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Abstract  
 
In their daily decisions, humans and animals are often confronted with the conflicting choice of opting 
either for a rewarding familiar option (i.e., exploitation) or of opting for a novel, uncertain option that may, 
however, yield a better reward in the near future (i.e., exploration). Despite extensive research, the cognitive 
mechanisms that subtend the manner in which humans solve this exploration-exploitation dilemma are still 
poorly understood. In this study, we challenge the popular assumption that exploitation is a global default 
strategy that must be suppressed by means of cognitive control mechanisms so as to enable exploratory 
strategies. To do so, we asked participants to engage in a challenging working-memory task while 
performing repeated choices in a gambling task. Results showed that manipulating cognitive control 
resources exclusively hindered participants’ ability to explore the environment in a directed, intentional 
manner. Moreover, under certain scenarios, adopting exploitative strategies was also dependent on the 
availability of cognitive control resources. Additional analyses using a recent computational model of 
information integration suggests that increasing cognitive load specifically interferes with the ability to 
combine reward and information in order to inform choices. Our results shed light on the cognitive 
mechanisms that underpin the resolution of the dilemma, and provide a formal foundation through which 
to explore pathologies of goal-directed behavior. 
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Introduction  

Understanding the exploration-exploitation dilemma is widely taken to be one of the main 

challenges in the domain of adaptive control and behavior (Cohen, McClure, & Yu, 2007). The dilemma 

refers to the fact that when facing a choice, one may either choose to stick with what we know (familiar 

rewarding outcomes) or engage in the risky exploration of unknown regions of the decision space. To 

better picture this phenomenon, imagine that it is a nice day in your city. You are walking around 

downtown in search of a pleasant place to eat. A good strategy would be to choose your favorite 

restaurant, because the likelihood that you will find it satisfying is very high. However, new dining rooms 

have recently opened in town. Do you select the restaurant that you know you will enjoy, or do you select 

another restaurant you have never tried before, potentially finding either a new favorite, or profound 

disappointment? Thus, the exploration-exploitation trade-off is a dilemma precisely because it involves 

addressing a challenging conflict between maximizing reward and maximizing information. Solving it is 

necessary in order to flexibly adapt to environments that are often both uncertain and dynamic. Because 

all cognitive agents have to somehow address this challenge, the exploitation-exploration is ubiquitous 

and has relevance for many organisms and for many types of decisions. 

Although extensive research on the exploration-exploitation dilemma has been conducted over 

the last decades in different scientific domains (e.g., artificial intelligence, animal foraging and 

neuroscience), a complete understanding of the underlying mechanisms involved in the resolution of the 

dilemma is still lacking. In the most popular framework (Daw, O'Doherty, Dayan, Seymour, & Dolan, 

2006; Cohen et al., 2007), the dilemma is considered as a dual-process where exploitation is a default 

strategy, and it appears to dominate choice behavior because of its association with stronger reward 

histories. Following this framework, modifying behavior in an adaptive manner through exploration thus 

requires overriding the exploitative strategies that tend to dominate the decision process by its stronger 

association with rewards. To overcome this dominance, behavioral/cognitive control processes might play 

a central role (i.e., inhibition) in enabling the switch to exploratory strategies (Daw et al., 2006; Cohen et 
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al., 2007). Cognitive control is the ability to coordinate sensory information and actions so as to align 

them to internal states or intentions (Koechlin, Ody, & Kouneiher, 2003), and is required when the 

mapping between sensory inputs and actions is rapidly changing or weakly established relative to other 

existing stimulus-response associations (Miller & Cohen, 2001). Top-down control mechanisms could 

therefore be the core process that underpins exploratory behavior by enabling the continuous monitoring 

of the need for behavioral adjustments and by implementing new goal-directed behaviors (Daw et al., 

2006; Cohen et al., 2007). The “behavioral control” framework was introduced to explain activity in 

prefrontal regions (i.e., frontopolar cortex), known to be involved in cognitive control (Mars, Sallet, 

Rushworth, & Yeung, 2011) during exploratory decisions (Daw et al., 2006). Subsequent evidence has 

confirmed the core involvement of higher cognitive-control functions in exploration (Badre, Doll, Long, 

& Frank, 2012; Cavanagh, Figueroa, Cohen, & Frank, 2012; Frank, Doll, Oas-Terpstra, & Moreno, 

2009).  

To understand precisely how cognitive control is related to choice behavior in the exploration-

exploitation dilemma, it is important to note that, under the above framework, exploitation specifically 

refers to “choosing the option that maximizes a (reward) prediction”. Exploration, on the other hand, is an 

umbrella term that encompasses different type of strategies, essentially random and directed exploration 

(Wilson, Geana, White, Ludvig, & Cohen, 2014). The concept of random exploration derives from 

reinforcement learning (RL) theory (Sutton & Barto, 1998), wherein exploration is merely the product of 

noise in the response-generation process. Under this scenario, a decision-maker who learns to maximize a 

numerical reward signal may nevertheless make choices associated with lower reward values 

(exploration) due to a noisy response. In contrast, the concept of directed exploration derives from 

optimal decision-making theories, which take exploration to be an explicit, goal-directed strategy (Gittins 

& Jones, 1974). In directed exploration, an animal ‘directs’ exploration toward uncertain options, thus 

increasing its understanding of the surrounding environment through gaining new information. Thus, the 

absence of information is the main driving factor in this subtype of exploration behavior.  
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Whether humans use information to direct their exploratory behaviors has been a matter of 

intense discussion over the last decade, and a number of findings have suggested that this was not the case 

(Daw et al., 2006; Payzan-LeNestour & Bossaerts, 2011). However, this view has been challenged 

recently in studies using alternative paradigms which controlled for the availability of information in the 

environment, suggesting that humans may adopt both random and directed exploration (Wilson et al., 

2014) the hidden mechanisms of which relate to the integration of reward and information into choice 

values (Cogliati Dezza, Yu, Cleeremans, & Alexander, 2017). Although based on a common exploratory 

drive, the two exploratory strategies showed different neural substrates (Warren et al., 2017; Zajkowski, 

Kossut, & Wilson, 2017), different age-related development (Somerville et al., 2017), and they react 

differently to changes in reward contingencies (Cogliati Dezza et al., 2017). Thus, the dilemma does not 

seem to be a unitary binary process but instead a class of problems spanning different scales (Cohen et al., 

2007). Following this recent perspective, the dilemma is represented as a continuum (Mehlhorn et al., 

2015) where many behaviors fall in the extremes (e.g., choosing the highest valuable option or the most 

uncertainty option) whereas others might fall somewhere in between (choosing a moderately valuable 

option associated with some uncertainty). Behavior at these intermediate points on the continuum is less 

amenable to interpretation, and controlled behavioral paradigms are required (Wilson et al., 2014). 

Different cognitive mechanisms may therefore underlie the resolution of the dilemma, and the ability of a 

decision-maker to deploy different exploratory strategies may depend on the availability of sufficient 

cognitive control resources (Otto, Knox, Markman, & Love, 2014). However, a new framework that 

attempts to integrate these new advances in understanding the exploration-exploitation dilemma and its 

underlying cognitive mechanisms is still lacking. 

Motivated by the behavioral control hypothesis of exploratory behavior and by recent 

understanding over the resolution of the exploration-exploitation dilemma in humans, we consider 

whether cognitive control processes might modulate the resolution of the exploration-exploitation 

dilemma using a mixture of exploratory strategies (i.e., random and directed exploration). We 

investigated this hypothesis using a variant of bandit tasks that has previously been used to disentangle 
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both random and directed exploratory strategies (Wilson et al., 2014; Cogliati Dezza et al., 2017). Bandit 

tasks are a family of RL problems where, on each trial, participants must choose among a set of slot 

machines (or “bandits”) with the goal of maximizing the total reward over a sequence of trials (Robbins, 

1952). This new version of the bandit task used a two-phase gambling task where, on each game, 

participants were initially instructed as to which options to choose (forced-choice task), after which they 

were free to choose between options (free-choice task) so as to maximize their final gain. By adding a 

forced-choice task on the top of the standard bandit task, the information participants had about the 

payoffs of each option was controlled, thereby enabling the identification of the two exploratory strategies 

in the first free-choice trial of each game (Wilson et al., 2014). In the current study, we additionally 

manipulated cognitive control resources by asking participants to engage in a challenging working 

memory task (Konstantinou & Lavie, 2013) while performing the sequential decision-making task. Under 

the behavioral control hypothesis, depletion of cognitive control resources should lead to a more 

pronounced expression of processes that operate independently of control such as exploitation, while 

behaviors that require control - such as exploration - should be attenuated. In order to investigate the 

effect of cognitive load manipulation on the learning and decision-making components of the dilemma, 

we developed a computational model that is capable of capturing participants’ behavior on the new 

version of the bandit task by associating a value with information on top of the standard reward-based 

reinforcement learning formulation (Cogliati Dezza et al., 2017). Applying a computational model in this 

context will help in understanding the underlined mechanisms affected by cognitive control manipulation 

which might be not accessible with a “pure” behavioral analysis 

 

Methods 

 

Participants 

Twenty-five young adults participated in this study (20 women; aged 18 - 24 years, mean age = 

19.6). Based on a previous study (Cogliati Dezza et al., 2017), a power analysis suggested a sample size 
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of N=24, power = 0.999. Participants were students at the Faculty of Psychology (Université libre de 

Bruxelles) and received credits for their participation to the study. The entire group belonged to the 

Belgian French-speaking community. The experiment was approved by Faculty of Psychology Ethics 

Committee, and was conducted according to the principles of the Declaration of Helsinki. Informed 

consent was obtained from all participants prior to the experiment.  

Procedure 

Bandit task 

To investigate the effect of cognitive control on the exploration-exploitation dilemma, we asked 

participants to perform 128 independent games of a new version of the multi-armed bandit task (Figure 1) 

that has already been shown to elicit both random and directed exploratory strategies (Cogliati Dezza et 

al., 2017; Wilson et al., 2014). As in standard bandit tasks, in this version, participants chose among 

options with the goal of maximizing the total reward over a sequence of trials. When selected, each option 

provides a reward (generated from a hidden distribution) that informs participants about the desirability of 

each alternative. Contrary to standard bandit tasks, on each game participants performed a forced-choice 

task followed by a free-choice task (Wilson et al., 2014; Figure 1a). During the forced-choice task, 

participants were only allowed to select options that had been pre-selected by the computer (Figure 1c), 

whereas during the free-choice task participants were able to make their own choices in view of 

maximizing their final score (i.e., the amount of points earned throughout the game) (Figure 1d). Contrary 

to the first version of this paradigm (Wilson et al., 2014), information regarding the points earned 

following a choice did not remain visible following a feedback in order to allow learning to influence 

participants’ choices (Cogliati Dezza et al., 2017; Zajkowski et al., 2017). Each game was composed of 6 

consecutive forced-choice trials and from 1 to 6 free-choice trials (Figure 1a). The number of free-choice 

trials was manipulated so that participants were unable to predict the length of the free-choice task 

(Cogliati Dezza et al., 2017) and to adjust their choices accordingly (Wilson et al., 2014).  
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 In this version, options were represented as decks of cards and were placed on the left (blue deck), 

right (green deck) and central (red deck) side of the computer screen (Figure 1b). The use of three options 

allows us to discern between the strategic use of random and directed exploration (Cogliati Dezza et al., 

2017) without manipulating the prior knowledge participants had about horizon (i.e., the total number of 

trials participants will experience in a game), as in previous versions (Wilson et al., 2014; Krueger, 2017). 

In particular, if choice probabilities for the two non-exploitative options are equal, then exploratory 

behavior is entirely driven by random exploration. On the contrary, if the choice probability is different 

from chance, then choices are partially driven by directed exploration. Participants indicated their choices 

using the buttons ‘c’, ‘v’ and ‘b’ of the computer keyboard (Figure 1b). After each choice, the card was 

turned to reveal the points earned by the participant for selecting that deck. Participants could obtain 

between 1 and 100 points on each trial, and the number of points earned for selecting a deck was sampled 

from a truncated Gaussian distribution with standard deviation of 8 points (the standard deviation was 

equal for the 3 decks). The generative mean of each deck was set to 30 and 50 points and adjusted by +/- 0, 

4, 12, & 20 points to avoid the possibility that participants might be able to distinguish the generative mean 

for a deck after a single observation (i.e., the generative means ranged from 10 to 70 points). As in our 

previous study (Cogliati Dezza et al., 2017), the 3 decks of cards had the same generative means in 50% of 

the games (equal reward condition) and different means in the rest of the games (unequal reward 

condition); the intent of the different reward conditions in our previous study was to examine the influence 

of reward context on exploration and exploitation. Although not the primary focus of this study, reward 

context effects reported in our previous study were also observed here (p < 10-3) replicating our previous 

work. However, in the present study, the effect of reward context was not modulated by the cognitive 

control manipulation. For this reason, the results concerning reward context will be not discussed any 

further. The means of the generative Gaussian function were stable within a game and varied between 

games. Participants were informed that the decks of cards did not change during the same game, but were 

replaced by new decks at the beginning of each game. However, they were not informed of the reward 

manipulation and the underlying generative distribution we adopted.  
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As in previous versions of this paradigm, during the forced-choice task we manipulated the 

information about the decks of cards acquired by participants (i.e., the number of times each deck of cards 

was played). On each game, participants were forced to either choose each deck 2 times (equal information 

condition), or to choose one deck 4 times, another 2 times, and never for the remaining deck (unequal 

information condition). The information manipulation guarantees the orthogonalization of reward and 

information thus allowing the distinction of random and directed exploration in the first free-choice trial of 

each game (Wilson et al., 2014). In 50% of the games, participants played with the equal information 

condition. The order of card selection was randomized in both information conditions, as well as the 

appearance of equal and unequal information condition. 

Cognitive control manipulation 

Cognitive control resources were manipulated by asking participants to carry out a concurrent 

working-memory task during the free-choice task. Specifically, we adopted Konstantinou and Lavie’s 

procedure (Konstantinou & Lavie, 2013), which has been shown to selectively interfere with cognitive 

control processes (Baddeley, Emslie, Kolodny, & Duncan, 1998; D'Esposito, Postle, Ballard, & Lease, 

1999). Prior to the beginning of the free-choice task, a sequence of 9 digits appeared on the screen (Figure 

1e). Participants were asked to memorize and retain the sequence until the end of the game. After each 

free-choice trial, a single memory probe digit was presented at fixation until a response was given. The 

probe was equally likely to be any of the first 8 digits of the memory set. The participants’ task was to 

report the digit following the probe in the memory sample (e.g., if the memory set was ‘123456789’ and 

the probe was ‘3’, the correct response would be ‘4’). The probe was displayed on the screen and 

participants pressed the key corresponding to the selected digit.  

In order to investigate the role of cognitive control resources on the exploration-exploitation 

dilemma, participants were exposed to two different conditions: High Load vs. Low Load. In the High 

Load condition, the digits were presented in random order (e.g., ‘371586249’) for 2000 ms, and a new 

sequence was generated on each game. In the Low Load condition, the digits were presented in fixed 

numerical order (i.e., ‘123456789’) for 500 ms. Participants performed the two conditions on two 
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different days, with order randomized and counterbalanced (half of participants performed the High Load 

condition on the first day and the Low Load condition the second day, and vice-versa). Performance on 

the memory task was adopted as an inclusion criterion for the statistical analysis (see Results Section). 

Due to technical problems, two participants failed to complete the entire 128 games in either the High 

Load or the Low Load condition, but their data were included anyway since only a few games were 

lacking (one participant played 124 games of High Load condition and the other 123 of the Low Load 

condition) and removing those participants did not affect the main results.  

 

--------------------- 
Insert Figure 1 

--------------------- 

 

Computational models 

To investigate the hidden mechanisms involved in the resolution of the exploration and 

exploitation dilemma under cognitive load, we adopted a previously implemented version of a 

reinforcement learning model that learns reward values on each trial and incorporates a mechanism 

reflecting the knowledge gained about each deck during previous experience - the gamma-knowledge 

Reinforcement Learning model (gkRL). The gkRL model is able to reproduce participants’ behavior on 

the above behavioral paradigm (Cogliati Dezza et al., 2017). Specifically, compared to a standard 

reinforcement learning model is able to reproduce participants’ directed exploratory strategies in 

scenarios where options are not sampled at the same rate.  

 

On each trial, a simple d learning rule (Rescorla & Wagner, 1972) is used to compute the 

expected reward value 𝑄(𝑐) for each deck of cards c (= Left, Central or Right), using the following 

equation: 

𝑄!"#,%(𝑐) = 	𝑄!,%(𝑐) + 𝛼	 ×	𝛿!,%  (1) 
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where 𝑄!,%(𝑐)	 is the expected reward value for trial t and game j. 	𝛿!,% =	𝑅!,%	(𝑐) − 𝑄!,%(𝑐)	is the 

prediction error, which quantifies the discrepancy between the predicted outcome and the actual outcome 

obtained at trial t and game j. The expected reward 𝑄!,%(𝑐) is updated using the above rule only if an 

outcome from the deck c is observed, otherwise 𝑄!"#,%(𝑐) = 𝑄!,%(𝑐). Considering participants were told 

that each game was independent from the others, 𝑄' is initialized at the beginning of each game 

(Khamassi, Enel, Dominey, & Procyk, 2013) and set to the global estimate of 𝑄 (~ 40 points) (Cogliati 

Dezza et al., 2017).  

Additionally, gkRL tracks information gained from each deck based on how often it is selected, 

as follows:  

𝐼!,%(𝑐) = ./𝑖!,%(𝑐)
!

#

1

(

	 

where, 𝑖!,%(𝑐) = 20, 𝑐ℎ𝑜𝑖𝑐𝑒 ≠ 𝑐
1, 𝑐ℎ𝑜𝑖𝑐𝑒 = 𝑐    (2) 

𝐼!,%(𝑐), is the amount of information associated with the deck c at trial t and game j. 𝐼!,%(𝑐), is computed 

by including an exponential term g that defines the degree of non-linearity in the amount of observations 

obtained from options after each observation. g is constrained to be > 0. Each time deck c is selected, 

𝑖!,%(𝑐) takes value of 1, and 0 otherwise. On each trial, the new value of 𝑖!,%(𝑐) is summed to the previous 

𝑖!)#,#:%(𝑐) values and the resulting value is raised to g, resulting in 𝐼!,%(𝑐). For example, after six trials of 

the forced choice task, if one option has never been selected, 𝐼!,%(𝑐)	has value zero; whereas in the case 

that one option is selected 4 times, 𝐼!,%(𝑐) has the value 4^g. The parameter g adds non-linearity to the 

information term (Cogliati Dezza et al., 2017), the intuition being that additional samples do not 

contribute equally to the amount of information a subject has about an option (e.g., sampling an option 

you have never observed is far more informative than sampling an option you have observed 100 times 

previously).  
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Before selecting the appropriate option, gkRL subtracts the information gained 𝐼!,%(𝑐)	from the 

expected reward value 𝑄!,%(𝑐): 

𝑉!,%(𝑐) = 	𝑄!,%(𝑐) − 𝐼!,%(𝑐) ∗ 	𝜔 (3) 

𝑉!,%(𝑐)	is the final value associated with deck c. Here, information accumulated during the past trials 

scales values 𝑉!,%(𝑐)	so that increasing the number of observations of one option decreases its final value. 

In other words, when one option is over-selected, 𝐼!,%(𝑐) becomes larger resulting in lower 𝑉!,%(𝑐). On the 

contrary, if one option is never-selected 𝐼!,%(𝑐) is zero, and 𝑉!,%(𝑐) = 𝑄!"#,%(𝑐). 𝜔 is the information 

weight and determines the degree by which the model integrates information into choice values. In order 

to generate choice probabilities based on expected reward values, the model uses a softmax choice 

function (Daw et al., 2006; Humphries, Khamassi, & Gurney, 2012; Wilson & Niv, 2011). The softmax 

rule is expressed as: 

𝑃(𝑐/𝑉!,%(𝑐+)) 	=
,-.	(0×2!,#(3))

∑ ,-.	($ ,-.0×2!,#(3$))
  (4) 

where 𝛽 is the inverse temperature that determines the degree to which choices are directed toward the 

highest rewarded option. With higher 𝛽, the model mainly selects options associated with higher choice 

value, whereas with lower 𝛽, the model’s choices are more random. 

The gkRL model can be informative concerning the effect of cognitive load on the dilemma in 2 

ways. First, it can help to distinguish whether cognitive load effects on exploration are driven by 

information computation (𝜔 and g), or whether they are instead driven by changes in choice variability 

(𝛽). Second, if changes are driven by alterations in information computation, the model can help to 

distinguish whether these are driven by changes in information integration (𝜔) or by changes in the way 

information availability decays with time (g).  

 

Model fitting and model comparison 
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To estimate the model’s parameters a, b, and w, g, we collected trial-by-trial participants’ choices 

in both High and Low Load condition (Table 1, Table2). During the fitting procedure, the objective 

function - the negative log likelihood - ∑ log	(𝑃%(𝑐))
%6#78
%6# 	- for each participant under both load 

conditions was computed and then minimized using MATLAB and Statistics Toolbox Release 2015b 

function fminsearchbnd (which is exactly as fminsearch but does not search outside the fixed boundaries). 

The boundaries adopted were as follows: a ]0,1[, b ]0, 10], w [-300, 300],  g ]0, 12]. To increase the 

likelihood of finding a global rather than a local optimum, fminsearchbnd was iterated with 15 randomly 

chosen starting points. The fitting procedure was validated by running a recovery analysis: the gkRL 

model was simulated on the task using the retrieved parameter estimates to generate synthetic behavioral 

data and then the fitting procedure was applied to the synthetic data in order to check whether previously 

estimated parameters were indeed recovered (r2 > 0.4). Likewise, we checked the model comparison 

outcome by computing a confusion matrix and checking whether data generated from a model was indeed 

best explained by that model.   

 

Statistical analysis 

Statistical analysis was performed using RStudio (https://www.rstudio.com/), functions and 

packages adopted are reported in the results section. To determine whether and how manipulating 

cognitive control affected participants’ decision strategies, we conducted repeated measure ANOVA 

analyses. When violations of parametric tests were indicated, non-parametric tests were performed. P-

values of < 0.05 were considered significant. 

 

Results 

In this section, we first report the results concerning the cognitive load manipulation we adopted 

and its effects on participants’ performance. Subsequently, we examine the interaction between cognitive 
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load manipulation and decision strategies. Lastly, we investigate the possible hidden mechanisms affected 

by manipulating cognitive/behavioral control mechanisms. 

Working memory Task 

First, we explored the effect of the cognitive load manipulation on memory accuracy. To do so, 

trial-by-trial correct memory responses were collected. A Wilcoxon Signed Rank Test on the average 

value of subjects' overall correct memory responses revealed a significant difference between High Load 

(M = 0.494, SD = 0.12) and Low Load (M = 0.986, SD = 0.012), p < 10-8, r = .874, indicating that, as 

expected, increasing memory load affected participants’ performance on the working memory task 

(Figure 2a). Because it can be assumed that participants who scored at chance level on memory 

performance were not reliably engaged in the memory task, accuracy on the memory task was used as an 

inclusion criterion for further statistical analysis. A one-sample T-test on correct memory responses 

revealed a significant difference between the High Load condition and chance level (12.5 %), t(24) = 

15.29, p < 10-14, d = 4.33, suggesting that participants on averaged were actively engaged in the working-

memory task. Additionally, we investigated whether each participant performed above chance-level by 

applying a one-sample sign test on participants’ correct memory responses in the High Load condition. 

Results revealed that each participant scored above chance level p < 10-6. Following this result every 

participant was included in the subsequent analysis.  

Cognitive load manipulation 

To check whether the cognitive load manipulation affected cognitive control processes by 

increasing dual-task interference, we measured choice reaction times (RTs) during the free choice-task of 

both High and Low Load condition (Figure 2b). A paired T-test on RTs revealed slower reaction times 

during High Load condition (M = 1005 ms, SD = 468 ms) compared to Low Load condition (M = 483 

ms, SD = 145 ms), t(24) = 6.19, p < 10-6, d = 1.24, suggesting that less cognitive control resources were 

available to participants during the High Load manipulation.  

 

--------------------- 
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Insert Figure 2 
--------------------- 

 

Performance  

We also examined whether the cognitive load manipulation affected the way participants 

performed the gambling task. Here, performance refers to the ability to play strategically during the task 

in order to maximize the total gain. To do so, we computed the probability of choosing the deck with the 

highest average of points obtained in the previous trials (overall performance) during the entire free-

choice task under all reward conditions in both High Load and Low Load conditions. A Wilcoxon Signed 

Rank Test on the average values of overall performance revealed a decrease in the High Load condition 

(M = 0.586, SD = 0.109) compared to the Low Load condition (M = 0.617, SD = 0.098), Z = 2.08 p = 

.036, r = .417, suggesting that loading cognitive control resources made it more difficult for participants 

to retrieve previously learned information and act strategically. However, in both conditions all 

participants scored above chance level set at 33%. A Wilcoxon Signed Rank Test on the average value of 

participants' overall performance revealed a significant difference between choosing the deck associated 

with the highest average points during the High Load condition and chance level, p < 10-7, and between 

choosing the deck associated with the highest averaged points during the Low Load condition and chance 

level, p < 10-7, indicating that participants played strategically during both load conditions. 

Cognitive control and decision strategies  

To investigate whether cognitive control plays a role in the resolution of the exploration-

exploitation dilemma, we first measured decision strategies when participants selected options unequally 

during the forced-choice task (unequal information condition) in both the High and the Low Load 

conditions (Figure 3a). We conducted the analysis on the first free-choice trial, being the only trial where 

a clear distinction between random and directed exploration can be obtained (Wilson et al., 2014). Trials 

were classified as “directed exploratory” when participants chose the option that had never been sampled 

during forced-choice trials, as “exploitative” when participants chose the experienced deck with the 
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highest average of points (regardless of the number of times that deck had been selected during the 

forced-choice task) and as “random exploratory” when the classification did not meet the previous 

criteria. The sum of the 3 strategies defined the total choice probability equal 1 (choice probability= 

probability to exploit + probability to random explore + probability to directed explore =1). We 

conducted a 2 (condition: High Load, Low Load) by 3 (strategies: exploitation, random exploration, 

directed exploration) non-parametric ANOVA. The test allows the use of two-way repeated measure 

ANOVA in a non-parametric setting using aligned rank transformation (e.g., ART package in R; Conover 

& Iman, 1981). Results showed an effect of strategy F(2,120) = 44.83, p < 10-15 , partial eta-squared = 

0.428, and a condition X strategy interaction F(2,120) = 5.87, p = .004, partial eta-squared = 0.089 (Figure 

3a). The effect of condition did not reach the significant threshold, p = .974. Post-hoc comparisons 

showed an increase in random exploration in the High load condition (M = 0.202, SD = 0.123) compared 

to the Low Load condition (M = 0.13, SD = 0.09), p = .006; a decrease in directed exploration in the High 

Load condition (M = 0.338 , SD = 0.177) compared to the Low Load condition (M = 0.473, SD = 0.198), 

p = .0012; and an increase in exploitation in the High Load condition (M = 0.459, SD = 0.149) compared 

to the Low Load condition (M = 0.397, SD = 0.151), p = .031.  

The above analysis appears to suggest that the effect of cognitive load manipulation affected 

directed and random exploration in an opposite fashion: directed exploration decreased, whereas random 

exploration increased under High Load compared to Low Load condition. However, in the unequal 

information condition, trials labelled as random exploration correspond to the deck of cards that is 

sampled either twice or 4 times during the forced-choice task. Therefore, in this condition trials labelled 

as random exploration might be confounded with information-based processing (i.e., when subjects select 

the option observed twice during the forced-choice task). In order to gain insight into this issue we 

conducted two additional analyses: 1) In the unequal information condition we repeated the above 2X3 

ANOVA, but only for trials where random exploratory trials where those associated with the deck of 

cards sampled 4 times during the forced-choice task; 2) we investigated participants’ behavior in the 

equal information condition where random exploration was not confounded with the number of 
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observations of each option (being the outcomes of the 3 options equally experienced; Wilson et al., 

2014). In the first analysis, we labelled trials as exploitative when the option was associated with highest 

reward and selected twice during the forced-choice task, random-exploratory when the option was 

associated with lowest reward and selected 4 times during the forced-choice task and directed exploratory 

as previously described. Next, we conducted a 2 (condition: High Load, Low Load) by 3 (strategies: 

exploitation(2seen), random exploration(4seeen), directed exploration) non-parametric ANOVA. Results 

showed an effect of strategy F(2,120) = 79.8, p < 10-15 , partial eta-squared = 0.57, and a condition X 

strategy interaction F(2,120) = 7.48, p < 10-3, partial eta-squared = 0.111, whereas the effect of condition 

was not significant , p = .137. Post-hoc comparison revealed an increase in random exploration in the 

High Load condition (M = 0.119, SD = 0.073) compared to Low Load (M = 0.08, SD = 0.053), p = .025, 

whereas exploitation did not differ. Results concerning directed exploration are already reported in the 

previous paragraph. In the second analysis, we investigated the effect of cognitive load manipulation on 

decision strategies when participants were forced to equally select options (equal information condition; 

Figure 3b). We classified choices as “exploitative” when participants chose the experienced deck with the 

highest average of points and “random explorative” otherwise. A 2 (condition: High-load, Low-load) by 2 

(strategy: exploitation, random exploration) non-parametric ANOVA on participants’ choices showed an 

effect of strategy F(1,45) = 64.06, p < 10 -10, partial eta-squared = 0.587, and a condition X strategy 

interaction F(1,45) = 5.9, p = .019, partial eta-squared = 0.116. Post-hoc comparisons revealed an increase 

in random exploration in the High Load condition (M = 0.366, SD = 0.155) compared to the Low Load 

condition (M = 0.273, SD = 0.129), p = .0009; and a decrease in exploitation in the High Load condition 

(M = 0.633, SD = 0.155) compared to the Low Load condition (M = 0.725, SD = 0.129), p = .001. Taken 

together, these analyses confirm that cognitive control manipulation affected the two exploratory 

strategies in a different fashion. 

 

--------------------- 
Insert Figure 3 

--------------------- 
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Subsequently, we investigated whether the above results could have been driven by an ineffective 

High Load manipulation in trials where participants incorrectly performed the working-memory task. To 

do so, we compared RTs from correct and incorrect memory trials during the High Load condition. If the 

behavioral pattern observed above was driven by an ineffective load manipulation during incorrect 

memory trials, participants should have shown differences in their RTs as a function of memory accuracy. 

We computed participants’ RTs during correct and incorrect memory trials and compared the average 

values. A Wilcoxon Signed Rank Test on choice RTs showed no differences between correct (M = 1023 

ms, SD = 562 ms) and incorrect memory trials (M = 993 ms, SD = 423 ms) in all free-choice trials, Z 

=0.04, p = .979, r =.008, and a marginal difference in the first free-choice trials (correct: M = 2036.8 ms, 

SD = 1831.6 ms; incorrect: M = 2116.3 ms, SD = 1425.2 ms), Z= -1.95, p = .051, r = -.39. However, this 

marginal difference was in the direction of higher RTs for incorrect trials as participants were taking more 

time to retrieve incorrectly memorized sequence. Overall, these results suggest that even if participants 

were not correctly performing the memory task, they were still in a “loaded state” during the High Load 

condition suggesting that the observed effects on the decision strategies were a direct consequence of 

lowering cognitive control resources. 

Randomness vs. information integration under cognitive load 

Our previous analysis showed that manipulating cognitive control resources affected how 

participants balanced the exploration-exploitation dilemma, exploring more randomly overall during high 

working memory load conditions. In this section, we asked whether this effect was due to an increase in 

the randomness in participants’ choices, or whether this effect was due to alterations in reward and 

information processing that subtend the resolution of the dilemma through directed exploration (Cogliati 

Dezza et al., 2017). To better investigate the mechanisms affected by the load manipulation, we fit the 

gkRL model to all participants’ first free choices during both the High and Low Load condition to obtain 

the estimates of the values of the following parameters: learning rate a , inverse of the temperature b, the 

non-linear parameter g and the information parameter w (Table 1). We then compared the estimated 
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parameters for the High Load condition with the parameters of the Low Load condition to investigate the 

effect of the cognitive control manipulation. As expected, because the learning processes during the 

forced-choice task were not affected, a Wilcoxon Signed Rank Test on the learning rate a showed no 

difference between the Low Load condition (M = 0.426, SD = 0.249) and the High Load condition (M = 

0.456, SD = 0.3), Z= - 0.4171, p = .691, r = - .083. Furthermore, a Wilcoxon Signed Rank Test on the 

inverse temperature parameter b showed no difference between the Low Load (M = 0.606, SD = 1.383) 

and the High Load condition (M = 0.865, SD = 1.8), Z = 0.094, p = .937, r = .019. Additionally, a 

Wilcoxon Signed Rank Test on the parameter g showed no difference between the Low Load condition 

(M = 1.66, SD = 3.44) and the High Load condition (M = 1.44, SD = 2.62), Z= -0.444, p = .672, r = - 

.089. On the contrary, the information parameter w showed a decrease in the High Load (M = - 2.81, SD 

= 51.76) compared to the Low Load condition (M = 4.82, SD = 9.89), Z= -2.058, p = .039, r = -.412, 

suggesting that the increase in random exploration was due to an inability to integrate the learned 

information into a choice value, rather than an increase in the randomness of participants’ choices or by 

alteration in how information is decay with time (Figure 4a).  

Furthermore, we fitted the model to all free-choice trials so as to have a more comprehensive 

view over the underlying process as well as to obtain a better estimate of the parameter values due to the 

higher number of data points (Table 2). As before, a Wilcoxon Signed Rank Test showed no difference 

between the Low Load and the High Load conditions, neither for the inverse temperature parameter b (M 

= 0.344, SD = 0.737; M = 0.424, SD = 0.81), Z = 0.202, p = .853, r = .04, nor for the g  parameter (M = 

2.247, SD = 3.201; M = 2.771, SD = 3.448), Z= -0.336, p = .751, r = -.067. Again, a Wilcoxon Signed 

Rank Test on the information parameter w did reveal a decrease in information integration from Low 

Load (M = 5.19, SD = 9) to High Load (M = -1.993, SD = 9.3), Z = -3.35, p = .0003, r = -.67. However, 

the same test applied to the learning rate a revealed a decrease in the speed of integration of new reward 

information from Low Load (M = 0.495, SD = 0.198) to High Load (M = 0.312, SD = 0.186), Z = 3.108, 

p = .001, r = -.621 (Figure 4b). The effect on learning rate in this analysis is explained by the fact that we 



	 19	

considered all free-choice trials during which participants were performing the memory task while 

repeatedly selecting options. As a consequence, the ability to integrate new reward information 

(expressed by the learning rate) was also affected.  

As an additional check, we fit the gkRL model exclusively on the free-choices trials where 

memory responses were correct in both Low and High Load conditions. Wilcoxon Signed Rank Tests 

confirmed our previous results: no differences in parameter b ,  Z = -0.525, p = .615, r = -.105, and 

parameter g between Low and High Load condition, Z = -1.0, p = .325, r = -.202, whereas a higher a was 

observed in the Low Load condition (M = 0.493, SD = 0.229) compared to the High Load condition (M = 

0.321, SD = 0.248), Z = 2.516, p = 0.001, r = .503. A higher information parameter w was also obtained 

in the Low Load condition (M = 6.02, SD = 8.9) compared to the High Load condition (M = -0.827, SD = 

7.63), Z = 3.4, p = .0002, r = .686 (Figure 4c). 

                                                                       --------------------- 

Insert Figure 4 
--------------------- 

Cognitive control and information integration 

Following the above results, cognitive load seems to affect participants’ ability to integrate 

learned information into choice values in order to solve exploration-exploitation problems. As a further 

investigation, we asked whether a standard reinforcement learning (sRL) model that learned reward 

values following equation (1) and entered directly in equation (4) without any integration of information, 

could better explain this ‘inability’ in integrating information during cognitive control manipulation. To 

do so, we compared fits of both the gkRL model and sRL model. During the fitting procedure, we 

computed negative-log likelihoods of both models and their model evidence (or the log model evidence - 

the probability of obtaining the observed data given a particular model). We adopted an approximation to 

the (log) model evidence, namely the Bayesian Information Criterion (BIC; (Schwarz, 1978)). We 

conducted a frequentist analysis with BIC values of the two models (fitted to the first free-choice trials) 

entered into a t test. Results showed that during the Low Load condition the gkRL model (BICgkRL = 184) 
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best represented participants’ data compared to sRL (BICsRL = 203), t(24)= -3.034, p = .005, d = 0.455, 

replicating our previous findings on reward and information integration during this new version of the 

bandit task (Cogliati Dezza et al., 2017). However, in the High Load condition neither the gkRL model 

(BICgkRL = 218) nor the sRL model (BICsRL = 214) better represented participants’ data, t(24)= 0.437, p = 

.666, d = -0.076. To better understand this point, we individually investigated the BIC values of each 

model (Figure 5). While in the Low Load condition the performance of the majority of participant was 

better explained by the gkRL model (Figure 5a), in the High Load condition approximately 60 % of 

participants were better represented by the sRL model (whereas the behavior of 20% were better 

explained by the gkRL model, and 20% were equally explained by both models, Figure 5b), confirming 

that during the High Load condition information processing was heavily compromised and that for the 

majority of subjects the computation of information was nullified. Furthermore, we extended the 

comparison of the two computational models to all free-choice trials to have an exhaustive understanding 

of the hidden processes. Contrary to our previous model comparison in the High Load condition, results 

showed that, when fit to all free-choice trials, the gkRL model (BICgkRL = 802) best represented 

participants’ data compared to sRL (BICsRL = 849), t(24)= -3.4, p = .002, d = 0.258 (we obtained the same 

result in the Low Load condition so the results are not reported here).  

A possible reason behind this apparently incoherent result could be related to the working 

memory process itself. The memory sequence was presented to participants at the beginning of the free-

choice task only: cognitive load may be reduced during later free-choice trials either as a consequence of 

inability to maintain the complete sequence over the course of the free-choice task (and thus freeing 

cognitive resources for making choices), or because cognitive demands related to maintaining the 

sequence are higher immediately following the presentation of the sequence. We therefore investigated 

participants’ behavior during all free-choice trials to better clarify this point. However, after the first free-

choice trial it is not possible to distinguish between random and directed exploration due to a confound 

between reward and information (Wilson et al., 2014). For this reason, in order to investigate participants’ 

behavior during the all free-choice trials, we focused on information-based processes only. To do so, we 
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computed the probability of selecting the least-seen deck (the option visited the least number of times in 

the previous trials), the most-seen deck (the option visited the most number of times in the previous trials) 

and the middle-seen deck (when previous criteria did not match) during both load conditions. When we 

investigated the behavior globally, the analysis gave similar results observed in the previous behavioral 

analysis (section Cognitive control and decision strategies), where the probability of selecting the least-

seen option was reduced during the High Load condition (M = 0.255,  SD = 0.099) compared to the Low 

Load condition (M = 0.304,  SD = 0.071, Z = -2.652, p = .006, r = -.53), whereas the most-seen showed 

the opposite pattern an increase in the High Load (M = 0.573,  SD = 0.121) compared to the Low Load 

condition (M = 0.531,  SD = 0.092), Z = 2.18, p = .028, r = .436 (the probability of choosing the middle 

seen option did not differ and so we will not consider this strategy any further- Figure 6a). However, 

investigating the trial-by-trial probability revealed a more exhaustive view. Indeed, the above result was 

true only for the first 3 free-choice trials (all p values < 10-2), whereas we did not observe differences in 

terms of the most-seen and least-seen options during the last 3 trials (all p > 0.05) (Figure 6b). These 

results suggest that the effect of cognitive load was greatest during the first free-choice trials and vanished 

during the last trials suggesting that the reason behind the better performance of gKRL compared to sRL 

in explaining all participants’ free choices was due to a decrease in cognitive load in the last trials of each 

game. Considering that the above analyses focused on information only, it is possible that additional 

factors may inform choice behavior in free choice trials. To examine this, we also computed switch/stay 

probabilities for free choice trials. Switch/stay behavior changed in the High Load (Mswitch = 0.416 SDswitch 

= 0.165; Mstay = 0.584 SDstay = 0.165) compared to Low Load Condition (Mswitch = 0.476 SDswitch = 0.118; 

Mstay = 0.533 SDstay = 0.118), both p = .042. However, differences in switch/stay behavior were most 

apparent on the first free-choice trial – subjects tended to switch choices, but did so more often in the low-

load condition (Figure 7). Results showed that in the last trials of each game stay (switch) probability did 

not change between High Load and Low Load condition (all p > 0.05) confirming that a decrease in 

cognitive load occurred in the last trials of each game. 

                                                                       --------------------- 
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Insert Figure 5 
--------------------- 

--------------------- 
Insert Figure 6 

--------------------- 

--------------------- 
Insert Figure 7 

--------------------- 

From the model to behavior 

The above results demonstrate that the gkRL model better accounts for our behavioral data 

relative to sRL. In order to demonstrate that the gkRL model parameters are behaviorally-relevant, we 

correlated the differences observed between the two load conditions in the information integration 

parameter w with the differences in exploitation in the unequal information condition. If the model 

captures behavioral dynamics, we should expect increased differences between the estimate of parameter 

w  in the two load conditions as well as increased differences in exploitation between the two load 

conditions. We observed a positive correlation between the difference in w and the difference in 

exploitation (Pearson correlation r(23)= .413, p = .039) suggesting that reduction of the integration of new 

information was associated with increased exploitative behaviors. Additionally, simulations of the model 

are also able to reproduce the condition-dependent behavioral results we observe in our data. We 

simulated the gkRL model 80 times under the two loading conditions. In the High Load condition 

w values were randomly drawn from a uniform distribution with mean -2, whereas for the Low Load 

condition the mean was set to 5. The other parameters did not change between the two conditions and 

their values were randomly chosen from a uniform distribution with mean set around the mean values 

observed in participants’ data. We then labeled model’s choices in the unequal information as directed 

exploratory, random exploratory and exploitative. We conducted a 2 (condition: High Load, Low Load) 

by 3 (strategies: exploitation, random exploration, directed exploration) non-parametric ANOVA. Results 

showed an effect of strategy F(2,395) = 223.04), p < 10-15 , partial eta-squared = 0.53, and a condition X 

strategy interaction F(2,395) = 240.52, p < 10-15, partial eta-squared = 0.549. The effect of condition did 
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not reach the significant threshold, p = .5. The results mimicked the same behavioral pattern observed in 

participants’ data (Figure 8a). Additionally, we computed random exploration and exploitation in the 

equal information condition. We conducted a 2 (condition: High Load, Low Load) by 2 (strategies: 

exploitation, random exploration) non-parametric ANOVA. Results showed an effect of strategy F(2,237) 

= 382.89, p < 10-15 , partial eta-squared = 0.617, however neither an effect of condition X strategy and an 

effect of condition was observed (all p > 0.05) (Figure 8b). The behavior of the model in the equal 

information condition, however, did not replicate the findings observed in participants’ data. We better 

discuss this result in the next section. 

--------------------- 
Insert Figure 8 

--------------------- 

 

Cognitive control and value degradation 

In order to understand the underlying mechanisms affected in the equal information condition that 

are not captured by the information integration account expressed by the gkRL model, we implemented a 

new version of the gkRL model- the value gamma knowledge RL (vgkRL). The rationale behind this 

additional model implementation is that cognitive load might have affected processes concerning both 

information integration (as captured by the gkRL model) as well as reward information. Indeed, the gkRL 

model was developed primarily in order to capture participants’ behavior in the unequal sampling 

scenario where differences in information are expected to have a large influence on exploration-

exploitation decisions (Cogliati Dezza et al., 2017). However, model simulations in the equal information 

condition appears to suggest that cognitive load may additionally degrade the integration of reward 

information into an overall choice value. In order to investigate this reward degradation account, the 

vgkRL adds an integration of reward values on top of the information integration expressed in gkRL. 

Equation (3) thus becomes: 

 

𝑉!,%(𝑐) = 	 (𝑄!"#,%(𝑐) ∗ 	𝜌) − (𝐼!,%(𝑐) ∗ 	𝜔) (5) 
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r indicates the degree by which reward values are integrated in choice values. We fitted vgkRL to 

participants’ data and simulated the model using the retrieved parameters. We then analyzed model 

behavior in both unequal and equal information condition. In the unequal condition, we conducted a 2 

(condition: High Load, Low Load) by 3 (strategies: exploitation, random exploration, directed 

exploration) non-parametric ANOVA. Results showed an effect of strategy F(2,110) = 21), p < 10-7 , 

partial eta-squared = 0.144, and a condition X strategy interaction F(2,110) = 4.79, p = .01, partial eta-

squared = 0.743 (Figure 9a). The effect of condition did not reach the significant threshold, p = .9. Post-

hoc comparisons revealed the same pattern observed in participants’ behavior where directed exploration 

decreases whereas random exploration increases in the High Load condition compared to the Low Load 

condition (all p < .05). On the contrary, exploitation did not differ between the two conditions (p > .05). 

Subsequently, we conducted a 2 (condition: High Load, Low Load) by 2 (strategies: exploitation, random 

exploration) non-parametric ANOVA in the equal information condition. Results showed an effect of 

strategy F(2,72) = 23.87), p < 10-5 , partial eta-squared = 0.249, and a condition X strategy interaction 

F(2,72) = 6.16, p = .015, partial eta-squared = 0.079 (Figure 9b). The effect of condition did not reach the 

significant threshold, p = .986. Post-hoc comparisons revealed the same pattern observed in participants’ 

behavior where exploitation decreases whereas random exploration increases in the High Load condition 

compared to the Low Load condition (all p < .05). These results seem to suggest that on the top of the 

information degradation process occurring in the unequal information condition, cognitive load also 

affected reward value degradation captured by the r parameter in vgkRL model. Therefore, cognitive load 

appears to specifically interferes with the ability to combine reward and information in order to inform 

choices. To better test this hypothesis, we compared the estimated parameters of the model between the 

two conditions. Unfortunately, the analysis did not reveal any differences in the estimated parameters 

between Low Load and High Load condition (all p > .05). The reason behind this counterintuitive result 

might be that when adding parameters to the model higher number of data points are necessary in order to 
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obtain a reliable estimate within the same statistical power. Thus, the fitting procedure was less powerful 

and less able to recover the accurate estimates. 

                                                                       --------------------- 

Insert Figure 9 
--------------------- 

 

Discussion 

The results of this study challenge a popular view concerning the cognitive mechanisms underlying 

the resolution of the exploration-exploitation dilemma. Specifically, following this perspective the dilemma 

is considered as a binary process and cognitive control as the main underlying mechanism which is 

required in order to override default exploitative strategies in favor of exploration of the surrounding 

environment (Daw et al., 2006; Cohen et al., 2007). Our results showed that indeed the need for cognitive 

control seems necessary when resolving the dilemma. However, increased cognitive load appears to affect 

only one aspect of exploration, namely directed exploration, and the effect of cognitive load on exploration 

seems to mostly be driven by information degradation. Additionally, our results unveiled a different facet 

of exploitative behaviors that moves away from the traditional view of exploitation as a ‘default strategy’. 

Together, these findings shed additional light on the mechanisms underlying adaptive control and behavior 

and suggest new approaches for interpreting the exploration-exploitation dilemma. In the following, we 

discuss the implications of our main results. 

In line with what could be expected due to dual-task interference (Herath, Klingberg, Young, 

Amunts, & Roland, 2001), participants’ choice RTs were affected by high cognitive load, suggesting that 

participants cognitive control resources were effectively reduced in this condition. Further analyses 

showed that high cognitive load affected participants’ performance on the gambling task in terms of 

choosing the option associated with highest reward (i.e., overall performance). Under both load 

conditions, overall performance was above chance-level. However, during the High Load condition 
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participants were slower in integrating new evidence, as shown by the decrease in the learning rate during 

the free-choice task, which, in turn, might explain the decrease in overall participants’ performance.  

One of the main results of this study concerns the antagonist effects of cognitive load on the two 

exploratory strategies. Specifically, increased cognitive load resulted in a decrease in directed exploration 

and in an increase in random exploration, suggesting that directed exploration depends on the availability 

of sufficient control resources, and that depletion of such resources promotes random exploration. This 

result presents a different picture concerning the involvement of cognitive control in the resolution of the 

exploration-exploitation dilemma compared to that suggested by the behavioral control hypothesis (Daw 

et al., 2006; Cohen et al., 2007). Resolving the dilemma through exploration seems not to be a unitary 

process that always requires cognitive resources to be mustered, independent of the type of exploratory 

strategies adopted. On the contrary, the resolution of the dilemma through exploration is a multi-faceted 

phenomenon (Wilson et al., 2014; Warren et al., 2017; Somerville et al., 2017; Zajkowski et al., 2017), 

and cognitive control seems to intervene only when exploring the environment in a directed, intentional 

manner. These results are in line with recent studies that suggest that random and directed exploration are 

distinct strategies, even if based on a common exploratory drive (Cogliati Dezza et al., 2017; Zajkowski 

et al., 2017). 

Furthermore, when interfering with the resolution of the dilemma, cognitive control cooperates 

with those aspects of exploration related with the integration of information into choice values. Under 

cognitive load participants were more prone to stay with the same option (as shown by effects of 

cognitive load in the switch/stay behavior) penalizing the search for new information. This result is in line 

with several studies on information-based processes concerning the exploration-exploitation dilemma that 

collectively highlight a tight association between information-based exploration (directed exploration) 

with pre-frontal areas involved in higher-level cognitive processes (Badre, Doll, Long, & Frank, 2012; 

Cavanagh, Figueroa, Cohen, & Frank, 2012) as well as the prefrontal dopamine network ( Frank, Doll, 

Oas-Terpstra, & Moreno, 2009; Kayser, Mitchell, Weinstein, & Frank, 2015). However, our results 

appear to contrast with a study by Daw and colleagues that suggested a crucial role for top-down control 
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processes in random exploration (Daw et al., 2006). In their study, activity in brain regions associated 

with higher-level cognitive functions (i.e. frontopolar cortex) was associated with the probability of 

randomly exploring options. Frontopolar cortex was subsequently associated with switching between 

strategies instead of targeting exploratory strategy itself (Boorman, Behrens, Woolrich, & Rushworth, 

2009) and TMS studies of this region affected only directed exploration (Zajkowski et al., 2017). Clearly, 

more research is needed to understand the neuronal and neurochemical mechanisms underlying 

exploration in light of the new and recent evidence on directed and random exploration. 

Our results are in line with a recent finding that showed higher cognitive costs associated with 

those processes involved in reflexive exploration (Otto et al., 2014). Specifically, cognitive load seems to 

affect participants’ ability to use a model of the environment where environmental statistics (i.e., state 

transition probabilities) and reward structure are integrated into choice values in order to guide 

exploratory behaviors. However, our results suggest a more nuanced view concerning this phenomenon: 

the results of our model fits suggested that reducing cognitive resources specifically affected those 

processes involved in information-integration, while processes involved in transforming probability 

distributions into action selection (decreasing or increasing the level of noise in the system through a 

softmax function) were unaffected. Moreover, the effect of cognitive load on information is restricted to 

integration and not to other aspects of the information processing, such as information decay (which 

might be captured by differences in the gamma parameter). In our study, however, we approached the 

computational problem using a model-free strategy where choices are only driven by past experience 

(information and reward history) without a representational characterization of the environment (contrary 

to a model-based strategy where choices are driven by the model of the world; Daw, Niv, & Dayan, 

2005). It might be possible that in real life scenarios humans adopt model-based approaches when facing 

exploration and exploitation problems, requiring more complex, and resource-intensive computations that 

are only approximated by the manner in which information is integrated in the gkRL model. The relation 

between model-based strategy and information integration should be addressed by future research. 
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Our results further question the interpretation of exploitation as a default strategy that requires 

cognitive control to be inhibited (Daw et al., 2006; Cohen et al., 2007). Contrary to what might have been 

expected by the behavioral control hypothesis (Cohen et al., 2007), exploitation was affected by the 

cognitive control manipulation in such a way that when participants visited the options the same number of 

times (i.e., equal information condition), they decreased exploitative choices during the High Load 

condition. This finding seems to suggest that, under certain scenarios, cognitive control is necessary to 

achieve exploitation, as in the other goal-directed behaviors. That is, choosing to exploit requires cognitive 

resources in a fashion similar to choosing to explore. Our results are in line with recent findings on 

cognitive foraging, where exploring other patches or exploiting familiar patches involved similar cognitive 

mechanisms (Hills, 2010). Our results also provide support for the view that considers exploitation not only 

as the strategy that selects best rewarded actions, but also as a strategy that relies on cognitive control 

resources to maintain task demands (Hills, Todd, & Goldstone, 2010). Sticking with the same option can be 

considered as a sub-goal of the higher goal of maximizing reward in the long run, and maintaining attention 

between competing task demands required higher cognitive control functions (e.g., the cocktail party 

phenomenon; Conway, Cowan, & Bunting, 2001; Hills et al., 2010). A drawback, however, is that our 

model was unable to capture this phenomenon (Figure 8b). Indeed, gkRL was developed in order to capture 

human behavior in unequal sampling scenarios (Cogliati Dezza et al., 2017). In order to understand the 

underlying mechanisms of the effect of cognitive load on the exploitation, we presented an implementation 

of the gkRL model where the integration of reward into choice value was also modulated. Simulations of 

this model showed that the reward value degradation might be the underlying mechanism behind the 

decrease in exploitation in the equal information condition. However, the limited number of trials available 

in our paradigm precluded a definitive answer to this question. Further work is needed in order to 

understand how cognitive control might influence choice value computation. 

Taken together, our results suggest a new perspective on the exploration-exploitation dilemma as 

the product of multiple competing control modes that jointly promote adaptive behavior through 

increased emphasis on stability or flexibility. Similar to cognitive search modes (Hommel, 2012), the 
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differences between these control modes might be in the control-style they call for: a divergent decision-

making style- one goal representation that diverges to different action selections (or perceptual 

representations in the case of cognitive search )- and a convergent style where a potential number of 

possible actions (or a number of representations) converges toward an optimal solution (Hommel, 2012). 

At the neural level, these different modes may be represented by tonic and phasic activity in the Locus 

Coeruleus expressed by the release of norepinephrine (NE) (Aston-Jones & Cohen, 2005). LC-NE is the 

target of projections from cortical regions implicated in cognitive control and adaptive behavior, 

including regions involved in processing information regarding behaviorally salient changes in the 

environment (e.g., Anterior Cingulate Cortex. Anterior Insula, and Orbitofrontal Cortex). Following 

unexpected changes in the environment, tonic LC-NE activity may favor adaptive exploration by allowing 

disengagement from current task demands (Yu & Dayan, 2005). On the other hand, in stable 

environments, phasic LC-NE activity may promote exploitative behavior by increasing attention toward 

task-relevant stimuli and maintenance of the current goal (Aston-Jones & Cohen, 2005; Jepma & 

Nieuwenhuis, 2011). This perspective, however leaves many questions unanswered. For example, the 

interaction between these control modes and the regions previously associated with exploration (i.e., 

frontopolar cotex) is still unknown and needs to be addressed by future research. Moreover, random 

exploration, but not directed exploration, was affected by pharmacological manipulation of baseline NE 

levels (Warren et al., 2017) questioning how the LC-NE system may control the two exploratory 

strategies and which is the role of random exploration in this mode-based trade-off. So far, random 

exploration seems to be a low-level (Warren et al., 2017) or automatic action control process (Humphries 

et al., 2012) that might be necessary when a less engaging or faster behavioral adaption is required. 

However, the exact manner in which low-level control interacts with higher cognitive control remains an 

open question and should be the subject of future research.  

Although our study adds additional perspective on the cognitive mechanisms underlying the 

resolution of the exploration-exploitation dilemma by humans, there are nonetheless limitations that may 

influence the scope of our results. Besides the limitation of the computational model discussed above, the 
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absence of horizon manipulation in our paradigm makes impossible to distinguish whether the increase in 

random exploration in the High Load condition was due to random exploration itself (changes in 

randomness in long horizon) or by overall increase in randomness (Krueger, 2017). On the same line, the 

information integration parameter was not horizon-dependent. Thus, we cannot explain the effect of 

cognitive load on the information integration on a trial-basis. Additionally, although ambiguity appears to 

modulate the tension between exploration and exploitation (Wilson et al., 2014; Krueger, 2017), we did not 

specifically investigate this aspect in this study. Lastly, we did not compute participants’ memory span, 

preventing us from delineating individual profiles concerning the efficacy of our experimental 

manipulation.  

Regardless of these limitations, using a recently developed behavioral paradigm (Wilson et al., 

2014), we disentangle the role of cognitive control in the resolution of the exploration-exploitation 

dilemma. Our results emphasized the multifaceted nature of the resolution of the dilemma and suggest 

that multiple-cognitive control modes are the underlying cognitive mechanisms. This study is in line with 

a new perspective on how to look at the exploration-exploitation dilemma, and provides a formal 

foundation within which to explore pathologies of goal-directed behavior such as manifest in addiction, 

obsessive-compulsive disorders and attentional deficits.  

 

Data availability  

Data will be provided on Open Science Framework after publication of the manuscript. The DOI 

will be provided in this manuscript after the email of acceptance. 

 

Context of the Research  

This study is part on a broader research project that aims to investigate the neurobehavioral and 

neurocognitive mechanisms underlying the resolution of the exploration-exploitation dilemma in humans 

in order to develop a solid framework within which to explore decision-making alterations in psychiatry 
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disorders. The exploration-exploitation dilemma provides, indeed, a powerful tool to investigate 

motivation, outcome evaluation, effort as well as risk-taking and impulsivity which are the main decision-

making components disrupted in psychiatry disorders (Addicott, Pearson, Sweitzer, Barack, & Platt, 

2017). 
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Figure Captions 

Figure 1 Behavioral paradigm. a) Organization of games and trials. On each game, participants faced 6 

consecutive trials of the forced-choice task and between 1 and 6 trials of the free-choice task. In the first 

free-choice trial (in yellow), reward and information are orthogonalized enabling the distinction between 

random and directed exploration. The number of free-choice trials was exponentially distributed such that a 

higher proportion of games allowed subjects to make 6 free choices. b) Choices. Participants indicated their 

choices using the forefinger, middle finger and ring finger and pressing the keyboard keys ‘c’, ‘v’ and ‘b’, 

respectively. c) Forced-choice task. Three decks of cards were displayed on the screen (a blue, a red and 

green deck) and participants were forced to choose a preselected deck (outlined in blue in the figure). After 

selecting the deck, the card turned and revealed the points associated with the selected option, between 1 

and 100 points. At this stage, the points displayed to participants were not added to their total score. d) 

Free-choice task. Participants made their own decisions among the same three decks of cards displayed 

during the forced-choice task. After each trial, the points displayed on the screen were added to the 

participants’ total score and participants were instructed to attempt to maximize the total points earned at 

the end of the experiment. e) Cognitive load manipulation. Before the 1st trial of the free-choice task, a 

sequence of 9-digits was displayed on the screen. During the Low Load condition, the digits were presented 

in fixed numerical order (i.e., ‘123456789’) for 500 ms. On the contrary, during the High Load condition 

the digits were presented in random order (i.e., ‘371586249’), for 2000 ms, and a new sequence was 

generated on each game. After each free-choice trial a digit (randomly selected from the 9-digit sequence) 

was displayed to participants who needed to report (‘Rm’- memory response) the number that followed the 

presented number in the previous 9-digit sequence presented before the 1st free choice trial. 

 

Figure 2 Memory performance and Cognitive load manipulation. a) Memory accuracy measured by 

averaging trial-by-trial correct memory responses obtained by participants during both High and Low 

Load condition. Error bars are also represented as the standard error from the mean (s.e.m). b) Cognitive 
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load manipulation increased participants’ choice reaction time (RT in ms) during the High Load 

compared to the Low Load condition. Error bars are also represented as s.e.m. 

 

Figure 3 Cognitive load and decision strategies. a) In the unequal information condition, directed 

exploration decreased in the High Load condition compared to the Low Load condition, whereas random 

exploration and exploitation showed the opposite trend. Error bars are also represented as s.e.m. b) In the 

equal information condition, random exploration increased under High Load condition whereas 

exploitation decreased. Error bars are also represented as s.e.m. 

 

Figure 4 Information integration. a) First-free trials. Model fit on the first free-choice only revealed a 

decrease in the information weigh parameter w (that modulates to integration of information into choice 

values) during High Load condition compared to Low Load condition, whereas the inverse of temperature 

b, the learning rate a and the g parameter were not affected by the cognitive load. Error bars are also 

represented as s.e.m. b) All-free trials. Model fit on all free-choices showed a decrease in information 

parameter w and the learning rate a in the High Load condition, whereas both b and g were not affected 

by the cognitive manipulation. Error bars are also represented as s.e.m. c) Correct memory choices. 

Model fit on the trials where participants correctly performed the memory task. Error bars are also 

represented as s.e.m. The results showed the same pattern observed when fitting all free-choices. 

 

Figure 5 Comparative fit of the gkRL and sRL. The comparison of the fit is based on the BIC values of 

both models during the Low Load (a) and High Load condition (b). Each point is one participant. The 

sRL fit better when the point is below the identity line. When a point lays on the identity line the models 

equally explain participants’ behavior.  
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Figure 6 Seen analysis. a) Probability to choose the option seen least, middle and most of the time during 

the free-choice task. Choices towards the least seen option decreased during the High Load condition 

compared to the Low Load condition, whereas choices toward most seen options showed the opposite 

pattern. Error bars are also represented as s.e.m. b) Probability to choose the option seen most (Most-Seen 

options), least (Least-Seen options) and middle (Middle-Seen options) of the time during the free-choice 

task split by trial. During the first three free-trials, the probability to choose the least seen option (and 

most seen option) differs significantly, whereas in the last free-choice trials no difference was observed. 

To avoid overloading the visualization, we reported only when the comparisons did not reach significance 

threshold.  

 

Figure 7 Switch/Stay strategy. a) Probability to stay with the same option chosen at trial t-1 during the 

free-choice task. During last free-choice trials, the probability to stay with the same option did not differ 

between the two loading conditions. Error bars are also represented as s.e.m. b) Probability to switch form 

the option chosen at trial t-1 during the free-choice task. During last free-choice trials, the probability to 

switch did not differ between the two loading conditions. Error bars are also represented as s.e.m. 

 

Figure 8 gkRL Simulation. a) In the unequal information condition, the model simulated under the two 

loading conditions reproduced the same behavioral pattern observed in participants: directed exploration 

decreased in the High Load condition, whereas random exploration and exploitation increased in Low 

Load condition. b) In the equal information condition, no behavioral differences in exploitation and 

random exploration were observed between the two loading conditions. Only the comparisons that did not 

reach significance threshold are reported.  

 
Figure 9 vgkRL Simulation. Model simulation reproduced a similar patter observed in participants’ data 

in both unequal (a) and equal (b) information condition.  
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 

 

  



	 44	

Figure 7 
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Figure 8 
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Figure 9 
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Table Captions 

Table 1 Model fit results: 1st free trials. Estimated parameters for each subject using gkRL model during 

High Load and Low Load condition. Group average of the estimated parameters are also reported. Group 

standard deviation are reported within parenthesis. 

Table 2 Model fit results: all free trials. Estimated parameters for each subject using gkRL model during 

High Load and Low Load condition. Group average of the estimated parameters are also reported. Group 

standard deviation are reported within parenthesis. 
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