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Abstract: . In this paper, we set up the theoretical foundations for a high-
dimensional functional factor model approach in the analysis of large panels
of functional time series (FTS). We first establish a representation result
stating that if the first r eigenvalues of the covariance operator of a cross-
section of N FTS are unbounded as N diverges and if the (r 4+ 1)th one is
bounded, then we can represent each F'T'S as a sum of a common component
driven by r factors, common to (almost) all the series, and a weakly cross-
correlated idiosyncratic component (all the eigenvalues of the idiosyncratic
covariance operator are bounded as N — oo). Our model and theory are
developed in a general Hilbert space setting that allows for panels mixing
functional and scalar time series. We then turn to the estimation of the
factors, their loadings, and the common components. We derive consistency
results in the asymptotic regime where the number N of series and the
number T of time observations diverge, thus exemplifying the “blessing of
dimensionality” that explains the success of factor models in the context
of high-dimensional (scalar) time series. Our results encompass the scalar
case, for which they reproduce and extend, under weaker conditions, well-
established results (Bai & Ng 2002). We provide numerical illustrations that
corroborate the convergence rates predicted by the theory, and provide finer
understanding of the interplay between N and T for estimation purposes.
We conclude with an empirical illustration on a dataset of intraday S&P100
and Eurostoxx 50 stock returns, along with their scalar overnight returns.

*The author(s) would like to thank the Isaac Newton Institute for Mathematical Sci-
ences, Cambridge, for support and hospitality during the programme Statistical Scalability
where work on this paper was undertaken. This work was supported by EPSRC grant no
EP/K032208/1.


mailto:gnisol@esat.kuleuven.be
mailto:s.tavakoli@warwick.ac.uk
mailto:mhallin@ulb.ac.be

G. Nisol, S. Tavakoli, and M. Hallin/Functional Factor Models 2

MSC 2010 subject classifications: Primary 62M10, 62H25; secondary
60G10, 62P05.

Keywords and phrases: Functional time series, High-dimensional time
series, Factor model, Panel data, Functional data analysis..

1. Introduction

Throughout the last decades, researchers have been dealing with datasets of
increasing size and complexity. In particular, Functional Data Analysis (FDA;
see e.g. Ramsay & Silverman 2005, Ferraty & Vieu 2006, Horvath & Kokoszka
2012, Hsing & Eubank 2015, Wang et al. 2015) has received much interest and,
in view of its relevance in a number of applications, fast growing popularity. In
FDA, the observations are taking values in some functional space, usually some
Hilbert space H—often, in practice, the space L? ([0, 1], R) of squared integrable
functions. When an ordered sequence of functional observations exhibits serial
dependence, we enter the realm of Functional Time Series (FTS) (Hérmann
& Kokoszka 2010, 2012). Many standard univariate and low-dimensional multi-
variate time-series methods have been adapted to this functional setting, either
using a time-domain approach (Kokoszka & Reimherr 2013a,b, Hormann et al.
2013, Aue et al. 2014, 2015, Horvath et al. 2014, Aue et al. 2017, Gérecki et al.
2018, Biicher et al. 2018, Gao et al. 2018), a frequency domain approach under
stationarity assumptions (Panaretos & Tavakoli 2013a,b, Hormann et al. 2015,
Tavakoli & Panaretos 2016, Hérmann et al. 2018, Rubin & Panaretos 2018, Guo
& Qiao 2018) or under local stationarity assumptions (van Delft et al. 2017, van
Delft & Eichler 2018, van Delft & Dette 2018, Barigozzi et al. 2019).

Parallel to this development of functional time series analysis, data in high
dimensions (e.g. Bithlmann & van de Geer 2011, Fan et al. 2013) have become
pervasive in data sciences and related disciplines where, under the name of Big
Data, they constitute one of the most active subject of contemporary statistical
research.

This contribution stands at the intersection of those two strands of literature,
cumulating the challenges of function-valued observations and those of high di-
mension. Datasets, in this context, consist of large collections of N scalar or func-
tional time series—equivalently, functional time series in high dimension (from
fifty, say, to several hundreds)—observed over a period of time T'. Typical exam-
ples are continuous-time series of concentrations for a large number of pollutants,
or/and collected over a large number of sites, daily series of returns observed
at high intraday frequency for a large collection of stocks, or intraday energy con-
sumption curves (available, for instance, at data.london.gov.uk/dataset/smartmeter-energy-use-data-in
don-households), to name only a few. Not all component series in the dataset
are required to be function-valued, though, and mixed panels of scalar and
functional series can be considered as well. In order to model such datasets,
we develop a class of high-dimensional functional factor models inspired by the
factor model approaches developed, mostly, in time series econometrics, which
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have proven effective, flexible, and quite efficient in the scalar case.

Factor models for F'TS are largely unexplored. The only developments in this
direction (that we are aware of) are Hays et al. (2012), who consider a Gaus-
sian likelihood approach to functional dynamic factor modelling, and Kokoszka
et al. (2015), who consider functional dynamic factor models where the factors
are functional; both are limited to one FTS, though, whereas our approach
is for large panels of FTS. More recently, Gao et al. (2018) have used factor
models for forecasting panels of FTS, but they use a two-stage approach com-
bining a separate dynamic functional PCA on each FTS in the panel, followed
by a combination of separate scalar factor models (one on each PC score). This
implicitly assumes that the number of relevant principal components per FTS
is the same (which is quite restrictive), and is linked to the number of overall
factors. Our approach is mostly motivated by the time series econometrics lit-
erature, and differs from these papers because we consider models where the
factors are scalar and the loadings are functional; moreover, we do not make
Gaussian assumptions. Our approach is principled, we do not impose a model
through a two-stage procedure, and do not base our model on a PCA with the
same truncation level on each separate FTS.

Early instances of factor model methods for time series can be traced back to
the pioneering contributions by Geweke (1977), Sargent & Sims (1977), Cham-
berlain (1983), and Chamberlain & Rothschild (1983). The factor models con-
sidered in Geweke and Sargent and Sims are exact, that is, involve mutually
orthogonal (all leads, all lags) idiosyncratic components, a most restrictive as-
sumption that cannot be expected to hold in practice. Chamberlain (1983) and
Chamberlain & Rothschild (1983) are relaxing this exactness assumption into
an assumption of mildly cross-correlated idiosyncratics (the so-called “approx-
imate factor models”). Finite-N identifiability is the price to be paid for that
relaxation; the resulting model, however, remains asymptotically (as N tend to
infinity) identified, which is perfectly in line with the spirit of high-dimensional
asymptotics. This idea of an factor models in high dimensions has been picked
up and developed, mostly, by Stock & Watson (20024,b), Bai & Ng (2002), Bai
(2003), Forni et al. (2000), and their many followers; see also Forni et al. (2015)
and Forni et al. (2017) for extensions to the so-called generalized or general
dynamic factor model.

Our objective here is to propose a representation theorem (analogue to the
classical results of Chamberlain & Rothschild 1983, Chamberlain 1983) linking
high-dimensional functional factor models to properties of the eigenvalues of the
panel covariance operator (Theorems 2.2 and, drawing inspiration from Stock
& Watson (2002a,b), Bai & Ng (2002) 2.3), to develop the corresponding es-
timation theory for the unobserved factors, loadings, and common component
(see Theorems 3.1, 3.4, and 3.5). This is laying the theoretical foundations for
modeling high-dimensional functional time series via factor models. While our
contributions are for panels of FTS, our results encompass and extend those of



G. Nisol, S. Tavakoli, and M. Hallin/Functional Factor Models 4

factor models in large dimensions for scalar time series (or “approximate fac-
tor models”), for which we reproduce and extend some results under weaker
assumptions than available in the literature (Chamberlain & Rothschild 1983,
Bai & Ng 2002, Stock & Watson 2002a).

The paper is organized as follows. In Section 2, we introduce high-dimensional
functional factor models for panels of functional time series (FTS) and show
that this class of models can be characterized by conditions on the spectrum
of the panel. In Section 3, we introduce an estimator of the factors through an
eigendecomposition of the observed panel data, and study the consistency of our
estimator. In Section 4, we conduct some numerical experiments, and provide
an empirical illustration of our approach in Section 5. We conclude in Section 6
with a discussion. Technical results and all the proofs, as well as additional
simulation results, are contained in the Online Supplement.

2. Model and Representation Theorem

Since our goal is to develop a model for panels of time series that could be
either functional or scalar, we need to introduce some notation, in particular
for vectors or matrices of Hilbert space elements, and their representations as
operators. While this could seem a priori tedious, it will actually be very useful
later on, as it simplifies the exposition, makes proofs clearer, and allows for
weaker assumptions.

2.1. Notation

Throughout, we denote by
XN,T = {Xit; 1= ].,...,N, t:1,7T}

an observed N x T panel (cross-section) of time series, where the random vari-
ables X;; take values in a separable Hilbert space H; equipped with the inner
product (-, -),. Those series can be of different types. A case of interest is the one
for which some series are scalars (H; = R) and some others are square-integrable
functions from [0,1] to R (H; = L?([0,1])). We tacitly assume that all X;;’s are
random elements with mean zero and finite second-order moments defined on
some common probability space (£2, F,P); we also assume that Xy 1 constitutes
the finite realization of some a second-order stationary double-indexed process
X ={Xy, ieN, teZ}

Define Hy := Hi®H@ - -- @Hy, with typical elements of the form v :=
(v1,v2,...,on)" or w:= (wy,ws,...,wy) . The space Hpy, naturally equipped
with the inner product

N
(v, W), = Z (vi, wi),

i=1
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is a Hilbert space. Writing (-, ) for (-,)z;, when no confusion is possible, let

Il = (, )2 be the resulting norm. Write L(H;, Hy) for the space of bounded
(linear) operators from H; to Hs, and use the shorthand notation L£(H) for
L(H, H). Denote the operator norm of V' € L(H;, Hy) by

IVl = sup [Vall/lal,
xeHq,2#0
and write VT for the adjoint of V, which satisfies (Vui,us) = (uy, V'ug) for
all uy; € Hy,us € Hy. In particular, we have (see Hsing & Eubank 2015)
_ T _ T 1/
IVilee = [Vl = VTV IS
In order to make our results readable and facilitate proofs, we need to in-
troduce an extension of classical matrix algebra (and linear mappings between
Euclidean spaces) to matrix mappings between direct sums of Hilbert spaces
(such as Hy). For an element v; € H;, we write, with slight abuse of notation,
v; € L(R, H;) for the mapping v; : @ + awv; from R to H;, and v] € L(H;,R)
for its adjoint, which is defined by

Hi > fr—ol f=0](f):=(f,v),;.

Similarly, we denote by v € L(R, Hy) the mapping a — av from R to Hy,
and by v = (vlT, e v]TV) € L(Hy,R) its adjoint, from Hy to R:

HNB'wr—)'uTw ::v1Tw1—|—~-—|—v]TVwN.

Unlike (-)" which denotes transposition (that does not change the nature of the
elements), (-)" refers to adjunction. Note, in particular, that vTw = (w,v) and
vTv = ||lv||°. Letting v; = (v1,...,vn;) € Hy with v;; € H; fori=1,...,n

and j = 1,...,r, define the linear mapping

v11 . Vir
V21 o U2p ,
V= ) . . = (v1,...,v.) € LR", Hy)
UNT ot Ung
as (ay,...,a;) = viay + - - - + vra,, with adjoint
T
V11 UN1
T U12 UNa .
V= . € L(Hyn,R")
T T
Vip " Unp

mapping w to VTw = (v]{w,...,vJw) . If A= (ay,...,ar) € R"™*T then VA
should be understood as (Vai,...,Var) € L(RT, Hy). Similarly, if Wy =
(’LUl, . ,’UJT) € K(RT7 HN)> then

VW = (VTw,,...,VTwyr) € L(RT,R").
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Note that this notation is compatible with the usual matrix multiplication:
for instance, VVT = vv] + .-+ v.0! € L(Hy), and VTV is the matrix
with (4, j)th entry v]v; = (v;,v;) € R.

To work with our panel data, we will use the following notation. We let X :=
(Xi17Xi27--~7XiT) S ;C(RT,HZ‘), X; = (XltaX2ta-~-7XNt)/ € Hy, and
Xpy7 = (X1,...,X7) € LRT, Hy). In order to keep the presentation sim-
ple, the dependence of X, on N and the dependence of X on T do not ex-
plicitly appear in the notation. We denote by )‘ﬁ,p )\%,2, ... the eigenvalues of
the covariance of (X1, ..., Xn¢)', in decreasing order of magnitude; in view of
stationarity, these eigenvalues do not depend on ¢. Finally, denote by ||'||i2(9)
the variance, and by (,-) L20) the covariance, of real-valued random variables.
Unless otherwise mentioned, convergence of sequences of random variables is in
mean square.

2.2. Model

The basic idea in all factor-model approaches to the analysis of high-dimensional
time series consists in decomposing the observation Xj;; into the sum x;: + &t
of two unobservable and mutually orthogonal components, the common com-
ponent x;; and the idiosyncratic one &;;. The various factor models that are
found in the literature only differ in the way x;; and &;; are characterized. The
characterization we are adopting here is inspired from Forni & Lippi (2001).

Definition 2.1. The functional zero-mean second-order stationary process X :=
{Xi,1 € N; t € Z} admits a (high-dimensional) functional factor represen-
tation with r factors, or follows a (high-dimensional) functional factor model
with r factors

Xit = Xit + &t = b'ug + i, 1eN, teZ (2.1)

(xit and ;¢ unobservable) if there exist b* = (b1, ..., bir) € L(R", H;) with b;; €
H;, i € N, H;-valued processes {&+; t € Z}, i € N, and a real r-dimensional
second-order stationary process {us = (u1e, ..., ur)’; t € Z}, co-stationary with
X, such that (2.1) holds with

(i) Eu; =0 and E [upu}] positive definite;
1) Eluji&t] =0 forallt €Z, j=1,...,r, and i € N;
J
11) denoting by 2 . the jth (in decreasing order of magnitude) eigenvalue o
N,j

the covariance operator of & := (&14y- -, ENt) s /\ﬁ = supy )\%71 < 00y
(iv) denoting by )\’Jiﬂj the jth (in decreasing order of magnitude) eigenvalue of
the covariance operator of xt:= (X1ts- -, XNt)s A= Supy )\XN,T = oo0.

If (i1) is strengthened into
(it) Eluji&s) =0 forallt,se€Z, j=1,...,r, and i €N,
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we say that (2.1) provides a (high-dimensional) strong functional factor rep-
resentation with r factors of X'. The r scalar random variables u;; are called
factors; the b;;’s are the (functional) factor loading operators; x;: is called the
common component, &; the idiosyncratic one.

This definition calls for some remarks and comments.

(a)

In the terminology of Hallin & Lippi (2013) or Forni et al. (2015) and Forni
et al. (2017), equation (2.1), where the factors are loaded contemporane-
ously, is called a static functional factor representation, as opposed to the
general dynamic factor representation, where the b;;’s are linear one-sided
square-summable filters of the form b;;(L) = Y_p—, bijuL* (L the lag op-
erator), and the u;;’s are mutually orthogonal second-order white noises
(the common shocks) satisfying (ii)’. The strong static r-factor model is
a particular case of the general dynamic factor one, with ¢ < r common
shocks. When the idiosyncratic processes {&;;; t € Z} themselves are
mutually orthogonal at all leads and lags, static and general dynamic fac-
tor models are called ezact; with this assumption relaxed into (iv) above,
they sometimes are called approzrimate. In the sequel, what we call factor
models all are approximate static factor models.

The functional factor representation (2.1) also can be written, with obvious
notation x; and &;, in vector form

X =xt+& = Byug + &,

where the N x r matrix By has i-th row b* € L(R", H;). It can also be
written in matrix form as

Xnr = XNt +&NnT = Bnu+&nT,

where u = (uq,...,ur).

Condition (iii) essentially requires that cross-correlations among the com-
ponents of {&;; t € Z} are not pervasive as N — oo. A sufficient assump-
tion on &y for condition (iii) to hold is

SEGE]| <M <oo, Vi=1.2,...,
j=1

see Lemma S2.14 in the Online Supplement.

Condition (iv) requires pervasiveness, as N — oo, of (instantaneous) cor-
relations among the components of {x;; t € Z}; it is equivalent to a
condition on the sequence of factor loadings By, which should be such
that factors are loaded again and again as N — oo. A sufficient condition
for this is BJTVBN/N — X, where X is positive definite.

It follows from Lemma S2.18 in the Online Supplement that if X has
a (possibly strong) functional factor representation with r factors, then
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)\ﬁ_l < 00. This in turn implies that the number r of factors is uniquely
defined.

(f) The factor loadings and the factors are only jointly identifiable, since, for
any collection of r x r invertible matrices Qy,

Byu, = (BNQ; ) (Quuy),

so that vy = Qsu; provides the same decomposition of X into common
plus idiosyncratic as (2.1).

(¢) Tt is often assumed that {u;; ¢t € Z} is an r-dimensional Vector Auto-
Regressive (VAR) process driven by ¢ < r white noises (Amengual &
Watson 2007), but this is not required here.

2.3. Representation Theorem

The following results shows that the class of processes X admitting a functional
factor model representation (in the sense of Definition 2.1) can be character-
ized in terms of the eigenvalues /\ﬁ’ ; of the covariance operator of the obser-
vations X;—while Definition 2.1 involves the eigenvalues )‘36\1, j and )\5\,’ j of the
covariance operators of the unobserved common and idiosyncratic components.
Moreover, when X admits a functional factor model representation, its decom-
position into a common and an idiosyncratic component is unique.

Let )\]X =lmy_ 00 )\ﬁ,j = supy )\ﬁj: this limit exists, as Aﬁ,j is monotone
increasing with N.
Theorem 2.2. The process X admits a (high-dimensional) functional factor

model representation with v factors if and only if \X = oo and )\iﬂrl < 00.

The following result tells us that the common component y;; is asymptotically
identifiable, and provides its expression in terms of an L?(£2) projection.

Theorem 2.3. Let X admit (in the sense of Definition 2.1) the functional
factor model representation Xy = xit + &, © € Nyt € Z, with r factors. Then
(see the Online Supplement, Section S1 for a formal definition of projy. ),

Xit = projHi(Xit|Dt), Vi € N,t </
where

. N
Dyi={pe LQ)|p = Jim (o, Xi) 40 an € Hy, ] =5 0} € L2(9);
the common and the idiosyncratic parts of the factor model representation thus
are unique, and asymptotically identified.

The proofs of Theorems 2.2 and 2.3 are provided in the Online Supplement,
Section S2.1; they are inspired from Forni & Lippi (2001)—see also Chamber-
lain (1983) and Chamberlain & Rothschild (1983). Notice, however, that, unlike
these references, our results do not require the minimal eigenvalue of the covari-
ance of X; to be bounded from below.
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3. Estimation

Assuming that a functional factor model with r factors holds for X', we shall
estimate the factors u; using principal component analysis. This is a method
often used for estimating factors (Bai & Ng 2002, Fan et al. 2013), but other
methods are available as well (Forni & Reichlin 1998, Forni et al. 2000). The
idea of this method is to find factor loadings B in L(R", Hy) and factor scores
u = (uy,...,ur) € LRT,R") such that

P(B,u):=>_ | X, — Bu|’
t

is minimized. Denoting by ||-|||, the Hilbert—-Schmidt norm (see Section S2.2 in
the Online Supplement), we can rewrite this objective function as

P(B,u) = || Xnr — Bul|;.

Under this form, the solution is clear: by the Eckart—Young—Mirsky Theorem
(Hsing & Eubank 2015, Theorem 4.4.7), we know that the objective function is
minimized by choosing Bu to be equal to B,u., the r-term truncation of the
singular value decomposition of X y7. Let us write the singular value decompo-
sition of Xt as

N
Xnr =Y A efl (3.1)
=1

where \; > Xy > - > 0, é;s (belonging to Hy) and fis (belonging to RT) are
rescaled to have norm /7. The Xis, thus, are rescaled singular values—we show
in Lemma S2.11 in the Online Supplement that this rescaling allows A= Op(1).
To make the notation simple, the sum is ranging over ¢ = 1,... , N: if N > T,
the last (N —T') ;s are set to zero. We now have a multitude of choices for .,
of which we select )

f

[~41
I

D e RTXT (3.2)
£

The reason for this choice is the following: @ can be obtained by computing

the first r eigenvectors of XI,TX ~NT, and rescaling them by VT. Note that

computing XI-'\}TX ~NT requires computing O(T?) inner products in Hy, and

then computing the leading r eigenvectors of a T' x T' matrix. Dual to w are the

corresponding factor loadings

By = (;\}/Qél,...75\i/2ér) € L(R", Hy),

for which By@ = B,u,. The loadings By can be obtained by an eigendecom-
position of X N7 X % ,. However, this would require an eigendecomposition of
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an operator in L(Hy), which could be computationally much more demand-
ing than performing an eigendecomposition of X ;7 X nr to obtain 4, and then
multiply it with X y7 to obtain By. We also point out that the idealistic ap-
proach of using a Karhunen—Loeve truncation (or PCA projection) for each X;;
separately, prior to conducting the global PCA, is not a good idea in general,
as there is no guarantee that the common component will be picked by the
individual Karhunen—Loeve truncations, and it might well be that it actually
removes all the common component (see Section 4 for examples).

In order be able to estimate the factor scores and loadings, we shall need the
following regularity assumptions, which we discuss below. These assumptions,
which are adaptations of standard assumptions in scalar factor models (Bai &
Ng 2002), imply, in particular, that Xy follows a functional factor model with
r factors.

Assumption A. (u;); and (&;); are mean zero second-order co-stationary, with
E [utfﬂ = 0; the covariance operator X, := [E [utuﬂ is 7 X r positive definite

_ P
and T luu’ — X, as T — 0.

Assumption B. N"'BliBy — Xp, as N — oo, for some 7 X r positive-definite
matrix Xp.

Assumption C. Let vy(h) :=E [£]&_1,/N].

(C1) There exists a constant M such that forall N > 1,3, -, [vn(h)] <
M, and
(C2) |£tTEg/N —un(t— 5)| is Op(N~'/2) uniformly in t,s > 1.

Assumption D. There exists M < oo such that ||by|| < M for all i € N and
I=1,...,r,and 3372, Il E{itfﬁmm < M for all i € N.

Assumption E(a). Letting Cy 1 = min{v'N, T},
[uekell; = 0p (NT°CR5)

for some « € [0, 1].

Assumption A has some basic requirements about the model (factors and
idiosyncratics are co-stationary and uncorrelated at lag zero), and the factors.
It assumes, in particular, that [|ul|, = Op(v/T). Since uu' = Zle wsuf, it
also implies a weak law of large numbers for (u;u] );, which holds under various
dependence assumptions on (u;):, see e.g. Brillinger (2001), Bradley (2005),
Dedecker et al. (2007).

Assumption B deals with the factor loadings, and implies in particular that
[|Bx /|5 is of order v/N. Intuitively, it means that the factors are loaded again
and again as the cross-section increases.

Assumptions A and B together intuitively mean that (almost) all the common
components bu, have dimension r. They could be weakened by assuming that
the 7 largest eigenvalues of B} By/N and uu'/T are bounded away from
infinity and zero, see e.g. Fan et al. (2013).
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Assumption C is an assumption on the idiosyncratic terms: (C1) limits the
total variance and lagged cross-covariances of the idiosyncratic component; (C2)
imposes a uniform rate of convergence in the law of large numbers for (£] &, /N)n-
A sufficient condition for this is

5

There exists € > 0 and M < oo such that E ‘\/N(ﬁ;r.ﬁs/N —un(t—23))| < M,

for all s,t, N > 1.

In particular, (C2) implicitly limits the cross-sectional and lagged correlations
of the idiosyncratic components.

Assumption D limits the cross-sectional correlation of the idiosyncratic com-
ponents, and bounds the norm of the loadings. It implies that H|BJ-I\-/£NT|H2 is
Op (NT)—see Lemma S2.15 in the Online Supplement—and could be replaced
by this weaker condition in the proofs of Theorems 3.1, 3.2, 3.4 and 3.5.

Assumption E(«) imposes limits on the lagged cross-correlations between the
factors and the idiosyncratics. Notice that Assumptions A and C jointly imply
Assumption E(a) for @« = 0 (see Lemma S2.10 in the Online Supplement), so
that @ = 0 corresponds to the absence of restrictions on these cross-correlations;
«a =1 is the strongest case of this assumptions, and corresponds to the weakest
cross-correlations between factors and idiosyncratics: it is implied by the follow-
ing stronger (but more easily interpretable) conditions (see Lemma S2.16 in the
Online Supplement):

(1) E [(&] €)wpuis] = E [€]&]E [wpws] for alll=1,...,r and all s,t € Z,
(i) Yopezlvw(h)] < oco.

Notice that Assumption E(«) with o = 1 is still less stringent than Assump-
tion D in Bai & Ng (2002).

Note that Assumptions A, B, and D imply that the first r eigenvalues of cov(X)
diverge while the (r + 1)th one remains bounded (Lemma S2.14 in the Online
Supplement), hence the common and idiosyncratic components are asymptoti-
cally identified (Theorem 2.2).

The first result of this section (Theorem 3.1, see below) tells us, essentially,
that @ consistently estimates the true factors. Since the true factors are only
identified up to an invertible transformation, however, consistency here is about
the convergence of the row space spanned by u to the one spanned by u. The
discrepancy between these row spaces can be measured by

ONT = run [l — Ru|||2/\/i

(recall that |||-|||, denotes the Hilbert—Schmidt norm: see the Online Supplement,
Section S2.2). oy 7 is the rescaled Hilbert—Schmidt norm of the residual of the
least squares fit of the rows of @ onto the row space of u, and we make explicit its
dependence on N, T. The T~/2 rescaling is needed because |||a||5 = #T—any
rescaling of order T~/2 would lead to the same conclusion.

We now can state one of the main results of this section.

Theorem 3.1. Under Assumptions A, B, C, and D,
S = Op(Cy'p),
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where Cy 1 = min{v/N,VT}.

Proof. Define ) R
R:= A 'au"B\ By/NT, (3.3)

where A is the r x r diagonal matrix with \;s in the diagonal, and are defined
in (3.1). Let us show that

mu - RuH’Q/\/T — Op(CyYy).
Defining @ := A4 and Q= AR, we have

1 = 2, < A= - e
2 o]

By Lemma S2.12 in the Online Supplement,

HA‘lm = Op(1), and a straight-
forward calculation yields & = @ X X n7/(NT), whereby

. 1 _ 1 . 1
u — Qu = ﬁ“&LTéNT + WU’UJTBLENT + ﬁﬂﬁLTBNUT,

and, therefore,

1o
~7 | leu’ Biénr|,

1 -
+ L ek By,

N 1
e~ Qull, < —— [l[agkr&nr|l, +

Let us consider each terms separately. For the first term, by Lemma S2.10 in
the Online Supplement,

1 _ 1 ., . _
ﬁH!uﬁﬁTENT\HQ < ﬁ|||u|||ooH‘£-]I\—fT£NT‘H2 = O0p(VTCRY).

For the second term, it follows from Assumption D that

1 - 1 B
e BRenrl, < el T 1B €], = 0r (V7).

For the third term, still from Assumption D,

1 - .
—llagkrBru|l, < —llall|[Exr Brlll "]l = O (vVT/N).
Piecing all these together completes the proof. O

This result essentially means that the factors are (asymptotically) consis-
tently estimated. Note in particular that Iy r = dn 7(@, u) is not symmetric in
u, u, and hence is not a metric. Nevertheless, small values of dy  imply that the
row space of the estimated factors is close to the row space of the true factors.
By classical least squares theory, we have

ONT = m(IT - Pu)ﬂT/\/TH

)
2
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where P, is the projection onto the column space of u'. This formula will be
useful in Section 4.

Under additional constraints on the factor loadings and the factors and ade-
quate additional assumptions, it is possible to show that the estimated factors @
converge exactly (up to a sign) to the true factors u (Stock & Watson 2002a).
For this, we need, for instance,

Assumption F. All the eigenvalues of 353, are distinct.

Under Assumptions A, B, and F, for N and T large enough, we can choose
the loadings and factors such that uu' /T = I,., and B}, By /N is diagonal with
distinct positive entries whose gaps remain bounded from below, as N,T — oo.
With this new assumption, we can show that the factors are estimated consis-
tently up to a sign.

Theorem 3.2. Assume that Assumptions A, B, C, D, and F hold. Assume
furthermore that we have transformed the loadings and factors in such a way
that, for N and T large enough, uu'/T = I, and B, Bx/N is diagonal with
distinct decreasing entries. Then, there exists an r X r diagonal matric Ry
(depending on N, T ) with entries £1 such that

la — Ryrul|,/VT = Op(C;,}T) as N,T — co.

Proof. Notice that, by our assumptions, for N, T large enough,
XNrxXnT/(NT) = Mwyuy, (3.4)
k=1

where the Ags are distinct, and w() is the kth row of w, written as a col-
umn. Note that Ay depends on N, T, but we suppress this dependency in the
notation. Notice in particular that given our identification assumptions, (3.4)
is in fact a spectral decomposition. We now recall the spectral decomposi-

R C o AT .
tion XNp XnN1/(NT) = > 451 Aefrfi - Lemma 4.3 of Bosq (2000) then yields

|

for Kk = 1,...,r, since the gaps between the A1,..., A, remain bounded from
below by Assumption F. Now,

fr— Siglﬂ(fkTu(k))u(k)H/\/iF = Op (||| XyrXnT — Xnrxne||| o /(NT)),

X 87 Xnr = xvrxwell < ll€hréve o + 2l Brénl

and applying Lemmas S2.10, S2.11 and S2.15 in the Online Supplement, we get
NT | XNr XNt = xvrxnr || o = Op(Crir)-

This completes the proof, since the kth row of u is fk fork=1,...,r. O
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Notice that we do not assume any particular dependency between N and T
in the results above: the order of the estimation error depends only min{n,T}.
A couple of remarks are in order.

Remark 3.3. (i) As mentioned earlier, Assumptions A, B, and D imply that
the common and idiosyncratic part are asymptotically identified, see Lemma S2.14
and Theorem 2.2. The extra assumptions needed for consistent estimation
of the factors row space (and for the loadings and common component,
see Theorems 3.4 and 3.5 below) are there because the covariance cov(X)
is unknown, and its first r eigenvectors must be estimated.

(ii) Notice, in particular, that Theorem 3.1 holds for the case H; = R for all 4,
where it coincides with Theorem 1 of Bai & Ng (2002). However we obtain
this result under weaker conditions, as we do not assume E ||lu,||* < oo
nor E||&]|® < M < oo (an assumption that is unlikely to hold in most
equity return series). Nor do we assume

VD) YD S B el < M < oo

ij=1t,s=1

and we are weakening their assumption
4
E ]W(gjss/N —un(t - 5))’ <M < o,

on idiosyncratic cross-covariances into a uniform boundedness in probabil-
ity assumption on v N (&]€/N — vn(t — s)). The main tools that allow
us to derive results under weaker assumptions are inequalities between
Schatten norms (see Section S2.2) of compositions of operators, whereas
classical results mainly use the Cauchy—Schwartz inequality.

(iii) Note that we could change the N~! term in Assumption B to be N~—¢,
for o € (0,1), in which case we have weak (or semi-weak) factors (Chudik
et al. 2011, Lam & Yao 2012, Onatski 2010), which would affect the rate
of convergence in Theorems 3.1, 3.2, 3.4, and 3.5; see also Boivin & Ng
(2006).

(iv) We do not make any Gaussian assumptions and, unlike Lam & Yao (2012),
we do not assume that the idiosyncratic component is white noise.

(v) Bai & Ng (2002) allow for limited correlation between the factors and the
idiosyncratic components. This is only an illusory increase of generality,
since it transfers to the idiosyncratic part of the impact of the factors on
some given cross-sectional unit X;; which, consequently, will not benefit
fully from the panel-wide contribution to the estimation of the factors.

(vi) The results could be extended to conditionally heteroscedastic common
shocks and idiosyncratic components, as frequently assumed in the scalar
case (see, e.g., Alessi et al. 2009, Trucios et al. 2019) This, which would
come at the cost of additional identifiability constraints, is left for further
research.
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The next result of this section deals with the consistent estimation of the
factor loadings. Define By := ByA~1/2, which is the same as By, but with unit
norm columns. Similarly to the factors, the factor loadings are only identified
up to an invertible transformation, and we therefore measure consistency by
quantify the discrepancy between the column space of the estimate By and the
column space of the true factors By by

EN,T ‘= min
RERT}(T

|By — BaR|||,/VN, (3.5)

which is the Hilbert-Schmidt norm of the residual of By projected onto the
column space of By, which depends on both N and T'. The y/n renormalization
is needed as H|BN|HZ = rN. We then have, for the of factor loadings, the
following consistency result.

Theorem 3.4. Under Assumptions A, B, C, D, and E(«),
_lta
en, =Op (CN7T2 ) ;
where Cy 7 = min{v/N,VT}.

Proof. We shall show that “‘EN — BNE_lH‘Q = Op (\/N/C](\};}a)), where R

is defined in (3.3), and is invertible by Lemma S2.13; the desired result then
follows, since

By — BNR—lA—l/z _ (BN _ BNR—l)A—1/2’

and H’Ailmm = Op(1) by Lemma S2.12.
First, notice that By = T~ ' Xypa' /T, so that

BN == BNU’EI,T/T—FENT’[LT/T
=By (R'a+u—R'a)a"/T+éxra’ /T
— ByR™' + By (u - R*la) @' )T + Enr(@ — Ru)T /T + énru R,
where we have used the fact that wa' /T = I,. Hence,
||y = Byft| < 2 {nBwilu - tal jal
2= T >~ o2
bl 2],  HevesL ]|}

By Lemma S2.13 and Theorem 3.1, we have

o] < 1o~ vt
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thus, the first summand is Op (, /N/Cjzv,T ) By Lemma S2.10 and Theorem 3.1,

the second summand is Op (, /N/C3 r ) . As for the last summand, it is Op (, [N/CE )
by Assumption E(a). This completes the proof. O

The rate of convergence for the loadings thus crucially depends on the value of
a € [0,1] in Assumption E(«). The larger « (i.e., the weaker the cross-correlation
between factors and idiosyncratics), the better the rate. Unless o = 1, that rate
is slower than for the estimation of the factors. As in Theorem 3.2, it could
be shown that, under additional identification assumptions, the loadings can be
estimated consistently up to a sign. Details are left to the reader.

We can now turn to the estimation of the common component x 7 itself.
Let xn1 := By Using Theorems 3.1 and 3.4, we obtain the following result.

Theorem 3.5. Under Assumptions A, B, C, D, and E(«),
1 . _1lta
gl = xwrll =0p (Cyr™)  ac o)

The v NT renormalization is used because the Hilbert—Schmidt norm of x y7
is of order v NT.

Proof. Recalling the definition (3.3), we have

b -t = | - e st - ]
The desired result follows from applying the results from the proofs of Theo-
rems 3.1 and 3.4, and Lemma S2.13. O

Again, the rate of convergence depends on «, which quantifies the amount of
cross-correlation between the factors and the idiosyncratic component.

4. Numerical Experiments

In this section, we assess the finite-sample performance of our estimators of on
simulated panels.

Panels of size (N = 100) x (T" = 200) were generated as follows from a func-
tional factor model with three factors. All functional time series in the panel
are represented in an orthonormal basis of dimension 7, with basis functions
©1,...,p7; the particular choice of orthonormal functions ¢; has no influence
on the results. Each of the three factors is independently generated from a
Gaussian AR(1) process with coefficient aj and variance 1 — a3, k = 1,2,3.
Those coefficients are picked at random from a uniform on (—1,1) at the be-
ginning of the simulations and kept fixed across the 500 replications. The ays
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are then rescaled so that the operator norm of the companion matrix of the
three-dimensional VAR process u; is 0.8.

The factor loading coefficients were chosen of the form b = (b;1, bia, bi3) :=
(l;il 1, l~)i2<p2, l;iggog) with by € R—namely, the [-th loading is always aligned with
the first three basis functions ¢;, I = 1,2, 3: the N x 3 coefficient matrix B = (by)
therefore uniquely defines the IV loadings. Those coefficients were generated as
follows: first pick a value at random from a uniform over [0, 1]*", then rescale
each fixed-i triple to have unit Euclidean norm. This rescaling implies that the
total variance of each common component (for each #) is equal to 1; B is kept
fixed across replications.

The idiosyncratic components belong to the space spanned by ¢1,...,¢7;
their coefficients ({§;, ¢;)); were generated from

(<£itﬂ901>7"'7<§it7907>)/“dN(O ¢ E/TI"( )) i=1,...,N, t=1,...,T.

Since the total variance of each common component is one, the constant c is the
relative amount of idiosyncratic noise: ¢ = 1 means equal common and idiosyn-
cratic variances, while larger values of ¢ make estimation of factors, loadings,
and common components more difficult. We considered four Data Generating
Processes (DGPs):

DGP1: c =1, E = diag(1,272,372,...,772),
DGP2: ¢ = 1, E = diag(72 6 ...,1)7
DGP3: ¢ = 8, E = diag(1,272,372,...,772),
DGP4: ¢ = 8, E = diag(7 2,672 ...,1).

In DGP1 and DGP3, we have chosen to align the largest idiosyncratic vari-
ances with the span of the factor loadings (spanned by {vi,vs,v3}). In this
case, X, 7' @ is picking the three common shocks, but also the idiosyncratic
components (which have large variances). On the contrary, in DGP2, DGP4, we
have chosen the directions of largest idiosyncratic variance to be orthogonal
to the span of the factor loadings. We then face two situations: (i) N is small
enough (equivalently, the total idiosyncratic variance of any component is big
enough) that the first eigenvectors of X\ X yr mainly correspond to idiosyn-
cratic components: the product X,,7@" @ then essentially filters out the common
component, and our estimators of the factors and factor loadings are quite poor;
(ii) IV is big enough that the first eigenvectors of X [ Xt correspond mostly
to the common component. In this case, the idiosyncratic component is almost
absent in X,,7@ "4, and our estimators of the factors and factor loadings are
fairly accurate. In particular, while it might seem that DGP1 and DGP3 are much
more favorable than DGP2 and DGP4, the reality is more subtle, with the latter
scenarios being sometimes more favorable, as we will see below.

The variance of the idiosyncratic components (for each ¢) is equal to 1 for
DGP1 and DGP2, and equal to 8 for DGP3 and DGP4; the latter thus are more
difficult. In particular, while one might feel that performing a Karhunen—Loeve
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truncation for each separate FTS (each 4) is a good idea, this actually performs
quite poorly in DGP4, where the first (population) eigenfunctions (for each i) are
ezxactly orthogonal to the common component.

For N = 10,25,50,100 and T" = 50, 100, 200, we have considered the subpan-
els of the first N and T observation from the “large” 100x200 panel. For each
replication and each choice of N and T, we estimated the factors and factor
loadings using principal component analysis over the N x T panel, as explained
in Section 3, assuming that the number of factors is known to be three. We
have then computed the approximation error 512\/,T for the factors, E%V’T for the
loadings, and ¢y p for the common component (see Section 3), with

onr = |Ixnr — xnrl3/(NT). (4.1)

The results, averaged over the 500 replications, are shown in Figures la, 1b,
and Figures Sla, and S1b in the Online Supplement for DGP1, DGP2, DGP3,
and DGP4, respectively. A careful inspection of these figures allows one to infer
whether the asymptotic regime predicted by the theoretical results (see Sec-
tion 3) has been reached. We will give a detailed description of this for DGP1,
Figure 1a.

Looking at the left plot in Figure 1a, the local slope « of the curve log,(N) —
logy 6%, (@, u) for fixed T tells us that the error rate is N*, for fixed T'. Here,
a = —1; hence, the error rates for the factors is about N~ for each 7. For N
fixed, the spacings  between log, §]2V7T(ﬁ, u) from T = 50 to 100 indicates that
the error rate is T for N fixed. Since 0 < —f < 0.25, the error rate for fixed
N is less than T7%2%. The simulation results give us insight into which of the
terms T—! or N~! is dominant, and for the factors in DGP1, the dominant term
in N=! for T' € [50,200]. We do expect to see an error rate T~ for large fixed
N large, and simulations (with N = 1000, not shown here) confirm that this
is indeed the case. The middle plot of Figure la shows the error rate for the
loadings. Since the factors and the idiosyncratic component are independent in
our simulations, we expect to have the same Op(max(T~!, N~1)) error rates
as for the factors. For the larger values of N, it is clear that the dominant
term is T~!. Smaller values of N actually exhibit a transition from the N1
to the T~! regime: the spacings 8 between the lines becomes more uniform
and close to —1 as N increases, and the slope a decreases in magnitude as N
increases, and seems to converge to zero. The right sub-figure shows the error
rates for the common component, for which we expect, in this setting, the same
Op(max(T—1, N71)) error rates as for the loadings. Inspection reveals similar
effects as for the factor loadings: for T = 200, the error rate is close to N~ for
small Ns. For N = 100, it is almost 7! for small T's.

Figure 1b (DGP2) can be interpreted in a similar fashion, but we shall not
delve into this. Compared to DGP1, the errors on the factors are much smaller,
those on the loadings are a bit smaller for small N; but the gap dereases with
N, and the error on the common component are smaller in general, and much
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Figure 1: Estimations errors (in log, scale) for DGP1 (subfigure (a)) and
DGP2 (subfigure (b)). For each subfigure, we have the estimation error for
the factors (log, 5]2V7T, left), loadings (log, 5?\1,% middle), and common com-
ponent (logy ¢n 1, right, ¢ defined in (4.1)) as functions of log, N. The
scales of the vertical axes are the same. Each curve corresponds to one value of
T € {50,100, 200}, sampled for N € {10,25, 50, 100}.
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smaller for small N. This corroborates the previous comment on the difficulty
in assessing a priori which, of DGP1 or DGP2, is more favourable.

Results for DGP3 and DGP4 are shown in Figure S1, in the Online Supplement.
A comparison between DGP3, DGP4 and DGP1, DGP2 is interesting because they
only differ by the scale of the idiosyncratic components. We see that the er-
rors are much higher for DGP3, DGP4 than for DGP1, DGP2, as expected. Notice
that the dominant term for the factors is no longer of order N~! over all val-
ues of N,T: it seems to kick in for N € [25,100] in DGP3, DGP4, but looks
slightly higher thanN~! for N € [10,25] and T € [100,200] in DGP4 (noticeably
so for T = 200). A similar phenomenon occurs for the loadings and common
component in DGP4, for N € [10,25] and T" = 200. These rates do not contra-
dict the theoretical results of Section 3, which hold for N,T — oo, so DGP4, in
particular, indicates that the values of N considered there are too small for the
asymptotics to have kicked in, and prompts further theoretical investigations
about the estimation error rates in finite samples.

5. Empirical illustration

Our model can be used to tackle a plethora of applications in many different
domains. Instances of such applications include joint analysis of fertility (or mor-
tality) curves across different regions or countries, modeling electricity demand
curves of households or including yield and financial curves into macroeconomic
factor models. In the example developed here, we demonstrate the empirical
relevance of our method on financial data. More specifically, we jointly model
intraday returns of a large collection of US and European stocks.

In order to model the co-movements of asset returns, the financial literature
has been considering factor models for several decades. Factor models are in-
trinsically related to optimal portfolio allocation through the concept of diversi-
fication. Namely, investors try to remove the idiosyncratic risk by appropriately
weighting the different assets in their portfolios. An early instance of this is
the Capital Asset Pricing Model (CAPM) introduced by Sharpe (1964), Lintner
(1965), Treynor (1961). In this model, the returns of the various stocks under
study are modelled as linear functions of the market return with different factor
loadings, called §’s. The Fama-French 3-factor model extends CAPM by adding
two extra factors (Fama & French 1996). Ross (1976) developed his Arbitrage
Pricing Theory by proposing a factor model with unspecified number of factors.
Chamberlain & Rothschild (1983) proved their representation theorem in the
latter context. None of these models is able to handle intraday returns curves,
though, let only mixed with overnight and daily returns. These are precisely the
type of data our functional approach is made for.

Our dataset contains the returns for 95 S&P100 stocks and 48 FEurostoxx 50
ones observed from 1st of January 2018 to 12th of July 2018 (list available in
Tables S1 and S2 in the Online Supplement; we had to dismiss a few stocks for



G. Nisol, S. Tavakoli, and M. Hallin/Functional Factor Models 21

which the data were not available throughout the observation period). For the
US stocks, one-minute frequency prices are available, whereas we only have the
opening prices for European stocks. Our dataset thus is a mix of high-frequency
series (treated as functional series) and scalar ones.

For the US stocks, we have computed cumulative intraday returns (CIDR)
as defined by Horvath & Kokoszka (2012). If p;q, is the price of stock i at
day d and time ¢ (rescaled between 0 and 1), its CIDR at time ¢ is defined
as log(pia,t) — log(pia,0). We have also computed their overnight returns, that
is log(pia+1,0) — log(piq,1). For the European stocks, we have computed daily
returns based on the opening prices, namely log(pig+1,0) — log(pid,0). For each
observation date d, we thus have three categories of series:

(i) the CIDR curves of 95 S&P100 stocks represented in a 7-dimensional B-
splines basis,
(ii) the overnight returns of the same 95 S&P100 stocks, and
(iii) the daily returns of 48 Eurostoxx 50 stocks.

Prior to the analysis, all series have been centered about their empirical
means. Moreover, we have divided all time series belonging to the same cat-
egory by a constant so that the average variance within each category is one:
the objective is to balance the influence of each category. In order to avoid miss-
ing data problems, we have chosen to disregard the days on which the US stock
exchange was closed; whenever the US stock exchange was open but the Euro-
pean one was closed, we replaced the missing European price by the previous
available value.

In Figure 2, we have plotted the first 10 eigenvalues of the covariance operator
for different values of N. Since our panel consists of time series of different
natures, we have permuted 50 times every cross section. The curves obtained
are then computed as the average values obtained for the first N times series
(functional or scale) of the permuted panels. Based on the scales of these curves,
we have decided to keep r = 3 factors. Esablishing a more rigorous criterion for
the identification of the number of factors is left for future research.

We have then computed, for each series ¢, the percentage A;; of variance
explained by the j-th factor. In Figure 3, we have plotted six different figures,
arranged in three rows and three columns. The plot at the j-th row and k-th
column has A;; on the z-axis and A;, on the y-axis; each point represents one
series. We notice that factor 1 represents a high proportion of the variance for
most European returns and overnight S&P100 returns, but only a very small
percentage of the variance of the intraday CIDRs. Factor 2 explains a large
percentage of variance for both overnight and intraday S&P100 returns, but
a small fraction of the variance of the European returns. These suggest non-
negligible co-movement between these series, which calls for further investigation
(which is beyond the scope of this paper). The fractions of variance explained
by factor 3 is quite small, and its interpretation is also difficult.
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Figure 2: First 10 eigenvalues averaged over 50 permuted cross-sections of vary-
ing sizes N.

6. Discussion

We proposed a new paradigm for modelling large panels of functional and scalar
time series, based on a new concept of (high-dimensional) functional factor
model. This model permits to reduce the serial information contained in the
panel into a few scalar time series of factors, which encode most of the cross-
sectional correlation of the panel. The residual terms of each F'TS, uncorrelated
with the factors at lag 0, are only mildly cross-correlated (along the cross-
section). In particular, this model is weaker than strict factor models (which
require mutually strictly uncorrelated idiosyncratic components) or other fac-
tor model (such as Lam & Yao 2012, which requires idiosyncratic components
to be white noise). We extend to the functional context the classical represen-
tation results of Chamberlain (1983), Chamberlain & Rothschild (1983) and
propose consistent estimation procedures for the factors, the factor loadings,
and the common components, as both the size N of the cross-section and the
period T' of observation tend to infinity, with no constraints on their relative
rates of divergence. Our results also hold for the particular case of scalar panel
data, where they reproduce and extend the well-established results of Bai &
Ng (2002), but under weaker assumptions. Our proof techniques are therefore
of independent interest, in particular since they considerably simplify existing
ones, while extending their validity to a functional setting. We then illustrated
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Figure 3: For every subplot (j,k), the variance explained by the j-th factor
versus variance explained by the k-th factor is plotted for each 238 series of our
empirical illustration (Section 5). This is a pairs plot, whence the symmetry of
subplots with respect to the diagonal.
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the consistency results by some numerical experiments, which confirm that the
rates predicted by the theory are indeed observed empirically, and also provide
finer description of the interplay between the size of the cross-section and the
length of the (functional) time series. We concluded the paper by providing an
empirical illustration of a functional factor model applied to a panel of time
series of mixed nature (some functional and some scalar), and showing how one
can use the model to assess co-movement between the series.

Extensions of this present work could be in the direction of developing in-
formation criteria for identifying the number of factors (Bai & Ng 2002), or
extending the theory and methodology of Fan et al. (2013) for dealing with
estimation of high-dimensional conditional covariance operator matrices. The
factor models presented here have also links with high-dimensional covariance
models with very spiked eigenvalues (Cai et al. 2017). Further extensions could
be in the direction of generalized dynamic factor models (Forni et al. 2000, Forni
& Lippi 2001, Forni et al. 2015, 2017).

Supplementary Material

The R code reproducing the numerical experiments of Section 4, as well as code
used for Section 5, can be obtained by contacting the authors by email.

Online Supplement: “High-Dimensional Functional Factor Models”
(doi: TYPESETTERS: PLEASE UPDATE THIS FIELD). Contains additional
proofs, background results, and additional figures and tables.
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Ticker Company name Sector Ticker Company name Sector

AAPL Apple Inc Technology HD Home Depot Consumer Discretionary
ABT Abbott Laboratories Health Care HON Honeywell Industrial

ACN Accenture Technology IBM International Business Machines = Technology

AGN Allergan Health Care INTC Intel Corp. Technology

AIG American International Group Financials JNJ Johnson & Johnson Health Care

ALL Allstate Financials JPM JPMorgan Chase & Co. Financials

AMGN Amgen Inc. Health Care KHC Kraft Heinz Consumer Staples
AMZN Amazon.com Consumer Discretionary KMI Kinder Morgan Energy

AXP American Express Financials KO The Coca-Cola Company Consumer Staples

BA Boeing Co. Industrial LLY Eli Lilly and Company Health Care

BAC Bank of America Corp Financials LMT Lockheed Martin Industrial

BIIB Biogen Health Care LOW Lowe’s Consumer Discretionary
BK The Bank of New York Mellon Financials MA MasterCard Inc Technology

BKNG Booking Holdings Consumer Discretionary MCD McDonald’s Corp Consumer Discretionary
BLK BlackRock Inc Financials MDLZ Mondel;z International Consumer Staples

BMY Bristol-Myers Squibb Health Care MDT Medtronic plc Health Care

BRKB Berkshire Hathaway Financials MET MetLife Inc. Financials

C Citigroup Inc Financials MMM 3M Company Industrial

CAT Caterpillar Inc. Industrial MO Altria Group Consumer Staples
CELG Celgene Corp Health Care MRK Merck & Co. Health Care

CHTR Charter Communications Communication Services MS Morgan Stanley Financials

CL Colgate-Palmolive Consumer Staples MSFT Microsoft Technology

CMCSA Comcast Corp. Communication Services | NEE NextEra Energy Utilities

COF Capital One Financial Corp. Financials NFLX Netflix Communication Services
COP ConocoPhillips Energy NKE Nike, Inc. Consumer Discretionary
COST Costco Wholesale Corp. Consumer Staples NVDA NVIDIA Corp. Technology

CSCO Cisco Systems Technology ORCL Oracle Corporation Technology

CVSs CVS Health Health Care OXY Occidental Petroleum Corp. Energy

CVX Chevron Corporation Energy PEP PepsiCo Consumer Staples

DHR Danaher Corporation Health Care PFE Pfizer Inc Health Care

DIS The Walt Disney Company Communication Services | PG Procter & Gamble Co Consumer Staples

DUK Duke Energy Utilities PM Philip Morris International Consumer Staples
DWDP DowDuPont Materials PYPL PayPal Holdings Technology

EMR Emerson Electric Co. Industrial QCOM  Qualcomm Inc. Technology

EXC Exelon Utilities RTN Raytheon Co. Industrial

F Ford Motor Company Consumer Discretionary TXN Texas Instruments Technology

FB Facebook Technology UNH UnitedHealth Group Health Care

FDX FedEx Industrial UNP Union Pacific Corporation Industrial

FOX Fox Corporation B Communication Services | UPS United Parcel Service Industrial

FOXA Fox Corporation A Communication Services USB U.S. Bancorp Financials

GD General Dynamics Industrial UuTx United Technologies Industrial

GE General Electric Industrial \% Visa Inc. Technology

GILD Gilead Sciences Health Care VZ Verizon Communications Communication Services
GM General Motors Consumer Discretionary WBA Walgreens Boots Alliance Consumer Staples
GOOG Alphabet Inc. C Technology WFC Wells Fargo Financials

GOOGL Alphabet Inc. A Technology WMT ‘Walmart Consumer Staples

GS Goldman Sachs Financials XOM Exxon Mobil Corp. Energy

HAL Halliburton Company Energy

Table S1: List of US stocks under study.
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Ticker =~ Company name Sector
ADS.DE  Adidas Consumer Discretionary
AD.AS  Ahold Delhaize Consumer Staples
ALLPA  Air Liquide Materials
AIR.PA  Airbus Industrial
ALV.DE Allianz Financials
ABIL.BR  Anheuser-Busch InBev Consumer Staples
ASML.AS ASML Holding Technology
CS.PA AXA Financials
BBVA.MC Banco Bilbao Vizcaya Argentaria Financials
SAN.MC Banco Santander Financials
BAS.DE BASF Materials
BAYN.DE Bayer Health Care
BMW3.DE BMW Consumer Discretionary
BNP.PA  BNP Paribas Financials
CRG.IR CRH Materials
SGO.PA  Compagnie de Saint-Gobain Materials
DALDE Daimler AG Consumer Discretionary
DPW.DE Deutsche Post Industrial
DTE.DE  Deutsche Telekom Communication Services
ENEL.MI  Enel Utilities
ENGI.PA Engie Utilities
ENIL.MI  Eni Energy
EOAN.DE E.ON Utilities
FRE.DE  Fresenius SE Health Care
BN.PA  Groupe Danone Consumer Staples
IBE.MC Iberdrola Utilities
ITX.MC Inditex Consumer Discretionary
INGA.AS ING Group NV Financials
ISP.MI Intesa Sanpaolo Financials
OR.PA L’Oréal Consumer Staples
MC.PA LVMH Moét Hennessy Louis Vuitton = Consumer Discretionary
MUV2.DE  Munich Re Financials
NOKIAsci hub .HE  Nokia Technology
ORA.PA  Orange S.A. Communication Services
PHIA.AS  Philips Health Care
SAF.PA  Safran Industrial
SAN.PA  Sanofi Health Care
SAP.DE SAP SE Technology
SU.PA  Schneider Electric Industrial
SIE.DE  Siemens Industrial
GLE.PA  Société Générale SA Financials
TEF.MC  Telefénica Communication Services
FP.PA TOTAL S.A. Energy
URW.AS  Unibail-Rodamco Real Estate
UNA.AS  Unilever Consumer Staples
DG.PA  Vinci SA Industrial
VIV.PA  Vivendi Consumer Discretionary
VOW.DE  Volkswagen Group Consumer Discretionary

TABLE S2
List of euro stocks under study.
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For any finite-dimensional subspace U C L?(12), let

m
spang (U) := ijuj:bjEH,ujeu,mzl,Z,... . (S1.1)

j=1

Since U is finite-dimensional, span (U) C L% () is a closed subspace. Indeed,
let uq,...,u, €U be an orthonormal basis, r < oo, then

2 2 2
[brus + - 4 brur |l ) = [102]1" + - + {16

By the orthogonal decomposition Theorem (Hsing & Eubank 2015, Theorem 2.5.2),
for any X € L% (Q), there exists a unique U[X] € spang (U) such that

X =U[X]+V[X], (51.2)
where V[X] = X — U[X] € spany (U)*; hence E [uV[X]] = 0 for all u € Y and
E|X|* = EIUIX]I* + EVIX])*. (S1.3)

We have the following definition.

Definition S1.1. FEquation (S1.2) is called the orthogonal decomposition of
X onto spany (U) and its orthogonal complement; U[X] =: projy (X |U) is the
orthogonal projection of X onto spang (U).

If up,...,u, € L*(Q) form a basis of U, then projy (X[U) = >,_, biu; for
some unique bq,...,b. € H. Furthermore, if the u;s are orthonormal, then b; =
E[Xuw],l =1,...,7. We shall also use the notation

proj g (X|u) := proj g (X|uy, ..., u.) := proj g (X|U),

where U = span(uq,...,u,) and u = (u,...,u,)".

S2. Proofs
S2.1. Proofs of Theorems 2.2 and 2.3

We denote by X the covariance operator of (Xi¢, ..., Xn¢)’, which does not
depend on t by stationarity. Denoting by py,; € Hy the ith eigenvector of Xy,
we have the following eigendecomposition of the covariance operator,

oo
YN = Z ANiPN PN+
=1

(Notice that the notation here differs from that of Section 3, but this is not an
issue since we are dealing here with the population level T = oo) The eigen-
vectors (pn ;)i C Hy form an orthonormal basis of the image Im(Xx) C Hy
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of ¥ 5. We can extend the set of eigenvectors of 3 to form an orthonormal
basis of Hy. With a slight abuse of notation, we shall denote this basis by
(pn.i)i, possibly reordering the eigenvalues (and having eigenvalues equal to
zero): we might no longer have non-increasing eigenvalues, but we can enforce
AN1 2 2 AN g and AN g > AN 455 V7 > 1. Define

Py:=(pn1 -+ DPny) € LR, Hy)

and
Qn = (PNr+1 PNrr2 --) € L(la, Hy)

where 05 = {(al,a2, )i ERY a? < +oo}. Denote by Ay € L(R")
and ®n € L({2) the diagonal matrices with diagonal elements (An1,...,Anr)
and (AN, 741, AN, r+2; - - ), respectively. Then,

Sy = PyANPL + Qn®nQL and PyPl +QnQL = Iy, (S2.1)

where Iy is the identity operator on H .

The analysis we are going to perform is for fixed t, letting N — oco. We
therefore omit the index ¢, unless needed, and write X for (Xi¢,..., Xn¢)'
Let

PN = AP PIX Ny = OGN X A PR, X ) (52.2)

Notice that, by Lemma S2.18, 9%V is well defined for N large enough since Ay ;-
tends to infinity. Using (S2.1), we get

Xy = PxPY Xy + QnQN Xy = PyAY 9N + QnQR X, (S2.3)

where the two summands are uncorrelated since P]T,E NQn =0 € L({3, Hy),
the zero operator: (S2.3) is in fact the orthogonal decomposition of Xy into
spangy (™) and its orthogonal complement, defined in Appendix S1. For m <
n, let us define products such as PJ; Py by extending the smaller matrix by
adding zeros. For instance,

PXM 0 - 0
P}, Py = : ot (eva 0 PN,
p}[’r 0O --- 0

where we have added N — M columns of zeros to P},. Let O(r) be the set of
r x r orthogonal matrices, i.e. matrices C such that CCT = CTC = I,, the
r x r identity matrix. For C € O(r), left-multiplying both sides of (52.3) by
CA]T/[1/2PAT/[, with m < n, yields

CyM = CAy P PYPyA Y + CAL P PQNQN Xy
— Dy" + RXy, (52.4)
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which is the orthogonal decomposition of C™ onto the span of ¥ and its
orthogonal complement, since the two summands are uncorrelated. Notice that
D = D[C, M, N], and similarly R = R[C, M, N|, where we use square brackets
to denote dependence on variables. The following Lemma gives a bound on the
residual term in (S2.4). Write A > B for A — B non-negative definite.

Lemma S2.1. The largest eigenvalue of the covariance operator of the resi-

dual R[C,M,N]| Xy in (S2.4) is bounded by AN r+1/ i, r-

Proof. We know that Iy = QNQ]TV and )\N,THQNQ]T\, b QNQNQITV. Hence,
Avsi1In = Qn® Q). Multiplying to the left by CA;;/* Py, and to the right
by its adjoint, and using the fact that ®x = QL ENQ N, We get

A 1CAGCT = CAL P PLQNQLENQNQY PuA L, /*CT = RENRT.

Lemma S2.18 completes the proof, since the largest eigenvalue on the left-hand
side is /\N,r+1/)\IVI,r~ O

Let us now take covariances on both sides of (52.4). We get
I.=DD'" + REyR".
Denoting by §; the ith largest eigenvalue of DDT, we have

AN

1 <5 <1, (S2.5)

AM,r
by Lemma S2.1 and Lemma S2.18. Thus, for N > M > M*, all §;s are
strictly positive and, since A\,;1 < oo and A\, = 00, §; can be made arbitrarily
close to one by choosing M* large enough. Denoting by UA'/2V'T the singu-
lar decomposition of D, where A is the diagonal matrix of DD'’s eigenval-
ues 01 > 0 > -+ > 6,, define

F:=F[D]=F[C,M,N|=UV', D=UAY?VT. (S2.6)

Notice that (S2.5) implies that F is well-defined for M, N large enough, and
that F € O(r). The following Lemma shows that C1™ is well approximated
by Fy™.
Lemma S2.2. For every € > 0, there exists an M. such that, for all N >
M > M., F = F[C,M,N] is well defined, and the largest eigenvalue of the
covariance of

CyM — FypN = CpM — F[C, M, N]gp"
18 smaller than € for all N > M > M..

Proof. First notice that it suffices to take M. > M* for F' to be well defined.
We have
CyM — Fyp" = RXy + (D — F)yp~,
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and since the two summands on the right-hand side are uncorrelated, the covari-
ance of the sum is the sum of their covariances. Denoting by S the covariance
of the left-hand side, and by [||S]||,, the operator norm of S, and noting that
D-F=UAY? -T,)VT, we get

IISIl.. < |[|RENRT|| + H‘U(A”Q _L)VTv(aY? - IT)UT’H (S2.7)
= || R=v R, + [|av - 1|, (2.9

since U and V are unitary matrices. The first summand of (52.8) can be made
smaller than £/2 for m large enough (by Lemma S2.1), and the second summand
can be made smaller than £/2 using (52.5). O

A careful inspection of the proofs of these results shows that they hold for all
values of t, i.e., writing ™! = A;/QP;,XN, the result of Lemma S2.2 holds
for the difference D™ — Fap™t, with a value of M, that does not depend on
t. The following results provides a construction of the process u;.

Proposition S2.3. There exists an r-dimensional second-order stationary pro-
cess wy = (Uyt, ..., Upe) such that
(i) uit €Dy fori=1,...,r and allt € Z,
(i) EututT = I, u; is second-order stationary, and w; and Xy are second-
order co-stationary.

Proof. Recall that M, is defined in Lemma S2.2. The idea of the proof is that
1™ is converging after suitable rotation.

Step 1: Let 53 = M 52, Fy = I,., and ul! = Fap*t,

Step 2: Let sy = maX{Sl7M1/24}, let Fy, = F[Fy,s1,52], and let u?! =
Foyp>t.

Step k+1: Let s;11 = max {sk, M, j2041) }, F.,, = F[F, 51, 5141), and uFt1t =

Fyp19portt,

Denoting by u?’t the jth coordinate of u*?*, we have

2 1
kit k41t _ Skt Skt1,t||2 =
[t =] oy ~ I = Bl s a9 ) < g
and thus

< )
L) — 2k-1

kit kthyt
H“j uj

h
< Z Hugﬁlq,t _ u;?Jrl,t
LYQ) T

Therefore (uf’t)kzl is a Cauchy sequence and converges in L?(f) to some
limit w;e, 5 =1,...,7.
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Notice that Eu®!(u®!)T = I, for each k since F}, € O(r), so that

Euu! = lim Eu®'(u®)T = lim I, = I,.
k—o0 k—o0

Furthermore, E Utu;r_,’_ , is well-defined (and finite) for every h € Z, and
Ewul,), = lim EuP (uf")T = lim FE [ (5T R
k—o0 k—o0

The term inside the limit is independent of ¢ (since Xy is second-order station-
ary), and hence EutuLh does not depend on ¢, and (wu)iez is second-order
stationary. Furthermore,
T . Et+s\T] _ 1: T TA—1pT

EXju,,, = kl;rgoE [Xl-t(u +5) ] = khlI;oE I:Xithk,t—i-s}PskAsk F,
and since the term inside the limit does not depend on ¢, it follows that u; is
co-stationary with X, for all N.

Let us now show that u;; € D;. Recall that

ub' = Ryt = FALVPP] Xy,

and let us write G, = FkA;kl/2PsTk. Notice that ujt = row,;(Gy)Xs, ¢, where

row;(G) denotes the jth row of G and row;(Gy)" € Hy,; hence, its squared

norm is equal to the jth diagonal entry of GG}, which itself is bounded by
G Gilll.. = 1B Filll o < IASH I = A5

k Sk,T"
. : -1 _
Since limg o0 A, . = 0, uj¢ € Dy O

We now know that each space D; has dimension at least r. The following
results tells us that this dimension is exactly r.

Lemma S2.4. The dimension of Dy isr, and {uy¢,...,us} is an orthonormal
basis for it.

Proof. We already know that the dimension of D; is at least r, and that uy¢, ..., ur €
D, are orthonormal. We only need to show that the dimension of D; is less
than or equal to r to finish the proof. First of all, let us drop the index ¢ to
simplify notation. Assume that D has dimension larger than r. Hence there
exists di,...,dr+1 € D orthonormal, with d; = limy_o d;jn in L?(Q2), where
djn = vy Xy, and |v;n]® = v]yvjn — 0 as N — oo.

Let AN) be the (r + 1) x (r + 1) matrix with (i,j)th coordinate
AN = E[d;nd;n]. On the one hand, A™) — I,,;. On the other hand,

(N) _ T _ T T T T
Ai; " =vnENviN = VN PNANPNYiN + 0@V PN QN s,

and, from the Cauchy—Schwarz inequality,

2
[in@v N QNN < IQNIS 2Nl ol Tvin ]
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< Anrplvin|[lvin]l = 0,

as N — oo. Therefore, the limit of AMN) is the same as the limit of B(N) | whose
(i,7)th entry is Bgv) = viTNPNANP;UjN. But this is impossible since B is
of rank at most r for all N. Therefore, the dimension of D is at most r. O

Consider the orthogonal decomposition
Xit = Vit + 6,  with vy = projy, (Xit|Dy) and i = Xix — it

of Xy into its projection onto spang, (D;) and its orthogonal complement.
Here, projy, (-|D;) denotes the orthogonal projection onto spany (D;)—see Ap-
pendix S1 for definitions. Since v;; € spany, (D;), we can write it as a linear
combination

Vit = biru1g + -+ by,

(with coefficients in H;) of w1y, ..., ur, where b;; = Evyuuj = EXjpujy does
not depend on ¢ in view of the co-stationarity of w; and X .

The only technical result needed before being able to prove Theorem 2.2 is
that £ is idiosyncratic, that is, )\i < 00. The rest of this section is devoted to
the derivation of this result.

Although " does not necessarily converge, we know intuitively that the pro-
jection onto the entries of ¥V should somehow converge. The following notion
and result formalises this.

Definition S2.5. Let (vx)n be an r-dimensional process with mean zero and
EUNUL = I,.. Consider the orthogonal decomposition

MN MN
UM:A UN + P )

and let cov(p™N) be the covariance matriz of p™. We say that (vy)n gener-
ates a Cauchy sequence of subspaces if for all € > 0, there is an M. > 1 such
that for all N and M > M., Tr[cov(pMN)] < e.

Lemma S2.6. Let Y € L% (Q). If (vy)n generates a Cauchy sequence of
subspaces, and Yn = projy (Y |vy), then (Yn)n converges in L% ().

Proof. Let Y = Yy +ry = bNoy + 7y and Y + rar = dbMwuyr + rar be
orthogonal decompositions, with % = (by1,...,bx), bri € H, k = N, M. We
therefore get

YN - YM = bN’UN — bM’UM =Typm —TN-

The squared norm of the left-hand side can be written as the inner product
between the middle and right expressions. Namely,
2
YN — YM||L2(Q) = <bNUN —boMup,ry — TN>L2(Q)

= <vaN7 TM>L2(Q) + <bM'UM7 TN>L2(Q)
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where the cross-terms are zero by orthogonality. Since vy = ANMuy,, + pNM|

and since vy, is uncorrelated with r,;,

S{VM = <prNMa TM>L2(Q) )

and the Cauchy—Schwarz inequality, along with simple matrix algebra yields
2
|S{VM| <Tr [(bN)TbN] H’I"M||L2(Q) Tr [cov(pNM)] . (S2.9)

Notice that HYHiZ(Q) = Tr[(b™)T6N] + HTNHi?(Q) = Tr[(b™)ToM] + ||7"MHi2(Q)-
Therefore, the first two terms of the right-hand side in (S2.9) are bounded and,
since vy generates a Cauchy sequence of subspaces, |STV#| can be made arbi-
trarily small for large N, M. A similar argument holds for [S2/V|, and therefore
(Yn)n C L% (Q) is a Cauchy sequence, and thus converges. O

We now show that 1", defined in (S2.2), generates a Cauchy sequence of
subspaces.

Lemma S2.7. (¢¥")y generates a Cauchy sequence of subspaces.

Proof. For N > M, we already have the orthogonal decomposition
PM = DN + pMN (S2.10)

with D = AIT/[l/zP]\T/[PNA]l\{Q. Lemma S2.1 gives Tr(cov(p™™)) < rAn i1/ A
We now need to show that the residual of the projection of ¥ onto ¥ is also
small. The projection of ¥ onto ¥ is E [¢N(1,DM)T]¢M. Expanding the ex-
pectation, we get

E [y (")) = E [AY P XN XT PuA )
= A PPIS NPy
= Az_vl/QPzT/ (PNANPY + Qn®nQY) PMAX;/2
= A PANPIPyAL P = D7,

where the second equality comes from the fact that we expand the smaller matrix
Py, with rows of zeros, and the third equality comes from (S2.1). We therefore
have ¥V = DTypM 4+ pNM_ Taking covariances, we get

I, = D'D + cov(p"™) = DD + cov(p™™)
where the second equality follows from (S2.10). Taking traces yields
Te(cov(pM™)) = Tr(cov(p™)),

which completes the proof. O
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We now know that ¥ = (¢, ..., %) generates a Cauchy sequence of sub-
spaces. Let us show that the projection onto spany (¥, ..., ¥Y) converges to
the projection onto span (D) (we are dropping the index ¢ for ease of notation).

Lemma S2.8. For each i > 1, writing X; for X,
lim projy, (X;|9™) = projy, (X;|D).
N —o0
Proof. Let
W= proj, (Xilp™), & =Xi =" (S2.11)
We know by Lemmas S2.6 and S2.7 that

%N —; and 6?7 — d7, as N — oo. (S2.12)

Let us show that ;' € spany, (D). The orthogonal decomposition of v} into its
projection onto spang, (D;) and its orthogonal complement is

vi =E [’yfuT]u—Fri
and, by orthogonality,
75 gy = T (B [iuT] (B [ u"])T) + 17l g (52.13)
We also know by (S2.3) that v = rowi(PN)A%2t/)N, and therefore

198l = Jim Tr(cov(4)) = lim Te(row;(Py)An row,(Px)T)
where we notice that row;(Py) : R" — H,.
Recall from Proposition S2.3 that v = limy_s FSNA;\}/ZPJNXSN. This
implies that E hfu-r] = limy_ oo rowi(PSN)Ail/fFT

sy» Which in turn implies
that

Tr (E [V:UT] (E ['Y:UT] )T) = ]\}gnoo Tr(row; (Psy ) Asy rowi(Piy)"),

and therefore ||7‘1-||L2(Q) =0 by (S2.13), and ~; € spang, (D;).
Finally, let us show that ¢; is orthogonal to D. Writing u; instead of w;q,

E[5u) = Jim E [57u3"]

= im E[57" row; (Fy)9™]

=limE [5; (1) ] row; (Fy)" =0,

since 6F is orthogonal to 1" for all k. The result follows. O

Recall the definition of ] in (52.12). We can now show that the largest
eigenvalue A?\;,l of the covariance of 6% = (d7,...,d%) is bounded.
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Lemma S2.9. §” is idiosyncratic, i.e. supy>q )\ﬁs\;l < 00.

Proof. Let E‘IS\; beNthe covariance of (6,...,d%), N > MI.V Since §¥ converges
to 67 in L2(2), 39, converges to X9;. This implies that A}, ; converges to A3
as N — oo, since [AJ) | — Xj})l‘ < \Hzgj — x|l (Hsing & Eubank 2015).

’DO
. N, . N
Since E‘J;V[ is a compression of Z]‘;V , we have

N N x
A1 S AN = AN e

where we have used the fact that, by definition, )‘%Tl = A¥ 41+ Taking the limit
as N — oo, we get
5
A S Av < oo,
and, since this holds true for each m, it follows that A\ < A\® 11 < oo. O

T

Proof of Theorem 2.2. We have already shown the “only if” part. Let us assume
Ay =00, AY,; < oo. Then we know that X;; has the representation

Xit =it + 0i, with ;= Proj g, (Xit|Dy), and 0y = Xit — Vit

We know that ~;; = bjiuys + - - - + by is co-stationary with X since D, is
obtained as an L?(£2) limit of projections of X;. It follows from Lemma S2.9 that
A¥1 < Af4q; using Lemma S2.18, we get A . > A%, —AY 1, and thus Ay | — oo
as N — oo. O

Proof of Theorem 2.3 . Assume that p € Dy, so that p =limy (an, Xy) foray €
Hy with [an| — 0. Since A} < oo, the non-correlation of y and ¢ yields
p = limy (an,xn), which implies that p € span(v;) for v; = (vig,..., V),
where xn = (X1t .- -, xnt)’. Therefore,

span(v;) D span(D;) = span(uy),

where u; is constructed in Proposition S2.3. But span(v;) and span(u;) both
have dimension r, so they are equal, and therefore

Xit = Proj g, (Xit|span(v;)) = projy, (Xit|Dy).

If X1 = 4 + 04 is another functional factor representation with r factors, then
we have

Yit = projg, (Xut|Di) = xie  and  0i = Xip — Vit = Xit — Xt = it

which shows the uniqueness of the decomposition. O
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S2.2. Technical Results for Section 3

Let us first recall some basic definitions and properties of classes of operators on
separable Hilbert spaces (Weidmann 1980, Chapter 7). Let H;, Hy be separa-
ble (real) Hilbert spaces. Denote by Soo(H1, Hz2) the space of compact (linear)
operators from H; to Hs. The space So(Hi, H3) is a subspace of L(Hy, Hy)
and consists of all the operators A € L(H;, Hs) that admit a singular value

decomposition
A= Z s [A]ujva,
Jj21

where (s;[A]); C [0,00) are the singular values of A, ordered in decreasing or-
der, satisfying lim;_, s;[A] = 0, (u;); C Hy and (v;); C Ha are orthonormal
vectors. An operator A € Su(H1, Ha) satisfying [[|A[[, = >_; s;[4] < oo is
called a trace-class operator, and the subspace of trace-class operator is de-
noted by Si(Hi, Hz). We have that ||A]],, < [JAll, = H|AT|H1 and if C' €
L(Hy, H), then [|CA[|; < [IC]llIIIA]ll;- An operator A € Sy (Hy, Hy) satisfy-
ing [|[Allly == 4/>_;(s;[A])? < oo is called Hilbert-Schmidt, and the subspace of
Hilbert-Schmidt operators is denoted by Sa(Hi, Hz). We have that [||Afl|l, <
llAlll, = |[|AT[||, and if C' € L(Ha, H), then [[CAl, < [|C]| [l All,- Further-
more, if B € Sy(Hs, H) then [|BA|||; < ||Blll5 /Il Allly, and if A € Si(H, Hy) then
I A[lly < [IIA]ll,- We shall use the shorthand notation S;(H) for & (H, H), and
similarly for So(H). If A € §(H), then we define its trace by

Tr(A) =) (Aei,e:),

i>1

where (e;) C H is a complete orthonormal sequence (COS). The sum does not
depend on the choice of the COS, and |Tr(A)| < ||| A]l|;. Furthermore, if A is sym-
metric positive semi-definite (i.e. (Au,u) > 0,Yu € H), then
Tr(A) = ||Alll;. If A € L(H:,Hy) and B € L(Hz, Hy) and either [||Af]; < oo
or [||All, + IBlll, < oo, we have Tr(AB) = Tr(BA). The spaces S (H), S2(H),
and S1(H) are also called Schatten spaces.

Recall that C 7 := min{v/N,VT},

Lemma S2.10. Under Assumptions C,
X rént|||, = Op(NT/Cn.1). (S2.14)

In particular, |||Ent|| . = Op(\/NT/Cn ).
Proof. We have

T

INNT) T ehrénrlll = S (€7 &/N)?/T? <2772 (un(t — 5)* +12),

t,s=1 t,s
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where 7y := N71¢J €, — vy (t — ). First, by Assumption C,

T2 ZI/N(t —s5)2=0(T™") forall T >1.
t,s

Second, by Assumption C, 7%, = Op(N 1) uniformly in ¢, s, and therefore

T Zﬁgt =O0p(N7Y),
t,s

which entails (S2.14). The second statement of the Lemma then follows since |[|€nT |||iO =
H|£LT€NT|HOO~ O
Lemma S2.11. Under Assumptions A, B, and C,

Si=0p()  and || Xwrll = Op(VNT),
In particular, |4, = Op(VT), where @ is defined in the proof of Theorem 3.1.
Proof. We have, by definition of A1, and using Assumptions A, B, C and Lemma S2.10,

S = ([ XX Xnr/(ND|, < (NI XI5

<2(NT) (|| Brull%, + llénrlZ)

<2ANT) " (IBNIIZNull% + lenTII%)

< 2(NT)"H(O(N)Op(T) + Op(NTCy 7)) = Op(1).

The last statement of the Lemma follows from the fact that

T [aff2 = A2+ -+ + 32 < kA2 = Op(1), =

For a sequence of random variables Yy > 0 and a sequence of constants ay >
0, we write Yy = Q,(ay) if and only if Yy = Op(ay').

Lemma S2.12. Under Assumptions A, B, C, and D, \, = Q,(1).

Proof. Write Ag[A] for the k-th largest eigenvalue of a self-adjoint operator A.
By definition,

A=\ [ XN Xnr/(NT)]
= A [u' By Byu/(NT) + (NT) ™ (u" Byént + EnrBru + EyrénT)] -

Since the operator norm of second summand is Op (1) under Assumptions A, C,
and D (see Lemma S2.10), we have, by Lemma S2.17,

A — M [u" BYByu/(NT)]| = Op(1).

We therefore just need to show that A\.[u'BYByu/(NT)] = Q,(1). Using
the Courant—Fischer-Weyl minimax characterization of eigenvalues (Hsing &
Eubank 2015), we get that

Ar[u" By Byu/(NT)] > A [BL By /N] - A [u"u/T).
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Now, by Assumption B, \,.[BY, By /N] = Q,(1), and by Assumption A,
MuTuw/T] = M\ Jun' /T = Q,(1).

The result follows. O

Lemma S2.13. Recalling the definition of R in (3.3), denote by s;[A] the jth
largest singular value of a matriz A. Under Assumptions A, B, C, and D,

s1[R] = Op(1) and s.[R] =Q,(1)

In other words, R has a bounded norm, s invertible, and its inverse has a
bounded norm.

Proof. The first statement follows directly from Lemma S2.12. For the second
statement, using the Courant—Fischer—-Weyl minimax characterization of singu-
lar values (Hsing & Eubank 2015), we obtain

s [RuvT] < sy [u/VT) B = (51 [wu™ V) s lR)
Hence, given that s;[uu’/T] = Op(1), by Assumption A,
se[R) > (51 [ua®/T)) s, [Ru/VT| = 0,(1)s, [Ru/VT],
and by Theorem 3.1 and Lemma S2.17,
s [Ru/VT| = s, [a/VT| +0p(1) = 1+ 0p(1).

Therefore, by Lemma S2.12, s, {Qku/ﬁ} = Q,(1), which completes the proof.
O

S2.3. Background Results and Technical Lemmas

Lemma S2.14. Assume that E [utuﬂ 1s positive definite, and that Assump-
tion B holds. If Eu; =0, E§; =0, and E [utﬁﬂ =0,

A [EX X[] = Q(N).
If, in addition, > 72, || E & ;rt’”oo < M < oo for all i, then
A1 [EX X[ ] =0O(1).

In other words, the r-th largest eigenvalue of the covariance of X; diverges
and the (r+1)-th largest eigenvalue remains bounded as N — oo, which implies
that the covariance of X; satisfies the condition of Theorem 2.2.
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Proof. Assuming E [utﬁﬂ =0, we get 3 := ByE [utuﬂ By +E [Etﬁﬂ. Using
Lemma S2.18, we get

Ar[S] > Ay [BNE [weuf | BL] > A [E [uw/ ]] A\ [ByBy,

where the second inequality comes from the Weyl-Fischer characterization of
eigenvalues (Hsing & Eubank 2015). By assumption, the first term is bounded
away from zero. For the second term, we have

Ar[ByBY] = A [ByBy] = Q(N),
by Assumption B. For the second statement, using Lemma S2.18 we get
A1 [EX X[ <A [ By (Euuf ) BN+ M[EEE[] < M[E&E]]

since By ( Ew,uf)B), has rank at most r. Now the (i, j)-th entry of E&&] is
Eﬁitfﬁ. We want to show that ||| Eﬁtfﬂnw = O(1). We will show that for any
norm ||-||, on the operators £L(H ) that is a matrix norm, that is, satisfies, for
all A,B € L(Hy) and v € R,

(i) ||A]l, > 0 with equality if and only if A =0,

(i) [IvAll, < Iy IAlL,
(i) A+ B, < [|Al + B,
(iv) [|AB], < [[AlLIBI.,

we have A\1[A] < ||A]|, if A is compact and self-adjoint. Indeed, let Az = v for
some non-zero x € Hy and v > 0. Then Azz’ = yxz", and thus

e, = e, = Az, < 1AIL 22Tl

Simplifying by Hz:cTH* yields |v| < ||All,. To complete the proof, we still need
that || 4[|, = max; Z;vzl llaijlll, (where (A)i; = a;; € L(Hj, H;)) is a matrix
norm. This, however, is straightforward and details are omitted. O

Lemma S2.15. Under Assumption D, there exists M1 < oo such that
(NT)"' E|||BRént||s < My,  for all N,T > 1.
In particular, |||BY ENTH|2 = Op(VNT).

Proof. We have H|B ENT|H2 Yot ||B {SH Since BL &, = Zfil b,

N
N E|BY& =N Z (€60 T¢]

N
Z [Tr(eL b0 7))
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N
NS T TE [¢,6L))

ij=1

N
<N T E [5e6i] o

i,7=1

N
< (max o0 T )N 37 I [ ]l]

ij=1
N
< (o o7 [l 171 )N > (1B [&56€ ] o < e,
ij=1

where we have used Holder’s inequality for operators. The claim follows directly
since the bound is independent of s. O

Lemma S2.16. Assume that E [(fgés)ultuls] = E [5Z§S]E[ultu15] for
alll =1,...,7 and s,t € Z and that ), , |vn(t)] < M < co. Then Assump-
tion E(a) holds with oo = 1.

Proof. We have H|UELTH|§ = Tr [uEJTVT&“NTuT] =3, Zit:l ugpugs (€] €s),
and thus

T T
Elugkrll; = Y- > Eluru]E[€l6].

=1 s,t=1

T
< Eu? t—
<n (mlax Uu) Z lun (t — s)|

s,t=1

= O(NT).

Hence, |||uél|||; = Op(NT) < Op(NTCR). -

The following Lemma tell us that the singular values of compact operators
are stable under compact perturbations.

Lemma S2.17. (Weidmann 1980, Chapter 7) Let A, B : Hy — Hs be compact
operators between two separable Hilbert spaces Hy and Hy, with the singular
value decompositions

A= Z sj[Aujv), and B= Z s;[Blw;z; ,

Jj=21 Jj=>1

where (s;[A]); are the singular values of A, arranged in decreasing order, and (s;[B]),
are the singular values of B arranged in decreasing order. Then

[s;[A] = 5;[BIl < [|A = Blll oo, Vi > 1.
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Lemma S2.18. Let D, E € Sy (H) be symmetric positive semi-definite op-
erators on a separable Hilbert space H, and let \;[C] denote the s-th largest
eigenvalue of an operator C € Soo(H).

(i) Letting F = D + E, we have, for alli > 1,
(i) Let G be a compression of D, meaning that G = PDP for some orthogonal
projection operator P € L(H) (P?> =P = PT). Then
XNi|G] < N[D] for alli > 1.

Proof. This is a straightforward consequence of the Courant—Fischer—Weyl min-
imax characterization of eigenvalues of compact operators, see, e.g. Hsing &
Eubank (2015). O

S3. Additional Simulations

Figure S1 shows the simulation results for DGP3, DGP4, described in Section 4.
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(a) Simulation scenario DGP3.
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(b) Simulation scenario DGP4.

Figure S1: Estimations errors (in log, scale) for DGP3 (subfigure (a)) and
DGP4 (subfigure (b)). For each subfigure, we have the estimation error for the
factors (log, 5]2V’T, left), loadings (log, E%,,T, middle), and common component
(logy ¢, right, ¢n 7 defined in (4.1)) as functions of log, N. The scales of
the vertical axes are the same. Each curve corresponds to one value of T €
{50,100, 200}, sampled for N € {10, 25, 50,100}.
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