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Abstract 
Here, I explore the idea that consciousness is something that the brain learns to do 
rather than an intrinsic property of certain neural states and not others. Starting from the 
idea that neural activity is inherently unconscious, the question thus becomes: How does 
the brain learn to be conscious? I suggest that consciousness arises as a result of the 
brain's continuous attempts at predicting not only the consequences of its actions on the 
world and on other agents, but also the consequences of activity in one cerebral region 
on activity in other regions. By this account, the brain continuously and unconsciously 
learns to redescribe its own activity to itself, so developing systems of meta-
representations that characterise and qualify the target first-order representations. Such 
learned redescriptions, enriched by the emotional value associated with them, form the 
basis of conscious experience. Learning and plasticity are thus central to consciousness, 
to the extent that experiences only occur in experiencers that have learned to know they 
possess certain first-order states and that have learned to care more about certain states 
than about others. This is what I call the “Radical Plasticity Thesis”. In a sense thus, this 
is the enactive perspective, but turned both inwards and (further) outwards. 
Consciousness involves “signal detection on the mind”; the conscious mind is the 
brain's (non-conceptual, implicit) theory about itself. I illustrate these ideas through 
neural network models that simulate the relationships between performance and 
awareness in different tasks.  
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1 Introduction 

Prediction is a ubiquitous computational principle in the brain (Bar, 2009; Clark, 
2013). As Clark puts it: “Brains, it has recently been argued, are essentially prediction 
machines”. Clark fleshes out this claim by highlighting the lineage between the early 
ideas of Helmoltz (1860/1962) and the much more recent ideas associated with 
contemporary connectionist models (McClelland & Rumelhart, 1986; Rumelhart, 
Hinton, & Williams, 1986), in particular the so-called generative models described by 
Hinton (Dayan, Hinton, & Neal, 1995; Hinton, 2007) and by Friston and colleagues 
(Friston, 2006, 2010). There is considerable evidence for predictive mechanisms in the 
human brain (Bar, 2009). This idea, in fact, forms the core of the Bayesian perspective 
on information processing and is at the heart of Friston’s free energy principle (Friston, 



2006), according to which the brain continuously attempts to minimize “surprise” or 
conflict by anticipating its own future activity based on learned priors. 

 
Helmholz first proposed the idea that perception involves a form of prediction-driven 

inference through which the mind attempts to reconstruct the sensory causes of bodily 
effects. Perception, in this view, is thus an active process of elaborating the best 
possible representations of the input based on both the sensory evidence and relevant 
prior knowledge (the “priors”) rather than a mere bottom-up process. The work of 
Hinton, Friston and colleagues elaborated on this view by showing how it is possible to 
conceive learning rules able to shape top-down connection weights to as to minimize 
“prediction error”, that is, the difference between expected and observed inputs. In such 
models, the top-down flow of information thus attempts to “explain the sensory input 
away”, leaving only information about the residual errors (the “prediction error”) to 
flow upwards in a hierarchy of interconnected layers. This is the core principle of 
“predictive coding” (Rao & Ballard, 1999), through which hierarchical systems can 
simultaneously learn about their inputs and about the best internal models of these same 
inputs. As Clark (2013) puts it, this dampens the distinction between perception and 
belief to the point that they appear almost identical to each other : “To perceive the 
world just is to use what you know to explain away the sensory signal across multiple 
spatial and temporal scales. The process of perception is thus inseparable from rational 
(broadly Bayesian) processes of belief fixation, and context (top down) effects are felt 
at every intermediate level of processing. As thought, sensing, and movement here 
unfold, we discover no stable or well-specified interface or interfaces between cognition 
and perception. Believing and perceiving, although conceptually distinct, emerge as 
deeply mechanically intertwined.” (p. 29). Here, I will attempt to delineate the deep 
connections between these ideas and a novel theory of consciousness in which 
prediction-driven learning and plasticity mechanisms play a central role.  

2 Consciousness as a prediction-driven redescription process 

A central aspect of the entire hierarchical predictive coding approach is the emphasis it 
puts on learning mechanisms. In other works (Cleeremans, 2008, 2011), I have 
defended the idea that consciousness is itself the result of learning. From this 
perspective, agents become conscious in virtue of redescribing their own activity to 
themselves. In this respect, it is important to note that learning can create as well as 
eliminate contents from phenomenal experience. Thus, tasting wine for the first time is 
a wholly different experience than that of an oenologist (Smith, 2006), whose 
phenomenology has been enriched through expertise. But expertise can also eliminate 
phenomenal contents from awareness, as in the ‘find the F’s” illusion, whereby 
observers are asked to count the number of instances of the letter “F” in a display. 
Observers often fail to reach the correct answer because reading expertise has 
eliminated function words from awareness. There are many other examples of such 
“predictive attenuation” mechanisms: Tickling one’s self is far less effective than being 
tickled (Blakemore, Frith, & Wolpert, 1999), for when we tickle ourselves (but not 



when we are tickled) our brain can predict the consequences of our actions. Cognitive 
development also highlights how some changes go unheeded (i.e., the fact that our 
action and perceptual systems remain adapted despite our limbs growing spectacularly 
during the first few years) whereas other changes have profound phenomenal 
consequences (i.e., learning to read). Thus, learning shapes conscious experience and 
how conscious experiences shapes learning. Consciousness, in this light, is a profoundly 
dynamical process through which our experience of the world is constantly shaped both 
by incoming sensory inputs and by our learned expectations about what is coming next. 
 

Taking the proposal that consciousness is inherently dynamical seriously has 
numerous theoretical and methodological consequences. But it also opens up the 
mesmerizing possibility that conscious awareness is itself a product of plasticity-driven 
dynamics. In other words, from this perspective, we learn to be conscious. To dispel 
possible misunderstandings of this proposal right away, I am not suggesting that 
consciousness is something that one learns like one would learn about the Hundred 
Years War, that is, as an academic endeavour, but rather that consciousness is the result 
(vs. the starting point) of continuous and extended interaction with the world, with 
ourselves, and with others. The brain, from this perspective, continuously (and 
unconsciously) learns to anticipate the consequences of its own activity on itself, on the 
environment, and on other brains, and it is from the practical knowledge that accrues in 
such interactions that conscious experience is rooted. This perspective, in short, 
endorses the enactive approach introduced by O’Regan and Noë (O'Regan & Noë, 
2001), but extends it both inwards (the brain learning about itself) and further outwards 
(the brain learning about other brains), so connecting with the central ideas put forward 
by the predictive coding approach to cognition. In this light, the conscious mind is the 
brain’s (implicit, enacted) theory about itself, expressed in a language that other minds 
can understand. 

 
The theory rests on several assumptions and is articulated over three core ideas. A 

first assumption is that information processing as carried out by neurons is intrinsically 
unconscious. There is nothing in the activity of individual neurons that make it so that 
their activity should produce conscious experience. Important consequences of this 

Figure 1: The “QoR” Framework 
 



assumption are (1) that conscious and unconscious processing must be rooted in the 
same set of representational systems and neural processes, and (2) that tasks in general 
will always involve both conscious and unconscious influences, for awareness cannot 
be “turned off” in normal participants. A second assumption is that information 
processing as carried out by the brain is graded and cascades (McClelland, 1979) in a 
continuous flow (Eriksen & Schultz, 1979) over the multiple levels of a heterarchy 
(Fuster, 2008) extending from posterior to anterior cortex as evidence accumulates 
during an information processing episode. An implication of this assumption is that 
consciousness takes time. The third assumption is that plasticity is mandatory: The brain 
learns all the time, whether we intend to or not. Each experience leaves a trace in the 
brain (Kreiman, Fried, & Koch, 2002). With these assumptions in place, the theory is 
articulated around three core ideas. 

 
The first is that consciousness depends on quality of representation (see Figure 1). 

“Quality of representation” (QoR), here, designates graded properties of neural 
representations, specifically their Strength, their Stability in time, and their 
Distinctiveness. QoR depends both on bottom-up factors such as stimulus properties 
and on top-down factors such as attention. QoR determines the extent to which a 
representation is available to (1) influence behaviour, (2) form the contents of 
awareness, (3) be the object of cognitive control and other high-level processes. 
Crucially, QoR changes as a function of learning and plasticity over different time 
scales (processing within a single trial, learning, and development), as depicted in 
Figure 1. The first region of the figure, labeled “Implicit Cognition”, corresponds to the 
point at which processing starts in the context of a single trial, or to some early stage of 
development or skill acquisition. This stage is characterized by weak, poor-quality 
representations. Implicit representations are capable of influencing behaviour, but only 
weakly so (e.g., through priming). The second region corresponds to the emergence of 
higher-quality explicit representations, here defined as representations over which one 
can exert control. Such representations are good candidates for redescription and can 
thus be recoded in different ways, e.g., as linguistic propositions (supporting verbal 
report). The third region involves what I call automatic representations, that is, 
representations that have become so strong that their influence on behavior can no 
longer be inhibited (e.g., as in the Stroop situation). Such representations exert a 
mandatory influence on processing. Importantly, however, and unlike the weak 
representations characteristic of implicit cognition, one is (at least potentially) aware of 
possessing such strong representations and of their influence on processing. Thus, both 
the weak representations characteristic of implicit cognition and the very strong 
representations characteristic of automaticity cannot be controlled, but for very different 
reasons. This leaves intermediate-quality (explicit) representations, that is, 
representations that are strong enough that their influence on behaviour needs to be 
monitored yet not sufficiently adapted that they can be “trusted”, as those 
representations that require the most cognitive control. Crucially, this also predicts that 
intermediate-quality representations are the most susceptible to be influenced by other 
sources of knowledge, as they are the most flexible. One would thus expect non-



monotic effects as expertise develops, in different paradigms ranging from perception to 
motor skill learning.  

 
The second core idea is that consciousness depends on metarepresentations. Even 

strong stimuli can fail to enter conscious awareness — this is what happens in change 
blindness (Simons & Levin, 1997), in the attentional blink (Shapiro, Arnell, & 
Raymond, 1997) or in inattentional blindness (Mack & Rock, 1998). States of altered 
consciousness like hypnosis, and pathological states such as blindsight (Weiskrantz, 
1986) or hemineglect likewise suggest that high-quality percepts can fail to be 
represented in awareness while remaining causally efficacious. This suggests that 
quality of representation, while necessary for conscious awareness, is not sufficient.  

 
One way of understanding what is missing is to appeal to the central hypothesis of 

the Higher-Order Thought (HOT) Theory of consciousness (Rosenthal, 1997), namely 
that a representation is a conscious representation when one knows that one is conscious 
of the representation. This roots conscious awareness in a system’s capacity to 
redescribe its own states to itself, a process (“representational redescription”) also 
viewed as central during cognitive development (Karmiloff-Smith, 1992) and 
metacognition in general (Nelson & Narens, 1990). A system’s ability to redescribe its 
own knowledge to itself depends (1) on the existence of recurrent structures that enable 
the system to access its own states, and on (2) the existence of predictive models 
(metarepresentations) that make it possible for the system to characterize and anticipate 
the occurrence of first-order states (Bar, 2009; Friston, 2006; Wolpert, Doya, & 

Figure 2: Implicit, explicit & automatic processing 



Kawato, 2004). Such redescription is also uniquely facilitated, in humans, by language, 
viewed here as the metarepresentational tool per excellence. A natural spot for such 
metarepresentations to play their functions is the prefrontal cortex (i.e., Crick & Koch’s 
“the front is looking at the back” principle (Crick & Koch, 2003)). Importantly 
however, here, such metarepresentational models (1) may be local and hence occur 
anywhere in the brain, (2) can be subpersonal, are (3) are subject, just like first-order 
representations, to plasticity and hence can themselves become automatic. 
Metacognition, just like cognition, can thus involve implicit, explicit, or automatic 
metarepresentations. 

 
The theory thus proposes a novel conception of skill acquisition that links 

automaticity with the observation that conscious awareness seems to proceed from the 
top down (i.e., Crick & Koch’s “the high levels first” principle (Crick & Koch, 2003)): 
We become aware of the higher-level aspects (the gist) of a scene before becoming 
aware of its lower-level features. I suggest that this stems from the fact that, from a 
computational point of view, metarepresentations implement what one could call 
cortical reflexes or shortcuts: A system that has learned to redescribe the activity of an 
entire feedforward pathway can now also anticipate the consequences of early activity 
in such a chain on its output faster than the pathway itself can compute the output. As a 
result, adapted metarepresentations (and only adapted metarepresentations) make it 
possible to bypass the first-order pathway altogether. I surmise that this accounts not 
only for the fact that the time course of (expert) perception seems to follow a reverse 
hierarchy (Ahissar & Hochstein, 2004), but also for the fact that automaticity entails 
loss of access to the contents computed along the first-order pathway. By the same 
token, this also opens up the possibility for postdictive effects in conscious experience, 
as metarepresentations are shaped by first-order processing. This top-down view of 
automaticity contrasts with extant theories (Chein & Schneider, 2012).  

 
The theory distinguishes four reasons why knowledge may remain unconscious. First 

(Figure 2a), knowledge embedded in synapses is assumed not be accessible at all, for 
such knowledge fails to be instantiated in the form of active patterns of neural activity 
(Koch, 2004), a necessary condition for their contents to be available to awareness. The 
provocative idea here is that the brain does not know, e.g., that SMA activity 
consistently precedes M1 activity. To represent this causal link to itself, it therefore has 
to learn to redescribe its own activity so that the causal link is now represented 
explicitly as a metarepresentation. Second, weak representations (Figure 2b), while they 
can influence behaviour, remain unconscious for they fail to be sufficiently strong to be 
the target of metarepresentations. Third, when sufficiently strong, first-order 
representations can begin to be redescribed into metarepresentations (Figure 2c), yet, 
other conditions (e.g., lack of attention induced by distraction, failure to properly 
redescribe first-order contents) may make such redescription impossible or difficult. 
Fourth, the very strong representations characteristic of automaticity (Figure 2d) are not 
necessary anymore to drive behaviour since the learned metarepresentations now 
implement a faster “shortcut” pathway from input to output. This also accounts for the 



fact that metacognitive accuracy often lags first-order performance initially, but 
precedes first-order performance with expertise (i.e., I know that I know the answer to a 
query before I can actually answer the query). 

 
The distinctions introduced here overlap partially with the distinctions introduced by 

existing theories of consciousness: Dehaene’s conscious - preconscious - unconscious 
taxonomy (Dehaene, Changeux, Naccache, Sackur, & Sergent, 2006), Lamme’s Stages 
1/2/3/4 framework (Lamme, 2006), and Kouider’s partial awareness hypothesis 
(Kouider, de Gardelle, Sackur, & Dupoux, 2010), but uniquely frames the transitions 
dynamically as resulting from leaning.  

 
The third core idea is that consciousness depends on theory of mind (Timmermans, 

Schilbach, Pasquali, & Cleeremans, 2012) The emergence of an agent’s ability to 
redescribe its own representations to itself in the way sketched above, I argue, critically 
depends on the agent being embedded in interaction with other agents. From this 
perspective, as Frege pointed out, conscious experience cannot be understood 

independently from the agent who experiences these experiences. Yet, as obvious as this 
may seem, neuroscientists have approached the question as though the differences 
between conscious and unconscious representations could be understood independently 
of the subject, from a purely “objective”, third-person point of view. The entire “search 
for the Neural Correlates of Consciousness” is, in this sense at least, misguided. As 
Donald (2001) put it, “the human mind is unlike any other on this planet, not because of 
its biology, which is not qualitatively unique, but because of its ability to generate and 
assimilate culture” (p. xiii). Thus, I build a model of myself not only by developing a 

 
Figure 3: Tangled Loops 

  



non-conceptual understanding of how my goals are eventually expressed in action, but 
also by understanding how agents similar to me react to actions directed towards them. 
It is thus essential that we strive to understand how interactions with other agents shape 
our own conscious experiences. 

 
Putting the three core ideas together, we end up with the radical plasticity thesis 

(Cleeremans, 2008, 2011), that is, with the idea that consciousness emerges in cognitive 
systems that are capable of learning to redescribe their own activity to themselves. In 
other words, one “learns to be conscious”. From this perspective, the brain is 
continuously and unconsciously learning to anticipate the consequences of action or 
activity on itself, on the world, and on other people.  

3 Conclusion 

Thus, we have three closely interwoven loops (Figure 3) all driven by the very same 
prediction-based mechanisms. A first, internal or “inner loop”, involves the brain 
redescribing its own representations to itself as a result of its continuous unconscious 
attempts at predicting how activity in one region influences activity in other regions. In 
this light, consciousness amounts to the brain’s performing signal detection on its own 
representations (Lau, 2008), so continuously striving to achieve a coherent (prediction-
based) understanding of itself. It is important to keep in mind that this inner loop in fact 
involves multiple layers of recurrent connectivity, at different scales throughout the 
brain. A second “perception-action loop”, results from the agent as a whole predicting 
the consequences of its actions on the world. The third loop is the “self-other loop”, and 
links the agent with other agents, again using the exact same set of mechanisms as 
involved in the other two loops. The existence of this third loop is constitutive of 
conscious experience, I argue, for it is in virtue of the fact that as an agent I am 
constantly attempting to model other minds that I am able to develop an understanding 
of myself. In the absence of such a “mind loop”, the system can never bootstrap itself 
into developing the implicit, embodied, transparent (Metzinger, 2003) model of itself 
that forms the basis, through Higher-Order Thought Theory, of conscious experience. 
The processing carried out by the inner loop is thus causally dependent on the existence 
of both the perception-action loop and the self-other loop, with the entire system thus 
forming a “tangled hierarchy” (e.g., Hofstadter’s concept of “a strange loop” 
(Hofstadter, 2007)) of predictive internal models (Pacherie, 2008; Wolpert et al., 2004). 
Consciousness, in this light, is thus the brain’s implicit, embodied theory about itself, 
achieved through continuously operating prediction-driven learning mechanisms. 
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