J. Comput., 39(5):2075–2089, 2010.

[46] Timothy M. Chan. More logarithmic-factor speedups for 3SUM, (me-

dian, +)-convolution, and some geometric 3SUM-hard problems. In

SODA, pages 881–897. SIAM, 2018.

[47] Timothy M. Chan and Moshe Lewenstein. Clustered integer 3SUM via

additive combinatorics. In Rocco A. Servedio and Ronitt Rubinfeld,

editors, Symposium on Theory of Computing (STOC 2015), pages

31–40. ACM, 2015.

[48] Bernard Chazelle. Cutting hyperplanes for divide-and-conquer. Dis-

crete & Computational Geometry, 9:145–158, 1993.

[49] Bernard Chazelle, Herbert Edelsbrunner, Leonidas J. Guibas, and

Micha Sharir. A singly exponential stratification scheme for real

176 Bibliography

semi-algebraic varieties and its applications. Theor. Comput. Sci.,

84(1):77–105, 1991.

[50] Bernard Chazelle, Leonidas J. Guibas, and D. T. Lee. The power of

geometric duality. BIT, 25(1):76–90, 1985.

[51] Bernard Chazelle and Jiŕı Matoušek. On linear-time deterministic

algorithms for optimization problems in fixed dimension. J. Algorithms,

21(3):579–597, 1996.

[52] Otfried Cheong, Ketan Mulmuley, and Edgar Ramos. Randomization

and derandomization. In Handbook of Discrete and Computational

Geometry, 2nd Ed., pages 895–926. Chapman and Hall/CRC, 2004.

[53] Kenneth L. Clarkson. A randomized algorithm for closest-point queries.

SIAM J. Comput., 17(4):830–847, 1988.

[54] George E. Collins. Hauptvortrag: Quantifier elimination for real closed

fields by cylindrical algebraic decomposition. In Automata Theory and

Formal Languages, volume 33 of LNCS, pages 134–183. Springer, 1975.

[55] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford

Stein. Introduction to algorithms (3rd Ed.). MIT press, 2009.

[56] David Cox, John Little, and Donal O’shea. Ideals, Varieties, and

Algorithms: An Introduction to Computational Algebraic Geometry

and Commutative Algebra. Undergraduate Texts in Mathematics.

Springer, 2007.

[57] James H. Davenport and Joos Heintz. Real quantifier elimination is

doubly exponential. J. Symb. Comput., 5(1/2):29–35, 1988.

[58] David P. Dobkin. A nonlinear lower bound on linear search tree pro-

grams for solving knapsack problems. J. Comput. Syst. Sci., 13(1):69–

73, 1976.

[59] David P. Dobkin and Richard J. Lipton. On some generalizations of

binary search. In Symposium on Theory of Computing (STOC 1974),

pages 310–316, 1974.

Bibliography 177

[60] David P. Dobkin and Richard J. Lipton. A lower bound of the 1
2n

2

on linear search programs for the knapsack problem. J. Comput. Syst.

Sci., 16(3):413–417, 1978.

[61] David P. Dobkin and Richard J. Lipton. On the complexity of com-

putations under varying sets of primitives. J. Comput. Syst. Sci.,

18(1):86–91, 1979.

[62] Yevgeniy Dodis, Mihai Pătras,cu, and Mikkel Thorup. Changing base

without losing space. In Proceedings of the 42nd ACM Symposium on

Theory of Computing, STOC 2010, Cambridge, Massachusetts, USA,

5-8 June 2010, pages 593–602, 2010.

[63] Herbert Edelsbrunner. Algorithms in Combinatorial Geometry, vol-

ume 10. Springer Science & Business Media, 2012.

[64] Herbert Edelsbrunner, Leonidas J. Guibas, János Pach, Richard Pol-

lack, Raimund Seidel, and Micha Sharir. Arrangements of curves in

the plane - topology, combinatorics and algorithms. Theor. Comput.

Sci., 92(2):319–336, 1992.

[65] Herbert Edelsbrunner, Joseph O’Rourke, and Raimund Seidel. Con-

structing arrangements of lines and hyperplanes with applications.

SIAM J. Comput., 15(2):341–363, 1986.

[66] Herbert Edelsbrunner, Raimund Seidel, and Micha Sharir. On the zone

theorem for hyperplane arrangements. SIAM J. Comput., 22(2):418–

429, 1993.

[67] György Elekes and Lajos Rónyai. A combinatorial problem on poly-

nomials and rational functions. J. Comb. Theory, Ser. A, 89(1):1–20,

2000.

[68] György Elekes and Endre Szabó. How to find groups? (and how to

use them in Erdős geometry?). Combinatorica, 32(5):537–571, 2012.

[69] David Eppstein. Forbidden Configurations in Discrete Geometry. Cam-

bridge University Press, 2018.

[70] Jeff Erickson. New lower bounds for Hopcroft’s problem. Discrete &

Computational Geometry, 16(4):389–418, 1996.

178 Bibliography

[71] Jeff Erickson. Lower bounds for linear satisfiability problems. Chicago

J. Theor. Comput. Sci., 1999.

[72] Jeff Erickson. New lower bounds for convex hull problems in odd

dimensions. SIAM J. Comput., 28(4):1198–1214, 1999.

[73] Hazel Everett, Ferran Hurtado, and Marc Noy. Stabbing information

of a simple polygon. Discrete Applied Mathematics, 91(1-3):67–82,

1999.

[74] Esther Ezra, Sariel Har-Peled, Haim Kaplan, and Micha Sharir. De-

composing arrangements of hyperplanes: Vc-dimension, combinatorial

dimension, and point location. ArXiv e-prints, 2017. arXiv:1712.02913

[cs.CG].

[75] Esther Ezra and Micha Sharir. A nearly quadratic bound for the

decision tree complexity of k-sum. In Symposium on Computational

Geometry, volume 77 of LIPIcs, pages 41:1–41:15. Schloss Dagstuhl -

Leibniz-Zentrum fuer Informatik, 2017.

[76] Stefan Felsner. On the number of arrangements of pseudolines. In

SoCG, pages 30–37. ACM, 1996.

[77] Stefan Felsner and Pavel Valtr. Coding and counting arrangements

of pseudolines. Discrete & Computational Geometry, 46(3):405–416,

2011.

[78] Jon Folkman and Jim Lawrence. Oriented matroids. Journal of

Combinatorial Theory, Series B, 25(2):199–236, 1978.

[79] Hervé Fournier. Complexité et expressibilité sur les réels. PhD thesis,

École normale supérieure de Lyon, 2001.

[80] Michael L. Fredman. How good is the information theory bound in

sorting? Theor. Comput. Sci., 1(4):355–361, 1976.

[81] Michael L. Fredman, János Komlós, and Endre Szemerédi. Storing a

sparse table with O(1) worst case access time. J. ACM, 31(3):538–544,

1984.

https://arxiv.org/abs/1712.02913
https://arxiv.org/abs/1712.02913

Bibliography 179

[82] Michael L. Fredman and Dan E. Willard. BLASTING through the

information theoretic barrier with FUSION TREES. In STOC, pages

1–7. ACM, 1990.

[83] Ari Freund. Improved subquadratic 3SUM. Algorithmica, pages 1–19,

2015.

[84] Anka Gajentaan and Mark H. Overmars. On a class of O(n2) problems

in computational geometry. Comput. Geom., 5:165–185, 1995.

[85] Omer Gold and Micha Sharir. Improved bounds for 3SUM, k-SUM,

and linear degeneracy. In ESA, volume 87 of LIPIcs, pages 42:1–42:13.

Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017.

[86] Jacob E. Goodman. Proof of a conjecture of Burr, Grünbaum, and

Sloane. Discrete Mathematics, 32(1):27–35, 1980.

[87] Jacob E. Goodman. Pseudoline arrangements. In Handbook of Discrete

and Computational Geometry, 2nd Ed., pages 97–128. Chapman and

Hall/CRC, 2004.

[88] Jacob E. Goodman and Richard Pollack. Proof of Grünbaum’s con-

jecture on the stretchability of certain arrangements of pseudolines.

Journal of Combinatorial Theory, Series A, 29(3):385–390, 1980.

[89] Jacob E. Goodman and Richard Pollack. Multidimensional sorting.

SIAM Journal on Computing, 12(3):484–507, 1983.

[90] Jacob E. Goodman and Richard Pollack. Semispaces of configurations,

cell complexes of arrangements. Journal of Combinatorial Theory,

Series A, 37(3):257–293, 1984.

[91] Jacob E. Goodman and Richard Pollack. Upper bounds for config-

urations and polytopes in Rd. Discrete & Computational Geometry,

1:219–227, 1986.

[92] Jacob E. Goodman and Richard Pollack. The complexity of point

configurations. Discrete Applied Mathematics, 31(2):167–180, 1991.

180 Bibliography

[93] Jacob E. Goodman and Richard Pollack. Allowable sequences and

order types in discrete and computational geometry. In New Trends in

Discrete and Computational Geometry, pages 103–134. Springer, 1993.

[94] Jacob E. Goodman, Richard Pollack, and Bernd Sturmfels. Coordinate

representation of order types requires exponential storage. In STOC,

pages 405–410. ACM, 1989.

[95] Allan Grønlund and Seth Pettie. Threesomes, degenerates, and love

triangles. J. ACM, 65(4):22:1–22:25, 2018.

[96] Branko Grünbaum. Convex Polytopes. Springer, 2005.

[97] Dan Halperin. Arrangements. In Handbook of Discrete and Computa-

tional Geometry, 2nd Ed., pages 529–562. Chapman and Hall/CRC,

2004.

[98] Heiko Harborth and Meinhard Möller. The Esther Klein problem in

the projective plane. J. Combin. Math. Combin. Comput., 15:171–179,

1994.

[99] L. H. Harper, Thomas H. Payne, John E. Savage, and Ernst G. Straus.

Sorting X + Y. Commun. ACM, 18(6):347–349, 1975.

[100] Joe Harris. Algebraic geometry: a first course, volume 133. Springer,

2013.

[101] Robin Hartshorne. Algebraic geometry, volume 52. Springer, 1977.

[102] David Haussler and Emo Welzl. ε-nets and simplex range queries.

Discrete & Computational Geometry, 2(1):127–151, 1987.

[103] Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and

Thatchaphol Saranurak. Unifying and strengthening hardness for dy-

namic problems via the online matrix-vector multiplication conjecture.

In STOC, pages 21–30. ACM, 2015.

[104] Max Hopkins, Daniel M. Kane, and Shachar Lovett. The power of

comparisons for actively learning linear classifiers. ArXiv e-prints,

2019. arXiv:1907.03816 [cs.LG].

https://arxiv.org/abs/1907.03816

Bibliography 181

[105] Alfredo Hubard, Luis Montejano, Emiliano Mora, and Andrew Suk.

Order types of convex bodies. Order, 28(1):121–130, 2011.

[106] Guy Joseph Jacobson. Succinct static data structures. PhD thesis,

Carnegie Mellon University, 1988.

[107] Daniel M. Kane, Shachar Lovett, and Shay Moran. Generalized com-

parison trees for point-location problems. In ICALP, volume 107 of

LIPIcs, pages 82:1–82:13. Schloss Dagstuhl - Leibniz-Zentrum fuer

Informatik, 2018.

[108] Daniel M. Kane, Shachar Lovett, and Shay Moran. Near-optimal

linear decision trees for k-sum and related problems. In STOC, pages

554–563. ACM, 2018.

[109] Donald E. Knuth. Axioms and Hulls, volume 606 of Lecture Notes in

Computer Science. Springer, 1992.

[110] Tsvi Kopelowitz, Seth Pettie, and Ely Porat. Higher lower bounds

from the 3SUM conjecture. In SODA, pages 1272–1287. SIAM, 2016.

[111] Hsiang-Tsung Kung. Fast evaluation and interpolation. Technical

report, Carnegie Mellon University, 1973.

[112] Hsiang-Tsung Kung. A new upper bound on the complexity of deriva-

tive evaluation. Technical report, Carnegie Mellon University, 1973.

[113] Friedrich Levi. Die teilung der projektiven ebene durch gerade oder

pseudogerade. Ber. Math.-Phys. Kl. Sächs. Akad. Wiss, 78:256–267,

1926.

[114] Jiŕı Matoušek. Range searching with efficient hierarchical cutting.

Discrete & Computational Geometry, 10:157–182, 1993.

[115] Jiŕı Matoušek. Approximations and optimal geometric divide-and-

conquer. J. Comput. Syst. Sci., 50(2):203–208, 1995.

[116] Jiŕı Matoušek. Derandomization in computational geometry. J. Algo-

rithms, 20(3):545–580, 1996.

182 Bibliography

[117] Yoshitake Matsumoto, Sonoko Moriyama, Hiroshi Imai, and David

Bremner. Matroid enumeration for incidence geometry. Discrete &

Computational Geometry, 47(1):17–43, 2012.

[118] Stefan Meiser. Point location in arrangements of hyperplanes. Infor-

mation and Computation, 106(2):286–303, 1993. doi:http://dx.doi.

org/10.1006/inco.1993.1057.

[119] Friedhelm Meyer auf der Heide. A polynomial linear search algorithm

for the n-dimensional knapsack problem. J. ACM, 31(3):668–676, 1984.

[120] John Milnor. On the Betti numbers of real varieties. Proceedings of

the American Mathematical Society, 15(2):275–280, 1964.

[121] Bhubaneswar Mishra. Computational real algebraic geometry. In

Handbook of Discrete and Computational Geometry, 2nd Ed., pages

743–764. Chapman and Hall/CRC, 2004.

[122] Joseph S. B. Mitchell and Joseph O’Rourke. Computational geometry

column 42. Int. J. Comput. Geometry Appl., 11(5):573–582, 2001.

[123] Nikolai E Mnëv. On manifolds of combinatorial types of projective con-

figurations and convex polyhedra. In Soviet Math. Doklady, volume 32,

pages 335–337, 1985.

[124] Nikolai E Mnëv. The universality theorems on the classification prob-

lem of configuration varieties and convex polytopes varieties. In Topol-

ogy and geometry—Rohlin seminar, pages 527–543. Springer, 1988.

[125] H. Nassajian Mojarrad, T. Pham, C. Valculescu, and F. de Zeeuw.

Schwartz-Zippel bounds for two-dimensional products. ArXiv e-prints,

2016. arXiv:1507.08181 [cs.CO].

[126] Jaroslav Nešetřil and Pavel Valtr. A Ramsey property of order types.

Journal of Combinatorial Theory, Series A, 81(1):88–107, 1998.

[127] János Pach and Micha Sharir. On the number of incidences between

points and curves. Combinatorics, Probability & Computing, 7(1):121–

127, 1998.

http://dx.doi.org/http://dx.doi.org/10.1006/inco.1993.1057
http://dx.doi.org/http://dx.doi.org/10.1006/inco.1993.1057
https://arxiv.org/abs/1507.08181

Bibliography 183

[128] János Pach and Micha Sharir. Combinatorial geometry with algorith-

mic applications – the Alcalá lectures. AMS, Providence, 2009.

[129] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. J.

Algorithms, 51(2):122–144, 2004.

[130] Mihai Pătras,cu. Towards polynomial lower bounds for dynamic prob-

lems. In Symposium on Theory of Computing (STOC 2010), pages

603–610. ACM, 2010.

[131] Mihai Pătras,cu and Ryan Williams. On the possibility of faster SAT

algorithms. In Proceedings of the Twenty-First Annual ACM-SIAM

Symposium on Discrete Algorithms, SODA 2010, Austin, Texas, USA,

January 17-19, 2010, pages 1065–1075, 2010.

[132] Franco P. Preparata and Michael Ian Shamos. Computational Geome-

try - An Introduction. Texts and Monographs in Computer Science.

Springer, 1985.

[133] Michael O. Rabin. Proving simultaneous positivity of linear forms. J.

Comput. Syst. Sci., 6(6):639–650, 1972.

[134] Prabhakar Raghavan. Probabilistic construction of deterministic algo-

rithms: Approximating packing integer programs. J. Comput. Syst.

Sci., 37(2):130–143, 1988.

[135] Rajeev Raman, Venkatesh Raman, and Srinivasa Rao Satti. Succinct

dynamic data structures. In WADS, volume 2125 of Lecture Notes in

Computer Science, pages 426–437. Springer, 2001.

[136] Rajeev Raman, Venkatesh Raman, and Srinivasa Rao Satti. Succinct

indexable dictionaries with applications to encoding k-ary trees, prefix

sums and multisets. ACM Trans. Algorithms, 3(4):43, 2007.

[137] Orit E. Raz and Micha Sharir. The number of unit-area triangles in

the plane: Theme and variations. In SoCG, volume 34 of LIPIcs, pages

569–583, 2015.

[138] Orit E. Raz, Micha Sharir, and Frank de Zeeuw. Polynomials vanishing

on cartesian products: The Elekes-Szabó theorem revisited. In SoCG,

volume 34 of LIPIcs, pages 522–536, 2015.

184 Bibliography

[139] Orit E. Raz, Micha Sharir, and Frank de Zeeuw. The Elekes-Szabó

theorem in four dimensions. ArXiv e-prints, 2016. arXiv:1607.03600

[cs.CO].

[140] Orit E. Raz, Micha Sharir, and Ilya D. Shkredov. On the number

of unit-area triangles spanned by convex grids in the plane. Comput.

Geom., 62:25–33, 2017.

[141] Orit E. Raz, Micha Sharir, and József Solymosi. Polynomials vanishing

on grids: The Elekes-Rónyai problem revisited. In SoCG, page 251.

ACM, 2014.

[142] Orit E. Raz, Micha Sharir, and József Solymosi. On triple intersections

of three families of unit circles. Discrete & Computational Geometry,

54(4):930–953, 2015.

[143] Jürgen Richter. Kombinatorische realisierbarkeitskriterien für orien-

tierte matroide. Mitt. Math. Sem. Univ. Giessen, 194:1–112, 1989.

[144] Jürgen Richter-Gebert and Günter M. Ziegler. Oriented matroids. In

Handbook of Discrete and Computational Geometry, 2nd Ed., pages

129–151. Chapman and Hall/CRC, 2004.

[145] Gerhard Ringel. Teilungen der ebene durch geraden oder topologische

geraden. Mathematische Zeitschrift, 64(1):79–102, 1956.

[146] Norbert Sauer. On the density of families of sets. Journal of Combi-

natorial Theory, Series A, 13(1):145–147, 1972.

[147] Abraham Seidenberg. Constructions in algebra. Transactions of the

AMS, 197:273–313, 1974.

[148] Michael Ian Shamos. Computational geometry. PhD thesis, Yale

University, 1978.

[149] Saharon Shelah. A combinatorial problem; stability and order for mod-

els and theories in infinitary languages. Pacific Journal of Mathematics,

41(1):247–261, 1972.

https://arxiv.org/abs/1607.03600
https://arxiv.org/abs/1607.03600

Bibliography 185

[150] Jack Snoeyink. Point location. In Handbook of Discrete and Computa-

tional Geometry, 2nd Ed., pages 767–785. Chapman and Hall/CRC,

2004.

[151] Joel Spencer. Ten lectures on the probabilistic method, 2nd Ed., vol-

ume 64. SIAM, 1994.

[152] J. Michael Steele and Andrew Yao. Lower bounds for algebraic decision

trees. J. Algorithms, 3(1):1–8, 1982.

[153] William L. Steiger and Ileana Streinu. A pseudo-algorithmic separation

of lines from pseudo-lines. Information Processing Letters, 53(5):295–

299, 1995.

[154] Volker Strassen. Die berechnungskomplexität von elementarsym-

metrischen funktionen und von interpolationskoeffizienten. Numerische

Mathematik, 20(3):238–251, 1973.

[155] Ileana Streinu. Clusters of stars. In SoCG, pages 439–441. ACM, 1997.

[156] Alfred Tarski. A Decision Method for Elementary Algebra and Geom-

etry, pages 24–84. Springer Vienna, Vienna, 1998.

[157] René Thom. Sur l’homologie des variétés algébriques. In Differential

and Combinatorial Topology (A Symposium in Honor of Marston

Morse), pages 255–265, 1965.

[158] VN Vapnik and A Ya Chervonenkis. On the uniform convergence

of relative frequencies of events to their probabilities. Theory of

Probability & Its Applications, 16(2):264–280, 1971.

[159] Sebastiano Vigna. Broadword implementation of rank/select queries.

In WEA, volume 5038 of Lecture Notes in Computer Science, pages

154–168. Springer, 2008.

[160] Ryan Williams. A new algorithm for optimal 2-constraint satisfaction

and its implications. Theor. Comput. Sci., 348(2-3):357–365, 2005.

[161] Andrew Yao. A lower bound to finding convex hulls. J. ACM, 28(4):780–

787, 1981.

186 Bibliography

[162] Andrew Chi-Chih Yao. On parallel computation for the knapsack

problem. J. ACM, 29(3):898–903, 1982.

[163] Andrew Chi-Chih Yao and F. Frances Yao. A general approach to

d-dimensional geometric queries. In STOC, pages 163–168. ACM,

1985.

[164] Chee K. Yap. Robust geometric computation. In Handbook of Discrete

and Computational Geometry, 2nd Ed., pages 927–952. Chapman and

Hall/CRC, 2004.

[165] David Yun. On square-free decomposition algorithms. In SYMSACC,

pages 26–35, 1976.

List of Contributions

1 Efficient implementation of Meiser’s algorithm applied to

k-SUM . 42

2 Efficient implementation of Meiser’s algorithm applied to

k-SUM with query-size tradeoff 43

3 O(n12/7+ε)-depth algebraic decision tree for explicit 3POL 45

4 o(n2)-time real-RAM algorithm for explicit 3POL 45

5 O(n12/7+ε)-depth algebraic decision tree for 3POL 45

6 o(n2)-time real-RAM algorithm for 3POL 45

7 O(n2)-bits O(log n)-querytime encodings for order types . . 47

8 o(n2)-bits O(log n)-querytime encodings for realizable OT . 47

9 O(n2)-bits o(log n)-querytime encodings for order types . . 47

10 o(n2)-bits o(log n)-querytime encodings for realizable OT . 47

11 Construct the encodings in 7, 8, 9, and 10 in O(n2) time . . 47

12 o(nk−1)-bits o(log n)-querytime encodings for realizable chi-

rotopes of rank k . 47

13 Construct the encoding in 12 in O(nd) time 47

14 Θ(n2) bounds on the bit representation of 3SUM instances 49

15 O(n log n)-bits nO(1)-querytime encoding for 3SUM types . 49

16 Õ(n3/2)-bits O(1)-querytime encoding for 3SUM types . . . 50

	To the Profane
	Token of Appreciation
	Table of Contents
	On Notation
	In a Dozen Pages
	I Without Proof
	Models of Computation
	Algorithms
	Random Access Machines
	Computation and Decision Trees

	Data Structures
	Encodings

	History
	3SUM & k-SUM
	Variants
	Point Location
	Information Theoretic Lower Bound
	Higher Lower Bounds
	Uniform Algorithms
	Nonuniform Algorithms

	GPT & 3POL
	Variants
	Reductions from k-SUM
	Lower Bounds and Order Types
	Algorithms
	More on Order Types
	Encodings
	The Intermediate Problem
	Combinatorics

	Contributions
	Meiser Applied to k-SUM
	Grønlund and Pettie Applied to 3POL
	Slightly Subquadratic Encodings for GPT
	Better Encodings for 3SUM

	Developments
	Better Nonuniform Algorithms for k-SUM
	Using Vertical Decomposition
	Using Inference Dimension

	Timothy Chan Strikes Again

	Open Questions
	About Algorithms
	About Encodings

	II The Computational Geometer's Toolbox
	Arrangements
	Counting Cells
	Pseudolines
	Zone Theorem
	Cell Decomposition
	Bottom Vertex Triangulation
	Vertical Decomposition

	Chirotopes
	Duality
	Canonical Labelings

	Divide and Conquer
	Epsilon Nets and Cuttings
	Range Spaces
	VC-dimension
	Epsilon Nets
	Hyperplanes in Linear Dimension
	Cuttings
	Algebraic Range Spaces
	Derandomization

	Hierarchical Cuttings

	Existential Theory of the Reals
	Cylindrical Algebraic Decomposition

	III Algorithms
	Solving k-SUM using Few Linear Queries
	Meiser Solves k-SUM
	Query Complexity
	Time Complexity
	Query Size

	Missing Details
	Keeping Queries Linear in Algorithm 1
	Algebraic Computation Trees
	Uniform Random Sampling
	Proof of Lemma A.7

	Subquadratic Algorithms for Algebraic 3SUM
	First Subquadratic Algorithms for 3POL
	Nonuniform Algorithm for Explicit 3POL
	Uniform Algorithm for Explicit 3POL
	Nonuniform Algorithm for 3POL
	Uniform Algorithm for 3POL

	Subproblems
	Offline Polynomial Range Searching
	Offline Polynomial Dominance Reporting

	Applications
	GPT for Points on Curves
	Incidences on Unit Circles
	Points Spanning Unit Triangles

	IV Data Structures
	Subquadratic Encodings for Point Configurations
	Encoding Order Types via Hierarchical Cuttings
	Sublogarithmic Query Complexity
	Higher-Dimensional Encodings

	Encoding 3SUM
	Representation by Numbers
	Space-Optimal Representation
	Subquadratic Space and Constant Query Time

	Bibliography
	List of Contributions

