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In this thesis [1], we study the possibilities of Deep RL in the dynamic weights
setting. In this setting the relative importance of objectives changes over time,
as recognized by [3] who proposed a tabular Reinforcement Learning algorithm
to deal with this problem. However, this earlier work is not feasible for reinforce-
ment learning settings in which the input is high-dimensional, necessitating the
use of function approximators, such as neural networks.

Existing Deep (MO)RL algorithms are insufficient in the Dynamic Weights
setting because they build a complete set of policies in advance or spend a long
time adapting to weight changes. We propose two approaches to allow an agent
to quickly perform well and immediately adapt to changes in the weight vector.

Fig. 1. Minecart envi-
ronment with 5 mines
((c) to (g)) containing
varying amounts of 2
ores. The 2 bars on
the minecart (b) indicate
how much of each ore is
present in the cart. Ores
are collected on mines
and sold on the base (a).

In line with existing work on dynamic weights
[3] and multi-objective deep RL for different settings
[2], we first propose a Multi-Network (MN) algorithm
that gradually builds a set of policies represented
by Q-networks, Π. In MN, a policy is trained for
the active weight vector w following scalarized deep
Q-learning [2]. When the active weights change, the
trained policy is saved if it is optimal for at least one
encountered weight vector. To limit memory usage and
ensure fast retrieval by keeping Π small, all old poli-
cies made redundant by the new policy are removed
from Π. In addition, instead of starting from scratch,
we fully (MN) or partially (MN PAR) copy the best
past policy for each new weight vector.

The multi-network approach performs well if poli-
cies can converge to accurate Q-values before being
saved. This can be impossible when intervals between
weight changes are short or when feature extraction
does not generalize across policies. We therefore pro-
pose Conditioned Network (CN), in which a single network is trained to output
Q-value-vectors conditioned on an input weight vector by feeding the weights
into the Q-value heads. To promote convergence for the new weight vector’s pol-
icy and to maintain previously learned policies, mini-batches are trained w.r.t.
the current weight vector and a random previously encountered weight vector.

By themselves, MN and CN bias the replay buffer to recent weight vectors.
To prevent this, we propose diverse experience replay (DER), a framework to
maintain a diverse replay buffer from which relevant experiences can be sampled



Table 1. Average episodic regret (Mean∆, i.e., the average distance to the optimal
policy, lower is better) and performance relative to MO with Standard ER baseline
(>baseline, negative % indicate a lower regret than the baseline, i.e., better perfor-
mance) for both weight change scenarios. We distinguish overall performance and final
performance (respectively averaged over the whole run and over the last 250k steps)
with and without Diverse Experience Replay (DER). CN with DER outperforms other
algorithms for both weight change scenarios.

Overall Final
Standard ER DER Standard ER DER

Algorithm Mean∆ >baseline Mean∆ >baseline Mean∆ >baseline Mean∆ >baseline
MO 0.332 − 0.291 -12.257% 0.268 − 0.257 -3.974%

Sparse MN 0.255 -23.23% 0.211 -36.54% 0.14 -47.745% 0.063 -76.395%
Weight MN PAR 0.47 +41.599% 0.413 +24.488% 0.381 +42.259% 0.286 +6.769%
Changes CN 0.259 -22.081% 0.18 -45.73% 0.169 -36.903% 0.068 -74.672%

CNA 0.349 +5.061% 0.212 -36.193% 0.318 +18.512% 0.088 -67.22%
CNC 0.3 -9.725% 0.221 -33.388% 0.197 -26.463% 0.102 -61.757%
MO 0.399 − 0.429 +7.482% 0.258 − 0.319 +23.503%

Regular MN 0.719 +80.223% 0.748 +87.482% 0.67 +159.854% 0.709 +174.899%
Weight MN PAR 0.694 +73.852% 0.642 +60.931% 0.656 +154.09% 0.642 +148.965%
Changes CN 0.219 -45.03% 0.215 -46.048% 0.069 -73.069% 0.064 -75.141%

CNA 0.275 -31.14% 0.284 -28.782% 0.149 -42.102% 0.149 -42.235%
CNC 0.218 -45.431% 0.237 -40.559% 0.065 -74.798% 0.071 -72.593%

for weight vectors whose policies have not been applied recently. DER replaces
the circular model of standard replay buffers by diversity-based memorization.
In this thesis we diversify over the space of possible trajectory returns.

We also propose an original multi-objective benchmark, the Minecart problem
which models the challenges of resource collection, has a continuous state space,
stochastic transitions and delayed rewards. In Minecart, an agent must quickly
adapt to changes in resource values to efficiently mine different ores.

We evaluate the performance when weight changes are sparse, as in [3], in
which case an agent’s policy and replay buffer could overfit to the active weights.
Then, we look at how our algorithms perform when weights change regularly, in
which case it can be tempting to learn a single sub-optimal policy. We compare
CN and MN against Scalarized Deep Q-Learning on the current weight vector
(MO) as a baseline. We find that CN performs best overall. Furthermore, train-
ing the conditioned network on current and past weight vectors (CN) performs
better than training only on the current weight vector (CNC) or on randomly
sampled past weight vectors (CNA). MN only performs well when given enough
training time to learn accurate Q-values. Moreover, DER significantly improves
performance when diversity cannot be expected to occur automatically.
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