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Summary

This paper deals with the synthesis of an RL Cauer ladder network to homogenize multiturn windings

in time-domain finite element (FE) computations. In frequency domain, the macroscopic model of eddy

currents in the winding can be described by frequency-dependent complex impedance and reluctivity for

skin and proximity effects respectively. To represent those in time domain, two RL Cauer networks are

synthesized to match each, with the accuracy depending on the order of the network to be appended. The

proposed method yields an improved accuracy as compared to the previous work in which the topology

of the ladder network was not well chosen. The results are validated by means of a 2-D axisymmetric

inductor with a nonlinear gapped core.
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1 INTRODUCTION

High-frequency operations of electromagnetic devices can incur excessive losses in their windings due to eddy currents. Indeed, when applying high-frequency
voltage or current, the current does not flow uniformly, but tends to flow in the layer near the surface of the conductor (the higher the frequency, the thinner the
layer).

In finite element (FE) modeling, the conventional brute-force approach requires fine mesh in each turn of a winding to accurately capture this phenomenon,
which can lead to an extremely high computational cost, particularly in three-dimensional (3-D) models. Homogenization techniques that refrain from the fine
discretization of the winding are indispensable in FE models. The homogenization consists in transforming a heterogeneous material like a winding region
(consisting of conductors, insulation and air) into a homogeneous material, the mesh of which can be significantly coarser.

If the supply is sinusoidal and the system is linear, frequency-domain homogenization methods provide a steady-state solution, e.g. techniques in Gyselinck
(2005) 1, Meunier (2008) 2. Therein, the eddy-current effect in the winding is macroscopically modeled by means of a complex impedance (or admittance) and a
complex reluctivity (or permeability), which are extracted from solving a cell problem. Their formulas have also been proposed based on the fit of FE solutions
to the cell problem 3 4 5 and based on the effective medium theory 6. The winding homogenization approach is also extended within a harmonic-balance FE
method allowing for non-sinusoidal supplies and nonlinearities by means of multi-harmonic impedance and reluctivity 7 (a complex value per harmonic in the
system). However, in the case of transient analysis (linear or nonlinear systems), the time-domain simulation is necessary.

One straightforward way to model frequency-dependent behavior in time-domain simulations is to employ an RL ladder network (e.g. Figure 1 ), of which
the order determines the modeling accuracy 8. To incorporate the homogenization of the winding in time-domain FE computation, Gyselinck (2007) 9 and
Sabariego (2008) 10 synthesized an RL ladder network in Figure 1 b. The system matrices corresponding to this network were fitted based on the frequency-
domain complex impedance and reluctivity 1 using a constrained Nelder-Mead simplex optimization algorithm. A similar method has been conducted for soft
magnetic composites 11. Sato (2016) 12 applied a Padé approximation via a Lanczos process to produce a reduced transfer function of an inductor model. The
resulting Foster network allows to account for the eddy-current effects in the winding. Kameari (2018) 13 proposed characterizing a nonlinear inductor with a
Cauer ladder network, which was synthesized iteratively. The result of the synthesis also provides the electric and magnetic fields which subsequently are the
sources of its FE model. The total solution is achieved by superposition.
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(a) Cauer network (b) Network considered in the previous study 10

FIGURE 1 Examples of 3rd-order RL ladder networks.

In this paper, we propose an improved method of winding homogenization for time-domain FE computation as compared to the research by Gyselinck
(2007) 9 and Sabariego (2008) 10. An RL Cauer ladder network in Figure 1 a is synthesized based on the estimation of a transfer function from precomputed
frequency-dependent complex impedance (skin effect) and reluctivity (proximity effect) 1. The employed estimation algorithm is vector fitting (VF) based,
which are popular identification methods through iterative applications of least-square problems 14,15. The method has been successfully applied in transient
simulations of multiturn transformers 16,17. Accordingly, the component values are determined by the simple Euclidean algorithm for polynomial division.
Effects of the order of the synthesized networks on the modeling accuracy are also investigated. Compared to the work by Kameari (2018) 13, our method allows
the straightforward coupling of the FE model with the RL Cauer ladder network via the global currents and voltages for the skin-effect network, and via the
local magnetic flux density in the winding for the proximity-effect network. For validation, we consider a 2-D model of an axisymmetric inductor model with a
nonlinear gapped core, for which a conventional brute-force model provides an accurate reference solution.

In this work, we adopt the following assumptions:

• We restrict our study to magneto-quasi-static problems with sufficiently low working frequency, so that the displacement currents and ensuing capacitive
effects (winding capacitance) can be disregarded. As a rule of thumb, the highest relevant frequency should be below one third of the resonant frequency,
ensuring that the capacitive current is at least one order of magnitude lower than the inductive current 18. Violating this rule can potentially lead to
inaccurate transient simulations, e.g. when modeling lightning strikes at transformers where capacitive currents are significant.

• The winding of interest is relatively orderly wound, which is common practice in electrical machines and power magnetic devices. Note that such a
neat structure allows to estimate the static winding parasitic capacitance and achieve an accurate transient response 19. This capacitance value, required
to estimate the resonance frequency, can be determined either from the winding and core geometry and material characteristics (see e.g. Dalessandro
(2007) 20) or from electrostatics finite-element models (see e.g. De Grève (2013) 21).

2 MACROSCOPIC MODEL OF EDDY CURRENTS IN MULTITURN WINDINGS

In the frequency domain with frequency f or angular frequency (pulsation) ω = 2π f , the macroscopic modeling of eddy currents in the winding (conductor
radius r , fill factor λ, length l and DC resistance Rdc) can be done through the phasor and complex-quantities representation with j =

√
−1 1. Given, the

conductivity of the conductorσ, the permeability of the conductor µ0 (or the reluctivityν0 = 1/µ0), the skin effect can be represented by the frequency-dependent
complex impedance

Zskin(jω) = pI(ω)Rdc + jωqI(ω)
µ0l

8πλ
, (1)

through the frequency-dependent coefficients pI and qI, whereas the proximity effect can be represented by the frequency-dependent complex reluctivity (the
reciprocal of the complex permeability)

νprox(jω) = qB(ω)ν0 + jωpB(ω)
λσr2

4
, (2)

through the frequency-dependent coefficients pB and qB.
Since the imaginary parts of these two complex quantities are proportional to the angular frequency ω for sufficiently low angular frequency, they can be

approximated to the frequency-domain behavior of an RL network, which can also be described by a system of the k first-order ordinary differential equations
(ODEs) in time domain with large enough k. For skin effect, it is straightforward to relate the instantaneous voltage and current, which are the winding global
quantities, as follows:

v(jω) = Ri(jω) + jωLi(jω) ⇐⇒ v(t) = Ri(t) + L
d
dt

i(t) , (3)

where v(jω) and i(jω) are the k-element column vectors of complex-valued voltage and current phasors in the network respectively, v(t) and i(t) are the k-
element column vectors of instantaneous voltages and currents in the network, and R and L are the k × k constant real symmetric matrices associated with the
resistive and inductive elements in the network. In general, the network can be described in time domain by the terminal voltage v(t), together with the terminal
current i(t) and k − 1 auxiliary currents in the network i2(t), . . . ik (t). The column vectors v(t) and i(t) associated with Figure 1 are [ v(t) 0 · · · 0 ]T and
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[ i(t) i2(t) · · · ik (t) ]
T respectively. In addition, the magnetic energywskin and the joule losses pskin due to skin effect can be computed from the instantaneous

power vT (t)i(t) based on (3) by

wskin(t) =

∫ (
d
dt

iT (t)
)

Li(t) dt =
∫

d
dt

(
1
2

iT (t)Li(t)
)

dt =
1
2

iT (t)Li(t) , (4)

pskin(t) = iT (t)Ri(t) . (5)

Although there is no physical circuit governing the relation between the local instantaneous magnetic field intensity h(t) and magnetic flux density b(t), the
proximity-effect reluctivity can be analogously expressed through the following relation

h(jω) = Rb(jω) + jωLb(jω) ⇐⇒ h(t) = Rb(t) + L
d
dt

b(t) , (6)

where h(jω) and b(jω) are the k-element column vectors of complex-valued magnetic field intensity and magnetic flux density phasors respectively, h(t) and
b(t) are the k-element column vectors of instantaneous magnetic field intensity and magnetic flux density, and R and L are k × k constant real symmetric
matrices. Therefore, the column vectors h(t) and b(t) can be [ h(t) 0 · · · 0 ]T and [ b(t) b2(t) · · · bk (t) ]

T respectively, where b2(t), . . . bk (t) are k − 1
auxiliary components of magnetic flux density.

Based on the local relation in (6), we can compute the instantaneous magnetic energy wprox and joule losses pprox due to proximity effect in the winding
region Ωwinding from 10

wprox(t) =

∫
Ωwinding

1
2

bT (t)Rb(t) dΩ , (7)

pprox(t) =

∫
Ωwinding

1
2

(
d
dt

bT (t)

)
L

d
dt

b(t) dΩ . (8)

Therefore, the total magnetic energy in the winding region wwinding and the total winding losses pwinding can be calculated from

wwinding(t) = wskin(t) + wprox(t) , (9)

pwinding(t) = pskin(t) + pprox(t) . (10)

3 RL LADDER NETWORKS FOR TIME-DOMAIN SIMULATION

An RL ladder network is a useful tool to model frequency-dependent behavior. The order k of the network can be chosen to obtain a desired accuracy of
the model over a desired range of frequency (cf. Figure 1 for some examples of 3rd-order ladder networks). One of the most useful topologies of RL ladder
networks is a Cauer network1 (Figure 1 a), of which the synthesis procedure has been well established 23. In the s-domain (where s = jω), such networks can
be synthesized to have the driving-point admittance Y(s) = 1/Z(s) that perfectly matches any rational, causal and stable transfer function provided that��Z (j∞)�� > ��Z (j0)�� = Rdc . (11)

The RL component values in the network can be found by a continued fraction expansion of the driving-point impedance Z(s), e.g. the case of a 3rd-order
RL ladder network is

Z(s) = R1 +
1

1
sL1
+

1

R2 +
1

1
sL2
+

1

R3 +
1
1

sL3

. (12)

This can be done easily by the simple Euclidean algorithm for polynomial division in numerical analysis software, e.g. command deconv in MATLAB.
Moreover, if the transfer function is scaled to the new frequency ωnew (frequency scaling), the synthesized network can be simply modified by scaling the
inductance values as follows:

ωnew = kωold =⇒ Lnew = Lold/k. (13)

1The other topology of Cauer network can be derived by swapping the positions of inductors and resistors, resulting in a network with series inductors and shunt
resistors. This topology is preferred to model the saturation of the magnetic core 22. However, to represent a linear subsystem like the winding in this work, both topologies
can be used, so the topology in Figure 1 a is selected.
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On the other hand, if the transfer function is scaled to the new impedance level
��Znew

�� (impedance scaling), the synthesized network can be simply modified by
scaling the inductance and the resistance values as follows:��Znew

�� = α ��Zold
�� =⇒ Lnew = αLold and Rnew = αRold. (14)

From (3), a k th-order RL Cauer ladder network in Figure 1 a can be described in time domain by the diagonal matrix R and the symmetric tridiagonal matrix
L reading

R =



R1 0 . . . 0
0 R2 . . . 0
.
.
.

.

.

.
. . . 0

0 0 0 Rk


, L =



L1 −L1 . . . 0
−L1 L1 + L2 . . . 0
.
.
.

.

.

.
. . . −Lk−1

0 0 −Lk−1 Lk−1 + Lk


. (15)

Analogously, the matrices R and L in (6) are diagonal and symmetric tridiagonal respectively and can be written in the same way.

3.1 Synthesis of RL ladder networks

The synthesis procedure can be summarized as follows:

1. Obtain the normalized frequency responses of the complex impedance Zn,skin(jωn) and the complex reluctivity νn,prox(jωn) of the winding, where���Zn,skin(j0)
��� = ���νn,skin(j0)

��� = 1. They can be obtained by the empirical formulas 3,4,5,6 or by solving a representative cell problem 1. In this work, we solved
the cell problem with the FE method in open-source software Gmsh/GetDP 24,25 for each normalized frequency ωn

ωn =
( r
δ

)2
=

pn︷      ︸︸      ︷(
σµ0r

2

2

)
ω = pnω (16)

where δ = 1/
√
(σπµ0 f ) is the skin-depth of the conductor.

2. Estimate a corresponding rational transfer function. In this work, we fittedYn,skin(jω) = 1/Zn,skin(jω) and µn,prox
(jω) = 1/νn,prox(jω) instead because they

are bounded. We used the function tfest based on the vector fitting algorithm 14 from the system identification toolbox in MATLAB with the condition
that the number of poles is higher than the number of zeros by one to satisfy (11).

3. Synthesize a corresponding RL Cauer ladder network based on (12).

4. Scale the inductance value L → pnL.

5. Scale both the resistance and inductance values with the DC values, i.e. Rdc and ν0 for complex impedance and complex reluctivity respectively.

3.2 Synthesis results

To investigate the effect of the order of the synthesized ladder network on modeling accuracy, the Cauer ladder networks of order from 1 to 4 are synthesized
to match the FE solution to a cell problem of square-packed windings 1 with fill factor λ = 0.65 over 40 logarithmically spaced frequencies in the range of
ωn ∈ [0, 100]. The results from the previous work 10 with the ladder network in Figure 1 b are also included for comparison. Apart from different network
topologies (cf. Figure 1 a&b), in the previous study, the matrices R in (3) and R in (6) are fixed to be the identity matrices (all series resistors in Figure 1 b have
the same value.), and the estimation algorithm relies on a constrained Nelder-Mead simplex optimization algorithm of the functions fminsearchbnd to ensure
only finite positive-valued elements (physically realizable). Herein, the normalized root mean square (RMS) error is a metric for comparing the goodness of
approximations Ĥ to a complex-valued Ndata-element data set H , reading

Normalized RMS Error, ε =

√√√
1

Ndata

Ndata∑
i

����� Ĥ i − H i

H i

�����2. (17)

For the skin-effect impedance, the results in this paper and in the previous work are comparable (Figure 2 a). The increase in order improves the accuracy of the
estimate. The phase response obtained from the synthesized ladder network deviates from the reference solution at high frequencies despite using the 4th-order
network. Still, in multiturn winding applications, the proximity effect is dominant so this does not cause significant errors 1. The corresponding synthesized
4th-order network is displayed in Figure 3 . The first resistor next to the terminal of the synthesized network has the value of Rdc = 0.187Ω, which corresponds
to the asymptotic low-frequency behavior of the network. In other words, increasing the order of the network augments the network with additional ladder
elements to improve the accuracy at high frequencies.

For the proximity-effect reluctivity, the results of the synthesis in this work are in good agreement with the reference solution (Figure 2 b). When the order
of the network is higher than 2, the error ε decreases 10 times per one-order increment. Furthermore, compared to the results based on the previous work, the
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(a) Skin-effect impedance Zskin (b) Proximity-effect reluctivity νprox

FIGURE 2 Fitted frequency-dependent skin-effect complex impedance Zskin (a) and reluctivity νprox (b) of fill factor λ = 0.65 based on the Cauer ladder
networks of different orders and their normalized RMS errors compared to the reference solutions from the FE method.

FIGURE 3 Synthesized 4th-order RL Cauer ladder network to represent the skin-effect impedance Zskin.

error of the approximation obtained in this paper is 100 times less than the one of the previous work. The corresponding system of differential equations of
order 4 is as follows: 

h(t)

0
0
0


= ν0


1 0 0 0
0 1.91 0 0
0 0 1.081 0
0 0 0 0.671



b(t)

b2(t)

b3(t)

b4(t)


+
σr2

2


0.325 −0.325 0 0
−0.325 0.369 −0.044 0

0 −0.044 0.0533 −0.0089
0 0 −0.0089 0.0106


d
dt


b(t)

b2(t)

b3(t)

b4(t)


. (18)

The resultant matrix R here is not the identity matrix as assumed in the previous work 10, which indicates the cause of mismatch of the estimate in Figure 2 b.
From Figure 2 , the results suggest that the order of the synthesized RL ladder network should be at least 3 to ensure good accuracy of the modeling for this

wide range of frequencies and fill factor λ = 0.65.

4 HOMOGENIZATION OF WINDINGS IN FE MODELS

As an application example, a 2-D model of an axisymmetric inductor with a nonlinear gapped core in Figure 4 a is considered. The winding region contains
uniformly distributed N = 120 round conductors with radius r = 0.56 mm, connected in series. This is associated with fill factor λ = 0.65, yielding
Rdc = 0.187 Ω. This obviously requires fine mesh in the winding region, whereas the mesh is much coarser in its homogenized counterpart (Figure 4 b). The
winding homogenization was carried out with the order of ladder network k = 4 for both skin- and proximity effects. For comparison, the homogenized model
based on the previous work is also considered.

To incorporate the homogenized winding based on the synthesized networks into an FE model, the skin-effect impedance and the proximity-effect reluctivity
are treated separately. For the former, the electrical circuit equation of its RL Cauer ladder network (Figure 3 ) is straightforwardly defined as a constraint of
the global quantities 2: voltage v(t) and current i(t). On the other hand, for the proximity-effect reluctivity, which involves local field quantities and does not
have the physical meaning of an electrical circuit, the system of 4 first-order differential equations in (18) is synthesized instead to relate the instantaneous local
magnetic field intensity h(t) and magnetic flux density b(t) in the winding regionΩwinding. This system of differential equations is coupled into the finite element
formulation with the additional unknown vector fields {b2, b3, b4 } in (18) being introduced in the winding region Ωwinding. The detailed implementation and
its weak FE formulation can be found in Gyselinck (2005) 1 for 2-D models and in Sabariego (2008) 10 for 3-D models. Note that an alternative strategy would
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(a) Fine model (b) Homogenized model

FIGURE 4 2-D model of an axisymmetric inductor with a nonlinear gapped core

FIGURE 5 Drawing of a simplified round conductor with equilateral triangular elements. For eddy-current computation, the outer part Ar where the current
tends to flow requires a fine mesh, whereas the inner part Ai has a coarser mesh.

consist in coupling the skin-effect Cauer ladder network in the finite element formulation via the local current density and auxiliary unknowns in the winding
region. However, this would have a detrimental effect on the computational cost while not improving the accuracy. In practice, we opt for the more convenient
and natural approach of inserting the skin-effect Cauer network in the electrical circuit 2.

4.1 Analysis of Computational Costs

Since this winding homogenization method requires inclusion of some additional auxiliary basis functions in the winding region, this causes extra unknowns
in the whole model. For the sake of simplicity, we perform this analysis in 2-D and for a triangular discretization. An analogous analysis could be performed in
3-D with e.g. a tetrahedral mesh. To preliminarily prove the usefulness of this homogenization method, the number of resulting triangular elements nhomog is
compared to the one of a brute-force fine model nfine. The comparison is conservative to show the extreme case where the homogenized model could possibly
need more unknowns than the fine model. For simplicity, we assume all the elements in the mesh are equilateral triangles, and the mesh parts elsewhere (core, air
gap, etc.) in both homogenized and finemodels are identical.Wewill compare the resulting number of triangular elements in the winding region with fill factor λ.

In the fine model (e.g. Figure 4 a), a conductor is explicitly modeled as shown in Figure 5 ; each disk represents a cross section of a round conductor with
radius r , divided into two areas: an annular ring with thickness δ yielding area Ar and an inner circle with radius r − δ yielding area Ai. Due to the eddy-current
phenomenon, the current tends to flow through the former area rather than through the latter area. As a rule of thumb, the characteristic length of a triangular
element in this annular ring should be at least 1/3 of the skin depth δ to accurately capture the eddy-current phenomenon.

In contrast, in the homogenized model, the winding region is modeled by a homogeneous rectangular region, in which the mesh is uniformly generated. Due
to additional basis functions, the number of unknowns is proportional to the order of the ladder network k ≥ 1. For conservative comparison, we choose the
side length of an element to be a, which is equal to the side length of the element in the air and insulation of the fine model.

To compare the number of triangular elements of both models, we consider the relative number of the one of the brute-force fine model to the one of the
homogenized model κ = nfine/nhomog. In other words, the larger κ is, the more advantageous the homogenized model becomes. According to Appendix, the
ratio κ reads

κ =
nfine
nhomog

=

(
1 +

(
∆i
∆r
− 1

)
λ
) Ar
Ai
+ 1

k

(
Ar
Ai
+ 1

) , (19)
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TABLE 1 Different mesh sizes and their corresponding results of the homogenized model compared to the fine model

mesh size [m] no. of unknowns error of computed magnetic energy, εwwinding error of computed winding losses, εpwinding

2r 2 497 1.33 × 10−3 1.75 × 10−3

r 8 341 1.08 × 10−3 1.83 × 10−3

r/2 30 659 1.04 × 10−3 1.82 × 10−3

fine model 28 768 — —

(a) m =
a

r − δ
=

1
3

(b) m =
a

r − δ
=

2
3

FIGURE 6 The relative number of unknowns of the brute-force fine model with respect to the homogenized model κ = nfine/nhomo as function of the fill
factor of the winding region λ and the reduced frequency X = r/δ, where X ≥ 1 for the case of significant eddy-current effect. The homogenized model is
implemented with the 4th-order ladder network (k = 4).

where
∆i
∆r

is the ratio of the mesh size around the skin layer to the mesh size in the inner layer of a conductor and
Ar
Ai

is the ratio of the area of the skin part to

the area of the inner part of a conductor (Figure 5 ). These two ratios can be simply written in terms of the reduced frequency 1 X = r/δ as follows

∆i
∆r
=

(
3a
δ

)2
=

(
3

a

r − δ

( r
δ
− 1

))2
= (3m (X − 1))2 (20)

with m = a/(r − δ) indicating the relative mesh size in the inner part of the conductor, and

Ar
Ai
=
π

(
r2 − (r − δ)2

)
π (r − δ)2

=
2X − 1
(X − 1)2

. (21)

According to (20) and (21), κ in (19) depends only on the fill factor λ, the reduced frequency X = r/δ and the order of the ladder network k.
Figure 6 displays κ for two cases of m = 1/3, 2/3, using the 4th-order ladder network corresponding to the best accuracy as shown in Section 3.2. From this

conservative comparison, if m or the relative mesh size in the inner part becomes larger (larger a), the benefit of the homogenized model becomes clearer for
the same reduced frequency X and fill factor λ. The benefit is also noticeable at high frequencies and high fill factors despite additional unknowns from the
homogenization method.

Nevertheless, the benefit is not clear at low frequencies and low fill factors in this comparison due mainly to our conservative assumption about the mesh size
of the homogenized model. In practice, the side length or characteristic length of the elements in the winding region of the homogenized model can be greater
than a, while still yielding high accuracy. To confirm this, we solve the FE homogenized model in Figure 4 with different mesh sizes at k = 4 and imposed
sinusoidal voltage with frequency of 15 kHz (X = 1.06), where κ ≤ 1 in Figure 6 . The computed magnetic energy wwinding and winding losses pwinding are
compared with those from the fine model by normalized RMS errors. According to Table 1 , choosing the side length equal to the conductor diameter 2r and to
the conductor radius r yields κ around 12 and 3.6 respectively while the accuracy still is acceptable (normalized RMS error of 1.33 × 10−3 and 1.08 × 10−3

respectively for wwinding and 1.75 × 10−3 and 1.83 × 10−3 respectively for pwinding). However, if the mesh size is finer (r/2), the number of unknowns becomes
larger than the fine model (κ ≤ 1), but the accuracy does not improve. In practice, this emphasizes the benefit of the homogenized model to yield less number
of unknowns while still achieving acceptable accuracy.

4.2 Sparsity of system matrices

In time domain, after spatial discretization of the models in Figure 4 with the characteristic equal to the conductor radius r and k = 4, we obtain the following
system of differential equations

M
d
dt

x +Kx = u , (22)
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(a) Homogenized model with k = 4
(no. of unknowns: 6 901)

(b) Fine model (no. of unknowns: 28 766)

FIGURE 7 Sparsity pattern of the mass matrix M (λ = 0.65 and X = 1.74).

(a) Homogenized model with k = 4
(no. of unknown is 6 901)

(b) Fine model (no. of unknown is 28 766)

FIGURE 8 Sparsity pattern of the stiffness matrix K (λ = 0.65 and X = 1.74).

where x is the solution vector to the FE problem, u is the imposed source vector for the FE problem, and M and K are the mass and stiffness matrices
respectively. These matrices in both homogenized and fine models are sparse (Figures 7 and 8 ). Moreover, the mass and stiffness matrices of the homogenized
model have structures of band matrices, which can be more easily treated. Clearly, the added circuit-coupling constraint and the additional auxiliary vector
fields due to the skin-effect and proximity-effect homogenization of winding does not corrupt the sparsity of the matrices. Moreover, the number of unknowns
in the homogenized model significantly reduces to 6 901 (4 times less than 28 766 unknowns in the fine model).

4.3 Time-domain FE results

Based on the same mesh generated in the previous section, time-stepping simulations of the homogenized and fine models are conducted with time step
∆t = T/100 by imposing square-wave voltage with fundamental frequency f = 40 kHz (X = 1.74) in Figure 9 .

The terminal current obtained from the homogenized model is triangular with the average error of only 3 × 10−5 relative to the current peak value, while
the one of the homogenized model based on the previous work yields the error of 10−4 (Figure 9 ). Furthermore, the comparison of the total magnetic energy
in the winding region wwinding (Figure 10 ) and total winding losses pwinding (Figure 11 ) are made for each order of the synthesized ladder network as well as
the results from the homogenized model of the previous work. The improvements of the accuracy of both wwinding and pwinding can be clearly seen when using
the higher-order synthesized networks, particularly between using 1st-order and the 2nd-order synthesized networks. Compared to the results from the previous
work, the winding losses from this work are more accurate while the winding magnetic energy is comparable.

Note that the capacitance of the winding of interest in Figure 4 amounts to Ceq = 12.77 pF based on Dalessandro(2007) 20. With the inductance of
Leq = 2.41 mH, the estimated self resonant frequency 20 is 912 kHz, which is roughly 25 times the switching frequency of the voltage. Therefore, in the
considered application, the effects of parasitic capacitance and capacitive currents are substantially insignificant during the transient. Alternatively to full-wave
FE computations, one can directly integrate the estimated winding capacitance in the electrical circuit constraint of global winding voltage and current in
parallel with the device at the terminal 18, or use a dual formulation coupling magnetodynamics and electrostatics formulations 26.
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FIGURE 9 Imposed voltage and current simulated from the fine model and the homogenized model.

FIGURE 10 Magnetic energy in the winding region computed from the fine model and the homogenized model with synthesized networks of different orders,
and their normalized RMS errors.

FIGURE 11 Winding loss computed from the fine model and the homogenized model with synthesized networks of different orders, and their normalized
RMS errors.

5 CONCLUSIONS

This paper has proposed an improved method of winding homogenization based on the estimation of a transfer function from frequency-dependent precomputed
solutions. Accordingly, a corresponding RL Cauer ladder network is synthesized by the simple Euclidean algorithm for polynomial division. The results
evidence the improvement in the accuracy of the winding homogenization compared to the previous work 10 thanks to the well-established RL Cauer ladder
network, which eases the transfer-function estimation. To ensure enough accuracy of the estimate for the wide range of frequencies of interest, the transfer
function (and the corresponding network) with high orders should be implemented. Based on the implementation with the synthesized 4th-order ladder network,
the estimated skin-effect impedance deviates around 6× 10−3 (vs. 6.6× 10−3 for the previous work) from the reference solution to the cell problem in the range
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of r/δ ∈ [0, 10], while the proximity-effect reluctivity deviates only around 6 × 10−5 (vs. 1.67 × 10−3 for the previous work). A 2-D axisymmetric inductor
with a nonlinear gapped core is considered as an application example. The number of unknowns in the homogenized model is around 4 times less than its
fine-model counterpart even though additional unknowns are introduced in the method. The sparsity of the FE matrices is preserved. Moreover, the magnetic
energy in the winding region and winding losses computed from the homogenized model show a good agreement with the ones from the fine model with the
relative error of 1.03 × 10−3 and 1.87 × 10−3 respectively. The method is also equally valid in 3-D.

ACKNOWLEDGMENTS

This work was supported by the Walloon Region through WBGreen-FEDO grant 1217703.

APPENDIX: DETERMINING THE NUMBER OF TRIANGULAR ELEMENTS

According to the assumptions in Figure 5 in Section 4.1, the number of triangular elements for the winding region with N conductors (fill factor λ) in the
fine model is

nfine = n∆r + n∆i + n∆air,insul (23)

where n∆r , n∆i and n∆air,insul are the numbers of triangles in the ring, the inner circle, and the air and insulation respectively. Assuming equilateral triangular
mesh with side length δ/3 in the ring region, the first term is

n∆r =
NAr
∆r

(24)

where the area of a triangle ∆r and the total area Ar are

∆r =

√
3

4

(
δ

3

)2
, Ar = π

(
r2 − (r − δ)2

)
. (25)

In the inner circle region, assuming equilateral triangular mesh with coarser side length a, the number of triangles in the region is

n∆i =
NAi
∆i

(26)

where the area of a triangle ∆i and the total area Ai are

∆i =

√
3

4
a2, Ai = π (r − δ)

2 . (27)

For the mesh of the air and insulation in the winding region, we assume that the side length of the elements is also a leading to the triangular area of ∆i. This
causes the number of elements

n∆air,insul =
Aair,insul

∆i
(28)

with Aair,insul =
1−λ
λ Nπr2. Substituting (24), (26) and (28) into (23), we obtain

nfine =
N

λ∆i

( [
1 +

(
∆i
∆r
− 1

)
λ

]
Ar + Ai

)
. (29)

For the homogenized model, the winding region is modeled by a homogeneous rectangular region together with k ≥ 1 additional basis functions. In contrast
to the fine model, the triangular mesh is uniformly generated and each has the side length a (identical to the side length of the element in the air and insulation
of the fine model). Thus, the total number of triangular elements in the winding region is

nhomog = k
Ar + Ai + Aair,insul

∆i

=
kN

λ∆i
(Ar + Ai) .

(30)

Obviously, if the mesh in the winding regions of both cases are identical and uniform (e.g. at low frequency), leading to ∆i = ∆r or Ar = 0, then
nhomog = knfine or nhomog ≥ nfine. In other words, the homogenized model has no advantages over the brute-force fine model since it yields more unknowns
and gives a less accurate solution. In high-frequency eddy-current problems, this rarely occurs because, in practice, the mesh generation in the fine model is
considered computationally effective when the mesh around the skin of the conductor is finer than the inner layer or ∆i > ∆r.
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