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Immune evasion before tumour invasion in early 
lung squamous carcinogenesis
Céline Mascaux1,2,3,4,14,15,18*, Mihaela Angelova5,6,7,8,16,18, Angela Vasaturo5,6,7,8, Jennifer Beane2, Kahkeshan Hijazi2,  
Geraldine Anthoine1, Bénédicte Buttard5,6,7,8, Françoise Rothe9, Karen Willard-Gallo10, Annick Haller11,17, Vincent Ninane12, 
Arsène Burny13, Jean-Paul Sculier1, Avi Spira2 & Jérôme Galon5,6,7,8*

Early detection and treatment are critical for improving the outcome 
of patients with cancer1. Understanding the largely uncharted 
biology of carcinogenesis requires deciphering molecular processes 
in premalignant lesions, and revealing the determinants of the 
intralesional immune reaction during cancer development. The 
adaptive immune response within tumours has previously been 
shown to be strongest at the earliest stage of carcinoma2,3. Here 
we show that immune activation and immune escape occur before 
tumour invasion, and reveal the relevant immune biomarkers 
of the pre-invasive stages of carcinogenesis in the lung. We used 
gene-expression profiling and multispectral imaging to analyse 
a dataset of 9 morphological stages of the development of lung 
squamous cell carcinoma, which includes 122 well-annotated 
biopsies from 77 patients. We identified evolutionary trajectories 
of cancer and immune pathways that comprise (1) a linear increase 
in proliferation and DNA repair from normal to cancerous tissue; 
(2) a transitory increase of metabolism and early immune sensing, 
through the activation of resident immune cells, in low-grade 
pre-invasive lesions; (3) the activation of immune responses and 
immune escape through immune checkpoints and suppressive 
interleukins from high-grade pre-invasive lesions; and, ultimately, 
(4) the activation of the epithelial–mesenchymal transition in the 
invasive stage of cancer. We propose that carcinogenesis in the lung 
involves a dynamic co-evolution of pre-invasive bronchial cells and 
the immune response. These findings highlight the need to develop 
immune biomarkers for early detection as well as immunotherapy-
based chemopreventive approaches for individuals who are at high 
risk of developing lung cancer.

Despite developments in targeted therapies and immunotherapy, 
advanced lung cancer remains incurable4. Estimates suggest that early 
diagnosis and treatment could prevent more than 70,000 deaths from 
lung cancer in the United States per year1. The Nelson trials have 
recently shown that volume computed-tomography screening could 
reduce lung cancer mortality by 26% in men and 39–61% in women5. 
Beyond early detection, cancer prevention can considerably reduce the 
incidence of cancer6. Understanding the underlying mechanisms of car-
cinogenesis in the lung and the role of the microenvironment in early 
lesions may pave the way for personalized immunotherapy or other 
kinds of therapy for the prevention and interception of cancer7. Invasive 
lung squamous cell carcinoma (SCC) in smokers is preceded by a range 
of consecutive developmental stages8, which makes it a convenient 
model for mechanistically studying the early evolution of cancer. Thus 

far, the rarity of pre-invasive lesion collections has limited our knowl-
edge of their molecular and immune profiles9. Using gene-expression 
profiling and multispectral imaging, we sought to locate and time the 
changes in pre-invasive lesions and their microenvironment during the 
successive steps in the carcinogenesis of lung SCC.

We examined a dataset—comprising 122 carefully annotated biopsies 
from 77 patients—of 9 morphological stages of the carcinogenesis of 
lung SCC (stages 0–8) (Fig. 1a, Extended Data Fig. 1, Supplementary 
Tables 1, 2). Using gene-expression profiling, we first identified 4,734 
genes that are associated with the 9 histological stages of development 
(linear mixed-effects model, false-discovery rate (FDR) < 0.001). 
Four distinct and successive molecular steps of progression were dis-
cerned by semi-supervised hierarchical clustering of the selected genes 
(Extended Data Fig. 2). The first step included bronchial mucosa with 
normal histology (stages 0 and 1, which had normal and low fluo-
rescence, respectively) and hyperplasia (stage 2), which we subsumed 
under the category of ‘normal bronchial tissue’; the second step com-
prised metaplasia (stage 3) and mild and moderate dysplasia (stages 4 
and 5), which were grouped under ‘low-grade’ lesions; the third step 
combined severe dysplasia (stage 6) and in situ carcinoma (stage 7) into 
‘high-grade’ lesions; and the fourth step segregated invasive (SCC, stage 
8) from premalignant lesions (Extended Data Fig. 2).

Carcinogenesis has been described as the process of acquiring advan-
tageous biological capabilities (the hallmarks of cancer) by abnormal 
cells. We identified modules of co-expressed genes with distinct expres-
sion patterns, and examined them for significant associations with can-
cer hallmarks (Fig. 1b, Extended Data Fig. 3a, b). We discerned seven 
evolutionary trajectories of gene expression as gene modules that were 
derived from weighted gene co-expression network analysis (Fig. 1b). 
The two largest modules exhibited linear evolution from normal tissue 
to cancer; the ‘ascending’ module (n = 1,848 genes) was associated with 
proliferation and the ‘descending’ module (n = 939 genes) was linked to 
genes that are downregulated in the DNA damage response. A module 
of 150 co-expressed genes displayed a late increase of expression in 
high-grade lesions that continued in SCC (the ‘ascending from high-
grade’ module), and was highly enriched with genes that are involved in 
the immune response. The module of genes that remained unmodified 
until the onset of cancer (‘SCC increase’ module; n = 51 genes) was 
over-represented by genes that are involved in epithelial–mesenchymal 
transition, including a significant increase in expression of CXCR4 but 
a low expression of CXCL12 in SCC (Extended Data Fig. 3c, d). Two 
additional modules had biphasic gene-expression evolutions; both 
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of these modules reached a peak of expression in low-grade lesions 
(biphasic 1 module, n = 164 genes; biphasic 2 module, n = 64 genes). 
Indeed, metabolism regulation had a biphasic trajectory. Specifically, 
genes involved in fatty acid metabolism, oxidative phosphorylation and 
the citric acid cycle showed a transitory increase in expression in low-
grade lesions (biphasic 1 module).

To analyse the evolutionary trajectory of the immune response, 
we compiled genes that represent specific immune-cell types, 

normal cells and cancer cells, and matched them to each gene module 
(Supplementary Information). We confirmed the highest percentage of 
immune-related genes in the ‘ascending from high-grade’ module, and 
observed a significant under-representation in the ‘descending mod-
ule’ (P < 0.001) (Fig. 1c). Cancer-germline antigens were found in the 
‘ascending’ module at a significantly higher frequency than expected 
by chance (FDR < 0.05), as were genes involved in neutrophil activa-
tion (FDR < 0.1) (Fig. 1d, Supplementary Table 3). Both observations 
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Fig. 1 | Temporal order of cancer hallmarks during carcinogenesis. 
a, Nine morphological stages of development. The normal tissues were 
split into stage 0 (normal fluorescence) and stage 1 (hypo-fluorescent; 
hypo) on the basis of fluorescence bronchoscopy. CIS, in situ carcinoma. 
b, Seven modules of co-expressed genes were identified with weighted 
gene-correlation network analysis. The gene-expression measurement 
represents the relative abundance of each gene compared to reference 
RNA from bronchial biopsies from 16 people who had never smoked, 
derived with two-colour gene-expression microarrays (mean ± s.e.m.). 
Over-representation analysis linked cancer hallmarks with several gene 

modules (hypergeometric test, FDR ≤ 0.05). Adjusted P values are 
shown as bar plots after −log10(P) transformation. c, Genes representing 
immune-cell types were matched to the gene modules. Each module  
is illustrated with the corresponding fraction of immune-related genes. 
Odds ratios and P values were derived from Fisher’s exact test.  
d, Over-representation analysis of immune, stromal and cancer cell-type 
gene signatures in gene modules (hypergeometric test, Benjamini–
Hochberg correction), using the high definition (HD) immune signature 
(Supplementary Information). Dotted lines are drawn at P = 0.10 (grey) 
and P = 0.05 (black). See Extended Data Fig. 3 for further analysis.
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suggest that immune sensing occurs at the earliest steps of transfor-
mation. Markedly increased gene expression that represents activated 
T cells was detected in high-grade lesions before tumour invasion. The 
same pattern was observed in total neutrophils, M1 macrophages and 
the myeloid signature.

We then estimated the absolute abundance of different immune-
cell types using a method for deconvolving the cell composition of 
complex tissues from gene expression (Fig. 2a, Extended Data Fig. 4). 
We confirmed an increase of myeloid-derived cells, neutrophils and 
macrophage subtypes in high-grade dysplasia (Fig. 2b). Additionally, 
we observed co-regulation of immune cells from both innate and adap-
tive immunity on the basis of correlation of immune-cell abundances 

(Fig. 2b, Extended Data Fig. 4b). Activated T cells (CD4 memory), mac-
rophages (M0), memory B cells, follicular T-helper cells and dendritic 
cells followed the same abundance pattern. Of note, lesions within the 
same patient had different immune compositions at different devel-
opmental stages (Extended Data Fig. 5). We also detected a shift in the 
immune status, from resting to activated and from naive to memory 
(Fig. 2c, Extended Data Fig. 4c). Resting mast cells were more abundant 
in early developmental stages compared to late stages, whereas acti-
vated mast cells followed the opposite pattern (Fig. 2c, Supplementary 
Table 3). A drop in naive B cell abundance was accompanied by an 
increase in memory B cells. An influx of naive CD4 cells occurred at the 
stage of mild dysplasia (stage 4), which was followed by a sharp decline 
in their abundance and a concurrent increase of activated CD4 memory 
T cells in the successive stages (Fig. 2c, Supplementary Table 3).

To further elucidate the immune transition at each molecular step of 
transformation, we performed functional analysis of the differentially 
regulated genes in transformed compared to normal tissues. We iden-
tified Gene Ontology immune processes that were enriched among 
the differentially regulated genes in low-grade and high-grade lesions, 
and SCC (Fig. 3a, Supplementary Table 3). Few immune functions 
were specifically modulated for low-grade lesions—not only among 
upregulated genes (n = 5 functions) but also among downregulated 
genes (n = 13 functions) (for example, response to TGFβ). Unlike in 
low-grade lesions, a large number of immune functions were uniquely 
enriched among the upregulated genes in high-grade lesions (n = 148 
functions) and SCC (n = 240 functions). Notably, negative regulation 
of the immune system, antigen processing and the presentation of 
peptide antigen were implicated in all developmental stages (Fig. 3a). 
Nevertheless, the genes associated with negative regulation were sig-
nificantly downregulated in low-grade lesions, and were upregulated 
in high-grade lesions and SCC. Therefore, one of the earliest immune 
reactions is immune unleashing through the downregulation of genes 
that negatively regulate the immune system, among which we found 
TNFRSF14 (also known as HVEM), CD200, CD59, TGFB3 and HLA-G 
to be downregulated. Conversely, in high-grade lesions and SCC there 
was an upregulation of genes that are involved in immunosuppression.

Closer examination of immunomodulatory gene expression revealed 
that the average expression of co-inhibitory molecules and suppressive 
interleukins was significantly higher in severe dysplasia and the suc-
ceeding stages (Fig. 3b). Overall, many immunomodulatory molecules 
had a positive fold change in high-grade dysplasia compared to normal 
tissue (Fig. 3c, Extended Data Fig. 6a, b). As well as suppressive mol-
ecules such as IDO1, PD-L1 (also known as CD274), TIGIT, CTLA4, 
ICOS, IL10 and IL6, stimulatory molecules such as TNFRSF9 (also 
known as CD137), TNFRSF18 (also known as GITR), ICOS, CD80, 
CD86, CD70, TNFSF9 (also known as CD137L) and TNFRSF25 showed 
increased expression in high-grade dysplasia and, to a greater extent, at 
the invasive stage. The expression of the immune checkpoints IDO1, 
PD-L1, CTLA4, TIGIT and TIM3 was also confirmed at the protein 
level by immunohistochemistry (Extended Data Fig. 6a–c). Each of 
the tested markers showed an increase in SCC compared to normal 
tissue, which was significant for CTLA4, IDO1 and PD-L1 (P < 0.05) 
but not for TIGIT (P = 0.14) and TIM3 (P = 0.095) (Extended Data 
Fig. 6a–c). Collectively, immune escape occurred before tumour inva-
sion, as shown by the fact that co-inhibitors and suppressive interleu-
kins increased significantly from high-grade stages onwards.

For high-definition characterization of the microenvironment archi-
tecture, we used two seven-plex staining panels on the same bronchial 
epithelial lesions: a phenotype panel to discern immune-cell types and 
a functional panel that includes PD1, PD-L1, Ki67 and CD137 (n = 110 
and 106 samples, respectively, Extended Data Fig. 6). First, we calcu-
lated immune-cell densities individually for the stromal and epithelial 
tissue category (Fig. 4a). Overall, we found a relatively large variation 
in the immune-cell densities. However, we observed significant differ-
ences among the four developmental stages in the stromal compart-
ment, and the same trends in the epithelial compartment (Fig. 4a). CD4 
T cells (CD3+CD8−) and CD8+ lymphocytes both showed a transitory 
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Extended Data Fig. 4 for further analysis.
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increase in high-grade pre-invasive lesions (P < 0.01). Consistent with 
the immune gene-expression evolution, myeloid, neutrophil and mac-
rophage densities increased in the stroma (P < 0.05, FDR < 0.1) and 
the epithelium (P < 0.1 before Benjamini–Hochberg correction) of 
high-grade lesions. In accordance with the gene expression data, 
PD-L1 (PD-L1+cytokeratin(CK)−) densities significantly increased 
in high-grade lesions, and increased even more in SCC (P < 0.05) 
(Fig. 4a), similar to CD137 (P < 0.1). Cells with the CD137, PD-L1 
and CD3+FOXP3+ phenotypes were rarely found in the epithelium at 
early stages of development (stages 0–5; that is, normal and low-grade 
lesions).

We next performed second-order spatial statistics and measured dis-
tances between each pair of cell phenotypes. On the basis of cross-type 
cumulative distribution of nearest neighbour distances (G(r)) (Fig. 4b), 
we detected segregation among epithelial cells (CK+) and CD3 con-
sistently in both panels (P < 0.001, FDR < 0.1) (Fig. 4c). In particular, 

we observed a lower number of epithelial cells than expected near 
CD3 cells in high-grade lesions (Fig. 4c). This pattern was observed 
for all CK+ cells in the functional panel, total epithelial cells (all CK+) 
and CK+PD-L1+ cells (P < 0.01, FDR < 0.1) (Extended Data Fig. 6f). 
Therefore, in high-grade lesions, we discerned the reconfiguration of 
the tumour microenvironment compared to the preceding stages of 
development, manifested by segregation of epithelial cells from CD3 
cells.

Our data show that both immune activation and immune suppres-
sion occur at pre-invasive stages of cancer development, which sup-
ports the hypothesis of immune surveillance in pre-cancerous lesions, 
reinforces the use of immunotherapy at the earliest steps of treatment 
and underlines the potential role of immunotherapy in chemopre-
ventive approaches. The prognostic effect of immune infiltrates has 
previously been demonstrated in various types of cancer10–12 at early 
stages13, including lung cancer14 from stage I15. Recently, genomic 
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Fig. 3 | Immune evasion before tumour invasion in early lung 
squamous carcinogenesis. a, Gene Ontology (GO) immune functions 
that are significantly enriched in upregulated and downregulated 
genes were compared between low-grade and high-grade lesions, and 
SCC, accounting for smoking history, previous cancer status and inter-
patient variability as confounding factors (linear mixed-effects model, 
FDR < 0.05). Top, Venn diagrams showed Gene Ontology immune 
functions that were significantly enriched in downregulated (left) 
and upregulated (right) genes, comparing low-grade and high-grade 
lesions, and SCC. Bottom, the number of genes associated with the 
immune functions is represented on a bar plot for each developmental 

stage (Supplementary Table 3). b, Average expression of co-inhibitory 
molecules and suppressive interleukins (mean ± s.e.m.). Rank-based test, 
Dunn’s pairwise multiple comparison test. ***P < 0.001, **P < 0.01, 
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Extended Data Fig. 6a for further analysis. TNFRSF17 is also known as 
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and epigenomic analyses of microdissected lung carcinoma in situ 
(high-grade lesion)—the pre-invasive precursor to SCC—have shown 
that progressive lesions have significantly more genomic alterations 
than regressive lesions, across base substitutions, indels, driver muta-
tions, structural variants and copy-number changes16. However, no 
single cancer mutation perfectly discriminated between progressive 
and regressive lesions. Moreover, in situ carcinoma lesions, including 
spontaneously regressing lesions, contained genomic, epigenomic 
and transcriptomic hallmarks of advanced invasive SCC. Thus, the 
mechanism behind regression has so far remained unknown16. The 
contribution of tumour-intrinsic factors to the risk of carcinogenesis 
has previously been shown to be modest17, as compared to extrinsic 

carcinogens17 or dysregulation of the immune microenvironment18. 
It has previously been shown that the tumour microenvironment is 
a critical determinant of dissemination to distant metastasis19 and of 
metastatic tumour development, in which tumour evolution could be 
traced back to immune-escaping clones18. These findings could also 
apply to pre-malignant transformation and the initiation of carcinoma. 
Furthermore, a major clinical benefit of checkpoint immunotherapy 
has been obtained in various settings of cancer treatment20. In non-
small-cell lung cancer, checkpoint inhibitors are now standard as first-
line21,22 and second-line treatment options for advanced disease23,24, 
and as maintenance after curative chemo-radiation of locally advanced 
stages25. However, early intervention remains the best opportunity for 
curing patients with lung cancer. The positive results of immune-check-
point-blockade therapy in an adjuvant setting for melanoma26 and in a 
neoadjuvant setting for lung cancer27 reinforce the importance of using 
immunotherapy in the early steps of treatment strategies.

Our study has delineated the molecular pathways that are involved 
in four steps of the carcinogenesis of lung SCC (Extended Data Fig. 7), 
in which the earliest molecular changes affect proliferation and metab-
olism. The transient rise in metabolic pathways might reflect the shift 
in cellular function from secretory to protective keratinization, a pat-
tern that has previously been described for micro RNA expression 
in a subset of the same pre-neoplastic lesions28. Similarly, a transient  
influx of naive T cells was observed in low-grade lesions. Collectively, 
the immune transition unfolds as follows: (1) immune sensing and 
immune unleashing are induced at the earliest step of transformation; 
(2) continual cell proliferation fosters the accumulation of somatic 
mutations, mounting an anti-tumour immune response; and (3) 
inherent immune-suppression mechanisms are triggered in high-grade 
pre-cancerous lesions. Previous studies have shown that the risk of 
cancer progression is much higher in high-grade lesions (32–87%), 
compared to low-grade lesions (2–9%)29,30. Our results suggest the need 
to assess the role of immunotherapy in chemoprevention approaches 
for individuals at a high risk of developing lung cancer.

Online content
Any methods, additional references, Nature Research reporting summaries, source 
data, statements of data availability and associated accession codes are available at 
https://doi.org/10.1038/s41586-019-1330-0.
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Methods
A summary of the methods is shown in Extended Data Fig. 1.
Study population. Bronchial biopsies were collected between 2003 and 2007 at the 
Jules Bordet Institute, during fluorescence bronchoscopy of current and former 
smokers (defined as individuals who had quit smoking for more than six months), 
with a smoking exposure of ≥30 pack-years. The technique of fluorescence bron-
choscopy is based on the autofluorescence of bronchial epithelium, which enables 
the discrimination of pre-invasive from normal tissue. When illuminated with a 
wavelength of 380–440 nm, the pre-invasive lesions exhibit much weaker green 
fluorescence than normal lung tissue (hypo-fluorescence). Therefore, lesions that 
are difficult to distinguish from normal epithelial tissue in white-light bronchos-
copy can be detected under the 380–440-nm wavelength owing to their lack of 
green fluorescence (Extended Data Fig. 1b). This technique demonstrates high 
sensitivity at the cost of specificity. A lack of fluorescence can be observed also in 
some normal lesions, but it has not been shown whether hypo-fluorescent normal 
tissue is molecularly different from the normal tissue with normal fluorescence. 
Therefore, normal tissues that were characterized by normal fluorescence and 
hypo-fluorescence were considered, and analysed as separate stages of develop-
ment, (stage 0 and stage 1, respectively). The study was approved by the ethics 
committee of the Jules Bordet Institute, and the patients gave informed consent. 
No statistical methods were used to predetermine sample size, but the number of 
samples per group (minimum 12) was based on previously published information 
(Supplementary Information). A total of 122 biopsies from 77 individuals (35 for-
mer and 42 current smokers) were studied (Supplementary Table 1). The median 
age was 62 years (range 42–78). The male-to-female ratio was 62 to 15. The 122 
biopsies were distributed according to histology and fluorescence status as follows: 
13 biopsies with normal histology and normal fluorescence (8 and 5), 14 biopsies 
with normal histology and hypo-fluorescence (8 and 6), 15 hyperplasia (7 and 8), 
15 metaplasia (5 and 10), 13 mild dysplasia (8 and 5), 13 moderate dysplasia (7 and 
6), 12 severe dysplasia (2 and 10), 13 carcinoma in situ (5 and 8) and 14 SCC (5 
and 9) (parenthetical numbers refer to biopsies from former and current smokers, 
respectively). Among the 122 samples, matched formalin-fixed paraffin-embedded 
(FFPE) blocks were found for 110 of them (Supplementary Table 2).
Sample collection and RNA extraction. The process for handling and freezing 
the biopsies was carefully standardized (Supplementary Information). RNA was 
successfully extracted from 122 freshly frozen biopsies using previously described 
RNA extraction protocols28. The median yield of total RNA extracted from the 
biopsies was 1,275 ng (range 244–11,000 ng).
Acquisition and analysis of gene expression profiles. The cDNA was in vit-
ro-transcribed into complementary (c)RNA and labelled using the dye Cy5 for 
the RNA derived from the 122 samples of interest, and Cy3 for the reference RNA. 
The reference RNA was pooled in equal amount from normal bronchial biopsies 
from 16 people who had never smoked (Agilent Technologies) (Supplementary 
Information). After amplification and labelling, cRNAs were hybridized on two 
Colours Whole Human Genome 4 × 44K arrays, according to the recommendation 
of the provider (Agilent Technologies) (Supplementary Information). Additional 
normalization steps were performed with Genespring GX version 7.3.1 software 
(Agilent Technologies): (1) per spot (divide by control channel), (2) per chip (nor-
malize to the median expression value across chip) and (3) per gene (normalize 
to median expression value across patients). The gene-expression measurements 
reported in the Letter represent the relative abundance of each probe and gene—
that is, the ratio between the red and green colour intensity (Cy5/Cy3) in the stud-
ied sample compared to normal biopsies from people who had never smoked. 
Several steps of data quality control were performed during data collection, gen-
eration and processing (Supplementary Information, Extended Data Fig. 8).
Identification of linear gene-expression changes and molecular phenotypes. 
Gene-expression alterations associated with developmental stages were identified 
using a linear model with mixed-effects. Each gene was modelled as a function 
of the developmental stage (factor variable), adjusting for smoking status, sex 
and history of cancer as fixed effects. Because patient-level observations are not 
independent, we considered the patient parameter as a random effect. Analysis of 
variance (ANOVA) tests compared the association of a gene and developmental 
stage to a null model. The FDR was calculated for each ANOVA P value using the 
Benjamini–Hochberg method. Genes that were significantly associated with devel-
opmental stages were determined by an ANOVA FDR <0.001. Semi-supervised 
hierarchical clustering of these genes was then used to compare the nine different 
developmental stages (Extended Data Fig. 1).
Definition and functional characterization of gene modules. To identify trajec-
tories of gene expression during development, we applied weighted gene-correla-
tion network analysis with the tool WGCNA to the genes that were significantly 
associated with developmental stages (Supplementary Information). A minimum 
cluster size of 50 genes was used to define a module. A P value ratio threshold 
of 0 was considered for reassigning genes across modules. We determined gene 
clusters (modules) of highly correlated genes with similar expression patterns 

across the nine developmental stages. We demonstrated stability and robustness 
of the detected modules using resampling techniques (Extended Data Fig. 9, 
Supplementary Information).

To functionally describe the gene modules, we used the cancer hallmark defi-
nitions from the mSigDB database (v.6.2) and applied the over-representation 
hypergeometric test using the R package clusterProfiler. The P values from the 
over-representation (hypergeometric) tests were adjusted for multiple comparison 
testing and significant associations were reported at adjusted P values of P ≤ 0.05. 
The adjusted P values were then transformed as −log10(P) and visualized as bar 
plots (Fig. 1b). Probes were mapped to unique Entrez gene identifiers. The genes 
were ranked by their z-score-transformed expression values. A minimum overlap 
of five genes with a given set of genes was required. The enrichment score repre-
sents the degrees to which the genes from a given cancer hallmark set of genes were 
upregulated or downregulated within a sample.
Immune-cell-type signatures. To explore a large number of different immune-cell 
subtypes and to examine their activation status, we compiled a large number of 
carefully annotated microarray gene-expression profiles from 1,769 publicly avail-
able microarrays normalized with the frozen robust multi-array averaging method 
(Extended Data Fig. 1, Supplementary Information, Supplementary Table 4).
Immune characterization from gene-expression profiles. The defined immune 
signatures were used to explore a large variety of immune-cell types from the 
gene-expression data at different histological stages of SCC development. First, 
we performed a hypergeometric test between the immune signatures and the gene 
modules to pinpoint potential evolutionary trajectories of specific immune-cell 
types (Fig. 1d).

We next applied the algorithm for absolute quantification implemented in 
CIBERSORT and deconvolved immune-cell-type expression from a mixed 
gene-expression signal, according to the predefined LM22 signature. LM22 is a val-
idated gene signature matrix on 22 haematopoietic cell types that have significantly 
different expression in one leukocyte population compared to all other populations. 
The signature matrix was developed together with the method CIBERSORT, and 
used to deconvolve transcriptomes.

Last, we performed single-sample gene-set enrichment analysis using the 
in-house-defined immune-gene signature HD (Extended Data Fig. 4). We thereby 
obtained, for each immune cell type, an enrichment score per sample that indicated 
the extent of upregulation or downregulation of the associated genes. The probes 
identifiers were mapped to unique Entrez gene identifiers. A minimum overlap 
of five genes was required.
Immunohistochemistry. Four slides at 4-μm thickness were cut from FFPE blocks 
from SCC biopsies (n = 7) and biopsies of normal lung tissue (n = 12). Slides were 
then stained for the immune checkpoints CTLA-4 (1 h, 1 μg/ml, pH 9) (clone 
BSB88, BioSB), IDO1 (15 min, 0.25 μg/ml, pH 9) (clone V1NC3IDO, eBioscience), 
TIGIT (30 min, 1/200, pH 6) (clone BLR047F, Abcam) and TIM3 (30 min, 2 μg/
ml, pH9) (clone 2321C, R&D system) with Leica Bond RX automate according 
to the classic IHC-F protocol. Optimizations of staining were performed on con-
trol tonsil tissue and on lung SCC tissue. The Bond Polymer Refine Detection kit 
(Leica) was used to obtain a chromogenic 3,3-diaminobenzidine (DAB) staining. 
All slides were enclosed in glycergel mounting medium (Dako) and scanned at 20× 
with the Nanozoomer 2.5 (Hamamatzu). The images were analysed for staining 
quantification on HALO software (Indica Labs), with Multiplex IHC 2.0 module. 
The cell densities were calculated as the cell count per tissue area (cell/mm2). The 
clustering of density data was performed using Genesis software, hierarchical clus-
tering, average dot product and average linkage.
Multiplex immunohistochemistry and multispectral image analysis. Matched 
FFPE blocks of the 122 freshly frozen samples were available for 110 samples. Two 
4-μm-thick slides were cut from the FFPE blocks, deparaffinized in clarene, rehy-
drated through an ethanol gradient and fixed in NBF (10% neutral buffered forma-
lin). Slides were then stained according to Opal 7-plex technology (PerkinElmer), 
enabling the simultaneous visualization of six markers on the same slide. Therefore, 
at each of the six cycles of staining, antigen retrieval was performed via microwave 
treatment in antigen retrieval solution pH 6 or pH 9 (AR6 or AR9) depending 
on the target; protein blocking was performed using Protein Block-Serum-free 
(Dako) for 15 min; and primary antibodies were then incubated for 30 min at room 
temperature. Next, incubation with HRP Labelled Polymer mouse or rabbit (Dako 
EnVision+ System- HRP Labelled Polymer) was performed at room temperature 
for 15 min followed by TSA opal fluorophores (Opal 520, Opal 540, Opal 570, 
Opal 620, Opal 650 or Opal 690) incubation for 10 min. Microwave treatment was 
performed at each cycle of staining to remove the antibody TSA complex with AR 
solution (pH 9 or pH 6). Finally, all slides were counterstained with DAPI for 5 
min and enclosed in ProLong Diamond Antifade Mountant (Thermo Fisher). The 
slides were scanned using the PerkinElmer Vectra 3 System, and the multispectral 
images obtained were unmixed using spectral libraries that were previously built 
from images stained for each fluorophore (monoplex), using the inForm Advanced 
Image Analysis software (inForm 2.3.0 PerkinElmer).
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The entire area of the biopsies was stained, scanned, scored and quantified. The 
scoring method consisted of several automated steps: tissue categorization, cell 
segmentation and cell phenotyping. Using the integrated InForm image analysis 
software, multispectral images that were representative of different samples were 
selected and used to train the InForm software for categorization of the tissue into 
epithelium and stroma. The settings learnt from the training on the representative 
images from different samples were saved within an algorithm, which enabled 
batch analysis of all the tissue slides. We designed two different seven-plex panels 
defined as phenotype and functional panels, which were used on two sequential 
slides to characterize the immune microenvironment of pre-cancer lesions of the 
lung, including activated and inactivated cells, activated and inactivated immune 
pathways, and immune-response type. The phenotype panel included CD3, CD8, 
FOXP3, CD68, neutrophil elastase (NE), DAPI and CK, and the functional panel 
included CD3, PD-L1, PD1, Ki67, CD137, DAPI and CK. The tumour (epithelial) 
and stromal regions were classified by the software using the CK+ staining. The 
classification was verified and approved by a certified pathologist (A.H.). Tumour 
heterogeneity analyses were performed (Extended Data Fig. 10, Supplementary 
Information).
Spatial statistics. We performed first- and second-order spatial analysis of mul-
tispectral imaging data, which enabled a high-definition characterization of the 
microenvironment architecture. First, we reconstructed whole slides rather than 
separately analyse each image (which introduces edge effects and leads to a loss of 
information) (Extended Data Fig. 6). We calculated immune-cell densities as the 
number of positive cells per unit of tissue surface area (mm2). On the basis of the 
tissue categorization performed with the inForm software, the stroma and the epi-
thelium compartments were annotated on the images, which enabled densities and 
spatial distribution to be calculated individually for the stromal and epithelial tissue 
categories (Extended Data Fig. 6). To compare the spatial localization of different 
immune-cell types, we calculated the distances to the nearest neighbours and their 
distribution by implementing edge corrections, G(r). The function G(r) is the 

cumulative distribution of the distance from a typical random cell (x) to its nearest 
cell (y), in which the argument r is the radius of the area in which G(r) is evaluated. 
We expected a potential interaction when two cells were within a distance of 25 μm. 
By comparison of the observed empirical function Gx,y(r) to the theoretical curve 
G r( )x y,

theo  that shows random sample distribution, deviations from the empirical and 
the theoretical G(r) function indicate clustered and dispersed patterns. To demon-
strate that the results do not depend on the distance cut-off, we calculated the area 
between these two curves and consistently confirmed that epithelial cells segregate 
from CD3 T cells in high-grade lesions (Extended Data Fig. 6g).
Statistics. R statistical software (v.3.3.3) was used for statistical analyses and graph-
ical visualization. The null hypotheses were rejected at P values lower than 0.05, 
unless indicated otherwise. When comparing tumour-tissue to normal-tissue gene 
expression, a linear mixed-effects model was used to adjust for the confounding 
factors (smoking history, history of cancer, inter-patient variability, sex and age). 
The Benjamini–Hochberg method was applied for multiple testing correction. 
Post-hoc multiple testing correction was applied for pairwise comparison using 
Dunn’s test.

Randomized principal component analysis was performed on log2-transformed 
gene expression, using the function rpca implemented in the R package rsvd, which 
allowed data centring and scaling by variance for all probes.
Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this paper.

Data availability
Gene expression data are available in the Gene Expression Omnibus database with 
accession number GSE33479.

Code availability
Code is available on Github at https://github.com/Precancer/SCC.
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Extended Data Fig. 1 | Methodology for studying tumorigenesis. 
a, Across nine morphological stages of the development of lung SCC, 
freshly frozen samples were assayed for gene-expression profiling. The 
two methodological axes are visualized separately; one flow chart focuses 
on the detection of gene-expression patterns (left) and one flow chart 
focuses on the in-depth immune characterization (right) from gene 
expression and multispectral imaging. On the basis of gene co-expression, 
molecular phenotypes and gene modules were defined and functionally 
characterized. Immune-gene signatures and deconvolution methods 

were used for quantitative assessment of different immune-cell types. 
Relevant immune cells were investigated in more depth using multiplex 
immunohistochemistry and multispectral imaging. b, Bronchoscopy 
of in situ carcinoma tissue with white light (left) and with 400-nm 
wavelength illumination, under which the bronchial epithelium appears in 
green (right). Although it is difficult to distinguish the in situ carcinoma 
from normal tissue under white light, the in situ carcinoma displays a 
lack of green fluorescence compared to the normal epithelial tissue under 
fluorescence bronchoscopy.



LetterRESEARCH

Extended Data Fig. 2 | Four molecular steps in carcinogenesis of lung 
SCC. The heat map shows genes that are associated with developmental 
stages identified using a linear mixed-effects model. Annotation bars are 
included for cancer history, sex and smoking history, all of which were 
used as fixed factors for the linear model, along with patient information 
(which was used as a random effect). Gene expression discerned four 
molecular groups: normal, low grade, high grade and SCC, on the basis 

of semi-supervised hierarchical clustering. Normal tissue with normal 
fluorescence, hypofluorescent normal tissue and hyperplasia lesions 
were subsumed under the category of normal tissue (stages 0, 1 and 2); 
metaplasia, mild dysplasia and moderate dysplasia were grouped as low 
grade (stages 3, 4 and 5); severe dysplasia and carcinoma in situ comprised 
the high-grade category; and the invasive stage was singled out as SCC.



Letter RESEARCH

Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Hallmarks of cancer. a, Single-sample gene-set 
enrichment analysis was performed on the full expression profile using 
cancer-hallmark gene definitions from mSigDb (v.6.2), independently of 
the gene modules. The heat map visualizes the enrichment scores from 
the single-sample gene-set enrichment analysis, in which the samples 
were ordered by their average enrichment scores for each molecular 
group individually. Only the cancer hallmarks that were significant with 
respect to the over-representation analysis of the gene modules in Fig. 1b 
are shown for validation. Three hallmark definitions associated with the 
ascending module at the highest adjusted P values (P > 0.003) are shown 
here (these are not shown in Fig. 1b): PI3K_AKT_MTOR_SIGNALING 
(proliferation), UV_RESPONSE_UP (DNA damage, confirmed by 
the UV_RESPONSE_DN in the descending module) and HYPOXIA 
(pathway). b, Left, randomized principal component (PC) analysis on the 
full expression profile shows a gradual continuum of expression changes 
from stage 0 to stage 8. Middle, randomized principal component analysis 
on enrichment scores for cancer hallmarks revealed distinct molecular 
steps. The cancer hallmarks explained up to 76.2% of the sample variability 

with the first two principal components (middle) as opposed to 24.9% 
variability explained by the full expression profile (left). Right, based 
on the principal component rotations, the hallmarks of proliferation, 
immune system, metabolism and the epithelial–mesenchymal transition 
each contribute to defining the developmental stages, as observed by their 
different directions of variability. c, Increase in expression of key genes and 
chemokines involved in the epithelial–mesenchymal transition, together 
with genes that overlap with the hallmark signature of the epithelial–
mesenchymal transition and the ‘SCC increase’ gene module. The 
differential expression analysis of chemokines related to the epithelial–
mesenchymal transition considered the confounding factors of smoking 
status, cancer history, sex, age and inter-patient variability. No differential 
expression across the developmental stages was found for CXCL1 and 
CXCL6, whereas the expression of CXCR2 was significantly increased in 
both the high-grade and SCC lesions. d, Only CXCR4 had a significant 
increase specific to SCC that was not observed in low- and high-grade 
lesions.
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Extended Data Fig. 4 | Comparison of deconvolution approaches.  
a, Immune estimates derived from the CIBERSORT method, using the 
LM22 gene signature (all 22 cell types are presented) (top) or using on our 
in-house-developed immune signature (HD signature) (bottom).  
b, Symmetric correlation matrix of the average immune-cell abundance 
per developmental stage (Spearman correlation), estimated with 

CIBERSORT using the LM22 gene signature (left) and the HD signature 
(right). c, Immune co-regulation and immune-status shift derived from 
CIBERSORT estimates using the HD signature. d, Comparison of the 
mcpCounter, TIMER, EPIC and xCell methods for expression-based 
interrogation of the tumour immune infiltrates.
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Extended Data Fig. 5 | Intrapatient immune heterogeneity. a, Stacked 
bars illustrate the relative cellular abundance of different immune-cell 
types estimated with CIBERSORT, in patients sampled for multiple grades. 
There are similar profiles for samples from the same grade, independent 
of the patient. b, Single-sample gene-set enrichment analysis was 

performed on the HD immune-cell signatures. The heat map represents 
one-dimensional clustering by immune-cell type, in which the samples of 
each molecular group were ordered by their average enrichment score. c, A 
chord diagram links the samples derived from the same patient. The order 
of the samples is preserved from b.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Quantitative and spatial immune 
characterization through immunohistochemistry and multispectral 
imaging. a, Immunohistochemistry (IHC) quantification of the immune 
checkpoints CTLA4, IDO1, TIGIT and TIM3. Each of the tested markers 
was validated in SCC tissue (top). P values are derived from a non-
parametric one-tailed Mann–Whitney U test used to validate increase 
in SCC compared to normal tissue. b, Comparison of PD-L1 densities 
between the stroma of normal tissue (stage 0) and SCC (stage 8), derived 
from multiplex immunohistochemistry. c, Clustering of normalized 
immunohistochemistry expression. d, A methodology for spatial analysis 
of multispectral imaging data. A whole slide is reconstructed from the 
individual images. On the basis of the tissue categorization, the images are 

masked to exclude the blank areas. Immune-cell densities are calculated 
as the number of cells per tissue area (m2). Spatial localization is analysed 
within the selected region of interest. e, Representative examples of 
CK−PD-L1+ in both SCC and severe dysplasia. Single-positive PD-L1 
cells (CK−PD-L1+) were generally immune cells that were located in the 
stroma, with morphological similarities to infiltrating macrophages.  
f, We calculated the area between the theoretical and the empirical curve 
because deviations between the two can indicate clustering or segregation 
patterns (see Fig. 4b, bottom) to confirm that epithelial cells segregate 
from CD3 T cells in high-grade lesions, independently from the distance 
threshold of 25 μm.
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Extended Data Fig. 7 | Graphical overview of lung carcinogenesis. Schematic illustrating the main stages of carcinogenesis for lung SCC.
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Extended Data Fig. 8 | Quality control of microarray data. a, 
Distribution of the relative abundance of each probe; that is, the ratio 
between the red and green colour intensity (Cy5/Cy3) for all probes 
across all patients (log2-transformed). b, Gene-expression distribution 
for each hybridization and amplification run (left). Using randomized 

principal component analysis, the samples were projected on the first 
two principal components and highlighted with different colours on the 
basis of their hybridization run (top right) and amplification run (bottom 
right). c, Classification of the samples is based on the expression of sex-
chromosome genes, along with colour annotation for the sex of the patient.
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Detection of gene co-expression modules. 
a, Expression of 4,734 genes that were associated with the nine 
developmental stages (linear mixed-C. effects model) is illustrated for 
each of the seven expression trajectories (that is, gene modules), detected 
using weighted network analysis of gene co-expression. b, Only 18 out of 
4,734 genes were not assigned to a gene module and did not follow any of 
the seven illustrated expression patterns. c, A weighted network of genes 
is constructed by raising the adjacency matrix to a power. The value of 
the power for soft thresholding was chosen to be 12, as the lowest power 
term at which the network approximately fits a scale-free topology (red 
line R2 ≤ 0.85). The horizontal red line shows the squared correlation (R2) 
cut-off of 0.85 recommended by the scale-free topology criterion. d, We 
randomly split the full dataset into a reference and test set, and evaluated 
the module preservation across the respective networks (n = 50 samples). 
The Zsummary statistic (top) provides evidence that the observed value of 
the preservation statistic is significantly higher than expected by chance 
(strong evidence if Zsummary > 10; weak-to-moderate if Zsummary > 2 
and < 10; no evidence if Zsummary < 2). The grey module is unclassified, 
and expectedly showed no preservation (Zsummary < 2). All of the modules 

were preserved between the reference and the test datasets (Zsummary > 10), 
except in the SCC increase module (Zsummary = 9.1) which is also the 
smallest module with gene expression in small number of samples after 
resampling (an increase only in SCC). The median rank-preservation 
statistic showed, independently of the module size, that there is stronger 
preservation for all modules compared to the grey unclassified set of genes 
(bottom). e, The dendrogram derived from hierarchal clustering of the 
topology overlap matrix dissimilarity measure of the full dataset is shown 
in the top panel. The modules are defined on the basis of this dendrogram 
using a dynamic tree cut (top panel). We applied the same parameters 
for weighted gene-correlation network analysis on a resampled subset 
of the full dataset (a randomly selected two-thirds of the full dataset). 
The resampling was performed without replacement, which ensured 
proportional representation of each developmental stage. Colour rows 
indicate the module assignments obtained on the full dataset (first row) 
and on the resampled subsets of samples (n = 50 samples). All of the 
seven gene modules identified in the full dataset appear in almost every 
resampling, which indicates that the modules are stable.
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Extended Data Fig. 10 | Tumour heterogeneity. a, Single-sample gene-set 
enrichment analysis using pannormal tissue, and normal lung tissue from 
HD gene signature. b, Estimates of epithelial-cell abundance derived from 

the xCell method (see Supplementary Information). c, Expression of the 
proliferation gene-marker MKI67. d, Expression of the proliferation gene-
marker in CK+ cells.
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