AUTHORS:

TITLE: Reprogramming of energetic metabolism: increased expression and roles of pyruvate

- carboxylase in papillary thyroid cancer
- 6 Dr. Corbet Cyril ² <u>cyril.corbet@uclouvain.be</u> , +3227645248
 - 7 Mr. Spinette Selim-Alex ³ <u>selim-alex.spinette@bordet.be</u>
 - 8 Dr. Craciun Ligia ³ <u>ligia.craciun@bordet.be</u>,
 - 9 Dr. Dom Geneviève ¹ genevieve.dom@ulb.ac.be, +3225554140

Dr. Strickaert Aurélie ¹ astricka@ulb.ac.be, +3225554160

- 10 Pr. Andry Guy ⁴ guy.andry@bordet.be,
- 11 Pr. Larsimont Denis ³ <u>denis.larsimont@bordet.be</u>,
- 12 Pr. Wattiez Ruddy ⁵ <u>ruddy.wattiez@umons.ac.be</u>,
- 13 Pr. Dumont Jacques E. ¹ jedumont@ulb.ac.be, +3225554134
- 14 Pr. Feron Olivier ² <u>olivier.feron@uclouvain.be</u>, +3227645264
- 15 Pr. Maenhaut Carine ¹ <u>cmaenhau@ulb.ac.be</u>, +3225554137

17 AFFILIATIONS :

¹ Institute of Interdisciplinary Research (IRIBHM), Université libre de Bruxelles (ULB), 808

- 19 route de Lennik 1070 Brussels, Belgium.
- ² Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique
- 21 (IREC), Université catholique de Louvain (UCL), Avenue Hippocrate 55, boîte B1.55.02,
- 22 1200 Brussels, Belgium.
 - ³ Department of Pathology, Jules Bordet Institute, Université libre de Bruxelles, 121-125,
 - boulevard de Waterloo 1000 Brussels, Belgium.

Thyroid

⁴ Thoracic Surgery, Jules Bordet Institute, Université libre de Bruxelles (ULB), Boulevard de
 Waterloo, 125-1000 Brussels, Belgium

⁵ Proteomics and Microbiology Laboratory, Research Institute for Biosciences, Université de
Mons, 20, place du Parc, B7000 Mons, Belgium.

RUNNING TITLE: Energetic metabolism in Papillary thyroid cancer

KEYWORDS: Papillary Thyroid Cancer, Energetic metabolism, TCA cycle, Anaplerosis,
 Pyruvate carboxylase, Heterogeneity, Tumor microenvironment, CAFs, Reverse Warburg
 effect

36 ABSTRACT

Background: Energetic metabolism is described to be deregulated in cancer and the Warburg
effect is presented as a major hallmark. Recently, cellular heterogeneity in tumors and tumor
microenvironment have been recognized to play an important role in several metabolic
pathways in cancer. However, their contribution to papillary thyroid cancer (PTC) development
and metabolism is still poorly described.

42 Methods: We performed a proteomic analysis of 5 PTC and investigated the cellular
43 distribution of several upregulated metabolic proteins in the cancer and in the stromal cells of
44 PTC.

45 Results: MS/MS analysis revealed the upregulation of many metabolism-related proteins, 46 among which pyruvate carboxylase. Pyruvate carboxylase knockdown in thyroid cell lines 47 alters their proliferative and motility capacities, and measurements of oxygen consumption 48 rates showed that this enzyme is involved in the replenishment of the TCA cycle.

MAIN BODY: INTRODUCTION

Deregulated energetic metabolism is one of the hallmarks of cancer, playing a crucial role in tumor development (1-3). Tumor cells have high energetic requirements to support many biosynthesis pathways and promote cell growth. The Warburg effect has been proposed for a long time to be the major metabolic reprogramming in cancer. In this scheme, glucose uptake is increased, metabolized to pyruvate, then transformed into lactate, instead of entering the TCA cycle, even when the level of oxygen is normal in the tumor microenvironment (4). This allows the oxidation of the NADH produced by glycolysis into NAD⁺ sustaining glycolytic flux (4, 5). Since a few years, another concept is emerging: the TCA cycle would maintain its functions and participate to the synthesis of energy and biosynthetic intermediates as metabolic precursors out of the mitochondria (6). In addition, the metabolism of cancer cells is influenced by the metabolic microenvironment of the tumor. Indeed, several studies have described for example the important role of cancer-associated fibroblasts (CAFs) in the majority of tumors (7). They contribute to tumor proliferation by exchanging cytokines, growth factors or pro-angiogenic factors (8, 9), but it is still unclear how they are involved in tumor metabolism. Recent studies showed that CAFs carry out aerobic glycolysis and release lactate in the tumor microenvironment (10), then available for the cancer cells sustaining an oxidative mitochondrial metabolism (11). This model, named "The Reverse Warburg Effect", allows exchanging resources between cells inside tumors and defines CAFs as feeders of lactate, later transformed into pyruvate by oxidative tumor cells in order to replenish the TCA cycle.

The TCA cycle intermediates replenishment, or anaplerosis, is known to be assumed by two
major pathways: (1) glutaminolysis, which consists in using glutamine, metabolized to
glutamate by glutaminase (GLS), itself converted into α-ketoglutarate by glutamate
dehydrogenase (GDH); (2) the carboxylation of pyruvate to oxaloacetate via ATP-dependent
pyruvate carboxylase (PC). In cancers, a compensatory relationship between GLS and PC was

shown when cells deprived of glutamine switched to a glucose-dependent anaplerosis via
pyruvate (12). At the opposite, intracellular lactate signaling promotes glutamine uptake, that
becomes the major substrate (13).

Thyroid cancer is the most frequent endocrine cancer in human, and papillary thyroid carcinoma (PTC) represents up to 85% of all malignant thyroid tumors. PTC is usually biologically indolent and has an overall 5- to 10-years survival rate of 80–95%. Present therapy is based on thyroidectomy followed by a radioiodide treatment. The most dedifferentiated cases among PTC are associated with treatment resistance and cancer recurrence. Several cancers have been metabolically characterized to define new therapeutic approaches using inhibitors against metabolic enzymes. For instance, Doherty et al. developed inhibitors against the lactate dehvdrogenase (LDH) proteins, like gossypol or galloflavin (14). Accordingly, characterizing the energetic metabolism of PTC could offer an opportunity to treat its most aggressive forms. For now, thyroid tumor metabolism has been poorly described but appeared to vary according to the histological subtype (15). An increased level of labelled glucose consumption by poorly differentiated thyroid tumors compared to differentiated tumors has been reported, with a strong correlation with the presence of BRAF mutation (16). The enhanced glucose metabolism was validated by the demonstration of the overexpression of glucose transporters 1 and 3 (GLUT1, GLUT3), and of hexokinase 2 (HK2) in BRAF-mutated PTC (17, 18). The expression levels of GLS and of GDH were also increased in BRAF-mutated PTC, suggesting an overall increase in glutamine metabolism (15).

100 On the other hand, the role of tumor microenvironment is now recognized to play a major 101 metabolic role in a lot of cancers (19, 20). However, its contribution to thyroid tumor 102 development is still poorly described. The cellular heterogeneity of PTC resulting in part from 103 the presence of CAFs has been characterized and revealed a positive correlation with tumor

Thyroid

2	
5 4	
5	
6	
7	
8	
9	
10	
11	
12	
14	
15	
16	
17	
18	
19	
20 21	
21	
23	
24	
25	
26	
27	
28 20	
30	
31	
32	
33	
34	
35	
30	
38	
39	
40	
41	
42	
43 44	
44	
46	
47	
48	
49	
50 51	
57	
53	
54	
55	
56	
57	
58 50	
59	

aggressiveness (21). Another study showed respective overexpression of monocarboxylate 104 105 transporters 1 and 4 (MCT1, MCT4) in cancer and stromal cells, each one being responsible of 106 lactate transport across the plasma membrane (22). In this study, we performed a proteomic analysis of PTC, which revealed the upregulation of a 107 high number of metabolism-related proteins. We first focused on pyruvate carboxylase whose 108 expression and functional role were studied in thyroid tumors and in thyroid cell lines. We then 109 110 extended our study by investigating the expression and cellular localization of other metabolic enzymes. Our data show that PTC have a very active TCA cycle, continuously replenished by 111 a pyruvate carboxylase mediated anaplerosis. This is specifically observed in the tumor cells. 112 113 **MATERIAL AND METHODS:** 114 **Cell culture** 115 Human thyroid cancer cell lines TPC1 (RET/PTC1 rearranged) and 8505C (BRAF^{V600E} and 116 TP53 mutated) (23), and HTori-3 (SV40-immortalized human thyrocytes) (24) were cultured 117 in RPMI 1640 (+ L-glutamine + 25mM Hepes) (Life Technologies) supplemented with 10% 118 FBS, 2% streptomycin/penicillin and 1% amphotericin B (Life Technologies). The cells were 119 grown at 37°C in a humidified atmosphere with 5% CO₂ and 20% O₂. STR analyses performed 120 previously for TPC1 and 8505C cells (25) showed that they were identical to those published 121 by Schweppe et al (26). STR analysis of HTori-3 cells is provided in Supplementary Figure. 122 Their genotype is identical to the STR profile of Nthy-ori 3-1, a subclone of HTori-3 (European 123 Collection of Cell Culture-ECACC 90011609), except a heterozygosity detected for THO1. 124 Moreover these cells express TTF1 and PAX8, suggesting that they are of thyroid origin. 125 11:01 126 **Thyroid tissue samples** 127

Paired samples of normal and tumor thyroid tissues were obtained from patients undergoing surgery for papillary thyroid cancer (n=28). All the tissues were provided by the Anatomical Pathology Department of the J. Bordet Institute (Brussels, Belgium) where the diagnoses were made by pathologists. 5 paired samples, containing at least 70% of tumor cells, were selected for MS/MS and transcriptomic analyses, and the remaining samples were used for validation. Tissue samples were embedded in OCT and directly stored at -80° C until processing. Paraffin sections were used for immunostaining (n=6). Protocols have been approved by the Ethics Committee of the J. Bordet Institute.

MS/MS analysis

Five PTC (classical variant) and their normal adjacent tissues were analyzed by mass spectrometry. All of them carried the BRAF V600E mutation, the most common mutation in **PTC** (relevant clinical data are provided in Supplementary Table 1). Protein extraction and analysis were performed at the proteomic platform of Professor Rudy Wattiez (University of Mons), with the TripleTOF mass spectrometer (ESI sources). Proteins were identified with the UniProt database.

RNA purification

Total RNA was extracted from thyroid samples or from thyroid cell lines using a TRIzol Reagent kit (Invitrogen Carlsbad, CA, USA) followed by purification on RNeasy columns (Qiagen Hilden, Germany). RNA concentrations were spectrophotometrically quantified, and their integrity was verified using an automated electrophoresis system (Experion, Bio-Rad).

Affymetrix microarray hybridization

Thyroid

152	The 5 samples analyzed by mass spectrometry and 3 additional samples for which no proteins
153	were available were analyzed by Affymetrix microarrays. RNA amplification, cDNA synthesis
154	and labelling were performed according to manufacturer's instructions (Affymetrix Santa
155	Clara, CA, USA). RNA (100 ng for each sample) from 8 PTC and their normal, non-neoplastic
156	adjacent thyroid tissues were hybridized on Affymetrix Human Genome U133 Plus 2.0 Arrays.
157	CEL file data were normalized by GCRMA (GenePattern -
158	http://www.broad.mit.edu/cancer/software/genepattern/). For each spot, data were expressed as
159	the log2 ratio of fluorescence intensities from tumor and normal tissues.
160	
161	Quantitative RT-PCR for pyruvate carboxylase mRNA expression
162	RNA extraction from tissue samples and cell lines was carried out according to manufacturer's
163	instructions (Invitrogen Carlsbad, CA, USA). RNA samples were treated by "DNase I
164	amplification Grade" and subjected to reverse transcription using "Superscript II RNase H
165	Reverse Transcriptase". Pyruvate carboxylase mRNA expression was quantified on an Applied
166	Biosystems 7500 Fast Real Time PCR with SyberGreen (Eurogentec, Liège, Belgium), using
167	oligonucleotides designed with Primer Blast (forward sequence: 5'-
168	GGCGACGGCGAGGAGATAG-3', reverse sequence: 5'- GAGTAGATGGCTACGGTGCG-
169	3'). NEDD8 and TTC1 mRNA expressions were used for normalization (27).
170	
171	Protein extraction
172	Thyroid tissues or cells were lysed in Laemmli lysis buffer, supplemented by phosphatase and
173	protease inhibitors (NaF, Vanadate, Pefabloc, Leupeptin and Tablet Roche Inhibitor 25x
174	(Roche Applied Science)). Protein extracts were denatured at 100 C° for 3 min and then
175	quantified by the PAR/IDCR method (Thermo Fisher Scientific Waltham, MA, USA).
176	

177 Western blotting

Proteins samples (30 µg/well) were loaded on a 7.5% acrylamide gel and run for 1h30 at 20mA/gel. The proteins were transferred to a nitrocellulose membrane at 80V during 1h30. The membrane was first blocked 1 hour at room temperature in Odyssey/PBS (v/v), and then incubated overnight at 4°C with the primary antibody [1:200 anti-PCB rabbit polyclonal antibody, Santa-Cruz (sc-67021); 1:100 anti-PDHE1a mouse monoclonal antibody, Santa-Cruz (sc-377092); 1:5000 anti-GLS rabbit monoclonal antibody, Abcam (ab156876)] in the solution (Odyssey/PBS (v/v) + Tween 0.1%). After incubation for 1 hour in the dark at room temperature with the secondary antibody solution (Odyssey/PBS (v/v) + Tween 0.1% + SDS 0.001%), images were acquired using the Azure Biosystems C500.

,

188 Immunostainings

Immunohistochemical analyses were performed on 10 µm thick sections prepared from paraffin-embedded tissues. Expression of smooth-muscle actin was analyzed by pathologists from the J. Bordet Institute to identify CAFs from cancer cells. The sections were deparaffinized, rehydrated, treated with citrate buffer (10 mM, pH6, 95°C, 1h) for antigen retrieval, and their endogenous peroxidase activity was blocked. The sections were then incubated with the primary antibody [anti-PCB (Santa Cruz; sc-67021), anti-PDK (Santa Cruz; sc-28783), anti-PCCB (Abcam; ab96729), anti-ECH1 (Abcam; ab153720), anti-GLS (Abcam; ab156876), anti-LDHA (Abcam; ab47010), anti-LDHB (Santa Cruz; sc100775), anti-MCT1 (Santa Cruz; sc365501), anti-MCT4 (Santa Cruz; sc50329), anti-PCK2 (Abcam; ab137580)] and the detection was performed with the substrate of peroxidase AEC (K3464, DAKO). The primary antibody [anti-PDHα1 (Santa Cruz; sc-377092)] was revealed by immunofluorescence using Alexa Fluor (594nm) (no antibody available for IHC). As negative controls, immunostainings were carried out in the absence of primary antibodies.

1 2 3 4	202				
5 6 7 8	203	siRNA transfection			
	204	For transient gene knock-down, a PC-specific siRNA (siPC) sequence (s10089, Ambion) was			
9 10 11	205	transfected into different thyroid cell lines (TPC1, HTori-3 and 8505C) using lipofectamine			
12 13	206	RNAiMAX reagent according to manufacturer's instructions (LifeTechnologies Carlsbad, CA,			
14 15	207	USA). An unrelated, non-targeting, siRNA (siCTRL) sequence (4390843, Ambion) was used			
16 17 18	208	as a negative control. Cells (2 x 10^{5} /well) were seeded in 6-well plates and transfected 24h later			
18 19 20	209	with 25 pmol of siRNA. RNA and protein samples were prepared 48h and 72h post-transfection,			
21 22	210	respectively.			
23 24 25	211				
26 27	212	Proliferation assays			
28 29 30 31 32 33 34 35 36 27	213	Cell proliferation rate was assessed using the Click-It® Plus EdU Flow Cytometry Assay kit			
	214	(Thermo Fisher Scientific Waltham, MA, USA) according to manufacturer's instructions.			
	215	Briefly, cells (75 000 cells/well) were seeded in 12-well plates 24h post-transfection. After 48h,			
	216	they were incubated for 6h with 10 μ M 5, 5-ethynyl-2'-deoxyuridine (EDU). After a final			
37 38	217	incubation with Alexa Fluor 488-containing buffer, EDU incorporation was analyzed by flow			
39 40 41	218	cytometry on the BD LSRFortessa [™] cell analyzer.			
42 43	219				
44 45 46 47 48 49 50 51 52	220	Migration / Invasion tests			
	221	Forty-eight hours post-transfection, cells were incubated in a serum-free medium for 24h. They			
	222	were plated in migration or invasion chambers (20 000 cells/chamber – 8 μ m pore size)			
	223	(Corning Biocoat Matrigel Invasion Chamber Kit, Corning) with 10% FBS in the lower			
53 54	224	chamber, as a chemoattractant, and then incubated for 22h. Cells were removed from the upper			
55 56 57 58 59 60	225	part with a cotton swab, and cells that have crossed the membrane were stained with the Diff-			

- Quick Stain Kit (Polysciences Hirschberg, Germany) and 5 fields were counted on the ZOEcell imager.
- 229 Metabolic profiling
- Oxygen-consumption rate (OCR) was measured using the Seahorse XF96 plate reader (Agilent Technologies). As mentioned above, the cells were routinely cultured in RPMI 1640. This medium contains 11.11 mM D-glucose. For respirometry experiments, cells (5000 cells/well in 96-well plates) were transfected as described above and then incubated (24h post-transfection) in a substrate-free DMEM medium (DMEM D5030, Sigma) for 24h before OCR measurements. Metabolic substrates were given to the cells at 10 mM per well 1 hour before measurements: glucose, lactate, pyruvate, or glucose + glutamine. Where indicated, cells were treated with 10 µM BPTES (Bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl) ethyl sulfide) to inhibit glutaminase activity. Substrate-induced OCR was evaluated by calculating the difference of OCR values before and after substrate addition in each experimental condition.
- 36 240

241 Statistical analyzes

Results are expressed as mean ± SD with statistical parametric t-tests for in vitro experiments,
and as median ± quartiles with statistical non-parametric Mann-Whitney tests for in vivo
experiments, of at least three independent experiments, unless otherwise noted. All statistical
analyzes were performed with GraphPad Prism 6.01 version. Sample sizes (n) are reported in
the corresponding figure legends.

- **RESULTS**:
- 249 <u>MS/MS analysis revealed a lot of metabolism-related proteins with deregulated expression.</u>

Page 19 of 50

1

Thyroid

2
3
4
5
6
7
, Q
0
9
10
11
12
13
14
15
16
17
18
19
20
21
רב בי
22
∠⊃ ⊃4
24
25
26
27
28
29
30
31
32
33
34
25
26
20
3/
38
39
40
41
42
43
44
45
46
47
48
10
77 50
50
51
52
53
54
55
56
57
58
59
60

250 Five BRAF mutated PTC and their normal adjacent tissue were analyzed by mass spectrometry. 251 The clinical data, mutational status and patient information are given in Supplementary Table 1. The analysis identified about 1100 proteins in paired tumor and normal tissues. Each protein 252 was quantified by calculating the expression ratio in log2 (tumor/normal) and was selected if 253 this ratio was $\geq |1|$. A total of 85 proteins showed deregulated expression in the 5 PTCs 254 (Supplementary Table 2), SH3BP4 being the only one downregulated in all of them. 84 proteins 255 256 were upregulated, among which several proteins involved in cellular energetic metabolism. We identified proteins involved in the TCA cycle: SUGLG2, PDHA1, CS, PC; in fatty acid β-257 oxidation: ACADVL, HADH2, DECR1, DCI, PCCA, ECH1; in amino acids degradation: AK2, 258 259 LONP1, IVD, HIBADH, HIBCH; in ATP production and oxidative stress protection: ATP5B, ATP5L, PRDX3, SOD2; and mitochondrial membrane proteins: CH3CH3, VDAC1, VDAC2. 260 The discovery of the upregulation of PC in papillary thyroid carcinomas, implicated in the 261 262 oxidative mitochondrial metabolism through its anaplerotic role in replenishing the TCA cycle, led us to explore the expression of other metabolic proteins in PTC (Figure 1). Most of them 263 showed increased protein levels. This was particularly striking for the TCA cycle enzymes. 264 PTC-c appeared to be the most active in terms of metabolism. Indeed, all the investigated 265 proteins were overexpressed at least two times in this sample. PGK1 was downregulated but 266 267 this was not verified in the 4 other PTC. PTC-a appeared as the less metabolically altered tumor with the smaller number of deregulated proteins, especially for the glycolysis pathway. PTC-e 268 was mainly altered in TCA cycle enzymes and in the "others" metabolic proteins category while 269 glycolysis enzymes showed only a few deregulations. Although the low number of samples 270 does not allow to have sufficient statistical power, our data suggest there might be a correlation 271 between the metabolic profiles and the TNM staging for each one of the PTC examined. For 272 example, PTC-c, which is the most metabolically deregulated, presented a TNM stage of 273

pT4aN1a, while PTC-a was classified as pT1bN0 (Supplementary Table 1). Of course, this
trend should be confirmed with a higher number of samples.

As a complementary approach to evaluate the expression pattern of metabolic proteins in PTC, we performed Affymetrix gene expression analyzes on the same 5 PTC analyzed by mass spectrometry and on 3 additional PTC. A heatmap of the mRNA levels for different metabolic proteins following Affymetrix microarray analysis is presented in Figure 2. There was no correlation between proteomic and transcriptomic expression levels: an overall increase in mRNA expression of proteins involved in glycolysis and inversely an overall decrease in mRNA expression of proteins of the TCA cycle were noticed, with some exceptions. For instance, PC mRNA was strongly overexpressed in the tumors and was even the most overexpressed mRNA among all the genes investigated. The mRNA of the enzymes from the "others" metabolic pathways category showed variable deregulated expressions depending on the gene considered. This lack of correlation has already been reported and reflects different levels of regulation during protein synthesis, e.g. posttranscriptional, translational, or posttranslational regulation (28).

Pyruvate carboxylase expression is increased in PTC.

Among the proteins identified by proteomic analysis, PC was consistently upregulated in all the PTC investigated (Figure 1). Similarly, an increase at the mRNA level was found in the same samples and in three additional PTC (Figure 2), as well as in 49 independent PTC analyzed previously, with a mean ratio in log2 of 1.7 (data not shown) (29). The upregulation of PC mRNA expression has been validated by qRT-PCR in 12 independent PTC: 9 were compared to their normal adjacent tissues (Figure 3a) and 3, for which no adjacent tissue was available, were compared to a pool of 22 normal thyroid tissues (Figure 3b). PTC9 has been compared both to its normal adjacent tissue and to the pool of normal thyroids, which explains the

Thyroid

difference between PC mRNA relative expressions. The mean of expression (log2 of expression
ratios between tumor and normal tissues) was 1.75, and 9/12 PTC showed a more than 2 fold
upregulation. Increased protein expression of PC has been validated by Western blotting
(Figure 3c) on 4 samples already tested for mRNA expression (PTC1-4) and on 11 additional
samples. Altogether, these data provided good evidence that PC was upregulated in PTC and
this led us to further explore its function in thyroid cancer cells.

306 <u>Pyruvate carboxylase knockdown in thyroid cell lines alters their proliferative and motility</u>
 307 <u>capacities.</u>

Three thyroid cell lines (TPC1, 8505C, HTori-3) were used to investigate the functional role of PC, following siRNA transfection. PC mRNA expression level was significantly decreased 48 hours following siPC transfection in TPC1 cells (Figure 4a), and the downregulation of the protein was validated by Western blotting (Figure 4b) in the three cell lines, 72 hours after transfection. PC protein levels were measured in cells transfected with siPC, with siCTRL, and in non-transfected cells. No difference was observed between non-transfected cells and cells transfected with siCTRL, whereas PC expression was clearly downregulated following siPC transfection.

PC knockdown was accompanied by changes in the proliferative capacity of TPC1 and 8505C cells (Figure 4c). After 72 hours of transfection, there was no change in the proliferation rate when the cells were transfected with the siCTRL compared with non-transfected cells, while siPC transfection markedly reduced the percentage of EdU positive cells for TPC1 and less importantly for 8505C. There was no statistical difference in the percentage of EdU labelled cells for HTori-3 cells.

We next investigated the role of PC on the migration and invasion properties of the three cell
 lines. These were evaluated by using migration or invasion chambers and by counting the cells

which had crossed the specific membranes. SiPC transfection altered the migration and/or the invasion abilities of the cells: the number of migrating cells was reduced by one half for the 3 cell lines after transfection of siPC (Figure 4d), and the number of invading cells decreased about 4 times for TPC1 cells, and about 2 times for 8505C cells. No effect on invasion was observed in HTori-3 cells (Figure 4e).

Pyruvate carboxylase is involved in the replenishment of the TCA cycle in thyroid cell lines.

The three cell lines were then used to investigate the role of PC in energetic cancer metabolism (Figure 5). We used the Seahorse Technology to measure O₂ consumption rates (OCR), and different substrates were given to the cells to evaluate their contribution to the oxidative metabolism: glucose, lactate, pyruvate, glucose + glutamine, or glucose + glutamine +/-BPTES, a glutaminase inhibitor. O₂ consumption was higher when siCTRL transfected cells received lactate or pyruvate than glucose and was even more important with glucose + glutamine, suggesting that glutamine is a central nutrient for anaplerosis in the 3 cell lines. The OCR was markedly reduced following siPC transfection regardless of the substrate, suggesting that PC participates in the replenishment of the TCA cycle. Despite the lower level of PC expression in HTori-3 cell line than in the 2 other cell lines (Figure 4b), we also observed a decrease of OCR in these cells. This was less the case when the cells were fed with glucose + glutamine, suggesting that glutamine alone is sufficient. To understand how the cells were taking advantage of anaplerotic resources, we treated them with BPTES. This treatment did not affect O₂ consumption in siCTRL transfected cells, but strongly decreased it in PC knockdown cells. This suggests that PC and GLS are codependent, i.e. if one of the 2 major anaplerosis pathways is affected, the other takes over.

 Thyroid cancer cells have an increased oxidative metabolism compared to stromal cells

The overexpression of pyruvate carboxylase in PTC and its participation in the replenishment of the TCA cycle, coupled with the increased expression of many other metabolic proteins, suggests an increased oxidative metabolism in this tumor type. However, PTC are heterogeneous tumors containing stromal cells, mainly CAFs, and we have previously shed light on the important role of this stroma in tumor expansion (Tarabichi et al, 2018). Within this context, since our "omic" studies were performed with bulk tissues, we decided to investigate the cellular distribution of several upregulated metabolic proteins in the cancer and in the stromal cells of PTC, and more specifically their expression in CAFs. We performed immunostainings of PC, PCK2, PDHa1, GLS, ECH1, PCCB, LDHA/B and of additional proteins absent in our MS/MS data but known to play important roles in metabolism: PDK, MCT1/4, GLUT1, HK2 (Figure 6).

PC overexpression was specific to cancer thyrocytes (Figure 6a), as were two other overexpressed enzymes linked to the metabolism of oxaloacetate: phosphoenolpyruvate carboxykinase 2 (PCK2) (Figure 6a) and pyruvate dehydrogenase (PDH) (Figure 6c), the latter being responsible for pyruvate decarboxylation into acetyl-CoA, an allosteric activator of PC. These data suggest that anaplerosis occurs in PTC with PC mediating oxaloacetate entrance into the TCA cycle. Interestingly, pyruvate dehydrogenase kinase (PDK) which inhibits PDH and is described in many cancers as overexpressed, was not deregulated in PTC (Figure 6c). Protein levels for PDH α 1 and PDK were also analyzed by Western blotting: PDH α 1 was strongly upregulated in 2/8 samples and weakly upregulated in 4/8 samples, while PDK levels remained constant in most of the samples (data not shown). In addition, GLS was also specifically increased in tumor cells, suggesting the existence of the other major anaplerotic reaction (Figure 6a). Two enzymes implicated in β-oxidation of lipids leading to acetyl-CoA production were analyzed: 3-5, 2-4, dienoyl-CoA isomerase (ECH1) and propionyl-CoA

373 carboxylase B subunit (PCCB). Both were also specifically upregulated in the cancer cells,
374 suggesting an increased production of acetyl-CoA in these cells (Figure 6a).

LDH showed increased expression in cancer cells and in CAFs, and this was observed for LDHA and LDHB (Figure 6b). Since LDH is a tetramer composed of two different subunits (LDH-M and LDH-H, respectively encoded by the LDHA and LDHB genes) present in variable proportions, these results could be explained by the existence of mixed isoforms of LDH, all recognized by the specific anti-LDHA and anti-LDHB antibodies. The monocarboxylate transporter MCT1, mediating the uptake of lactate, was only overexpressed in the cancer cells while MCT4, triggering the export of lactate, was found in tumor cells and was also weakly expressed in CAFs in some areas (Figure 6b). Finally, we analyzed the expression of HK2 and of the glucose transporter GLUT1. As depicted in Figure 6b, both enzymes were specifically overexpressed in the thyroid cancer cells. HK2 showed a heterogeneous expression across the entire tumor with some tumor cells expressing higher levels of this enzyme.

DISCUSSION:

Scientific domains in cancer research are clean and easily understandable as long as they are kept distinct. However, as soon as concepts and findings in one domain are extended to another, difficulties and discrepancies appear. Whereas the cause and initial genetic mechanism of a particular tumor may be well defined, its phenotype and even genotype evolve in space and time, resulting in spatial and temporal heterogeneities. Experimentally, studies on whole tissues (e.g. omics studies) ignore the morphological and metabolic heterogeneity of the tumor. On the other hand, clean experimental studies in vitro (e.g. cancer cells, cell lines) and in vivo ignore tissue complexity (30).

With regard to cancer metabolism, much has been learned about the versatility of *in vitro*models depending on the culturing conditions, for instance the existence of both the Warburg

Page 25 of 50

Thyroid

and the reverse Warburg effects, the alternative use of substrates depending on their availability, the roles of lactate and H⁺ as metabolites and signals (31). On the other hand, the description of cancers in vivo is based mostly on observations at one point in time ("snapshots"). It is therefore interesting to investigate which situation exists *in vivo* in human cancers. For this, global measurements (genetics, expressions...) should be complemented by methods allowing to define spatial and time distributions of properties. In this study, we have tried to integrate some fundamental experimental concepts on tumor energetic metabolism, in order to define the spatial characteristics of metabolism, Warburg effect, and anaplerosis of the well-defined, most frequent, human thyroid cancer: the PTC. This could bring a few conceptual bridges between experimental and physiopathological concepts.

Since decades, the hypothesis of Otto Warburg orientated cancer researches to better understand how tumors work and to find new treatments. According to the Warburg effect, tumors have an increased glycolysis and a drastically reduced oxidative mitochondrial activity, which led to develop therapies specifically targeting the glycolytic pathway (32, 33). However several studies demonstrated that the TCA cycle is still functional in some tumors and produces catabolic precursors for their proliferative needs (6). In this study, we show that PTC have a very active TCA cycle, in opposition to the Warburg model, and this activity is not mutually exclusive with glycolysis since both metabolic pathways are present.

As energetic metabolism in PTC is poorly characterized, we decided to investigate the metabolic alterations in these tumors. A proteomic analysis of 5 PTC revealed the upregulation of a high number of proteins involved in metabolism, which were further characterized. Although the number of samples analyzed is too low to draw definite conclusions, these deregulations seem to be amplified according to tumor stage, suggesting a correlation between increased energetic metabolism and tumor aggressiveness. Accordingly, Nahm et al showed

423	that the expression of glycolysis-related proteins was correlated with poorer prognosis (17).
424	Pyruvate carboxylase appeared to be overexpressed at both mRNA and protein levels, a new
425	finding in the field. This enzyme that allows pyruvate to be carboxylated into oxaloacetate,
426	funneled in the TCA cycle, was only recently described as deregulated in lung and breast
427	cancers (34, 35). This suggests that pyruvate is not systematically transformed into lactate
428	according to the Warburg effect, but could be an essential resource to maintain the oxidative
429	mitochondrial metabolism. We first defined the functional role of PC in thyroid cell lines. Two
430	commonly used thyroid cancer cell lines, TPC1 and 8505C (23, 25), and HTori-3 cells, non-
431	tumorigenic SV40-immortalized human thyrocytes (24) were used for this purpose. Although
432	TPC1 and 8505C cells respectively derive from a PTC and an ATC, these cell lines have
433	evolved into a common, dedifferentiated phenotype (23, 25). Thus, TPC1 and 8505C cells were
434	not chosen as a relevant model for the corresponding in vivo tumor, but rather as thyroid cancer
435	experimental in vitro models. Both cell types showed decreased proliferation, migration,
436	invasion and mitochondrial respiration rates following PC knockdown, suggesting a role of PC
437	in generating energy and metabolic precursors through the pyruvate conversion into
438	oxaloacetate and its consumption by the TCA cycle. No changes were observed in the
439	proliferation and invasion rates in HTori-3 cells following PC knockdown, but their migration
440	rate and their oxygen consumption were reduced. The non-tumorigenic character and the non-
441	cancer origin of HTori-3 cells might explain these differences.
442	
443	Cellular heterogeneity is an emerging concept in interpreting cancer biology, and PTC are

443 Centular heterogeneous van enlerging concept in interpreting cancer biology, and FFC are
444 indeed heterogeneous tumors, containing thyroid cells, stromal cells such as cancer-associated
445 fibroblasts, lymphocytes and endothelial cells. To further explore the increased oxidative
446 mitochondrial metabolism in PTC, and to analyze the contribution of the different cell types,
447 we investigated the cellular distribution of several metabolic proteins in the cancer and in the

1	
2 3 4	448
5	449
7 8	450
9 10 11	451
11 12 13	452
14 15	453
16 17	454
18 19 20	455
20 21 22	456
23 24	457
25 26	458
27 28 29	459
30 31	460
32 33	461
34 35 36	462
37 38	463
39 40	464
41 42	465
43 44 45	466
45 46 47	467
48 49	468
50 51	469
52 53	470
54 55 56	ч, о Л71
57 58	4/1
59 60	

role of GLS.

448	stromal cells by IHC. PC, PCK2 and PDH α 1, three enzymes related to the metabolism of
449	oxaloacetate, were specifically overexpressed in cancer thyrocytes, whereas the expression of
450	PDK, an inhibitor of PDH, remained unchanged. PC and PDH, by producing respectively
451	oxaloacetate and acetyl-CoA, itself an allosteric activator of PC, contribute to replenish the
452	TCA cycle. PCK2, the mitochondrial isoform of PCK, although well-known for its role in
453	gluconeogenesis, underlines the importance of TCA cycle in absence of glucose (36). The
454	overexpression of PDH, observed in 75% of the samples, and the absence of deregulation of
455	PDK are in opposition to what has been described for other cancers, such as non-small cell lung
456	carcinomas where the repression of the PDH/PDK pathway has been related with aerobic
457	glycolysis/Warburg effect (37). Taken together, our data support the presence of an actively
458	functioning TCA cycle in PTC, involving pyruvate metabolism. In addition, they also suggest
459	that acetyl-CoA can be produced from lipid degradation since several enzymes involved in this
460	pathway showed an increased expression, as measured by MS/MS. Among them, the specific
461	overexpression in cancer cells of ECH1 and PCCB was confirmed by IHC. This is in agreement
462	with other studies reporting a role of lipid degradation in cancers, such as in the triple negative
463	breast cancer, following stress conditions (38, 39).
464	The other important anaplerotic reaction able to replenish the TCA cycle, i.e. glutaminolysis,
465	also appears to sustain the energetic metabolism in PTC. Indeed, an overexpression of GLS was
466	observed in the cancerous cells of the PTC and glutamine was identified as an essential nutrient
467	in thyroid cell lines tested for oxidative respiration. Inhibiting glutaminase by BPTES
468	highlighted the existence of a compensatory relationship between GLS and PC, already
469	described for glioblastoma cells in culture and in xenografts (12), in addition to the anaplerotic

All the enzymes involved in oxidative metabolism that were studied were specifically overexpressed in thyroid cancer cells. Cancer-associated fibroblasts have been described in other cancers such as breast and brain cancers to feed cancerous cells by producing lactate into the tumor microenvironment (10, 40). Our data show that the LDH enzymes are present in cancerous cells and in CAFs, but do not allow to definitively conclude on the metabolism of lactate. Regarding the lactate transporters, MCT1 (uptake of lactate) is overexpressed in the tumor cells while MCT4 (export of lactate) is present in tumor cells but also weakly expressed in CAFs in some areas. This confirms other studies on thyroid cancer (22), and suggests that lactate is released from cancerous cells, and from CAFs in some areas of the tissue, and is taken up by other cancerous cells, allowing production of ATP through mitochondrial oxidative phosphorylation. It supports the metabolic model of the reverse Warburg effect between cancerous cells and CAFs as well as the existence of a metabolic symbiosis between cancer cells that are not equal with regard to oxygen availability (41). Finally, we investigated the origin of pyruvate, which could derive from glucose but also from lactate. Our proteomic data revealed an overall upregulation of the glycolytic enzymes in the 5 PTC analyzed. We performed IHC with GLUT1 and HK2 antibodies, and we observed that both enzymes were specifically overexpressed in tumor cells, confirming a previous report (17). The overexpression of GLUT1 is consistent with the observation that, in differentiated thyroid carcinomas, glucose uptake of BRAF^{V600E} positive tumors was higher than that of BRAF wild type tumors (16). In addition, the overall survival of patients with high GLUT1 expression is reduced (17). Altogether, our results suggest that, in PTC, glucose would be distributed between the TCA cycle and the production of lactate, as it was reported in KRAS-mutated non-small 7.00 cell lung cancers (NSCLC) (20), in glioblastomas (42) and in bladder cancer (43).

Thyroid

2	
3	
4	
5	
ر د	
0	
/	
8	
9	
10	
11	
12	
13	
11	
15	
10	
10	
17	
18	
19	
20	
21	
22	
23	
24	
27	
25	
20	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
20	
3/	
38	
39	
40	
41	
42	
43	
44	
45	
16	
40	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
50	
57	
58	

In conclusion, pyruvate carboxylase is a key enzyme in thyroid cancer cells, at the intersection 496 497 between glycolysis and the TCA cycle, playing an important role in anaplerosis. The distribution of other overexpressed enzymes showed that the TCA cycle is very active in tumor 498 cells. However, our results give only a snapshot of the Warburg effect, metabolism, and 499 anaplerosis in PTC at the time of tissue collection. They do not consider the evolution of the 500 described temporal heterogeneity. For this, further *in vivo* studies, e.g. a ¹³C-tracer analysis with 501 labeled glucose and lactate, could provide information about carbon trafficking inside the 502 tumors (44). Hypoxia should also be investigated in PTC to identify areas with distinct 503 metabolic adaptations. Exploring the expression pattern of the different metabolic proteins 504 505 comparing central and peripheral tumor areas might also bring interesting information regarding tumor heterogeneity. Such knowledge could give a basis for the rational use of new 506 therapeutic tools targeting tumor metabolism (14, 33). However, this concept implies that all 507 508 the cells exhibit the same pattern at the same time, which in the case of metabolism, is not true (30, 45). Moreover, cancer cells are able to adapt to changing conditions by shifting from one 509 metabolic pattern to another. 510

- 8 511 9
- 0 512 1
 - 513 ACKNOWLEDGMENTS

This study was supported by grants from the Fonds de la Recherche Scientifique FNRS-FRSM,
Fonds J-P Naets, Fondation Roi Baudouin.

516

59 60 517 CM, JD and ASt conceived the experiments; ASt and CC carried out the experiments; CM, ASt 518 interpreted the results and wrote the manuscript; GD, CC, OF helped with data analysis; GA 519 collected patient samples; ASp, LC and DL collected and reviewed the histopathological slices 520 of the thyroid cancers; RW performed the MS/MS analysis.

1 2					
3 4	521	The authors thank Chantal Degraef, Claude Massart, Bernadette Bournonville for the excellent			
5	522	technical support.			
7 8 9	523				
10 11	524	AUTI	HOR DISCLOSURE STATEMENT		
12 13 14	525	Protoc	cols have been approved and consent by the Ethics Committee of the J. Bordet Institute		
14 15 16	526	(proto	col number: 1978), in accordance with the Declaration of Helsinki.		
17 18	527				
19 20	528	No co	mpeting financial interests exist.		
21 22 23	529				
24 25	530				
26 27 28	531	REFI	ERENCES		
29 30	532	1.	DeBerardinis RJ, Chandel NS 2016 Fundamentals of cancer metabolism. Sci Adv		
31 32 33	533		2 :e1600200–e1600200.		
34 35	534	2.	Hanahan D, Weinberg RA 2011 Hallmarks of cancer: The next generation. Cell		
36 37 38	535		144:646–674.		
39 40	536	3.	Cairns R a, Harris I, McCracken S, Mak TW 2011 Cancer cell metabolism. Cold		
41 42	537		Spring Harb Symp Quant Biol 76 :299–311.		
43 44 45	538	4.	Warburg O, Wind F, Negelein E 1927 I. Killing-Off of Tumor Cells in Vitro . J Gen		
45 46 47	539		Physiol 8 :519–530.		
48 49	540	5.	Ferreira LMR, Hebrant A, Dumont JE 2012 Metabolic reprogramming of the tumor.		
50 51	541		Oncogene 31 :3999–4011.		
52 53 54	542	6.	Ward PS, Thompson CB 2012 Metabolic Reprogramming: A Cancer Hallmark Even		
55 56	543		Warburg Did Not Anticipate. Cancer Cell 21 :297–308.		
57 58	544	7.	Orimo A, Weinberg RA 2006 Stromal Fibroblasts in Cancer: A Novel Tumor-		
59 60	545		Promoting Cell Type. Cell Cycle 5:1597–1601.		

1 2 3	546	8	Pietras K. Östman & 2010 Hallmarks of cancer: Interactions with the tumor stroma
4 5	540	0.	Free Cell D as 21 (1224, 1221)
6 7	547		Exp Cell Res 310 :1324–1331.
7 8 9	548	9.	Fiaschi T, Giannoni E, Taddei ML, Cirri P, Marini A, Pintus G, Nativi C, Richichi B,
10 11	549		Scozzafava A, Carta F, Torre E, Supuran CT, Chiarugi P 2013 Carbonic anhydrase IX
12 13	550		from cancer-associated fibroblasts drives epithelial-mesenchymal transition in prostate
14 15 16	551		carcinoma cells. Cell Cycle 12 :1791–1801.
17 18	552	10.	Pavlides S, Whitaker-Menezes D, Castello-Cros R, Flomenberg N, Witkiewicz AK,
19 20	553		Frank PG, Casimiro MC, Wang C, Fortina P, Addya S, Pestell RG, Martinez-
21 22	554		Outschoorn UE, Sotgia F, Lisanti MP 2009 The reverse Warburg effect: Aerobic
23 24 25	555		glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle 8:3984–
26 27	556		4001.
27 28 29	557	11.	Whitaker-Menezes D, Martinez-Outschoorn UE, Lin Z, Ertel A, Flomenberg N,
30 31 32	558		Witkiewicz AK, Birbe RC, Howell A, Pavlides S, Gandara R, Pestell RG, Sotgia F,
33 34	559		Philp NJ, Lisanti MP 2011 Evidence for a stromal-epithelial "lactate shuttle" in human
35 36	560		tumors: MCT4 is a marker of oxidative stress in cancer-associated fibroblasts. Cell
37 38	561		Cycle 10:1772–1783.
39 40 41	562	12.	Cheng T, Sudderth J, Yang C, Mullen AR, Jin ES, Mates JM, DeBerardinis RJ 2011
42 43	563		Pyruvate carboxylase is required for glutamine-independent growth of tumor cells.
44 45	564		Proc Natl Acad Sci 108:8674–8679.
46 47 48	565	13.	Pérez-Escuredo J, Dadhich RK, Dhup S, Cacace A, Van Hée VF, De Saedeleer CJ,
40 49 50	566		Sboarina M, Rodriguez F, Fontenille M-J, Brisson L, Porporato PE, Sonveaux P 2016
51 52	567		Lactate promotes glutamine uptake and metabolism in oxidative cancer cells. Cell
53 54 55	568		Cycle 15 :72–83.
56 57	569	14.	Doherty J, Cleveland J 2013 Targeting lactate metabolism for cancer therapeutics. J
58 59 60	570		Clin Invest 123 :3685–3692.

1 2 3	571	15.	Kim HM. Lee YK. Koo JS 2016 Expression of glutamine metabolism-related proteins
4 5	572		in thyroid cancer Oncotarget 7:53628–53641
6 7 8 9 10 11 12 13	573	16	Nagarajah I. Ho. AL. Tuttle RM. Weber WA. Grewal RK 2015 Correlation of
	575	10.	DDA EV(00E Metation on d Charges Metabolism in Themaid Concer Dationates Are 19E
10 11 12	574		BRAF v 600E Mutation and Glucose Metadolism in Thyrold Cancer Patients: An 18F-
12 13 14	575		FDG PET Study. J Nucl Med 56 :662–667.
14 15 16	576	17.	Nahm JH, Kim HM, Koo JS 2017 Glycolysis-related protein expression in thyroid
16 17 18	577		cancer. Tumor Biol 39 :101042831769592.
19 20	578	18.	Yoon M, Jung SJ, Kim TH, Ha TK, Urm S-H, Park JS, Lee SM, Bae SK 2016
21 22	579		Relationships between transporter expression and the status of BRAF V600E mutation
23 24	580		and F-18 FDG uptake in papillary thyroid carcinomas. Endocr Res 41:64–69.
25 26 27	581	19.	Christen S, Lorendeau D, Schmieder R, Broekaert D, Metzger K, Veys K, Elia I,
28 29	582		Buescher JM, Orth MF, Davidson SM, Grünewald TGP, De Bock K, Fendt SM 2016
30 31	583		Breast Cancer-Derived Lung Metastases Show Increased Pyruvate Carboxylase-
32 33 34	584		Dependent Anaplerosis. Cell Rep 17:837–848.
35 36	585	20.	Davidson SM, Papagiannakopoulos T, Olenchock BA, Heyman JE, Keibler MA,
37 38	586		Luengo A, Bauer MR, Jha AK, O'Brien JP, Pierce KA, Gui DY, Sullivan LB,
39 40 41	587		Wasylenko TM, Subbaraj L, Chin CR, Stephanopolous G, Mott BT, Jacks T, Clish CB,
42 43	588		Van Der Heiden MG 2016 Environment impacts the metabolic dependencies of ras-
44 45	589		driven non-small cell lung cancer. Cell Metab 23 :517–528.
46 47	590	21.	Tarabichi M, Antoniou A, Le Pennec S, Gacquer D, de Saint Aubain N, Craciun L,
48 49 50	591		Cielen T, Laios I, Larsimont D, Andry G, Dumont JE, Maenhaut C, Detours V 2017
51 52	592		Distinctive desmoplastic 3D morphology associated with BRAF V600E in papillary
53 54	593		thyroid cancers.
55 56 57	594	22.	Gill KS, Tassone P, Hamilton J, Hjelm N, Luginbuhl A, Cognetti D, Tuluc M,
58 59 60	595		Martinez-Outschoorn U, Johnson JM, Curry JM 2016 Thyroid Cancer Metabolism: A

Page 33 of 50

1

 Saiselet M, Floor S, Tarabichi M, Dom G, Hébrant A 2012 Thyroid cancer cell lines : an overview. Front Endocrinol 3:1–9. Lemoine NR, Mayall ES, Jones T, Sheer D, Mcdermid S 1989 Characterisation of human thyroid epithelial cells immortalised in vitro by simian virus 40 DNA transfection. Br J Cancer 2:897–903. Staveren WCG Van, Soli DW, Delys L, Duprez L, Andry G, Franc B, Thomas G, Dumont JE, Detours V, Maenhaut C 2007 Human Thyroid Tumor Cell Lines Derived from Different Tumor Types Present a Common Dedifferentiated Phenotype. Cancer Res 67: 8113–8121. Schweppe RE, Klopper JP, Korch C, Pugazhenthi U, Benezra M, Knauf JA, Fagin JA, Marlow LA, Copland JA, Smallridge RC, Haugen BR 2008 Deoxyribonucleic Acid Profiling Analysis of Cross-Contamination Resulting in Cell Line Redundancy and Misidentification. J Clin Endocrinol Metab 93:4331–4341. Delys L, Detours V, Franc B, Thomas G, Bogdanova T, Tronko M, Libert F, Dumont JE, Maenhaut C 2007 Gene expression and the biological phenotype of papillary thyroid carcinomas. Oncogene 26:7894–7903. Tian Q, Stepaniants SB, Mao M, Weng L, Feetham MC, Doyle MJ, Yi FC, Dai H, Thorsson V, Eng J, Goodlett D, Berger JP, Gunter B, Linseley PS, Stoughton RB, Acbersold R, Collins SJ, Hanlon WA, Hood LE 2004 Integrated genomic and proteomic analyses of gene expression in Mammalian cells. Mol Cell Proteomics 3:960–9. Hébrant A, Dom G, Dewacle M, Andry G, Trésallet C, Letcurtre E, Dumont JE, Maenhaut C 2012 mRNA expression in papillary and anaplastic thyroid carcinoma: molecular anatomy of a killing switch. PLoS One 7:e37807. 	2 3 4	596		Review. J Thyroid Disord Ther 5.
 an overview. Front Endocrinol 3:1–9. 24. Lemoine NR, Mayall ES, Jones T, Sheer D, Medermid S 1989 Characterisation of human thyroid epithelial cells immortalised in vitro by simian virus 40 DNA transfection. Br J Cancer 2:897–903. 52. Staveren WCG Van, Soh DW, Delys L, Duprez L, Andry G, Franc B, Thomas G, Dumont JE, Detours V, Maenhaut C 2007 Human Thyroid Tumor Cell Lines Derived from Different Tumor Types Present a Common Dedifferentiated Phenotype. Cancer Res 67: 8113–8121. 606 26. Schweppe RE, Klopper JP, Korch C, Pugazhenthi U, Benezra M, Knauf JA, Fagin JA, Marlow LA, Copland JA, Smallridge RC, Haugen BR 2008 Deoxyribonucleic Acid Profiling Analysis of Cross-Contamination Resulting in Cell Line Redundancy and Misidentification. J Clin Endocrinol Metab 93:4331–4341. 610 27. Delys L, Detours V, Franc B, Thomas G, Bogdanova T, Tronko M, Libert F, Dumont JE, Maenhaut C 2007 Gene expression and the biological phenotype of papillary thyroid carcinomas. Oncogene 26:7894–7903. 613 28. Tian Q, Stepaniants SB, Mao M, Weng I, Feetham MC, Doyle MJ, Yi EC, Dai H, Thorsson V, Eng J, Goodlett D, Berger JP, Gunter B, Linseley PS, Stoughton RB, Aebersold R, Collins SJ, Hanlon WA, Hood LE 2004 Integrated genomic and proteomic analyses of gene expression in Mammalian cells. Mol Cell Proteomics 3:960–9. 618 29. Hébrant A, Dom G, Dewaele M, Andry G, Trésallet C, Leteurtre F, Dumont JE, Maenhaut C 2012 mRNA expression in papillary and anaplastic thyroid carcinoma; molecular anatomy of a killing switch. PLoS One 7:e37807. 	5 6	597	23.	Saiselet M, Floor S, Tarabichi M, Dom G, Hébrant A 2012 Thyroid cancer cell lines :
 Lemoine NR, Mayall ES, Jones T, Sheer D, Mcdermid S 1989 Characterisation of human thyroid epithelial cells immortalised in vitro by simian virus 40 DNA transfection. Br J Cancer 2:897–903. Staveren WCG Van, Soli DW, Delys L, Duprez L, Andry G, Frane B, Thomas G, Dumont JE, Detours V, Maenhaut C 2007 Human Thyroid Tumor Cell Lines Derived from Different Tumor Types Present a Common Dedifferentiated Phenotype. Cancer Res 67: 8113–8121. Schweppe RE, Klopper JP, Korch C, Pugazhenthi U, Benezra M, Knauf JA, Fagin JA, Marlow LA, Copland JA, Smallridge RC, Haugen BR 2008 Deoxyribonucleic Acid Profiling Analysis of Cross-Contamination Resulting in Cell Line Redundancy and Misidentification. J Clin Endocrinol Metab 93:4331–4341. Delys L, Detours V, Franc B, Thomas G, Bogdanova T, Tronko M, Libert F, Dumont JE, Maenhaut C 2007 Gene expression and the biological phenotype of papillary thyroid carcinomas. Oncogene 26:7894–7903. Tian Q, Stepaniants SB, Mao M, Weng L, Feetham MC, Doyle MJ, Yi EC, Dai H, Thorsson V, Eng J, Goodlett D, Berger JP, Gunter B, Linseley PS, Stoughton RB, Aebersold R, Collins SJ, Hanlon WA, Hood LE 2004 Integrated genomic and proteomic analyses of gene expression in Mammalian cells. Mol Cell Proteomics 3:960–9. Hébrant A, Dom G, Dewaele M, Andry G, Trésallet C, Leteurtre E, Dumont JE, Maenhaut C 2012 mRNA expression in papillary and anaplastic thyroid carcinoma; molecular anatomy of a killing switch. PLoS One 7:e37807. 	7 8 0	598		an overview. Front Endocrinol 3 :1–9.
12600human thyroid epithelial cells immortalised in vitro by simian virus 40 DNA15601transfection. Br J Cancer 2:897–903.1660225.17603Dumont JE, Detours V, Macnhaut C 2007 Human Thyroid Tumor Cell Lines Derived17604from Different Tumor Types Present a Common Dedifferentiated Phenotype. Cancer17605Res 67: 8113–8121.1760626.18Schweppe RE, Klopper JP, Korch C, Pugazhenthi U, Benezra M, Knauf JA, Fagin JA,19607Marlow LA, Copland JA, Smallridge RC, Haugen BR 2008 Deoxyribonucleic Acid108Profiling Analysis of Cross-Contamination Resulting in Cell Line Redundancy and109Misidentification. J Clin Endocrinol Metab 93:4331–4341.11127.Delys L, Detours V, Franc B, Thomas G, Bogdanova T, Tronko M, Libert F, Dumont11JE, Maenhaut C 2007 Gene expression and the biological phenotype of papillary11thyroid carcinomas. Oncogene 26:7894–7903.1261328.1328.14Thorsson V, Eng J, Goodlett D, Berger JP, Gunter B, Linseley PS, Stoughton RB,15Aebersold R, Collins SJ, Hanlon WA, Hood LE 2004 Integrated genomic and16proteomic analyses of gene expression in Mammalian cells. Mol Cell Proteomics173:960–9.1829.19Hébrant A, Dom G, Dewaele M, Andry G, Trésallet C, Leteurtre E, Dumont JE,19Maenhaut C 2012 mRNA expression in papillary and anaplastic thyroid carcinoma:19Maenhaut C 2012 mRNA expression in papillary and anaplastic	9 10 11	599	24.	Lemoine NR, Mayall ES, Jones T, Sheer D, Mcdermid S 1989 Characterisation of
14601transfection. Br J Cancer 2:897–903.60225.Staveren WCG Van, Soli DW, Delys L, Duprez L, Andry G, Frane B, Thomas G,603Dumont JE, Detours V, Maenhaut C 2007 Human Thyroid Tumor Cell Lines Derived604from Different Tumor Types Present a Common Dedifferentiated Phenotype. Cancer605Res 67: 8113–8121.60626.607Marlow LA, Copland JA, Smallridge RC, Haugen BR 2008 Deoxyribonucleic Acid608Profiling Analysis of Cross-Contamination Resulting in Cell Line Redundancy and609Misidentification. J Clin Endocrinol Metab 93:4331–4341.61027.611JE, Maenhaut C 2007 Gene expression and the biological phenotype of papillary612thyroid carcinomas. Oncogene 26:7894–7903.61328.614Thorsson V, Eng J, Goodlett D, Berger JP, Gunter B, Linseley PS, Stoughton RB,615Aebersold R, Collins SJ, Hanlon WA, Hood LE 2004 Integrated genomic and616proteomic analyses of gene expression in Mammalian cells. Mol Cell Proteomics6173:960–9.61829.619Maenhaut C 2012 mRNA expression in papillary and anaplastic thyroid carcinoma;620molecular anatomy of a killing switch. PLoS One 7:e37807.	12 13	600		human thyroid epithelial cells immortalised in vitro by simian virus 40 DNA
 Staveren WCG Van, Soh DW, Delys L, Duprez L, Andry G, Franc B, Thomas G, Dumont JE, Detours V, Maenhaut C 2007 Human Thyroid Tumor Cell Lines Derived from Different Tumor Types Present a Common Dedifferentiated Phenotype. Cancer Res 67: 8113–8121. Schweppe RE, Klopper JP, Korch C, Pugazhenthi U, Benezra M, Knauf JA, Fagin JA, Marlow LA, Copland JA, Smallridge RC, Haugen BR 2008 Deoxyribonucleic Acid Profiling Analysis of Cross-Contamination Resulting in Cell Line Redundancy and Misidentification. J Clin Endocrinol Metab 93:4331–4341. Delys L, Detours V, Franc B, Thomas G, Bogdanova T, Tronko M, Libert F, Dumont JE, Maenhaut C 2007 Gene expression and the biological phenotype of papillary thyroid carcinomas. Oncogene 26:7894–7903. Tian Q, Stepaniants SB, Mao M, Weng L, Feetham MC, Doyle MJ, Yi EC, Dai H, Thorsson V, Eng J, Goodlett D, Berger JP, Gunter B, Linscley PS, Stoughton RB, Aebersold R, Collins SJ, Hanlon WA, Hood LE 2004 Integrated genomic and proteomic analyses of gene expression in Mammalian cells. Mol Cell Proteomics 3:960–9. Hébrant A, Dom G, Dewaele M, Andry G, Trésallet C, Leteurtre E, Dumont JE, Maenhaut C 2012 mRNA expression in papillary and anaplastic thyroid carcinoma: molecular anatomy of a killing switch. PLoS One 7:e37807. 	14 15 16	601		transfection. Br J Cancer 2:897–903.
19603Dumont JE, Detours V, Maenhaut C 2007 Human Thyroid Tumor Cell Lines Derived21604from Different Tumor Types Present a Common Dedifferentiated Phenotype. Cancer22605Res 67: 8113–8121.2460626.26.Schweppe RE, Klopper JP, Korch C, Pugazhenthi U, Benezra M, Knauf JA, Fagin JA,27607Marlow LA, Copland JA, Smallridge RC, Haugen BR 2008 Deoxyribonucleic Acid28608Profiling Analysis of Cross-Contamination Resulting in Cell Line Redundancy and29Misidentification. J Clin Endocrinol Metab 93:4331–4341.2027.Delys L, Detours V, Frane B, Thomas G, Bogdanova T, Tronko M, Libert F, Dumont2911JE, Maenhaut C 2007 Gene expression and the biological phenotype of papillary41thyroid carcinomas. Oncogene 26:7894–7903.4261328.414Thorsson V, Eng J, Goodlett D, Berger JP, Gunter B, Linseley PS, Stoughton RB,415Aebersold R, Collins SJ, Hanlon WA, Hood LE 2004 Integrated genomic and416proteomic analyses of gene expression in Mammalian cells. Mol Cell Proteomics4173:960–9.41829.419Hébrant A, Dom G, Dewaele M, Andry G, Trésallet C, Leteurtre E, Dumont JE,419Maenhaut C 2012 mRNA expression in papillary and anaplastic thyroid carcinoma:420molecular anatomy of a killing switch. PLoS One 7:e37807.	16 17 18	602	25.	Staveren WCG Van, Solı DW, Delys L, Duprez L, Andry G, Franc B, Thomas G,
 604 from Different Tumor Types Present a Common Dedifferentiated Phenotype. Cancer Res 67: 8113–8121. 606 26. Schweppe RE, Klopper JP, Korch C, Pugazhenthi U, Benezra M, Knauf JA, Fagin JA, 607 Marlow LA, Copland JA, Smallridge RC, Haugen BR 2008 Deoxyribonucleic Acid 608 Profiling Analysis of Cross-Contamination Resulting in Cell Line Redundancy and 609 Misidentification. J Clin Endocrinol Metab 93:4331–4341. 610 27. Delys L, Detours V, Franc B, Thomas G, Bogdanova T, Tronko M, Libert F, Dumont 611 JE, Maenhaut C 2007 Gene expression and the biological phenotype of papillary 612 thyroid carcinomas. Oncogene 26:7894–7903. 613 28. Tian Q, Stepaniants SB, Mao M, Weng L, Feetham MC, Doyle MJ, Yi EC, Dai H, 614 Thorsson V, Eng J, Goodlett D, Berger JP, Gunter B, Linscley PS, Stoughton RB, 615 Acbersold R, Collins SJ, Hanlon WA, Hood LE 2004 Integrated genomic and 616 proteomic analyses of gene expression in Mammalian cells. Mol Cell Proteomics 617 3:960–9. 618 29. Hébrant A, Dom G, Dewaele M, Andry G, Trésallet C, Leteurtre E, Dumont JE, 619 Maenhaut C 2012 mRNA expression in papillary and anaplastic thyroid carcinoma: 620 molecular anatomy of a killing switch. PLoS One 7:e37807. 	19 20	603		Dumont JE, Detours V, Maenhaut C 2007 Human Thyroid Tumor Cell Lines Derived
22605Res 67: 8113–8121.2660626.Schweppe RE, Klopper JP, Korch C, Pugazhenthi U, Benezra M, Knauf JA, Fagin JA,27607Marlow LA, Copland JA, Smallridge RC, Haugen BR 2008 Deoxyribonucleic Acid28607Profiling Analysis of Cross-Contamination Resulting in Cell Line Redundancy and29609Misidentification. J Clin Endocrinol Metab 93:4331–4341.2061027.Delys L, Detours V, Franc B, Thomas G, Bogdanova T, Tronko M, Libert F, Dumont27611JF, Maenhaut C 2007 Gene expression and the biological phenotype of papillary41612thyroid carcinomas. Oncogene 26:7894–7903.4161328.Tian Q, Stepaniants SB, Mao M, Weng L, Feetham MC, Doyle MJ, Yi EC, Dai H,44Thorsson V, Eng J, Goodlett D, Berger JP, Gunter B, Linseley PS, Stoughton RB,45615Aebersold R, Collins SJ, Hanlon WA, Hood LE 2004 Integrated genomic and46proteomic analyses of gene expression in Mammalian cells. Mol Cell Proteomics513:960–9.5261829.61829.61829.619Maenhaut C 2012 mRNA expression in papillary and anaplastic thyroid carcinoma: molecular anatomy of a killing switch. PLoS One 7:e37807.	21 22	604		from Different Tumor Types Present a Common Dedifferentiated Phenotype. Cancer
 26. Schweppe RE, Klopper JP, Korch C, Pugazhenthi U, Benezra M, Knauf JA, Fagin JA, Marlow LA, Copland JA, Smallridge RC, Haugen BR 2008 Deoxyribonucleic Acid 607 Marlow LA, Copland JA, Smallridge RC, Haugen BR 2008 Deoxyribonucleic Acid 608 Profiling Analysis of Cross-Contamination Resulting in Cell Line Redundancy and 609 Misidentification. J Clin Endocrinol Metab 93:4331–4341. 610 27. Delys L, Detours V, Franc B, Thomas G, Bogdanova T, Tronko M, Libert F, Dumont 611 JE, Maenhaut C 2007 Gene expression and the biological phenotype of papillary 612 thyroid carcinomas. Oncogene 26:7894–7903. 613 28. Tian Q, Stepaniants SB, Mao M, Weng L, Feetham MC, Doyle MJ, Yi EC, Dai H, 614 Thorsson V, Eng J, Goodlett D, Berger JP, Gunter B, Linseley PS, Stoughton RB, 615 Acbersold R, Collins SJ, Hanlon WA, Hood LE 2004 Integrated genomic and 616 proteomic analyses of gene expression in Mammalian cells. Mol Cell Proteomics 617 3:960–9. 618 29. Hébrant A, Dom G, Dewaele M, Andry G, Trésallet C, Leteurtre E, Dumont JE, 619 Maenhaut C 2012 mRNA expression in papillary and anaplastic thyroid carcinoma: 620 molecular anatomy of a killing switch. PLoS One 7:e37807. 	23 24 25	605		Res 67: 8113–8121.
 ²⁸607 Marlow LA, Copland JA, Smallridge RC, Haugen BR 2008 Deoxyribonucleic Acid ²⁹Profiling Analysis of Cross-Contamination Resulting in Cell Line Redundancy and ³¹609 Misidentification. J Clin Endocrinol Metab 93:4331–4341. ³⁵610 27. Delys L, Detours V, Franc B, Thomas G, Bogdanova T, Tronko M, Libert F, Dumont ³⁷JE, Maenhaut C 2007 Gene expression and the biological phenotype of papillary ⁴¹612 thyroid carcinomas. Oncogene 26:7894–7903. ⁴²613 28. Tian Q, Stepaniants SB, Mao M, Weng L, Feetham MC, Doyle MJ, Yi EC, Dai H, ⁴⁴7614 Thorsson V, Eng J, Goodlett D, Berger JP, Gunter B, Linseley PS, Stoughton RB, ⁴⁵615 Aebersold R, Collins SJ, Hanlon WA, Hood LE 2004 Integrated genomic and ⁴⁶616 proteomic analyses of gene expression in Mammalian cells. Mol Cell Proteomics ⁵⁷617 3:960–9. ⁵¹617 3:960–9. ⁵²618 29. Hébrant A, Dom G, Dewaele M, Andry G, Trésallet C, Leteurtre E, Dumont JE, ⁵³618 29. Hébrant A, Dom G, Dewaele M, Andry G, Trésallet C, Leteurtre E, Dumont JE, ⁵⁴619 Maenhaut C 2012 mRNA expression in papillary and anaplastic thyroid carcinoma: ⁵⁵619 molecular anatomy of a killing switch. PLoS One 7:e37807. 	26 27	606	26.	Schweppe RE, Klopper JP, Korch C, Pugazhenthi U, Benezra M, Knauf JA, Fagin JA,
 Profiling Analysis of Cross-Contamination Resulting in Cell Line Redundancy and Misidentification. J Clin Endocrinol Metab 93:4331–4341. 609 Misidentification. J Clin Endocrinol Metab 93:4331–4341. 610 27. Delys L, Detours V, Franc B, Thomas G, Bogdanova T, Tronko M, Libert F, Dumont JE, Maenhaut C 2007 Gene expression and the biological phenotype of papillary thyroid carcinomas. Oncogene 26:7894–7903. 613 28. Tian Q, Stepaniants SB, Mao M, Weng L, Feetham MC, Doyle MJ, Yi EC, Dai H, Thorsson V, Eng J, Goodlett D, Berger JP, Gunter B, Linseley PS, Stoughton RB, Aebersold R, Collins SJ, Hanlon WA, Hood LE 2004 Integrated genomic and proteomic analyses of gene expression in Mammalian cells. Mol Cell Proteomics 617 3:960–9. 618 29. Hébrant A, Dom G, Dewaele M, Andry G, Trésallet C, Leteurtre E, Dumont JE, Maenhaut C 2012 mRNA expression in papillary and anaplastic thyroid carcinoma: molecular anatomy of a killing switch. PLoS One 7:e37807. 	28 29	607		Marlow LA, Copland JA, Smallridge RC, Haugen BR 2008 Deoxyribonucleic Acid
 ³² 609 Misidentification. J Clin Endocrinol Metab 93:4331–4341. ³⁴ 610 27. Delys L, Detours V, Franc B, Thomas G, Bogdanova T, Tronko M, Libert F, Dumont JE, Maenhaut C 2007 Gene expression and the biological phenotype of papillary thyroid carcinomas. Oncogene 26:7894–7903. ⁴¹ 613 28. Tian Q, Stepaniants SB, Mao M, Weng L, Feetham MC, Doyle MJ, Yi EC, Dai H, Thorsson V, Eng J, Goodlett D, Berger JP, Gunter B, Linseley PS, Stoughton RB, Aebersold R, Collins SJ, Hanlon WA, Hood LE 2004 Integrated genomic and proteomic analyses of gene expression in Mammalian cells. Mol Cell Proteomics 3:960–9. ⁵¹ 618 29. Hébrant A, Dom G, Dewaele M, Andry G, Trésallet C, Leteurtre E, Dumont JE, Maenhaut C 2012 mRNA expression in papillary and anaplastic thyroid carcinoma: molecular anatomy of a killing switch. PLoS One 7:e37807. 	30 31 32	608		Profiling Analysis of Cross-Contamination Resulting in Cell Line Redundancy and
 ³⁵ 610 27. Delys L, Detours V, Franc B, Thomas G, Bogdanova T, Tronko M, Libert F, Dumont JE, Maenhaut C 2007 Gene expression and the biological phenotype of papillary ⁴⁰ 612 thyroid carcinomas. Oncogene 26:7894–7903. ⁴¹ 613 28. Tian Q, Stepaniants SB, Mao M, Weng L, Feetham MC, Doyle MJ, Yi EC, Dai H, ⁴¹ 614 Thorsson V, Eng J, Goodlett D, Berger JP, Gunter B, Linseley PS, Stoughton RB, ⁴⁶ 615 Aebersold R, Collins SJ, Hanlon WA, Hood LE 2004 Integrated genomic and ⁴⁷ proteomic analyses of gene expression in Mammalian cells. Mol Cell Proteomics ⁵¹ 617 3:960–9. ⁵² 618 29. Hébrant A, Dom G, Dewaele M, Andry G, Trésallet C, Leteurtre E, Dumont JE, ⁵³ 618 29. Hébrant A, Dom G, Dewaele M, Andry G, Trésallet C, Leteurtre E, Dumont JE, ⁵⁴ 619 Maenhaut C 2012 mRNA expression in papillary and anaplastic thyroid carcinoma: ⁵⁵ 620 molecular anatomy of a killing switch. PLoS One 7:e37807. 	32 33 34	609		Misidentification. J Clin Endocrinol Metab 93:4331–4341.
 ³⁷ 611 JE, Maenhaut C 2007 Gene expression and the biological phenotype of papillary ⁴⁰ 612 thyroid carcinomas. Oncogene 26:7894–7903. ⁴¹ 613 28. Tian Q, Stepaniants SB, Mao M, Weng L, Feetham MC, Doyle MJ, Yi EC, Dai H, ⁴⁴ 614 Thorsson V, Eng J, Goodlett D, Berger JP, Gunter B, Linseley PS, Stoughton RB, ⁴⁶ 615 Aebersold R, Collins SJ, Hanlon WA, Hood LE 2004 Integrated genomic and ⁴⁹ 616 proteomic analyses of gene expression in Mammalian cells. Mol Cell Proteomics ⁵¹ 617 3:960–9. ⁵³ 618 29. Hébrant A, Dom G, Dewaele M, Andry G, Trésallet C, Leteurtre E, Dumont JE, ⁵⁴ 619 Maenhaut C 2012 mRNA expression in papillary and anaplastic thyroid carcinoma: ⁵⁶ 620 molecular anatomy of a killing switch. PLoS One 7:e37807. 	35 36	610	27.	Delys L, Detours V, Franc B, Thomas G, Bogdanova T, Tronko M, Libert F, Dumont
 ⁵⁹ 612 thyroid carcinomas. Oncogene 26:7894–7903. 613 28. Tian Q, Stepaniants SB, Mao M, Weng L, Feetham MC, Doyle MJ, Yi EC, Dai H, 614 Thorsson V, Eng J, Goodlett D, Berger JP, Gunter B, Linseley PS, Stoughton RB, 615 Aebersold R, Collins SJ, Hanlon WA, Hood LE 2004 Integrated genomic and 616 proteomic analyses of gene expression in Mammalian cells. Mol Cell Proteomics 617 3:960–9. 618 29. Hébrant A, Dom G, Dewaele M, Andry G, Trésallet C, Leteurtre E, Dumont JE, 619 Maenhaut C 2012 mRNA expression in papillary and anaplastic thyroid carcinoma: 620 molecular anatomy of a killing switch. PLoS One 7:e37807. 	37 38	611		JE, Maenhaut C 2007 Gene expression and the biological phenotype of papillary
 613 28. Tian Q, Stepaniants SB, Mao M, Weng L, Feetham MC, Doyle MJ, Yi EC, Dai H, 614 Thorsson V, Eng J, Goodlett D, Berger JP, Gunter B, Linseley PS, Stoughton RB, 615 Aebersold R, Collins SJ, Hanlon WA, Hood LE 2004 Integrated genomic and 616 proteomic analyses of gene expression in Mammalian cells. Mol Cell Proteomics 617 3:960–9. 618 29. Hébrant A, Dom G, Dewaele M, Andry G, Trésallet C, Leteurtre E, Dumont JE, 619 Maenhaut C 2012 mRNA expression in papillary and anaplastic thyroid carcinoma: 620 molecular anatomy of a killing switch. PLoS One 7:e37807. 	39 40 41	612		thyroid carcinomas. Oncogene 26 :7894–7903.
 ⁴⁴ ⁴⁵ ⁴⁶ ⁴⁷ ⁴⁶ ⁴⁷ ⁴⁶ ⁴⁷ ⁴⁶ ⁴⁷ ⁴⁶ ⁴⁷ ⁴⁸ ⁴⁹ ⁴⁶ ⁴⁷ ⁴⁸ ⁴⁹ ⁵¹ ⁵¹ ⁵¹ ⁵¹ ⁵¹ ⁵¹ ⁵² ⁵¹ ⁵³ ⁵³ ⁵⁴ ⁵⁵ ⁵⁶ ⁵⁷ ⁵⁶ ⁵⁷ ⁵⁷ ⁵⁶ ⁵⁷ ⁵⁶ ⁵⁷ ⁵⁷ ⁵⁸ ⁵⁰ ⁵⁰ ⁵¹ ⁵² ⁵³ ⁵⁴ ⁵⁵ ⁵⁶ ⁵⁷ ⁵⁶ ⁵⁷ ⁵⁷ ⁵⁸ ⁵⁰ ⁵⁰ ⁵¹ ⁵² ⁵³ ⁵⁴ ⁵⁵ ⁵⁶ ⁵⁷ ⁵⁷ ⁵⁶ ⁵⁷ ⁵⁷ ⁵⁸ ⁵⁰ ⁵⁰ ⁵¹ ⁵² ⁵³ ⁵⁴ ⁵⁵ ⁵⁵ ⁵⁶ ⁵⁷ ⁵⁷ ⁵⁷ ⁵⁸ ⁵⁹ ⁵⁰ ⁵¹ ⁵² ⁵³ ⁵⁴ ⁵⁵ ⁵⁵ ⁵⁶ ⁵⁷ ⁵⁷ ⁵⁶ ⁵⁷ ⁵⁷ ⁵⁸ ⁵⁰ ⁵⁹ ⁵⁰ ⁵¹ ⁵² ⁵³ ⁵⁴ ⁵⁵ ⁵⁵ ⁵⁶ ⁵⁷ ⁵⁷ ⁵⁸ ⁵⁹ ⁵⁰ ⁵¹ ⁵² ⁵³ ⁵⁴ ⁵⁵ ⁵⁵ ⁵⁵ ⁵⁶ ⁵⁷ ⁵⁷ ⁵⁸ ⁵⁹ ⁵⁹ ⁵⁹ ⁵¹ ⁵² ⁵³ ⁵⁴ ⁵⁵ ⁵⁵ ⁵⁶ ⁵⁷ ⁵⁶ ⁵⁷ ⁵⁷ ⁵⁸ ⁵⁹ ⁵⁹ ⁵⁹ ⁵¹ ⁵² ⁵³ ⁵⁴ ⁵⁵ ⁵⁵<td>42 43</td><td>613</td><td>28.</td><td>Tian Q, Stepaniants SB, Mao M, Weng L, Feetham MC, Doyle MJ, Yi EC, Dai H,</td>	42 43	613	28.	Tian Q, Stepaniants SB, Mao M, Weng L, Feetham MC, Doyle MJ, Yi EC, Dai H,
 Aebersold R, Collins SJ, Hanlon WA, Hood LE 2004 Integrated genomic and proteomic analyses of gene expression in Mammalian cells. Mol Cell Proteomics 617 3:960–9. 618 29. Hébrant A, Dom G, Dewaele M, Andry G, Trésallet C, Leteurtre E, Dumont JE, Maenhaut C 2012 mRNA expression in papillary and anaplastic thyroid carcinoma: molecular anatomy of a killing switch. PLoS One 7:e37807. 	44 45	614		Thorsson V, Eng J, Goodlett D, Berger JP, Gunter B, Linseley PS, Stoughton RB,
 ⁴⁹ 616 proteomic analyses of gene expression in Mammalian cells. Mol Cell Proteomics ⁵¹ 617 3:960–9. ⁵³ 618 29. Hébrant A, Dom G, Dewaele M, Andry G, Trésallet C, Leteurtre E, Dumont JE, ⁵⁵ 619 Maenhaut C 2012 mRNA expression in papillary and anaplastic thyroid carcinoma: ⁵⁸ 620 molecular anatomy of a killing switch. PLoS One 7:e37807. 	46 47 48	615		Aebersold R, Collins SJ, Hanlon WA, Hood LE 2004 Integrated genomic and
51 52 53 546173:960–9.53 54 55 56 56 56 57 619Hébrant A, Dom G, Dewaele M, Andry G, Trésallet C, Leteurtre E, Dumont JE, Maenhaut C 2012 mRNA expression in papillary and anaplastic thyroid carcinoma: molecular anatomy of a killing switch. PLoS One 7:e37807.	49 50	616		proteomic analyses of gene expression in Mammalian cells. Mol Cell Proteomics
 618 29. Hébrant A, Dom G, Dewaele M, Andry G, Trésallet C, Leteurtre E, Dumont JE, 619 Maenhaut C 2012 mRNA expression in papillary and anaplastic thyroid carcinoma: 620 molecular anatomy of a killing switch. PLoS One 7:e37807. 	51 52	617		3 :960–9.
 Maenhaut C 2012 mRNA expression in papillary and anaplastic thyroid carcinoma: molecular anatomy of a killing switch. PLoS One 7:e37807. 	53 54	618	29.	Hébrant A, Dom G, Dewaele M, Andry G, Trésallet C, Leteurtre E, Dumont JE,
 molecular anatomy of a killing switch. PLoS One 7:e37807. 	55 56 57	619		Maenhaut C 2012 mRNA expression in papillary and anaplastic thyroid carcinoma:
	58 59 60	620		molecular anatomy of a killing switch. PLoS One 7:e37807.

1 2										
3 4	621	30.	Strickaert A, Saiselet M, Dom G, De Deken X, Dumont JE, Feron O, Sonveaux P,							
5 6	622		Maenhaut C 2016 Cancer heterogeneity is not compatible with one unique cancer cell							
7 8	623		metabolic map. Oncogene 1–6.							
9 10 11 12 13 14 15	624	31.	Corbet C, Feron O 2017 Tumour acidosis: from the passenger to the driver's seat. Nat							
	625		Rev Cancer 17:577–593.							
	626	32.	Ganapathy-Kanniappan S, Geschwind J-FH 2013 Tumor glycolysis as a target for							
16 17	627		ancer therapy: progress and prospects. Mol Cancer 12:152.							
18 19 20	628	33.	Porporato PE, Dhup S, Dadhich RK, Copetti T, Sonveaux P 2011 Anticancer targets in							
20 21 22	629		the glycolytic metabolism of tumors: A comprehensive review. Front Pharmacol							
23 24	630		AUG:1–18.							
25 26 27 28 29 30 31	631	34.	Sellers K, Fox MP, Ii MB, Slone SP, Higashi RM, Miller DM, Wang Y, Yan J, Yuneva							
	632		MO, Deshpande R, Lane AN, Fan TW 2015 Pyruvate carboxylase is critical for non –							
	633		small-cell lung cancer proliferation. J Clin Invest 125:687–698.							
32 33	634	35.	Phannasil P, Thuwajit C, Warnnissorn M, Wallace JC, MacDonald MJ, Jitrapakdee S							
34 35 36	635		2015 Pyruvate carboxylase is up-regulated in breast cancer and essential to support							
37 38	636		growth and invasion of MDA-MB-231 cells. PLoS One 10:1–20.							
39 40	637	36.	Vincent EE, Sergushichev A, Griss T, Gingras MC, Samborska B, Ntimbane T, Coelho							
41 42	638		PP, Blagih J, Raissi TC, Choinière L, Bridon G, Loginicheva E, Flynn BR, Thomas							
43 44 45	639		EC, Tavaré JM, Avizonis D, Pause A, Elder DJE, Artyomov MN, Jones RG 2015							
46 47	640		Mitochondrial Phosphoenolpyruvate Carboxykinase Regulates Metabolic Adaptation							
48 49	641		and Enables Glucose-Independent Tumor Growth. Mol Cell 60 :195–207.							
50 51 52	642	37.	Chen JQ, Russo J 2012 Dysregulation of glucose transport, glycolysis, TCA cycle and							
52 53 54	643		glutaminolysis by oncogenes and tumor suppressors in cancer cells. Biochim Biophys							
55 56	644		Acta - Rev Cancer 1826 :370–384.							
57 58	645	38	Röhrig F. Schulze A 2016 The multifaceted roles of fatty acid synthesis in cancer Nat							
59 60		50.								

Page 35 of 50

1

2 3 4	646		Rev Cancer 16:732–749.					
5 6	647	39.	Park JH, Vithayathil S, Kumar S, Sung P-L, Dobrolecki LE, Putluri V, Bhat VB,					
7 8	648		Bhowmik SK, Gupta V, Arora K, Wu D, Tsouko E, Zhang Y, Maity S, Taraka R,					
9 10 11	649		Graham BH, Frigo DE, Coarfa C, Yotnda P, Sreekumar A, Lewis MT, Creighton CJ,					
12 13	650		Wong LC, Kaipparettu BA 2016 Fatty Acid Oxidation-Driven Src Links Mitochondrial					
14 15	651		Energy Reprogramming and Regulation of Oncogenic Properties in Triple Negative					
16 17 18	652		Breast Cancer. Cell Rep 14:2154–2165.					
19 20	653	40.	Pérez-Escuredo J, Van Hée VF, Sboarina M, Falces J, Payen VL, Pellerin L, Sonveaux					
21 22	654		P 2016 Monocarboxylate transporters in the brain and in cancer. Biochim Biophys					
23 24 25	655		Acta.					
25 26 27	656	41.	Feron O 2009 Pyruvate into lactate and back: From the Warburg effect to symbiotic					
28 29	657		energy fuel exchange in cancer cells. Radiother Oncol 92:329-333.					
30 31	658	42.	Maher EA, Marin-Valencia I, Bachoo RM, Mashimo T, Raisanen J, Hatanpaa KJ,					
32 33 34	659		Jindal A, Jeffrey FM, Choi C, Madden C, Mathews D, Pascual JM, Mickey BE, Malloy					
35 36	660		CR, DeBerardinis RJ 2012 Metabolism of [U-13C]glucose in human brain tumors in					
37 38	661		vivo. NMR Biomed 25 :1234–1244.					
39 40 41	662	43.	Afonso J, Santos LL, Morais A, Amaro T, Longatto-Filho A, Baltazar F 2016					
41 42 43	663		Metabolic coupling in urothelial bladder cancer compartments and its correlation to					
44 45	664		tumor aggressiveness. Cell Cycle 15 :368–380.					
46 47	665	44.	Hensley CT, Faubert B, Yuan Q, Lev-Cohain N, Jin E, Kim J, Jiang L, Ko B, Skelton					
48 49 50	666		R, Loudat L, Wodzak M, Klimko C, McMillan E, Butt Y, Ni M, Oliver D, Torrealba J,					
51 52	667		Malloy CR, Kernstine K, Lenkinski RE, DeBerardinis RJ 2016 Metabolic					
53 54	668		Heterogeneity in Human Lung Tumors. Cell 164 :681–694.					
55 56	669	45.	Swanton C 2012 Intratumour Heterogeneity : Evolution through Space and Time.					
57 58 59 60	$\binom{7}{9}$ 670 Cancer Res 72 :4875–4882.							

FIGURE LEGENDS

Figure 1: Protein expression levels of metabolic enzymes or proteins measured by MS/MS analysis, and presented in log2 of expression ratios (tumor/normal). DB number = accession number in Uniprot database. Cutoff of the expression ratios in log2 is 1; (red: expression level \geq 1; green: expression level \leq -1).

Figure 2: Heatmap of mRNA expression levels of metabolic proteins. Expression levels were obtained by Affymetrix microarrays and are presented in log2 of expression ratios (tumor/normal). Genes were grouped by metabolic pathways: glycolysis, TCA cycle et "others". PTCa-e were the 5 PTC analyzed by MS/MS spectrometry.

Figure 3: Pyruvate carboxylase expression in PTC. (a,b) : Upregulation of PC mRNA was measured by qRT-PCR, and the results are presented as log2 of expression ratios (a: tumor versus normal adjacent tissue; b: tumor versus a pool of 22 normal tissues). The expressions were normalized with the housekeeping genes NEDD8 et TTC1. (c) The upregulation of PC was validated at the protein level by Western blotting (N: normal; T: tumor).

Figure 4: PC knockdown following siRNA transfection and functional effects in thyroid cell lines. Transfection of siRNA against PC (siPC) was performed in 3 thyroid cell lines (TPC1, 8505C et HTori). Cell lines were also transfected with a negative control siRNA (siCTRL) or not transfected (NT). PC expression was measured (a) at the mRNA level by qRT-PCR after 48 hours in TPC1 cells and (b) at the protein level by Western blotting after 72 hours in the three cell lines (n=5). The mRNA expressions are represented with the mean \pm SD, and the t-test showed a significant difference between transfected conditions (siCTRL vs siPC);

Thyroid

***: p-value < 0.001. (c) Cell lines were labelled with EdU 72 after siRNA transfection and the percentage of EdU positive cells among 10 000 cells was analyzed by flow cytometry (N=4). Results are represented with mean \pm SD, and a student paired t-test showed a significant difference between transfected conditions (siCTRL vs siPC); *: p-value = 0,0247; **: p-value = 0,017; ns: not significant. (d)(e) Cells were seeded in migration or invasion chambers. FBS was used as chemoattractant. The cells were counted after (d) migration through the porous membrane, (e) invasion through the matrigel membrane (N=3). Results are represented with mean \pm SD, and a t-test showed a significant difference between transfection conditions (siCTRL vs siPC) for TPC1 and 8505C cells; *: p-value < 0.05; **: p-value < 0.001; ns: not significant.

Figure 5: Oxygen consumption rates measurements following PC knockdown. TPC1, HTori and 8505C cells were transfected with siPC or siCTRL 72h before OCR measurements, which were taken before and after substrate addition. Substrates: Glc: glucose, Lac: lactate, Pyr: pyruvate, Gln: glutamine. BPTES: glutaminase inhibitor. (a) \triangle OCR data for one representative experiment of 2 independent ones (2 biological replicates) and 6 measurements by experiment (6 technical replicates). (b) OCR over time data for one representative experiment with 6 measurements (6 technical replicates) for each time point before and after the addition of pyruvate.

Figure 6: Expression of different metabolic enzymes and transporters in PTC and their normal adjacent tissues (N). (a)(b) Immunostainings were performed on paraffin sections with antibodies against the following proteins: PC, PCK2, GLS, ECH1, PCCB, LDHA, LDHB, MCT1, MCT4, HK2, GLUT1, PDH α 1, and PDK (N=4). A negative control (no primary

antibody) has been performed to confirm the specificity of each antibody. (c) Expression levels

SUPPLEMENTARY DATA

Figure S: DNA profiling by STR analysis of the HTori-3 cell line.

Table S1: Patient information, clinical data, and presence of BRAF-mutation for the 5 PTC analyzed by MS/MS. W: woman, M: man, TNM: tumor lymph nodes metastasis, mut: mutation

<text> Table S2: Identified proteins by MS/MS with a more than 2 fold deregulated expression in the 5 PTC compared to normal tissues. Green: log2 ratios of underexpressed proteins in tumors; Red: log2 ratios of overexpressed proteins in tumors.

		1						
	Protein	Name	DB number	PTC-a	PTC-b	PTC-c	PTC-d	PTC-e
S	HK1	Hexokinase 1	E7ENR4	1,2	1,7		0,8	-0,1
	GPI	Glucose-6-phosphate isomerase	B4DG39	0,7	0,2		-0,7	1,3
SI	PFKP	Phosphofructokinase, platelet	Q5VSR7	-2,2			1,1	0,4
X	ALDOA	Fructose-bisphosphate aldolase	B7Z3K9	0,7			0,8	0,6
	TPI	Triosephosphate isomerase	Q53HE2	0,9				0,8
B	GAPDH	Glyceraldehyde-3-phosphate dehydrogenase	E7EUT4	1,1		1,7	1,3	1,2
X	PGK1	Phosphoglycerate kinase 1	A8K4W6	0,5	1,7	-2,1	0,9	-0,3
I	PGM	Phosphoglycerate mutase	Q53G35	-0,1	-0,8		0,5	
0	ENO2	Enolase 2	Q6FHV6					0,0
	PKM2	Pyruvate kinase	B4DUU6					-0,7
	PC	Pyruvate carboxylase	E9PS68					
	PDHA1	Pyruvate dehydrogenase subunit A1	A5YVE9					
	PDHB	Pyruvate dehydrogenase subunit B	B4DDD7		0,2	2,4	0,9	
Щ	DLAT	Dihydrolipoamide S-acetyltransferase	Q86YI5	0,8			1,4	
E	PDHX	Pyruvate dehydrogenase complex, component X	B2R673	0,3	-0,1			
\sum	PCK2	Pyruvate carboxykinase	Q6IB91					0,8
5	CS	Citrate synthase	B4DJV2					
	ACO2	Aconitase 2	A2A274	0,5			0,3	
UP V	IDH2	Isocitrate dehydrogenase 2	Q53GL5				0,2	
Ĕ	FH	Fumarate hydratase	B1ANK7		0,6			
	SUCLG2	Succinate-CoA ligase subunit beta	C9JVT2					
	SDHB	Succinate dehydrogenase complex subunit B	Q0QEY7					
	MDH2	Malate dehydrogenase 2	Q6FHZ0	-1,9	-0,1		0,5	0,0
	ME	Malic enzyme	B2R8J2	-0,1				
	MDH1	Malate dehydrogenase 1	F5H098	0,8	0,7		0,2	
S	CTP	Mitochondrial citrate transport protein	Q6LAP8					
L X	PCCA	Propionyl Coenzyme A carboxylase, alpha	B2RDE0					
H	PCCB	Propionyl Coenzyme A carboxylase, bêta	E7EX59	0,0			-0,9	
	ECH1	3,5-delta 2,4-dienoyl-CoA isomerase, mitochondrial	B4DVS4					
0	LDHA	L-lactate dehydrogenase A	B7Z5E3		1,4		0,6	
	LDHB	L-lactate dehydrogenase B	Q5U077		-0,2		0,4	
	GLS	Glutaminase	A8K132	-1,9				

Figure 1: Protein expression levels of metabolic enzymes or proteins measured by MS/MS analysis, and presented in log2 of expression ratios (tumor/normal). DB number = accession number in Uniprot database. Cutoff of the expression ratios in log2 is 1; (red: expression level \geq 1; green: expression level \leq -1).

227x180mm (300 x 300 DPI)

Figure 2: Heatmap of mRNA expression levels of metabolic proteins. Expression levels were obtained by Affymetrix microarrays and are presented in log2 of expression ratios (tumor/normal). Genes were grouped by metabolic pathways: glycolysis, TCA cycle et "others". PTCa-e were the 5 PTC analyzed by MS/MS spectrometry.

225x280mm (300 x 300 DPI)

Thyroid

Figure 3: Pyruvate carboxylase expression in PTC. (a,b) : Upregulation of PC mRNA was measured by qRT-PCR, and the results are presented as log2 of expression ratios (a: tumor versus normal adjacent tissue; b: tumor versus a pool of 22 normal tissues). The expressions were normalized with the housekeeping genes NEDD8 et TTC1. (c) The upregulation of PC was validated at the protein level by Western blotting (N: normal; T: tumor).

Figure 4: PC knockdown following siRNA transfection and functional effects in thyroid cell lines. Transfection of siRNA against PC (siPC) was performed in 3 thyroid cell lines (TPC1, 8505C et HTori). Cell lines were also transfected with a negative control siRNA (siCTRL) or not transfected (NT). PC expression was measured (a) at the mRNA level by qRT-PCR after 48 hours in TPC1 cells and (b) at the protein level by Western blotting after 72 hours in the three cell lines (n=5). The mRNA expressions are represented with the mean ± SD, and the t-test showed a significant difference between transfected conditions (siCTRL vs siPC); ***: p-value < 0.001. (c) Cell lines were labelled with EdU 72 after siRNA transfection and the percentage of EdU positive cells among 10 000 cells was analyzed by flow cytometry (N=4). Results are represented with mean ± SD, and a student paired t-test showed a significant difference between transfected conditions (siCTRL vs siPC); *: p-value = 0,0247; **: p-value = 0,017; ns: not significant. (d)(e) Cells were seeded in migration or invasion chambers. FBS was used as chemoattractant. The cells were counted after (d) migration through the porous membrane, (e) invasion through the matrigel membrane (N=3). Results are represented with mean ± SD, and a t-test showed a significant difference between transfection conditions (siCTRL vs siPC) for TPC1 and 8505C cells; *: p-value < 0.05; **: p-value < 0.001; ns: not significant.

Thyroid

Figure 5: Oxygen consumption rates measurements following PC knockdown. TPC1, HTori and 8505C cells were transfected with siPC or siCTRL 72h before OCR measurements, which were taken before and after substrate addition. Substrates: Glc: glucose, Lac: lactate, Pyr: pyruvate, Gln: glutamine. BPTES: glutaminase inhibitor. (a) ΔOCR data for one representative experiment of 2 independent ones (2 biological replicates) and 6 measurements by experiment (6 technical replicates). (b) OCR over time data for one representative experiment with 6 measurements (6 technical replicates) for each time point before and after the addition of pyruvate.

Figure 6: Expression of different metabolic enzymes and transporters in PTC and their normal adjacent tissues (N). (a)(b) Immunostainings were performed on paraffin sections with antibodies against the following proteins: PC, PCK2, GLS, ECH1, PCCB, LDHA, LDHB, MCT1, MCT4, HK2, GLUT1, PDHa1, and PDK (N=4). A negative control (no primary antibody) has been performed to confirm the specificity of each antibody.

Thyroid

< C	Gender	Age of diagnosis	Histologic al variant	TNM	Lesion size (cm)	BRAF mut	
PTC-a	W	39	classical	pT1bN0M0	1.1	yes	
РТС-Ь	W	61	classical	Pt3N0M0	1.2	yes	
PTC-c	М	85	classical	pT4aN1aMO	3	yes	
PTC-d	М	44	classical	Pt1N0M0	0.6	yes	
			classical				
РТС-е	W	58	(partially	pT1NxM0	1.4	yes	
			ioiiicular)				

Protein	Name	DB number	PTC-a	PTC-b	PTC-c	PTC-d	PTC-e
SH3BP4	SH3-domain binding protein 4	A8K594	-2.9	-4.1	-5.1	-6.1	-9.5
IQGAP1	IQ motif containing GTPase activating protein 1	A4QPB0	1.5	2.4	1.6	1.6	1.9
KRT8	Keratin 8	F8VXB4	1.6	2.7	1.2	5.2	3.6
SERPINA1	Epididymis secretory sperm binding protein Li 44a	E9KL23	3.6	2.6	1.3	1.3	3.1
KRT7	Keratin 7	E7ES34	2.4	3.0	1.4	4.9	2.3
ATP5B	ATP synthase subunit beta (Fragment)	Q0QEN7	1.2	4.4	2.4	2.5	3.0
CTSB	Cathepsin B	A8K2H4	1.4	3.3	1.9	1.1	2.5
ACADVL	Very long-chain specific acyl-CoA dehydrogenase, mitochondrial	F5H2A9	1.5	2.1	2.1	2.2	2.9
HSPD1	Mitochondrial heat shock 60kD protein 1 variant 1	B3GQS7	1.9	3.7	2.8	3.5	4.2
RRBP1	p180/ribosome receptor	A7BI36	1.3	1.5	1.3	1.6	1.4
GAPDH	Glyceraldehyde-3-phosphate dehydrogenase	E7EUT4	1.1	1.6	1.2	1.3	1.7
ANXA5	Annexin 5	D6RBL5	1.2	2.1	1.1	4.2	2.9
SUCLG2	Succinate-CoA ligase [GDP-forming] subunit beta, mitochondrial	C9JVT2	2.1	5.3	2.0	1.9	4.8
AK2	Adenylate kinase 2, mitochondrial	F8W1A4	1.0	2.9	2.1	2.1	3.0
PHB2	Prohibitin-2	F5GY37	1.4	3.8	3.1	1.5	3.4
LONP1	Lon protease homolog, mitochondrial	B4DPX0	1.2	1.1	2.7	2.4	3.9
HADH2	3-hydroxyacyl-CoA dehydrogenase type-2	Q6IBS9	1.1	2.3	2.8	1.6	2.2
РНВ	Prohibitin, isoform CRA a	A8K401	2.2	3.2	1.9	1.5	1.9
NME1-NME2	Nucleoside diphosphate kinase	032012	1.1	2.8	1.8	1.5	2.4
PDHA1	Pyruvate dehydrogenase E1 component subunit alpha	A5YVE9	3.7	3.0	1.6	1.1	1.8
IVD	Isovalervl Coenzyme A dehydrogenase	Q53XZ9	1.4	3.0	2.4	1.3	2.0
DECR1	2,4-dienovl-CoA reductase, mitochondrial	B7Z6B8	1.6	2.6	4.6	1.0	2.3
PRDX3	Thioredoxin-dependent peroxide reductase, mitochondrial	E9PH29	1.5	2.9	1.8	2.3	1.8
HIBADH	3'-hvdroxvisobutvrate dehvdrogenase, mitochondrial	Q546Z2	1.1	4.9	2.5	1.6	2.9
/	60S ribosomal protein L6	Q9HBB3	1.2	1.7	1.7	1.2	3.5
, ,	Ribosomal protein L4 variant (Fragment)	Q59GY2	1.5	2.7	1.3	1.6	1.6
VDAC1	Voltage-dependent anion-selective channel protein 1	B3KTS5	2.0	4.6	3.0	2.7	2.7
KRT19	Keratin 19	C9JM50	3.6	5.0	3.2	3.1	3.4
CS	Citrate synthase	B4DJV2	2.0	2.4	1.2	2.0	2.3
/	, UV excision repair protein RAD23 homolog B	B4DEA3	2.3	2.3	2.0	1.5	1.5
CRYZ	Quinone oxidoreductase	A6NN60	1.0	2.6	1.6	1.6	1.5
SOD2	Superoxide dismutase (Fragment)	Q7Z7M4	2.3	4.9	2.2	2.7	4.1
DCI	Dodecenovl-Coenzyme A delta isomerase, isoform CRA a	Q96DC0	1.4	2.4	2.5	1.8	3.1
MSN	MSN protein (Fragment)	Q6PJT4	2.0	2.2	1.2	2.0	1.1
EEF1G	Eukarvotic translation elongation factor 1 gamm	Q53YD7	1.2	2.2	1.1	2.4	1.3
RPL14	Ribosomal protein L14 variant	Q6IPH7	1.0	3.2	1.9	2.4	1.0
/	Epididymal secretory protein E1	B4DV10	2.3	4.9	3.9	1.5	3.7
RPL7A	Ribosomal protein L7a	Q5T8U4	1.2	1.2	1.3	1.3	1.4
C1OBP	Complement component 1. a subcomponent binding protein	A8K651	1.8	5.0	1.1	1.7	2.4
FN1	Fibronectin splice variant E (Fragment)	A6YID6	4.9	8.0	1.9	3.1	4.7
DAC1	Des related C2 betulinum tovin substrate 1	A4D2D1	1.1	1.1	1.4	6.2	2.0

Page 49 of 50	Thyroid
1 PC 2 PC 3 AKR1A1 4 ETHE1 5 / 6 KRT7 HIBCH	Pyruvate carboxylase Alcohol dehydrogenase [NADP(+)] Ethylmalonic encephalopathy 1, isoform CRA_a Cytosol aminopeptidase Keratin 7 3-bydroxyisobutyryl-CoA bydrolase, mitochondrial

cAMP-dependent protein kinase type II-alpha regulatory subunit

Propionyl Coenzyme A carboxylase, alpha polypeptide

SAP domain-containing ribonucleoprotein

Heterogeneous nuclear ribonucleoprotein D-like

Succinate-CoA ligase subunit betaG2 (Fragment)

Voltage-dependent anion-selective channel protein 2

S100 calcium binding protein A13, isoform CRA_a (Fragment)

SAM domain-and HD domain-containing protein 1 variant (Fragment)

Delta 3,5-delta 2,4-dienoyl-CoA isomerase, mitochondrial

Chaperonin containing TCP1, subunit 6A isoform a variant (Fragment)

My K

S100 calcium binding protein A11

Moderately similar to Cathepsin B

Cathepsin H

MHC class II antigen

Tumor protein D52

MICOS complex subunit

Tumor protein D52-like 2

Peptidylprolyl isomerase

THO complex subunit 4

Complement factor I

Ribosomal protein S27

Ribosomal protein L14

Prohibitin-2

Poly [ADP-ribose] polymerase

Cytidylate kinase, isoform CRA_a

Gamma-glutamylcyclotransferase

ATP synthase subunit g, mitochondrial

ATP synthase subunit beta

High-mobility group AT-hook 2

Gamma-glutamylcyclotransferase

Uncharacterized protein FAM162A

SUMO-1 activating enzyme subunit 2

Solute carrier family 25, member 24

Actin related protein 2/3 complex subunit 3

Sorting nexin 1 isoform a variant (Fragment)

NHP2 non-histone chromosome protein 2-like 1

E9PS68	3.0	3.7	2.2	2.7	3.2
Q5T621	1.6	1.2	2.1	2.4	1.1
B2RCZ7	4.7	5.4	2.3	1.1	3.0
B4DQG5	1.1	2.0	1.2	1.2	2.1
F8VZY5	2.2	2.5	1.5	5.0	2.8
B8ZZZO	1.5	2.4	2.0	1.8	3.7
B2R5H0	2.1	2.9	1.6	2.2	1.3
B4DL49	1.4	3.3	1.9	1.1	2 .5
Q9BUB1	1.3	1.6	3.1	5.3	1.3
Q59ET3	2.1	1.3	1.2	3.6	3.4
Q6IBC3	2.4	8.2	3.8	2.2	3.7
B2RDE0	1.6	1.1	3.2	1.7	2.3
B4DVS4	5.4	2.9	5.2	1.1	1.8
Q4ZJJ2	1.5	1.7	1.1	1.2	1.9
F8VZQ9	2.4	1.8	1.0	2.0	3.8
B4DTA2	1.8	3.5	1.8	1.4	1.8
C9JRZ6	1.5	3.4	1.1	3.6	1.3
Q5U0E0	2.2	5.1	1.9	4.2	1.7
C9J502	1.5	2.4	1.5	2.5	2.4
Q1M183	4.3	2.3	4.6	5.0	3.3
Q3ZCW5	2.2	4.6	5.9	1.5	4.8
Q0VDC6	1.4	2.0	1.3	3.4	3.6
B8ZZN4	3.7	2.7	3.7	3.7	3.0
F8W7Q4	2.2	6.9	2.9	1.7	3.3
B2RDF5	1.8	3.6	2.9	2.2	1.7
Q5JSD2	2.1	4.6	1.2	1.7	4.4
Q2LE71	2.2	5.9	2.4	7.7	5.7
Q59GU6	3.4	2.0	1.5	3.2	1.3
D3DV53	2.3	2.2	1.3	2.5	1.6
E9PB61	1.2	1.2	4.1	3.6	1.2
Q6FHM6	3.8	1.1	3.3	2.1	3.4
E7ETH0	2.4	2.2	3.8	1.3	1.7
B7ZB41	2.8	5.5	4.3	4.7	3.2
Q5T4L6	1.2	7.0	1.2	1.9	1.9
B4E0E1	2.0	1.2	7.0	7.8	3.7
F8VPV9	1.2	4.4	2.4	2.5	3.0
Q59H15	3.4	2.1	3.9	2.1	1.9
B2R6S5	4.6	1.3	1.0	1.2	3.2
B4DP75	1.4	3.8	3.1	1.5	3.4
A8K7N0	1.1	2.9	1.9	1.8	1.1
B8ZZK2	4.0	1.9	1.1	2.4	9.3
E9PN17	4.0	4.9	6.4	2.0	9.7

S100A11

1

PRKAR2A

/

CTSH

PCCA

ECH1

HLA-DRB1

SARNP

HNRPDL

CHCHD3

TPD52L2

TPD52

HMGA2

SUCLG2

FKBP1A

GGCT

FAM162A

UBA2

VDAC2

ARPC3

/

S100A13

THOC4

NHP2L1

CFI

1

RPS27

/

ATP5B

SAMHD1

СМРК

PHB2

RPL14

GGCT

ATP5L

1							
2	RPL17 Ribosomal protein L17	B4E3C2	1.2	1.4	5.8	8.6	8.2
3	TEAD3 TEAD3 protein (Fragment)	Q96G15	1.6	1.6	4.3	7.1	2.9
4 5							
6							
7							
8							
9 10							
11							
12							
13 14							
15							
16							
17 19							
18							
20							
21							
22							
24							
25							
20 27							
28							
29							
30 31							
32							
33							
34 35							
36							
37 38							
39							
40							
41							
42 43							
44							
45							

Page 51 of 50

Thyroid

Figure S: DNA profiling by STR analysis of the HTori-3 cell line.