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Abstract: . In this paper, we set up the theoretical foundations for a high-
dimensional functional factor model approach in the analysis of large panels
of functional time series (FTS). We first establish a representation result
stating that if the first r eigenvalues of the covariance operator of a cross-
section of N FTS are unbounded as N diverges and if the (r + 1)th one is
bounded, then we can represent each FTS as a sum of a common component
driven by r factors, common to (almost) all the series, and a weakly cross-
correlated idiosyncratic component (all the eigenvalues of the idiosyncratic
covariance operator are bounded as N ! 1). Our model and theory are
developed in a general Hilbert space setting that allows for panels mixing
functional and scalar time series. We then turn to the estimation of the
factors, their loadings, and the common components. We derive consistency
results in the asymptotic regime where the number N of series and the
number T of time observations diverge, thus exemplifying the “blessing of
dimensionality” that explains the success of factor models in the context
of high-dimensional (scalar) time series. Our results encompass the scalar
case, for which they reproduce and extend, under weaker conditions, well-
established results (Bai & Ng 2002). We provide numerical illustrations that
corroborate the convergence rates predicted by the theory, and provide finer
understanding of the interplay between N and T for estimation purposes.
We conclude with an empirical illustration on a dataset of intraday S&P100
and Eurostoxx 50 stock returns, along with their scalar overnight returns.
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1. Introduction

Throughout the last decades, researchers have been dealing with datasets of
increasing size and complexity. In particular, Functional Data Analysis (FDA;
see e.g. Ramsay & Silverman 2005, Ferraty & Vieu 2006, Horváth & Kokoszka
2012, Hsing & Eubank 2015, Wang et al. 2015) has received much interest and,
in view of its relevance in a number of applications, fast growing popularity. In
FDA, the observations are taking values in some functional space, usually some
Hilbert space H—often, in practice, the space L2 ([0, 1],R) of squared integrable
functions. When an ordered sequence of functional observations exhibits serial
dependence, we enter the realm of Functional Time Series (FTS) (Hörmann
& Kokoszka 2010, 2012). Many standard univariate and low-dimensional multi-
variate time-series methods have been adapted to this functional setting, either
using a time-domain approach (Kokoszka & Reimherr 2013a,b, Hörmann et al.
2013, Aue et al. 2014, 2015, Horváth et al. 2014, Aue et al. 2017, Górecki et al.
2018, Bücher et al. 2018, Gao et al. 2018), a frequency domain approach under
stationarity assumptions (Panaretos & Tavakoli 2013a,b, Hörmann et al. 2015,
Tavakoli & Panaretos 2016, Hörmann et al. 2018, Rub́ın & Panaretos 2018, Guo
& Qiao 2018) or under local stationarity assumptions (van Delft et al. 2017, van
Delft & Eichler 2018, van Delft & Dette 2018, Barigozzi et al. 2019).

Parallel to this development of functional time series analysis, data in high
dimensions (e.g. Bühlmann & van de Geer 2011, Fan et al. 2013) have become
pervasive in data sciences and related disciplines where, under the name of Big
Data, they constitute one of the most active subject of contemporary statistical
research.

This contribution stands at the intersection of those two strands of literature,
cumulating the challenges of function-valued observations and those of high di-
mension. Datasets, in this context, consist of large collections ofN scalar or func-
tional time series—equivalently, functional time series in high dimension (from
fifty, say, to several hundreds)—observed over a period of time T . Typical exam-
ples are continuous-time series of concentrations for a large number of pollutants,
or/and collected over a large number of sites, daily series of returns observed
at high intraday frequency for a large collection of stocks, or intraday energy con-
sumption curves (available, for instance, at data.london.gov.uk/dataset/smartmeter-energy-use-data-in-lon-
don-households), to name only a few. Not all component series in the dataset
are required to be function-valued, though, and mixed panels of scalar and
functional series can be considered as well. In order to model such datasets,
we develop a class of high-dimensional functional factor models inspired by the
factor model approaches developed, mostly, in time series econometrics, which
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have proven e↵ective, flexible, and quite e�cient in the scalar case.
Factor models for FTS are largely unexplored. The only developments in this

direction (that we are aware of) are Hays et al. (2012), who consider a Gaus-
sian likelihood approach to functional dynamic factor modelling, and Kokoszka
et al. (2015), who consider functional dynamic factor models where the factors
are functional; both are limited to one FTS, though, whereas our approach
is for large panels of FTS. More recently, Gao et al. (2018) have used factor
models for forecasting panels of FTS, but they use a two-stage approach com-
bining a separate dynamic functional PCA on each FTS in the panel, followed
by a combination of separate scalar factor models (one on each PC score). This
implicitly assumes that the number of relevant principal components per FTS
is the same (which is quite restrictive), and is linked to the number of overall
factors. Our approach is mostly motivated by the time series econometrics lit-
erature, and di↵ers from these papers because we consider models where the
factors are scalar and the loadings are functional; moreover, we do not make
Gaussian assumptions. Our approach is principled, we do not impose a model
through a two-stage procedure, and do not base our model on a PCA with the
same truncation level on each separate FTS.

Early instances of factor model methods for time series can be traced back to
the pioneering contributions by Geweke (1977), Sargent & Sims (1977), Cham-
berlain (1983), and Chamberlain & Rothschild (1983). The factor models con-
sidered in Geweke and Sargent and Sims are exact, that is, involve mutually
orthogonal (all leads, all lags) idiosyncratic components, a most restrictive as-
sumption that cannot be expected to hold in practice. Chamberlain (1983) and
Chamberlain & Rothschild (1983) are relaxing this exactness assumption into
an assumption of mildly cross-correlated idiosyncratics (the so-called “approx-
imate factor models”). Finite-N identifiability is the price to be paid for that
relaxation; the resulting model, however, remains asymptotically (as N tend to
infinity) identified, which is perfectly in line with the spirit of high-dimensional
asymptotics. This idea of an factor models in high dimensions has been picked
up and developed, mostly, by Stock & Watson (2002a,b), Bai & Ng (2002), Bai
(2003), Forni et al. (2000), and their many followers; see also Forni et al. (2015)
and Forni et al. (2017) for extensions to the so-called generalized or general
dynamic factor model.

Our objective here is to propose a representation theorem (analogue to the
classical results of Chamberlain & Rothschild 1983, Chamberlain 1983) linking
high-dimensional functional factor models to properties of the eigenvalues of the
panel covariance operator (Theorems 2.2 and, drawing inspiration from Stock
& Watson (2002a,b), Bai & Ng (2002) 2.3), to develop the corresponding es-
timation theory for the unobserved factors, loadings, and common component
(see Theorems 3.1, 3.4, and 3.5). This is laying the theoretical foundations for
modeling high-dimensional functional time series via factor models. While our
contributions are for panels of FTS, our results encompass and extend those of
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factor models in large dimensions for scalar time series (or “approximate fac-
tor models”), for which we reproduce and extend some results under weaker
assumptions than available in the literature (Chamberlain & Rothschild 1983,
Bai & Ng 2002, Stock & Watson 2002a).

The paper is organized as follows. In Section 2, we introduce high-dimensional
functional factor models for panels of functional time series (FTS) and show
that this class of models can be characterized by conditions on the spectrum
of the panel. In Section 3, we introduce an estimator of the factors through an
eigendecomposition of the observed panel data, and study the consistency of our
estimator. In Section 4, we conduct some numerical experiments, and provide
an empirical illustration of our approach in Section 5. We conclude in Section 6
with a discussion. Technical results and all the proofs, as well as additional
simulation results, are contained in the Online Supplement.

2. Model and Representation Theorem

Since our goal is to develop a model for panels of time series that could be
either functional or scalar, we need to introduce some notation, in particular
for vectors or matrices of Hilbert space elements, and their representations as
operators. While this could seem a priori tedious, it will actually be very useful
later on, as it simplifies the exposition, makes proofs clearer, and allows for
weaker assumptions.

2.1. Notation

Throughout, we denote by

XN,T := {Xit, i = 1, . . . , N, t = 1, . . . , T}

an observed N ⇥ T panel (cross-section) of time series, where the random vari-
ables Xit take values in a separable Hilbert space Hi equipped with the inner
product h·, ·ii. Those series can be of di↵erent types. A case of interest is the one
for which some series are scalars (Hi = R) and some others are square-integrable
functions from [0, 1] to R (Hi = L2([0, 1])). We tacitly assume that all Xit’s are
random elements with mean zero and finite second-order moments defined on
some common probability space (⌦,F ,P); we also assume that XN,T constitutes
the finite realization of some a second-order stationary double-indexed process
X := {Xit, i 2 N, t 2 Z}.

Define HN := H1
LH2

L · · ·LHN , with typical elements of the form v :=
(v1, v2, . . . , vN )0 or w := (w1, w2, . . . , wN )0. The space HN , naturally equipped
with the inner product

hv,wiHN
:=

N
X

i=1

hvi, wiii ,
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is a Hilbert space. Writing h·, ·i for h·, ·iHN
when no confusion is possible, let

k·k := h·, ·i1/2 be the resulting norm. Write L(H1, H2) for the space of bounded
(linear) operators from H1 to H2, and use the shorthand notation L(H) for
L(H,H). Denote the operator norm of V 2 L(H1, H2) by

|||V |||1 := sup
x2H1,x 6=0

kV xk/kxk,

and write V T for the adjoint of V , which satisfies hV u1, u2i =
⌦

u1, V Tu2

↵

for
all u1 2 H1, u2 2 H2. In particular, we have (see Hsing & Eubank 2015)

|||V |||1 =
�

�

�

�

�

�V T
�

�

�

�

�

�

1 =
�

�

�

�

�

�V TV
�

�

�

�

�

�

1/2

1 .

In order to make our results readable and facilitate proofs, we need to in-
troduce an extension of classical matrix algebra (and linear mappings between
Euclidean spaces) to matrix mappings between direct sums of Hilbert spaces
(such as HN ). For an element vi 2 Hi, we write, with slight abuse of notation,
vi 2 L(R, Hi) for the mapping vi : ↵ 7! ↵vi from R to Hi, and vTi 2 L(Hi,R)
for its adjoint, which is defined by

Hi 3 f 7�! vTi f := vTi (f) := hf, viii .

Similarly, we denote by v 2 L(R,HN ) the mapping a 7! av from R to HN ,
and by vT =

�

vT1 , . . . , v
T
N

�

2 L(HN ,R) its adjoint, from HN to R:

HN 3 w 7�! vTw := vT1w1 + · · ·+ vTNwN .

Unlike (·)0 which denotes transposition (that does not change the nature of the
elements), (·)T refers to adjunction. Note, in particular, that vTw = hw,vi and
vTv = kvk2. Letting vj = (v1j , . . . , vNj)0 2 HN with vij 2 Hi for i = 1, . . . , n
and j = 1, . . . , r, define the linear mapping

V =

0

B

B

B

@

v11 · · · v1r
v21 · · · v2r
...

. . .
...

vN1 · · · vNr

1

C

C

C

A

= (v1, . . . ,vr) 2 L(Rr,HN )

as (a1, . . . , ar)0 7! v1a1 + · · ·+ vrar, with adjoint

V T :=

0

B

B

B

@

vT11 · · · vTN1

vT12 · · · vTN2
...

. . .
...

vT1r · · · vTNr

1

C

C

C

A

2 L(HN ,Rr)

mappingw to V Tw := (vT
1w, . . . ,vT

r w)0. IfA = (a1, . . . ,aT ) 2 Rr⇥T , then V A

should be understood as (V a1, . . . ,V aT ) 2 L(RT ,HN ). Similarly, if WN =
(w1, . . . ,wT ) 2 L(RT ,HN ), then

V TW := (V Tw1, . . . ,V
TwT ) 2 L(RT ,Rr).
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Note that this notation is compatible with the usual matrix multiplication:
for instance, V V T = v1v

T
1 + · · · + vrv

T
r 2 L(HN ), and V TV is the matrix

with (i, j)th entry vT
i vj = hvj ,vii 2 R.

To work with our panel data, we will use the following notation. We let Xi :=
(Xi1, Xi2, . . . , XiT ) 2 L(RT , Hi), Xt := (X1t, X2t, . . . , XNt)0 2 HN , and
XNT := (X1, . . . ,XT ) 2 L(RT ,HN ). In order to keep the presentation sim-
ple, the dependence of Xt on N and the dependence of Xi on T do not ex-
plicitly appear in the notation. We denote by �X

N,1,�
X
N,2, . . . the eigenvalues of

the covariance of (X1t, . . . , XNt)0, in decreasing order of magnitude; in view of
stationarity, these eigenvalues do not depend on t. Finally, denote by k.k2L2(⌦)

the variance, and by h·, ·iL2(⌦) the covariance, of real-valued random variables.
Unless otherwise mentioned, convergence of sequences of random variables is in
mean square.

2.2. Model

The basic idea in all factor-model approaches to the analysis of high-dimensional
time series consists in decomposing the observation Xit into the sum �it + ⇠it
of two unobservable and mutually orthogonal components, the common com-
ponent �it and the idiosyncratic one ⇠it. The various factor models that are
found in the literature only di↵er in the way �it and ⇠it are characterized. The
characterization we are adopting here is inspired from Forni & Lippi (2001).

Definition 2.1. The functional zero-mean second-order stationary process X :=
{Xit, i 2 N; t 2 Z} admits a (high-dimensional) functional factor represen-
tation with r factors, or follows a (high-dimensional) functional factor model
with r factors

Xit = �it + ⇠it = biut + ⇠it, i 2 N, t 2 Z (2.1)

(�it and ⇠it unobservable) if there exist bi = (bi1, . . . , bir) 2 L(Rr, Hi) with bij 2
Hi, i 2 N, Hi-valued processes {⇠it; t 2 Z}, i 2 N, and a real r-dimensional
second-order stationary process {ut = (u1t, . . . , urt)0; t 2 Z}, co-stationary with
X , such that (2.1) holds with

(i) Eut = 0 and E [utu
0
t] positive definite;

(ii) E [ujt⇠it] = 0 for all t 2 Z, j = 1, . . . , r, and i 2 N;
(iii) denoting by �⇠

N,j the jth (in decreasing order of magnitude) eigenvalue of

the covariance operator of ⇠t := (⇠1t, . . . , ⇠Nt)0, �
⇠
1 := supN �⇠

N,1 < 1;
(iv) denoting by ��

N,j the jth (in decreasing order of magnitude) eigenvalue of
the covariance operator of �t := (�1t, . . . ,�Nt)0, ��

r := supN ��
N,r = 1.

If (ii) is strengthened into

(ii)0 E [ujt⇠is] = 0 for all t, s 2 Z, j = 1, . . . , r, and i 2 N,
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we say that (2.1) provides a (high-dimensional) strong functional factor rep-
resentation with r factors of X . The r scalar random variables ujt are called
factors; the bij’s are the (functional) factor loading operators; �it is called the
common component, ⇠it the idiosyncratic one.

This definition calls for some remarks and comments.

(a) In the terminology of Hallin & Lippi (2013) or Forni et al. (2015) and Forni
et al. (2017), equation (2.1), where the factors are loaded contemporane-
ously, is called a static functional factor representation, as opposed to the
general dynamic factor representation, where the bij ’s are linear one-sided
square-summable filters of the form bij(L) =

P1
k=0 bijkL

k (L the lag op-
erator), and the ujt’s are mutually orthogonal second-order white noises
(the common shocks) satisfying (ii)0. The strong static r-factor model is
a particular case of the general dynamic factor one, with q  r common
shocks. When the idiosyncratic processes {⇠it; t 2 Z} themselves are
mutually orthogonal at all leads and lags, static and general dynamic fac-
tor models are called exact; with this assumption relaxed into (iv) above,
they sometimes are called approximate. In the sequel, what we call factor
models all are approximate static factor models.

(b) The functional factor representation (2.1) also can be written, with obvious
notation �t and ⇠t, in vector form

Xt = �t + ⇠t = BNut + ⇠t,

where the N ⇥ r matrix BN has i-th row bi 2 L(Rr, Hi). It can also be
written in matrix form as

XNT = �NT + ⇠NT = BNu+ ⇠NT ,

where u = (u1, . . . ,uT ).
(c) Condition (iii) essentially requires that cross-correlations among the com-

ponents of {⇠t; t 2 Z} are not pervasive as N ! 1. A su�cient assump-
tion on ⇠NT for condition (iii) to hold is

1
X

j=1

�

�

�

�

�

� E ⇠it⇠
T
jt

�

�

�

�

�

�

1 < M < 1, 8i = 1, 2, . . . ,

see Lemma S2.14 in the Online Supplement.
(d) Condition (iv) requires pervasiveness, as N ! 1, of (instantaneous) cor-

relations among the components of {�t; t 2 Z}; it is equivalent to a
condition on the sequence of factor loadings BN , which should be such
that factors are loaded again and again as N ! 1. A su�cient condition
for this is BT

NBN/N ! ⌃B , where ⌃B is positive definite.
(e) It follows from Lemma S2.18 in the Online Supplement that if X has

a (possibly strong) functional factor representation with r factors, then
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�X
r+1 < 1. This in turn implies that the number r of factors is uniquely

defined.
(f) The factor loadings and the factors are only jointly identifiable, since, for

any collection of r ⇥ r invertible matrices Qt,

BNut = (BNQ�1
t )(Qtut),

so that vt = Qtut provides the same decomposition of X into common
plus idiosyncratic as (2.1).

(g) It is often assumed that {ut; t 2 Z} is an r-dimensional Vector Auto-
Regressive (VAR) process driven by q  r white noises (Amengual &
Watson 2007), but this is not required here.

2.3. Representation Theorem

The following results shows that the class of processes X admitting a functional
factor model representation (in the sense of Definition 2.1) can be character-
ized in terms of the eigenvalues �X

N,j of the covariance operator of the obser-

vations Xt—while Definition 2.1 involves the eigenvalues ��
N,j and �⇠

N,j of the
covariance operators of the unobserved common and idiosyncratic components.
Moreover, when X admits a functional factor model representation, its decom-
position into a common and an idiosyncratic component is unique.

Let �X
j := limN!1 �X

N,j = supN �X
N,j : this limit exists, as �X

N,j is monotone
increasing with N .

Theorem 2.2. The process X admits a (high-dimensional) functional factor
model representation with r factors if and only if �X

r = 1 and �X
r+1 < 1.

The following result tells us that the common component �it is asymptotically
identifiable, and provides its expression in terms of an L2(⌦) projection.

Theorem 2.3. Let X admit (in the sense of Definition 2.1) the functional
factor model representation Xit = �it + ⇠it, i 2 N, t 2 Z, with r factors. Then
(see the Online Supplement, Section S1 for a formal definition of projHi

),

�it = projHi
(Xit|Dt), 8i 2 N, t 2 Z

where

Dt :=
n

p 2 L2(⌦) | p = lim
N!1

h↵N ,XtiL2(⌦) ,↵N 2 HN , k↵Nk N!1�! 0
o

⇢ L2(⌦) ;

the common and the idiosyncratic parts of the factor model representation thus
are unique, and asymptotically identified.

The proofs of Theorems 2.2 and 2.3 are provided in the Online Supplement,
Section S2.1; they are inspired from Forni & Lippi (2001)—see also Chamber-
lain (1983) and Chamberlain & Rothschild (1983). Notice, however, that, unlike
these references, our results do not require the minimal eigenvalue of the covari-
ance of Xt to be bounded from below.
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3. Estimation

Assuming that a functional factor model with r factors holds for X , we shall
estimate the factors ut using principal component analysis. This is a method
often used for estimating factors (Bai & Ng 2002, Fan et al. 2013), but other
methods are available as well (Forni & Reichlin 1998, Forni et al. 2000). The
idea of this method is to find factor loadings B in L(Rr,HN ) and factor scores
u = (u1, . . . ,uT ) 2 L(RT ,Rr) such that

P (B,u) :=
X

t

kXt �Butk2

is minimized. Denoting by |||·|||2 the Hilbert–Schmidt norm (see Section S2.2 in
the Online Supplement), we can rewrite this objective function as

P (B,u) = |||XNT �Bu|||22.

Under this form, the solution is clear: by the Eckart–Young–Mirsky Theorem
(Hsing & Eubank 2015, Theorem 4.4.7), we know that the objective function is
minimized by choosing Bu to be equal to B⇤u⇤, the r-term truncation of the
singular value decomposition of XNT . Let us write the singular value decompo-
sition of XNT as

XNT =
N
X

i=1

�̂1/2
i êif̂

T
i , (3.1)

where �̂1 � �̂2 � · · · � 0, êis (belonging to HN ) and f̂is (belonging to RT ) are
rescaled to have norm

p
T . The �̂is, thus, are rescaled singular values—we show

in Lemma S2.11 in the Online Supplement that this rescaling allows �̂1 = OP(1).
To make the notation simple, the sum is ranging over i = 1, . . . , N : if N > T ,
the last (N �T ) �̂is are set to zero. We now have a multitude of choices for u⇤,
of which we select

ũ :=

0

B

@

f̂T
1
...

f̂T
r

1

C

A

2 Rr⇥T . (3.2)

The reason for this choice is the following: ũ can be obtained by computing
the first r eigenvectors of XT

NTXNT , and rescaling them by
p
T . Note that

computing XT
NTXNT requires computing O(T 2) inner products in HN , and

then computing the leading r eigenvectors of a T ⇥T matrix. Dual to ũ are the
corresponding factor loadings

B̃N :=
⇣

�̂1/2
1 ê1, . . . , �̂

1/2
r êr

⌘

2 L(Rr,HN ),

for which B̃N ũ = B⇤u⇤. The loadings B̃N can be obtained by an eigendecom-
position of XNTX

T
NT . However, this would require an eigendecomposition of
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an operator in L(HN ), which could be computationally much more demand-
ing than performing an eigendecomposition of XT

NTXNT to obtain ũ, and then
multiply it with XNT to obtain B̃N . We also point out that the idealistic ap-
proach of using a Karhunen–Loève truncation (or PCA projection) for each Xit

separately, prior to conducting the global PCA, is not a good idea in general,
as there is no guarantee that the common component will be picked by the
individual Karhunen–Loève truncations, and it might well be that it actually
removes all the common component (see Section 4 for examples).

In order be able to estimate the factor scores and loadings, we shall need the
following regularity assumptions, which we discuss below. These assumptions,
which are adaptations of standard assumptions in scalar factor models (Bai &
Ng 2002), imply, in particular, that XNT follows a functional factor model with
r factors.

Assumption A. (ut)t and (⇠t)t are mean zero second-order co-stationary, with
E
⇥

ut⇠
T
t

⇤

= 0; the covariance operator ⌃u := E
⇥

utu
T
t

⇤

is r⇥ r positive definite

and T�1uuT P�! ⌃u as T ! 1.

Assumption B. N�1BT
NBN ! ⌃B , as N ! 1, for some r⇥ r positive-definite

matrix ⌃B .

Assumption C. Let ⌫N (h) := E
⇥

⇠Tt ⇠t�h/N
⇤

.

(C1) There exists a constant M such that for all N � 1,
P

h2Z |⌫N (h)| 
M , and
(C2)

�

�⇠Tt ⇠s/N � ⌫N (t� s)
�

� is OP(N�1/2) uniformly in t, s � 1.

Assumption D. There exists M < 1 such that kbilk < M for all i 2 N and
l = 1, . . . , r, and

P1
j=1

�

�

�

�

�

� E ⇠it⇠Tjt
�

�

�

�

�

�

1 < M for all i 2 N.
Assumption E(↵). Letting CN,T := min{

p
N,

p
T},

�

�

�

�

�

�u⇠TNT

�

�

�

�

�

�

2

2
= OP

⇣

NT 2C�(1+↵)
N,T

⌘

for some ↵ 2 [0, 1].

Assumption A has some basic requirements about the model (factors and
idiosyncratics are co-stationary and uncorrelated at lag zero), and the factors.
It assumes, in particular, that |||u|||2 = OP(

p
T ). Since uuT =

PT
t=1 utu

T
t , it

also implies a weak law of large numbers for (utu
T
t )t, which holds under various

dependence assumptions on (ut)t, see e.g. Brillinger (2001), Bradley (2005),
Dedecker et al. (2007).

Assumption B deals with the factor loadings, and implies in particular that
|||BN |||2 is of order

p
N . Intuitively, it means that the factors are loaded again

and again as the cross-section increases.
Assumptions A and B together intuitively mean that (almost) all the common

components biut have dimension r. They could be weakened by assuming that
the r largest eigenvalues of BT

NBN/N and uuT/T are bounded away from
infinity and zero, see e.g. Fan et al. (2013).
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Assumption C is an assumption on the idiosyncratic terms: (C1) limits the
total variance and lagged cross-covariances of the idiosyncratic component; (C2)
imposes a uniform rate of convergence in the law of large numbers for (⇠Tt ⇠s/N)N .
A su�cient condition for this is

There exists " > 0 and M < 1 such that E
���
p
N

�
⇠Tt ⇠s/N � ⌫N (t� s)

����
"
< M ,

for all s, t,N � 1.

In particular, (C2) implicitly limits the cross-sectional and lagged correlations
of the idiosyncratic components.

Assumption D limits the cross-sectional correlation of the idiosyncratic com-
ponents, and bounds the norm of the loadings. It implies that

�

�

�

�

�

�BT
N⇠NT

�

�

�

�

�

�

2

2
is

OP (NT )—see Lemma S2.15 in the Online Supplement—and could be replaced
by this weaker condition in the proofs of Theorems 3.1, 3.2, 3.4 and 3.5.

Assumption E(↵) imposes limits on the lagged cross-correlations between the
factors and the idiosyncratics. Notice that Assumptions A and C jointly imply
Assumption E(↵) for ↵ = 0 (see Lemma S2.10 in the Online Supplement), so
that ↵ = 0 corresponds to the absence of restrictions on these cross-correlations;
↵ = 1 is the strongest case of this assumptions, and corresponds to the weakest
cross-correlations between factors and idiosyncratics: it is implied by the follow-
ing stronger (but more easily interpretable) conditions (see Lemma S2.16 in the
Online Supplement):

(i) E
⇥
(⇠Tt ⇠s)ultuls

⇤
= E

⇥
⇠Tt ⇠s

⇤
E [ultuls] for all l = 1, . . . , r and all s, t 2 Z,

(ii)
P

h2Z |⌫N (h)| < 1.

Notice that Assumption E(↵) with ↵ = 1 is still less stringent than Assump-
tion D in Bai & Ng (2002).

Note that Assumptions A, B, and D imply that the first r eigenvalues of cov(Xt)
diverge while the (r + 1)th one remains bounded (Lemma S2.14 in the Online
Supplement), hence the common and idiosyncratic components are asymptoti-
cally identified (Theorem 2.2).

The first result of this section (Theorem 3.1, see below) tells us, essentially,
that ũ consistently estimates the true factors. Since the true factors are only
identified up to an invertible transformation, however, consistency here is about
the convergence of the row space spanned by ũ to the one spanned by u. The
discrepancy between these row spaces can be measured by

�N,T := min
R2Rk⇥r

|||ũ�Ru|||2/
p
T ,

(recall that |||·|||2 denotes the Hilbert–Schmidt norm: see the Online Supplement,
Section S2.2). �N,T is the rescaled Hilbert–Schmidt norm of the residual of the
least squares fit of the rows of ũ onto the row space of u, and we make explicit its
dependence on N,T . The T�1/2 rescaling is needed because |||ũ|||22 = rT—any
rescaling of order T�1/2 would lead to the same conclusion.

We now can state one of the main results of this section.

Theorem 3.1. Under Assumptions A, B, C, and D,

�N,T = OP(C
�1
N,T ),
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where CN,T := min{
p
N,

p
T}.

Proof. Define
R̃ := ⇤̂�1ũuTBT

NBN/NT, (3.3)

where ⇤̂ is the r ⇥ r diagonal matrix with �̂is in the diagonal, and are defined
in (3.1). Let us show that

�

�

�

�

�

�

�

�

�

ũ� R̃u
�

�

�

�

�

�

�

�

�

2
/
p
T = OP(C

�1
N,T ).

Defining û := ⇤̂ũ and Q := ⇤̂R̃, we have
�

�

�

�

�

�

�

�

�

ũ� R̃u
�

�

�

�

�

�

�

�

�

2


�

�

�

�

�

�

�

�

�

⇤̂�1
�

�

�

�

�

�

�

�

�

1
|||û�Qu|||2.

By Lemma S2.12 in the Online Supplement,
�

�

�

�

�

�

�

�

�

⇤̂�1
�

�

�

�

�

�

�

�

�

1
= OP(1), and a straight-

forward calculation yields û = ũXT
NTXNT /(NT ), whereby

û�Qu =
1

nT
ũ⇠TNT ⇠NT +

1

NT
ũuTBT

N⇠NT +
1

nT
ũ⇠TNTBNuT,

and, therefore,

|||û�Qu|||2  1

nT

�

�

�

�

�

�ũ⇠TNT ⇠NT

�

�

�

�

�

�

2
+

1

NT

�

�

�

�

�

�ũuTBT
N⇠NT

�

�

�

�

�

�

2

+
1

nT

�

�

�

�

�

�ũ⇠TNTBNuT
�

�

�

�

�

�

2
.

Let us consider each terms separately. For the first term, by Lemma S2.10 in
the Online Supplement,

1

nT

�

�

�

�

�

�ũ⇠TNT ⇠NT

�

�

�

�

�

�

2
 1

nT
|||ũ|||1

�

�

�

�

�

�⇠TNT ⇠NT

�

�

�

�

�

�

2
= OP(

p
TC�1

N,T ).

For the second term, it follows from Assumption D that

1

NT

�

�

�

�

�

�ũuTBT
N⇠NT

�

�

�

�

�

�

2
 1

NT
|||ũ|||1

�

�

�

�

�

�uT
�

�

�

�

�

�

1

�

�

�

�

�

�BT
N⇠NT

�

�

�

�

�

�

2
= OP(

p

T/N).

For the third term, still from Assumption D,

1

nT

�

�

�

�

�

�ũ⇠TNTBNuT
�

�

�

�

�

�

2
 1

nT
|||ũ|||1

�

�

�

�

�

�⇠TNTBN

�

�

�

�

�

�

1

�

�

�

�

�

�uT
�

�

�

�

�

�

2
= OP(

p

T/N).

Piecing all these together completes the proof.

This result essentially means that the factors are (asymptotically) consis-
tently estimated. Note in particular that �N,T ⌘ �N,T (ũ,u) is not symmetric in
ũ,u, and hence is not a metric. Nevertheless, small values of �N,T imply that the
row space of the estimated factors is close to the row space of the true factors.
By classical least squares theory, we have

�N,T =
�

�

�

�

�

�

�

�

�

(IT � Pu)ũ
T/

p
T
�

�

�

�

�

�

�

�

�

2
,
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where Pu is the projection onto the column space of uT. This formula will be
useful in Section 4.

Under additional constraints on the factor loadings and the factors and ade-
quate additional assumptions, it is possible to show that the estimated factors ũ
converge exactly (up to a sign) to the true factors u (Stock & Watson 2002a).
For this, we need, for instance,

Assumption F. All the eigenvalues of ⌃B⌃u are distinct.

Under Assumptions A, B, and F, for N and T large enough, we can choose
the loadings and factors such that uuT/T = Ir, and BT

NBN/N is diagonal with
distinct positive entries whose gaps remain bounded from below, as N,T ! 1.
With this new assumption, we can show that the factors are estimated consis-
tently up to a sign.

Theorem 3.2. Assume that Assumptions A, B, C, D, and F hold. Assume
furthermore that we have transformed the loadings and factors in such a way
that, for N and T large enough, uuT/T = Ir and BT

NBN/N is diagonal with
distinct decreasing entries. Then, there exists an r ⇥ r diagonal matrix RNT

(depending on N,T ) with entries ±1 such that

|||ũ�RNTu|||2/
p
T = OP(C

�1
N,T ) as N,T ! 1.

Proof. Notice that, by our assumptions, for N,T large enough,

�T
NT�NT /(NT ) =

r
X

k=1

�ku(k)u
T
(k) (3.4)

where the �ks are distinct, and u(k) is the kth row of u, written as a col-
umn. Note that �k depends on N,T , but we suppress this dependency in the
notation. Notice in particular that given our identification assumptions, (3.4)
is in fact a spectral decomposition. We now recall the spectral decomposi-

tion XT
NTXNT /(NT ) =

P

k�1 �̂kf̂kf̂k
T
. Lemma 4.3 of Bosq (2000) then yields

�

�

�

f̂k � sign(f̂T
k u(k))u(k)

�

�

�

/
p
T = OP

�

�

�

�

�

�

�XT
NTXNT � �T

NT�NT

�

�

�

�

�

�

1/(NT )
�

,

for k = 1, . . . , r, since the gaps between the �1, . . . ,�r remain bounded from
below by Assumption F. Now,

�

�

�

�

�

�XT
NTXNT � �T

NT�NT

�

�

�

�

�

�

1 
�

�

�

�

�

�⇠TNT ⇠NT

�

�

�

�

�

�

1 + 2|||u|||1
�

�

�

�

�

�BT
N⇠NT

�

�

�

�

�

�

1,

and applying Lemmas S2.10, S2.11 and S2.15 in the Online Supplement, we get

N�1T�1
�

�

�

�

�

�XT
NTXNT � �T

NT�NT

�

�

�

�

�

�

1 = Op(C
�1
N,T ).

This completes the proof, since the kth row of ũ is f̂k for k = 1, . . . , r.
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Notice that we do not assume any particular dependency between N and T
in the results above: the order of the estimation error depends only min{n, T}.
A couple of remarks are in order.

Remark 3.3. (i) As mentioned earlier, Assumptions A, B, and D imply that
the common and idiosyncratic part are asymptotically identified, see Lemma S2.14
and Theorem 2.2. The extra assumptions needed for consistent estimation
of the factors row space (and for the loadings and common component,
see Theorems 3.4 and 3.5 below) are there because the covariance cov(Xt)
is unknown, and its first r eigenvectors must be estimated.

(ii) Notice, in particular, that Theorem 3.1 holds for the case Hi = R for all i,
where it coincides with Theorem 1 of Bai & Ng (2002). However we obtain
this result under weaker conditions, as we do not assume E kutk4 < 1
nor E k⇠itk8 < M < 1 (an assumption that is unlikely to hold in most
equity return series). Nor do we assume

(NT )�1
N
X

i,j=1

T
X

t,s=1

�

�

�

�

�

�E
⇥

⇠it⇠
T
js

⇤

�

�

�

�

�

�

1 < M < 1,

and we are weakening their assumption

E
�

�

�

p
N

�

⇠Tt ⇠s/N � ⌫N (t� s)
�

�

�

�

4
< M < 1,

on idiosyncratic cross-covariances into a uniform boundedness in probabil-
ity assumption on

p
N

�

⇠Tt ⇠s/N � ⌫N (t� s)
�

. The main tools that allow
us to derive results under weaker assumptions are inequalities between
Schatten norms (see Section S2.2) of compositions of operators, whereas
classical results mainly use the Cauchy–Schwartz inequality.

(iii) Note that we could change the N�1 term in Assumption B to be N�↵,
for ↵ 2 (0, 1), in which case we have weak (or semi-weak) factors (Chudik
et al. 2011, Lam & Yao 2012, Onatski 2010), which would a↵ect the rate
of convergence in Theorems 3.1, 3.2, 3.4, and 3.5; see also Boivin & Ng
(2006).

(iv) We do not make any Gaussian assumptions and, unlike Lam & Yao (2012),
we do not assume that the idiosyncratic component is white noise.

(v) Bai & Ng (2002) allow for limited correlation between the factors and the
idiosyncratic components. This is only an illusory increase of generality,
since it transfers to the idiosyncratic part of the impact of the factors on
some given cross-sectional unit Xit which, consequently, will not benefit
fully from the panel-wide contribution to the estimation of the factors.

(vi) The results could be extended to conditionally heteroscedastic common
shocks and idiosyncratic components, as frequently assumed in the scalar
case (see, e.g., Alessi et al. 2009, Trucios et al. 2019) This, which would
come at the cost of additional identifiability constraints, is left for further
research.
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The next result of this section deals with the consistent estimation of the
factor loadings. Define B̄N := B̃N ⇤̂�1/2, which is the same as B̃N , but with unit
norm columns. Similarly to the factors, the factor loadings are only identified
up to an invertible transformation, and we therefore measure consistency by
quantify the discrepancy between the column space of the estimate B̃N and the
column space of the true factors BN by

"N,T := min
R2Rr⇥r

�

�

�

�

�

�B̄N �BNR
�

�

�

�

�

�

2
/
p
N, (3.5)

which is the Hilbert–Schmidt norm of the residual of B̄N projected onto the
column space of BN , which depends on both N and T . The

p
n renormalization

is needed as
�

�

�

�

�

�B̄N

�

�

�

�

�

�

2

2
= rN . We then have, for the of factor loadings, the

following consistency result.

Theorem 3.4. Under Assumptions A, B, C, D, and E(↵),

"N,T = OP

⇣

C
� 1+↵

2
N,T

⌘

,

where CN,T := min{
p
N,

p
T}.

Proof. We shall show that
�

�

�

�

�

�

�

�

�

B̃N �BNR̃�1
�

�

�

�

�

�

�

�

�

2
= OP

✓

q

N/C(1+↵)
N,T

◆

, where R̃

is defined in (3.3), and is invertible by Lemma S2.13; the desired result then
follows, since

B̄N �BNR̃�1⇤̂�1/2 = (B̃N �BNR̃�1)⇤̂�1/2,

and
�

�

�

�

�

�

�

�

�

⇤̂�1/2
�

�

�

�

�

�

�

�

�

1
= OP(1) by Lemma S2.12.

First, notice that B̃N = T�1XNT ũ
T/T , so that

B̃N = BNuũT/T + ⇠NT ũ
T/T

= BN

⇣

R̃�1ũ+ u� R̃�1ũ
⌘

ũT/T + ⇠NT ũ
T/T

= BNR̃�1 +BN

⇣

u� R̃�1ũ
⌘

ũT/T + ⇠NT (ũ� R̃u)T/T + ⇠NTu
TR̃T,

where we have used the fact that ũũT/T = Ir. Hence,

�

�

�

�

�

�

�

�

�

B̃N �BNR̃�1
�

�

�

�

�

�

�

�

�

2
 1

T

n

|||BN |||1
�

�

�

�

�

�

�

�

�

u� R̃�1ũ
�

�

�

�

�

�

�

�

�

2
|||ũ|||2

+ |||⇠NT |||1
�

�

�

�

�

�

�

�

�

(ũ� R̃u)
�

�

�

�

�

�

�

�

�

2
+
�

�

�

�

�

�⇠NTu
T
�

�

�

�

�

�

2

�

�

�

�

�

�

�

�

�

R̃
�

�

�

�

�

�

�

�

�

1

o

.

By Lemma S2.13 and Theorem 3.1, we have
�

�

�

�

�

�

�

�

�

u� R̃�1ũ
�

�

�

�

�

�

�

�

�

2


�

�

�

�

�

�

�

�

�

R̃�1
�

�

�

�

�

�

�

�

�

1

�

�

�

�

�

�

�

�

�

ũ� R̃u
�

�

�

�

�

�

�

�

�

2
= OP(

p
T/CN,T );
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thus, the first summand is OP

⇣

q

N/C2
N,T

⌘

. By Lemma S2.10 and Theorem 3.1,

the second summand isOP

⇣

q

N/C3
N,T

⌘

. As for the last summand, it isOP

⇣

q

N/C1+↵
N,T

⌘

by Assumption E(↵). This completes the proof.

The rate of convergence for the loadings thus crucially depends on the value of
↵ 2 [0, 1] in Assumption E(↵). The larger ↵ (i.e., the weaker the cross-correlation
between factors and idiosyncratics), the better the rate. Unless ↵ = 1, that rate
is slower than for the estimation of the factors. As in Theorem 3.2, it could
be shown that, under additional identification assumptions, the loadings can be
estimated consistently up to a sign. Details are left to the reader.

We can now turn to the estimation of the common component �NT itself.
Let �̂NT := B̃N ũ. Using Theorems 3.1 and 3.4, we obtain the following result.

Theorem 3.5. Under Assumptions A, B, C, D, and E(↵),

1p
NT

|||�NT � �̂NT |||2 = OP

⇣

C
� 1+↵

2
N,T

⌘

↵ 2 [0, 1].

The
p
NT renormalization is used because the Hilbert–Schmidt norm of �NT

is of order
p
NT .

Proof. Recalling the definition (3.3), we have

|||�̂NT � �NT |||2 
�

�

�

�

�

�

�

�

�

B̃N �BNR̃�1
�

�

�

�

�

�

�

�

�

2
|||ũ|||1+|||BN |||1

�

�

�

�

�

�

�

�

�

R̃�1
�

�

�

�

�

�

�

�

�

1

�

�

�

�

�

�

�

�

�

ũ� R̃u
�

�

�

�

�

�

�

�

�

1
.

The desired result follows from applying the results from the proofs of Theo-
rems 3.1 and 3.4, and Lemma S2.13.

Again, the rate of convergence depends on ↵, which quantifies the amount of
cross-correlation between the factors and the idiosyncratic component.

4. Numerical Experiments

In this section, we assess the finite-sample performance of our estimators of on
simulated panels.

Panels of size (N = 100)⇥ (T = 200) were generated as follows from a func-
tional factor model with three factors. All functional time series in the panel
are represented in an orthonormal basis of dimension 7, with basis functions
'1, . . . ,'7; the particular choice of orthonormal functions 'i has no influence
on the results. Each of the three factors is independently generated from a
Gaussian AR(1) process with coe�cient ak and variance 1 � a2k, k = 1, 2, 3.
Those coe�cients are picked at random from a uniform on (�1, 1) at the be-
ginning of the simulations and kept fixed across the 500 replications. The aks
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are then rescaled so that the operator norm of the companion matrix of the
three-dimensional VAR process ut is 0.8.

The factor loading coe�cients were chosen of the form bi = (bi1, bi2, bi3) :=
(b̃i1'1, b̃i2'2, b̃i3'3) with b̃il 2 R—namely, the l-th loading is always aligned with
the first three basis functions 'l, l = 1, 2, 3: the N⇥3 coe�cient matrix B̃ = (b̃il)
therefore uniquely defines the N loadings. Those coe�cients were generated as
follows: first pick a value at random from a uniform over [0, 1]3N , then rescale
each fixed-i triple to have unit Euclidean norm. This rescaling implies that the
total variance of each common component (for each i) is equal to 1; B̃ is kept
fixed across replications.

The idiosyncratic components belong to the space spanned by '1, . . . ,'7;
their coe�cients (h⇠it,'ji)j were generated from

(h⇠it,'1i , . . . , h⇠it,'7i)0
i.i.d⇠ N (0, c ·E/Tr(E)), i = 1, . . . , N, t = 1, . . . , T.

Since the total variance of each common component is one, the constant c is the
relative amount of idiosyncratic noise: c = 1 means equal common and idiosyn-
cratic variances, while larger values of c make estimation of factors, loadings,
and common components more di�cult. We considered four Data Generating
Processes (DGPs):

DGP1: c = 1, E = diag(1, 2�2, 3�2, . . . , 7�2),
DGP2: c = 1, E = diag(7�2, 6�2, . . . , 1),
DGP3: c = 8, E = diag(1, 2�2, 3�2, . . . , 7�2),
DGP4: c = 8, E = diag(7�2, 6�2, . . . , 1).

In DGP1 and DGP3, we have chosen to align the largest idiosyncratic vari-
ances with the span of the factor loadings (spanned by {v1, v2, v3}). In this
case, XnT ũ

Tũ is picking the three common shocks, but also the idiosyncratic
components (which have large variances). On the contrary, in DGP2, DGP4, we
have chosen the directions of largest idiosyncratic variance to be orthogonal
to the span of the factor loadings. We then face two situations: (i) N is small
enough (equivalently, the total idiosyncratic variance of any component is big
enough) that the first eigenvectors of XT

NTXNT mainly correspond to idiosyn-
cratic components: the productXnT ũ

Tũ then essentially filters out the common
component, and our estimators of the factors and factor loadings are quite poor;
(ii) N is big enough that the first eigenvectors of XT

NTXNT correspond mostly
to the common component. In this case, the idiosyncratic component is almost
absent in XnT ũ

Tũ, and our estimators of the factors and factor loadings are
fairly accurate. In particular, while it might seem that DGP1 and DGP3 are much
more favorable than DGP2 and DGP4, the reality is more subtle, with the latter
scenarios being sometimes more favorable, as we will see below.

The variance of the idiosyncratic components (for each i) is equal to 1 for
DGP1 and DGP2, and equal to 8 for DGP3 and DGP4; the latter thus are more
di�cult. In particular, while one might feel that performing a Karhunen–Loève
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truncation for each separate FTS (each i) is a good idea, this actually performs
quite poorly in DGP4, where the first (population) eigenfunctions (for each i) are
exactly orthogonal to the common component.

For N = 10, 25, 50, 100 and T = 50, 100, 200, we have considered the subpan-
els of the first N and T observation from the “large” 100⇥200 panel. For each
replication and each choice of N and T , we estimated the factors and factor
loadings using principal component analysis over the N ⇥T panel, as explained
in Section 3, assuming that the number of factors is known to be three. We
have then computed the approximation error �2N,T for the factors, "2N,T for the
loadings, and �N,T for the common component (see Section 3), with

�N,T := |||�NT � �̂NT |||22/(NT ). (4.1)

The results, averaged over the 500 replications, are shown in Figures 1a, 1b,
and Figures S1a, and S1b in the Online Supplement for DGP1, DGP2, DGP3,
and DGP4, respectively. A careful inspection of these figures allows one to infer
whether the asymptotic regime predicted by the theoretical results (see Sec-
tion 3) has been reached. We will give a detailed description of this for DGP1,
Figure 1a.

Looking at the left plot in Figure 1a, the local slope ↵ of the curve log2(N) 7!
log2 �

2
N,T (ũ,u) for fixed T tells us that the error rate is N↵, for fixed T . Here,

↵ ⇡ �1; hence, the error rates for the factors is about N�1 for each T . For N
fixed, the spacings � between log2 �

2
N,T (ũ,u) from T = 50 to 100 indicates that

the error rate is T � for N fixed. Since 0  �� < 0.25, the error rate for fixed
N is less than T�0.25. The simulation results give us insight into which of the
terms T�1 or N�1 is dominant, and for the factors in DGP1, the dominant term
in N�1 for T 2 [50, 200]. We do expect to see an error rate T�1 for large fixed
N large, and simulations (with N = 1000, not shown here) confirm that this
is indeed the case. The middle plot of Figure 1a shows the error rate for the
loadings. Since the factors and the idiosyncratic component are independent in
our simulations, we expect to have the same OP(max(T�1, N�1)) error rates
as for the factors. For the larger values of N , it is clear that the dominant
term is T�1. Smaller values of N actually exhibit a transition from the N�1

to the T�1 regime: the spacings � between the lines becomes more uniform
and close to �1 as N increases, and the slope ↵ decreases in magnitude as N
increases, and seems to converge to zero. The right sub-figure shows the error
rates for the common component, for which we expect, in this setting, the same
OP(max(T�1, N�1)) error rates as for the loadings. Inspection reveals similar
e↵ects as for the factor loadings: for T = 200, the error rate is close to N�1 for
small Ns. For N = 100, it is almost T�1 for small T s.

Figure 1b (DGP2) can be interpreted in a similar fashion, but we shall not
delve into this. Compared to DGP1, the errors on the factors are much smaller,
those on the loadings are a bit smaller for small N ; but the gap dereases with
N , and the error on the common component are smaller in general, and much
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(b) Simulation scenario DGP2.

Figure 1: Estimations errors (in log2 scale) for DGP1 (subfigure (a)) and
DGP2 (subfigure (b)). For each subfigure, we have the estimation error for
the factors (log2 �

2
N,T , left), loadings (log2 "

2
N,T , middle), and common com-

ponent (log2 �N,T , right, �N,T defined in (4.1)) as functions of log2 N . The
scales of the vertical axes are the same. Each curve corresponds to one value of
T 2 {50, 100, 200}, sampled for N 2 {10, 25, 50, 100}.



G. Nisol, S. Tavakoli, and M. Hallin/Functional Factor Models 20

smaller for small N . This corroborates the previous comment on the di�culty
in assessing a priori which, of DGP1 or DGP2, is more favourable.

Results for DGP3 and DGP4 are shown in Figure S1, in the Online Supplement.
A comparison between DGP3, DGP4 and DGP1, DGP2 is interesting because they
only di↵er by the scale of the idiosyncratic components. We see that the er-
rors are much higher for DGP3, DGP4 than for DGP1, DGP2, as expected. Notice
that the dominant term for the factors is no longer of order N�1 over all val-
ues of N,T : it seems to kick in for N 2 [25, 100] in DGP3, DGP4, but looks
slightly higher thanN�1 for N 2 [10, 25] and T 2 [100, 200] in DGP4 (noticeably
so for T = 200). A similar phenomenon occurs for the loadings and common
component in DGP4, for N 2 [10, 25] and T = 200. These rates do not contra-
dict the theoretical results of Section 3, which hold for N,T ! 1, so DGP4, in
particular, indicates that the values of N considered there are too small for the
asymptotics to have kicked in, and prompts further theoretical investigations
about the estimation error rates in finite samples.

5. Empirical illustration

Our model can be used to tackle a plethora of applications in many di↵erent
domains. Instances of such applications include joint analysis of fertility (or mor-
tality) curves across di↵erent regions or countries, modeling electricity demand
curves of households or including yield and financial curves into macroeconomic
factor models. In the example developed here, we demonstrate the empirical
relevance of our method on financial data. More specifically, we jointly model
intraday returns of a large collection of US and European stocks.

In order to model the co-movements of asset returns, the financial literature
has been considering factor models for several decades. Factor models are in-
trinsically related to optimal portfolio allocation through the concept of diversi-
fication. Namely, investors try to remove the idiosyncratic risk by appropriately
weighting the di↵erent assets in their portfolios. An early instance of this is
the Capital Asset Pricing Model (CAPM) introduced by Sharpe (1964), Lintner
(1965), Treynor (1961). In this model, the returns of the various stocks under
study are modelled as linear functions of the market return with di↵erent factor
loadings, called �’s. The Fama-French 3-factor model extends CAPM by adding
two extra factors (Fama & French 1996). Ross (1976) developed his Arbitrage
Pricing Theory by proposing a factor model with unspecified number of factors.
Chamberlain & Rothschild (1983) proved their representation theorem in the
latter context. None of these models is able to handle intraday returns curves,
though, let only mixed with overnight and daily returns. These are precisely the
type of data our functional approach is made for.

Our dataset contains the returns for 95 S&P100 stocks and 48 Eurostoxx 50
ones observed from 1st of January 2018 to 12th of July 2018 (list available in
Tables S1 and S2 in the Online Supplement; we had to dismiss a few stocks for
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which the data were not available throughout the observation period). For the
US stocks, one-minute frequency prices are available, whereas we only have the
opening prices for European stocks. Our dataset thus is a mix of high-frequency
series (treated as functional series) and scalar ones.

For the US stocks, we have computed cumulative intraday returns (CIDR)
as defined by Horváth & Kokoszka (2012). If pid,t is the price of stock i at
day d and time t (rescaled between 0 and 1), its CIDR at time t is defined
as log(pid,t) � log(pid,0). We have also computed their overnight returns, that
is log(pid+1,0) � log(pid,1). For the European stocks, we have computed daily
returns based on the opening prices, namely log(pid+1,0) � log(pid,0). For each
observation date d, we thus have three categories of series:

(i) the CIDR curves of 95 S&P100 stocks represented in a 7-dimensional B-
splines basis,

(ii) the overnight returns of the same 95 S&P100 stocks, and
(iii) the daily returns of 48 Eurostoxx 50 stocks.

Prior to the analysis, all series have been centered about their empirical
means. Moreover, we have divided all time series belonging to the same cat-
egory by a constant so that the average variance within each category is one:
the objective is to balance the influence of each category. In order to avoid miss-
ing data problems, we have chosen to disregard the days on which the US stock
exchange was closed; whenever the US stock exchange was open but the Euro-
pean one was closed, we replaced the missing European price by the previous
available value.

In Figure 2, we have plotted the first 10 eigenvalues of the covariance operator
for di↵erent values of N . Since our panel consists of time series of di↵erent
natures, we have permuted 50 times every cross section. The curves obtained
are then computed as the average values obtained for the first N times series
(functional or scale) of the permuted panels. Based on the scales of these curves,
we have decided to keep r = 3 factors. Esablishing a more rigorous criterion for
the identification of the number of factors is left for future research.

We have then computed, for each series i, the percentage Aij of variance
explained by the j-th factor. In Figure 3, we have plotted six di↵erent figures,
arranged in three rows and three columns. The plot at the j-th row and k-th
column has Aij on the x-axis and Aik on the y-axis; each point represents one
series. We notice that factor 1 represents a high proportion of the variance for
most European returns and overnight S&P100 returns, but only a very small
percentage of the variance of the intraday CIDRs. Factor 2 explains a large
percentage of variance for both overnight and intraday S&P100 returns, but
a small fraction of the variance of the European returns. These suggest non-
negligible co-movement between these series, which calls for further investigation
(which is beyond the scope of this paper). The fractions of variance explained
by factor 3 is quite small, and its interpretation is also di�cult.
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Figure 2: First 10 eigenvalues averaged over 50 permuted cross-sections of vary-
ing sizes N .

6. Discussion

We proposed a new paradigm for modelling large panels of functional and scalar
time series, based on a new concept of (high-dimensional) functional factor
model. This model permits to reduce the serial information contained in the
panel into a few scalar time series of factors, which encode most of the cross-
sectional correlation of the panel. The residual terms of each FTS, uncorrelated
with the factors at lag 0, are only mildly cross-correlated (along the cross-
section). In particular, this model is weaker than strict factor models (which
require mutually strictly uncorrelated idiosyncratic components) or other fac-
tor model (such as Lam & Yao 2012, which requires idiosyncratic components
to be white noise). We extend to the functional context the classical represen-
tation results of Chamberlain (1983), Chamberlain & Rothschild (1983) and
propose consistent estimation procedures for the factors, the factor loadings,
and the common components, as both the size N of the cross-section and the
period T of observation tend to infinity, with no constraints on their relative
rates of divergence. Our results also hold for the particular case of scalar panel
data, where they reproduce and extend the well-established results of Bai &
Ng (2002), but under weaker assumptions. Our proof techniques are therefore
of independent interest, in particular since they considerably simplify existing
ones, while extending their validity to a functional setting. We then illustrated
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Figure 3: For every subplot (j, k), the variance explained by the j-th factor
versus variance explained by the k-th factor is plotted for each 238 series of our
empirical illustration (Section 5). This is a pairs plot, whence the symmetry of
subplots with respect to the diagonal.
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the consistency results by some numerical experiments, which confirm that the
rates predicted by the theory are indeed observed empirically, and also provide
finer description of the interplay between the size of the cross-section and the
length of the (functional) time series. We concluded the paper by providing an
empirical illustration of a functional factor model applied to a panel of time
series of mixed nature (some functional and some scalar), and showing how one
can use the model to assess co-movement between the series.

Extensions of this present work could be in the direction of developing in-
formation criteria for identifying the number of factors (Bai & Ng 2002), or
extending the theory and methodology of Fan et al. (2013) for dealing with
estimation of high-dimensional conditional covariance operator matrices. The
factor models presented here have also links with high-dimensional covariance
models with very spiked eigenvalues (Cai et al. 2017). Further extensions could
be in the direction of generalized dynamic factor models (Forni et al. 2000, Forni
& Lippi 2001, Forni et al. 2015, 2017).

Supplementary Material

The R code reproducing the numerical experiments of Section 4, as well as code
used for Section 5, can be obtained by contacting the authors by email.

Online Supplement: “High-Dimensional Functional Factor Models”
(doi: TYPESETTERS: PLEASE UPDATE THIS FIELD). Contains additional
proofs, background results, and additional figures and tables.
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S1. Orthogonal Projections

Let H be a separable Hilbert space. For X,Y : ⌦ ! H, let

kXkL2(⌦) :=
q
hX,XiL2(⌦),

where hX,Y iL2(⌦) = E hX,Y i. Although the notation is similar to that used for
the norm and covariance of random variables, it will be clear from the context
which norm is being used. Let L2

H (⌦) be the space ofH-valued random elements
X : ⌦ ! H with EX = 0 and kXkL2(⌦) < 1.
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Ticker Company name Sector
ADS.DE Adidas Consumer Discretionary
AD.AS Ahold Delhaize Consumer Staples
AI.PA Air Liquide Materials

AIR.PA Airbus Industrial
ALV.DE Allianz Financials
ABI.BR Anheuser-Busch InBev Consumer Staples

ASML.AS ASML Holding Technology
CS.PA AXA Financials

BBVA.MC Banco Bilbao Vizcaya Argentaria Financials
SAN.MC Banco Santander Financials
BAS.DE BASF Materials

BAYN.DE Bayer Health Care
BMW3.DE BMW Consumer Discretionary

BNP.PA BNP Paribas Financials
CRG.IR CRH Materials
SGO.PA Compagnie de Saint-Gobain Materials
DAI.DE Daimler AG Consumer Discretionary

DPW.DE Deutsche Post Industrial
DTE.DE Deutsche Telekom Communication Services
ENEL.MI Enel Utilities
ENGI.PA Engie Utilities
ENI.MI Eni Energy

EOAN.DE E.ON Utilities
FRE.DE Fresenius SE Health Care
BN.PA Groupe Danone Consumer Staples

IBE.MC Iberdrola Utilities
ITX.MC Inditex Consumer Discretionary

INGA.AS ING Group NV Financials
ISP.MI Intesa Sanpaolo Financials
OR.PA L’Oréal Consumer Staples
MC.PA LVMH Moët Hennessy Louis Vuitton Consumer Discretionary

MUV2.DE Munich Re Financials
NOKIAsci hub .HE Nokia Technology

ORA.PA Orange S.A. Communication Services
PHIA.AS Philips Health Care
SAF.PA Safran Industrial
SAN.PA Sanofi Health Care
SAP.DE SAP SE Technology
SU.PA Schneider Electric Industrial
SIE.DE Siemens Industrial
GLE.PA Société Générale SA Financials
TEF.MC Telefónica Communication Services

FP.PA TOTAL S.A. Energy
URW.AS Unibail-Rodamco Real Estate
UNA.AS Unilever Consumer Staples
DG.PA Vinci SA Industrial
VIV.PA Vivendi Consumer Discretionary

VOW.DE Volkswagen Group Consumer Discretionary
Table S2

List of euro stocks under study.
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For any finite-dimensional subspace U ⇢ L2(⌦), let

spanH(U) :=
8
<

:

mX

j=1

bjuj : bj 2 H,uj 2 U ,m = 1, 2, . . .

9
=

; . (S1.1)

Since U is finite-dimensional, spanH(U) ✓ L2
H (⌦) is a closed subspace. Indeed,

let u1, . . . , ur 2 U be an orthonormal basis, r < 1, then

kb1u1 + · · ·+ brurk2L2(⌦) = kb1k2 + · · ·+ kbrk2.
By the orthogonal decomposition Theorem (Hsing & Eubank 2015, Theorem 2.5.2),
for any X 2 L2

H (⌦), there exists a unique U [X] 2 spanH(U) such that

X = U [X] + V [X], (S1.2)

where V [X] = X � U [X] 2 spanH(U)?; hence E [uV [X]] = 0 for all u 2 U and

E kXk2 = E kU [X]k2 + E kV [X]k2. (S1.3)

We have the following definition.

Definition S1.1. Equation (S1.2) is called the orthogonal decomposition of
X onto spanH(U) and its orthogonal complement; U [X] =: projH(X|U) is the
orthogonal projection of X onto spanH(U).

If u1, . . . , ur 2 L2(⌦) form a basis of U , then projH(X|U) =
Pr

l=1 blul for
some unique b1, . . . , br 2 H. Furthermore, if the uls are orthonormal, then bl =
E [Xul], l = 1, . . . , r. We shall also use the notation

projH(X|u) := projH(X|u1, . . . , ur) := projH(X|U),
where U = span(u1, . . . , ur) and u = (u1, . . . , ur)0.

S2. Proofs

S2.1. Proofs of Theorems 2.2 and 2.3

We denote by ⌃N the covariance operator of (X1t, . . . , XNt)0, which does not
depend on t by stationarity. Denoting by pN,i 2 HN the ith eigenvector of ⌃N ,
we have the following eigendecomposition of the covariance operator,

⌃N =
1X

i=1

�N,ipN,ip
T
N,i.

(Notice that the notation here di↵ers from that of Section 3, but this is not an
issue since we are dealing here with the population level T = 1) The eigen-
vectors (pN,i)i ⇢ HN form an orthonormal basis of the image Im(⌃N ) ⇢ HN
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of ⌃N . We can extend the set of eigenvectors of ⌃N to form an orthonormal
basis of HN . With a slight abuse of notation, we shall denote this basis by
(pN,i)i, possibly reordering the eigenvalues (and having eigenvalues equal to
zero): we might no longer have non-increasing eigenvalues, but we can enforce
�x
N,1 � · · · � �x

N,r+1 and �x
N,r+1 � �x

N,r+1+j , 8j � 1. Define

PN :=
�
pN,1 · · · pN,r

� 2 L(Rr,HN )

and
QN :=

�
pN,r+1 pN,r+2 · · ·� 2 L(`2,HN )

where `2 :=
�
(↵1,↵2, . . .) : ↵i 2 R,

P
i ↵

2
i < +1 

. Denote by ⇤N 2 L(Rr)
and �N 2 L(`2) the diagonal matrices with diagonal elements (�N,1, . . . ,�N,r)
and (�N,r+1,�N,r+2, . . .), respectively. Then,

⌃N = PN⇤NP T
N +QN�NQT

N and PNP T
N +QNQT

N = IN , (S2.1)

where IN is the identity operator on HN .
The analysis we are going to perform is for fixed t, letting N ! 1. We

therefore omit the index t, unless needed, and write XN for (X1t, . . . , XNt)0.
Let

 N := ⇤�1/2
N P T

NXN = (��1/2
N,1 pT

N,1XN , . . . ,��1/2
N,r pT

N,rXN )0. (S2.2)

Notice that, by Lemma S2.18,  N is well defined for N large enough since �N,r

tends to infinity. Using (S2.1), we get

XN = PNP T
NXN +QNQT

NXN = PN⇤1/2
N  N +QNQT

NXN , (S2.3)

where the two summands are uncorrelated since P T
N⌃NQN = 0 2 L(`2,HN ),

the zero operator: (S2.3) is in fact the orthogonal decomposition of XN into
spanHN

( N ) and its orthogonal complement, defined in Appendix S1. For m <
n, let us define products such as P T

MPN by extending the smaller matrix by
adding zeros. For instance,

P T
MPN :=

0

B@
pT
M,1 0 · · · 0
...

...
. . .

...
pT
M,r 0 · · · 0

1

CA
�
pN,1 · · · pN,r

�
,

where we have added N � M columns of zeros to P T
M . Let O(r) be the set of

r ⇥ r orthogonal matrices, i.e. matrices C such that CCT = CTC = Ir, the
r ⇥ r identity matrix. For C 2 O(r), left-multiplying both sides of (S2.3) by

C⇤�1/2
M P T

M , with m < n, yields

C M = C⇤�1/2
M P T

MPN⇤1/2
N  N +C⇤�1/2

M P T
MQNQT

NXN

= D N +RXN , (S2.4)
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which is the orthogonal decomposition of C M onto the span of  N and its
orthogonal complement, since the two summands are uncorrelated. Notice that
D = D[C,M,N ], and similarly R = R[C,M,N ], where we use square brackets
to denote dependence on variables. The following Lemma gives a bound on the
residual term in (S2.4). Write A ⌫ B for A�B non-negative definite.

Lemma S2.1. The largest eigenvalue of the covariance operator of the resi-
dual R[C,M,N ]XN in (S2.4) is bounded by �N,r+1/�M,r.

Proof. We know that IN ⌫ QNQT
N and �N,r+1QNQT

N ⌫ QN�NQT
N . Hence,

�N,r+1IN ⌫ QN�NQT
N . Multiplying to the left by C⇤�1/2

M P T
M and to the right

by its adjoint, and using the fact that �N = QT
N⌃NQN , we get

�N,r+1C⇤�1
M CT ⌫ C⇤�1/2

M P T
MQNQT

N⌃NQNQT
NPM⇤�1/2

M CT = R⌃NRT.

Lemma S2.18 completes the proof, since the largest eigenvalue on the left-hand
side is �N,r+1/�M,r.

Let us now take covariances on both sides of (S2.4). We get

Ir = DDT +R⌃NRT.

Denoting by �i the ith largest eigenvalue of DDT, we have

1� �N,r+1

�M,r
 �i  1, (S2.5)

by Lemma S2.1 and Lemma S2.18. Thus, for N > M � M⇤, all �is are
strictly positive and, since �r+1 < 1 and �r = 1, �i can be made arbitrarily
close to one by choosing M⇤ large enough. Denoting by U�1/2V T the singu-
lar decomposition of D, where � is the diagonal matrix of DDT’s eigenval-
ues �1 � �2 � · · · � �r, define

F := F [D] = F [C,M,N ] = UV T, D = U�1/2V T. (S2.6)

Notice that (S2.5) implies that F is well-defined for M,N large enough, and
that F 2 O(r). The following Lemma shows that C M is well approximated
by F N .

Lemma S2.2. For every " > 0, there exists an M" such that, for all N >
M � M", F = F [C,M,N ] is well defined, and the largest eigenvalue of the
covariance of

C M � F N = C M � F [C,M,N ] N

is smaller than " for all N > M � M".

Proof. First notice that it su�ces to take M" > M⇤ for F to be well defined.
We have

C M � F M = RXN + (D � F ) N ,
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and since the two summands on the right-hand side are uncorrelated, the covari-
ance of the sum is the sum of their covariances. Denoting by S the covariance
of the left-hand side, and by |||S|||1 the operator norm of S, and noting that
D � F = U(�1/2 � Ir)V T, we get

|||S|||1  ������R⌃NRT
������

1 +
���
���
���U(�1/2 � Ir)V

TV (�1/2 � Ir)U
T
���
���
���
1

(S2.7)

=
������R⌃NRT

������
1 +

���
���
����1/2 � Ir

���
���
���
2

1
, (S2.8)

since U and V are unitary matrices. The first summand of (S2.8) can be made
smaller than "/2 for m large enough (by Lemma S2.1), and the second summand
can be made smaller than "/2 using (S2.5).

A careful inspection of the proofs of these results shows that they hold for all
values of t, i.e., writing  n,t = ⇤�1/2

N P T
NXN , the result of Lemma S2.2 holds

for the di↵erence D m,t �F n,t, with a value of M" that does not depend on
t. The following results provides a construction of the process ut.

Proposition S2.3. There exists an r-dimensional second-order stationary pro-
cess ut = (u1t, . . . , urt)0 such that

(i) uit 2 Dt for i = 1, . . . , r and all t 2 Z,
(ii) Eutu

T
t = Ir, ut is second-order stationary, and ut and XN are second-

order co-stationary.

Proof. Recall that M" is defined in Lemma S2.2. The idea of the proof is that
 mt is converging after suitable rotation.

Step 1: Let s1 = M1/22 , F1 = Ir, and u1,t = F1 
s1,t.

Step 2: Let s2 = max
�
s1,M1/24

 
, let F2 = F [F1, s1, s2], and let u2,t =

F2 
s2,t.

...
Step k+1: Let sk+1 = max

�
sk,M1/s2(k+1)

 
, Fk+1 = F [Fk, sk, sk+1], and uk+1,t =

Fk+1 
sk+1,t.

...

Denoting by uk,t
j the jth coordinate of uk,t, we have

���uk,t
j � uk+1,t

j

���
2

L2(⌦)
=
��Fk 

sk,t � F [Fk, sk, sk+1] 
sk+1,t

��2
L2(⌦)

 1

22k
,

and thus

���uk,t
j � uk+h,t

j

���
L2(⌦)


hX

l=1

���uk+l�1,t
j � uk+l,t

j

���
L2(⌦)

 1

2k�1
.

Therefore (uk,t
j )k�1 is a Cauchy sequence and converges in L2(⌦) to some

limit ujt, j = 1, . . . , r.



G. Nisol, S. Tavakoli, and M. Hallin/Supplementary material for “Functional Factor Models”8

Notice that Euk,t(uk,t)T = Ir for each k since Fk 2 O(r), so that

Eutu
T
t = lim

k!1
Euk,t(uk,t)T = lim

k!1
Ir = Ir.

Furthermore, Eutu
T
t+h is well-defined (and finite) for every h 2 Z, and

Eutu
T
t+h = lim

k!1
Euk,t(uk,t+h)T = lim

k!1
FkE

⇥
 sk,t( sk,t+h)T

⇤
F T
k .

The term inside the limit is independent of t (since XN is second-order station-
ary), and hence Eutu

T
t+h does not depend on t, and (ut)t2Z is second-order

stationary. Furthermore,

EXitu
T
t+s = lim

k!1
E
⇥
Xit(u

k,t+s)T
⇤
= lim

k!1
E
⇥
XitX

T
sk,t+s

⇤
P T

sk
⇤�1

sk
F T
k ,

and since the term inside the limit does not depend on t, it follows that ut is
co-stationary with XN , for all N .

Let us now show that ujt 2 Dt. Recall that

uk,t = Fk 
sk,t = Fk⇤

�1/2
sk

P T
sk
XN ,

and let us write Gk = Fk⇤
�1/2
sk P T

sk
. Notice that uk,t

j = rowj(Gk)Xsk,t, where

rowj(G) denotes the jth row of G and rowj(Gk)T 2 Hsk ; hence, its squared
norm is equal to the jth diagonal entry of GkG

T
k , which itself is bounded by

������GkG
T
k

������
1 =

������Fk⇤
�1
sk

Fk

������
1  ������⇤�1

sk

������
1 = ��1

sk,r
.

Since limk!1 ��1
sk,r

= 0, ujt 2 Dt.

We now know that each space Dt has dimension at least r. The following
results tells us that this dimension is exactly r.

Lemma S2.4. The dimension of Dt is r, and {u1t, . . . , urt} is an orthonormal
basis for it.

Proof. We already know that the dimension ofDt is at least r, and that u1t, . . . , urt 2
Dt are orthonormal. We only need to show that the dimension of Dt is less
than or equal to r to finish the proof. First of all, let us drop the index t to
simplify notation. Assume that D has dimension larger than r. Hence there
exists d1, . . . , dr+1 2 D orthonormal, with dj = limN!1 djN in L2(⌦), where
djN = vT

jNXN , and kvjNk2 = vT
jNvjN ! 0 as N ! 1.

Let A(N) be the (r + 1) ⇥ (r + 1) matrix with (i, j)th coordinate

A(N)
ij = E [diNdjN ]. On the one hand, A(N) ! Ir+1. On the other hand,

A(N)
ij = vT

iN⌃NvjN = vT
iNPN⇤NP T

NvjN + vT
iNQN�NQT

NvjN ,

and, from the Cauchy–Schwarz inequality,

|vT
iNQN�NQT

NvjN |  |||QN |||21|||�N |||1kvjNkkviNk
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 �N,r+1kvjNkkviNk ! 0,

as N ! 1. Therefore, the limit of A(N) is the same as the limit of B(N), whose
(i, j)th entry is B(N)

ij = vT
iNPN⇤NP T

NvjN . But this is impossible since B(N) is
of rank at most r for all N . Therefore, the dimension of D is at most r.

Consider the orthogonal decomposition

Xit = �it + �it, with �it = projHi
(Xit|Dt) and �it = Xit � �it,

of Xit into its projection onto spanHi
(Dt) and its orthogonal complement.

Here, projHi
(·|Dt) denotes the orthogonal projection onto spanHi

(Dt)—see Ap-
pendix S1 for definitions. Since �it 2 spanHi

(Dt), we can write it as a linear
combination

�it = bi1u1t + · · ·+ birurt,

(with coe�cients in Hi) of u1t, . . . , urt, where bij = E �itujt = EXitujt does
not depend on t in view of the co-stationarity of ut and XN .

The only technical result needed before being able to prove Theorem 2.2 is
that ⇠ is idiosyncratic, that is, �⇠

1 < 1. The rest of this section is devoted to
the derivation of this result.

Although  N does not necessarily converge, we know intuitively that the pro-
jection onto the entries of  N should somehow converge. The following notion
and result formalises this.

Definition S2.5. Let (vN )N be an r-dimensional process with mean zero and
EvNvT

N = Ir. Consider the orthogonal decomposition

vM = AMNvN + ⇢MN ,

and let cov(⇢MN ) be the covariance matrix of ⇢MN . We say that (vN )N gener-
ates a Cauchy sequence of subspaces if for all " > 0, there is an M" � 1 such
that for all N and M > M", Tr[cov(⇢MN )] < ".

Lemma S2.6. Let Y 2 L2
H (⌦). If (vN )N generates a Cauchy sequence of

subspaces, and YN = projH(Y |vN ), then (YN )N converges in L2
H (⌦).

Proof. Let Y = YN + rN = bNvN + rN and YM + rM = bMvM + rM be
orthogonal decompositions, with bk = (bk1, . . . , bkr), bki 2 H, k = N,M . We
therefore get

YN � YM = bNvN � bMvM = rM � rN .

The squared norm of the left-hand side can be written as the inner product
between the middle and right expressions. Namely,

kYN � YMk2L2(⌦) =
⌦
bNvN � bMvM , rM � rN

↵
L2(⌦)

=
⌦
bNvN , rM

↵
L2(⌦)

+
⌦
bMvM , rN

↵
L2(⌦)
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= SNM
1 + SMN

2 ,

where the cross-terms are zero by orthogonality. Since vN = ANMvM + ⇢NM ,
and since vM is uncorrelated with rM ,

SNM
1 =

⌦
bN⇢NM , rM

↵
L2(⌦)

,

and the Cauchy–Schwarz inequality, along with simple matrix algebra yields

��SNM
1

��2  Tr
⇥
(bN )TbN

⇤ krMkL2(⌦) Tr
⇥
cov(⇢NM )

⇤
. (S2.9)

Notice that kY k2L2(⌦) = Tr[(bN )TbN ] + krNk2L2(⌦) = Tr[(bM )TbM ] + krMk2L2(⌦).
Therefore, the first two terms of the right-hand side in (S2.9) are bounded and,
since vN generates a Cauchy sequence of subspaces, |SNM

1 | can be made arbi-
trarily small for large N,M . A similar argument holds for |SMN

2 |, and therefore
(YN )N ⇢ L2

H (⌦) is a Cauchy sequence, and thus converges.

We now show that  N , defined in (S2.2), generates a Cauchy sequence of
subspaces.

Lemma S2.7. ( N )N generates a Cauchy sequence of subspaces.

Proof. For N > M , we already have the orthogonal decomposition

 M = D N + ⇢MN , (S2.10)

withD = ⇤�1/2
M P T

MPN⇤1/2
N . Lemma S2.1 gives Tr(cov(⇢MN ))  r�N,r+1/�M,r.

We now need to show that the residual of the projection of  N onto  M is also
small. The projection of  N onto  M is E

⇥
 N ( M )T

⇤
 M . Expanding the ex-

pectation, we get

E
⇥
 N ( M )T

⇤
= E

h
⇤�1/2

N P T
NXNXT

MPM⇤�1/2
M

i

= ⇤�1/2
N P T

N⌃NPM⇤�1/2
M

= ⇤�1/2
N P T

N

�
PN⇤NP T

N +QN�NQT
N

�
PM⇤�1/2

M

= ⇤�1/2
N ⇤NP T

NPM⇤�1/2
M = DT,

where the second equality comes from the fact that we expand the smaller matrix
PM with rows of zeros, and the third equality comes from (S2.1). We therefore
have  N = DT M + ⇢NM . Taking covariances, we get

Ir = DTD + cov(⇢NM ) = DDT + cov(⇢MN )

where the second equality follows from (S2.10). Taking traces yields

Tr(cov(⇢MN )) = Tr(cov(⇢NM )),

which completes the proof.
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We now know that  N = ( N
1 , . . . , N

r )0 generates a Cauchy sequence of sub-
spaces. Let us show that the projection onto spanH( N

1 , . . . , N
r ) converges to

the projection onto spanH(D) (we are dropping the index t for ease of notation).

Lemma S2.8. For each i � 1, writing Xi for Xit,

lim
N!1

projHi
(Xi| N ) = projHi

(Xi|D).

Proof. Let
�Ni = projHi

(Xi| N ), �Ni = Xi � �Ni . (S2.11)

We know by Lemmas S2.6 and S2.7 that

�Ni ! �⇤i and �Ni ! �⇤i , as N ! 1. (S2.12)

Let us show that �⇤i 2 spanHi
(Dt). The orthogonal decomposition of �⇤i into its

projection onto spanHi
(Dt) and its orthogonal complement is

�⇤i = E
⇥
�⇤i u

T
⇤
u+ ri

and, by orthogonality,

k�⇤i k2L2(⌦) = Tr
�
E
⇥
�⇤i u

T
⇤
(E

⇥
�⇤i u

T
⇤
)T
�
+ krik2L2(⌦). (S2.13)

We also know by (S2.3) that �Ni = rowi(PN )⇤1/2
N  N , and therefore

k�⇤i kL2(⌦) = lim
N!1

Tr(cov(�Ni )) = lim
N!1

Tr(rowi(PN )⇤N rowi(PN )T)

where we notice that rowi(PN ) : Rr ! Hi.

Recall from Proposition S2.3 that u = limN!1 FsN⇤�1/2
sN P T

sNXsN . This

implies that E
⇥
�⇤i u

T
⇤
= limN!1 rowi(PsN )⇤1/2

sN F T
sN , which in turn implies

that

Tr
�
E
⇥
�⇤i u

T
⇤
(E

⇥
�⇤i u

T
⇤
)T
�
= lim

N!1
Tr(rowi(PsN )⇤sN rowi(PsN )T),

and therefore krikL2(⌦) = 0 by (S2.13), and �⇤i 2 spanHi
(Dt).

Finally, let us show that �⇤i is orthogonal to D. Writing uj instead of ujt,

E [�⇤i uj ] = lim
N!1

E
⇥
�sNi usN

j

⇤

= lim
N

E [�sNi rowj(FN ) sN ]

= lim
N

E
⇥
�sNi ( sN )T

⇤
rowj(FN )T = 0,

since �ki is orthogonal to  k for all k. The result follows.

Recall the definition of �⇤i in (S2.12). We can now show that the largest
eigenvalue ��

⇤

N,1 of the covariance of �⇤N = (�⇤1 , . . . , �
⇤
N )0 is bounded.
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Lemma S2.9. �⇤ is idiosyncratic, i.e. supN�1 �
�⇤

N,1 < 1.

Proof. Let ⌃�N

M be the covariance of (�N1 , . . . , �NM ), N � M . Since �Ni converges

to �⇤i in L2(⌦), ⌃�N

M converges to ⌃�⇤

M . This implies that ��N

M,1 converges to ��⇤

M,1

as N ! 1, since
�����N

M,1 � ��⇤

M,1

��� 
���
���
���⌃�N

M �⌃�⇤

M

���
���
���
1

(Hsing & Eubank 2015).

Since ⌃�N

M is a compression of ⌃�N

N , we have

��N

M,1  ��N

N,1 = �x
N,r+1,

where we have used the fact that, by definition, ��N

N,1 = �x
N,r+1. Taking the limit

as N ! 1, we get
��⇤

M,1  �x
r+1 < 1,

and, since this holds true for each m, it follows that ��⇤

1  �x
r+1 < 1.

Proof of Theorem 2.2. We have already shown the “only if” part. Let us assume
�x
r = 1, �x

r+1 < 1. Then we know that Xit has the representation

Xit = �it + �it, with �it = projHi
(Xit|Dt), and �it = Xit � �it.

We know that �it = bi1u1t + · · · + birurt is co-stationary with X since Dt is
obtained as an L2(⌦) limit of projections of Xt. It follows from Lemma S2.9 that
��
N,1  �x

r+1; using Lemma S2.18, we get ��
N,r � �x

N,r���
N,1, and thus ��

N,r ! 1
as N ! 1.

Proof of Theorem 2.3 . Assume that p 2 Dt, so that p = limN haN ,XN i for aN 2
HN with kaNk ! 0. Since �⇠

1 < 1, the non-correlation of � and ⇠ yields
p = limN haN ,�N i, which implies that p 2 span(vt) for vt = (v1t, . . . , vrt),
where �N := (�1t, . . . ,�Nt)0. Therefore,

span(vt) � span(Dt) = span(ut),

where ut is constructed in Proposition S2.3. But span(vt) and span(ut) both
have dimension r, so they are equal, and therefore

�it = projHi
(Xit| span(vt)) = projHi

(Xit|Dt).

If Xit = �it+ �it is another functional factor representation with r factors, then
we have

�it = projHi
(Xit|Dt) = �it and �it = Xit � �it = Xit � �it = ⇠it,

which shows the uniqueness of the decomposition.
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S2.2. Technical Results for Section 3

Let us first recall some basic definitions and properties of classes of operators on
separable Hilbert spaces (Weidmann 1980, Chapter 7). Let H1, H2 be separa-
ble (real) Hilbert spaces. Denote by S1(H1, H2) the space of compact (linear)
operators from H1 to H2. The space S1(H1, H2) is a subspace of L(H1, H2)
and consists of all the operators A 2 L(H1, H2) that admit a singular value
decomposition

A =
X

j�1

sj [A]ujv
T
j ,

where (sj [A])j ⇢ [0,1) are the singular values of A, ordered in decreasing or-
der, satisfying limj!1 sj [A] = 0, (uj)j ⇢ H1 and (vj)j ⇢ H2 are orthonormal
vectors. An operator A 2 S1(H1, H2) satisfying |||A|||1 :=

P
j sj [A] < 1 is

called a trace-class operator, and the subspace of trace-class operator is de-
noted by S1(H1, H2). We have that |||A|||1  |||A|||1 =

������AT
������

1
and if C 2

L(H2, H), then |||CA|||1  |||C|||1|||A|||1. An operator A 2 S1(H1, H2) satisfy-

ing |||A|||2 :=
qP

j(sj [A])2 < 1 is called Hilbert–Schmidt, and the subspace of

Hilbert–Schmidt operators is denoted by S2(H1, H2). We have that |||A|||1 
|||A|||2 =

������AT
������

2
and if C 2 L(H2, H), then |||CA|||2  |||C|||1|||A|||2. Further-

more, if B 2 S2(H2, H) then |||BA|||1  |||B|||2|||A|||2, and if A 2 S1(H,H1) then
|||A|||2  |||A|||1. We shall use the shorthand notation S1(H) for S1(H,H), and
similarly for S2(H). If A 2 S1(H), then we define its trace by

Tr(A) =
X

i�1

hAei, eii ,

where (ei) ⇢ H is a complete orthonormal sequence (COS). The sum does not
depend on the choice of the COS, and |Tr(A)|  |||A|||1. Furthermore, if A is sym-
metric positive semi-definite (i.e. hAu, ui � 0, 8u 2 H), then
Tr(A) = |||A|||1. If A 2 L(H1, H2) and B 2 L(H2, H1) and either |||A|||1 < 1
or |||A|||2 + |||B|||2 < 1, we have Tr(AB) = Tr(BA). The spaces S1(H), S2(H),
and S1(H) are also called Schatten spaces.

Recall that CN,T := min{pN,
p
T},

Lemma S2.10. Under Assumptions C,

������⇠TNT ⇠NT

������
2
= OP(NT/CN,T ). (S2.14)

In particular, |||⇠NT |||1 = OP(
p
NT/CN,T ).

Proof. We have

������(NT )�1⇠TNT ⇠NT

������2
2
=

TX

t,s=1

(⇠Tt ⇠s/N)2/T 2  2T�2
X

t,s

(⌫N (t� s)2 + ⌘2st),
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where ⌘st := N�1⇠Tt ⇠s � ⌫N (t� s). First, by Assumption C,

T�2
X

t,s

⌫N (t� s)2 = O(T�1) for all T � 1.

Second, by Assumption C, ⌘2st = OP(N�1) uniformly in t, s, and therefore

T�2
X

t,s

⌘2st = OP(N
�1),

which entails (S2.14). The second statement of the Lemma then follows since |||⇠NT |||21 =������⇠TNT ⇠NT

������
1.

Lemma S2.11. Under Assumptions A, B, and C,

�̂1 = OP(1) and |||XNT |||1 = OP(
p
NT ).

In particular, |||û|||2 = OP(
p
T ), where û is defined in the proof of Theorem 3.1.

Proof. We have, by definition of �̂1, and using Assumptions A, B, C and Lemma S2.10,

�̂1 =
������XT

NTXNT /(NT )
������

1  (NT )�1|||XNT |||21
 2(NT )�1(|||BNu|||21 + |||⇠NT |||21)

 2(NT )�1(|||BN |||21|||u|||21 + |||⇠NT |||21)

 2(NT )�1(O(N)OP(T ) +OP(NTC�1
N,T )) = OP(1).

The last statement of the Lemma follows from the fact that

T�1|||û|||22 = �̂2
1 + · · ·+ �̂2

k  k�̂2
1 = OP(1).

For a sequence of random variables YN > 0 and a sequence of constants aN >
0, we write YN = ⌦p(aN ) if and only if Y �1

N = OP(a
�1
N ).

Lemma S2.12. Under Assumptions A, B, C, and D, �̂r = ⌦p(1).

Proof. Write �k[A] for the k-th largest eigenvalue of a self-adjoint operator A.
By definition,

�̂r := �r

⇥
XT

NTXNT /(NT )
⇤

= �r

⇥
uTBT

NBNu/(NT ) + (NT )�1(uTBT
N⇠NT + ⇠TNTBNu+ ⇠TNT ⇠NT )

⇤
.

Since the operator norm of second summand is OP(1) under Assumptions A, C,
and D (see Lemma S2.10), we have, by Lemma S2.17,

����̂r � �r[u
TBT

NBNu/(NT )]
��� = OP(1).

We therefore just need to show that �r[uTBT
NBNu/(NT )] = ⌦p(1). Using

the Courant–Fischer–Weyl minimax characterization of eigenvalues (Hsing &
Eubank 2015), we get that

�r[u
TBT

NBNu/(NT )] � �r[B
T
NBN/N ] · �r[u

Tu/T ].
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Now, by Assumption B, �r[BT
NBN/N ] = ⌦p(1), and by Assumption A,

�r[u
Tu/T ] = �r[uu

T/T ] = ⌦p(1).

The result follows.

Lemma S2.13. Recalling the definition of R̃ in (3.3), denote by sj [A] the jth
largest singular value of a matrix A. Under Assumptions A, B, C, and D,

s1[R̃] = OP(1) and sr[R̃] = ⌦p(1)

In other words, R̃ has a bounded norm, is invertible, and its inverse has a
bounded norm.

Proof. The first statement follows directly from Lemma S2.12. For the second
statement, using the Courant–Fischer–Weyl minimax characterization of singu-
lar values (Hsing & Eubank 2015), we obtain

sr
h
R̃u/

p
T
i
 s1

h
u/

p
T
i
sr[R̃] =

⇣
s1

h
uuT/

p
T
i⌘1/2

sr[R̃].

Hence, given that s1[uuT/T ] = OP(1), by Assumption A,

sr[R̃] � �
s1

⇥
uuT/T

⇤��1/2
sr

h
R̃u/

p
T
i
= ⌦p(1)sr

h
R̃u/

p
T
i
,

and by Theorem 3.1 and Lemma S2.17,

sr
h
R̃u/

p
T
i
= sr

h
ũ/

p
T
i
+OP(1) = 1 +OP(1).

Therefore, by Lemma S2.12, sr
h
Qku/

p
T
i
= ⌦p(1), which completes the proof.

S2.3. Background Results and Technical Lemmas

Lemma S2.14. Assume that E
⇥
utu

T
t

⇤
is positive definite, and that Assump-

tion B holds. If Eut = 0, E ⇠t = 0, and E
⇥
ut⇠

T
t

⇤
= 0,

�r

⇥
EXtX

T
t

⇤
= ⌦(N).

If, in addition,
P1

j=1

������ E ⇠it⇠Tjt
������

1 < M < 1 for all i, then

�r+1

⇥
EXtX

T
t

⇤
= O(1).

In other words, the r-th largest eigenvalue of the covariance of Xt diverges
and the (r+1)-th largest eigenvalue remains bounded as N ! 1, which implies
that the covariance of Xt satisfies the condition of Theorem 2.2.
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Proof. Assuming E
⇥
ut⇠

T
t

⇤
= 0, we get ⌃ := BNE

⇥
utu

T
t

⇤
BN + E

⇥
⇠t⇠

T
t

⇤
. Using

Lemma S2.18, we get

�r[⌃] � �r

⇥
BNE

⇥
utu

T
t

⇤
BT

N

⇤ � �r

⇥
E
⇥
utu

T
t

⇤⇤
�r[BNBT

N ],

where the second inequality comes from the Weyl–Fischer characterization of
eigenvalues (Hsing & Eubank 2015). By assumption, the first term is bounded
away from zero. For the second term, we have

�r[BNBT
N ] = �r[B

T
NBN ] = ⌦(N),

by Assumption B. For the second statement, using Lemma S2.18 we get

�r+1[ EXtX
T
t ]  �r+1[BN ( Eutu

T
t )B

T
N ] + �1[ E ⇠t⇠

T
t ]  �1[ E ⇠t⇠

T
t ]

since BN ( Eutu
T
t )B

T
N has rank at most r. Now the (i, j)-th entry of E ⇠t⇠

T
t is

E ⇠it⇠Tjt. We want to show that
������ E ⇠t⇠

T
t

������
1 = O(1). We will show that for any

norm k·k⇤ on the operators L(HN ) that is a matrix norm, that is, satisfies, for
all A,B 2 L(HN ) and � 2 R,

(i) kAk⇤ � 0 with equality if and only if A = 0,
(ii) k�Ak⇤  |�| kAk⇤,
(iii) kA+Bk⇤  kAk⇤ + kBk⇤,
(iv) kABk⇤  kAk⇤kBk⇤,
we have �1[A]  kAk⇤ if A is compact and self-adjoint. Indeed, let Ax = �x for
some non-zero x 2 HN and � > 0. Then AxxT = �xxT, and thus

|�| ��xxT
��
⇤ =

���xxT
��
⇤ =

��AxxT
��
⇤  kAk⇤

��xxT
��
⇤.

Simplifying by
��xxT

��
⇤ yields |�|  kAk⇤. To complete the proof, we still need

that kAk⇤ := maxi
PN

j=1 |||aij |||1 (where (A)ij = aij 2 L(Hj , Hi)) is a matrix
norm. This, however, is straightforward and details are omitted.

Lemma S2.15. Under Assumption D, there exists M1 < 1 such that

(NT )�1 E
������BT

N⇠NT

������2
2
 M1, for all N,T � 1.

In particular,
������BT

N⇠NT

������
2
= OP(

p
NT ).

Proof. We have
������BT

N⇠NT

������2
2
=

PT
s=1

��BT
N⇠s

��2. Since BT
N⇠s =

PN
i=1 b

iT⇠is,

N�1 E
��BT

N⇠s
��2 = N�1

NX

i,j=1

E
⇥
⇠Tisb

ibjT⇠js
⇤

= N�1
NX

i,j=1

E
⇥
Tr(⇠Tisb

ibjT⇠js)
⇤
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= N�1
NX

i,j=1

Tr(bibjTE
⇥
⇠js⇠

T
is

⇤
)

 N�1
NX

i,j=1

������bibjT
������

1

������E
⇥
⇠js⇠

T
is

⇤������
1

 (max
i,j

������bibjT
������

1
)N�1

NX

i,j=1

������E
⇥
⇠js⇠

T
is

⇤������
1

 (max
i,j

������bi
������

2

������bj
������

2
)N�1

NX

i,j=1

������E
⇥
⇠js⇠

T
is

⇤������
1  rM3,

where we have used Hölder’s inequality for operators. The claim follows directly
since the bound is independent of s.

Lemma S2.16. Assume that E
⇥
(⇠Tt ⇠s)ultuls

⇤
= E

⇥
⇠Tt ⇠s

⇤
E [ultuls] for

all l = 1, . . . , r and s, t 2 Z and that
P

t2Z |⌫N (t)| < M < 1. Then Assump-
tion E(↵) holds with ↵ = 1.

Proof. We have
������u⇠TNT

������2
2
= Tr

⇥
u⇠TNT ⇠NTu

T
⇤
=

Pr
l=1

PT
s,t=1 ultuls(⇠Tt ⇠s),

and thus

E
������u⇠TNT

������2
2
=

rX

l=1

TX

s,t=1

E [ultuls]E
⇥
⇠Tt ⇠s

⇤
,

 n

✓
max

l
Eu2

lt

◆ TX

s,t=1

|⌫N (t� s)|

= O(NT ).

Hence,
������u⇠TNT

������2
2
= OP(NT )  OP(NTC�2

N,T ).

The following Lemma tell us that the singular values of compact operators
are stable under compact perturbations.

Lemma S2.17. (Weidmann 1980, Chapter 7) Let A,B : H1 ! H2 be compact
operators between two separable Hilbert spaces H1 and H2, with the singular
value decompositions

A =
X

j�1

sj [A]ujv
T
j , and B =

X

j�1

sj [B]wjz
T
j ,

where (sj [A])j are the singular values of A, arranged in decreasing order, and (sj [B])j
are the singular values of B arranged in decreasing order. Then

|sj [A]� sj [B]|  |||A�B|||1, 8j � 1.
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Lemma S2.18. Let D,E 2 S1(H) be symmetric positive semi-definite op-
erators on a separable Hilbert space H, and let �s[C] denote the s-th largest
eigenvalue of an operator C 2 S1(H).

(i) Letting F = D + E, we have, for all i � 1,

�i[F ]  min(�1[D] + �i[E],�i[D] + �1[E]) and max(�i[D],�i[E])  �i[F ].

(ii) Let G be a compression of D, meaning that G = PDP for some orthogonal
projection operator P 2 L(H) (P 2 = P = PT). Then

�i[G]  �i[D] for all i � 1.

Proof. This is a straightforward consequence of the Courant–Fischer–Weyl min-
imax characterization of eigenvalues of compact operators, see, e.g. Hsing &
Eubank (2015).

S3. Additional Simulations

Figure S1 shows the simulation results for DGP3, DGP4, described in Section 4.
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(a) Simulation scenario DGP3.
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(b) Simulation scenario DGP4.

Figure S1: Estimations errors (in log2 scale) for DGP3 (subfigure (a)) and
DGP4 (subfigure (b)). For each subfigure, we have the estimation error for the
factors (log2 �

2
N,T , left), loadings (log2 "

2
N,T , middle), and common component

(log2 �N,T , right, �N,T defined in (4.1)) as functions of log2 N . The scales of
the vertical axes are the same. Each curve corresponds to one value of T 2
{50, 100, 200}, sampled for N 2 {10, 25, 50, 100}.
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