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DUOX Defects and Their Roles in Congenital Hypothyroidism

Xavier De Deken and Françoise Miot

Abstract

Extracellular hydrogen peroxide is required for thyroperoxidase-mediated thyroid hormone synthesis in the
follicular lumen of the thyroid gland. Among the NADPH oxidases, dual oxidases, DUOX1 and DUOX2,
constitute a distinct subfamily initially identified as thyroid oxidases, based on their level of expression in the
thyroid. Despite their high sequence similarity, the two isoforms present distinct regulations, tissue
expression, and catalytic functions. Inactivating mutations in many of the genes involved in thyroid
hormone synthesis cause thyroid dyshormonogenesis associated with iodide organification defect. This
chapter provides an overview of the genetic alterations in DUOX2 and its maturation factor, DUOXA2,
causing inherited severe hypothyroidism that clearly demonstrate the physiological implication of this
oxidase in thyroid hormonogenesis. Mutations in the DUOX2 gene have been described in permanent
but also in transient forms of congenital hypothyroidism. Moreover, accumulating evidence demonstrates
that the high phenotypic variability associated with altered DUOX2 function is not directly related to the
number of inactivated DUOX2 alleles, suggesting the existence of other pathophysiological factors. The
presence of two DUOX isoforms and their corresponding maturation factors in the same organ could
certainly constitute an efficient redundant mechanism to maintain sufficient H2O2 supply for iodide
organification. Many of the reported DUOX2 missense variants have not been functionally characterized,
their clinical impact in the observed phenotype remaining unresolved, especially in mild transient congenital
hypothyroidism. DUOX2 function should be carefully evaluated using an in vitro assay wherein
(1) DUOXA2 is co-expressed, (2) H2O2 production is activated, (3) and DUOX2 membrane expression
is precisely analyzed.
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1 Introduction

In 1908, a huge oxidative burst was reported upon sea urchin egg
fertilization [1]. Hydrogen peroxide (H2O2) produced during this
process has been shown later to mediate the formation of covalent
dityrosine bounds by the ovoperoxidase in the extracellular matrix
protecting the egg from polyspermy [2]. The discovery in 1986 of
the molecular nature of the phagocyte oxidase, NOX2/gp91phox,
responsible for the “respiratory burst” [3] revealed that molecular
complexes present from fungi to mammals have been selected to
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produce ROS dedicated to specialized cellular functions in a variety
of subcellular compartments [4]. The existence of a thyroid H2O2-
generating system was postulated in the early seventies to be neces-
sary for thyroid hormone (TH) synthesis by the enzyme thyroper-
oxidase (TPO) [5]. Further biochemical studies demonstrated that
H2O2 was produced in the thyroid follicular space by a membrane-
bound NADPH-dependent flavoprotein using calcium ions to be
fully activated [6, 7]. Thirty years later, the molecular nature of the
entity responsible of the thyroid H2O2-generating system was dis-
covered by two independent groups following different strategies.
Starting from purified membranes from pig thyroid follicles, the
group of C. Dupuy isolated the p138Tox corresponding to the dual
oxidase DUOX2 lacking the first 338 amino acids [8]. Meanwhile,
based on functional similarities with NOX2, our group cloned two
cDNAs coding for the complete sequences of DUOX1 and
DUOX2 after the molecular screening of cDNA libraries generated
from human thyrocytes in primary culture [9]. These newmembers
of the NOX family present, respectively, 53% and 47% similarities
with the NOX2 catalytic core, including the six transmembrane
regions harboring the four histidines and the arginine involved in
the heme binding and the COOH intracellular extremity contain-
ing the FAD- and NADPH-binding sites characteristic of the
NADPH oxidase enzymes. The primary structure of the DUOX
proteins (1551 and 1548 amino acids for DUOX1 and DUOX2) is
extended at the NH2-extremity of the conserved catalytic domain
by an intracellular loop containing two EF-hand motifs and an
additional transmembrane segment followed by an extracellular
peroxidase homology domain (PHD) presenting 43% similarities
with TPO. The final demonstration of DUOX NADPH oxidase
activity has to wait six more additional years and the discovery of
the DUOXmaturation factors, DUOXA1 and DUOXA2, allowing
the reconstitution of a DUOX-based functional H2O2-generating
complex in heterologous cell systems [10]. Up to now, DUOX/
DUOXA expression has been documented in a growing list of
non-thyroid tissues, among which the salivary glands, the airways,
and the intestinal tract, revealing additional cellular functions asso-
ciated with DUOX-related H2O2 generation [11, 12]. In the pres-
ent review, we will mainly focus on the role of hydrogen peroxide
and DUOXs in thyroid function and their implication in inherited
congenital hypothyroidism (CH).

2 The Thyroid Gland

2.1 The Follicular

Structure

During evolution, the thyroid function emerges with the capacity
to concentrate iodide and to synthesize iodoproteins. Multiple
tissues of insects can accumulate radioiodide, but instead of TH
synthesis, these iodo-compounds mostly reflect by-products

668 Xavier De Deken and Françoise Miot



generated during the cuticle formation [13]. An important evolu-
tionary event was the development of iodination units in the endo-
style of protochordate species presenting a peroxidase activity
[14]. Most vertebrates possess a thyroid able to generate iodothyr-
onines. The thyroid architecture is characterized by follicular units
dispersed along the ventral aorta (between the first gill arch and the
bulbus arteriosus) like in the zebrafish [15] or encapsulated in a
compact glandular structure often divided in two lobes like in
mammals. These thyroid functional units are composed of a mono-
layer of cuboidal cells, the thyrocytes, surrounding a colloidal
lumen full of thyroglobulin (TG), the backbone of THs. The
polarized organization of the thyroid follicles is critical for iodide
concentration and TH storage as iodinated TG. These ovoid 3D
structures are embedded in a dense network of blood capillaries
allowing intense metabolite exchanges with the thyrocytes: iodide
uptake and TH secretion [16]. Thyroid hormones play major roles
in the regulation of multiple biological processes including devel-
opment, growth, and metabolism [17]. Their critical role in
embryogenesis is conserved in all vertebrates, especially for neuro-
nal and skeleton development.

Dietary iodine is reduced into iodide before its absorption in
the small intestine. About 20% of the iodide perfusing the thyroid is
removed at each passage by the basolateral sodium/iodide sympor-
ter protein (NIS) allowing iodide to be concentrated 20–50 times
in the thyroid (Fig. 1) [18]. However, under sufficient iodine
intake, 90% of ingested iodide is lost in urine excretion [19]. To
maintain a normal thyroid function, the recommended daily intake
of iodine is around 150 μg in human [20]. However, iodine defi-
ciency still remains a worldwide health problem promoting the
development of multinodular goiters and thyroid nodules and, in
case of severe iodine deficiency, causing hypothyroidism with men-
tal retardation and cretinism. The main sources of iodine are sea-
food products, iodized salts, and bakery products [21, 22]. After
NIS-mediated active transport from the blood, iodide is passively
transported across the apical membrane in the follicular lumen. The
transmembrane protein anion exchanger pendrin that exchanges
chloride for bicarbonate, iodide, or thiocyanate (SCN�) has been
suggested to be involved in this transport [23]. Pendrin protein is
expressed not only in the thyroid but also in other tissues, including
the kidney, the airways, the mammary gland, and the inner ear.
Pendred syndrome, an autosomal recessive disorder, is mainly char-
acterized by deafness, but some patients also suffer from hypothy-
roidism. However, no thyroid phenotype has been reported in the
pendrin knockout mice [24]. Recently, the calcium-activated chlo-
ride channel, anoctamin-1, has been demonstrated to mediate
iodide efflux across the apical membrane of thyrocytes [25].

DUOX in Congenital Hypothyroidism 669



2.2 Thyroid Hormone

Biosynthesis

In the follicular lumen, iodide is oxidized and covalently linked to
tyrosine residues of the macromolecule thyroglobulin [5]. This
so-called organification process is catalyzed by the transmembrane
thyroperoxidase at the apex of the thyrocytes in the presence of
H2O2 generated by DUOX (Fig. 1). A close proximity between
DUOX and TPO has been demonstrated at the plasma membrane
of the follicular cells [26, 27]. This apical membrane complex
named thyroxisome favors the hormonogenesis and limits H2O2

leakage [28]. Under sufficient iodine supply, the amount of H2O2

produced constitutes the limiting factor for TH synthesis [29]. The
933 residues of TPO present 44% sequence similarity with the
myeloperoxidase and is composed of a short intracellular COOH-
extremity, one transmembrane region, and a long catalytic ectodo-
main containing the heme moiety [30]. The final step of TH
biosynthesis consists of the TPO-mediated coupling reactions.
The assembly of two diiodotyrosines (DIT) forms the

Fig. 1 Thyroid hormone synthesis. At the basal pole of thyrocytes, iodide uptake
from the blood is mediated by the symporter NIS. Iodide is transported in the
follicular lumen via the iodide channel anoctamin-1 (ANO1) and the anion
exchanger pendrin (PDS). At the apex, thyroperoxidase (TPO) catalyzes iodide
oxidation and coupling to tyrosine residues of thyroglobulin (TG) in the presence
of H2O2 generated by DUOX/DUOXA complex. After endocytosis, thyroid hor-
mones (T3 and T4) are released from iodinated TG (TGI) by proteolytic cleavage.
Iodotyrosines (MITs and DITs) are deiodinated to recycle iodine by the iodotyr-
osine dehalogenase (DEHAL1). Thyroid hormones are secreted in the blood via
dedicated transporters like the monocarboxylate transporter 8 (MCT8). The
thyroid function is under the control of thyrotropin via its protein G-coupled
receptor (TSHr)
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3,5,30,50-tetraiodothyronine or thyroxin (T4), while the coupling
of one monoiodotyrosine (MIT) with one DIT generates the
3,5,30-triiodothyronine (T3), the active form of THs [31].

TG is the most abundant protein in the thyroid at a concentra-
tion of 200–300 mg/mL in the follicular lumen. Its main function
is to provide the polypeptide backbone for TH synthesis, as well as
TH storage and iodine depot when iodine availability is limited.
The TG transcript encodes a protein of 2767 amino acids contain-
ing numerous proline and cysteine residues in constant position
participating in the secondary structure of the protein via intramo-
lecular disulfide bonds [32]. Mature TG is mainly found as homo-
dimers with a molecular weight of 660 kDa, the carbohydrates
comprising about 10% of its weight. Among the 132 tyrosyl resi-
dues of TG dimers, only 25–30 participate in the iodination reac-
tions. These hormonogenic residues will be further used for the
coupling reactions. One iodophenoxyl group from a MIT or a DIT
residue called the “donor” is transferred onto a DIT residue called
the “acceptor” [33]. Only 5–16 can be associated to generate 2–8
molecules of T4 and T3 [34]. A typical distribution for a TG
containing 0.5% iodine is 5 residues of MIT, 5 of DIT, 2.5 of T4,
and 0.7 of T3 [35].

Before being delivered into the bloodstream, THs must be
released from TG after its internalization by endocytosis and fusion
in lysosomal compartments [36]. Proteolytic cleavage is mediated
by multiple glycohydrolases, phosphatases, sulfatases, and proteases
including the cathepsins D, H, and L [37]. Nevertheless, about
70% of the TG iodine contents are in the forms of MITs and DITs
which are deiodinated to recycle iodine in the intrathyroidal iodide
pool. An iodotyrosine dehalogenase (DEHAL1) present at the
apical plasma membrane and in endocytic vesicles of the thyrocytes
has been characterized [38]. Patients carrying biallelic loss-of-func-
tion mutations in the corresponding gene present high levels of
MIT/DIT in the urines and may develop a goiter under iodine
deficiency [39]. For decades, the lipophilic nature of T3/T4 sug-
gested that TH secretion was mediated mainly by simple diffusion
across the basal plasma membrane. However, recent data clearly
demonstrated that TH efflux from the thyroid in the blood and
their uptake by the targeted cells are mediated by dedicated trans-
porters like the monocarboxylate transporter 8 (MCT8) [40].

Thyroid physiology is mainly controlled by iodide availability
and the plasma level of THs. A negative feedback loop controls TH
synthesis and secretion via the thyrotropin (TSH) secreted by the
pituitary. The TSH receptor (TSHr), a G-protein-coupled receptor,
activates in humans two signaling pathways [41]: (1) The cAMP
cascade stimulates TH secretion as well as the expression of genes
involved in TH synthesis (NIS, TPO, TG); and (2) The Gq/pho-
spholipase C cascade activates TH synthesis mainly via the activa-
tion of the thyroid H2O2-generating system. Under intense and
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chronic thyroid stimulation by TSH, thyroid cell proliferation is
increased leading to the classical goiter formation. Iodine excess
can also rapidly induce an inhibition of thyroid function [42] called
the Wolff-Chaikoff effect mediated by an iodo-compound, 2-iodo-
hexadecanal, that is able to inhibit H2O2 generation, blocking
iodide organification [43].

3 The Thyroid H2O2-Generating Complex: DUOX/DUOXA

3.1 The DUOX/

DUOXA Gene Locus

DUOX and DUOXA genes are oriented head to head in an
operon-like unit, each couple of genes being located in tandem
on the long arm of chromosome 15 (Fig. 2A) and sharing the same
bidirectional promoter [10, 44, 45]. DUOX1 spans 36 kb and is
composed of 35 exons, DUOX2 spans 21.5 kb containing
34 exons, and both genes are composed of 33 coding exons
[46]. Interestingly, the length and position of the exons coding
for the functional domains (EF-hands, FAD- and NADPH-binding
sites) are well conserved between the two genes as well as with
NOX2, reflecting their common molecular evolution (Fig. 2B)
[4]. The DUOXA2 open reading frame spans 6 exons encoding a
320 amino acid protein composed of five transmembrane seg-
ments, the first extracellular loop presenting N-glycosylation sites,
and a C-terminal cytoplasmic region. Four alternative DUOXA1
splicing variants have been identified. DUOXA1α (343 residues)
corresponds to the closest homolog of DUOXA2 and is the major

Fig. 2 A. Schematic structure of the genomic organization of the DUOX/DUOXA gene locus on chromosome
15q15.3 with the number of exons represented as vertical bars. B. Comparison of the transcripts encoding
DUOX1, DUOX2, and NOX2. The length of each exon is mentioned and the corresponding coding region is
represented in gray. Exons coding for N-glycosylation sites, EF-hand motifs, and heme-, FAD-, and NADPH-
binding sites are indicated
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variant in DUOX1/DUOXA1 expressing tissues [47, 48]. Due to
their extra-thyroid expression, DUOX/DUOXA could not be
defined as thyroid-specific genes. However, their expression
appears only at the late stages of cell differentiation during thyroid
embryogenesis in mice and fish, when the follicular structure is
functionally specified making them important thyroid differentia-
tion markers [15, 49]. In human thyroid, the DUOX2 transcript is
2–5 times more expressed than DUOX1 [46]. Transcriptional reg-
ulation by TSH seems to be species dependent. In dog, rat, and pig,
DUOX2 mRNA expression is positively controlled through the
activation of the cAMP pathway [50–52], whereas in mouse and
human, no significant modulation of DUOX transcription is
observed [46, 49, 53].

3.2 Maturation

of DUOX Proteins

The oxidases are fully functional when properly addressed at the
apical membrane of the thyroid cell. When traveling to the apex,
DUOX proteins undergo N-linked glycosylation in the Golgi appa-
ratus to adopt the active 190 kDa form [50, 51]. Complete
glycosyl-defective DUOX mutants generated by site-directed
mutagenesis demonstrate impairment of cell surface expression
and ROS production in reconstituted cellular system [54]. How-
ever, inhibition of the Golgi complex α-mannosidase II by swain-
sonine results in a fully active enzyme targeted at the membrane,
demonstrating that the maturation of the N-glycan moieties in the
Golgi is dispensable for the function of the oxidases [55]. In the
absence of DUOX maturation factors, the oxidases are retained in
the endoplasmic reticulum (ER) compartment where only low
levels of superoxide (O2

.-) are detected [56]. Their critical role for
DUOX function has been clearly demonstrated in DUOXA1/
DUOXA2 double knockout mice [57] showing a hypothyroid
phenotype characterized by the impairment of T4 production in
thyroid follicles caused by the absence of DUOX cell surface expres-
sion and loss of H2O2 generation (Fig. 3; personal communication
and [58]). Initially, DUOXA proteins were characterized as
ER-resident proteins allowing ER-to-Golgi transition of mature
DUOX enzymes [10]. However, accumulating evidence suggests
now that they most probably act as organizing elements required
for surface expression but also regulation of DUOX activity
[47, 48, 59]. Their role can be related to the p22phox function for
the NOX enzymes.

3.3 Control of DUOX

Catalytic Activity

As NOX5, DUOX isoenzymes are obligate Ca2+-dependent
NADPH oxidases via the two EF-hand Ca2+-binding motifs
[60]. Contrary to the other NOX proteins, Rac1 activation is not
required for DUOX-mediated thyroid H2O2 generation [61]. The
intrinsic activity of DUOX enzymes can be also modulated via
direct serine/threonine phosphorylation. In DUOX/DUOXA
reconstituted Cos-7 cells, protein kinase A-mediated
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phosphorylation on serine 955 activates DUOX1, while DUOX2 is
stimulated by nanomolar concentrations of phorbol 12-myristate
13-acetate (PMA), associated with protein kinase C-dependent
phosphorylation [60]. Primary cultured human thyrocytes and
bronchial epithelial cells show an increase in H2O2 generation
after PMA treatment [60, 62, 63]. Finally, micromolar concentra-
tions of iodide are also able to trigger H2O2 generation in human,
pig, and dog thyroid slices [64], whereas higher concentrations
inhibit H2O2 production via the Wolff-Chaikoff effect that
represses iodide metabolism, preventing thyrotoxicosis [42].

Based on their sequence homology with NOX2 and the obli-
gate one-electron transfer from the heme, the dual oxidases should
primarily produce superoxide [65]. However, DUOX1 and
DUOX2 co-expressed with their corresponding partner produce
mainly hydrogen peroxide. Structure/function studies have
demonstrated that the second intracellular loop and the COOH-
terminal tail of DUOXA1 are required for H2O2 production by

Fig. 3 A. T4 and TG immunostaining on serial thyroid sections (5 μm thick) from wild-type (+/+) and DUOXA-
deficient (DUOXA�/�) mice. B. DUOX immunodetection in thyroid sections (5 μm thick) from wild-type and
DUOXA �/� mice. DUOX immunostaining was localized at the apical membrane of wild-type mice and in the
cytoplasm for DUOXA �/� mice
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DUOX1, while active DUOX2 depends on the integrity of the
NH2-terminal extremity of its maturation factor [66]. Moreover,
exchanging the first N-linked glycosylated extracellular loop
between DUOXA1 and DUOXA2 does not alter DUOX matura-
tion, suggesting that this region could rather be involved in DUOX
cell surface expression, a common feature shared by the two matu-
ration factors. The existence of cysteine disulfide bridges for inter-
molecular protein-protein interactions between DUOX1 and
DUOXA1 has been postulated [67]. In addition, recent studies
by the group of C. Dupuy demonstrated the implication of two
cysteine residues (Cys-124 and Cys-1162) in the formation of an
intramolecular disulfide bound that stabilizes the conformation of
DUOX2 supporting its interaction with DUOXA2 [68].

DUOX2, but not DUOX1, generates superoxide when
co-expressed with the DUOXA1maturation factor [47, 69]. More-
over, alterations of the NH2-terminal end of DUOXA2 by deletion
or exchange with the NH2-extremity of DUOXA1 are sufficient to
turn DUOX2 to a superoxide-generating enzyme [66]. Likewise,
addition of a small unrelated sequence in front of this region in
wild-type DUOXA2 converts DUOX2 to a dual-generating oxi-
dase producing H2O2 and superoxide. A similar switch to O2l

�

production has been reported for NOX4 after the replacement of
its signal peptide with the corresponding NOX1 sequence [70]. An
elegant structure/function study has been conducted to delineate
the domain in DUOX1 that constrains H2O2 production
[54]. Using chimeric constructs between DUOX1 and DUOX2,
Ueyama et al. identified the first extracellular loop of DUOX1
responsible for the reduction of O2l

� leakage when transferred in
DUOX2. However, the purified corresponding peptides did not
show any superoxide dismutase activity. NOX4 also possesses a
unique third extracellular loop involved in its hydrogen peroxide-
generating capacity [71]. Mutational analysis identified an essential
residue, His222, involved in this process, suggesting that it could be
an important proton donor to facilitate the formation of H2O2

[72]. Interestingly, Ueyama et al. identified in the first extracellular
loop of DUOX1 two critical histidines, His1017 and His1072, for the
reduction of superoxide release.

4 Congenital Hypothyroidism

4.1 Genetic Causes

of Congenital

Hypothyroidism

Congenital hypothyroidism, characterized by high TSH and low
T4 serum levels, is one of the most frequent inherited endocrine
disorders affecting one in 3000 newborns [73]. The most frequent
cause of sporadic CH is iodine deficiency. During human embryo-
genesis, iodide trapping and TH synthesis begin only at 10–12 days
of gestation [74]. Before, transplacental passages of maternal THs
ensure the normal fetal development, especially the maturation of
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the central nervous system. The implementation of neonatal
screening for CH with blood spot assays in the early seventies
allowed early treatment of newborn babies with thyroxin supple-
mentation reducing the risk of mental retardation [75].

Thyroid dysgenesis (TD) is another major cause (85%) of CH
resulting in thyroid ectopy, athyreosis, or hypoplasia. Loss-of-func-
tion mutations in the TSHr encoding gene have been shown to
cause thyroid hypoplasia and TSH resistance in humans and in the
hyt/hyt mouse model [76, 77]. Germline mutations in thyroid-
related transcription factors have also been described in patients
suffering from TD with athyreosis associated with cleft palate and
spiky hair (FOXE1) [78] or thyroid gland hypoplasia sometimes
mislocalized (NKX2.1 and PAX8) [79, 80]. However, the genetic
causes of the majority of TD familial cases are still unknown. High
prevalence of congenital heart diseases co-occurring with TD sug-
gested that cardiovascular and thyroid developments could be
linked [81]. Recent studies performed in the zebrafish have beauti-
fully demonstrated the relationship between cardiovascular devel-
opment and thyroid morphogenesis, the former probably being
used as tissue guidance for correct thyroid migration [82, 83].

About 15% of CH cases are due to defects in thyroid hormone
synthesis causing thyroid dyshormonogenesis (TDH), a group of
disorders often inherited in an autosomal recessive manner
[84]. Inactivating mutations in many of the genes involved in TH
synthesis cause TDH associated with iodide organification defect
(IOD). After thyroid trapping, free iodide is rapidly covalently
bound to TG tyrosyl residues, remaining in the thyroid gland
even after the blocking of its transport by the NIS-competitive
inhibitor perchlorate. In the perchlorate discharge test, the amount
of radioiodide in the neck is followed using a gamma camera after
its uptake by the thyroid was blocked by perchlorate, 2 hours after
radioisotope administration [85]. In healthy patients, less than 10%
of the isotope initially present in the thyroid is washed out 1 hour
after perchlorate injection [86]. A discharge value between 10 and
90% reflects a partial IOD. A summary of the etiologic classification
of primary CH is presented in Fig. 4 [75, 85]. When ultrasonogra-
phy revealed an eutopic thyroid gland, high TSH serum levels
associated with low serum TG concentrations often reflect inacti-
vating mutations in the TG gene. An absence or low iodide uptake
detected by scintigraphy most probably suggests a NIS defect.
Goiter is not always present in the affected patients, and the severity
of hypothyroidism will be dependent on the dietary iodine intake
[87]. The most prevalent cause of TDH is TPO deficiency usually
associated with a total IOD (perchlorate discharge value >90%)
[88]. Alterations of genes encoding TG, NIS, DUOX2, DUOXA2,
or pendrin have been identified in patients with partial IOD
[69, 86, 89–91].
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4.2 DUOX Defects

in Congenital

Hypothyroidism

Biallelic inactivation of TPO, NIS, TG, or pendrin causes perma-
nent CH. Transient CH is frequently associated with a temporally
limited exposure to external factors during pregnancy such as a lack
or an excess of iodide intake [92], transplacental antibodies [93], or
antithyroid drug treatment [94]. In 2002, the characterization of
the first inactivating DUOX2mutations causing IOD undoubtedly
demonstrates the essential role played by DUOX2 in TH synthesis
[86]. Furthermore, the authors established the first genetic cause
for transient CH with mono-allelic inactivation of DUOX2 and
postulated that DUOX2 biallelic mutations would be associated
with a permanent form of CH. However, numerous subsequent
studies provide further evidence that the permanent or transient
nature of congenital hypothyroidism is not directly related to the
number of inactivated DUOX2 alleles, suggesting the existence of
other pathophysiological factors [95–98].

Multiple interesting reviews about DUOX2/DUOXA2
genetic disorders have been published in the last 10 years [85, 99,
100], including the recent publication by Muzza et al. [101] ana-
lyzing the numerous described DUOX2/DUOXA2 variants. We
have completed their extensive analysis of the literature with

Fig. 4 Etiologic classification of primary congenital hypothyroidism (adapted from [75, 85]). PIOD partial iodide
organification defect, TIOD total iodide organification defect
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additional reported cases of novel DUOX2/DUOXA2 deficient
patients [102–111]. In summary and to the best of our knowledge,
about 105DUOX2 variants including in-frame deletions, missense,
nonsense, splice site, and frameshift mutations have been described
in more than 200 unrelated CH patients. One third of the muta-
tions are found in the ectodomain, one third in the first intracellular
loop, and one third in the NOX catalytic domain (Fig. 5A). Inter-
estingly, very few nonsense or frameshift mutations are present in
the catalytic core of the protein. The p.S965PfsX29 variant, a
frameshift mutation localized in the first intracellular loop of the
protein, is the most prevalentDUOX2mutation.Multiple reported
cases are not compatible with the initial hypothesis, showing tran-
sient CH with homozygous DUOX2 inactivation and permanent
CH with heterozygous mutations. Intrafamilial variabilities have
also been reported in siblings presenting the same genetic defects.
For example, four affected siblings of a family carrying the same
compound heterozygous DUOX2 mutations, p.L479SfsX2 and p.
K628RfsX10, present permanent or transient CH [96].

The prevalence of DUOX2 mutations among CH patients is
quite variable but generally high with 29–83% in China [112–115],
43% in Japan [116], 30–45% in Italy [98, 117], 44% in Netherlands
[86], and 35% in Korea [118]. In case of suspicion of an inherited
congenital hypothyroidism, the best criteria for a DUOX2 genetic
screening are the presence of a goiter, a partial IOD, a low T4/TSH
serum ratio, high serum TG levels, and a transient phenotype
[119]. The prevalence of DUOXA2 variants is much lower with
less than 1%. Six missense, two nonsense, and two splice site muta-
tions have been described (Fig. 5B) [69, 105, 107, 109,
120–125]. The first homozygous missense p.Y246X mutation
was reported in 2008 in a Chinese patient suffering from a mild
permanent CH [69]. This mutation has been reported in four
additional cases but with various severities in the clinical outcome
[107, 121, 122, 124]. Intrafamilial variabilities have also been
reported for DUOXA2-affected patients. Among two dizygotic
twins with a mono-allelic p.Y246X DUOXA2 mutation and a
heterozygous p.R885Q DUOX2 mutation, the girl presented a
more severe hypothyroid phenotype than the brother
[124]. Another case of two siblings with biallelic DUOXA2 p.
Y138X mutation showed again that the girl suffered from a perma-
nent CH while her brother was not clinically affected [105].

What would be the possible mechanisms to explain this high
phenotypic variability? The presence of two DUOX isoforms and
their corresponding maturation factors in the same organ could
certainly constitute an efficient redundant mechanism to maintain
sufficient H2O2 supply for iodide organification. Furthermore, the
transient nature of CH could be related to the different require-
ment of THs with age, from the neonatal period (10–15 μg/kg/
day) to adulthood (2 μg/kg/day) [126]. In the presence of
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Fig. 5 Schematic structures of DUOX2 (A) and DUOXA2 (B) proteins with the genetic alterations (red dots)
identified in congenital hypothyroid-affected patients. For the clarity of the figure, only the missense,
nonsense, frameshift mutations and in-frame deletions have been localized. Black, damaging mutations
(<60% residual activity); green, functional missense mutants (>60% residual activity); blue, not tested
mutations
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complete DUOX2 deficiency, H2O2 supply by DUOX1 would be
sufficient only after the infantile period when the need of TH
decreases. Two independent studies performed in Italian and Japa-
nese populations with CH-affected patients carrying DUOX2
defects showed a majority of cases where thyroxin supplementation
could be stopped after puberty [117, 127]. However, the reduction
of T3/T4 production will be permanent in these affected children
implying their continuous follow-up throughout their life, espe-
cially during pregnancy [99]. Recently, the first biallelic DUOX1
splice site mutation c.1823-1G>C resulting in a truncated protein
(p.V607DfsX43) has been reported in two siblings suffering from a
particular severe form of permanent CH [108]. These children
presented an additional homozygous p.R434X DUOX2 mutation
that has been originally associated with total IOD [86]. The sever-
ity of the phenotype could reflect the absence of compensatory
mechanism played by DUOX1 in these affected patients. A mild
congenital hypothyroid phenotype in a patient with only one
DUOX2 allele, two DUOX1 alleles, and one remaining
DUOXA1 functional allele supports also the existence of a com-
pensatory mechanism with DUOXA1 [120]. Another possible
source of hormonogenic H2O2 could be NOX4. Its expression
has been shown to be positively controlled by TSH, but its locali-
zation, mainly found in intracellular vesicles, is obviously incom-
patible with TH synthesis [128]. Finally, the dietary iodide intake
was clearly demonstrated to be a disease modifier retarding the
appearance of the hypothyroid phenotype [129, 130]. The percent-
age of households having access to iodide salts is higher in North
America and Japan than in Europe where the hypothyroid pheno-
type seems to be more severe [131].

4.3 DUOX Functional

Characterization

in Heterologous Cell

Systems

With the development of next-generation sequencing techniques,
analyses of multiple genetic alterations associated with CH-affected
patients have been largely facilitated. The coexistence of multiple
genetic alterations in the DUOX2 gene such as tri-allelic mutations
has been associated with an increase in the severity of the disease
[106, 112, 113]. In addition, increasing number of clinical case
studies report DUOX2 pathogenic variants concomitant with
genetic alterations in other genes involved in TH synthesis includ-
ing TG [125, 127], TSHr [102, 109, 118, 132], TPO [133],
Pendrin [115], and DUOXA2 [107, 123]. Additional studies
would clarify their functional relevance in the evolution of the
pathology. However, many of the reported DUOX2 missense var-
iants have not been functionally characterized raising the issue of
their real functional impact in the observed phenotype, especially in
mild transient CH.

To date, about 78 DUOX2 missense mutations have been
described. Only 41 have been functionally characterized in various
heterologous systems, 23 of them showing a reduced catalytic
activity by more than 60% (summarized in Table 1). However, an
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Table 1
Summary of published functional DUOX2/DUOXA2 assays performed in heterologous cell systems to test the activity of DUOX2/DUOXA2 missense genetic
variants identified in congenital hypothyroid-affected patients

Enzymatic activity Surface expression

Date
DUOX2/DUOXA2
constructs Cells Activators Tests

DUOX2 mutants
with <60%
activity Cells FACS/IF

DUOX2 mutant
classification References

2007 HA-DUOX2
DUOXA2-Myc

Hela/Cos-7 Ionomycin Amplex Red
Homovanillic acid

p.Q36H (0%)
p.R376W (0%)
p.D506N (50%)

Hela/Cos-7 FACS/IF p.Q36H (0)
p.R376W (0)
p.D506N (�)

[55]

2008 HA-DUOX2
Myc-DUOXA2

Hela NM Amplex Red
Diogenes
Reagent

Hela IF [69]a

2009 HA-DUOX2
DUOXA2-Myc

Hela NM Amplex Red p.S911 L (50%) Hela FACS p.S911 L (�)
p.C1052Y
(�)

[138]

2010 HA-DUOX2
DUOXA2-Myc

CHO Ionomycin
PMA

Homovanillic acid
Diogenes
Reagent

p.G1518S (0%) CHO FACS p.G1518S (+) [135]

2011 HA-DUOX2
DUOXA2-Myc

Hek293 Ionomycin Amplex Red p.I1080T (50%)
p.R1110Q (15%)

NT NT [116]

2011 HA-DUOX2
Myc-DUOXA2

Hela NM Amplex Red NT NT [120]a

2011 HA-DUOX2
DUOXA2-Myc

Hela NM Amplex Red p.Y1150C (10%)
p.A728T (10%)

Hela FACS p.Y1150C (+)
p.A728T (+)

[98]
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D
U
O
X
in

C
o
n
g
e
n
ita

l
H
y
p
o
th
y
ro
id
is
m

6
8
1



Table 1
(continued)

Enzymatic activity Surface expression

Date
DUOX2/DUOXA2
constructs Cells Activators Tests

DUOX2 mutants
with <60%
activity Cells FACS/IF

DUOX2 mutant
classification References

2014 GFP-DUOX2
V5-DUOXA2

A549 NM Amplex Red p.A72S (25%)
p.G488R (0%)
p.E879K (5%)
p.R885Q (5%)
p.R1110Q (10%)
p.A1123T (10%)
p.R1334W (40%)

NT NT [118]

2014 HA-DUOX2
DUOXA2-Myc

Hela NM Amplex Red p.Q570L (20%)
p.M866R (0%)
p.C1052Y (20%)
p.E1546G (50%)

NT NT [119]

2015 HA-DUOX2
DUOXA2-Myc

Hek293 Ionomycin Amplex Red Hek293 IF p.Y1347C (�) [134]

2015 HA-DUOX2
DUOXA2

H661 clone
DUOXA2

Thapsigargin Homovanillic Ac p.R1211C (55%)
p.R1492C (15%)

H661 clone
DUOXA2

FACS/IF p.R1211C (+)
p.R1492C (+)

[111]

2016 HA-DUOX2
DUOXA2-Myc

Hek293 Ionomycin Amplex Red p.R1110Q (5%)
p.R1334W (25%)

NT NT [133]

2016 HA-DUOX2 Flag-
DUOX2
DUOXA2-GFP

Hek293/
Hela

Ionomycin +
PMA

Amplex Red
Diogenes
Reagent

p.P303R (40%) Hek293 FACS p.P303R (�) [110]
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2017 HA-DUOX2
DUOXA2

H661 clone
DUOXA2

Thapsigargin Homovanillic acid p.R286H (0%) H661 clone
DUOXA2

FACS p.R286H (0)
p.P609S (�)

[104]

2017 HA-DUOX2
DUOXA2-Myc

Hek293 Ionomycin Amplex Red p.G201E (0%) Hek293 FACS/IF p.G201E (0) [106]

2018 HA-DUOX2
DUOXA2-Myc

Hek293 Ionomycin Amplex Red NT NT [102]

2018 DUOX2 DUOXA2 Hela/
Hek293

NM Amplex Red p.R354W (0%)
p.A1206T (0%)

NT NT [103]

ProposedDUOX2mutant classification: DUOX20: Absence of H2O2 generation associated with no DUOX2 cell surface expression; DUOX2�: LowH2O2 generation associated with

reduced DUOX2 cell surface expression; DUOX2+: No or reduced H2O2 generation associated with DUOX2 cell surface expression. FACS flow cytometry, IF immunofluorescence,

NT not tested, NM not mentioned. DUOX2 variants with conflicting reported data are presented in bold
aOnly DUOXA2 missense variants tested
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ideal test to carefully assess DUOX2 function must include specific
quantification of H2O2 production but also evaluate the expression
of the enzyme at the cell surface by flow cytometry using NH2-
terminally epitope-tagged proteins. From the 17 publications
including DUOX2 functional assays, only 10 analyze the mem-
brane expression of the protein. Reagents specific for H2O2 detec-
tion must be systematically used in the assays as the Amplex Red or
the homovanillic acid. Moreover, as the basal activity of the oxidase
is very low, agents increasing the intracellular Ca2+ concentration
must be added in the assay. The calcium ionophore ionomycin
[55, 106, 110, 116, 133–135] and the Ca2+-ATPase inhibitor
thapsigargin [104, 111] have been successfully used in different
assays. The cell type could also modify the final outcome of the
assay in terms of activity or maturation of the protein. The Hek293
and Hela cells are the two main cell lines used in the published
assays.

A reduction of H2O2 generation for a particular DUOX2
variant has to be normalized to the level of protein expression but
foremost compared to the cell surface expression of the oxidase.
Based on this assay, we have characterized the functional conse-
quences of the first DUOX2 variant in the NOX catalytic core
[135]. The DUOX2 p.G1518S mutant was nonfunctional but
correctly processed at the cell surface. A NOX2 p.C537R variant
affecting a highly conserved cysteine localized in the fourth
NADPH-binding site, next to the DUOX2 mutated glycine, pre-
sented similar functional consequences [136]. We already proposed
to apply a comparable classification used for NOX2 mutants
depending on the behavior of the protein in heterologous system
(DUOX2 mutant classification mentioned in Table 1): DUOX20

variants showing a loss of H2O2 generation associated with no
surface expression, DUOX2� characterized by a low oxidase activ-
ity and a reduced membrane expression, and the DUOX2+ mutants
which are expressed at the cell surface but less or not active
[135, 137]. Additional mutations affecting functional domains of
DUOX2 have been described: in the second EF-hand (p.E879K
[96, 112, 114, 118, 127]) and in the FAD- (p.A1323T [113, 132])
and NADPH-binding sites (p.P1391A, p.F1392L, p.R1492C, p.
R1492H [109, 111, 113, 114, 127]). Interestingly, the three
mutants in DUOX2 functional domains that have been fully char-
acterized (activity and membrane expression) to date (p.G1518S,
p.R1492C, and p.E879Q generated by site-directed mutagenesis
[60]) all belong to the DUOX2+class.

About 18 tested missense DUOX2 variants show residual activ-
ity with more than 60% of the wild-type protein (displayed in green
in Fig. 5A), raising the question of their clinical relevance in the
pathology of the affected CH patient. The following mutants could
be considered as functional single-nucleotide polymorphism (SNP)
with limited damaging impact: p.P138L, p.P341S [119], p.H678R
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[116, 118, 119, 127], p.R701Q [119], p.P982A [98, 119], p.
L1067S [119], p.A728T [98, 106], p.M650T, p.M822V, p.
P609S [104, 106], p.C1052Y [138], p.Y1347C [83], p.V779M
[102], p.L171P, p.P303R [110, 119], p.G206V, p.N43Y, and p.
P96L [118]. The p.H678R mutant has been functionally charac-
terized as a non-deleterious variant, even if the mutation was com-
bined with two other DUOX2 variants, p.R701Q and p.P982A, in
the same expressed protein [98].

Conflicting data about the functional analysis of some DUOX2
variants have also been reported. The p.A728T mutant has been
shown to be a DUOX2+ nonfunctional variant when expressed in
Hela cells [98]. But the same mutant showed unaffected H2O2

production and cell surface expression in Hek293 cells [106]. The
possible absence of stimulating agents (not mentioned) in the first
study could explain this discrepancy as well as the different cell types
used. The p.C1052Y DUOX2 variant expressed in Hela cells pre-
sented a residual activity of more than 60% in one study [138] but
only 20% in another [119]. The p.P303R mutant presented about
75% enzymatic activity of the wild type in one study [119] but less
than 50% with reduced cell surface expression in another study
(DUOX2�) [110]. Additional conflicting data concern a DUOX2
variant reported in a boy suffering from very early-onset inflamma-
tory bowel disease (IBD) with compound heterozygous mutations
[104]. After expression in the large cell lung carcinoma H661 cell
line and stimulation with thapsigargin, the p.R286H mutant was
undetectable at the cell surface (DUOX20), while p.P609S expres-
sing cells showed a limited reduction of H2O2 generation with
lower protein surface expression (DUOX2�). When expressed in
Hek293 cells, the p.P609S DUOX2 mutant presented unaffected
H2O2 generation as well as normal cell surface expression com-
pared to the wild-type protein [106].

5 Conclusions

The implication of DUOX-mediated H2O2 in thyroid function is
undoubtedly established. The DUOX2/DUOXA2 system repre-
sents the major H2O2 provider for TPO in thyroid hormonogen-
esis, but it could be supplemented and compensated by DUOX1/
DUOXA1 under pathological circumstances. Recently, additional
DUOX-related diseases have been reported in familial cases of IBD
with mono- or biallelic DUOX2 mutations. Even if no strong
thyroid phenotype was identified in these patients, a recent meta-
analysis-based study suggested that patients with transient CHwith
partial defects in DUOX2 are at higher risk of developing IBD
[139]. The phenotypic characterization of new tissue-targeted
DUOX- and DUOXA-deficient animal models will be very useful
to study the DUOX function in extra-thyroid tissues. Better

DUOX in Congenital Hypothyroidism 685



functional characterization of the novel DUOX2 missense muta-
tions using standardized DUOX functional assays combining quan-
tifications of extracellular H2O2 generation and DUOX cell surface
expression will be required to better evaluate their functional con-
sequences in the clinical outcome of the affected patients. However,
the different cell types used in the assays are not of thyroid origin
and would therefore not reflect the physiological behavior of the
protein in a real thyrocyte.
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